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Abstract

Geometric algorithms are usually designed based on the assumption of using arbitrary-
precision representations. However, in modern computer systems floating-point arithmetic
and finite-precision approximation are often used as implementing exact computations would
require large computational resources and would be rather slow in the applications. Snap
rounding (SR) is a widely used technique to transform representations of infinite precision
into fixed-precision formats. It slightly modifies the original geometry of the input in order
to obtain a better organized geometric object arrangement and avoid the issues caused by
applying floating-point arithmetic in geometric algorithms. The existing implementations
of SR primarily focus on processing sets of line segments, while in practice polygons are of
great significance as well yet has not received adequate attention so far.

In this thesis, a new method is proposed to perform SR on 2-dimensional polygons. Firstly
the input polygons are embedded into a triangulation. Subsequently the triangulation is
tagged with the ID information of polygons and the polygon boundaries are extracted and
stored in a container. The boundaries and the triangulation are then dynamically processed
according to the identification of close polygonal vertices and close vertex and boundaries
(under a predefined tolerance). After having snapped all the close elements the rounded
polygons will be reconstructed from the processed boundaries. The testing results show the
proposed method is capable of eliminating small gaps between elements (i.e. vertices and
boundaries) and is adaptable to various input. The topological and geometrical properties
of polygons are preserved as much as possible. Finally, an overview of the limitations is
provided, along with potential directions for future research.
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1 Introduction

1.1 Research Motivation

Geometric objects are commonly described in a continuous space, e.g. the Euclidean space
R2 and R3, this also introduces the infinite-precision (or arbitrary-precision) representations
of geometric objects [Goodrich et al., 1997]. The infinite-precision usually stands for the
exact computations, which are commonly used when we deliberate and design the logic of a
geometric algorithm. For instance, finding the intersection of two line segments. This seems
to be a quite straightforward task, yet it is actually not the case inside a computer. Various
issues will arise when it comes to the implementation, especially when robustness and reli-
ability are desired [Halperin and Packer, 2002]. The major problem is that, a computational
model is usually proven to be correct under the assumption of using exact computations
rather than floating-point arithmetic. In practice, however, the hardware of modern comput-
ers does use floating-point arithmetic to replace the exact arithmetic. For some applications
this can deliver relatively good results while in scenarios where high precision is required,
floating-point arithmetic can lead to severe errors such as program crashing, infinite loop,
or yielding wrong results [Schirra, 1998].

One prevalent solution is using exact computations provided by libraries like Computational
Geometry Algorithms Library (CGAL) [Fabri and Pion, 2009]. Exact computations indeed
can produce reliable results while it usually consumes large resources and will slow down
the application. Another substitution is to use finite-precision approximation to better orga-
nize the arrangement of geometric objects and to overcome the possible degenerate problems
caused by precision issues. SR is such a method to convert an arrangement of objects (e.g.
line segments) into a fixed-precision representation. It slightly modifies the original geom-
etry of the input data, which is also known as a perturbation [Raab, 1999], to make the
geometric objects better organized.

In recent researches, various approaches have been proposed and implemented to snap
rounding a set of line segments, such as iterated snap rounding [Halperin and Packer, 2002],
iterated snap rounding with bounded drift [Packer, 2006], snap rounding with restore [Belussi
et al., 2016], etc. They all have achieved promising results and have been applied in the
industry. One can arguably say that the algorithms towards line segments have attained a
state of maturity. However, in 2-dimensional space, not only should the attention be given
to line segments, but equal consideration should also be given to polygons, especially in the
field of Geographical Information System (GIS), as polygons are also of great importance in
the geometric computations and analyses. For instance, in the spatial analysis, if the rela-
tionships of polygons are incorrectly interpreted due to small errors (e.g. small gaps), then
the relevant calculations (such as area calculation) may be underestimated or overestimated.
This is undesirable in most applications and should be avoided whenever possible.

Pertaining to this, it has been shown that a constrained triangulation (CT) can be used as a
supporting data structure to efficiently perform operations related to polygons. Algorithms
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1 Introduction

have been developed with the objective of validating and correcting polygonal geometries,
such as fixing invalidities of individual polygons [Ledoux et al., 2012] and repairing a planar
partition [Ohori et al., 2012]. Generally speaking, utilizing a CT provides a good basis for
implementing various algorithms towards polygons with ease and efficiency.

Based on the previous researches, in order to investigate the possibility of snap rounding
polygons in R2, a new approach is intended to be proposed and developed in this thesis.
Similarly, it will utilize a CT as an auxiliary data structure. An arrangement of 2-dimensional
polygons will be used as input and the output will be its rounded counterpart. The testing
and benchmarking results will be presented as well.

1.2 Research Objectives

Summarizing the content above, we define the snap rounding of polygons as such:

• snap rounding polygonal vertices: if the distance between two vertices is less than a
predefined threshold, then the two vertices are considered the same and should be
represented with one vertex.

• snap rounding polygonal vertex and boundaries: if the distance between a vertex and a
boundary is under a certain threshold, then the vertex should be touching with the
boundary.

Based on this, the main research question of this thesis is: How can a constrained triangulation
(CT) be used as a supporting data structure to robustly perform snap rounding on polygons in 2-
dimensional space?

In order to answer the question, the following sub-tasks will be gradually studied:

• How to integrate a CT with the input polygons (possibly with interior holes)?

• Is it better to have a certain type of a CT such as a constrained Delaunay triangulation
(CDT) or is any type of a CT fine?

• How to link the triangulation with the original polygons? If the triangulation is modi-
fied, how to update the changes to the polygons?

• Polygons usually have attributes attached (e.g. polygon id, area of a polygon), how to
preserve them in a proper way during the SR process?

• Given a certain threshold, there may exist several SR cases (e.g. multiple polygonal
vertices and polygonal vertex and boundaries), what is the most reasonable order when
SR is being performed?

• How to measure and evaluate the distortions of the polygons before and after SR?

To achieve the goal, an algorithm of automatically performing snap rounding on polygons
will be developed. It will use a CT or possibly its variation, a CDT as a basic supporting data
structure. Although robustness is our first priority, efficiency should also be weighted and
evaluated. Moreover, external libraries will be used, such as Geospatial Data Abstraction
Library (GDAL) [GDAL/OGR contributors, 2022] for reading and writing files and CGAL
[Fabri and Pion, 2009] for using robust geometric algorithms including building a CT or a
CDT [Boissonnat et al., 2000].

2



1.3 Challenges and Scope

1.3 Challenges and Scope

Integrating a CT and polygons has already been studied and implemented in [Ledoux et al.,
2012] and [Ohori et al., 2012]. The main challenge of this thesis is how to keep track of
the information of polygons while the triangulation is being modified. In other words, the
polygons need to be updated without losing any information (i.e. polygon ID) as the changes
on the triangulation are made. [Ohori et al., 2012] proposed and implemented a method to
label the triangulation in accordance with the id of input polygons. However, in this thesis
the triangulation will be dynamically changed and will invalidate some triangles that have
already been labelled, which will cause the lack of information.

It is difficult to identify the invalidated triangles, for the triangulation can have complex
and irregular structures. Therefore, in this thesis a new method needs to be developed to
track the information of polygons while their geometries are being modified in the triangu-
lation.

The thesis will focus on the polygons, thus the input and output will all be polygons. The
aim is to solve the problems mentioned in Section 1.2 via performing snap rounding on poly-
gons. Other topological errors amongst polygons will not be considered as main problems to
tackle, although some cases such as overlaps and self-intersections can be handled by snap
rounding to some extent.

1.4 Thesis Outline

The outline of this thesis is shown as follows:

• Chapter 2 introduces the background and basic information pertaining to this the-
sis, including the well-known floating-point arithmetic, the origin and development of
snap rounding and the definition of a CDT. Furthermore, in this chapter different algo-
rithms that perform snap rounding operations on a set of line segments are reviewed
and discussed.

• Chapter 3 presents the whole pipeline of the proposed method. It mainly includes
polygon embeddings, tagging of the triangulation, snap rounding polygonal elements
(vertices and boundaries) and polygon reconstructions. Figures and pseudo-code are
frequently used to elaborate the procedures.

• Chapter 4 mainly describes the implementation details, including data structures to be
used, the developed prototype and related engineering decisions.

• Chapter 5 presents relevant results and analyses of some datasets. The evaluation
method is also explained in this chapter.

• Chapter 6 gives the conclusion of this thesis and possible directions of the future work.

3





2 Related work

2.1 Floating-point Arithmetic

In the introduction, it has been described that modern computers are using floating-point
arithmetic to replace the exact arithmetic in common practice. Furthermore, floating-point
is widely utilized in various ways regarding computer systems. For instance, a majority
of popular programming languages (e.g. C++, Python, Java, etc.) have their own internal
floating-point data types and almost all of the modern computers have floating-point accel-
erators [Goldberg, 1991]. Note however, floating-point has its own limitations. The most
important, and perhaps the most talked about aspect is the rounding error. In computer, real
numbers can not be exactly represented with infinite number of bits thus must be replaced
with finite precision (fixed precision). In practice, computations with real numbers will also
yield results that typically can not be precisely represented with a given number of bits.
Therefore, rounding operations are required so as to reasonably express the real numbers
via a finite manner but meanwhile some errors will also be introduced.

Regarding the specific representation of floating-point, it typically has a flexible form shown
below:

±d.dd . . . d× βe

where d.dd . . . d is called the significand, which was firstly used by [Forsythe and Moler,
1967] to replace the conventional term mantissa. It includes p digits (p also represents the
precision, the more digits after the decimal point are, the higher the precision is). β is called
the base which is commonly postulated to be an even number, with e being its exponent.

In order to gain a better understanding of the representation, let us take a look at an example.
Suppose we have β = 10 and p = 3, then the number 0.1 can be expressed as 1.00× 10−1. But
if we make the β have value 2 and p have value 24, the value 0.1 can no longer be precisely
represented, it can now only be approximated as: 1.10011001100110011001101 × 2−4. In
fact this is a well-known example in the field to illustrate one of the consequences using
the floating-point arithmetic: not all decimal values (actually there are many in common
practice) can be representable [Goldberg, 1991]. It is noteworthy that there are mainly two
different kinds of IEEE standards that are used with regard to the floating-point. The most
commonly used one is IEEE 754 [198, 1985]. It regulates that β should be having value 2, p
should be equal to 24 for single precision and 53 for double precision. In practice, the double
precision utilizes one bit to store the sign of the number, 52 bits to store the significand and
11 to store the exponent. This is used by the ESRI shapefiles [Ohori et al., 2012]. The
other standard is the IEEE 854, which allows either β having the value 2 or 10 [198, 1987].
Additionally it does not have a rigid regulation of the value of p, instead it specifies the
usable values of p for single and double precision respectively [Goldberg, 1991].
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Precision of IEEE754 Floating Point Values

IEEE754 Single Precision (32-bit)

IEEE754 Double-Precision (64-bit)
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Figure 2.1: Precision of binary32 and binary64 in the range 10−12 to 1012. Source: IEEE 754.
(2023, April 11). In Wikipedia. https://en.wikipedia.org/wiki/IEEE_754. Author: By
Vectorization: Alhadis - Own work based on: IEEE754.png by Ghennessey, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=87066073

2.2 Issues of Using Floating-point Arithmetic

Albeit floating-point arithmetic is nowadays widely accepted and utilized by most of the
implementors, it does have some natural consequences that would probably cause problems
in the field of geometric computations.

In the first place, the floating-point precision (density of numbers) is at highest level when
the value is close to zero, and the precision would gradually decline as the value gets farther
from it [Ohori et al., 2012]. This is depicted in Figure 2.1, where the precision reaches its
highest when the value is very close to zero (10−12). If the magnitude of a floating-point is
relatively big, e.g. 1012, the corresponding precision will be relatively low, e.g. 104 to 106 for
single precision (32-bit) and 10−4 to 10−2 for double precision (64-bit). To better illustrate
this, assume there exists a vertex p, it is firstly projected using a Coordinate Reference
System (CRS) which produces large coordinates (let us call it CRSLARGE), an example of
possible projected coordinates (XY) could be:

(85739.0554312, 446961.2992009)
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where a range of values from about 85, 000 to 450, 000 need to be represented, this would
require a comparatively large exponent to be used. Consider that the total number of available
bits used for storing the significand and the exponent is fixed (although this could vary for
different platforms) and the number of bits used for the significand determines the precision,
a large exponent will consume more bits hence leave fewer bits available for significand,
resulting in a lower precision.

Then apply another CRS which produces small coordinates (CRSSMALL), an example of pos-
sible projected coordinates (XY) could be:

(8.57390526216, 4.469619220309)

where a range of values from about 8 to 5 need to be stored, this requires a smaller exponent
to be used thus leave more bits available for the significand, resulting in a higher precision.

Observing from above, one can conclude that the magnitude of a number will affect the
precision of its corresponding floating-point representation stored in the computer. The
smaller the magnitude is, the higher the precision would be, and vice versa.

In the context of geometric field, the precision issues (stated above) are often caused by
data manipulation and exchange. They are rather common amongst different users with
different aims. For instance, for one specific dataset, various CRS may be used to fit different
needs. As mentioned above, the utilization of diverse CRS can lead to significant dispari-
ties in coordinate values, potentially encompassing substantial changes in the magnitude of
the numbers. Since the precision is not the same regarding different magnitude of values,
precision loss could happen, which would cause severe consequences in some cases. See
Figure 2.2 for an illustration. Figure 2.2a shows a valid polygon P , with a vertex d being
very close to the boundary ab. The coordinates of all vertices are stored as floating-point
numbers. Due to the possible precision issues and rounding errors, the geometric charac-
teristics of P is not always guaranteed. More precisely, the geometric relationship between
vertices could change as precision changes. As is shown in Figure 2.2b and Figure 2.2c, the
vertex d might shift onto the boundary ab (creating two adjacent polygons) or shift to the
left side of ab (creating invalid self-intersected polygon) with different precisions of different
magnitude of coordinates. Such unintended changes could cause unreliable behaviours or
even crashes of geometric algorithms (e.g. segfault). Additionally, operations like moving a
polygon or changing the representation (e.g. converting from a 64-bit to a 32-bit one) could
also cause problems due to the precision issues [Ohori et al., 2012].

Another limitation of floating-point arithmetic is that in practice there can be many num-
bers that are not representable. A good example (0.1) has already been discussed in the
previous section. Numbers like 0.1 can only be approximated with the closest floating-point
number in the computer memory [Goldberg, 1991]. In the field of geometric computations,
this usually indicates that vertices would possibly be stored to a slightly different position
comparing to its location in the input [Ohori et al., 2012], which also has the possibility to
cause invalidities illustrated in Figure 2.2.

Given these considerations, the geometric algorithms are not always considered safe to use in
conjunction with the floating-point arithmetic, especially for those which are highly sensitive
to the precisions. Problems can arise in various operations such as the point-in-polygon
query, orientation test and convex hull operations [Kettner et al., 2008]. See Figure 2.3 for
an example of different Delaunay triangulations generated by exact and inexact (floating-
point) arithmetic. The Delaunay triangulation on the left is produced by utilizing the exact
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Figure 2.2: Invalid polygons caused by precision issues. (a) a valid polygon. (b) an invalid
polygon which actually consists of two adjacent polygons. (c) an invalid polygon with
self-intersections.

Figure 2.3: Using floating-point arithmetic to construact a Delaunay triangulation. Left: A
valid Delaunay triangulation produced by exact arithmetic. Right: An invalid Delaunay
triangulation due to rounding errors of floating-point arithmetic. [Shewchuk, 1996]

arithmetic while the right one is generated with floating-point arithmetic. As is shown in the
right figure, the triangulation is faulty due to the failure of orientation test and point-in-circle
query. These two predicates are highly sensitive to the precision, thus rounding errors of
floating-point arithmetic will make the predicates unstable or even produce incorrect results.
More details can be found in [Shewchuk, 1996].

2.3 Limitations of the Data

Excluding the errors caused by floating-point arithmetic, the real-world datasets also contain
other types of errors due to several reasons, such as the limitations in the data acquisition
stage [Sehra et al., 2016], the complex structures of the real world objects (especially in
terms of buildings), automatic and manual intervention of the data creation, manipulation
and exchange [Gold et al., 1996; Ohori et al., 2012], etc. Take OpenStreetMap (OSM) [Ben-
nett, 2010] for an example. Data are collected in a crowd-sourcing manner [Haklay, 2010]
hence there are possibly several issues such as geographical and topological inconsistency,
structural topological consistency, and semantic information that need to be taken into con-
sideration [Sehra et al., 2020]. In this thesis, the main interest lies in the geographical and
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(a)

0.005 mm

(b)

Figure 2.4: Two close polygons. (a) Two close polygons with a scale of 1 : 50. (b) Two close
polygons (enlarged) with a scale of 50 : 1. The distance between two boundaries on the
map is 0.005mm.

(a) two overlapping polygons with a scale of
1 : 200

(b) two overlapping polygons with a scale of
50 : 1

Figure 2.5: Two overlapping polygons

topological aspect of the datasets. It has been a consensus amongst specialists in the GIS
community that users should be aware of the quality of the input datasets and should avoid
easily considering the data given to them is already valid [Ohori et al., 2012].

Figure 2.4 depicts an example of two close polygons. They are extracted from the Nether-
lands dataset downloaded from GeoFarbik [GeoFabrik, 2023], and then projected using
Dutch projected coordinate system (EPSG:28992 - Amersfoort / RD New). Figure 2.4a shows
an arrangement of two close polygons from the perspective of most users. The view seems
to indicate that these two polygons are adjacent, which means that they share a common
boundary and preferably no gaps exist between the two polygons. However, as is shown in
Figure 2.4b, if the view is enlarged to a certain level, a discovery can be found that these
two polygons are not actually touching (this is quite frequent in the datasets). The small
gap (in Figure 2.4b) can cause the failure of an algorithm such as calculating the length of
the common boundary of the two polygons [Ohori et al., 2012]. The tricky part is that
these close polygons are not obvious to identify with a normal scale hence they can be easily
neglected [Laurini and Milleret-Raffort, 1994]. One may only notice the issue when a ge-
ometric computation yields errors or warnings. Additionally, the actual value of the small
distance on the map in Figure 2.4b was measured via QGIS [QGIS Development Team, 2009].
The measuring result was merely 0.005 millimeter. Such small distance clearly should not
be considered as the real gap between the buildings.
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Figure 2.6: Use topology checker plug-in to recognize the overlapping polygon(s) in QGIS [QGIS
Development Team, 2009]

Another problem that frequently occurs is the small overlapping area. See the example
shown in Figure 2.5a. Similarly, the polygons that overlap with each other can be barely
observed with a normal scale (e.g. 1 : 200). However, their boundaries actually coincide
with each other (see Figure 2.5b with a scale of 50 : 1) and thus will cause issues when
one try to perform geometric calculations. For instance, the total area of the two polygons
can be correctly computed without overlapping part, yet the computation result will be
overestimated with the overlap involved [Ohori et al., 2012]. An additional supporting
case is that using the the 9-intersection model [Ubeda and Egenhofer, 1997] to determine
the topological relationship of these two polygons. The two polygons are considered as
overlapping rather than touching (which they should be, for the two buildings can not actually
overlap in reality).

In the practice, the aforementioned two problems commonly exist and relatively complicated
to deal with. The main challenge is that these issues are not obvious and straightforward in
accordance with user observations, and they usually can not be automatically corrected by
GIS softwares and tools with ease. In QGIS [QGIS Development Team, 2009] for instance, the
topology checker plug-in tool can recognize the overlapping part, see Figure 2.6 and Figure 2.7
for an example. Users can manually set the rule must not overlap to allow for searching and
highlighting the overlapping polygon(s) [Kukulska et al., 2018]. Another tool named check
geometry validity serves a similar purpose of linear and spatial objects (e.g. overlapping line
segments) [Kukulska et al., 2018]. However it is not as suitable as topology checker plug-in
regarding recognizing the overlaps of polygons.

As for the small gaps between two polygons, the topology checker plug-in tool does not always
work well. It has an option named must not have gaps, which should principally guarantee
that adjacent objects have no gaps and possess a common boundary [Kukulska et al., 2018].
Take the two polygons illustrated in the Figure 2.4 as an example, the topology checker plug-in
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Figure 2.7: Use topology checker plug-in to recognize the overlapping polygon(s) in QGIS [QGIS
Development Team, 2009], Delft region

is used to detect the small gap between these two polygons, yet no results can be found, as
is shown in Figure 2.8.

2.4 Constrained Delaunay Triangulation

In this thesis, a constrained Delaunay triangulation is utilized as a supporting data structure
to assist the snap rounding process. In order to get better acquainted with it, let us firstly
start from the basic concept of a triangulation. A triangulation, is referring to a subdivision
of a plane (currently in R2 space, can be expanded to R3 space) which contains a certain
group of points and segments. If a set of points are given, the triangulation will be con-
structed by connecting them with straight line segments. These line segments intersect only
at the corresponding endpoints [Lloyd, 1977]. The triangulation created via this approach is
convex in practice [Ohori et al., 2012]. It is worth mentioning that in the triangulation there
is one more face outside the convex hull (defined as the minimal convex shape that encloses
all points), which is unbounded and is not of triangulated shape. The face is known to be
infinite face of the triangulation.

Polygons can also be used as the basis to build the triangulation (actually this is used in
the implementation of this thesis). The interior of a polygon is triangulated by creating line
segments to connect vertices of the polygon but without passing through the exterior (or the
boundary) of the polygon [o’Rourke, 1998]. That being said, the boundaries of the polygon
becomes edges in the resulting triangulation and the interior of the polygon is subdivided
into triangles. It is worth noting that in common practice, the convex hull of a polygon
will be triangulated (including the interior of the polygon). For instance, in Figure 2.9 the
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Figure 2.8: Use topology checker plug-in to recognize the small gap(s) between two close poly-
gon(s) in QGIS [QGIS Development Team, 2009], the small gap shown in Figure 2.4b is not
identified.

(a) A concave polygon. (b) The resulting triangulation.

Figure 2.9: Triangulation of a concave polygon.

input is a concave polygon but it is triangulated into a convex shape (see Figure 2.9b, the
boundaries of the input polygon are highlighted in violet).

For an arbitrary polygon, it is always possible to construct a constrained triangulation for it.
Note however, there can be several ways to triangulate a polygon. As is shown in Figure 2.10,
different triangulations can be created based on the same quadrilateral. In Figure 2.10a, two
skinny triangles are created (skinny means they are relatively ”thin”) while in Figure 2.10b
the generated triangles are better-shaped. For many algorithms and applications, skinny
structures can be potential problems thus well-shaped triangulations are preferred [Ohori
et al., 2012]. A Delaunay triangulation, is a special kind of triangulation which is able to
maximizes the minimum angles in the constructed triangulation. It is important to know
that in a Delaunay triangulation, any three vertices that form a triangle have a circumcircle
that contains no other points in it. This property is known as the empty circle property, which
minimizes the likelihood of creating skewed shapes (i.e. elongated triangles).
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(a) (b)

Figure 2.10: A quadrilateral is triangulated in two different ways. (a) A quadrilateral is
triangulated into two skinny triangles. (b) A quadrilateral is triangulated into two better-
shaped triangles comparing to (a).

One of the biggest characteristics of the Delaunay triangulation is that it would automatically
adjust itself to satisfy certain properties in order to maintain its shape. However, in the
context of this thesis, merely having the Delaunay property is not enough. Specifically, when
creating a triangulation based on the input polygons, the boundaries of the polygons cannot
be automatically changed (otherwise the shape and information of polygon would be lost),
even if some skinny triangles may appear due to the presence of these boundaries. Therefore,
a triangulation that allows fixed edges is essential in this thesis. A CT is such a triangulation
that contains certain edges that can not be automatically changed. These edges are known
to be constrained edges. They can not be changed in the triangulation unless users tells the
triangulation to do so (i.e. inserting new constrained edges or removing existing constrained
edges). With the consideration of combining the advantages of Delaunay triangulation and
constrained triangulation, it is feasible to construct a constrained Delaunay triangulation (CDT)
[Chew, 1987]. The CDT typically has the following properties:

• Constrained edges are ensured not to change automatically, such as unintended deletion.

• Changes are made locally (e.g. add or remove a constrained edge) therefore changing
triangulation is a fast operation.

• The overall shape of a CDT is as close as possible to an ordinary Delaunay triangulation.

In the practice, a CDT usually provides good functionality to maintain a well-organized
triangulated shape of the created triangulation, with robustness and efficiency. Having a
CDT as a supporting data structure would help to easily handle the input polygons. A
mature implementation is provided by the CGAL triangulation package [Boissonnat et al.,
2000], which would later be used in the prototype of this thesis.

2.5 Geometry Repairing Based on a Triangulation

By utilizing a CT as a supporting data structure, [Ledoux et al., 2012] introduced a novel
method to automatically fix geometries of possibly invalid polygons and to improve the
robustness of valid ones. One of the biggest advantages of using a CT is that it allows for
embedding both the geometry and the topology of the polygons at the same time, hence
fewer operations need to be carried out when performing repairing process. The proposed
method was developed based on the well-known CGAL library [Fabri and Pion, 2009], which
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facilitates exact and inexact computations to enable robust and efficient arithmetic. It should
be pointed out that the core part of the repairing method sorely includes a highly-efficient
process which is known as labelling triangles and it does not demand any geometric calcu-
lations, thus it is fully robust and this has already been proven through extensive testing.
The prototype (now it is mature enough as a great open-source software, called prepair) is
available at https://github.com/tudelft3d/prepair.

Expanding upon the polygon repair, [Ohori et al., 2012] have proposed a new method to
repair not only individual polygons but also planar partitions. In the developed approach,
a CDT is utilized to help with the repairing process. Firstly all input polygons are validated
and repaired (for invalid ones) using the schema mentioned in [Ledoux et al., 2012]. Sub-
sequently the polygons are gradually added into a CDT, the triangles are then attached with
tags indicating which polygons they should belong to (note that for the special area, e.g.
the regions outside the domain, a stand-alone tag is used). With the tags as a basis, issues
amongst polygons (e.g. two independently valid polygons but with an overlapping area) can
be repaired by assigning the tags in accordance with certain criteria. At the end of this stage
it is necessary to ensure that each triangle in the triangulation has only one tag assigned.
After all repairing processes are completed, the final polygons are reconstructed from the
triangulation and a valid planar partition is obtained.

2.6 Snap Rounding

In previous sections, the limitations and consequences of floating-point arithmetic have been
described and discussed. What if users do want to avoid the potential issues of it as much
as possible and at the same time ensure the reliability of the geometric computation results?
There are currently two major solutions in practice: use exact arithmetic or use appropriate
methods to generate geometric objects with finite-precision estimations. Exact arithmetic is
known to be time-intensive and not suitable for large computations (as mentioned in the
Introduction). The interest of this thesis is focused on the other substitution: finite-precision
(or fixed-precision) approximation. SR is a representative of this method and it converts an
arrangement of line segments from an arbitrary-precision representation into a lower fixed-
precision form. It should however be noted that the original topology and geometry of the
data would be slightly modified, this is known as a perturbation in SR [Raab, 1999].

Theoretically speaking, SR operation rounds the real number to the closest representable
value with the given precision. Internally this is usually achieved by utilizing a grid (will be
explained in details later). In other words, the snap rounded result has the same precision
as the fixed-precision format, other extra precision in the original real number is thus lost.
SR should be used with care in the practice as it will slightly (or radically, depending on the
rounding tolerance used) modify the geometric and topological characteristics of the input
data.

Figure 2.11 shows an example of SR [Halperin and Packer, 2002]. Figure 2.11a illustrates
an arrangement consisting of arbitrary-precision represented line segments. SR typically
proceeds by firstly creating a grid which contains all line segments. Each cell in the grid is
called a pixel, the length of the cell is known to be the resolution of the grid, which actually
indicates the tolerance of the SR operation. For instance, if the length of a cell is 1mm, this
implies the grid resolution and the tolerance are both equal to 1mm. In the grid, if a cell
contains a vertex then it is considered as a hot pixel. SR replaces all vertices by the center
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(a) (b)

Figure 2.11: An arrangements of line segments before (a) and after (b) snap rounding
[Halperin and Packer, 2002]

points of their corresponding hot pixels, as is shown in Figure 2.11b. Subsequently, all line
segments are reorganized by connecting these center points. The intersections thus only
happen in the centres of the grid cells rather than random places. SR operation normally
produces better separated vertices and cleaner geometric arrangements compared to the
initial input. It is worth noting that the rounded counterpart and the original arrangement
shares similar topological properties, which suggests that SR does not change the topology
to a large extent (if a proper tolerance is carefully chosen). Furthermore, SR can not only be
applied in 2-dimensional space, but also be expanded to 3-dimensional space, see [Fortune,
1998] for more details.

2.7 Overview of Existed Algorithms Pertaining to Snap
Rounding

The rounding scheme for a set of line segments was firstly introduced in [Greene and Yao,
1986]. The authors proposed a method to round a line segment arrangement, which creates
a planar subdivision by dividing a two-dimensional space into smaller regions, to an integer
grid. The proposed approach alters each line segment by moving each of its intersection
point to the nearest point on the grid. Put it simply, each line segment is curved to a certain
extent so that its intersections can align with the grid points and each line segment can
be transformed to a polygonal path. Additionally the resulting polygonal path must be
limited so that it would not pass over any other grid points. This constraint ensures that the
polygonal path does not intersect or overlap with other grid points. Note that when each
intersection point is moved to a grid point, it acts like a ”hook” as it pulls other line segments
that are connected to it to the same grid point. Such manner would keep the connected line
segments well aligned with the grid and preserve the topological relationships. This is
important since it allows the transformed polygonal path to retain its original shape and
characteristics as much as possible while being more computationally efficient to store and
manipulate.

The concept of SR was firstly given by Greene (in his unpublished manuscript Integer line seg-
ment intersection [Halperin and Packer, 2002]) and Hobby (in the published paper [Hobby,
1999]). The proposed algorithms make it simpler to perform rounding operations mentioned
in [Greene and Yao, 1986] by disentangling the process of computing arrangement intersec-
tion vertices from the rounding process of line segments [Hobby, 1999]. See Figure 2.12 for
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Figure 2.12: A snap rounding example given by [Hobby, 1999]. Left: Sample input with
points rounded to the nearest grid points (marked by solid dots) and the tolerance squares
(outlined by dashed lines). Right: The result of snapping segment(s) to the grid points.

an illustration. Firstly the Bentley-Ottmann sweep line algorithm [Bentley and Ottmann,
1979] is utilized to locate the intersection points in the input. Afterwards the endpoints and
intersection points of all line segments would be rounded to the corresponding nearest grid
points, as is shown in the left figure of Figure 2.12. The solid dots stand for the rounded
points (nearest grid points, not original input points), the dashed lines around them repre-
sent the tolerance squares. If a segment s intersects a tolerance square of a grid point p, it
will be altered by being slightly bent so as to pass through p. This is known to be snapping
segment to point, as is shown in the right figure of Figure 2.12.

The algorithm presented in [Hobby, 1999] has its foundation in finite-precision arithmetic
and has been proven to be robust. However, the limitation lies in its lack of being dynamic,
more specifically, all the input segments are assumed to be given at once. Such scheme
does not allow for incremental updates of the line segments, that being said, a global re-
processing may need to be performed each time a small change is made. In practice there
can be some applications where the input line segments may change frequently, which will
possibly cause the computational cost too prohibitive for users to accept. In order to over-
come this issue, a novel method was proposed in [Guibas and Marimont, 1995] to robustly
and dynamically perform the snap rounding of an arrangement of line segments. Their
method includes an additional algorithm described in [Mulmuley, 1994] which provides
a data structure, the vertical cell decomposition (VCD) of a set of line segments, to allow
efficiently and dynamically locating, inserting and deleting the line segments. Guibas and
Marimont combine the robustness of the algorithm provided by Hobby and the capability of
dynamic processing of the Mulmuley’s algorithm. Besides, they also provided basic proofs
of the certain topological characteristics and properties maintained by SR.

Based on the previous work, Goodrich et al. provided improved SR algorithms with higher
efficiency. They gave two algorithms which are output-sensitive for rounding a set of line
segments in R2 with a high degree of efficiency. Additionally a basic framework for perform-
ing snap rounding in 3-dimensional space (R3) was also included. As for SR in 2-dimensional
space, a determinstic (the output is the same if given the same input) algorithm was pre-
sented based on the plane-sweep method mentioned in [Bentley and Ottmann, 1979] and a
randomized (the output can be different for the same input) method was described on the
basis of randomized incremental construction (known as RIC). Note that in the randomized
algorithm an ordered list (e.g. a binary search tree) is maintained to help to keep track of
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s t

(a)

s′ t′

(b)

Figure 2.13: A vertex becomes very close to a non-incident edge after (b) snap rounding. The
figure is derived from [Halperin and Packer, 2002]

intersections, which significantly improves the efficiency of SR especially when the number
of line segments intersecting in a pixel is relatively large.

Iterated Snap Rounding (ISR for shorthand) is a variation of SR, which was firstly introduced in
[Halperin and Packer, 2002]. It was proposed to solve the issue of possible near-degenerate
output which could be produced by standard SR. As previously illustrated in Figure 2.11,
standard SR rounds the vertices by replacing them using the central point of hot pixels. How-
ever, in the case of large input coordinates, the distance between a rounded vertex and a
rounded non-incident edge can be very close compared to the length of the cell in the grid,
this is considered a near-degenerate output. See Figure 2.13 for an straightforward illustra-
tion. Two line segments s and t are displayed in Figure 2.13a, the hot pixels (recall that in the
grid, hot pixels refer to the pixels that contains the endpoints or intersection points of input
line segments) are highlighted in violet. The rounded counterparts are denoted as s′ and t′

respectively, as is shown in Figure 2.13b. Observing from the figure, t′ passes through a hot
pixel (the boundary is highlighted in turquoise), which indicates that the endpoint of s′ on
the right side is very close to t′.

ISR solves the possible near-degenerate output issue mentioned above by utilizing SR mul-
tiple times (repeatedly) until each rounded vertex is at least half-a-unit (typically the length
of one side of a cell in the grid) away from any rounded non-incident edge. Put it differ-
ently, ISR ensures that in the rounded arrangement, there are no rounded line segments
intersecting any hot pixels. Comparing to the standard SR, ISR enhances the robustness of
the rounded counterpart of the input line segment arrangement for data manipulation using
finite-precision arithmetic hence improves the stability of SR. However, ISR requires multiple
executions of standard SR operations, hence it can be slower than the ordinary SR. What’s
more, the result produced by ISR may not be accurate enough, specifically, the rounded
counterpart of the input can be shifted or distorted away from its original position due to
the iterative process. An illustrative example is shown in Figure 2.14.

For the purpose of solving the inaccuracy issue of ISR, Iterated Snap Rounding with Bounded
Drift (ISRBD) was proposed in [Packer, 2006]. The authors aimed to solve the limitations
of standard SR (possible degenerate output) and ISR (rounded result can drift to a large
extent compared to the input). ISRBD ensures that the deviation between the input line
segment arrangement and its rounded counterpart is less than a predefined value. The core
idea of ISRBD is to introduce a small amount of new hot pixels to limit the magnitude of
rounding. Such manner would help to constrain the shift of the original input line segments
to a predefined amount. Albeit the construction and utilization of the new hot pixels would
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(a) (b) (c)

Figure 2.14: (a) An arrangement of segments before. (b) After Snap Rounding. (c) After
Iterated Snap Rounding [Halperin and Packer, 2002].

not require a large amount of additional time (comparing to ISR), the overall run time is still
long. Another limitation is that the output of ISRBD can be noncanonical, this is because the
locations of newly-added hot pixels are decided by the proposed algorithm so as to satisfy
the aforementioned rounding magnitude.

Bearing these in mind, a new scheme named stable snap rounding was introduced in [Hersh-
berger, 2011], it was based on the conception of SR but actually alters the definition of SR that
has previously been discussed (using a grid and the hot pixels to round the line segments).
The authors proposed a new approach to utilize the hot pixels, they basically split the hot
pixels into two different kinds of categories and applied disparate processing strategies in
order to take control of the deformation of the input line segments. The biggest advantage
comparing to ISRBD or ISR is that the stable snap rounding is idempotent. Particularly, if SR
operation is performed repeatedly on the same dataset, the result will not change. Stable
snap rounding improves the robustness and stability of ISRBD and ISR, note however, it does
not guarantee to eliminate near-degenerate cases while ISRBD (and ISR) does.

Although the aforementioned methods have shown promising results, there is still room for
improvement. Building upon the concepts of SR, recent studies in the field have proposed a
new approach which is called Snap Rounding with Restore (SRR) [Belussi et al., 2016]. Com-
paring to ISRBD and ISR, the most noticeable modification is that for the situation where a
vertex is too near to a non-incident edge after rounding, the non-incident edge is moved in
the opposite direction (this means it is being moved back towards its original location) in-
stead of performing a SR operation (snapping the vertex and the non-incident edge together).
This process is known as restore in the proposed method, which possesses the capability to
improve the quality of the output whereas it may increase the time complexity. SRR can
improve the robustness of the result and at the same time maintain the topological charac-
teristics as well as possible, therefore SRR is well suitable for the application scenarios where
both robustness and preservation of topological properties are considered important.
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2.8 Summarize

Up to this point, the issues of applying floating-point arithmetic regarding the geometric
algorithm implementations and other possible errors in the real-world datasets have been
discussed. Furthermore, the basic concepts of different triangulations and snap rounding
(SR) are introduced as well. It should be pointed out that the precision issues of floating-
point arithmetic and the possibly degenerate input data are correlated to a certain degree.
That is to say, input datasets would cause faulty output (e.g. containing topological errors)
in combination of using floating-point numbers [Raab, 1999].

Based on the content above, following conclusions can be derived:

• Using floating-point arithmetic can raise the round off errors of coordinates, which will
lead to unintended shape changes of geometric objects (e.g. polygons) and possibly
topological errors.

• Datasets commonly contain topological errors such as small gaps and overlapping area
between polygons not only because of the round off errors but also the limitations of
data acquisition, storage, management and exchange (e.g. converting datasets from
one file format to another file format).

• Round off errors and topological errors are correlated, they would both affect the
robustness and reliability of relevant geometric algorithms and downstream analyses.

• Snap rounding (SR) is a commonly-used technique to convert arbitrary-precision rep-
resentations into finite-precision representations in order to avoid the issues caused
by round off errors. Existing SR implementations (e.g. the iterated snap rounding de-
scribed in [Halperin and Packer, 2002] and implemented in CGAL [Fabri and Pion,
2009]) mainly focus on the line segments. Note that this approach can be modified
and extended to be applicable to polygons as well (using the boundaries of polygons
as input line segments).

• Constrained triangulation (CT) can be used as an auxiliary data structure to robustly
deal with geometric objects especially for polygons. It also enables fully-automatic
repairing of certain topological errors (see [Ledoux et al., 2012] and [Ohori et al.,
2012]).

Having these in mind, in this thesis, an robust approach is intended to be developed with
the purpose of performing SR of polygons in 2-dimensional space, using CT as a supporting
data structure. The main interest lies in the topological relations of polygons and focuses on
the cases that would possibly cause the invalidities (e.g. topological errors, algorithm crash,
infinite loop, etc.). Specifically, dealing with the following two different cases is the main
objective of the thesis: (i) close vertices, i.e. the distance between two vertices is below a
certain threshold; (ii) close vertices and boundaries, i.e. the distance between a vertex and
a boundary (belonging to a polygon) is below a certain threshold. The input and output
would mainly be polygons, with the potential to expand into the combination of polygons,
line segments and points.
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3.1 Overview

In this chapter the triangulation-based methodology will be proposed and elaborated with
details in accordance with aforementioned research objectives. The method overview is
depicted in Figure 3.1.

Firstly, an input file is opened and read. The file is typically in GeoPackage (GPKG) format
and contains a certain number of polygons. When loading each polygon into the memory,
one can choose to shift the coordinates of vertices by subtracting the minimum x and y
values of the dataset. This would help to reduce the magnitude of the coordinates and at
the same time preserve the precision as much as possible.

Secondly, the CGAL triangulation package [Boissonnat et al., 2000] is used to build a CDT,
with the exterior and interior boundaries of polygons being the constrained edges. CDT is
known to be able to make the triangulation as well shaped as possible and would improve
the efficiency when finding the vertex to boundary case (see Figure 3.18), as it by definition
can avoid the skinny triangles wherever possible.

Subsequently, the whole triangulation is tagged by adding tags to the triangles (faces) and
constructing constraints accordingly. For each constrained edge, a constraint is built with the
ID information indicating which polygon(s) it should belong to and stored in an individual
container. The stored constraints represent the boundaries of polygons, which will be later
used in the SR process. At the end of this stage, each constraint will have at least one tag.
Constraints with more than one tags indicate that they are the common boundaries between
polygons or they are part of the overlapping area.

After having tagged the triangulation, SR is performed on the input polygons. Given a
predefined tolerance (e.g. 0.01m), there can be multiple cases that need to be snap rounded in
the dataset. SR starts from the case with minimum distance first, then gradually process the
rest until no other cases can be found under this tolerance. In such manner, cascading effects
can be avoided to a certain extent. For instance, if SR executes from a case with a relatively
large distance first, the rounding operation would possibly create new cases that require
to be processed again. However, if SR proceeds from the case with minimum distance, the
changes to be made would have minimal impact on other parts of the triangulation and thus
can avoid the cascading effects as much as possible.

Last but not least, polygons would be reconstructed from the container which holds all con-
straints. The ID information of constraints would be used to mark the ID of the reconstructed
polygons. Finally the polygons would be output to a GPKG file.
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Figure 3.1: Methodology overview
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Figure 3.2: Embed polygons in a triangulation

3.2 Embed Polygons to a Constrained Delaunay Triangulation

In order to manage and manipulate the input geometries, a CDT is used as a basic data struc-
ture to hold all necessary elements (i.e. polygons, line segments and vertices). Constrained
edges should be handled with care in order to keep track of the attributes while SR is being
performed.

Figure 3.2 depicts an example. Polygons are embedded in a CDT and their boundaries are
used as constraints. It is worth noting that, a CDT is constructed as close as possible to a
Delaunay triangulation (DT) [Chew, 1987]. However, in some area, there can still be very
skinny triangles due to the existence of constrained edges.

The embedding process is described in Algorithm 3.1.
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Algorithm 3.1: Embed Polygons(Sp, CDT)

Input: A set of polygons Sp
Output: A constrained Delaunay triangulation CDT

1 for P in Sp do
2 for edge in exterior of P do
3 insert edge to CDT as a constraint;

// if containing holes, insert as constraints

4 if P contains holes then
5 for hole in holes do

// do not consider nested holes

6 for edge in exterior of hole do
7 insert edge to CDT as a constraint;

8 return CDT

a

b c

fh0 fh1

fh2

d

(a)

a

b c

fhx

(b)

Figure 3.3: A simple triangulation. (a) Before removing vertex d. (b) After removing vertex
d.

3.3 Tagging the Triangulation to Extract Polygon Boundaries

After the polygons have been embedded into a triangulation, it is of much importance to
know which polygons the triangulation elements should belong to. In other words, one
must be able to identify the polygons associated with their id information so as to recon-
struct polygons from the triangulation in the subsequent steps. This is the basis where the
idea of tagging lies on. The id information of input polygons are used to add tags to the
triangulation. Tagged elements would further allow to keep track of the changes and update
the polygon boundaries accordingly.

Triangulation is automatically managed by CGAL 2D Triangulations package [Boissonnat
et al., 2000]. Necessary components can be accessed by handles (internally it can be con-
sidered as pointers), such as Face handle for accessing triangles in the triangulation and
Vertex handle to obtain the vertices. However, handles are not always considered safe to
use, especially when the triangulation is being dynamically altered. Insertion and removal
of vertices would probably invalidate the original handles to a small / large extent. For
instance, suppose a central point is going to be removed, after the removal the triangulation
would be updated automatically and the ID information of original Face handles will be
lost. This makes it difficult to use handles to follow the ID changes. Take Figure 3.3 for an
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example. Assume there are three polygons △abd, △adc and △dbc. The Face handles are
fh0, fh1 and fh2 respectively. The three triangles also have their own different ids which
can be queried via three Face handles, as is shown in the figure. Since three individual
triangles are touching each other, all of the edges presented are constrained (representing
boundaries). Now suppose vertex d is intended to be removed, the constrained edges ad, bd,
cd would all be removed as well. One of the Face handles might be preserved to represent
the △abc, yet the other two Face handles would become invalid and the ID information
would be lost.

With the aim of avoiding the problems mentioned above, a pragmatic solution has been
implemented to keep track of the changes simultaneously by maintaining a separate data
structure. Since handles are not stable when the triangulation is being modified, one can
alternatively store and trace the elements which will not be mechanically changed by the
triangulation package. The constrained edges, or constraints, are a great entity to realize
this idea. Constraints in the triangulation stand for the boundaries (including exterior and
interior), once they are tagged with the ID information, manual intervention is utilized
to deliberately amend the stored constraints. Put it differently, one can decide how the
constraints are revised in accordance with the changes made in the triangulation and be
aware of the ongoing modifications.

The underlying method of the tagging process is Breadth-first search (BFS). This will be
explained later in Section 3.3.1. The goal of this step would be to obtain a set of constraints
with the id information from corresponding polygons attached.

3.3.1 Apply Breadth-first search for tagging

Breadth-first search, also known as BFS, is a commonly and widely used algorithm to search
for a certain element in a data structure (e.g. a binary search tree) which satisfies specific
conditions [Bundy and Wallen, 1984]. It can also be applied on simulating the expansion
process within a predefined range, e.g. flood fill. In this sense Depth-first search (DFS) shares
similar suitability [Tjiharjadi and Setiawan, 2016]. The aforementioned tagging process can
be reasonably regarded as a variation of flood fill. It has been firstly used for tagging the
triangulation in [Ohori et al., 2012]. Based on that, similar process is applied for tagging
in this thesis but with some modifications. For an individual polygon, the process starts
from a certain face, then the affiliated constraints are constructed with the ID information
of the polygon and stored in a container. The boundaries of the polygons are deemed as
the restricted area where the tagging process can not reach. It is important to know that
the restrictions consist of not only the exterior boundaries but also the possible interior
boundaries.

Both BFS and DFS can be utilized to implement the tagging procedure, however, BFS is pre-
ferred as the fundamental method although DFS can be more efficient in some cases. The
main concern is DFS would require a stack to keep all necessary visiting elements. A stack
overflow might arise if the DFS stack is too deep, e.g. when the triangulation is very large
and complex. The prototype of this thesis is expected to possess the capability of working
with at least middle-sized dataset, and preferably large dataset (e.g. millions of polygons).
In light of this, robustness would come first over the consideration of efficiency.

Figure 3.5 illustrates the process of tagging. The overall shape of input polygon is shown
in Figure 3.5a, which contains an interior hole (p4, p5, p6, p7). The triangulation with the
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Figure 3.4: Tagged constraints
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Figure 3.5: Tagging example.
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Figure 3.6: Tagging example (with faulty input).

polygon embedded is depicted in Figure 3.5b, constraints are highlighted in pink. Suppose
△p7 p3 p2 is selected as the starting face, from which the tagging process is expanded gradu-
ally until constraints are encountered. For each face which can be reachable from the starting
face, all the three incident edges are inspected for being constrained or not. Constraints are
constructed for the constrained edges, supplemented by the ID information of the polygon
it belongs to. Figure 3.5c shows the result of the tagging stage, the boundaries, including
exterior and interior(s) are obtained and stored in a container.

For real-world datasets, extra care needs to be taken since there are plenty invalid geometries
in them. Although dealing with invalidity is not the main goal of this thesis and hence out
of range, the capability of accepting possibly faulty input without program crashing will
still be deemed as an asset for the prototype. To elucidate this, refer to Figure 3.6 for an
example.

Figure 3.6a shows an invalid geometry, a polygon with its interior hole touching the exterior
boundary. This irregular shape will result in the existence of unconnected parts regarding
the polygon interior. In Figure 3.6b, suppose the tagging is initialised from the bottom face
(△p6 p3 p2), the expansion will stop by the constraint p7 p6. The upper part of the polygon
is not accessible from the selected starting face, hence it will remain untagged. The result
of tagging in this case is only the lower part of the input, which is highlighted in cyan in
Figure 3.5c. Conversely, if the selected starting face is located on the top of the polygon
(i.e. △p0 p4 p1), the tagging process will also stop at the constraint p7 p6, leading to the result
highlighted in magenta in Figure 3.6c.

For the purpose of handling the situations described above, using multiple starting faces is a
feasible way and relatively straightforward to implement. Taking Figure 3.6b for an example,
both △ p0 p4 p1 and △ p6 p3 p2 are used as possibly starting faces for initialising the tagging.
All of the constrained edges representing exterior and interior(s) can be accessible. The
tagging result would be the conjunction of magenta part and the cyan part in Figure 3.6c.

In the practice, there can be other complex arrangements that would cause problems such
as overlap, self-intersection, etc. In order to make the algorithm as robust as possible, all
incident faces of each vertex on the exterior boundary of a polygon would be firstly inves-
tigated, and the starting face (of this polygon) is selected based on the criteria described in
Section 3.3.2.
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Figure 3.7: Exterior and interior triangles of a polygon. (a) A polygon with a hole. The
interior triangles are highlighted in violet. (b) Two centroids, Cτ1 and Cτ2 are shown. Cτ1
is outside the polygon, so does the triangle τ1 (△ p5 p6 p7). Cτ2 is inside the polygon, the
triangle τ2 (△ p7 p2 p3) is also inside the polygon.

3.3.2 Find starting face

Since BFS is being used for tagging, it is indispensable to define and locate the starting
face, where the BFS process will begin. In Section 3.3.1 it has been discussed about how to
apply BFS for tagging. How proper starting faces can be found in the triangulation will be
discussed in this section.

In the triangulation, triangles are formed and connected by either unconstrained edges or
constrained edges. For the polygons that have previously been embedded, the constrained
edges representing polygonal boundaries will form multiple closed rings. The triangles
inside these rings indicate that they are related to the polygon which contains them, hence
the ID information of this polygon can be assigned to these triangles based on their actual
locations. It should be pointed out that, considering the possibility that a polygon can have
one or multiple hole(s), care needs to be taken when determining if a triangle is inside a
polygon or not. See Figure 3.7a for an example, triangle τ1 (△ p5 p6 p7) is not inside the
polygon since it is actually in the hole hence not part of the interior. Triangle τ2 (△ p7 p2 p3)
is considered inside the polygon since it is part of the interior. Having these in mind, the
following conditions (to determine whether a triangle is inside a polygon) are proposed:

• Condition 1: The triangle must be inside the exterior boundary of the polygon.

• Condition 2: The triangle must be outside any possible interior holes of the polygon.

Only when these two conditions are met at the same time will a triangle be deemed inside a
polygon. Note that nested holes (i.e. hole containing hole(s)) are not taken into consideration
as it is less common in the datasets.

Based on the conditions summarized above, the next objective is to simplify them, making
them more straightforward for easier and clearer implementation later on. One pragmatic
way is to use the centroid of a triangle to determine its location. The centroid is calculated

28



3.3 Tagging the Triangulation to Extract Polygon Boundaries

p

q r

Cτ

(a)

Cτ a

Cτ b

p

q

r

n

(b)

Figure 3.8: Centroid of a triangle. (a) Centroid of the triangle τ (△ pqr). (b) A polygon with
its interior highlighted in violet. Triangle τa (△ pqr) is inside the polygon and its centroid
Cτ a is also inside the polygon. Triangle τb (△ prn) is outside the polygon with its centroid
Cτb being outside the polygon.

in accordance with the coordinates of the three vertices of the triangle. To be more specific,
the centroid represents the average position of all three vertices in a triangle. Suppose there
exists a triangle τ (△ pqr) as is shown in Figure 3.8a, its centroid can be computed using the
following formula:

Cτ =

(
xp + xq + xr

3
,

yp + yq + yr

3

)
. (3.1)

Bearing these in mind, a conclusion can be drawn that if a triangle is inside a polygon,
then its centroid must be inside the polygon as well, and vice versa. See Figure 3.8b for an
illustration. A polygon contains a hole in the middle and all triangles in the interior are
highlighted in violet. Let us focus on the two rightmost triangles: τa (△ pqr) and τb (△
prn), with Cτ a and Cτb being the centroids respectively. Cτ a is located inside the polygon
and the triangle containing it is also inside the polygon. On the contrary, Cτb is located
outside the polygon and so does the triangle containing it. By querying the location of a
centroid, one can easily know the location of a triangle. Note that the location here means
either inside or outside a polygon. It should be emphasized that the centroid of a triangle
should not be exactly on the boundary, as it indicates the triangle containing it is collapsed
to a line segment (e.g. if Cτ a is exactly located on the boundary pr, then it means triangle τa
is collapsed to the line segment pr).

After clarifying that the centroid can be used to determine the location of a triangle (relative
to a polygon), now the conditions described above can be refined as:

• Condition 1: The centroid of a triangle must be inside the exterior of the polygon.

• Condition 2: The centroid of a triangle must be outside any possible hole(s).
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As is shown in Figure 3.7b, the centroid Cτ2 of triangle τ2 is inside the exterior ring {p0, p1, p2,
p3, p0}. Meanwhile, the centroid Cτ2 is outside the interior hole {p4, p5, p6, p7, p4}. The two
conditions are satisfied and thus Cτ2 is considered inside the polygon, which tells us the
triangle containing it (τ2) is also inside the polygon. In contrast, the centroid Cτ1 is inside
not only the exterior ring but also the interior hole. This indicates that Cτ1 is actually outside
the polygon, and the triangle it belongs to (τ1) is in the exterior of the polygon.

Up to this point, the location of a triangle (in the triangulation) relative to a polygon has been
successfully queried. In the triangulation, a starting face (i.e. a triangle in the interior of a
polygon) can then be obtained by firstly querying the incident faces (triangles) of a vertex
and then filtering out the triangles which satisfy the two conditions summarized above.
Furthermore, it is also necessary to traverse each vertex in the exterior ring of a polygon
when querying the incident faces so as to achieve a relatively good level of robustness (see
Section 3.3.1 and Figure 3.6).

Based on this section and previous sections in this chapter, the overview of the tagging
triangulation is provided in Algorithm 3.2.

Algorithm 3.2: Tag triangulation (Sp, CDT, Lc, CDTt)

Input: A set of polygons Sp, A constrained Delaunay triangulation CDT
Output: A list Lc to store all constraints (boundaries of polygons), A tagged

constrained Delaunay triangulation CDTt

1 for P in Sp do
2 V ← to store all starting faces of one polygon;
3 for point in exterior of P do
4 τ ← get each incident face of point;
5 σ← get the centroid of τ;
6 if σ inside P then
7 add τ to V ;

8 if V not empty then
9 for τ in V do

// perform BFS tagging on one polygon

// after this operation Lc will be populated

// CDT will be tagged and become CDTt
10 perform BFS tagging on P using τ;

11 return Lc, CDTt

3.3.3 Merging process for common boundaries

During the tagging process, constraints representing boundaries are gradually built and
stored in a container. For the common boundaries, the ID information is merged in order to
allow a boundary to have multiple ID information. As is shown in Figure 3.9a.

Polygon A and B are touching with the line segment ab being the common boundary. Sup-
pose the tagging process is initialized from polygon A first, the constraint ab will be built
and stored, the ID information will be assigned the value A. Afterwards, when polygon B
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Figure 3.9: Common boundary between two polygons. (a) A and B are adjacent polygons
with common boundary ab. (b) Ale f t and Aright have the same polygon ID (A) in the
dataset, but they are disconnected and should be considered as two polygons.

is being tagged, ab will also be traversed and will be assigned the value B. However, the
constraint ab has already existed in the container. It is preferred not to store repeated con-
straints in the container as it may cause problems in the reconstruction stage. Furthermore,
repeated storage would increase the required space resources as well. In order to avoid this,
the ID information of both polygons is merged for one constraint instead of constructing
two separate constraints with different ID information. In Figure 3.9a, the constraint ab will
firstly be assigned ID A and then its ID field will be merged with ID B, resulting in ID field
containing A and B at the same time. It is worth noting that in practice, there can exist
various invalid polygons such as disconnected parts (depicted in Figure 3.9b). In such case
the constraint ab representing the common boundary between the left and right parts of A
(denoted by Ale f t and Aright) will only contain one ID (A), rather than storing A twice.

The merging process can be robustly implemented by utilizing an unordered set (or a dic-
tionary alternatively), the details are provided in Algorithm 3.3.

Algorithm 3.3: Merge id information (Vlhs, Vrhs)
Input: A vector Vlhs to hold the current ID information, A vector Vrhs to hold the ID

information to be merged
Output: The vector Vlhs which merges the ID information from Vrhs via a

non-duplicate manner

1 Slhs ← to store all ID information of Vlhs;
2 for id in Vlhs do
3 insert id to Slhs;

4 for idrhs in Vrhs do
5 if idrhs not in Slhs then
6 add idrhs to Vlhs;

7 return Vlhs

Now all aspects of the tagging stage have been discussed. To summarize, firstly the input
polygons are embedded into the triangulation with their boundaries as constrained edges.
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Afterwards, for each polygon, each vertex in its exterior ring is traversed to obtain the inci-
dent triangles (faces). The centroids of these triangles are then computed and for those that
are inside the polygon, the corresponding triangles are stored as potentially starting faces.
Next for each polygon, the stored starting faces are utilized to perform a BFS expansion as is
shown in Figure 3.5b. Finally after the tagging process, a list of constraints representing the
polygonal boundaries will be obtained, along with the ID information attached to indicate
which polygons they should belong to (see Figure 3.5c and Figure 3.6c). Moreover, the tri-
angulation itself will also be altered. Specifically, the faces in the CDT will be assigned with
ID information as well so as to clarify which polygons they belong to. This would be useful
when dealing with overlapping area, i.e. faces in the overlapping area will have multiple
tags.

3.4 Snap rounding in the triangulation

In this section the core of the methodology will be introduced - snap rounding (SR) in the
triangulation while also tracking the information of polygons. Put it simply, this requires
two interrelated sub-steps: modify the constraints list obtained after the tagging stage and
modify the triangulation (CDT). In the triangulation there are mainly two categories of cases
to be snap rounded (see Research Objectives). They require different procedures, which
will be explained in Section 3.4.1 and Section 3.4.2 respectively. Lastly and importantly, the
significance of performing SR from the minimum case will be elaborated.

3.4.1 Snap rounding polygonal vertices

Identify the close polygonal vertices

For an arrangement of polygons, the vertices can be very close to each other under a pre-
defined tolerance. The very first step of snap rounding these vertices would be to clearly
identify them. After having embedded the polygons into the CDT, all the vertices will be
connected by edges hence the distance between any two vertices can be measured by com-
puting the length of the edge connecting them. If the length of an edge is smaller or equal to
the given tolerance, then the vertices connected by it would be considered as close polygonal
vertices. It is noteworthy that when finding these close vertices we mainly focus on the edge
length, thus it does not matter whether the connecting edge is constrained or not. However,
in the following modification steps care needs to be taken when dealing with constrained
edges and unconstrained edges.

Figure 3.10 shows an example. For the input polygons, after it has been embedded into
the triangulation, the edges are traversed and the corresponding lengths are computed. The
predefined tolerance is 1cm, only one edge ab in the triangulation is either smaller or equal
to it, as is shown in Figure 3.10b (highlighted in red). The vertex a and b are thus considered
as close vertices, which require further modifications.

The details are described in Algorithm 3.4.

Modify the list of constraints

The next step after the identification of close polygonal vertices would be to modify them in
order to eliminate the small gap between the vertices. The list of the constraints are firstly
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Figure 3.10: Identify two close vertices. (a) Two input polygons. (b) Two polygons embedded
in the triangulation. The length of edge ab is smaller than the tolerance (1cm), highlighted
in red.

Algorithm 3.4: Find close vertices (CDT, ε)
Input: A constrained Delaunay triangulation CDT, the snapping tolerance ε
Output: Close vertices (if found with the given tolerance)

1 for e in finite edges of CDT do
2 get two endpoints of e;
3 get the distance between the two endpoints d;
4 if d ≤ ε then
5 mark the two endpoints as close vertices;
6 return close vertices;

7 return;
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Figure 3.11: Modify the list of constraints. (a) The constraints obtained after the tagging
stage, which are stored in a list. The line segments highlighted in blue (l1, l2, l3, l4) are the
constraints incident to vertex a and b respectively. c is the centroid of line segment ab,
note that c does not belong to any polygon. (b) The constraints after the modification. The
incident constraints l1, l2, l3, l4 are re-connected to vertex c.
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Figure 3.12: Modify the list of constraints (constrained edge). (a) The constraints obtained
after the tagging stage, which are stored in a list. The line segments highlighted in blue
(l1, l2, l3, l4, ab) are the constraints incident to vertex a and b respectively. (b) The constraints
after the modification. The incident constraints l1, l2, l3 are re-connected to vertex c.

modified in accordance with the polygon ID information. In other words, the boundaries
of the polygons would be modified. See Figure 3.11 for an example. The line segments
in Figure 3.11a represent the boundaries of two polygons. The blue ones (l1, l2, l3, l4) are
the constraints incident to vertex a and b respectively. Since vertex a and b are too close
to each other under the given tolerance, they need to be snapped as one vertex, which
means a certain vertex will be used to replace them. The centroid of ab is a fair choice
since it can avoid excessive shape changes of either polygon. The replacement will affect the
constraints incident to a and b (l1, l2, l3, l4) but will have zero impact on other non-incident
constraints. Therefore, the ending points of l1, l2, l3, l4 are modified from a, b to c, as is shown
in Figure 3.11b. After the modification, the two close vertices are replaced by their centroid,
and the original topology and geometry of the polygons are kept as much as possible.

It should be emphasized that, the edge ab in Figure 3.10b can be constrained in some cases,
which indicates that ab is actually a boundary of a polygon (or a common boundary for
adjacent polygons). In this case ab will be stored in the list of constraints, and it needs to
be removed in the modification process. See Figure 3.12 for an illustration. In Figure 3.12a,
the edge ab is one of the boundaries of polygon B. The constraints incident to vertex a
and b are highlighted in blue, which includes l1, l2, l3 and ab. When modifying the list, the
constraint ab is firstly removed from the list, afterwards other incident constraints (l1, l2, l3)
are re-connected to the centroid c.

Modify the triangulation

Once the modifications of the list of constraints are completed, the triangulation (CDT) can
be altered accordingly. The alteration towards the CDT is a must, as it is the basic data
structure where the cases requiring snap rounding operations are found. Figure 3.13 illus-
trates the necessary steps in an example. The triangulation after the polygon A and B (see
Figure 3.10a) are embedded is shown in Figure 3.13a. The blue line segments are the con-
strained edges in the triangulation, representing the boundaries of the polygons. Vertex a
and b are close polygonal vertices and the edge connecting them is highlighted in red. The
incident constrained edges of vertex a and b are denoted as l1, l2, l3, l4. Let us denote the
ending points of l1, l2, l3, l4 (except for a and b) as incident constrained vertices (highlighted in
purple), as they are incident to vertex a and b and connected by the constrained edges. For
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Figure 3.13: Modify the triangulation. (a) The triangulation after the polygon A and B (see
Figure 3.10a) are embedded. The constrained edges are highlighted in blue, among which
the l1, l2, l3, l4 represent the incident constrained edges of vertex a and b respectively. The
edge ab is not constrained yet its length is smaller (or equal) comparing to the tolerance
and highlighted in red. (b) The triangulation after the alteration. The incident constrained
edges l1, l2, l3, l4 are re-connected to the centroid c (the centroid of ab).

the alteration, the edge ab is firstly removed in the triangulation (thus a and b are removed),
this will also remove the constrained edges l1, l2, l3, l4. Afterwards the new constrained edges
are re-introduced by connecting the incident constrained vertices to the centroid c, as is shown
in Figure 3.13b. The newly constructed constrained edges are denoted as l1, l2, l3, l4 sequen-
tially. This modification is local because of the characteristics of CDT [Chew, 1987], which
ensures that the changes made will not affect the overall triangulation. This property makes
the modification quite efficient, especially for a relatively large triangulation (e.g. containing
more than 100,000 edges).

Resolve possible conflicts via merging process

The CGAL triangulation package [Boissonnat et al., 2000] automatically maintains the struc-
ture of the triangulation in response to the modifications, it also possesses the capability to
resolve possible conflicts such as repeatedly inserting a constrained edge or a vertex. The
package will omit the redundancies and keep the triangulation valid. However, the possible
repetitions which may happen during the modification of the list of constraints will require
manual processing.

Figure 3.14 shows a possible arrangement of two polygons. The vertex a and b are the
close polygonal vertices since the distance between them is smaller than or equal to the
given tolerance. As is described previously, they will be replaced by their centroid during
the alteration. In Figure 3.15a the tagged constraints are shown. Constraint oa and ob are
assigned the tag A and B respectively indicating which polygons they should belong to. In
this case, the SR process will change the ending point of oa and ob from a, b to c, resulting
in two constraints with different tags at the same location. The similar merging process
mentioned in Section 3.3.3 is utilized to resolve this conflicts of repetition (see Algorithm 3.3).
The result is depicted in Figure 3.15b, oc is the newly constructed constraint with tag A and
B from both polygons.

Remove possibly dangling elements (optional)
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Figure 3.14: Two polygons which will possibly cause conflicts after snap rounding
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Figure 3.15: Possibly conflict constraints after snap rounding. (a) After the tagging stage,
constraint oa and ob are constructed and assigned the tag (ID information) A and B re-
spectively. (b) After the snap rounding, constraint oc is constructed and stored, having the
tag A and B (c is the centroid of ab).
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Figure 3.16: Possible dangles during the modification of the list of constraints.

So far most of the content of performing SR on polygonal vertices have been discussed. There
is one more thing that is worth mentioning: the possible presence of dangling elements
and the related cascading effects. See Figure 3.16 for a straightforward illustration. In
Figure 3.16a, vertex a and b are close polygonal vertices under the predefined tolerance.
After the tagging stage a list of constraints can be obtained, as is shown in Figure 3.16b.
Care needs to be taken when the list of constraints are being modified, as in this case the
alteration will create a dangling constraint oa (Figure 3.16c). Note that due to the dangling
constraint the vertex o will also become a dangling vertex, which can be very close to line
segment l1 or l2, resulting in new cases (close polygonal vertex and boundaries). In addition,
the distance between vertex o and c (the length of oc in Figure 3.16c) can also be smaller than
(or equal to) the threshold, which suggests that o and c become new close polygonal vertices.
Therefore, they need to be rounded again. The cascading effects, in our context, stand for
the fact that the SR operation performed on one case would possibly create new cases that require
snap rounding modification again.

The cascading effects can be reduced or avoided by removing the dangling line segments
and vertices. Technically speaking, the dangling line segment can be firstly identified in the
list by a traversal and then deleted from the list during the snap rounding process. Locating
dangling vertex can be slightly more difficult. Observing from Figure 3.16c, a conclusion
can be drawn that non-dangling vertices are incident to at least two constraints while the
dangling vertex is only incident to one constraint. This can be used to find the dangling
vertex. It should be pointed out that in the methodology a list is being utilized to store
all constraints, therefore in practice locating and removing the dangling elements often re-
quires a traversal operation (or multiple traversals). The traversal operation will become
very expensive hence consume a significant quantity of time resources when the number of
constraints in the list is relatively large (e.g. more than 100,000). Considering the cost and
the dangling elements are not very common (depending on the polygon shape), the remov-
ing process is made optional. For small or middle dataset, enabling the removing operation
would possibly yield a result with better quality, while for large or massive dataset, remov-
ing process is recommended to deactivate as the time cost would be too expensive to accept
for most users.

Another issue of dangling elements is that the dangling line segments (constraints) will make
a ring of a polygon invalid. As is demonstrated in Figure 3.16c, the constraints (highlighted
in violet) will not form a valid and enclosed polygon (Figure 3.16b shows an example of an
enclosed ring which will form a valid polygon). This issue can be automatically handled in
the polygon reconstruction stage. That being said, the dangling elements caused by the SR
will not have negative impacts on the polygon reconstruction.
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Figure 3.17: Summary of snap rounding polygonal vertices. (a) Input polygon. (b) The
polygon is embedded into a triangulation (CDT), where close polygonal vertices (a, b) are
identified under the given tolerance. (c) Tagged constraints (boundaries). (d) Modify the
list of constraints. (e) Modify the triangulation (CDT). (f) Removing dangling elements.

Summarize

Based on the content above, the main steps of snap rounding polygonal vertices can be summa-
rized as below:

• Identify the cases (close polygonal vertices) under a certain threshold (Figure 3.17a,
Figure 3.17b);

• Modify the list of constraints: remove close vertices, use the centroids instead, resolve
possible conflicts of repetition when updating constraints, remove possibly dangling
elements; the aim of this process is to keep the shape of polygons (represented by the
boundaries) up to date (Figure 3.17c, Figure 3.17d, Figure 3.17f);

• Modify the triangulation (CDT): remove the edges connecting the close vertices and
re-introduce the constraints between the centroids and the incident constrained vertices
(Figure 3.17e);

An illustration of main stpes is provided in Figure 3.17 (including removing possibly dan-
gling elements). The Figure 3.17a shows an example input polygon, the ideal output of this
stage is depicted in Figure 3.17f.

3.4.2 Snap rounding polygonal vertex and boundaries

Identify the close polygonal vertex and boundaries

In an arrangement of polygons, there are not only close polygonal vertices described in
Section 3.4.1 but also close polygonal vertex and boundaries. If the distance between a
vertex and a boundary of a polygon is smaller than (or equal to) a predefined tolerance,
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Figure 3.18: An arrangement of two polygons with a vertex being close to a boundary. (a)
Two polygons A and B. Vertex o of polygon B is close to the boundary ab of polygon A.
(b) The triangulation after two polygons are embedded into a triangulation. △ abo is the
incident triangle of vertex o and boundary ab.

then this vertex and the boundary need to be snap rounded. The identification of such case
would rely on the constructed triangulation. Observing from Figure 3.18, if a polygonal
vertex is very close to a polygonal boundary under a certain tolerance, this vertex is called a
capture vertex and the incident triangle (△ abo in Figure 3.18b) is a possibly sliver triangle, as
the triangle is rather skinny comparing to other well-shaped triangles in the CDT.

Now let us take a closer look at △ abo. As is shown in Figure 3.19a, the distance between
vertex o and boundary ab can be represented as the length of oo′ (denoted as h). Boundary
ab is expressed as a constrained edge in the triangulation, the other two edges oa and ob
may be or not be constrained. Figure 3.19b illustrates another possible shape of the triangle
△ abo. The length of oo′ is smaller than (or equal to) the tolerance and ab is also constrained.
Unlike the previous situation, the projection of vertex o on ab (o′) is not within the bounds
of line segment ab as it falls outside the range of ab, which makes △ abo not a possibly
sliver triangle to be used in our snap rounding operation. In other words, a triangle with
a shape similar to Figure 3.19b will not be considered a valid possibly sliver triangle in our
case. The logic behind this is that if the projection of a vertex on the corresponding close
boundary is outside the range, it is of no reason that this vertex should be re-connected to
the boundary.

Modify the list of constraints

Similarly, following the identification stage, the list of constraints would be modified first
in order to remove the small gaps between vertices and boundaries. Refer to Figure 3.20
for an illustrative example. The constraints (stored in a list) obtained from the tagging pro-
cess are illustrated in . The capture vertex o is very close to the boundary ab (highlighted in
blue). With the aim of snapping o and ab together, new constraints oa and ob are created
and added into the list. Afterwards ab is removed. It is important to know that constraint
oa and ob are derived from the triangulation (see Figure 3.18b). By replacing ab with oa
and ob, vertex o and boundary ab are touching hence the small gap is removed. One can
argue that such modification would cause unintended distortions (i.e. edge ab is stretched
to edge aob) and maybe it is a better idea to directly move o onto ab. However, recall that
all of the constraints are constructed from the triangulation during the tagging stage hence
removing constraints and inserting new constraints would require corresponding modifica-
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Figure 3.19: A possibly sliver triangle. (a) The projection of vertex o on ab (o′) is between a
and b. (b) The projection of vertex o on ab (o′) is outside the bounds of line segment ab.

tions in the triangulation (CDT) as well. Deletions and insertions of the constraints are less
robust due to the changes to be made would affect the structure of the CDT significantly and
might introduce invalidities such as constraint intersections. Albeit the CGAL triangulations
package [Boissonnat et al., 2000] has the capability to handle the possible errors, such au-
tomated modifications may cause us to lose dynamic tracking of polygon shapes during the
SR process.

Modify the triangulation

After having completed the modifications of the constraints, the CDT, where all elements are
embedded, is ready to be altered correspondingly. Considering the processing performed
during rounding polygonal vertices (Section 3.4.1), the triangulation would require no ex-
plicit insertions but only changes of constrained status of incident edges regarding rounding
polygonal vertices and boundaries. An example is shown in Figure 3.21. Upon completion of
having embedded the polygons, the structure of the triangulation is depicted in Figure 3.21a,
each blue line segment is indicative of a constrained edge and vertex o is the capture vertex
with the given tolerance (being very close to boundary ab). Non-constrained edge oa and
ob are made constrained after the modification, and constraint ab is removed (note that only
constraint is removed, vertex a and b are still in the triangulation). Since the constraint
between a and b no longer exists, the CDT automatically updates its structure locally so as
to maintain its Delaunay property (recall that the Delaunay property means the triangles
are organized as well-shaped as possible in a CDT). The biggest advantage of this approach
is that it minimizes the necessary changes that need to be done of the triangulation. Such
behaviour would make the modifying operation as robust as possible. Previously it is men-
tioned that the capture vertex o could also be snapped onto the boundary ab, however this
is rather troublesome as it requires new insertions, including the insertion of a new vertex
o′ on the edge ab (see Figure 3.22) and insertions of new constraints connecting o′ and the
incident vertices of the original capture vertex (o′c, o′d in Figure 3.22). Insertions are typically
expensive in a CDT since the triangulation needs to determine whether the incoming vertex
has already existed or not, this would probably result in a global traverse in some cases.
Additionally, there is a possibility that the insertion of a constraint would cause unintended
consequences such as intersecting with other constraints (e.g. in Figure 3.22 newly-added
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Figure 3.20: Modify the list of constraints for close vertices and boundaries. (a) The con-
straints (representing polygon boundaries) obtained after the tagging stage. Line segment
ab is highlighted in blue to indicate it is very close to a polygonal vertex (o). Note that
there are two line segments oa and ob which are depicted in blue dots, they have not been
added to the list of constraints yet. Vertex o is the capture vertex and triangle △oba is
its incident triangle. (b) The constraints after the modification. Original constraint ab is
removed, constraint oa and ob are introduced.

constraint o′c and o′d may interfere with other constraints if the triangulation has a very
complex topology). Having these considerations, this thesis eventually chooses the method
depicted in Figure 3.21 to perform necessary rounding operations.

Sliver triangle

In the identification stage it has been described and demonstrated the concept of a possibly
sliver triangle, based on which the capture vertex is located and snapped. However, in practice
it has been found that the rounding schema would result in infinite loops for certain possibly
sliver triangles. See Figure 3.23 for an example. After constructing the CDT, an excerpt
of the triangulation is depicted in Figure 3.23a (△pqr), with vertex r being very close to the
constrained edge (boundary) pq, r is the capture vertex. Subsequently the rounding schema is
applied, edge pr and qr are ensured to be constrained and edge pq are made non-constrained
(shown in Figure 3.23b). Note that after removing constraint pq, the edge pq still exists. Be
advised that qr is perpendicular to pr, the projection of q on pr is r, and the distance from q
to pr is the length of qr. If the length of qr is smaller than the given tolerance then the vertex
q will be considered close to the constrained edge pr and be snapped again, resulting in the
arrangement illustrated in Figure 3.23c. The vertex r, once again, becomes the capture vertex
as the distance between r and constrained edge pq is smaller than the tolerance. Rounding
operation of (c) will lead to the result shown in Figure 3.23d, which is exactly the same as
Figure 3.23b. It can be easily inferred that continuing SR will result in infinite loops of the
program.

Considering the situation above, the principle of locating close polygonal vertex and bound-
aries needs to be refined. In order to clearly elaborate the refinement, several basic concepts
need to be demonstrated as follow:

• sliver base edge: In a triangle, if the distance between a vertex and an edge is less than
a given tolerance, the edge is called a sliver base edge relative to this vertex (e.g. in
Figure 3.23a, consider vertex r, its sliver base edge is edge pq; consider vertex q, its sliver
base edge is edge pr);
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Figure 3.21: Modify the triangulation for close vertices and boundaries. (a) The triangulation
with polygon A and B embedded. The constrained edges are highlighted in blue. Vertex
o is considered as the capture vertex given the tolerance (being very close to boundary ab).
Triangle oab is a possibly sliver triangle. (b) The triangulation after the alteration. Edge oa
and ob are ensured as constrained. Constrained edge ab is marked as non-constrained.
The triangulation within polygon A changed due to the new constraints.
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Figure 3.22: Another possible way of snap rounding polygonal vertex and boundaries.
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Figure 3.23: Infinite loops when snap rounding a possibly sliver triangle. The capture vertex
(which will be snapped) is highlighted in red circle.
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Figure 3.24: Remove dangling elements when rounding close vertex and boundaries. (a) The
input polygon. (b) Polygon after snap rounding polygonal vertex and boundaries.

• constrained sliver base edge: In a triangle, if a sliver base edge is constrained, then it is
called a constrained sliver base edge (e.g. in Figure 3.23a, consider vertex r, its constrained
sliver base edge is edge pq;)

Having these in mind, a triangle that satisfies the following requirements is defined as a
sliver triangle:

• The triangle must contain only one constrained sliver base edge.

• Except for the constrained sliver base edge, the other two edges must not be sliver base
edges (they can be constrained or non-constrained).

With the introduction and utilization of sliver triangle, the infinite loops caused by a possibly
sliver triangle can now be resolved. Problematic cases such as the one in Figure 3.23 are
omitted.

Remove possibly dangling elements (optional)

Rounding polygonal vertex and boundaries can also create dangling elements in some cases.
See Figure 3.24 for an example. Polygon A has a so-called ”z” shape (c− o − a− b), with
vertex o being close to boundary ab under the predefined tolerance. In accordance with
the rounding schema, performing snap rounding on polygon A would result in the shape
depicted in Figure 3.24b. As is shown in the figure, in the rounded counterpart segment oa
becomes a dangling line segment and vertex a becomes a dangling vertex. The problem lies
in the fact that the distance between the dangling vertex a and the boundary oc is smaller
than the tolerance as well, hence a will be snapped again, leading to the final shape in
Figure 3.24c. If the dangling vertices and segments are firstly detected and processed before
the next snap rounding, the final rounded result would be the polygon shown in Figure 3.24b
but without segment oa. Generally speaking, handling dangling elements will probably
yield a better result since the polygon distortions are smaller. Besides, the dangling elements
are created as a kind of side effect during the SR process, further rounding operations should
not be applied on such intermediate objects.

As outlined earlier, even though removing dangling elements is capable of improving the
quality of rounded results and reduce cascading effects, it is itself a relatively expensive
operation. Therefore, there is always a trade-off between the results with higher quality and
the overall resource costs of the program.
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Figure 3.25: Apply SR on a set of polygons. (a) Input polygons. Boundaries that will be
modified are highlighted in blue. (b) Polygons after SR. Boundary bd intersects polygon B
at vertex n after first rounding operation.

3.4.3 Snap rounding from the minimum case

In real world dataset, there can be multiple cases requiring SR operations with a certain
tolerance. Different rounding sequences can lead to different results. Figure 3.25 depicts
an example. Observing from the left figure, the distance between vertex b (of polygon A)
and p (of polygon C) is smaller than the given tolerance thus they are considered as close
polygonal vertices which need to be snap rounded. Note that the distance between vertex
c (of polygon B) and boundary bd is even smaller than that between vertex b and p. If
vertex b and p are snapped first, the revised constraint b(p)− d would intersect polygon B
and create a new vertex n at the intersection, as is shown in Figure 3.25b. The length of
segment cn is smaller than the tolerance hence a new rounding case is created. This is a
representative example of the aforementioned concept cascading effects. It is noteworthy that
the intersection also causes the overlap (triangle △cnd) between polygon A and B, which
makes the arrangement more complicated to handle.

A realistic way to avoid such issue is to ensure that the case with the smallest distance under
a certain threshold (called a minimum case) is rounded first. As is illustrated in Figure 3.26,
vertex c and boundary bd are snapped together prior to processing vertex b and p. The
resulting arrangement is shown in Figure 3.26b. It is apparent that in this arrangement such
manner would not create any intersections nor overlaps.

3.5 Reconstruct Polygons From the List of Constraints

Once the SR process is finished, the list of constraints (representing the polygonal bound-
aries) are used to reconstruct the polygons. As this final step mainly serves as an auxiliary
role to help reconstruct polygons, using existing and mature algorithms might be an efficient
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Figure 3.26: Apply SR on a set of polygons, starts from the minimum case. (a) Input polygons.
Boundaries that will be modified are highlighted in blue. (b) Polygons after SR. Vertex c
and boundary bd are considered as the minimum case, hence they are snapped first. There
are no intersections nor overlaps after the first snapping process.

solution. The GEOS (Geometry Engine, Open Source) is a C/C++ library that provides abun-
dant functions to perform geometric and spatial computations [GEOS contributors, 2021].
It has a Polygonizer class, which implemented several functions to build 2-dimensional
polygons from a set of line segments. The Polygonzier roughly proceeds as follows. Firstly
it constructs a graph representation using the input line segments. Each line segment is
considered as an edge in the graph and each vertex is represented as a node. After adding
all nodes and edges, it then traverses the graph, starting from a node or an edge, to analyse
the connectivity of the graph in order to identify potential closed rings. To achieve this, the
Polygonzier traverses adjacent line segments and checks whether there are possible connec-
tions of the segments to form a closed ring. Different criteria may be taken into consideration
in this process, such as if there exists shared endpoints or important geometric relationships
like intersections or touching. Once a potential ring is found and formed, it then undergoes
validation to ensure the geometric and topological correctness of the ring. For instance, a
valid ring must not self-intersect. After having validated the formed rings, the Polygonizer

constructs polygon geometries using the formed rings. The constructed polygons are valid,
but they may contain interior holes. Care needs to be taken when exporting these polygons
to the output file. An example of polygon reconstruction is shown in Figure 3.27. Poly-
gon A in Figure 3.27a has two inner holes: ha and hb. The Polygonizer firstly builds a
graph based on the input line segments, then it processes the constructed graph to detect
the intersection points amongst line segments and splits them respectively. The resulting
segments are finally connected to form enclosed rings. The reconstructed result is shown in
Figure 3.27b.
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Figure 3.27: An example of using polygonizer to polygonize a set of line segments. (a) A set
of line segments. (b) The resulting polygon of Polygonizer containing two interior holes.
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4 Implementation

In order to investigate the applicability of the proposed method, a simple prototype (called
snapoly, meaning ”snap polygons”) has been developed using C++ as the programming
language.

4.1 Data Structures

In common practice, a program usually becomes increasingly complex as the development
progresses. Appropriate and intuitive data structures would help to clarify and better orga-
nize the procedures of the implementation. It is worth noting that simplicity does not nec-
essarily mean good efficiency. Sometimes high performance requires sophisticated design.
Regarding the prototype of this thesis, the number one rule should be that it is designed and
realised as straightforward as possible, meanwhile with the potential of further development
and optimization to achieve better performance.

Several data structures have been designed for the prototype, they will be described as
follow:

Enhanced constrained delaunay triangulation 2

This class is inherited from the CGAL::Constrained Delaunay triangulation 2 class, with
some additional functions which are required during the SR process. Using an derived class
from CGAL has certain benefits, i.e. accessing the CGAL internal functions and having the
flexibility to add and customize own functions. This class is mainly used for constructing
and maintaining the triangulation.

Constraint

Recall that in the methodology the polygonal boundaries need to be stored and dynami-
cally updated. Boundaries can be considered as line segments with ID information (of the
polygons which they belong to) attached. Constraint is the class to store the boundaries, it
contains two points indicating the endpoints of a line segment and a container to store possi-
ble ID information. Note that for one constraint (boundary), it principally can have multiple
IDs (e.g. common boundary). Additionally some basic operators are also provided.

CDTPolygon

This is a class similar to CGAL::Polygon with holes 2 class which is used to store a poly-
gon in 2-dimensional space with (possible) interior holes. The class members include a
CGAL::Polygon 2 object representing the exterior ring of a polygon, a container with the
type CGAL::Polygon 2 to store possible holes (the container will have size zero if no holes
are present) and a string to store the ID information (one polygon can only have one ID in a
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valid dataset). The CDTPolygon class also provides elementary functions to perform calcula-
tions related to polygons such as obtaining the number of interior holes, querying if a point
lies inside or outside of a polygon, calculating the area, etc.

Snap rounding 2

This class encapsulates essential objects and functions to perform SR on polygons. Since
implementing the whole procedure of the method would result in many lines of code, it
is a good practice to make functions organized according to different purposes. This is
relatively a big class comparing to others and has more class members, they are arranged
in the following order (note that the members have a common prefix m to indicate they are
class members not ordinary or temporary variables):

• m tolerance: The tolerance of SR operation. Recall that elements (usually vertices
and boundaries) with a distance less than this value would be modified and captured
together.

• m squared tolerance: The squared value of m tolerance. This value is actually used
to compare with the (squared) distance between vertices or between a vertex and a
boundary. The reason behind this is that multiplication is typically faster than divi-
sion in modern computers and the distance between elements is firstly computed as a
squared value. Consider that taking square root can be a more complex and expensive
operation, using squared values is a better option.

• m et: An instance of a triangulation, where all input polygons are embedded. The tri-
angulation would be updated automatically as the snap rounding operation proceeds.

• m constraintsWithInfo: A container with the type constraint. The boundaries of
polygons are stored in this container. They are updated manually and dynamically
during the snap rounding process. With the utilization of C++, various containers can
be used, such as std::list, std::unordered set and std::unordered map.

• m polygons: A container with the type CDTPolygon, storing the input polygons.

• m result polygons: A container with the type CDTPolygon, storing the reconstructed
polygons after the snap rounding.

4.2 Prototype

With the objective of developing a prototype with the potential of achieving high efficiency,
C++ was selected as the main programming language. C++ is a compiled language, which
means the code gets compiled into machine code before it is executed. For modern comput-
ers, the compiled code can be directly run without the need to be interpreted during runtime
thus programs written in C++ can usually achieve good performance. Another important
factor is that third-party libraries: GDAL and CGAL are frequently used in the implementa-
tion. They both have C++ interfaces (GDAL provides C and C++ APIs and CGAL is originally
written in C++) thus it is easier to use and integrate them in a C++ environment.

For the consideration of convenient management, header files and source files are placed
separately. Header files ordinarily contain class & function declarations, but it may also in-
clude a few inline function definitions. Most of the function definitions and implementations
are in source files. Furthermore, in order to accelerate the compilation stage, precompiled
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header file (.pch) is used. It usually contains the preprocessed output of commonly used
header files. Therefore when the source code gets compiled, the compiler can sorely use the
precompiled files instead of parsing the common header files over and over again. This can
save a significant amount of time especially during the debugging stage.

The prototype is available at https://github.com/zfengyan/snapoly, under a GNU General
Public License (v3.0). To view a copy of this license, visit https://www.gnu.org/licenses/
gpl-3.0.html.

4.3 Engineering Decisions

It is critical to be aware that different choices of implementation tactics would lead to differ-
ent output, even in some cases, determine whether the program runs successfully or fails.
The efficiency of the program also depends on the specific decisions. In this section, several
important details and selections are presented and discussed. Note that these decisions are
not necessarily the best options to achieve potentially highest performance.

Use std::list as the container to store constraints

As previously described, the boundaries of polygons (namely, constraints) are stored in
a container and will be dynamically updated during the snap rounding process. In the
chapter Methodology, it is demonstrated that the constraints would be regularly mod-
ified, including removing and inserting operations. Using std::list is a relatively good
practice to provide fast insertions and erasures for stored elements regardless of the loca-
tions in the list. The disadvantage is that it is using non-contiguous memory thus it would
generally consume more spaces compared to containers using contiguous memory such as
std::vector.

Use 1e− 8 as the threshold value when comparing two doubles

The double type in C++ can not be compared directly if one wants to ensure the correctness
of the comparing result. This is due to the precision limits of floating-point arithmetic. To
make a straightforward and simple illustration, assume two doubles: 10000.000000000001
and 10000.000000000002, conceptually the latter is greater than the former while inside the
memory they could be both represented as 1.0000000000× 104 (just for an example, the ac-
tual precision is usually higher) using floating-point arithmetic, which indicates they are
considered the same. Therefore, a threshold is often used to ”safely” compare the value of
two doubles especially in the scenarios where inaccurate or randomized comparison result
can lead to invalid output. Choosing a proper value of the threshold can be tricky some-
times. If a threshold is too small, such as 1e− 15, it may take irrelevant differences (caused
by rounding errors of floating-point numbers) into consideration, leading to unnecessary
comparisons. On the other hand, if a threshold is too large such as 1e− 3, it may miss some
differences between double values thus yield incorrect comparison results. According to
some experiment results conducted during implementing the prototype, it is discovered that
the difference between two ”same” variables with double type usually ranges from 1e− 6 to
1e− 12, depending on the magnitude of the values. Based on the testing results of different
datasets, 1e− 8 is eventually used as the value of threshold. It should be emphasized that
the appropriate threshold value should be chosen in accordance with the application context
and decided by the users. There is no rigid regulation or standard regarding this.
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5 Results and Analysis

5.1 Datasets

In order to verify if the developed prototype meets the requirements, diverse datasets that
contain multiple polygons have been collected and tested, see Table 5.1. Three different
categories of datasets are primarily selected. The first category, termed Normal, represents
ordinary towns. Datasets of this type usually incorporate both densely and sparsely built
areas, as well as natural landscapes, parks, and other possible features. The second rep-
resentative category is Dense urban area, which typically represents the bustling city center
regions. The building density in these regions is usually high and the buildings are usu-
ally arranged tightly. Datasets of such category would possibly contain more SR cases (close
vertices and boundaries) with a certain tolerance. The third type is Island, where the arrange-
ment of buildings is usually irregular and spaced apart from each other. Note however, the
difference between the category Island and Normal is not significant.

All of the datasets are downloaded from GeoFabrik [GeoFabrik, 2023], which provides free
downloads of open-source geospatial data from OpenStreetMap (OSM) [Bennett, 2010]. The
downloaded data typically contains many different ESRI Shapefiles indicating different
types of elements. An example of a downloaded dataset is depicted in Figure 5.1, the whole
dataset covers the main area of Andorra, the figure shows an excerpt that contains buildings
(in grey), landuse (in brown), water (in blue, including water body and waterways), railways
and roads (black line segments). In this thesis the polygons (buildings in the original dataset)
draw more attention than other entities, thus the downloaded dataset is firstly preprocessed
so as to filter out polygons. This can be easily achieved in QGIS [QGIS Development Team,
2009] by simple selection and exportation. Another consideration to keep in mind is that the
downloaded dataset mostly uses EPSG:4326 as its CRS. EPSG:4326 uses the WGS 84 datum
and does not use any cartesian coordinate systems (with x, y and z axes), instead, it utilizes a
spherical coordinate system to describe the locations on the surface of the Earth. Therefore,
the coordinates are initially expressed as latitude and longitude.

Using latitude and longitude coordinates to perform geometric computations would require
extra steps, namely, to utilize the great circle distance [Carter, 2002]. Therefore this is

Abbreviation Number of polygons Type

Den Haag Central DHC 19878 Dense urban area
Faroe Islands Faroes 30926 Island area
Delft Delft 38376 Normal
Freiburg Freiburg 53723 Normal
Rotterdam Central RCD 127795 Dense urban area

Table 5.1: Testing datasets for the prototype.
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Figure 5.1: An excerpt of downloaded Andorra dataset. Buildings are depicted in grey,
landuse is shown in brown, water body and waterways are in blue, the black straight
lines represent the roads and railways.

not the most suitable option when geometric computations (e.g. calculating the distance
between two points) are involved. A pragmatic way to avoid this is to use a projected
CRS, which converts the latitude and longitude into x and y coordinates. Keeping in mind
that CRS would cause distortions thus it needs to be carefully selected. Fortunately EPSG
(https://epsg.io/) provides a large number of CRS to be applied on different regions. Users
can use various CRS according to their specific needs. The polygons filtered and projected
are shown in Figure 5.2.

5.2 Evaluation

5.2.1 Symmetrical difference

Symmetrical difference is a common concept in the field of GIS, it typically computes the
geometric intersections of the input features. The area that do not overlap will be returned
as the result. This would enable us to visually identify the differences (namely, the changes
of the shape of the polygon) before and after the SR process. An illustration is shown in
Figure 5.5. Figure 5.5a shows the two polygons (with a small gap) in the dataset, and the
rounded result (with the small gap eliminated) is depicted in Figure 5.5b. The differences
before and after SR are presented in Figure 5.5c. In the practice, datasets are usually large
and often comprise a large number of polygons, hence the differences (or distortions) are
not straightforward to observe. As is shown in Figure 5.3. The Delft dataset and its rounded
counterpart look similar from a normal scale level. To gain insights into the differences and
verify if the small gaps have been corrected, symmetrical difference is computed and the
result is illustrated in Figure 5.4. According to the result, it becomes possible to backtrack the
original and the rounded polygon arrangement for the purpose of verification. For instance,
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Figure 5.2: An excerpt of downloaded Andorra dataset with polygons filtered. It only con-
tains buildings which are depicted in grey.

(a) Input. (b) Rounded result.

Figure 5.3: An excerpt of Delft region.

by following the enlarged purple circle in Figure 5.4, once can observe the original polygon
arrangement shown in Figure 5.5a and the snap rounded result in Figure 5.5b. Therefore
it can be verified that the small gaps between these two polygons have been successfully
corrected. This approach allows for a straightforward visual confirmation of the results
achieved through the process of SR.

5.2.2 Area difference

Symmetrical difference would permit to intuitively observe and identify the differences be-
tween the input dataset and the rounded counterpart in QGIS. However it can not be easily
quantified. It should be emphasized that, quantitative data comparison holds significant
importance in evaluating results, particularly for large datasets. Regarding the input and
output, such quantitative indicators can directly reveal the extent of distortions before and
after the rounding operation.
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Figure 5.4: The symmetrical difference of the excerpt of Delft region (shown in Figure 5.3).

(𝑎) (𝑏) (𝑐)

Figure 5.5: An example of how symmetrical difference shows the distortions before and after
SR. (a) Input. (b) Rounded result. (c) Symmetrical difference (computed in QGIS)
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For the purpose of intuition, simplicity, and ease of implementation, the metric area di f f is
defined as follows:

area di f f =
∑n

i=1
∣∣A (P i)−A

(
P i′

)∣∣
∑n

i=1A (P i)
× 100%. (5.1)

where P i represents the original input polygon, P i′ represents the corresponding rounded
polygon, A (P i) stands for the area of P i and A

(
P i′

)
denotes the area of P i′. This met-

ric intuitively quantifies the level of distortions between input and output polygons. It is
important to note that there is no strict standard for determining the value at which the
distortions can be classified as significant or insignificant. The area di f f should serve the
purpose of making comparisons for one dataset. For instance, when applying different toler-
ance values with the same set of polygons, the resulting output would vary and the degrees
of distortions would differ. The differences can be measured by the value of area di f f . As
the value of the area di f f increases, the corresponding degree of distortion would propor-
tionally escalate. Note however, its significance would be less pronounced when comparing
distortions amongst different datasets thus it should only be used for one dataset (with
different tolerances).

5.3 Results and Analysis

For the purpose of verifying the correctness and validity of the snap rounded polygons,
the datasets are tested with different tolerance values. Corresponding results and statistics
are shown to illustrate how polygons are rounded during the SR process and what kind of
performance can be expected.

Figure 5.6 depicts an arrangement of two polygons that often occurs in a dataset. At the
first glance, from a normal scaling perspective of the two polygons, they would be easily
considered as adjacent to each other and only have one common boundary (a line segment).
However, the two polygons A and B may not be actually touching if one zooms in enough. In
the leftmost figure (Figure 5.6a), there are three light blue rectangles indicating which areas
will be enlarged and analysed. Consider the first rectangle, the enlarged details are shown
in Figure 5.6b. It can be observed that within the extent vertex o of polygon A is very close
to the boundary ac. The distance between them is 0.85cm (with the scale of 50 : 1), which is
usually too small to be a real gap of two ”adjacent” buildings (remember that the polygons
represent buildings in the real-world dataset), hence this small distance should be eliminated
via SR operation. Note that the boundary ac actually consists of two very close line segments,
they intersect at vertex a and the distance between them is gradually increasing as they get
farther away from a, as is illustrated in Figure 5.6d, the distance between l1 (belonging to A)
and l2 (belonging to B) is measured as 0.29cm (with the same scale 50 : 1), which needs to be
snap rounded as well. The endpoint of l2 in Figure 5.6d is vertex e in Figure 5.6f, which is
also the endpoint of line segment en (n is shown in the enlarged figure next to Figure 5.6f).
One can observe that the details in Figure 5.6f are a bit messy, for the vertex n should be
snapped onto the segment l2 and the gap between segment l1 and l2 should be removed.
Be aware that snapping n would possibly make vertex e a dangling vertex and leave en a
dangling line segment, which is why removing dangling elements process can be necessary
sometimes.
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Figure 5.6: An example of resulting polygon arrangement after SR.

The corresponding snap rounded counterparts of the cases described above are illustrated in
the rightmost figures of Figure 5.6. Refer to Figure 5.6c, the vertex o and edge ac are snapped
together using snap rounding polygonal vertex and boundaries schema (explained in the chapter
Methodology). After rounding procedure, o becomes a vertex that is located on the common
boundary between polygon A and B (this also makes o a common vertex). Such behaviour
makes the arrangement more robust as vertex o would not unpredictably remove with the
existence of rounding errors of floating-point arithmetic (e.g. for the original position shown
in Figure 5.6b, o can shift to the other side of ac, resulting in polygon overlaps). As for the
small gap between segment l1 and l2, it will be removed after the rounding, making l1 and
l2 become one segment owned by both A and B. Regarding the case of Figure 5.6f, vertex n
and segment l2 are firstly snapped together, afterwards the (dangling) vertex e is removed
and the small gap between l1 and l2 gets eradicated. The resulting arrangement is cleaner
and more stable as is shown in Figure 5.6g. It should be noted that vertex n also becomes a
common vertex of polygon A and B after SR.

Figure 5.7 shows another exemplary instance: a polygon containing an inner hole which is
very close to the exterior of the polygon. As is illustrated in Figure 5.7a, the input polygon
A has an inner hole τ which is very close to the polygon boundary e1e2. See Figure 5.7b,
m and n are two vertices of τ and mn is denoted as one of the hole’s boundaries. Let us
denote the projection of mn on the polygon boundary e1e2 as l1. In accordance with the
experimental results, the average distance between segment mn and segment l1 is nearly
3.58cm. Similar to Figure 5.6d, such distance is also too small to be a real gap between a
hole and the exterior of a polygon thus it requires rounding operation as well. Through the
utilization of snap rounding polygonal vertex and boundaries schema, vertex m, n and segment
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Figure 5.7: An example of snap rounding a polygon with a hole. (a) The input polygon,
with a inner hole denoted as τ. (b) Enlarged area of the margin of the inner hole τ.
Segment mn is one of the boundaries of τ and is very close to the polygon exterior. l1 is
the projection of mn on the exterior (the length of l1 is equal to the length of mn and l1
is part of the exterior). (c) The snap rounded boundaries of the polygon, with mn being
both the exterior of the polygon and the boundary of the inner hole, which means the
hole and the polygon are touching. (d) Reconstructed polygon (resulting polygon) from
the boundaries depicted in (c).

l1 are snapped together, resulting the rounded shape depicted in Figure 5.7c. Because of
the rounding, segment mn replaces l1 and becomes part of the exterior of the polygon,
meanwhile mn is still the boundary of τ. A polygon with such shape is actually an invalid
polygon, see [Ledoux et al., 2012] for details. The focus of this thesis is not handling the
invalidities thus further discussion will not be presented here. In the reconstruction stage,
the polygonizer (mentioned in the chapter Methodology) automatically handles the possible
invalidities and yield valid polygons as output most of the time. The resulting polygon
shown in Figure 5.7d is valid and more robust, with the changes of original topology as a
price.

Figure 5.8 shows an example of a set of polygons. The polygons are part of the Faroe Islands
dataset (downloaded from GeoFabrik [GeoFabrik, 2023] and projected using EPSG:3575 -

WGS 84 / North Pole LAEA Europe). There exists multiple cases that require SR operation
in the original dataset (Figure 5.8a). The rounded result (with the tolerance 0.5m) is shown in
Figure 5.8b. The polygons are coloured in conformity with the corresponding ID information
so as to intuitively show whether the ID information are kept accordingly. For instance,
polygons with the same color in Figure 5.8a and Figure 5.8b represent the same polygon
before and after SR (with the same ID). In accordance with the observation, the distortions
before and after SR are negligible (with area di f f = 0.002) and the ID information of the
polygons has been correctly preserved. In order to demonstrate the differences between the
input and the result more specifically, some cases are enlarged and displayed with more
details. See Figure 5.9, case (a), (b), (c), (d), (e), ( f ) illustrate the close elements under a
certain tolerance. It is of importance to know that some cases include both close polygonal
vertices and close polygonal vertex and boundaries. Take Figure 5.9a for an example, the bottom
vertex of the orange polygon is both close to the bottom vertex of the yellow polygon and
the boundary of the yellow polygon. As previously described, SR will start to proceed from
the minimum case hence the vertex (of the orange polygon) and the boundary (of the yellow
polygon) will firstly be snapped together, the snapping result is depicted in Figure 5.10a. In
Figure 5.9e there only exists close polygonal vertex and boundaries case as the distance from the
vertex of the red polygon to any vertex of the blue polygon is larger than the given tolerance.
The snapped counterpart is shown in the right figure of Figure 5.10e. The rounding results
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(a) (b)

Figure 5.8: An exemplary dataset: an excerpt of Faroe Islands. The polygons are coloured
according to the ID information. (a) Input polygons. (b) Polygons after SR.

of other cases are also shown in Figure 5.10.

5.4 Benchmarking

In order to assess the overall performance of the developed prototype, different tolerance
values have been tested. The basic statistics are shown in Table 5.2. The prototype runs
robustly for different datasets. The overall run time varies due to multiple reasons. Generally
speaking, the run time mainly depends on the number of input polygons, the total runtime
increases as the number of polygon increases. As observed in Figure 5.11, the total run time
varies in accordance with the size of the dataset (i.e. the number of polygons) with the same
tolerance. To illustrate this point, consider a tolerance value of 0.01m. When the datasets
are arranged in ascending order based on the run time, the sequence is as follows: DHC -
Faroes - Delft - Freiburg - RCD. This order corresponds to the number of polygons in each
dataset, with DHC (19878), Faroes (30926), Delft (38376), Freiburg (53723), and RCD (127795).
This holds true for all tested tolerances (ranging from 0.00m to 0.09m). Figure 5.11 solely
focuses on illustrating the differences regarding the run time for different datasets. It should
be pointed out that different datasets require different amounts of time to a large extent.
For instance, the smallest DHC dataset only requires approximately 3-5 minutes, while the
largest RCD dataset demands close to 195-200 minutes. As a result, the specific changes in
runtime for each dataset displayed in the figure appear relatively uniform. However, this
is not the case when the run time is displayed with regard to each individual dataset, as
illustrated in Figure 5.12.
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Figure 5.9: Some SR cases in Faroe Islands dataset.
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Figure 5.10: Before and after SR operation of the cases shown in Figure 5.9. In each sub
figure, the left one shows the original input and the right one shows the rounded result.
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Dataset Number of polygons Tolerance(m) Total run time(min)
DHC 19878 0.00 3.267
DHC 19878 0.01 3.908
DHC 19878 0.02 4.096
DHC 19878 0.03 4.242
DHC 19878 0.04 4.382
DHC 19878 0.05 4.566
DHC 19878 0.06 4.905
DHC 19878 0.07 5.173
DHC 19878 0.08 5.212
DHC 19878 0.09 5.419

Dataset Number of polygons Tolerance(m) Total run time(min)
Faroes 30926 0.00 6.159
Faroes 30926 0.01 7.088
Faroes 30926 0.02 7.263
Faroes 30926 0.03 7.354
Faroes 30926 0.04 7.611
Faroes 30926 0.05 7.725
Faroes 30926 0.06 8.056
Faroes 30926 0.07 8.245
Faroes 30926 0.08 8.543
Faroes 30926 0.09 9.514

Dataset Number of polygons Tolerance(m) Total run time(min)
Delft 38376 0.00 17.090
Delft 38376 0.01 19.130
Delft 38376 0.02 19.223
Delft 38376 0.03 20.558
Delft 38376 0.04 22.050
Delft 38376 0.05 25.145
Delft 38376 0.06 27.686
Delft 38376 0.07 30.051
Delft 38376 0.08 31.593
Delft 38376 0.09 33.650

Dataset Number of polygons Tolerance(m) Total run time(min)
Freiburg 53723 0.00 32.305
Freiburg 53723 0.01 34.153
Freiburg 53723 0.02 35.036
Freiburg 53723 0.03 35.283
Freiburg 53723 0.04 36.072
Freiburg 53723 0.05 36.253
Freiburg 53723 0.06 36.631
Freiburg 53723 0.07 37.018
Freiburg 53723 0.08 37.232
Freiburg 53723 0.09 37.368

Dataset Number of polygons Tolerance(m) Total run time(min)
RCD 127795 0.00 194.148
RCD 127795 0.01 196.729
RCD 127795 0.02 196.970
RCD 127795 0.03 197.022
RCD 127795 0.04 197.056
RCD 127795 0.05 197.583
RCD 127795 0.06 197.960
RCD 127795 0.07 198.275
RCD 127795 0.08 198.323
RCD 127795 0.09 198.875

Table 5.2: Run time of selected datasets regarding different tolerance values.
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Figure 5.11: Running time of selected datasets with different tolerances.

Figure 5.12 illustrates the influence of tolerance on the overall runtime of the tested datasets.
Typically, as the tolerance value increases, the runtime also tends to increase. This can be
attributed to the fact that larger tolerance values usually introduce a greater number of SR
cases, thus consuming more time. Furthermore, it is important to mention that there is no
explicit pattern between the run time and the tolerance values, it is neither linear nor regular.
It is also worth noting that the run time is not equal to 0 even if the tolerance is set to 0.00.
This is because other procedures (such as reading the input, tagging, output) would also
require a certain amount of time.

As outlined in the methodology, the SR process primarily consists of two key steps: tagging
the entire triangulation and snapping polygonal elements, including vertices and bound-
aries. To better evaluate the efficiency and gain a better understanding of the proposed
approach, run time measurements are conducted and categorized accordingly. Throughout
the experiments, a discovery has been found that tagging process would consume the ma-
jority of the total run time hence the resulting figure is made according to the time used
for tagging and the total run time (allowing for more straightforward observation). The
statistical findings are presented in Figure 5.13. Figure 5.13a demonstrates the time allo-
cation for tagging (represented in red) and the overall runtime (depicted in blue) for each
dataset. Figure 5.13b shows the ratio of time consumed by tagging in relation to the total
runtime. These results indicate that the tagging stage typically accounts for a minimum
of 80% or more of the total run time. The average tagging ratio of the selected datasets,
occupies approximately 89.9% of the total time. Consequently, it can be concluded that that
the tagging stage is the most time-consuming aspect regarding the SR process. This obser-
vation primarily stems from the utilization of the BFS algorithm on all input polygons. BFS
itself is an complex operation, and its extensive use in the tagging process renders it more
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Figure 5.12: Run time regarding different tolerance values.
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Figure 5.13: Tagging time and total run time. (a) Tagging time and total runtime regarding
the selected datasets (tolerance = 0.01m). (b) Tagging time ratio (tagging time / total run
time) regarding the selected datasets (tolerance = 0.01m).

computationally expensive.

To quantitatively assess the distortions introduced by SR in the datasets, area difference
was measured using different tolerance values. The results of these tests are presented
Figure 5.14 and Figure 5.15. The first figure shows the measured area differences of five
testing datasets. It can be observed that, for a given tolerance, the area difference gener-
ally correlates with the size of the datasets, as demonstrated in Figure 5.11. For instance,
when a tolerance of 0.09m is used, the dataset with the fewest polygons (DHC) exhibits
an area difference of approximately 0.1%, while the largest dataset (RCD) shows an area
difference of nearly 3.0%. As previously mentioned, larger area differences correspond to
more significant distortions. Among the five datasets, the one with the largest number of
polygons normally contains a greater number of SR cases within a certain tolerance. SR pro-
cess involves necessary modifications of the original shape of polygons to eliminate small
gaps, hence distortions are inevitably introduced. A special case is when the tolerance is set
to zero, resulting in no modifications being made to the polygons from the input dataset,
thus yielding an area difference of zero as well. However, as soon as modifications are
introduced, the area difference begins to increase rapidly, as depicted in Figure 5.15, from
tolerance 0.00 to tolerance 0.01. Regarding the trend of increase, it varies among the different
datasets. In the case of Delft, Freiburg, and RCD datasets, the area difference exhibits a rela-
tively slow increasing as the tolerance value increases. This suggests that even with a larger
number of cases processed, the distortions of the polygons are relatively small. Conversely,
the trend observed in the DHC and Faroes datasets (refer to Figure 5.15a and Figure 5.15b)
demonstrates a steeper increase, indicating that as the tolerance value increases, the degree
of distortions becomes more significant.

In order to determine the scalability of the prototype across different sizes of datasets, var-
ious tests have been conducted based on the selected datasets. Primarily, the number of
polygons has been manually adjusted within a range of 10 to more than 100, 000. Fur-
thermore, additional statistics were documented as well, including the number of vertices,
segments and faces within the triangulation. The testing results are shown in Table 5.3.
The statistics clearly demonstrate a direct correlation between the number of polygons (or
elements) and the runtime, as the runtime consistently increases with a higher number of
polygons (or elements). These statistics serve as the basis for generating informative line
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Figure 5.14: Area difference of selected datasets with different tolerances.

charts that effectively illustrate the trends in runtime over the datasets. It is important to
understand that the number of polygons may not be the primary factor that significantly
affects the runtime. Polygons usually have different types of shapes, which can result in
different numbers of elements (vertices and segments). For instance, observed in the DHC
and Faroes datasets in Table 5.3, even when the polygon counts are the same, the number of
vertices and line segments can differ due to differences in polygon shapes.

Figure 5.16 depicts the relationship between the total runtime and the dataset sizes (repre-
sented by the number of polygons). The five figures in the graph collectively demonstrate a
consistent trend: as the number of polygons increases, the runtime also increases. Moreover,
these figures also illustrate the scalability of the developed prototype, showing it is capable
of handling datasets of varying sizes.

The number of polygons serves as a rough indication of the size of datasets. However, in the
common practice, considering the specific shapes (of polygons), it provides only a general
overview. In the methodology, it has been mentioned that all the input polygons need to be
embedded into a triangulation first and in the tagging stage all the faces in the triangulation
are traversed to tag the triangulation. Therefore, using the number of faces may be a more
appropriate way to represent the actual size and complexity level of the datasets. This choice
is also motivated by previous findings, which revealed that the tagging stage dominates the
time required for the SR operation (as shown in Figure 5.13). Given the fact that the shape
of all the faces are guaranteed to be triangles, the number of faces provides a more accurate
measure of the dataset’s scale. Two examples are presented to illustrate the differences in
the number of faces despite having the same number of polygons.

To have a clear understanding of the differences among the selected datasets having the
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(c) Delft (38376 polygons)
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Figure 5.15: Area difference regarding different tolerance values.

65



5 Results and Analysis

Num of polygons (DHC) Num of vertices Num of segments Num of faces Runtime (min)
10 383 1125 743 0.00168242
100 1715 5118 3404 0.00380131
500 6545 19603 13059 0.00956036
1000 8491 25441 16951 0.0147298
5000 29981 89911 59931 0.176387
10000 57252 171718 114467 0.666789
19878 (total) 115589 346735 231147 3.25784

Num of polygons (Faroes) Num of vertices Num of segments Num of faces Runtime (min)
10 79 224 146 0.00257392
100 744 2214 1471 0.00498292
500 3677 11012 7336 0.018107
1000 7425 22252 14828 0.0376588
5000 30913 92721 61809 0.268987
10000 58106 174301 116196 0.724415
20000 115388 346146 230759 2.45576
30926 (total) 174557 523642 349086 7.24895

Num of polygons (Delft) Num of vertices Num of segments Num of faces Runtime (min)
10 148 432 285 0.00254325
100 2872 8600 5729 0.0066124
500 11852 35525 23674 0.0382818
1000 18810 56396 37587 0.0857326
5000 33377 100092 66716 0.342467
10000 69117 207312 138196 1.13968
20000 122748 368210 245463 3.91653
30000 173797 521356 347560 10.9141
38376 (total) 210917 632723 421807 18.0034

Num of polygons (Freiburg) Num of vertices Num of segments Num of faces Runtime (min)
10 391 1154 764 0.00361835
100 1854 5539 3686 0.00564597
500 6008 18009 12002 0.0220264
1000 10131 30376 20246 0.0453322
5000 39743 119203 79461 0.354143
10000 78735 236176 157442 1.18357
20000 148623 445838 297216 4.89471
30000 201209 603598 402390 11.7602
40000 243381 730114 486734 19.7922
53723 (total) 300126 900347 600222 35.5441

Num of polygons (RCD) Num of vertices Num of segments Num of faces Runtime (min)
10 337 987 651 0.00259865
100 1653 4936 3284 0.00538976
500 10019 30031 20013 0.0324458
1000 16146 48412 32267 0.0726439
5000 39212 117610 78399 0.423932
10000 75164 225464 150301 1.38921
50000 246332 738964 492633 25.2106
100000 482126 1446343 964218 123.575
127795 (total) 616293 1848840 1232548 204.754

Table 5.3: Run time of different sizes of selected datasets with tolerance 0.01m
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Figure 5.16: Run time regarding different sizes of datasets (tolerance = 0.01m).
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Figure 5.17: Datasets having the same number of polygons. (a) The number of faces in the
embedded triangulation regarding different datasets. (b) The total run time regarding
different datasets.

same number of polygons, the number of polygons is set to 5000. It is worth mentioning
that if the number is too small, the differences may be insignificant, and if it is too large (e.g.
100, 000), not every dataset would contain such a large number of polygons. As depicted
in Figure 5.17a, all datasets consist of 5000 polygons, yet the number of faces in the tri-
angulation varies significantly, ranging from approximately 60, 000 to nearly 80, 000, which
revels substantial differences among the different datasets. This indicates that datasets with
a higher number of faces tend to possess more vertices and line segments, implying that
the polygons have more complex (and possibly irregular) shapes. Figure 5.17b illustrates
the run time for selected datasets (each dataset contains 5000 polygons). It appears that the
run time increases as the number of faces increases for the DHC, Faroes, Delft, and Freiburg
datasets. However, despite having fewer faces than the Freiburg dataset, the RCD dataset
shows a significant increase in run time. This can be attributed to the fact that the run time
is not solely determined by the dataset size (as indicated by the number of faces in this case).
The total number of SR cases within a specific tolerance also impacts the run time. Although
the snapping process only consumes a small portion of the overall runtime (approximately
20% as the tagging stage consumes more than 80% based on previous testing results), if the
number of SR cases is substantial, it will also inevitably consume a certain amount of time.
Hence, although the number of faces in RCD dataset is less than that in the Freiburg dataset,
the run time still increases.

In addition to the number of polygons and faces in the triangulation, the number of ver-
tices and segments can also serve as indicators to gain an understanding of the scale and
complexity level of the dataset. However, it is important to note that relying on the number
of vertices or line segments may provide an incomplete measurement. It is also challeng-
ing to create a meaningful index by combining these two factors reasonably. On the other
hand, although the number of polygons may not be the most precise metric, it remains the
most apparent and straightforward indicator for users, especially when there are significant
differences in numbers (e.g. 100 and 10, 000).
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6.1 Conclusion

This thesis firstly reviewed the main existing snap rounding algorithms related to a set of
line segments and studied the use cases of applying a constrained triangulation to fix ge-
ometries. Subsequently a novel method aiming at rounding 2-dimensional polygons was
proposed, implemented and tested. The developed approach, snap rounding on polygons,
processes input polygon arrangement in a fully automatic manner thus requires no human
interference.

The proposed method commences with embedding the input polygons into a constrained
Delaunay triangulation. Afterwards the triangulation is tagged and a list of constraints is
established to represent the boundaries of polygons. The snap rounding process is divided
into two main categories: snap rounding polygonal vertices and snap rounding polygonal vertex
and boundaries. These two cases are gradually handled from the minimum case, which has the
smallest distance between elements (including vertices and line segments) under the certain
tolerance. During the modification procedure the list of constraints and the triangulation
are updated dynamically to keep track of the information of polygons. In other words, the
boundaries of polygons are maintained in an adaptive manner hence all polygons can be
reconstructed and output at any step. Last but not least, the polygonizer of GEOS library is
utilized to reconstruct polygons from the list of constraints. In the rounded arrangement,
both the distance between vertices and the distance between vertex and boundaries are
guaranteed to be greater than a certain value (i.e. the predefined tolerance). Therefore a set
of more robust and cleaner geometric objects can be expected in the final result.

Up to this point, the primary research questions can be answered as follows:

• How to integrate a CT with the input polygons (possibly with interior holes)?
Input polygons can be embedded into a triangulation (i.e. a CT) to realise the inte-
gration. Since the boundaries of polygons should not be unintentionally changed(that
being said, boundaries of polygons should not be modified by the CGAL triangulation
package and should be only modified and updated manually), the boundaries repre-
senting the polygon shapes must be guaranteed not to change automatically. Therefore
they are embedded as constrained edges in a CT. In the implementation, a CDT is ac-
tually used for the purpose of making the triangulation as good-shaped as possible to
avoid possible skinny triangle shapes while performing the SR process. As mentioned
earlier, in a CDT constrained edges will not change even if their presence make the
triangulation not satisfy the Delauny criteria. This trade-off is necessary to uphold
the integrity of the polygon shapes while maintaining a well-shaped triangulation.
Another benefit is that embedding polygons via their boundaries can handle intricate
shapes, such as a polygon with multiple interior holes, and possible invalidities, such
as a polygon with self-intersections. There will be no issues when inserting the bound-
aries as constrained edges hence this approach is robust for various input.
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• Is it better to have a certain type of a CT such as a CDT or is any type of a CT fine?
Principally any kind of a CT would suffice. However a CDT is preferred as it is capable
to automatically handle the possibly irregular shapes that may arise during the SR
process and avoid the skinny triangles as much as possible. It is important to know that
SR would alter the triangulation by modifying the constrained edges. This procedure
may generate undesirable triangles, including the aforementioned skinny shapes. The
algorithm needs to check whether a skinny triangle is a liver triangle (recall that a
sliver triangle means a vertex is possibly very close to a boundary and such case may
necessitate the application of the SR process. Therefore, minimizing the occurrence
of unintended triangles (such as skinny triangles) would be helpful to enhance the
efficiency of the prototype.

• How to link the triangulation with the original polygons? If the triangulation is
modified, how to update the changes to the polygons?
Use a separate container (e.g. a list) to store the boundaries of polygons ( along with the
related information). This allows for non-interfering and dynamic updates to both the
boundaries and the triangulation. More specifically, during the SR process, cases that
require SR operations are identified within the triangulation, then the polygonal bound-
aries in the list are modified accordingly. Afterwards the structure of the triangulation
is also updated to reflect these changes. By adopting this approach, modifications to
the polygons and the triangulation can be made dynamically and synchronously.

• Polygons usually have attributes attached (e.g. polygon id, area of a polygon), how
to preserve them in a proper way during the SR process?
For each polygon’s boundary, a constraint is constructed and stored in a list (as pre-
viously mentioned, a list is utilized to store the polygonal boundaries). Meanwhile, a
tag, typically the polygon’s ID, is attached to each constraint to indicate which polygon
it should belong to. This ensures that after modifying the boundaries and the trian-
gulation, it is still possible to determine which constraints represent which polygons.
The tag also serves as a key, allowing for querying of other relevant information. For
instance, assume in the input dataset each polygon has a code and a type. These infor-
mation are stored in a table based on the unique ID of each polygon. The modifications
are limited to the geometric aspects of the boundaries, specifically the coordinates of
the endpoints. The attached ID tags are preserved without any modifications. In the
reconstruction stage, the preserved ID information can be utilized to reconstruct the
polygons and retrieve associated attributes.

• Given a certain threshold, there may exist several SR cases (e.g. multiple polygonal
vertices and polygonal vertex and boundaries), what is the most reasonable order
when SR is being performed?
In scenarios involving multiple SR cases, the order in which the processing sequences
are implemented can have a significant impact on the final results and potentially lead
to cascading effects. To address this issue, the SR process is initiated with the case
that exhibits the smallest gap within a certain tolerance. In other words, the distance
between snapping elements, such as a vertex and a boundary or between two vertices,
is the smallest one in comparison to the gaps in all other SR cases. Such approach
helps to prevent cascading effects that may ar ise during SR. For instance, if SR starts
with a case that has a large distance, it can potentially result in the creation of newly
shaped constraints that intersect with existing ones, as illustrated in the Methodology
chapter. Therefore, based on the testing and analysis, commencing the SR process from
the case with the minimum gap is deemed as the optimal approach. This strategy
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minimizes the likelihood of creating unwanted cascading effects (such as intersections)
and ensures a more reliable outcome.

• How to measure and evaluate the distortions of the polygons before and after SR?
To gain a more comprehensive understanding of the potential distortions resulting
from SR, two approaches (symmetrical difference and area difference) are introduced
with the aim to provide valuable insights. Symmetrical difference in QGIS would al-
low for easy identification and visualization of the distortion areas and help to have
an better understanding of what has been changed before and after SR. To quantita-
tively measure the magnitude of distortions, area difference is introduced. This metric
provides an overall numerical assessment of the differences between the input dataset
and its rounded counterpart. It has been found that the area difference increases as
the tolerance value increases, which indicates that larger tolerances result in greater
distortions. This is rather reasonable because large tolerance values will lead to more
SR cases, hence result in more polygons that need to be modified. Consequently, the
higher the number of modified polygons, the more pronounced the distortions become.

The testing results imply that the small gaps between vertices or between vertex and bound-
aries are removed by the rounding operation. The implemented prototype is capable of
handling not only valid geometries but also invalid ones, such as overlapping area. The
originally topological and geometric characteristics are preserved as much as possible to
minimize the distortions caused by the snap rounding. It should however be noted that
the distortions are natural and can not be completely avoided regarding the rounding pro-
cess. Different evaluation methods has been proposed to measure the quality of the result,
including symmetrical difference and area difference. Generally speaking, the quality of
the result is deemed to be higher as the magnitude of distortion is smaller. The developed
prototype possesses the ability to work with datasets of different size, e.g. from 100 poly-
gons to 100, 000 polygons. Theoretically the prototype can also handle large dataset such
as more than 1, 000, 000 polygons. Notwithstanding, it should be warned that processing
large dataset would require more computational resources and would be computational-
intensive.

The developed prototype has also been tested multiple times to assess its reliability and
capability to handle datasets of varying scales. Aiming at this five different kinds of datasets
were selected for testing purposes. Based on the results, it was observed that the most time-
consuming process was the tagging of the triangulation. In fact, across all five datasets, the
tagging stage accounted for over 80% of the total run time. This could be optimized by two
different kinds of strategies. The first approach is to use a more efficient container to store all
tagged constraints and improve the efficiency of checking redundancies during the tagging
process (recall that when each constraint is being added, it has to be checked whether it
has already existed in the list to avoid duplicates). Optimizing this would significantly
improve the overall efficiency of the tagging stage. Another approach requires structural
changes of the overall work flow. Remind that the purpose of the tagging process is to obtain
a set of constraints (with polygon ID information attached) to represent the boundaries
of the polygons. This step can also be realised when loading the polygons from datasets
into memory. The boundaries of the polygons can be read and stored with the correct
ID information, which eliminates the need for utilizing the BFS algorithm and noticeably
reduces the overall runtime. However, adopting this process may limit the potential for
future expansion of the prototype. For instance, handling the overlap areas can be further
expanded based on the current tagging strategy. The overlap area can be identified by
assigning multiple tags to a face in the triangulation (recall that in the tagging stage each
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face is checked). Extracting the boundaries directly while reading the file would not allow
for handling the overlap areas and is not versatile enough. Therefore even if using BFS may
not be the fastest solution, it can allow for more possibilities in the future development.

6.2 Future work

Albeit the proposed method is implemented and has a certain degree of robustness, there
are still some areas that can be improved or expanded to achieve a wider application range
and higher efficiency. The following aspects are regarded as possibly prospective directions
for future work:

• Support for rounding polygons and line segments.
In current implementation, the output of SR is polygon. However, it is observed that
during the SR process some polygons may collapse into line segments or even points.
For instance, a very skinny polygon can become a simple line segment (retaining the
associated attributes) after SR process. Although such geometry collapse is permitted
within the process, the collapsed geometries are not yet written to the output file.
Future enhancements aim to support the representation of collapsing polygons as line
segments in the output file. Additionally, it is also desirable to extend the support for
snapping both polygons and line segments together. This is particularly relevant as
input datasets may consist not only of polygons but also include line segments, such
as datasets containing buildings, roads, and rivers. It can be possible that a building is
constructed next to a road or a river, meaning the road or the river should be touching
the building. There may also exhibit small gaps between roads (or rivers) and buildings
that require SR operation to remove the gaps.

• More flexible processing of overlapping areas.
In the tagging stage, faces can also be tagged. This would allow for adding more
support of handling overlapping area. For instance, if a face is tagged more than once,
then this face is known to be part of the overlapping area, based on which further
operations can be implemented.

• Improve efficiency by utilizing std::unordered set instead of std::list to store
the constraints.
In current implementation a std::list is utilized to store all the boundaries (con-
straints). Albeit std::list can provide relatively fast insertions and deletions, it is
not very efficient when one wants to find a certain element in the list. To be more
precise, std::list is internally realised via a linked list, hence it does not provide di-
rect random access to its elements (note that direct random access is usually provided
by array-like containers like std::vector). When finding a certain element, a linear
traversal of the list is necessary. The finding process iterates through each element in
the list from the beginning until the desired element is found or the end of the list is
reached. This will result in a time complexity of O(n), where n is the size of the list
(i.e. the number of the stored elements).

In C++, there exists a data structure std::unordered set which has the ability to
provide constant time complexity (average-case) for operations like searching, inser-
tion, and deletion. It is internally implemented using a hash table hence permits for
fast querying compared to std::list. The time complexity of finding elements in a
std::unordered set is typically O(1) on average. Note however, this is based on the
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fact that he hash function is well-distributed and there are no significant collisions. If
the number of collisions is high, the time complexity can become O(n).

It is important to note that naturally std::unordered set only supports for built-in
data types. Storing customized objects (e.g. constraints) would require constructing
customized hash functions.

• Improve efficiency by using additional data structures.
Each time a case is processed, the triangulation would automatically update. Although
the changes are ensured to be local by the CGAL triangulations package, new snap-
ping cases can be created due to the cascading effects and in the next loop a traversal
is still required to find the next minimum case. This issue may be solved by utilizing
data structure such as std::priority queue to store the snapping cases in accordance
with the distance.

• Improve robustness for large tolerance values.
SR usually works for appropriate tolerance values. However in practice, large toler-
ance value can be given and it may cause undefined behaviours of the prototype. The
mechanism of SR is designed for handling closely positioned vertices and boundaries.
If the tolerance values is too large, the geometry of polygons would collapse and cause
crashing of the prototype. During the experiments, the use of large tolerance values
results in the prototype entering an infinite loop and it then has to be shut down man-
ually. Therefore, enhancing the robustness of the prototype to handle large tolerance
values is an important area for future improvement.

• More automated process
The downloaded dataset can not be directly used in the prototype as the coordinates
are presented using longitude and latitude. It needs to be re-projected with a suit-
able CRS to convert the coordinates into XY form. This process can be integrated
into the prototype if the CRS can be known in advance. Additionally, integrating
auto-correction techniques can further enhance the prototype’s automation capabili-
ties, such as integrating prepair (a developed software of [Ledoux et al., 2012]) to re-
pair individual polygons before the application of SR. These measures can contribute
to improving the automated level of the prototype. Another aspect that can be further
improved is the selection of an appropriate tolerance value. The proper value of toler-
ance often varies and relies on the characteristics of the specific dataset. One potential
approach is to conduct a preliminary analysis of the input dataset, such as examining
adjacency relationships and computing distances between elements. Such analysis can
provide a foundational understanding of the dataset and may offer suggestions for
selecting an appropriate tolerance value. This needs to be further studied.

• Compare with ISR on polygons
Traditional SR is typically based on a regular grid. It has the advantage of being
simple to understand and implement. However it theoretically requires more space
and time resources. The intention of developing an approach with a triangulation as a
supporting data structure is to optimize the efficiency of traditional SR and offer more
possibility and flexibility. The triangulation-based approach should be more efficient as
only necessary elements are stored (some cells in the grid of traditional SR do not store
any elements hence the grid is not fully utilized and there will be waste). However in
order to preserve the attributes of polygons and retain the potential of handling overlap
areas, additional time is required due to the utilization of BFS algorithm. Moreover,
ISR can be adjusted to be applied on polygons by using the boundaries of polygons
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as input line segments. Due to the limitation of time and computing resources, the
comparison between the two has not been conducted. However, such a comparison
would be highly beneficial and straightforward, allowing for a clearer understanding
of the differences between the two approaches and providing valuable insights into
the performance of the developed prototype.

Last but not least, if the input is assumed to be valid, the efficiency can be improved even
more by altering the tagging stage. The constraints can be obtained in the reading process,
i.e. when the input polygons are being read by GDAL. Such manner will reduce the run
time to a large extent, however it can not handle the invalidities like self-intersections and
overlaps.
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