
Improving time
efficiency by par-
allelising the LU
decomposition

A.R.T.Y. Bartelink

Improving time
efficiency by

parallelising the
LU

decomposition
by

A.R.T.Y. Bartelink

to obtain the degree of Bachelor of Science
at the Delft University of Technology,

Student number: 5634040
Project duration: April 22, 2025 – July 9, 2025
Thesis committee: Prof. M. B. van Gijzen, TU Delft, supervisor

Dr. H. N. Kekkonen, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Cover image: (Students, 2022)

http://repository.tudelft.nl/

Laymen’s Summary

Krylov subspace methods are methods to find solutions to high-dimensional linear systems
efficiently. One of those methods is the Induced Dimension Reduction method, a method that
has been implemented in a parallel Fortran package. To ensure the efficiency of this package,
it is important that low-level computations go fast, like creating the LU decomposition. In this
paper, a parallel algorithm for the LU decomposition is developed and improved. Later, the
algorithm is extended to work efficiently for matrices with a special structure, band matrices.
From this, it follows that the algorithms created do show an increase in efficiency and a de-
crease in computational time. Furthermore, initial testing after integration in the IDR package
also shows an improvement in computational time.

iii

Summary

Shifted Krylov subspace methods are methods to efficiently find solutions to high-dimensional
linear systems of the form (𝐴 − 𝜎𝐼)x = b by iteratively computing the Krylov subspace:

𝒦𝑚(𝐴 − 𝜎𝐼,b) = span{b, (𝐴 − 𝜎𝐼)b, (𝐴 − 𝜎𝐼)2b, … , (𝐴 − 𝜎𝐼)𝑚−1b}. (1)

One method that uses Krylov subspaces is the Induced Dimension Reduction (IDR) method,
a method that only stores parts of the Krylov subspaces, thereby decreasing the memory
needed by the algorithm. To enhance the efficiency of the implementation of the parallel IDR(s)
method, low-level operations such as using the LU decomposition for the preconditioning can
be improved.

In this paper, a sequential algorithm for the LU decomposition is first implemented to find a
basis for the parallel algorithm. Then, using a block-wise distribution of the matrix, the sequen-
tial algorithm is updated to a parallel algorithm and improved for greater efficiency by reducing
sending operations. The next step was to update the algorithm to also work efficiently on
banded matrices. This was first done by changing the original algorithm to also keep in mind
the bandwidth of the matrix. Later, the matrix structure was changed to only store the diago-
nals inside the band. The LU decomposition algorithm was changed accordingly so that the
right indices were used for the updates during the algorithm.

From a set of tests, it follows that creating a parallel implementation of the LU decom-
position does improve the efficiency and computational time of the algorithm. The improved
algorithm is the fastest algorithm for dense matrices. For banded matrices, the full matrix algo-
rithm is better suited if the speed of the computation has to be high and the bandwidth is large.
If the memory is more of a concern or the bandwidth is small, the memory-efficient algorithm
is the better choice. On top of that, early implementations in the IDR (s) Fortran package also
show a decrease in computational time. So, all in all, while a sequential algorithm might be
easier to create, the parallel algorithms do speed up the process.

v

Contents

1 Introduction 1

2 Implementing the LU decomposition 5
2.1 The LU decomposition . 5

2.1.1 Pivoting in the LU decomposition. 6
2.2 Two algorithms to create the LU decomposition 6

2.2.1 The sequential algorithm. 6
2.2.2 The memory-efficient sequential algorithm 8
2.2.3 Comparison of the two algorithms . 10

2.3 Backward and Forward substitution. 11

3 Parallelising the LU decomposition 13
3.1 Fortran Coarray . 13
3.2 Distributing the matrix over images . 13

3.2.1 The distribution used in the algorithm . 15
3.3 Basic parallel algorithm . 16
3.4 Improving the algorithm. 17
3.5 Parallel forward and backward substitution . 20

4 Creating the LU decomposition for banded matrices 23
4.1 Differences between banded matrices and dense matrices. 23
4.2 The maximal_bandwidth function . 24
4.3 Updating the algorithm for full matrices with bands. 25
4.4 Memory-efficient band matrices . 27

4.4.1 Storing the band matrix . 27
4.4.2 Memory-efficient algorithm . 28
4.4.3 Forward and backward substitution . 28

5 Results 31
5.1 Amdahl’s law . 31
5.2 Performance of the basic parallel algorithm . 32
5.3 Performance of the efficient parallel algorithm . 33
5.4 Performance of the parallel algorithm for banded matrices 33
5.5 Performance of the memory-efficient algorithm for banded matrices 34

6 Conclusion 37

7 Discussion 39

vii

1
Introduction

Krylov subspace methods are widely known as one of the most significant classes of nu-
merical algorithms in scientific computing. Their ability to efficiently approximate solutions to
high-dimensional linear systems has made them an essential tool in various fields such as
computational physics, engineering, and applied mathematics (Dongarra and Sullivan, 2000).
As computational problems continue to grow in size and complexity, the need for robust and
high-performing iterative solvers becomes increasingly important.

Given a linear system of the form
𝐴x = b

where 𝐴 ∈ ℂ𝑛×𝑛, x ∈ ℂ𝑛 and b ∈ ℂ𝑛, Krylov subspace methods generate a series of approx-
imations to the solution x by iteratively constructing a Krylov subspace of order 𝑚, defined
as

𝒦𝑚(𝐴,b) = span{b, 𝐴b, 𝐴2b, ..., 𝐴𝑚−1b} (1.1)

These subspaces form a nested sequence where

𝒦𝑚 ⊆ 𝒦𝑚+1 ⊆ ⋯ ⊆ 𝒦𝑀 (1.2)

which serves as the foundation for a variety of iterative solvers (Gutknecht, 2007).

Krylov subspaces can be adapted to solve a larger set of problems, like shifted Krylov
problems. In many applications, the linear systems involve a shift in the matrix 𝐴. The resulting
system is typically of the form

(𝐴 − 𝜎𝐼)x = b (1.3)

where 𝜎 is a scalar shift and 𝐼 is the identity matrix. This transformation leads to a shifted
Krylov subspace, where the subspaces are created by

𝒦𝑚(𝐴 − 𝜎𝐼,b) = span{b, (𝐴 − 𝜎𝐼)b, (𝐴 − 𝜎𝐼)2b, … , (𝐴 − 𝜎𝐼)𝑚−1b}. (1.4)

The most prominent Krylov subspace methods are the Conjugate Gradient (CG) method
and the Generalized Minimal Residual (GMRES) method. The CG method is especially effec-
tive for solving symmetric positive definite systems, where it minimises the quadratic function

1
2x

𝑇𝐴x− b𝑇x (1.5)

1

2 1. Introduction

(Shewchuk, 1994). GMRES, on the other hand, applies to all non-singular matrices. It creates
an orthonormal basis of the Krylov subspace using the Arnoldi process and solves a least-
squares problem at every iteration. While GMRES is highly stable and flexible, it requires
a lot of memory to store all previous Krylov vectors (Saad and Schultz, 1986). Additionally,
although the number of iterations for GMRES and CG is approximately the same, the time
required per iteration for GMRES is longer, making it a slower method.

To address the performance issue of GMRES and the limited applicability of CG, other
Krylov solvers have been implemented in high-performance computing environments. One
method is the Induced Dimension Reduction (IDR) method. Instead of storing all Krylov vec-
tors, IDR creates subspaces that decrease in dimension with each iteration, thereby increasing
memory efficiency. The basic IDR(1) uses a one-dimensional subspace, and IDR(s) gener-
alises this to an 𝑠-dimensional space. On top of that, IDR does not require full orthogonalisa-
tion, making it computationally cheaper for large matrices (Gutknecht, 2011).

A recent Fortran package implements several IDR algorithms designed for parallel execu-
tion (van Gijzen and Collignon, 2011). Particularly for solving sequences of shifted systems
(Baumann and van Gijzen, 2015), (van Gijzen et al., 2014). Enhancing the performance of
this package, especially for high-dimensional problems, often requires improvements to low-
level operations. In particular, an efficient parallel implementation of the LU decomposition
can greatly improve the efficiency of the preconditioning for sequences of problems.

Research Question:
How can we design an efficient parallel LU decomposition for integration into the IDR
Fortran package?

Objectives
1. Development of a Sequential LU Decomposition Algorithm: Research reliable and

efficient sequential LU Decomposition algorithms. This algorithm will be the baseline for
the parallel algorithm. The focus will be on minimising memory usage and reducing the
overall computational time.

2. Parallelisation of the LU Decomposition Algorithm: Develop a parallel algorithm us-
ing the sequential algorithm. Decide on the software used for the parallelisation and
compare different matrix distributions. Then optimise the algorithm by targeted broad-
casting.

3. LU Decomposition for Banded Matrices: Improve the parallel algorithm to work more
efficiently with banded matrices and optimise its memory efficiency for matrices of that
form.

4. Testing the algorithms: Use a series of tests to gain insight into the parallel efficiency
of the various algorithms for the LU decomposition using Amdahl’s law.

:D
This paper is structured across several chapters, each focusing on different aspects. Firstly,
Chapter 2 focuses on a sequential algorithm for the LU decomposition, which will be the basis
for the parallel algorithm. The introduction of the matrix distribution scheme and the parallel
algorithms for dense matrices is done in Chapter 3. In Chapter 4, the parallel algorithms
are extended to work efficiently on banded matrices. First, updating sending operations and

3

later changing to a different storage scheme for banded matrices. Chapter 5 analyses the
performance of the algorithms using Amdahl’s law. The paper concludes in Chapter 6, the
conclusion, and Chapter 7, the discussion.

2
Implementing the LU decomposition

To accelerate the convergence of the IDR(s) algorithm, it is common to solve the equivalent
preconditioned system

𝐴𝑃−1y = b, x = 𝑃−1y (2.1)

where 𝑃is the preconditioner. The role of the preconditioner is to improve the system in order
to achieve faster convergence. When solving sequences of shifted systems, a frequently used
preconditioner is given by:

𝑃 = 𝐴 − 𝜎𝐼 (2.2)

where 𝜎 is the shift parameter.

While direct methods such as Gauss-Jordan elimination can be used to invert or factor
such a matrix 𝑃, these approaches are generally too computationally expensive for high-
dimensional problems. Fortunately, in many practical applications, the matrix 𝐴 remains fixed
while only the right-hand side vector 𝑏 changes. In such cases, it is advantageous to decom-
pose the matrix 𝐴 into a unit lower triangular matrix 𝐿 and an upper triangular matrix 𝑈, also
known as the LU decomposition. This factorisation allows for fast and repeated solutions of
the system using forward and backward substitution.

This chapter introduces the concept of the LU decomposition and explores two algorithms
for constructing it. It also outlines an efficient implementation of the forward and backward
substitution to solve the resulting system. This will provide a basis for the development of the
later parallel algorithms. :D

2.1. The LU decomposition
An LU decomposition of a matrix 𝐴 represents the matrix as the product of a unit lower trian-
gular matrix 𝐿 and an upper triangular matrix 𝑈.

𝐴 = 𝐿𝑈 (2.3)

The matrices 𝐿 and 𝑈 have the following forms:

𝐿 =
⎡
⎢
⎢
⎣

1 0 ⋯ 0
𝑙2,1 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0
𝑙𝑛,1 ⋯ 𝑙𝑛,𝑛−1 1

⎤
⎥
⎥
⎦

, 𝑈 =
⎡
⎢
⎢
⎣

𝑢1,1 ⋯ ⋯ 𝑢1,𝑛
0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋮
0 ⋯ 0 𝑢𝑛,𝑛

⎤
⎥
⎥
⎦

(2.4)

5

6 2. Implementing the LU decomposition

extra line
The entries of the LU decomposition can be determined using the Gauss-Jordan elimination
method. This process starts with the matrix 𝐴 and an identity matrix 𝐼 of the same dimensions.
By applying row reduction to 𝐴, we obtain the upper triangular matrix 𝑈. To create the lower
triangular matrix 𝐿, the same sequence of row operations is performed on the matrix 𝐼 (Fried-
berg et al., 2014).

Once the LU decomposition is found, solving the linear system 𝐴x = b becomes a lot
easier for the computer:

𝐴x = b
𝐿𝑈x = b
x = 𝑈−1(𝐿−1b)

(2.5)

Here 𝐿−1b = y is solved using forward substitution, and𝑈−1y = x is solved using backward
substitution.

2.1.1. Pivoting in the LU decomposition
The LU decomposition can also be written in the form

𝑃𝐴 = 𝐿𝐷𝑈 (2.6)

where 𝐴 is the original matrix, 𝐿 is a unit lower triangular matrix, 𝑈 is an unit upper triangular
matrix and 𝐷 the diagonal matrix. The permutation matrix 𝑃 represents the row swaps applied
to 𝐴 during the LU decomposition, also known as pivoting.

Pivoting is an important step when the pivot element, the value used to eliminate the en-
tries below the diagonal, is zero or close to zero. If the value is zero or close to zero, it can
lead to division errors or rounding errors. To avoid this, rows are swapped so that the largest
available element (in absolute value) in the current column below the diagonal becomes the
pivot. These row swaps can be found in the matrix 𝑃

Although pivoting improves numerical stability and accuracy, it comes with additional com-
putational time. In this paper, the LU decomposition is used for preconditioning rather than
solving the system directly. So, numerical accuracy is less important than computational effi-
ciency. For that reason, pivoting is not implemented in any of the algorithms presented in this
paper.

:D

2.2. Two algorithms to create the LU decomposition
As discussed in Section 2.1, an LU decomposition involves factoring amatrix 𝐴 into the product
of a unit lower triangular matrix 𝐿 and an upper triangular matrix 𝑈. While one method for
computing this decomposition has already been introduced, several alternative approaches
exist. This section presents two sequential algorithms for computing the LU decomposition.
The derivations and corresponding algorithms are based on the work of Rob Bisseling (2010)
in Parallel Scientific Computations: A Structured Approach Using BSP. Bisseling, 2020

2.2.1. The sequential algorithm
The derivation of the algorithm begins by expanding the equation (2.3) as follows:

2.2. Two algorithms to create the LU decomposition 7

𝑎𝑖𝑗 =
𝑛

∑
𝑟=1

𝑙𝑖𝑟𝑢𝑟𝑗 (2.7)

This derivation uses Fortran-style indexing, so indices start at 1. Given that 𝑙𝑖𝑟 = 0 for
𝑖 < 𝑟 and 𝑢𝑟𝑗 = 0 for 𝑟 > 𝑗, the sum simplifies to:

𝑛

∑
𝑟=1

𝑙𝑖𝑟𝑢𝑟𝑗 =
min(𝑖,𝑗)

∑
𝑟=1

𝑙𝑖𝑟𝑢𝑟𝑗 (2.8)

In the case where 𝑖 ≤ 𝑗 and using that 𝑙𝑖𝑖 = 1, it follows that

𝑎𝑖𝑗 =
min(𝑖,𝑗)

∑
𝑟=1

𝑙𝑖𝑟𝑢𝑟𝑗 =
𝑖

∑
𝑟=1

𝑙𝑖𝑟𝑢𝑟𝑗

= 𝑙𝑖1𝑢1𝑗 + 𝑙𝑖2𝑢2𝑗 +⋯+ 𝑙𝑖,𝑖−1𝑢𝑖−1,𝑗 + 𝑙𝑖𝑖𝑢𝑖𝑗
= 𝑙𝑖1𝑢1𝑗 + 𝑙𝑖2𝑢2𝑗 +⋯+ 𝑙𝑖,𝑖−1𝑢𝑖−1,𝑗 + 𝑢𝑖𝑗

=
𝑖−1

∑
𝑟=1

𝑙𝑖𝑟𝑢𝑟𝑗 + 𝑢𝑖𝑗

(2.9)

Rearranging the terms gives an expression for the entries of the upper triangular matrix
𝑈.:

𝑢𝑖𝑗 = 𝑎𝑖𝑗 −
𝑖−1

∑
𝑟=1

𝑙𝑖𝑟𝑢𝑟𝑗 (2.10)

Similarly, from the case that 𝑗 ≤ 𝑖 follows that

𝑙𝑖𝑗 =
1
𝑢𝑗𝑗

(𝑎𝑖𝑗 −
𝑗−1

∑
𝑟=1

𝑙𝑖𝑟𝑢𝑟𝑗) (2.11)

Defining the matrix 𝐴𝑘 with 0 ≤ 𝑘 ≤ 𝑛 as

𝑎𝑘𝑖𝑗 = 𝑎𝑖𝑗 −
𝑘−1

∑
𝑟=1

𝑙𝑖𝑟𝑢𝑟𝑗

= 𝑎𝑘−1𝑖𝑗 − 𝑙𝑖,𝑘−1 ⋅ 𝑢𝑘−1,𝑗

(2.12)

It follows that 𝐴0 = 𝐴 and 𝐴𝑛 = 0. Based on this definition, the updates for 𝐿 and 𝑈 at each
step are given by

𝑢𝑖𝑗 = 𝑎𝑘𝑖𝑗 , for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛

𝑙𝑖𝑗 =
𝑎𝑗𝑖𝑗
𝑢𝑗𝑗
, for 1 ≤ 𝑗 < 𝑖 ≤ 𝑛

(2.13)

Using the equations (2.12) and (2.13), Algorithm 2.1 can be created. This algorithm takes
the square matrix 𝐴 as input and has as output the unit lower triangular matrix 𝐿 and upper
triangular matrix 𝑈, such that 𝐴 = 𝐿𝑈.
:D

8 2. Implementing the LU decomposition

Algorithm 2.1: Sequential LU decomposition

𝑖𝑛𝑝𝑢𝑡 ∶ 𝐴 ∶ 𝑛 × 𝑛 matrix
𝑜𝑢𝑡𝑝𝑢𝑡 ∶ 𝐿 ∶ 𝑛 × 𝑛 lower triangular matrix with ones on the main diagonal

𝑈 ∶ 𝑛 × 𝑛 upper triangular matrix
:D
𝐴0 ∶= 𝐴
for k := 1 to n do

for j := k to n do
𝑢𝑘𝑗 = 𝑎𝑘𝑘𝑗

end
for i := k+1 to n do

𝑙𝑖𝑘 = 𝑎𝑘𝑖𝑘/𝑢𝑘𝑘
end
for i = k+1 to n do

for j = k+1 to n do
𝑎𝑘+1𝑖𝑗 = 𝑎𝑘𝑖𝑗 − 𝑙𝑖𝑘 ⋅ 𝑢𝑘𝑗

end
end

end

2.2.2. The memory-efficient sequential algorithm

Algorithm 2.1, as described in the previous section, constructs the LU decomposition by gen-
erating two new 𝑛 × 𝑛 matrices, one for 𝐿 and one for 𝑈. Together with the original matrix 𝐴,
this algorithm needs to store three 𝑛 × 𝑛 matrices. While this is fine for small values of 𝑛, it
quickly becomes impractical when the dimensions become higher.

A more memory-efficient approach is to store the matrices 𝐿 and 𝑈 within a single matrix.
This is possible because 𝐿 is a lower triangular matrix with ones on the main diagonal, and 𝑈
is an upper triangular matrix. Since the diagonal elements of 𝐿 are known to be ones, they do
not need to be stored explicitly. Therefore, the lower diagonal part of the matrix can store the
entries of the matrix 𝐿, and the upper diagonal part, including the main diagonal, can store the
entries of the matrix 𝑈.

Moreover, all the information needed for step 𝑘 can be stored in the same matrix as well.
Figure 2.1 provides an example of this combined storage structure during step 𝑘 = 3 of the
decomposition. As shown, the computed entries of 𝐿 and 𝑈 are written in place, and the
remaining part of the matrix holds the values needed to complete the decomposition. This
approach, referred to as the in-place LU decomposition, only requires storage for one 𝑛 × 𝑛
matrix, making it significantly more memory-efficient.

To implement this in-place approach, the update equations (2.12) and (2.13) have to be
changed. These become:

2.2. Two algorithms to create the LU decomposition 9

Figure 2.1: The LU decomposition of a 8 × 8 matrix at step 𝑘 = 3. It shows the entries of 𝐿 and 𝑈 that have been
computed (Bisseling, 2020)

𝑢𝑖𝑗 = 𝑎𝑘𝑖𝑗 ⟹ 𝑎𝑖𝑗 = 𝑎𝑖𝑗 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛

𝑙𝑖𝑗 =
𝑎𝑗𝑖𝑗
𝑢𝑗𝑗

⟹ 𝑎𝑖𝑗 =
𝑎𝑖𝑗
𝑎𝑗𝑗

for 1 ≤ 𝑗 < 𝑖 ≤ 𝑛

𝑎𝑘𝑖𝑗 = 𝑎𝑘−1𝑖𝑗 − 𝑙𝑖,𝑘−1 ⋅ 𝑢𝑘−1,𝑗 ⟹ 𝑎𝑖𝑗 = 𝑎𝑖𝑗 − 𝑎𝑖𝑘 ⋅ 𝑎𝑘𝑗

(2.14)

These modified equations ensure the algorithm performs all computations directly in the
original matrix and therefore minimising the memory needed. Based on these equations, the
memory-efficient algorithm, Algorithm 2.2, can be implemented.

Algorithm 2.2: Memory-efficient sequential LU decomposition

𝑖𝑛𝑝𝑢𝑡 ∶ 𝐴 ∶ 𝑛 × 𝑛 matrix
𝑜𝑢𝑡𝑝𝑢𝑡 ∶ 𝐴 ∶ 𝑛 × 𝑛 matrix, 𝐴 = 𝐿 − 𝐼𝑛 + 𝑈 with

𝐿 ∶ 𝑛 × 𝑛 lower triangular matrix
𝑈 ∶ 𝑛 × 𝑛 upper triangular matrix

:D
for k := 1 to n do

for i := k+1 to n do
𝑎𝑖𝑘 = 𝑎𝑖𝑘/𝑎𝑘𝑘

end
for i := k+1 to n do

for j := k+1 to n do
𝑎𝑖𝑗 = 𝑎𝑖𝑗 − 𝑎𝑖𝑘 ⋅ 𝑎𝑘𝑗

end
end

end

10 2. Implementing the LU decomposition

Matrix size 𝑛 Average computation time Average computation time
Algorithm 2.1 (s) Algorithm 2.2 (s)

10 3.300 ⋅ 10−6 2.699 ⋅ 10−6
100 1.195 ⋅ 10−3 9.834 ⋅ 10−4
250 1.798 ⋅ 10−2 1.500 ⋅ 10−2
500 0.171 0.141
1000 2.316 1.310
1500 11.399 7.348
2000 31.036 23.503

Table 2.1: The average computation time of Algorithms 2.1 and 2.2 for varying sizes of 𝐴

2.2.3. Comparison of the two algorithms
To evaluate whether Algorithm 2.2 performs better than Algorithm 2.1, a series of tests were
performed on a personal laptop. Both algorithms were implemented in Fortran. The exper-
iment involved computing the LU decompositions of square matrices of varying sizes using
each algorithm.

For eachmatrix size, the CPU time required to complete the decomposition wasmeasured.
To ensure reliability, each test was repeated 100 times, and the average of these results was
taken. This method ensures a fairer comparison between the two algorithms.

Table 2.1 presents the average computation times for both sequential algorithms across
a range of matrix sizes. The results indicate that Algorithm 2.2 consistently outperforms Al-
gorithm 2.1 in terms of speed, regardless of 𝑛. This performance gap becomes especially
pronounced as the matrix size increases to 𝑛 = 1500, where the difference in execution time
becomes substantial. Because of its efficiency, Algorithm 2.2, the memory-efficient variant,
will become the foundation for developing the parallel versions of the LU decomposition.

From a theoretical standpoint, one expects the average computation time of both algo-
rithms to scale with 𝑛3, since the LU decomposition has a time complexity of 𝒪(𝓃3). This
growth is observed for the smaller matrices in Table 2.1. However, as 𝑛 increases beyond
500, the scale does not work anymore. This increase in computation time is primarily due to
memory limitations on the laptop. Once the matrix becomes larger, the data can no longer be
entirely stored in the cache and must instead be accessed from the main memory.

2.3. Backward and Forward substitution 11

2.3. Backward and Forward substitution
Once the LU decomposition of the matrix 𝐴 is created, the linear system 𝐴x = b can be solved
using forward and backward substitution.

The first step involves solving the system

𝐿y = b (2.15)

using forward substitution. This method computes the values of y sequentially, starting
with the first equation. The first equation is straightforward, because the matrix 𝐿 is a lower
triangular matrix with ones on its main diagonal:

𝑦1 = 𝑏1 (2.16)

The following values 𝑦𝑖 are computed using the values of the previously computed 𝑦𝑖 ’s.
Specifically using the formula:

𝑦𝑖 = 𝑏𝑖 −
𝑖−1

∑
𝑗=1
𝑙𝑖𝑗𝑦𝑗 (2.17)

The second step involves solving the system

𝑈x = y (2.18)

using backward substitution. This method, like the forward substitution, also computes
the vector values sequentially. However, instead of starting at the first equation, backward
substitution starts at the last equation. The first computation is still straightforward because
the matrix 𝑈 is an upper triangular matrix. However, the main diagonal does not necessarily
have ones, so to get the value of 𝑥𝑛, it also has to be divided by 𝑢𝑖𝑖.

𝑥𝑛 = 𝑦𝑛/𝑢𝑖𝑖 (2.19)

The other vector values are computed using

𝑥𝑖 = (𝑦𝑖 −
𝑛

∑
𝑗=𝑖+1

𝑢𝑖𝑗𝑥𝑗)/𝑢𝑖𝑖 (2.20)

Algorithm 2.3 shows an implementation of the forward and backward substitution.

12 2. Implementing the LU decomposition

Algorithm 2.3: Forward and Backward substitution

𝑖𝑛𝑝𝑢𝑡 ∶ 𝐿 ∶ 𝑛 × 𝑛 unit lower triangular matrix
𝑈 ∶ 𝑛 × 𝑛 upper triangular matrix
b ∶ 𝑛 × 1 vector

𝑜𝑢𝑡𝑝𝑢𝑡 ∶ x ∶ 𝑛 × 1 vector
:D
𝑥 = 𝑏
for i := 1, n do

for j := 1, i-1 do
𝑥𝑖 = 𝑥𝑖 − 𝑙𝑖,𝑗 ⋅ 𝑥𝑗

end
end
for i := n, 1, -1 do

for j := i+1, n do
𝑥𝑖 = 𝑥𝑖 − 𝑢𝑖,𝑗 ⋅ 𝑥𝑗

end
𝑥𝑖 = 𝑥𝑖/𝑢𝑖,𝑖

end

3
Parallelising the LU decomposition

While Chapter 2 explored two sequential algorithms for computing the LU decomposition,
high-performance implementations often require higher efficiency than the sequential algo-
rithms can provide. By using parallel computation, the LU decomposition can be performed
significantly faster, especially for high-dimensional matrices.

This chapter introduces the foundations for parallelising LU decomposition, beginning with
a discussing of the software. It then discusses different ways to distribute matrices across
different processors or images. Then it presents a parallel implementation using Fortran Coar-
rays. After the first algorithm is created, the improvements that can be made to the algorithm
are discussed before finally ending the chapter with a parallel implementation of the forward
and backward substitution.

3.1. Fortran Coarray
The first step in creating a parallel implementation of the LU decomposition is selecting an
appropriate parallel programming method. Several options exist for parallel programming, in-
cluding OpenMP and MPI. However, since the goal is to accelerate the LU decomposition in a
Fortran-based package, the algorithms make use of Fortran Coarrays, a parallel programming
feature built directly into the Fortran language (Fanfarillo et al., 2014).

Created in 2008 by Robert Numrich and John Reid, Fortran Coarrays were designed to
simplify parallel programming by integrating it into the language. Coarrays enable parallel
execution by introducing images that can run at the same time and exchange data through
coarray variables. The synchronisation between the images is handled using statements such
as sync all, which synchronises all images, or sync images, which only synchronises a
specified set of images.

3.2. Distributing the matrix over images
:D
During the LU decomposition, each image must have access to the data required for its com-
putations. Because images in Fortran Coarrays operate with separate local memory, data
stored on one image is not automatically accessible to other images.
A naive approach would be to replicate the entire matrix on every image, which ensures that
every image has all the data it will need. However, this method is highly inefficient in terms of
memory usage, especially for high-dimensional matrices. Instead, the matrix should be dis-

13

14 3. Parallelising the LU decomposition

(a) A block distribution over the
rows

(b) A cyclic distribution over the
rows

(c) A block distribution over the
columns

(d) A cyclic distribution over the
columns

Figure 3.1: A visualisation of the block and cyclic distributions over the rows and columns

tributed, with each image only storing a portion of the data. The distribution of the matrix can
be done in several ways.

A common and straightforward way is to distribute the matrix across its rows. In doing so,
it must be decided how to assign specific rows to individual images. One method is the block
distribution, shown in Figure 3.1a. Here, each image is allocated a block of consecutive rows.
For example, given 12 rows and four images, image 1 would receive rows 1-3, image two
would receive rows 4-6, and so on.

Alternatively, the rows can be distributed in a cyclic manner, as shown in Figure 3.1b. In
this distribution scheme, the rows are assigned to images in a cyclic fashion. Continuing with
the example of the 12 × 12 matrix, image 1 would hold rows 1, 5, and 9, image 2 would hold
rows 2, 6, and 10, and so on.

The same applies if the matrix is distributed over its columns rather than rows. Both block
and cyclic distributions can be used in the column-wise schemes, as shown in Figures 3.1c
and 3.1d, respectively.

A more advanced distribution is the Cartesian distribution, as described by Rob Bisseling
(Bisseling, 2020). In this distribution scheme, the matrix is mapped onto a two-dimensional
grid of images, each responsible for a rectangular sub-block of the matrix. This method allows
for a balanced distribution of both the rows and columns across the images, which minimises
the communication between the images and improves performance.

The images are arranged in an𝑀×𝑁 grid, where𝑀⋅𝑁 equals the total number of images:

𝐼(𝑠, 𝑡), 𝑤𝑖𝑡ℎ 0 ≤ 𝑠 ≤ 𝑀 𝑎𝑛𝑑 0 ≤ 𝑡 ≤ 𝑁 𝑀 ⋅ 𝑁 = #𝑖𝑚𝑎𝑔𝑒𝑠 (3.1)

In this scheme, each image is defined by a pair of coordinates (𝑠, 𝑡) that corresponds to its po-
sition in the grid. The matrix entries are then mapped to these coordinates using a distribution
function:

𝜙 ∶ {(𝑖, 𝑗) ∶ 0 ≤ 𝑖, 𝑗 < 𝑛} → {(𝑠, 𝑡) ∶ 0 ≤ 𝑠 < 𝑀 ∧ 0 ≤ 𝑡 < 𝑁} (3.2)

A key part of the Cartesian distribution is that the assigning of the row and columns do not
depend on each other, which means that the mapping function 𝜙(𝑖, 𝑗) can be written as two
independent functions 𝜙0 and 𝜙1:

3.2. Distributing the matrix over images 15

Figure 3.2: A block-wise row distribution of a 12 × 12 matrix over 5 images

𝜙(𝑖, 𝑗) = (𝜙0(𝑖), 𝜙1(𝑗)), 0 ≤ 𝑖, 𝑗 < 𝑛 (3.3)

This structure implies that the distribution for 𝜙0 depends on the row number 𝑖 and 𝜙𝑗
depends on the column number 𝑗. This means that the rows could be distributed using a
cyclic distribution, and the columns distributed using a block distribution.

3.2.1. The distribution used in the algorithm
As described in Section 3.2, there are several possible schemes for distributing the matrix
across the images: block and cyclic distributions for rows or columns, and the Cartesian dis-
tribution. In this implementation, a row-wise distribution is chosen. This decision is driven by
the fact that, in the Fortran package the algorithm is designed for, the matrices are stored in
a row-wise structure. This makes a row-wise distribution a natural fit. Additionally, a block
distribution is chosen over the cyclic one to reduce the communication between the images
during the LU decomposition.

However, a block-wise distribution comes with its own difficulties when the number of rows
is not evenly divisible by the number of images. A naive approach to address this would be to
add zero rows to the matrix until the total number of rows becomes divisible by the number of
images. This, however, will lead to inefficiencies, particularly for the last image. This image
might be assigned a large number of zero rows and therefore do little of the work.

To address this, a more even distribution is chosen. The maximal number of rows assigned
to each image is determined as follows:

𝑚𝑎𝑥_𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒 = ⌈ #𝑟𝑜𝑤𝑠#𝑖𝑚𝑎𝑔𝑒𝑠⌉ (3.4)

and the remainder is computed as

𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 = #𝑟𝑜𝑤𝑠 mod #𝑖𝑚𝑎𝑔𝑒𝑠 (3.5)

16 3. Parallelising the LU decomposition

The first remainder images are assigned chunks of size max_chunk_size and remaining
images receive chunks that are one row smaller. This ensures a more evenly distributed load
across the images.

Figure 3.2 shows an example of this approach. It is a distribution of a 12×12matrix across
5 images. The result is an almost even division of the rows with at most a one-row difference
between any two images.

3.3. Basic parallel algorithm
Once the matrix has been distributed across the images, the LU decomposition can be com-
puted. The parallel algorithm presented here is based on Algorithm 2.2 form Section 2.2.2
and computes the decomposition in place as well to reduce the memory needed. The input to
the algorithm is the part of the matrix owned by the current image, referred to as my_chunk.
The output is the modified version of the chunk, which contains the corresponding part of the
LU decomposition.

In the LU decomposition, the main computation at each step involves selecting the pivot
row, specifically row 𝑘 at step 𝑘, and using it to eliminate the entries below the pivot. In the
sequential case, this is a very straightforward operation because all the rows are in a shared
memory and their locations are immediately known. However, in the parallel case, the matrix
is distributed across the images and each image only has access to its local part. Since im-
ages cannot directly access each other’s memory, the location of the pivot row needs to be
determined and it has to be shared when necessary.

The first step in each iteration is to determine which image owns the pivot row. Because
the matrix is block-distributed, the location of a row depends on the total number of rows,
the number of images and the remainder from dividing the number of rows by the number of
images. This can be implemented as follows:

if (k<= remainder *(n/nimg +1)) then
owner = (k-1)/(n/nimg +1) +1

else
owner = remainder + (k-1 - remainder *(n/nimg+1))/(n/nimg) +1

end if

This function determines the image index, which starts at 1 in Fortran, that holds row 𝑘.

Once the owner of the pivot row is found, that image must share the pivot row with all the
other images. This is done using the broadcast function build into Fortran. This sends the
row from the owning image to all the other images and also includes a synchronisation func-
tion to ensure all the images reach the same point of computation before continuing.

After the pivot row has been received by the other images, each image can update its own
local rows. To determine if a row needs to be updated, the global row number corresponding
to each local row index is calculated as follows:

global_row = start_row + i - 1

Only rows with a global index greater than 𝑘, those below the pivot row, have to do the com-
putation steps. Rows above or equal to the pivot row remain unchanged in this iteration.

3.4. Improving the algorithm 17

This sequence of steps leads to the development of Algorithm 3.1, which shows the basic
structure of the parallel LU decomposition using Fortran Coarrays.

Algorithm 3.1: Parallel LU decomposition

𝑖𝑛𝑝𝑢𝑡 ∶ 𝑚𝑦_𝑐ℎ𝑢𝑛𝑘 ∶ 𝑚𝑎𝑥_𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒 × 𝑛: the block of the matrix owned by the
image

𝑜𝑢𝑡𝑝𝑢𝑡 ∶ 𝑚𝑦_𝑐ℎ𝑢𝑛𝑘 ∶ 𝑚𝑎𝑥_𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒 × 𝑛: the block of the matrix owned by the
image updated so it contains the entries of the LU decomposition

:D
me = this_image()
for k := 1 to n do

owner = owner(𝑟𝑜𝑤𝑘)
𝑝𝑖𝑣𝑜𝑡_𝑟𝑜𝑤 = 𝑟𝑜𝑤𝑘
:D
broadcast(pivot_row)
:D
for i := 1 to chunk_size do

global_row = global_row(i) # Finds the global row number of row 𝑖
:D
if global_row > 𝑘 then
𝑚𝑦_𝑐ℎ𝑢𝑛𝑘(𝑖, 𝑘) = 𝑚𝑦_𝑐ℎ𝑢𝑛𝑘(𝑖, 𝑘)/𝑝𝑖𝑣𝑜𝑡_𝑟𝑜𝑤(𝑘)
𝑚𝑦_𝑐ℎ𝑢𝑛𝑘(𝑖, 𝑘 + 1 ∶ 𝑛) = 𝑚𝑦_𝑐ℎ𝑢𝑛𝑘(𝑖, 𝑘 + 1 ∶ 𝑛)

−𝑚𝑦_𝑐ℎ𝑢𝑛𝑘(𝑖, 𝑘) ⋅ 𝑝𝑖𝑣𝑜𝑡_𝑟𝑜𝑤(𝑘 + 1 ∶ 𝑛)
end

end
end

3.4. Improving the algorithm
Intermediary tests confirm that the basic parallel LU decomposition functions properly. How-
ever, several optimisation can still be made to improve its performance and efficiency.

In the original implementation, certain variables, such as the starting row index and the
chunk size, were recomputed in each iteration. This was eliminated by computing these val-
ues once at the beginning of the algorithm and reusing them throughout the whole algorithm.
This reduces unnecessary computations and could lead to a more efficient execution, espe-
cially for large matrices.

An additional condition was introduced to further minimise unnecessary work. The previ-
ous algorithm only checked if a row’s global index was greater than the current pivot index 𝑘
before performing the computations. However, in cases where the pivot entry of a given row
is already zero, the subtraction operation has no effect. For this, the following condition was
added:

if (global_row>k .and. my_chunk(i,k)/=0) then

This check can lead to noticeable performance improvements if the matrix is sparse. For
dense matrices, the effect on the runtime will be minimal, but might still get rid of some unnec-

18 3. Parallelising the LU decomposition

essary computations.

Another improvement involves replacing the standard do loop with a do concurrent loop
at each iteration. This informs the compiler, and the GPU, that the iterations of the loop are
independent of each other and can be executed in parallel. The benefit of this will be limited
on CPUs, but it can significantly increase efficiency if the algorithm is run on a GPU.

In each iteration 𝑘, the first 𝑘 − 1 entries of the pivot row are zero. This makes them irrel-
evant for the computations, because they will want to do work on positions that are already
eliminated. Therefore, instead of broadcasting the entire row of length 𝑛, it is more efficient to
share only part of the vector, starting at 𝑘 and ending at 𝑛. This reduces the amount of data
that has to be transferred between the images, especially in the later iterations, which can
lead to a significant increase in performance for large matrices.

The last improvement has to do with the broadcast function. This function sends the
pivot row to all image, even if the images do not need the information anymore. In many
cases, images holding only rows above the current pivot row have already completed their
work and do not require toe pivot row. To avoid the unnecessary sharing of information, a
custom communication loop using the Fortran Coarrays was implemented.

do i = owner+1, number_images
pivot_row(k:n)[i] = pivot_row(k:n)[owner]

end do

This loop shares the pivot row only with the images that hold rows below the pivot. While
the improvement is small for lower-dimensional matrices, it becomes significant when scaling
up to many images.

These optimisations come together in Algorithm 3.2, the improved parallel LU decompo-
sition algorithm. By reducing communication costs and eliminating redundant computations,
this version is more efficient and is also more scalable than its counterpart.

3.4. Improving the algorithm 19

Algorithm 3.2: Efficient parallel LU decomposition

𝑖𝑛𝑝𝑢𝑡 ∶ 𝑚𝑦_𝑐ℎ𝑢𝑛𝑘 ∶ 𝑚𝑎𝑥_𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒 × 𝑛: the block of the matrix owned by the
image

𝑜𝑢𝑡𝑝𝑢𝑡 ∶ 𝑚𝑦_𝑐ℎ𝑢𝑛𝑘 ∶ 𝑚𝑎𝑥_𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒 × 𝑛: the block of the matrix owned by the
image updated so it contains the entries of the LU decomposition

:D
me = this_image()
for k := 1 to n do

owner = owner(𝑟𝑜𝑤𝑘)
𝑝𝑖𝑣𝑜𝑡_𝑟𝑜𝑤 = 𝑟𝑜𝑤𝑘
:D
for i:=owner+1 to number_images do

pivot_row(k:n)[i] = pivot_row(k:n)[owner]
end
:D
for i := 1 to chunk_size .and. my_chunk(i,k) ≠0 do

global_row = global_row(i) # Finds the global row number of row 𝑖
:D
if global_row > 𝑘 then
𝑚𝑦_𝑐ℎ𝑢𝑛𝑘(𝑖, 𝑘) = 𝑚𝑦_𝑐ℎ𝑢𝑛𝑘(𝑖, 𝑘)/𝑝𝑖𝑣𝑜𝑡_𝑟𝑜𝑤(𝑘)
𝑚𝑦_𝑐ℎ𝑢𝑛𝑘(𝑖, 𝑘 + 1 ∶ 𝑛) = 𝑚𝑦_𝑐ℎ𝑢𝑛𝑘(𝑖, 𝑘 + 1 ∶ 𝑛)

−𝑚𝑦_𝑐ℎ𝑢𝑛𝑘(𝑖, 𝑘) ⋅ 𝑝𝑖𝑣𝑜𝑡_𝑟𝑜𝑤(𝑘 + 1 ∶ 𝑛)
end

end
end

20 3. Parallelising the LU decomposition

3.5. Parallel forward and backward substitution
As in Chapter 2, once the LU decomposition has been computed, the next step is solving the
system

𝐿𝑈x = y (3.6)

through forward and backward substitution. Since the matrix remains distributed across mul-
tiple images, these substitution steps must also be parallelised.

To solve the equation
𝐿y = b (3.7)

each value 𝑦𝑖 requires access to the corresponding right-hand side entry 𝑏𝑖, row 𝑖 of the lower
triangular matrix 𝐿, and the previously computed entries of the vector y, as shown in equa-
tion (2.17). To minimise communication between images, the algorithm assigns the computa-
tion of 𝑦𝑖 to the image that owns row 𝑖 of 𝐿. This ensures that only the necessary previously
computed values of y have to be shared across the images.

The algorithm starts by setting y = b. It then proceeds to loop over all the row indices 𝑘,
where each image checks if it owns the 𝑘-th row. If so, this image computes the value 𝑦𝑘. This
computed value is then shared with all other images so they can use it in their computations.
The synchronisation and communication steps of this algorithm are very similar to those of the
LU decomposition.

Once y has been computed, the next step is to solve

𝑈x = y (3.8)

using backward substitution, as described by equation (2.20). Similar to the forward substi-
tution, the value 𝑥𝑖 depends on 𝑦𝑖, row 𝑖 of the upper triangular matrix 𝑈 and the already
computed values of x. Therefore, the parallel implementation can follow the same logic as
used in the algorithm of the forward substitution.

The primary difference lies in the order of the outer loop. Backward substitution proceeds
from the last row to the first. In other words, the loop starts at row index 𝑛 and ends at index 1.
As before, the image that owns row 𝑘 is responsible for computing 𝑥𝑘, and the result is shared
with the other images. Initially, the algorithm sets x = y. At each step, the relevant value of
𝑥𝑘 is computed and then communicated to the other images for their local updates.

Together, these algorithms solve the system 𝐿𝑈x = b. To optimise memory usage, the
substitution steps can be performed in-place. However, overwriting the input vector b might
not be wanted, because it might be needed later in the program. Therefore, the algorithm
performs the forward substitution as described, storing the result in y. The algorithm then
performs the backward substitution in-place, updating y directly instead of copying it over to
x.

This process results in Algorithm 3.3, the parallel forward and backward substitution algo-
rithm, which computes the solution of the linear system when the original matrix is distributed.

3.5. Parallel forward and backward substitution 21

Algorithm 3.3: Parallel Forward and Backward substitution

𝑖𝑛𝑝𝑢𝑡 ∶ 𝑚𝑦_𝑐ℎ𝑢𝑛𝑘 ∶ 𝑚𝑎𝑥_𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒 × 𝑛: the block of the LU decomposed
matrix owned by the image
𝑏_𝑐ℎ𝑢𝑛𝑘 ∶ 𝑚𝑎𝑥_𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒 × 1: the block of the right-hand side vector b
owned by the image

𝑜𝑢𝑡𝑝𝑢𝑡 ∶ 𝑦_𝑐ℎ𝑢𝑛𝑘 ∶ 𝑚𝑎𝑥_𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒 × 1: the block of the solution vector
owned by the image

:D
𝑦_𝑐ℎ𝑢𝑛𝑘 = 𝑏_𝑐ℎ𝑢𝑛𝑘
:D
for k:= 1 to n do

owner = owner(𝑟𝑜𝑤𝑘)
𝑝𝑖𝑣𝑜𝑡_𝑦 = 𝑦𝑘
:D
for i:=owner+1 to number_images do

𝑝𝑖𝑣𝑜𝑡_𝑦[𝑖] = 𝑝𝑖𝑣𝑜𝑡_𝑦[𝑜𝑤𝑛𝑒𝑟]
end
:D
for i:=1 to chunk_size do

global_row = global_row(i) # Finds the global row number of row 𝑖
:D
if global_row > 𝑘 then
𝑦_𝑐ℎ𝑢𝑛𝑘(𝑖) = 𝑦_𝑐ℎ𝑢𝑛𝑘(𝑖) − 𝑝𝑖𝑣𝑜𝑡_𝑦 ⋅ 𝑚𝑦_𝑐ℎ𝑢𝑛𝑘(𝑖, 𝑘)

end
end

end
sync all
for k:= n to 1 do

owner = owner(𝑟𝑜𝑤𝑘)
𝑝𝑖𝑣𝑜𝑡_𝑦 = 𝑦𝑘/𝑚𝑦_𝑐ℎ𝑢𝑛𝑘(𝑘, 𝑘)
:D
for i:=1 to owner-1 do

𝑝𝑖𝑣𝑜𝑡_𝑦[𝑖] = 𝑝𝑖𝑣𝑜𝑡_𝑦[𝑜𝑤𝑛𝑒𝑟]
end
:D
for i:=chunk_size to 1 do

global_row = global_row(i) # Finds the global row number of row 𝑖
:D
if global_row < 𝑘 then
𝑦_𝑐ℎ𝑢𝑛𝑘(𝑖) = 𝑦_𝑐ℎ𝑢𝑛𝑘(𝑖) − 𝑝𝑖𝑣𝑜𝑡_𝑦 ⋅ 𝑚𝑦_𝑐ℎ𝑢𝑛𝑘(𝑖, 𝑘) end

end
end

4
Creating the LU decomposition for

banded matrices

The previous chapters described the development of the parallel LU decomposition algo-
rithm for dense matrices. However, in real-world and physical applications, matrices are often
sparse. Some of these sparse matrices also have specific structures, such as banded ma-
trices, where the non-zero entries are concentrated around the main diagonal. This chapter
explores some differences between dense and banded matrices, presents a parallel algorithm
for fully stored banded matrices, and then introduces a more efficient approach for compactly
stored banded matrices.

4.1. Differences between banded matrices and dense matrices
The first step in adapting the LU decomposition for banded matrices is understanding how the
band matrix differs from a dense matrix. A dense matrix is a matrix in which most elements
are non-zero and do not have a pattern of sparsity. Looking at the storage of a dense matrix,
all entries of the matrix have to be stored, resulting in 𝑛2 entries for an 𝑛 × 𝑛 matrix. On top of
that, operations like the LU decomposition involve updating the entire matrix.

On the other hand, a banded matrix is a type of sparse matrix. The non-zero elements of
the matrix are concentrated around the main diagonal. This structure appears in many sci-
entific problems, especially in the discretisation of partial differential equations using the finite
difference method. In the LU decomposition, the different iterations only involve updating cer-
tain neighbouring elements of the matrix, instead of updating the entire matrix. For a banded
matrix, the result of the in-place LU decomposition is also a banded matrix.

While many band matrices are structurally symmetric, meaning that they have the same
number of non-zero diagonals above and below the main diagonal, see Figure 4.1b, this is not
always the case. In practice, band matrices can be structurally asymmetric, with a different
number of lower and upper diagonals. For example, a matrix might have more non-zero diag-
onals above the main diagonal than below, see Figure 4.1c, which depends on the physical
problem. On top of that, the bandwidth does not have to be constant across all the rows. Some
rows may have more non-zero entries, and others may have fewer. This leads to a variable
or irregular bandwidth, which can appear in problems with non-uniform grids.

A key concept when working with bandedmatrices is their bandwidth. The lower bandwidth
𝑘1 is the number of sub-diagonals below the main diagonal containing non-zero values. The

23

24 4. Creating the LU decomposition for banded matrices

(a) A band matrix with more di-
agonals below the main diago-
nal

(b) A structurally symmetric
band matrix here some more
text for the enter

(c) A band matrix with more di-
agonals above the main diag-
onal

(d) A band matrix with irregular
bandwidth blablabla, more text
I need an enter here

Figure 4.1: A visualisation of the different kinds of band matrices. The dark diagonal is the main diagonal, the light
gray are non-zero elements and the white blocks are zero elements.

upper bandwidth 𝑘2 is the number of super-diagonals above it. In structurally symmetrically
banded matrices, the lower bandwidth is equal to the upper bandwidth, 𝑘1 = 𝑘2. The total
bandwidth is defined as 𝑘1 + 𝑘2 + 1, and the bandwidth is defined as the maximum of the
upper and lower bandwidth.

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ =max(𝑘1, 𝑘2) (4.1)

For irregular band matrices, like the example shown in Figure 4.1d, the bandwidth is the maxi-
mum of the maximum lower bandwidth and the maximum upper bandwidth, which would make
the bandwidth of that matrix 4.

4.2. The maximal_bandwidth function
Determining the bandwidth of a matrix plays a crucial role in optimising the parallel algorithm,
especially for sharing the pivot row during the LU decomposition. The bandwidth informs us
of the influence each pivot row has, allowing for more efficient data sharing between images
by not sending the data to images holding rows outside of the band.

In the cases shown in the Figures 4.1a, 4.1b, and 4.1c, computing the bandwidth is very
straightforward because the number of diagonals below and above the main diagonal is con-
stant. However, finding the bandwidth is more complex when it is not constant, which is the
case in Figure 4.1d.

To find the bandwidth of such a matrix, a function is implemented that computes the band-
width of any square matrix. It does not matter if it is a sparse or a dense matrix. This function
iterates over each row of the matrix, finds the furthest non-zero elements to the left and right
of the main diagonal, and then computes the corresponding lower and upper bandwidths for
that row. After iterating through all the rows, the function returns the maximum values it found
for the lower and upper bandwidth. The overall bandwidth is the maximum of those two values.

A pseudo-code of this function is presented in Algorithm 4.1, the maximal bandwidth func-
tion.

4.3. Updating the algorithm for full matrices with bands 25

Algorithm 4.1: The maximal_bandwidth function

𝑖𝑛𝑝𝑢𝑡 ∶ 𝐴 ∶ 𝑛 × 𝑛: the full matrix
𝑜𝑢𝑡𝑝𝑢𝑡 ∶ 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 ∶ the bandwidth of the matrix 𝐴
:D
for i:= 1 to n do

𝑓𝑖𝑟𝑠𝑡_𝑛𝑜𝑛𝑧𝑒𝑟𝑜 = 𝑖
𝑙𝑎𝑠𝑡_𝑛𝑜𝑛𝑧𝑒𝑟𝑜 = 𝑖
:D
for j:=i+1 to n do

If 𝑎𝑖𝑗 ≠ 0 then
𝑙𝑎𝑠𝑡_𝑛𝑜𝑛𝑧𝑒𝑟𝑜 = 𝑗

end
end
:D
for j:=i-1 to 1 do

If 𝑎𝑖𝑗 ≠ 0 then
𝑓𝑖𝑟𝑠𝑡_𝑛𝑜𝑛𝑧𝑒𝑟𝑜 = 𝑗

end
end
𝑓𝑖𝑟𝑠𝑡_𝑛𝑜𝑛𝑧𝑒𝑟𝑜 = 𝑖 − 𝑓𝑖𝑟𝑠𝑡_𝑛𝑜𝑛𝑧𝑒𝑟𝑜
𝑙𝑎𝑠𝑡_𝑛𝑜𝑛𝑧𝑒𝑟𝑜 = 𝑙𝑎𝑠𝑡_𝑛𝑜𝑛𝑧𝑒𝑟𝑜 − 𝑖
:D
𝑙𝑜𝑤𝑒𝑟_𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ =max(𝑙𝑜𝑤𝑒𝑟_𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ, 𝑓𝑖𝑟𝑠𝑡_𝑛𝑜𝑛𝑧𝑒𝑟𝑜)
𝑢𝑝𝑝𝑒𝑟_𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ =max(𝑢𝑝𝑝𝑒𝑟_𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ, 𝑙𝑎𝑠𝑡_𝑛𝑜𝑛𝑧𝑒𝑟𝑜)

end
𝑚𝑎𝑥𝑖𝑚𝑎𝑙 =max(𝑙𝑜𝑤𝑒𝑟_𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ, 𝑢𝑝𝑝𝑒𝑟_𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ)

4.3. Updating the algorithm for full matrices with bands
Once the bandwidth of the matrix has been identified, the LU decomposition of the banded
matrix can be performed using Algorithm 3.2. However, the banded nature of the matrix intro-
duces sparsity that can be used to optimise the algorithm.

The first improvement looks at the size of the pivot row that is communicated between
images. In Algorithm 3.2, the entire tail of the pivot row, from column 𝑘 to 𝑛, is shared. In the
banded matrices, a big part of the tail will be zero entries. To improve this, the upper band-
width of row 𝑘 is computed during each iteration. In matrices with a regular bandwidth, this
value remains constant. However, to maintain robustness, the check is applied at each step
for all banded matrices. By limiting the communication to only the necessary entries, only a
vector of size 𝑢𝑝𝑝𝑒𝑟_𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ+1 is sent instead of a vector of size 𝑛−𝑘+1. This reduces
communication and increases the efficiency of the algorithm, especially if the matrix has a
small bandwidth.

The second optimisation looks at which images receive the pivot row. In the algorithm
for dense matrices, the pivot row is broadcast to all images that own rows below the pivot
row. This is unnecessary for banded matrices, since only rows within the bandwidth below
the pivot can be affected. So, instead of sending the pivot row to all images, the result of
the maximal_bandwidth function can be used to find how far the pivot row might influence.

26 4. Creating the LU decomposition for banded matrices

The corresponding image that owns the final row is identified, and the pivot row is only sent to
images up to that point. This reduces the communication between images and improves the
efficiency, especially if one uses a large number of images.

The last improvement looks at the update of the rows. In Algorithm 3.2, every image loops
over all the rows it owns, even when none fall within the band that is affected by the pivot row.
To avoid this, a check is added before the loop is entered. If the image does not own any rows
that fall within the region that is influenced by the pivot row, the update step is skipped entirely.

These improvements result in a more efficient LU decomposition. The updated algorithm
is presented in Algorithm 4.2, which is the Parallel LU decomposition for banded matrices.

Algorithm 4.2: Parallel LU decomposition for full banded matrices

𝑖𝑛𝑝𝑢𝑡 ∶ 𝑚𝑦_𝑐ℎ𝑢𝑛𝑘 ∶ 𝑚𝑎𝑥_𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒 × 𝑛: the block of the matrix owned by the
image
𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ ∶ the bandwidth of the matrix 𝐴

𝑜𝑢𝑡𝑝𝑢𝑡 ∶ 𝑚𝑦_𝑐ℎ𝑢𝑛𝑘 ∶ 𝑚𝑎𝑥_𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒 × 𝑛: the block of the matrix owned by the
image updated so it contains the entries of the LU decomposition

:D
me = this_image()
for k := 1 to n do

owner = owner(𝑟𝑜𝑤𝑘)
last_owner = owner(𝑟𝑜𝑤𝑘+𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ)
:D
for i:= k+1 to n do

If pivot_row(i)≠ 0
end_row = i

end
end
:D
𝑝𝑖𝑣𝑜𝑡_𝑟𝑜𝑤(𝑘 ∶ 𝑒𝑛𝑑_𝑟𝑜𝑤) = 𝑟𝑜𝑤𝑘(𝑘 ∶ 𝑒𝑛𝑑_𝑟𝑜𝑤)
:D
for i:=owner+1 to last_owner do

pivot_row(k:end_row)[i] = pivot_row(k:end_row)[owner]
end
:D
If image ≥ owner .and. image ≤ owner_last
for i := 1 to chunk_size .and. my_chunk(i,k) ≠0 do
global_row = global_row(i) # Finds the global row number of row 𝑖
:D
if global_row > 𝑘 then
𝑚𝑦_𝑐ℎ𝑢𝑛𝑘(𝑖, 𝑘) = 𝑚𝑦_𝑐ℎ𝑢𝑛𝑘(𝑖, 𝑘)/𝑝𝑖𝑣𝑜𝑡_𝑟𝑜𝑤(𝑘)
𝑚𝑦_𝑐ℎ𝑢𝑛𝑘(𝑖, 𝑘 + 1 ∶ 𝑛) = 𝑚𝑦_𝑐ℎ𝑢𝑛𝑘(𝑖, 𝑘 + 1 ∶ 𝑛)

−𝑚𝑦_𝑐ℎ𝑢𝑛𝑘(𝑖, 𝑘) ⋅ 𝑝𝑖𝑣𝑜𝑡_𝑟𝑜𝑤(𝑘 + 1 ∶ 𝑛)
end

end
end

4.4. Memory-efficient band matrices 27

(a) A band matrix with five bands.
(b) The LAPACK format for storing a band
matrix

(c) The new format for storing a band ma-
trix

Figure 4.2: A visualisation of the different kinds of band matrices. The dark diagonal is the main diagonal, the light
gray are non-zero elements, and the white blocks are zero elements.

4.4. Memory-efficient band matrices
Since a band matrix is a sparse matrix with a specific structure, it can be stored more efficiently
than a full dense matrix. Instead of allocating memory for all the 𝑛×𝑛 entries of the matrix, only
the diagonals containing non-zero values need to be stored. This section introduces an effi-
cient storage method for banded matrices and presents adaptations for the LU decomposition
and the forward and backward substitution.

4.4.1. Storing the band matrix
A commonmethod for storing banded matrices is the LAPACK (Linear Algebra Package) band
storage method. In this method, only the diagonals that are within the band are stored, which
reduces the memory usage. To be specific, for a matrix of size 𝑛 × 𝑛 with a bandwidth of
𝑘 =max(𝑘1, 𝑘2), the matrix is stored in a matrix of size (2𝑘 +1)×𝑛. Each row of the reduced
matrix corresponds to one of the diagonals of the original matrix (Anderson et al., 1999). A
visual representation of the standard LAPACK band storage method is shown in Figure 4.2b.

However, while the LAPACK format is space-efficient and used in a variety of packages, it
is not suited to the structure of the parallel LU decomposition algorithm described in this paper.
The main problem is that LAPACK stores the diagonals as rows, which means the algorithms
will need to traverse over the columns instead of the rows. The algorithms described in the
previous chapters use a row-wise distribution model, where each image contains a block of
rows and shares the pivot rows when needed. Using the LAPACK format for these algorithms
would require fully redoing the data distribution and key parts of the algorithms, making the
implementation very complex.

To maintain the efficiency of the LAPACK format but also have compatibility with the earlier
algorithms created, a modified banded storage method is used: the Compressed Diagonal
Storage (CDS) (Stathis, 2004). In this method, the diagonals of the matrix are stored as
columns instead of rows. This is equivalent to a transposed version of the LAPACK format,
but has the advantage of being compatible with the row-wise distribution method. The storage
requirements remain the same; the only thing that changes is the orientation of the matrix so
it better fits with the algorithms’ structure. A visualisation of this storage scheme is shown in
Figure 4.2c.

28 4. Creating the LU decomposition for banded matrices

4.4.2. Memory-efficient algorithm
Once the storage format of the banded matrix has been decided, the LU decomposition algo-
rithm can be adapted to the storage format. Due to the differences in structure between the
compact banded storage and the full matrix used in the earlier algorithms, a few modifications
are necessary. The most significant change occurs in the update step of the algorithm. If
the banded matrix is stored in a full matrix, elements 𝑎𝑖𝑗 and 𝑎𝑖+1,𝑗 are elements in the same
column and are adjacent. In the compact storage format, however, the elements in the same
column are entries from the same diagonal, not the same column.

To address this, a shift variable is introduced. This variable calculates the offset between
the update row 𝑖 and the pivot row 𝑘 using the global row indices:

shift = global_row - k

The shift determines how far the update row has to be adjusted to do its updates correctly.
It is also used to see if the row has to be updated by adding it to a check. If the shift is larger
than the bandwidth of the matrix, the update row is outside of the bandwidth and does not
need to be updated.

On top of that, a centre variable is used to identify the column corresponding to the main
diagonal. Combining these two variables ensures that the updates are applied correctly when
using the compact banded storage.

With these changes, the parallel LU decomposition algorithm can be used when a banded
matrix is stored efficiently. This updated method is further described in Algorithm 4.3, the
memory-efficient parallel LU decomposition for banded matrices.

4.4.3. Forward and backward substitution
As described in Chapter 3, once the LU decomposition is computed, the next step is solving
the linear system using forward and backward substitution. For the basic parallel LU decom-
position applied to bandedmatrices that are stored in a full matrix, no changes had to bemade.
However, when working with the compactly stored banded matrices, adaptations are needed
because of the different matrix structure.

The adaptations to the forward and backward substitution algorithms are similar to the
changes made to the LU decomposition. A shift variable is added to compute the offset
between the current update row and the pivot row. On top of that, a centre variable is used
to find the column in the storage format that corresponds to the main diagonal. During the
forward substitution, the shift variable is subtracted from the centre variable to find the
correct entry in the matrix. In the backward substitution, the shift is added instead.

An additional check is included to ensure that the update row lies within the bandwidth.
This check prevents unnecessary computations by comparing the absolute value of the shift
variable to the known bandwidth of the matrix.

These adaptations result in a forward and backward substitution algorithm that can be used
with compactly stored banded matrices. This algorithm is presented in Algorithm 4.4, ”Parallel
Forward and Backward Substitution for Memory-Efficient Banded Matrices.”

4.4. Memory-efficient band matrices 29

Algorithm 4.3: Memory efficient parallel LU decomposition for banded matrices

𝑖𝑛𝑝𝑢𝑡 ∶ 𝑚𝑦_𝑐ℎ𝑢𝑛𝑘 ∶ 𝑚𝑎𝑥_𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒 × 𝑛: the block of the matrix owned by the
image
𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ ∶ the bandwidth of the matrix 𝐴

𝑜𝑢𝑡𝑝𝑢𝑡 ∶ 𝑚𝑦_𝑐ℎ𝑢𝑛𝑘 ∶ 𝑚𝑎𝑥_𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒 × 𝑛: the block of the matrix owned by the
image updated so it contains the entries of the LU decomposition

:D
me = this_image()
for k := 1 to n do

owner = owner(𝑟𝑜𝑤𝑘)
last_owner = owner(𝑟𝑜𝑤𝑘+𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ)
centre = column(main_diagonal)
:D
𝑝𝑖𝑣𝑜𝑡_𝑟𝑜𝑤(1 ∶ 𝑏𝑎𝑛𝑑_𝑤𝑖𝑑𝑡ℎ) = 𝑟𝑜𝑤𝑘(𝑐𝑒𝑛𝑡𝑟𝑒 ∶ 2 ⋅ 𝑏𝑎𝑛𝑑_𝑤𝑖𝑑𝑡ℎ + 1)
:D
for i:=owner+1 to last_owner do

pivot_row(1:band_width)[i] = pivot_row(1:band_width)[owner]
end
:D
If image ≥ owner .and. image ≤ owner_last
for i := 1 to chunk_size .and. my_chunk(i,k) ≠0 do
global_row = global_row(i) # Finds the global row number of row 𝑖
shift = global_row - k :D
if global_row > 𝑘 .and. shift ≤ bandwidth then

𝑚𝑦_𝑐ℎ𝑢𝑛𝑘(𝑖, 𝑐𝑒𝑛𝑡𝑟𝑒 − 𝑠ℎ𝑖𝑓𝑡) = 𝑚𝑦_𝑐ℎ𝑢𝑛𝑘(𝑖, 𝑐𝑒𝑛𝑡𝑟𝑒 − 𝑠ℎ𝑖𝑓𝑡)/𝑝𝑖𝑣𝑜𝑡_𝑟𝑜𝑤(1)
𝑠𝑡𝑎𝑟𝑡 = 𝑐𝑒𝑛𝑡𝑟𝑒 − 𝑠ℎ𝑖𝑓𝑡 + 1
𝑒𝑛𝑑𝑖𝑛𝑔 = 𝑠𝑡𝑎𝑟𝑡 + 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
𝑚𝑦_𝑐ℎ𝑢𝑛𝑘(𝑖, 𝑠𝑡𝑎𝑟𝑡 ∶ 𝑒𝑛𝑑𝑖𝑛𝑔) = 𝑚𝑦_𝑐ℎ𝑢𝑛𝑘(𝑖, 𝑠𝑡𝑎𝑟𝑡 ∶ 𝑒𝑛𝑑𝑖𝑛𝑔)

−𝑚𝑦_𝑐ℎ𝑢𝑛𝑘(𝑖, 𝑐𝑒𝑛𝑡𝑟𝑒 − 𝑠ℎ𝑖𝑓𝑡) ⋅ 𝑝𝑖𝑣𝑜𝑡_𝑟𝑜𝑤(2, 2 ⋅ 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ + 1)
end

end
end

30 4. Creating the LU decomposition for banded matrices

Algorithm 4.4: Parallel Forward and Backward substitution for memory-efficient
banded matrices

𝑖𝑛𝑝𝑢𝑡 ∶ 𝑚𝑦_𝑐ℎ𝑢𝑛𝑘 ∶ 𝑚𝑎𝑥_𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒 × 𝑛: the block of the LU decomposed
matrix owned by the image
𝑏_𝑐ℎ𝑢𝑛𝑘 ∶ 𝑚𝑎𝑥_𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒 × 1: the block of the right-hand side vector b
owned by the image

𝑜𝑢𝑡𝑝𝑢𝑡 ∶ 𝑦_𝑐ℎ𝑢𝑛𝑘 ∶ 𝑚𝑎𝑥_𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒 × 1: the block of the solution vector
owned by the image

:D
𝑦_𝑐ℎ𝑢𝑛𝑘 = 𝑏_𝑐ℎ𝑢𝑛𝑘
centre = column(main_diagonal)
:D
for k:= 1 to n do

owner = owner(𝑟𝑜𝑤𝑘)
𝑝𝑖𝑣𝑜𝑡_𝑦 = 𝑦𝑘
:D
for i:=owner+1 to number_images do

𝑝𝑖𝑣𝑜𝑡_𝑦[𝑖] = 𝑝𝑖𝑣𝑜𝑡_𝑦[𝑜𝑤𝑛𝑒𝑟]
end
:D
for i:=1 to chunk_size do

global_row = global_row(i) # Finds the global row number of row 𝑖
shift = global_row - k
:D
if global_row > 𝑘 then
𝑦_𝑐ℎ𝑢𝑛𝑘(𝑖) = 𝑦_𝑐ℎ𝑢𝑛𝑘(𝑖) − 𝑝𝑖𝑣𝑜𝑡_𝑦 ⋅ 𝑚𝑦_𝑐ℎ𝑢𝑛𝑘(𝑖, 𝑐𝑒𝑛𝑡𝑟𝑒 − 𝑠ℎ𝑖𝑓𝑡)

end
end

end
sync all
for k:= n to 1 do

owner = owner(𝑟𝑜𝑤𝑘)
𝑝𝑖𝑣𝑜𝑡_𝑦 = 𝑦𝑘/𝑚𝑦_𝑐ℎ𝑢𝑛𝑘(𝑘, 𝑘)
:D
for i:=1 to owner-1 do

𝑝𝑖𝑣𝑜𝑡_𝑦[𝑖] = 𝑝𝑖𝑣𝑜𝑡_𝑦[𝑜𝑤𝑛𝑒𝑟]
end
:D
for i:=chunk_size to 1 do

global_row = global_row(i) # Finds the global row number of row 𝑖
shift = global_row - k
:D
if global_row < 𝑘 then
𝑦_𝑐ℎ𝑢𝑛𝑘(𝑖) = 𝑦_𝑐ℎ𝑢𝑛𝑘(𝑖) − 𝑝𝑖𝑣𝑜𝑡_𝑦 ⋅ 𝑚𝑦_𝑐ℎ𝑢𝑛𝑘(𝑖, 𝑐𝑒𝑛𝑡𝑟𝑒 + 𝑠ℎ𝑖𝑓𝑡) end

end
end

5
Results

This chapter analyses the performance of the different LU decomposition algorithms devel-
oped in the previous chapters. The focus lies on evaluating the computational efficiency of
the four algorithms: the basic parallel algorithm, the efficient parallel variant, the full banded
version, and the memory-efficient algorithm for banded matrices. Each of these algorithms is
tested and analysed using Amdahl’s Law to find their parallel performance and scalability.

The experiments are performed on the DelftBlue supercomputer compute type-a nodes
from phase 1 ((DHPC), 2024). While a singular node was not required during the computa-
tions, all tests were performed on a singular node, reducing the communication time. The
matrices used are synthetic matrices generated using Fortran’s RANDOM_NUMBER subroutine.
The shift 𝜎 on the main diagonal is set to 2 for all test cases, and the bandwidth of the banded
matrices is set to 5000 for one set of tests and 100 in the other set of tests. A variety of image
numbers are used to assess the performance of the algorithms.

The results presented in this chapter show the strengths and limitations of each LU de-
composition method. Comparison might help determine which algorithm is best suited for
particular matrix characteristics, such as size and sparsity.

5.1. Amdahl’s law
To understand how programs scale when parallel computing is used, Amdahl’s law was de-
veloped. This law gives insights into the limitations of parallel algorithms by examining the
relationship between the serial fraction 𝑆 and the parallel fraction 𝑃 of the algorithm. These
two fractions should be constant and together add up to one:

𝑆 + 𝑃 = 1

.

Amdahl’s law describes the theoretical limit of speed-up achievable in a parallel system of
fixed size. It says that the overall performance gain is limited by the fraction of the algorithm
that cannot be parallelised. This has significant implications when creating high-performance
algorithms. This theoretical speed-up is defined as:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑇(𝑁) =
1

(1 − 𝑃) + 𝑃
𝑁

(5.1)

31

32 5. Results

Number of CPU time in Speed-up compared Speed-up compared Computed 𝑃
images seconds to one image to previous # images (Amdahl’s law)

1 2982.04 1.00 - -
2 2586.26 1.15 1.15 0.261
4 1449.79 2.05 1.78 0.683
8 947.43 3.14 1.53 0.778
16 487.44 6.11 1.94 0.891

Table 5.1: Speed-up for Algorithm 3.1 for a problem of fixed size with 𝑛 = 10000

where 𝑃 is the parallel fraction of the task and 𝑁 is the number of processors or images used.
As the number of images goes towards infinity, the speed-up will be bounded by the fraction
1
1−𝑃 , which shows that even a small sequential fraction will become a bottleneck when scaling
the algorithm up. This makes Amdahl’s law an important tool for evaluating the efficiency and
scalability of parallel algorithms, such as the LU decomposition (Amdahl, 1967).

To compute the measured speed-up of an algorithm, the following function is used

𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑀(𝑁) =
𝑇1
𝑇𝑁

(5.2)

where 𝑇𝑁 is the measured computational time of the algorithm using 𝑁 images and 𝑇1 is the
measured computational time of the algorithm using 1 image.

5.2. Performance of the basic parallel algorithm
The performance of the basic parallel LU decomposition algorithm is evaluated using Am-
dahl’s law. The matrix size is fixed at 10000 × 10000, and the CPU times were noted down
for 1, 2, 4, 8, and 16 images, as shown in Table 5.1. The second column shows that the CPU
time consistently decreases as the number of images increases. However, the speed-up is
not linear. This is to be expected, since the algorithm does have a non-zero sequential fraction.

Column 3 of the table shows the measured speed-up using equation 5.2. The initial speed-
up, especially between 1 and 2 images, is relatively small. This is because of the absence of
communication between different images in the serial version of the program. At 1 image, no
data sharing is needed, and the broadcast function is not used. As soon as the algorithm
is parallelised over two images, the function is used, which reduces the efficiency and lowers
the speed-up of the algorithm.

This pattern is also visible in the computed parallel fraction 𝑃, which is computed using
equation 5.1. At lower image counts, 𝑃 is relatively small due to the communication penalty,
but as the number of images increases, 𝑃 improves significantly. At 16 images, the parallel
fraction is set around 𝑃 = 0.891, which means nearly 89.1% of the work benefits from the
parallelisation.

To use Amdahl’s law, the sequential and parallel fractions of the algorithm should remain
the same over a variety of different images. This is not the case for this algorithm, as can be
seen in the fifth column of Table 5.1. The parallel fraction goes from 𝑃 = 0.261 to 𝑃 = 0.891,
which is a significant difference. Therefore, Amdahl’s law cannot be used to analyse the
maximum speed-up this algorithm can achieve.

5.3. Performance of the efficient parallel algorithm 33

Number of CPU time in Speed-up compared Speed-up compared Computed 𝑃
images seconds to one image to previous # images (Amdahl’s law)

1 1468.00 1.00 - -
2 1622.10 0.91 0.91 -0.21
4 820.03 1.79 1.98 0.588
8 462.17 3.18 1.77 0.785
16 264.61 5.55 1.75 0.875

Table 5.2: Speed-up for Algorithm 3.2 for a problem of fixed size with 𝑛 = 10000

5.3. Performance of the efficient parallel algorithm
For Algorithm 3.2, there is a notable increase in CPU time when moving from 1 to 2 images,
as shown in Table 5.2. This increase is mostly caused by the fact that, at 1 image, no data
sharing is necessary, and all computations are done on one image. In contrast, once 2 or
more images are involved, the algorithm must communicate data between images. Since Al-
gorithm 3.2 uses a custom implementation for the sharing of the data, the penalty caused by
the communication is significant.

After the initial penalty, the CPU time decreases significantly as the number of images in-
creases. The performance improves almost proportionally with each doubling of images. This
indicates that the parallel parts of the algorithm scale well and are effective.

Based on the observed speed-ups, the parallel fraction 𝑃 is computed to be between 𝑃 =
−0.21 and 𝑃 = 0.875. Since this is a very big difference, and one of the measured parallel
fractions is not even a possible fraction, 𝑆, 𝑃 ≥ 0, Amdahl’s law cannot be applied here to find
the maximum theoretical speed-up.

5.4. Performance of the parallel algorithm for banded matrices
Algorithm 4.2 uses the same custom data-sharing function as Algorithm 3.2. The second col-
umn in Table 5.3 shows the cost of the communication as the number of images increases
from 1 to 2, when the matrix has a bandwidth of 5000. When only a single image is used, no
communication between images is needed, and the algorithm executes without any penalty
because of it. However, at 2 or more images, this penalty will apply, leading to an increase in
the CPU time between 1 and 2 images.

Despite this initial slowdown, the second column shows that the CPU time starts to de-
crease as the number of images increases beyond 2. This implies that the parallel compo-
nents of the algorithm begin to dominate the total runtime as the number of images increases.

The increase in computation time when moving from 1 to 2 images is less pronounced in
the tests with a bandwidth of 100. As shown in Table 5.4, the CPU time continues to decrease
as the number of images increases. This means that the communication penalty is signifi-
cantly smaller for matrices with narrower bandwidths, which makes sense, as the rows that
need to be shared between images are much shorter.

Another important observation is the difference in final speed-ups achieved by the algo-
rithm. For matrices with a bandwidth of 5000, the speed-up at 16 images reaches 3.41, while
for those with a bandwidth of 100, the speed-up is only 1.16, which is almost negligible.

34 5. Results

Number of CPU time in Speed-up compared Speed-up compared Computed 𝑃
images seconds to one image to previous # images (Amdahl)

1 602.01 1.00 - -
2 1079.89 0.56 0.56 -1.00
4 560.31 1.07 1.93 0.023
8 342.78 1.76 1.63 0.582
16 176.34 3.41 1.94 0.782

Table 5.3: Speed-up for Algorithm 4.2 for a problem of fixed size with 𝑛 = 10000 and 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = 5000

Number of CPU time in Speed-up compared Speed-up compared Computed 𝑃
images seconds to one image to previous # images (Amdahl)

1 0.888 1.00 - -
2 0.854 1.04 1.04 0.038
4 0.826 1.08 1.03 0.026
8 0.807 1.10 1.02 0.014
16 0.765 1.16 1.05 0.011

Table 5.4: Speed-up for Algorithm 4.2 for a problem of fixed size with 𝑛 = 10000 and 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = 100

:D

Using the measured speed-ups in Tables 5.3 and 5.4, the parallel fraction 𝑃 can be esti-
mated using equation (5.1). For the bandwidth 5000 case, the parallel fraction ranges from
−1.00 to 0.782, and for the bandwidth 100 case, it ranges from 0.011 to 0.038. In both scenar-
ios, the parallel fraction is not constant, which should be the case when using Amdahl’s law.
As a result, Amdahl’s law cannot be used to predict the maximum theoretical speed-up of the
algorithm.

5.5. Performance of thememory-efficient algorithm for bandedma-
trices

For the memory-efficient algorithm for banded matrices, the same performance tests are con-
ducted as in the previous cases. Thematrix size is fixed at 𝑛 = 10000, and, since the algorithm
is designed for banded matrices, the bandwidth is first fixed at 5000 and then fixed at 100. The
tests are executed for 1, 2, 4, 8, and 16 images. The results of these tests are presented in
Table 5.5 and Table 5.6. As seen in Algorithms 3.2 and 4.2, for the bandwidth 5000 case,
there is once again an increase in CPU time due to the penalty caused by the communication
of the data.

Once more than 2 images are used, the total computation time begins to decrease. How-
ever, the improvement is less dramatic compared to earlier algorithms. The third column of
the table shows that the speed-up from 1 to 16 images is only 3.12, which indicates that the
scalability for this implementation is limited.

The increase of the CPU time when moving from 1 image to 2 images is not as visible in the
bandwidth 100 case, as seen in Table 5.6. The CPU time continues to decease as the number
of images increases, so the communication penalty is significantly smaller in this algorithm if
matrices have a smaller bandwidth.

5.5. Performance of the memory-efficient algorithm for banded matrices 35

Number of CPU time in Speed-up compared Speed-up compared Computed 𝑃
images seconds to one image to previous # images (Amdahl)

1 703.78 1.00 - -
2 1283.91 0.55 0.55 -1.00
4 676.96 1.04 1.90 0.013
8 395.69 1.78 1.71 0.598
16 225.30 3.12 1.76 0.757

Table 5.5: Speed-up for Algorithm 4.3 for a problem of fixed size with 𝑛 = 10000 and 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = 5000

Number of CPU time in Speed-up compared Speed-up compared Computed 𝑃
images seconds to one image to previous # images (Amdahl)

1 0.354 1.00 - -
2 0.261 1.36 1.36 0.267
4 0.236 1.50 1.11 0.167
8 0.232 1.53 1.02 0.074
16 0.230 1.54 1.01 0.036

Table 5.6: Speed-up for Algorithm 4.3 for a problem of fixed size with 𝑛 = 10000 and 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = 100

Using equation 5.1, the parallel fractions 𝑃 are computed. This gives column 5 in Tables 5.5
and 5.6. These columns show that the parallel fraction of the algorithm is somewhere between
𝑃 = −1.00 and 𝑃 = 0.757 if the bandwidth is 5000 and between 𝑃 = 0.036 and 𝑃 = 0.267 if the
bandwidth is 100. In both cases, the difference between those numbers is significant enough
to conclude that the parallel fraction is not constant. On top of that, it is not possible that the
parallel fraction is negative. So, it can be concluded that Amdahl’s law cannot be used to find
the maximum theoretical speed-up of this algorithm.

6
Conclusion

The primary goal of this paper was to develop an efficient parallel LU decomposition algorithm
that can be used in the preconditioning of the IDR Fortran package. A systematic approach
was used, beginning with the study and implementation of two sequential LU decomposition
algorithms. The memory-efficient algorithm laid the foundations for the development of the
basic parallel algorithm, which was refined for greater efficiency into the efficient algorithm for
dense matrices. The work finalised in the adaptation of this algorithm for banded matrices,
one of which focuses on memory efficiency.

The performance results of the dense matrix algorithms, Algorithm 3.1 and Algorithm 3.2,
clearly demonstrate the benefits of the optimisations introduced in the latter. Although an
increase in CPU time can be observed when moving from 1 to 2 images, due to the com-
munication penalty, the efficient algorithm consistently outperforms the basic version across
all tested image counts. This shows that the communication penalty is overshadowed by the
overall efficiency of Algorithm 3.2.

For banded matrices, two approaches were analysed: a full banded LU decomposition
(Algorithm 4.2) and a memory-efficient banded variant (Algorithm 4.3). When the bandwidth
is high, Algorithm 4.2 tends to perform better in terms of CPU time. This is mostly due to
Algorithm 4.3 requiring extra computations to preserve correctness during the matrix update
phase. These extra computations decrease its performance efficiency. However, the per-
formance dynamic shifts when the bandwidth is smaller. In that case, the additional compu-
tations in Algorithm 4.3 become less disadvantageous, and its requirement of less memory,
𝑛 × (2 ⋅ 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ + 1) instead of 𝑛 × 𝑛, makes it the more efficient option overall.

This leads to a trade-off between memory usage and computational speed. For problems
with limited available memory or small bandwidths, Algorithm 3.2 is preferred. However, when
the memory is not a constraint and the matrix has a large bandwidth, Algorithm 3.2 will achieve
faster results.

Another important observation is the relationship between the bandwidth and parallel effi-
ciency. The maximum speed-up achieved by the banded algorithms decreases significantly
as the matrix bandwidth decreases. This is because the number of rows requiring updates in
each step is directly tied to the bandwidth. A wider bandwidth means more rows can be up-
dated at the same time, leading to better usage of the parallel resources. However, a narrow
bandwidth limits the parallel workload per step, resulting in images that do less or no work

37

38 6. Conclusion

during certain steps and lower speed-up values. This explains the decrease in measured
speed-up when going from bandwidth 5000 to 100.

Overall, this paper shows that the use of Fortran Coarrays enables the construction of
scalable and efficient parallel LU decomposition algorithms. The created methods enhance
the potential performance of the IDR package for solving large systems of shifted linear equa-
tions. For dense matrices, the efficient parallel algorithm is recommended due to its speed
and scalability. For banded matrices, the choice between full and memory-efficient algorithms
should be based on the requirements of the application.

The algorithms developed in this paper are currently being implemented in the IDR(s) For-
tran package. Initial integration and testing have shown promising initial results, with notable
improvements in computational efficiency. These early outcomes suggest that the parallel LU
decomposition methods could significantly improve the performance of the IDR(s) package,
especially for solving high-dimensional linear systems.

7
Discussion

The results presented in this paper show the performance of several LU decomposition algo-
rithms in a parallel computing environment using Fortran Coarrays. While thememory-efficient
and banded matrix variants were all designed with specific structural advantages in mind, the
performance analysis shows that there is still room for improvement.

One aspect that may enhance scalability is changing the distribution of the matrix. Instead
of choosing the block-wise distribution, a cyclic distribution of the matrix rows might enhance
the efficiency. In the block-wise distribution, consecutive rows are stored on the same image,
which leads to load imbalance the further the algorithm progresses. A cyclic distribution strat-
egy, where rows are distributed in a round-robin fashion across images, could offer better load
balancing and reduce the idle time of images. Future implementations should investigate how
the cyclic distribution affects the computational time and the communication time during the
LU decomposition.

Furthermore, while Amdahl’s Law was used to interpret the theoretical limits of the speed-
up based on the serial fraction of the algorithm, it assumes the problem size is fixed. This
may not fully show the scalability potential when working with large matrices. In this case,
Gustafson’s Law provides a more realistic perspective. It says that as the number of proces-
sors increases, the problem size can be scaled proportionally while maintaining efficiency.
Applying Gustafson’s law could give a better understanding of how the algorithms might per-
form on high-dimensional problems.

The memory-efficient banded algorithm (Algorithm 4.3) offers significant storage benefits,
but is limited in its performance due to additional computations caused by the altered stor-
age scheme. One direction for improvement is optimising these additional computations or
restructuring the storage scheme for better updates.

Finally, numerical accuracy is another area that could be revisited. Since pivoting was
intentionally excluded to improve performance, the algorithms may suffer from instability in
certain cases. While pivoting does decrease performance, implementing pivoting or partial
pivoting might be worth exploring for scenarios where preconditioning quality is more impor-
tant than the runtime.

39

Bibliography

Amdahl, G. M. (1967). Validity of the single processor approach to achieving large scale com-
puting capabilities. AFIPS Conference Proceedings, 483–485.

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Green-
baum, A., Hammerling, S., McKenney, A., & Sorensen, D. (1999). Lapack User’s Guide
(Third). SIAM.

Baumann, M., & van Gijzen, M. B. (2015). Nested Krylov methods for shifted linear systems.
SIAM Journal on Scientific Computing, 37, S90–S112.

Bisseling, R. H. (2020). Parallel Scientific Computation; A Structured Approach Using BSP
(Second). Oxford University Press.

(DHPC), D. H. P. C. C. (2024). DelftBlue Supercomputer (Phase 2).
Dongarra, J., & Sullivan, F. (2000). Guest Editors Introduction to the top 10 algorithms. Com-

puting in Science & Engineering, 2(1), 22–23. https://doi.org/10.1109/MCISE.2000.
814652

Fanfarillo, A., Burnus, T., Cardellini, V., Filippone, S., Nagle, D., & Rouson, D. (2014). Open-
Coarrays: Open-source Transport Layers Supporting Coarray Fortran Compilers. Pro-
ceedings of the 8th International Conference on Partitioned Global Address Space
Programming Models. https://doi.org/10.1145/2676870.2676876

Friedberg, S., Insel, J., & Spence, L. (2014). Linear Algebra (Third). Pearson.
Gutknecht, M. H. (2007). A Brief Introduction to Krylov Space Methods for Solving Linear

Systems. Frontiers of Computational Science. https://doi.org/10.1007/978-3-540-
46375-7_5

Gutknecht, M. H. (2011). IDR explained. ETNA: Electronic Transactions on Numerical Analy-
sis, 36, 126–148.

Saad, Y., & Schultz, M. H. (1986). GMRES: A Generalized Minimal Residual Algorithm for
Solving Nonsymmetric Linear Systems.SIAM Journal on Scientific and Statistical Com-
puting, 7(3), 856–869. https://doi.org/10.1137/0907058

Shewchuk, J. R. (1994). An Introduction to the Conjugate Gradient Method Without the Ago-
nizing Pain (tech. rep.). USA, Carnegie Mellon University.

Stathis, P. T. (2004). Sparse Matrix Vector Processing Formats [Master’s thesis, Technical
University of Delft].

Students, N. (2022). DelftBlue Supercomputer [https://tunews.weblog.tudelft.nl/files/2022/09/DHPC_DelftBlue_SR_1707B-
klein.jpg].

van Gijzen, M. B., & Collignon, T. P. (2011). Minimizing synchronization in IDR (s). Numerical
Linear Algebra with Applications, 18, 805–825. https://doi.org/https://doi.org/10.1002/
nla.764

van Gijzen, M. B., G., S. G. L., & Zemke, J.-P. M. (2014). Flexible and multi-shift induced di-
mension reduction algorithms for solving large spars linear systems. Numerical Linear
Algebra with Applications, 22, 1–25.

41

https://doi.org/10.1109/MCISE.2000.814652
https://doi.org/10.1109/MCISE.2000.814652
https://doi.org/10.1145/2676870.2676876
https://doi.org/10.1007/978-3-540-46375-7_5
https://doi.org/10.1007/978-3-540-46375-7_5
https://doi.org/10.1137/0907058
https://doi.org/https://doi.org/10.1002/nla.764
https://doi.org/https://doi.org/10.1002/nla.764

	Introduction
	Implementing the LU decomposition
	The LU decomposition
	Pivoting in the LU decomposition

	Two algorithms to create the LU decomposition
	The sequential algorithm
	The memory-efficient sequential algorithm
	Comparison of the two algorithms

	Backward and Forward substitution

	Parallelising the LU decomposition
	Fortran Coarray
	Distributing the matrix over images
	The distribution used in the algorithm

	Basic parallel algorithm
	Improving the algorithm
	Parallel forward and backward substitution

	Creating the LU decomposition for banded matrices
	Differences between banded matrices and dense matrices
	The maximal_bandwidth function
	Updating the algorithm for full matrices with bands
	Memory-efficient band matrices
	Storing the band matrix
	Memory-efficient algorithm
	Forward and backward substitution

	Results
	Amdahl's law
	Performance of the basic parallel algorithm
	Performance of the efficient parallel algorithm
	Performance of the parallel algorithm for banded matrices
	Performance of the memory-efficient algorithm for banded matrices

	Conclusion
	Discussion

