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Summary

This research addresses the optimization of modular ribbed concrete floor systems as a pathway to-
wards circular construction. Concrete is one of the largest contributors to global carbon emissions,
and floors account for a major share of structural weight. Ribbed floor systems can significantly re-
duce material use and embodied carbon compared to conventional flat slabs. Historically, customized
ribbed slabs aligned with principal stress directions demonstrated high structural efficiency but lacked
scalability and reusability, whereas standardized waffle slabs offered better manufacturability but lower
efficiency.

To address the trade-off of the efficiency of ribbed floor systems and the ability to mass produce
and reuse, a modular approach is implemented allowing for different rib designs. The large amount of
possible configurations of these modular elements leads to a combinatorial problem with a large solution
space. To improve the process and results of this optimization problem compared to heuristic and
generic methods a Deep Generative Design workflow is implemented using a Variational Autoencoder
and a Gradient Descent algorithm.

The modular characteristic of the problem results in discrete data represented by a bitmap. With this
data input structural performance is decoupled from the actual geometry, allowing for a very simple VAE
model with only one layer. This model can quickly train on the structural performance given a dataset
with configurations of modules created in Grashopper with Karamba3D as FEM solver. The VAE model
supports increasing problem sizes without loosing the quality of predictions, but computational cost
increase and the ability to optimize decreases. Different problem sizes require some tuning of the
VAE model with the number of latent dimensions having the largest effect. After training, the VAE can
generate new samples with predicted structural performance.

Training on structural performance allows for a flexible optimization workflow with the possibility to
include a wide variety of optimization objectives and constraints without the need to recreate datasets
or train the model again.

A Gradient Descent optimizer is implemented in the workflow to optimize new generated VAE sam-
ples towards a certain objective. This GD optimizer first draws a large amount of samples in latent
space, decodes and calculates the score. With the best scoring samples a gradient descent optimiza-
tion process is started in latent space. VAEs trained with random created datasets resulted in the best
score improvements, also beating scores found by running generic algorithms.

The optimization workflow is flexible for the implementation of new features. Stock constraints are
implemented in the calculation of the performance score of the optimization process and can thus be
implemented without the need of new datasets and training. The VAE outperformed the evolutionary
solver in a problem optimizing for elastic energy with stock constraints by finding configurations with
1.5% lower elastic energy on average. Also did the VAE use on average only 0.5 of 13 modules that
were not in stock compared to 2.2 modules for the evolutionary solver. Optimizing for embodied carbon
was also done without creating new datasets, but with simply defining new performance functions and
optimization objectives. Other implementations such as the optimization of the placement of columns
and walls and the possibility to include multiple cross sections need changes in the structural model
and thus also require new dataset generation and training and remain challenges for future work.

Vi






Introduction






Introduction

In this section, the research problem, together with its context, objectives, and scope, is explained.
This leads to the main research question, sub-questions, and an introduction to the methodology.

Towards a circular floor design

Numbers often cited for the carbon emissions produced by the concrete industry are around four billion
tons of CO2 annually, accounting for 8% of global emissions. The Netherlands aims to have a circular
economy by the year 2050. From 5 main sectors the government claims the building industry uses 50
percent of our resources and creates a large amount of waste (26).

Although many solutions are being developed, including reducing CO2 emissions from concrete
production and using more timber, no single solution appears to be the silver bullet. All the ways we
built need to be reconsidered. Many guidelines and laws how to make and asses a circular product
are still in development. A study on building design and construction strategies for a circular economy
(8) summarizes 16 design and construction strategies from different studies. A modular floor system
satisfies most of these strategies such as disassembly, adaptability, modularity, prefabrication, stan-
dardization, and component optimization. As concrete floor slabs can be 85% of the total weight of
structures, floors are an important building element to target (19). However, material selection and
secondary material usage are still more challenging building strategies to comply with when using con-
crete. One viable approach towards reducing material use and working towards a circular building
industry is a modular ribbed floor system.

Ribbed Floor systems

One famous example and main inspiration for most research on this subject are the designs of Pier
Luigi Nervi. From 1951-1952 he applied re-usable Ferro-cemento formwork to construct the floors of
the Tabacco Factory in Bologna. The formwork allowed for an efficient shaped ribbed floor design that
needed less material. The regular grid made it easy to re-use the formwork by moving it to a next
section as seen in figure 1.1
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Figure 1.1: Ferro-cemento formwork of the Tabacco Factory in Bologna (13)

The Gatti Wool Factory in Rome built from 1951-1953 implemented the same system but with a
slightly more complicated design. The ribs in this design follow the isostatic lines of principal bending
moments (19), further optimizing the material use.

Figure 1.2: Gatti Wool Factory (13)

Multiple methods are available to find the principal bending moments in a slab. When Nervi devel-
oped his floor systems two main methods of experimental stress analysis were the strain gauge method
and photoelasticity. However, as the strain gauge method was very costly and time consuming and
photo-elastic methods were more suitable for local stress visualization instead of entire structures, it
is believed that Nervi relied more on mathematical methods (12). At the time the patent for isostatic
ribbed floors was filed, the Kirchhoff-Love thin plate theory and the approximate and design solutions
of the partial differential equations, allowed the use of these mathematical methods.



To visualize the isostatics of principal bending moments the isostatic line tool can be used, which
today can be automated in for example GrassHopper. Figure 1.3 shows an example of the analysis
of the Gatti Wool Factory by Halpern. The red lines correspond to the maximum principal bending
moments and the blue lines to the minimal, which are nicely aligned with the actual placement of the
ribs.

Figure 1.3: Gatti Wool Factory Quarter Slab Analysis (12)

The architectural and artistic value of these designs that automatically result from putting these
theories into practice can not be better summarized than by Nervi (13) himself:

“The aesthetically satisfying result of the interplay of ribs placed in this way is a clear re-
minder of the mysterious affinity to be found between physical laws and our own senses.”

Ribbed floor systems offer significant potential for reducing carbon emissions in construction by uti-
lizing less material compared to conventional flat slabs. However, their adoption remains limited due
to challenges in mass production and re-usability. Historically, highly customized ribbed floor systems
have been designed with ribs aligned along principal stress directions to optimize structural perfor-
mance. While these solutions are highly efficient, they are difficult to mass-produce and reuse. In
contrast, waffle slabs, which are easier to manufacture and reuse, exhibit lower structural efficiency
because their ribs do not align with the principal stress directions.

Figure 1.4: Waffle slab (5)
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To address this trade-off, this research implements a catalog of six distinct ribbed floor modules
proposed by Oval (24) as shown in Figure 1.5 designed to balance both structural efficiency and man-
ufacturability, allowing for circularity.

CATALOGUE

0110 0101 0111
0010 0011 1011
0001 1001 1101

Figure 1.5: Catalog of possible modules and orientations presented as bitmap (24)

All modules have a square boundary of 2 by 2 meters and are subdivided by ribs with a spacing of
50 cm. The ribs are aligned at the same location at the boundaries for all modules to ensure geometric
compatibility, while their location is optimized across the module plane. The bi-directional ribs are
represented by quad-mesh patterns, yielding both grid- and pole-like areas. In pole-like areas, the ribs
converge into a pole at the module’s corner points. Also, the ribs must have the same height and width
at the interfaces for compatibility at their interfaces, but throughout the modules this could be varied.

The design problem is encoded using a bitmap, with each pixel corresponding to a module. The
modules are labeled with a binary sequence indicating the presence (1) or absence (0) of a pole at the
module’s corner, starting from the top left and proceeding clockwise. The module catalog consists of
six modules, resulting in 16 different orientations. The modules and their binary sequence labels are
illustrated in Figure 1.5.

Figure 1.6: Module (24)



Research Problem

The six different modules allow for 16 options for selecting a module and its orientation, presented as
bitmaps. Configuring a complete system of these modules leads to a configuration optimization bitmap
problem. The number of possible combinations is m?, where m is the number of different modules and
orientations and p is the number of pixels (modules in the floor). For instance, using all 16 module
orientations for a floor with 20 modules results in 1024 combinations.

Previous research on this modular ribbed floor system ends with a case study assessing several
optimization methods to tackle this problem. Methods are compared based on the time taken to find
the final solution and the quality of the solution based on elastic energy. Heuristic methods reduced
the elastic energy by 21%, while stochastic optimization methods achieved reductions of 25-27%. A
manual selection informed by these results yielded slightly better outcomes that were not discovered
by the previous methods. The heuristic methods allow for scalability to larger floor plans, whereas the
computational time for the optimization methods considered would increase significantly.

By considering multiple load cases and other project requirements, such as stock constraints, a
better optimization method can contribute to the modular floor concept.

Adapting generative machine learning methods to optimization problems within the structural en-
gineering field is the current state-of-the-art. An algorithm that can be trained to yield better solutions
could effectively address this optimization problem.

Research Questions
The main question this research aims to answer is:

"How can the combinatorial problem of modular ribbed floor systems be optimized using
the latest optimization techniques, including generative machine learning?’

The sub-questions to address this main question are:

» Which structural analysis objectives need to be optimized?

» Can an existing optimization workflow be adapted to optimize for these objectives?

» What are the advantages and disadvantages of different optimization workflows?

After choosing the optimization workflow, the following questions need to be addressed:

» Can a heuristic or generic method be used to create an initial dataset with configurations?
* How many samples should a dataset have to sufficiently train the model?

* How is the performance of a configuration evaluated?

» Can stock constraints be included in the optimization method?

» Can the chosen method be used to generate better configurations than solvers in GH?

» Do the generated configurations only use the assigned modules?

» What kind of surrogate optimizer is best to include based on the optimization objectives?
* What are the limits on the use of the method?

» Can the trained model optimize other floor plans?

* How can the method be used by others?

Research Objectives
The objectives of this research are to:
+ Select a better optimization method based on the capabilities to include structural analysis and
the optimization objectives.
» Develop a method that can optimize the configuration of the modular elements based on structural
analysis objectives and other project constraints.
+ Evaluate the performance of the method with a case study.

Research Scope
The scope of this research is focused on the optimization problem, while other issues concerning the
modular ribbed floor system are not considered. The following boundary conditions narrow down the
scope:
» The modular floor system is given, but the script should be structured in a way that allows for
the inclusion of similar but different modules in the future. If the modules share the same data
structure, this should not pose a problem, but retraining may be necessary.
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» The algorithm will seek to find the optimal configuration with modules using a given cross-section.
The optimization of modules itself or using smaller or multiple different cross-sections could
achieve further material decrease, but this is not researched.

» The structural analysis is limited to the chosen optimization objectives and does not include rein-
forcement or connections.

+ At the start more methods are compared and at some moment one method has to be chosen to
further develop. The other methods could still be promising, but are not investigated further.

+ It should be assessed whether it is possible to create a method that can apply to different floor
plans beyond one case study, depending on the available time.

Research Theory and Methods

To solve an optimization problem, knowledge of optimization techniques is necessary. The 10 EC cross-
over module Data Science and Atrtificial Intelligence for Engineers will be used to expand knowledge
before starting this thesis.

Grasshopper (GH) and Python are the most popular software available to integrate geometry and
optimization algorithms in one interface. Grasshopper is accessible to TU Delft students, and many
open-source plugins are available that could assist with structural analysis or optimization such as
Karamba3D for structural analysis with Finite Element Analysis (FEA) and Galapagos for generic
solvers. Python also contains a wide range of open-source plugins, including the latest developments
in generative models with PyTorch.

Research Structure
This thesis consists of three parts containing multiple chapters:
1. The first part covers the introduction and the literature review in which an optimization method
and workflow are selected.
2. The second part contains the methodology explaining the structural model and the VAE workflow
3. The third part is the application were the final methodology is tested and stock constraints and
other extensions and generalizations are implemented.



Literature review

This section aims to provide an overview of the existing state-of-the-art related to the research problem
and methodology.

A literature review needs to address the questions: “Can an existing optimization workflow be
adapted to optimize for these objectives?” and “What are the advantages and disadvantages of differ-
ent optimization workflows?”. Following the literature review, it should become clear which workflow
and methods will be employed and how they fit into the knowledge gap.

Structural optimization is a rapidly evolving field, predominantly addressing optimization problems
with continuous variables. Bitmap problems are common in other fields of study, yet it is unclear
whether structural optimization has previously been combined with bitmap problems. The literature
review should determine if this knowledge gap truly exists.

The literature review will commence with explaining topology optimization of ribbed floors followed
by an examination of the paper proposing the problem: "Nervi Puzzle: a topologically reconfigurable
modular ribbed floor.” The data input for this problem will be described, along with the methods used
thus far to find solutions. Important optimization and machine learning terminology will be summarized
to facilitate understanding of the various methods and workflows. Different methods are assessed by
looking at examples in literature. Limitations of the methods and workflows will also be discussed.

2.1. Topology Optimization of ribbed floors

Topology optimization is an advanced structural design method which can obtain the optimal configu-
ration of a structure by distributing the material, satisfying specified load conditions, performance and
constraints (37). New automated manufacturing methods allow the use of topology optimization for
concrete structures, such as the elastic design of concrete beams (14). The state of the art research
on ribbed floors has an focus on the topology optimization resulting in unique designs, assuming that
economical and practical difficulties can be overcome in the future. Although topology optimization is
not performed in this thesis it provides important background in the considerations to come to different
module designs and it gives insight in the optimization objectives and constraints that can be used here
as well. The topology optimization of a concrete ribbed floor is usually performed in multiple steps, due
to the combination of concrete and the reinforcement, with the inclusion of serviceability requirements
like crack widths leading to extra complexity (3).

In recent years a few custom made ribbed floors prototypes have been developed with the use of
topology optimization and different fabrication methods.

The RMIT University, Melbourne developed a prototype column and slab based on Nervi’s Gatti
Wool Factory and Palace of Labor. A topology optimization method using constraint mapping and
complexity control was adapted to optimize the stiffness of the slabs (19). The number of ribs and
cavities and the continuity of the ribs can be controlled, to result in feasable designs. Digital fabrication
is applied by 3D printing polylactic acid and laser-cut acrylic sheets into a column formwork, combined
with CNC machining plywood sheets for the flat ares of the slab formwork. The use of digital fabrication
and the re-usability of the formwork aim to overcome the labor intensity of Nervi’s original designs.

9
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Figure 2.1: PrintNervi column and slab (19)

ETH Zurich designed another reinforced concrete prototype using a three-dimensional printed plastic-
based formwork (6). The method includes Eurocode (EC2) constraints for deflection, punching, devi-
ation forces and fire resistance. A complete digital design-to-fabrication workflow is used, see Figure
2.2, creating a rib layout from principal bending moments, optimizing a 3D model using GH and FEM
analaysis in RFEM. It also includes the design of the reinforcement and the digital manufacturing of the

formwork.
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The Danish engineering firm Sgren Jensen Designed a ribbed concrete floor based on isostatic
lines for the transformation of a building in Copenhagen, Denmark as seen in Figure 2.3. The design is
for two retail floors, with more office floors above following a design with a flat slab in combination with
some extra columns and beams. The ribs placed based on the isostatic curves were divided in three
categories of 550, 492 and 430 mm in height, allowing the slab thickness to decrease from 300 mm
to 150 mm, necessary for the fireproofing but not for the structural capacity. The ribs are quite tall to
minimize displacements, as was the wish of the client. This project focused on the aesthetic value and
engineering heritage, accepting the high fabrication costs of the formwork, although digital fabrication
was used to some degree. The structural calculation was based on FEM models and hand calculations
and was simplified as much as possible, lacking an optimization step to further decrease material use.
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Figure 2.3: Design of ribbed floors by Sgren Jensen (33)

2.2. Optimization Method requirements

As was shown in Figure 1.5 the different modules can be presented as bitmaps indicating the pres-
ence (1) or absence (0) of a pole. This gives every module a 4 bit code, one for every corner of the
module. 2* = 16 different combinations are possible and all are included in the catalog. A 4 module
design for example can have as a design the configuration shown in Figure 2.4. Counted from the
bottom left to the top right first increasing in x-direction and then in y-direction the bitmaps become:
[0101,1010,1010,0101]. Multiple options are possible to create an input from these bitmaps for the
optimization methods.

One option is to create an array/tensor containing all the information as separate inputs so with the
example that would become: [0,1,0,1,1,0,1,0,1,0,1,0,0, 1,0, 1] Another option is to give the modules
another index from 0-15 or 1-16, so that would resultin: [10,9,9, 10]. This results in less dimensions and
makes it also easier to include an index for an empty space in the floor plan. However, the information
on the individual poles might be more difficult to extract for an algorithm and integer might prove difficult

in training requiring normalization.

To be suitable an optimization method should be able to implement:
+ one of the possible discrete input types

Figure 2.4: 2x2 Module example
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» The ability to learn to predict a performance score for configurations
» The option to generate new configurations with a performance score

2.3. Heuristic Methods

A heuristic method typically employs simplified rules or guidelines derived from established domain
knowledge. These methods can quickly derive solutions based on simple rules.

Heuristic: Support Conditions

The initial heuristic serves as a starting point based on the flow of forces towards column and wall
supports. Ribs are aligned with columns and wall extremities to position poles at these locations.
This method is automated, requiring only boundary conditions as input, without necessitating structural
analysis. In the case study conducted (24), with minimizing elastic energy as the sole objective, it
yielded a solution in under one second.

Heuristic: Stress Field

The stress field method performs initial structural analysis on a continuous plate with the same
boundary conditions. First, the local stress field is computed, and for each pixel P, the module M
that best fits the local stress field based on a scoring system is selected. This ad hoc fitness score is
evaluated as a weighted sum of the average smallest angle between each edge and the local cross field
to find the optimal module Mp. The vertices represent key points in the structural model for evaluating
structural behavior, and the local cross field comprises the principal stress directions.

2.4. Discrete Numerical Optimization

The bitmap encoding of the problem renders the search for modular configurations suitable for discrete
numerical optimization (24). This approach includes stochastic methods like evolutionary algorithms
and simulated annealing. Key definitions include:

» Generic Solvers: Algorithms or software frameworks designed to solve a broad class of opti-

mization problems without being tailored to a specific problem structure or type (27).

» Phase Space: A collection of all possible states of a given system.

» Fitness Function: Computes the desirability of a solution as a single numerical value.

» Extrusion of a Phase Space: Involves sampling solutions from a small minority of phase-space

locations.

Surrogate models serve as approximate representations of complex or computationally expensive func-
tions. They expedite the optimization process by providing a simpler, cheaper-to-evaluate alternative
that captures essential features of the original function.

Simulated Annealing:
The simulated annealing algorithm is inspired by the formation of crystalline structures in cooling molten
metal. The equations used can help locate peaks in the landscape by traversing it in decremental
steps. If the next result is inferior, the algorithm reverts to the previous location. This method is adept
at navigating rugged landscapes, initially identifying a valuable point and subsequently fine-tuning it.

Evolutionary Algorithms:
Evolutionary algorithms utilize biological principles of mutation, selection, and inheritance to improve
solutions iteratively. The algorithm combines two solutions to discover a better one, proving effective
at rapidly identifying reliable intermediate solutions.

Both the simulated annealing and the evolutionary algorithms are available for use in GH.

2.4.1. Limitations of generic optimization methods

While quick heuristic methods yield satisfactory results, they do not guarantee optimal solutions. Generic
methods exhibit increased computation time when scaled to larger problems, potentially missing su-
perior solutions identified through manual methods. In the following sections Deep Generative Models
are introduced to overcome these limitations.

2.5. Generative Design

Due to the modular nature of this optimization problem, an analogy can be drawn with the floor plan
design of modular buildings. Similar to structural optimization, such problems require the arrangement
of predefined units into coherent and high-performing configurations.
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For example, ModulePacking generates floor plans by applying a genetic algorithm to search over
feasible layouts (16). In a related direction, Dai integrates ventilation, daylight, and traffic noise models
into a Bayesian optimization framework for modular building layouts (7). Their parameterization of the
floor plan includes up to 20 variables, such as the number of wings, apartment counts, and unit types.

Beyond algorithmic optimization, Mirra highlights the potential of Al models to emulate three human
learning mechanisms in design: expertise, playfulness, and analogical reasoning (21). Expertise de-
rives from precedents, playfulness fosters innovation, and analogical reasoning enables the transfer of
knowledge across domains, stimulating creativity and discovery. Translating these mechanisms into
computational models implies that generative systems should be able to:

+ autonomously interpret knowledge from datasets,

+ organize and structure knowledge into meaningful categories,

« communicate with users interactively,

* interpret partial or ambiguous information, and

+ provide real-time design suggestions.

Regenwetter presented an overview of Deep Generative Models (DGMs) in engineering design
(25). Figure 2.5 shows an overview of methods split up into different components of the process. The
problem statement already results in the design task, which is the configuration of a set of modules.
The representation method fits best in the category pixels, although the data does not exist of pixels,
but is presented in a bitmap per pixel. The choice of generative model results in a lot of choices to
be discussed in the rest of this literature review. The rest of the literature review mainly focuses on
understanding and comparing Variational Autoencoders (VAE) and Reinforcement Learning (RL) as
main methods.
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Figure 2.5: DGM methods overview, (25)

2.6. Bayesian Optimization

Bayesian optimization is a probabilistic model-based technique for finding the maximum or minimum of
a black-box function that is expensive to evaluate. It is particularly advantageous in scenarios where
function evaluations are costly, time-consuming, or noisy, such as hyperparameter tuning or engineer-
ing design. The key elements of Bayesian optimization are (28):
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» Surrogate Model: A statistical model, typically a Gaussian process, that approximates the ob-
jective function, predicting outputs without direct evaluation.

» Acquisition Function: A criterion guiding the selection of new points to assess based on the
predictive model, balancing exploration and exploitation.

* Iterative Process: The method involves iteratively updating the model with new data points
(function evaluations) and using the acquisition function to determine the next sampling point
until a stopping criterion is met.

Bayesian optimization is particularly valuable when dealing with high-dimensional spaces and func-

tions lacking a closed-form expression, enabling efficient optimization with fewer evaluations.

An discrete form of this method could be used to predict a performance score that is calculated
in Karamba3D for a set of initial samples. After the Gaussian Process is fit with these samples the
surrogate model should be able to pick a new sample that is expected to yield the highest performance
score.

An example of a discrete bayesian optimizer is Discrete-BO (17). The approach uses a Upper Con-
fidence Bound acquisition function, also known as GP-UCB. The method works for discrete problems
because it avoids sampling pre-existing observations by increasing the exploitation-exploration factor
B and adjusting the length scale [. An algorithm is proposed to find g and L.

2.7. Reinforcement Learning (RL)

Reinforcement learning (RL) is a type of machine learning where an agent interacts with an environment
and learns to make decisions by receiving rewards or penalties based on its actions (23). The agent
explores different states and actions, aiming to maximize cumulative rewards over time through a trial-
and-error process as schematized in Figure 2.6 It utilizes a policy to determine which actions to take in
given states, continually updating this policy based on the feedback from the environment.

Agent

State, Reward Action
S, Tt Q¢

Environment }

Figure 2.6: Agent-environment interaction loop (23)

Key concepts of RL are:

» A state s is a complete description of the state of the world. There is no information about the
world which is hidden from the state. An observation o is a partial description of a state, which
may omit information. When the agent is able to observe the complete state of the environment,
we say that the environment is fully observed. When the agent can only see a partial observation,
we say that the environment is partially observed.

» The action space is the set of all valid actions. Depending on the environment, this action space
can be discrete or continuous.

* Policies are rules that guide agents in deciding what action to take. A policy can be deterministic
or stochastic. In deep RL parameterized policies allow for optmization of hyperparameters. Cate-
gorial policies can be used in discrete action spaces and diagonal Gaussian policies in continuous
action spaces.

The Log-likelihood for an action a is logmg(als) = log[Pg(s)]a
» A trajectory t is a sequence of states and actions in the world. Deterministic state transitions

Ser1 = f(Se,ar)
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» The reward function R depends on the current state of the world, the action just taken and the
next state of the world: 1 = R(s¢, a¢, S¢+1 The agents wants to maximize some cumulative rewards
over a trajectory. Two possibilities of a return function are: finite-horizon undiscounted return
R(t) = Zf:o 1, infinite-horizon discounted return R(7) = Z;ozo v

» The RL problem: the goal in RL is to select a policy which maximizes expected return when the
agent acts according to it.

Value Functions Functions to obtain the expected return

1. On-Policy Value Function, V™(s): This function gives the expected return if you start in state s
and always act according to policy m:

Vi(s) =1 ~7mR(T)|Sg =S

2. On-Policy Action-Value Function, Q™ (s, a): This function gives the expected return if you start
in state s, take an arbitrary action a (which may not have come from the policy), and then forever
after act according to policy m:

Q"(s,a) =t ~nR(1) | sp =s,a9 =a

3. Optimal Value Function, VV*(s): This function gives the expected return if you start in state s and
always act according to the optimal policy in the environment:

V*(s) =maxt ~nR(t) |Sg =S
s

4. Optimal Action-Value Function, Q*(s, a): This function gives the expected return if you start in
state s, take an arbitrary action a, and then forever after act according to the optimal policy in the
environment:

Q*(s,a) = maxz ~ nR(T) |so =s,ap=a

2.8. Variational Autoencoders

The Variational Autoencoder (VAE) was first introduced in 2013 with the famous paper from Kingma
and Welling (15). A Variational Autoencoder integrates deep learning and Bayesian machine learning
to achieve a useful non-linear generative dimensionality reduction model. Within its encoder-decoder
architecture, depicted in Figure 2.7, an encoder learns to map a sample x to a lower-dimension latent
representation z, while a decoder reconverts z back to a reconstruction . Both encoder and decoder
undergo training until distortion measures are minimized. This bottleneck through z may lead to infor-
mation loss, which can impede the generation of new data.

encoder decoder

Figure 2.7: Encoder decoder architecture, (31)

Since the first introduction VAEs have been widely used, mainly for processing of image data result-
ing in models that can create new images. In the past few years it is more and more used to optimize
structures. 2D or 3D geometry can be used to apply VAEs for topology optimization (22).

An example is the generation of shell structures (20).

2.8.1. Discrete VAE

VAE'’s are most often used for continuous problems. When the input data represents spatial features
and performance metrics, this could involve multiple channels for the input data and both geometric
and numerical outputs. When 2D or 3D representations of the structure are used, convolutional layers
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could be needed to process the spatial patterns of the structure. After these convolutions the perfor-
mance data can be integrated.

The discrete combinatorial representation of this problem simplifies the data representation signif-
icantly. As discussed before the modules are represented by 4-bits, instead of complex continuous
geometric information. The encoder of the VAE no longer needs to extract complex spatial patterns
using convolutional layers or large dense layers. Simpler models could potentially be used to map
the 1D tensor into a latent space. The compact input data avoids the need of large tensors or high
dimensional feature maps. This can lead to fewer parameters in the model, which makes it easier
to train and less prone to overfitting, especially with smaller datasets. With this simple discrete repre-
sentation of the structure, the model could be more focused on the combinatorial aspects of the design.

To handle discrete data with a VAE several approaches can be considered to include in the archi-
tecture. VQ-VAE (Vector Quantized VAE) or Discrete VAE can be used to quantize the latent space
(32). Instead of using the typical MSE for the reconstruction loss, a categorical cross-entropy could be
used, where each module is treated as a discrete class.

Using this simplified discrete representation could have significant advantages in the training pro-
cess.

» Faster convergence: Reduced complexity of input data can lead to a model requiring fewer
epochs to converge

 Easier Regularization: More predictable data could lead to easier regularization of the model

Smaller latent space: The discrete data representation might be able to use a smaller latent space

compared to a continuous or highly complex representation.

The simple VAE uses a combination of discrete and continuous input and output, the bitmap (dis-
crete) and the structural performance (continuous). This could make the implementation of a discrete
VAE like the VQ-VAE difficult. The question is if it is worth the extra effort for setting up a completely
different architecture.

2.8.2. Proposed Architecture

Selecting an architecture for the VAE depends on the type of data and the complexity of the problem.
The 1D tensor input could be processed using shallow dense layers or simple embedding layers, as
oppossed to deep convolutional networks typically used for image data. The encoder could simply
map the 4-bit values to a latent representation, and the decoder could map it back to the 1D tensor.
When treating each 4-bit module as a discrete class, an embedding layer could be used to map the
4-bit representations to continuous vector spaces before encoding them into the latent space.

The latent space will capture the underlying design principles of how different modules can be
arranged, and the decoder will learn to regenerate valid configurations of the modules. It is possible
that the VAE generates (almost) correct bitmaps automatically and the numeric values only need to be
clipped to 0 or 1. Otherwise, softmax or categorical cross-entropy can be used for reconstruction to
ensure the output stays discrete.

The hypothesis is that a simplified discrete representation with a 1D tensor including the module
bitmaps and performance metrics can be used to train a VAE using a simple VAE architecture with
shallow dense layers and a small latent space. To test this hypothesis the following questions can be
researched:

* Are shallow deep layers (1-2) sufficient to train the VAE?
+ Is a small number of neurons (32, 64, or 128) sufficient?
* Is a small number of latent dimensions sufficient?

The encoder and decoder can be coupled using the architecture in Figure 2.8.
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encoder

Figure 2.8: Encoder decoder architecture, (31)

The loss function is a trade off between reconstruction and regularization, with the left term being
the reconstruction loss and end the right term being the KL divergence. The KL divergence term g is
used to weigh this trade off, being another hyperparameter to tune.

m
Loss(Xy) =Il xy — %y 117 -§ D (4 +10(0hm) + o + OFon) 2.1)

To avoid breaking the backpropagation with autograd, a re-parametrization function is needed. This
function performs a trick taking a sample € from € ~ N'(0,1), which lies outside the model. Using the
hadamard product it is multiplied with the standard deviation, resulting in:

Z=pug+o, ©E€ (2.2)

With the encoder and decoder coupled they can be trained together and the model can be used to
generate new samples as well.

2.8.3. workflow

VAEs have not been used in every sector because of data scarcity. The implementation of a way to
generate data is a very important step. VAE workflows have been adapted for chemical design having
the advantage of large datasets of molecules to train on (11). Mirra (20) used a Grasshopper script to
create 800 3D shell structures inside a human defined design space. Zhang (36) used a latent space
design crossover technique to create datasets of new designs using a generic optimizer. This enabled
a large amount of the dataset to meet the target performance score. With the configuration problem of
the modules the design space is already defined. A question to research is if using a generic algorithm
could be beneficial for the creation of datasets.

2.8.4. Workflow example 1: Optimization of 3D Spatial Truss using VAE
In her thesis, Amy Sterrenberg developed a deep generative design framework to optimize a 3D spatial
truss (29). Although this problem differs from the bitmap issue, it provides a strong foundation for the
workflow and potential methodologies. The workflow consists of the following steps:

1. Creating an input dataset describing the spatial truss structure across various configurations:

using a random number seed to generate 10,000 configurations.
2. Measuring the performance of different configurations, addressing:
« Structural performance (Karamba)
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Translating results into a single numerical performance indicator.
Employing the dataset to train a Variational Autoencoder (VAE) with a neural network architecture.
Generating a new data set based on VAE results.

Incorporating performance and geometry into a surrogate model (neural network) to predict struc-

Both the VAE and surrogate model can be utilized for backpropagation to identify superior so-

lutions within newly generated geometries using a gradient descent optimizer. The surrogate
model maps design geometries to performance indicators with a 80%-20% split.

The thesis concluded that a VAE model could be successfully trained to predict the performance

of geometric configurations. It was also found that an evolutionary algorithm was more effective at
creating an input dataset than a random approach, suggesting potential benefits in applying generic or
heuristic methods to develop input datasets for subsequent processes.
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Figure 2.9: Workflow 3D spatial truss optimization (29)

2.8.5. Workflow example 2: Variational Auto-encoders and Bayesian Optimiza-

tion

Joep Storm (30) developed a distinct workflow
for the high-dimensional numerical optimization of
fiber-reinforced polymers, utilizing a VAE to gener-
ate new samples, while the optimal solution was de-
termined with Bayesian optimization. This is a hy-
brid approach which could be interesting to look into
if it appears to be difficult to find the optimal solution
after evaluating VAE samples. The workflow is de-
picted in Figure 2.10.

Objective function
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Evaluate initial samples in the VAE latent space
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v

Maximize the acquisition function
(grid search or genetic algorithm)

Compute objective function for
this point in latent space
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converged?

optimization
(BO)

[ Optimum found ]

Figure 2.10: Workflow Bayesian Optimization (30)
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2.9. Functional Performance Modeling

As depicted in Figure 2.5 after the generative model is in place there are three main options to perform
the functional performance modeling in the DGM workflow.

With auxillary losses the loss function of the VAE is extended with an additional performance-based
term. The optimization objectives and constraints can be included in this term. A latent space is learned
where high performance designs are clustered. This method has the risk of destabilizing training if
performance loss conflicts with reconstruction loss or KL-loss and might have difficulty in enforcing
constraints.

Iterative training alternates between training the VAE and a surrogate model predicting the perfor-
mance. The VAE is retrained to prioritize designs with better predicted performance, resulting from the
surrogate model. This method requires a good surrogate and can be time consuming.

Latent optimization is performed directly in the latent space to find the best performing decoded
output. In this method latent vectors z are drawn, decoded and evaluated with a performance function.
Gradient descent, evolutionary strategies or bayesian optimization can be used to improve z. This
method is direct, effective, flexible and performance focused. Possible risks are the dependency on a
good trained VAE, high computational cost and the risk of drawing poor starting points.

Latent optimization is the most flexible allowing a performance function to be changed without the
need of training the model again. The optimization algorithm can be run separately.

2.10. Conclusions: Literature Results

The current state-of the-art in optimization seems to lie on the interface of Bayesian machine learning
and deep learning with the VAE and RL models as promising methods. Both share underlying principles
related to handling uncertainty and exploration of complex spaces with a still tractable model. Both VAE
and RL offer possibilities for discrete and generative models and the primary difference between the
models lies in their underlying mechanisms and objectives:
» Objective and Learning Paradigm:
RL: In RL, the focus is on learning a policy that maximizes cumulative rewards through a trial-and-
error approach. The agent learns from the interactions with the environment, exploring various
states and actions to improve its decision-making over time.
VAE: VAEs are generative models that are used for data generation by learning a latent represen-
tation of the input data. They are trained through unsupervised learning, where the model learns
to encode data into a lower-dimensional latent space and then decode it back to reconstruct the
original data. The goal is to generate new samples that resemble the training data.
» Exploration vs. Exploitation:
RL: An RL model balances exploration (trying new configurations) with exploitation (refining
known good configurations) to discover optimal policies and solutions amidst potentially com-
plex reward landscapes.
VAE: A VAE generates samples based on the learned distribution of the input data, focusing on
sample diversity and reconstruction accuracy without an explicit reward mechanism guiding it.
* Handling constraints:
RL: In reinforcement learning, constraints can be integrated into the reward function, guiding the
agent towards compliant designs while learning to optimize other objectives simultaneously.
VAE: Constraints would typically need to be incorporated into the training process or the sampling
method, potentially complicating the generation of valid configurations.

» OQutput Nature:
RL: An RL agent yields outputs (configurations) based on an action-value structure, prioritizing
those configurations that lead to better rewards.
VAE: A VAE generates new samples based on learned distributions, which may not necessarily
optimize any particular criterion unless explicitly conditioned.

Based on these four characteristics should be decided which of the two models fits the problem
better. One option is two create a simplified model with both architectures to see which works better
with a focus on the generative capablilites and the handling of the constraints.

Additionally a hybrid model of VAEs or RL with Bayesian Optimization can be considered. For
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instance, VAEs can be employed to generate possible candidate solutions in the optimization space,
and Bayesian Optimization can be used to identify which of these candidates should be evaluated in
the real world, balancing the need for exploration of the generated space with the efficiency of Bayesian
optimization.

Because the methodology of Reinforcement Learning and Variational Autoencoders are very dif-
ferent it was decided to continue with only one of the methods. The last characteristic gives the use
of a VAE an advantage over RL. Due to the output nature of a VAE, the optimization takes place after
the generation of new samples from a trained model. The constraints and objectives can be changed
after the training process. This makes the VAE more flexible than RL, that needs to define the op-
timization objectives from the start to include in a reward function. Furthermore, prior knowledge of
VAEs obtained during the TU Delft DSAIE course and a lack of knowledge on RL largely influenced
this decision. A basic VAE was set up and experimented with during early stages of this thesis and the
results supported the decision to continue with the VAE method.

2.11. Research Gap

Beyond assisting research into modular ribbed floor systems, this thesis aims to address a gap in
the field of computational modeling. Currently, no previous workflows applied to similar combinatorial
problems in structural engineering have been found. The main difference with the literature discussed is
that it is now proposed to use a bitmap representation instead of the complete geometry of the structure
as input for the VAE. This thesis will determine if and how good an optimization workflow works for a
configuration problem with a bitmap input.
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Structural Model

This chapter covers how from a set of modules a structural model is set up including important assump-
tions and limitations. The metrics calculated in the structural analysis are explained together with the
optimization objectives and constraints important for the design of ribbed floors.

3.1. Module Catalogue Design

The geometry of the modules begins with a wireframe structure of the ribs for each module as seen
in Figure 3.1. In GH the individual lines of the modules can be extracted. The structural analysis is
performed with the Karamba3D plugin for GH, by means of analyzing a set of beam elements. The
lines extracted from the modules can be used to define beam elements.

+
+

0.250 0.277 0.304 0.311 0.338 0.369

Figure 3.1: Module designs in Rhino8 with weight in ton/m? with a 20 cm by 10 cm cross section.

The rib depth and width must remain consistent at the interfaces of modules for physical compat-
ibility, unless detailing of the connections could provide otherwise. During the optimization process,
these dimensions could vary across all modules, or a constant interface value may be assigned while
differing dimensions are used throughout the remaining modules. Additionally, material properties may
be adjusted, as utilizing higher or lower quality concrete may influence the total embodied carbon of
the floor modules. However, as the emphasis of this thesis is on the optimization of the configuration
of the modules and not the module design itself, most parameters are kept fixed as much as possible.

The rib dimensions are set to an equal value for all modules. This way the normal ribbed floor is the
lightest and modules with more poles become heavier. Minimizing weight will punish heavier designs.
Modules with more corners will show less deflections and elastic energy so it is possible to look for a
balance between these two conflicting objectives.

Alternatively, it was considered to tweak the rib dimensions per module to make all 6 modules equal
weight. In this way, it is not possible to minimize the mass of the floor configuration as all modules have
the same weight. Minimization of elastic energy and/or displacement can be performed to find an op-
timized design. This alternative was not chosen as an optimization of the cross-section dimensions

23
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would be needed to reduce the embodied carbon in the structure.

3.1.1. Connections

As previously mentioned the simplification is made that the whole floor is assumed to be one system of
ribs all completely rigid connected. A modular system would need connections between the modules
that ensure it can be disassembled. Modular floors are very common, but usually they are connected
in a permanent way or are simply supported on walls or beams. Demountable systems are still very
novel, due to their expansive nature. The temporary courthouse in Amsterdam connects hollow core
slabs with bolts to the widened bottom flange of steel beams, see Figure 3.2 (18). This connection
enables to transfer horizontal forces and torsion as well. With this modular system multiple modules
are needed to cross a single span so they also have to be connected to each other mid span. To make
a similar connection for every side of every module would be complicated and expensive. A simpler
connection might be favorable that does not allow for diaphragm action in the floor, but only transfers
the shear force and moment. Further investigation into the connections is out of scope for this thesis

If the connections would be included in the model, that could be represented by adding hinges
between the beams at the connections of two modules. In Karamba3D a moment connection can be
made by adding a rotational spring stiffness. Depending on how stiff the connections are, mainly the
displacement will be influenced. A very stiff connection will be closer to the completely fixed connection
that is assumed, and a lower stiffness will increase the displacement as the hinges result in a kink in
every module connection. It would only make sense to include the connections in the model if this
stiffness is known, but it can be said for sure that the displacement will increase when adding multiple
joints in one span.

Figure 3.2: Demountable moment connection (18)

3.1.2. Multiple cross sections

When including multiple different cross sections in a configuration the simplification to model the mod-
ules as one continuous structure causes some problems. To have the floor at an equal level vertical
eccentricities are needed for modules with smaller cross sections, see Figure 3.3.
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Figure 3.3: Drawing of compatibility issues with multiple cross sections

When two modules are modeled separately and connected, the beam in between the two is modeled
twice, see Figure 3.4. For the beams in between two modules, one of the cross sections could be
selected, or half of both could be modeled with an inward eccentricity. Other compatibility issue are the
edge beams of the floor.

Figure 3.4: Overlapping beam between two cross sections

Different cross sections also cause vertical jumps in beams. One question is what the effect of the
shear forces is at these interfaces. One more practical question is how to model the edge beams of the
modules. It could be unpractical when there are vertical jumps and different thicknesses, especially at
columns and walls. An option to overcome this is to keep the cross sections of the edge beams of the
modules constant and only vary the inner beams as is done in Figure 3.5
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Figure 3.5: Jump in cross section with outer beam kept constant

3.1.3. Floor Layout

To start with a more basic structural model symmetric floor layouts are considered with the smallest
one being 2 by 2 modules (2x2), being 4 by 4 meters, and the largest one being 5 by 5 modules (5x5)
being 10 by 10 meters. The smallest designs might not always be the most efficient and the largest not
always feasible in terms of the large span, but that is not always important in case of researching the
scalability of the optimization method.

Furthermore, some simplifications are made to the modules that are important to consider to make a

modular system work in practice. A configuration of a set of modules is now combined with the designs
in Figure 3.1. From this wireframe duplicate lines at the interfaces are removed and a set of beam
elements is created. This way a connection between two modules becomes one beam, which in reality
would not be possible in a modular system. As a result the system is now modeled as a whole floor
with all completely fixed connections.
Another simplification is that reinforcement is not implemented in Karamba3D. That causes problems
for some calculations Karamba3D can perform such as utilization. Instead of including reinforcement
directly, Eurocode checks for the ratio of reinforcement are performed. Including the reinforcement in
the structural model would add another workflow to the optimization process adding a lot of computation
time to the dataset generation process.

3.2. Structural Model

For every configuration the lines are collected, duplicates removed and the beam elements are created
and can be used for the model assembly. To all beams the same cross section is assigned with the
beam height, width and material. In the model assembly, the supports and loads need to be defined
as well.

3.2.1. Supports
The structure is assumed to be on infinite stiff simple supports on the four corners. All translational
degrees of freedom are fixed and all rotational degrees of freedom are free.

Another option would be to make the supports translational and rotational fixed. In the 4 modules
grid example this would greatly reduce the displacement from 10 to 4.4 mm. The shear force would
stay the same and the moment would shift lowering the moment at mid span and introducing hog-
ging moments at the supports. Introducing these hogging moments would require a different kind of
reinforcement at the connections. One could decide to use completely fixed supports to lower the dis-
placement as this often is the limiting factor. In this case it was decided to use the simple supports as
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this is assumed easier and more workable to achieve in practice.

3.2.2. Loads

In Karamaba3D it is possible to define different loads and load cases. The self weight is considered as
a gravity load G and a uniform load as Q. To project the uniform load on the rib structure it is possible
to mesh the floor area where the load acts on. Karamba3D automatically distributes the load over the
beam elements. It is possible to generate the loads on the beams as either point loads or line loads,
see Figure 3.6. For the regular grid the distributed load will be evenly distributed over the ribs for a
mesh resolution smaller than 0.25 meters. For modules with more poles the mesh resolution and the
choice for point or line loads does have an effect on the distribution of loads, but it has a very small
effect on the maximum stresses and displacements, so a mesh resolution of 0.25 meter is preferred.
Line loads are used as that is seen as a more realistic representation.

(a) Line loads with 0.1 meter mesh resolution (own work) (b) Line loads with 0.25 meter mesh resolution (own work)

(c) Point Loads with 0.25 meter mesh resolution (own work)

(d) Point Loads with 0.1 meter mesh resolution (own work)

Figure 3.6: Projection of loads with different mesh resolutions

The load combinations considered are ULS and SLS with self weight G and a distributed load Q.
The ULS and SLS Load combinations are.

ULS = 1.35G + 1.5Q (3.1)

SLS = 1.0G + 1.0Q (3.2)

3.2.3. Analyzing the model
After the model assembly the analyze component can compute the mechanical response for each load
case. For both load cases the model returns the maximum nodal displacement and the structures
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internal deformation energy or elastic energy. The maximum displacement is stored for the SLS load
case and the elastic energy for the ULS load case. To keep computation time to a minimum only one
more calculation is added. The beam forces component returns the forces at both ends of a beam
element for a specific load case. The maximum shear force and moment are stored for the ULS load
case. Together with the mass, the displacement and the elastic energy, a total of 5 performance metrics
are stored every time the model computes a module configuration.

3.2.4. Verification of the structural model
A first check if the model is functioning properly is to visually look at the displaced result after running
the model analysis.

Figure 3.7 shows that all beams are correctly connected at all the joints as there are no disconti-
nuities in the displacements. The displacement field is also what is expected from a symmetric simply
supported slab. Although easier to see moving around in the Rhino viewport, the displacement is zero
at the supports and the beams can rotate as the rotational degrees of freedom are free. The floor
follows a parabolic displacement towards the middle in both directions. Giving the outer beams an
eccentricity inwards results in a larger maximum displacement (about 2%) and slightly higher forces as
well, but has no large effect on the model. In the final model the eccentricities are ignored as the effect
is small and not important when methods are compared with the same structural model.

[T res.disp.[cm]
[ 0.00e+00
[ 1.01e-01
[~ 2.03e-01
3.04e-01
[ 4.05e-01
5.07e-01
6.08e-01
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8.11e-01
9.12e-01
1.01e+00

X

Figure 3.7: Displacement to check if all beams are connected

The Karamba3D beamview element also allows to see the forces acting on every element. Con-
sidering the ULS load combination with self weight and a distributed load of 5 kN/m? the moments
and shear forces are shown in Figures D.1 and D.4. The model view element gives the support re-
actions being 42.15 kN for every support, matching the V, in Figure D.4 and resulting in a total of
168.6 kN. With Q being 16m? * 5kN/m? = 80 kN and G being 3600kg = 0.01 = 35.316 kN that results
in 1.35 * 35.316kN + 1.5 * 80kN = 168.6kN, using g = 10 m/s?.

The same grid structure is modeled in RFEM for further verification. Considering the same loading
conditions the maximum M,, = 13.35 kNm and the maximum V, = 21.08 kN, see Figures D.3 and 3.9b.
The displacement of 9.9mm also closely matches the displacement found in Karamba3D with 10.0mm.

3.2.5. Limitations of the structural model

The structural model using Karamba3D in GH for the structural analysis is limited to shell and beam
elements. Although it is possible to assemble a model representing a ribbed floor using concrete beam
elements, it is not possible to include reinforcement in the concrete structure. Due to the very limited
capacity of concrete without reinforcement, it is difficult to analyze the structural behavior. Large ten-
sional forces and large shear forces can cause the model to show extremely high utilization values,
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(a) My, for ULS with 5 kN/m? distributed load (b) V, for ULS with 5 kN /m? distributed load

Figure 3.8: Forces with ULS loading

(a) My for ULS with 5 kN/mz distributed load (b) v, for ULS with 5 kN/mZ distributed load

Figure 3.9: Forces with ULS loading, see Appendix D for larger size figures

making utilization tools in GH not very useful for concrete structures.

For a more sophisticated structural analysis of ribbed floor-systems in other research (6) the soft-
ware Dlubal RFEM is used. This software gives more possibilities to model the structure in more detail
with reinforcement and perform code checks. However, the method in this thesis requires to run a struc-
tural analysis a numerous amount of times, (probably 10,000 - 60,000 times) thus to create datasets itis
necessary to do this in the GH environment with a minimal computation time and direct export of results.

To overcome this issue, the datasets are created storing the mass, displacement, and elastic energy
and the maximum values of the moment and shear force. Code checks can be done outside of the
dataset generation decreasing the computation time during this step. Two options arise:

1. Train the VAE to predict all the structural data

2. Compute performance scores with the datasets generated and train the VAE to predict this nu-
meric score

Both options can be done with very simple calculations in python, which should make the compu-
tation time minimal.

3.3. Optimization Objectives
The design of concrete structures can be distinguished in two categories, performance-based and
code-based design (4). Concrete performs good under compression and bad under tension, resulting
in the need for reinforcement. The cracking of concrete and the yielding of steel makes the behavior of
concrete highly non-linear and makes the use of a simple linear-elastic analysis difficult. Linear elastic
modeling can still be used for preliminary design (2) to calculate certain performance based measures.
According to article 5.4 from NEN-EN 1992-1-1+C2+A1 linear elastic analysis can be used to calculate
dimensions of elements for ULS and SLS conditions.

However, to asses if a structure is safe code compliance is needed. Code compliance can be
integrated in parametric design tools to make code-based designs. Witheley (35) performed a code-
based grillage optimization of a ribbed floor using the internal bending moments and cross-sectional
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areas of beams as constraints, minimizing the volume. In this case the cross-sections are already
set but similar code-based constraints can be used to perform code-checks and assign scores to the
results.

This section explores which performance based objectives and code-based constraints can be used
to asses the structure. In the next chapter these measures are combined into a performance score.

3.3.1. Performance based objectives
In structural optimization common objectives are minimization of mass, elastic energy or compliance.

Elastic energy is the energy stored in a structure due to deformation under applied loads.

1
U=§f0'2€d (3.3)

Compliance is a measure of how much a structure deforms under a given load. It is defined as the
work done by the external forces on the structure, which is equal to twice the elastic energy for linear
elastic materials

C=FTu (3.4)

In many structural optimization problems, minimizing compliance is a common objective because it
leads to stiffer structures. Elastic energy is proportional to compliance C = 2U so minimizing one will
also minimize the other.

Both mass or compliance or elastic energy need certain constraints when minimizing. Without
correctly defined constraints minimizing mass will lead to very light structures that cannot fulfill their
function. Minimizing for compliance can lead to very heavy structures that are extremely stiff. This is a
inverse relation that cannot be simultaneously minimized both, resulting in a trade-off.

The goal of reducing embedded carbon in this modular and circular floor-system makes it logical
to minimize the mass in the optimization process and not stiffness. Constraints to the stiffness can be
set including constraints on the displacement. The workflow allows for minimization of either mass or
elastic energy with a combination of constraints.

3.3.2. Code based constraints
The reinforcement makes concrete highly nonlinear when cracking. To ensure structural safety and
comply with serviceability criteria some code based constraints can be included in the design process.
These measures do not necessarily need to be minimized, but do need to stay below a certain threshold
to allow for a design to be valid. To explore the code based constraints a 20 cm by 10 cm cross section
with concrete class C30/37 is used with a 2 by 2 module floor plan.

Moments

According to article 6.1(9) of EC2 the maximum reinforcement ratio to prevent brittle failure of the
concrete is p1max = 1.85%. The amount of reinforcement required should stay below this maximum.
With the moment and cross section known this is a simple check to see if the required reinforcement
is reasonable.

Mgq
£,20.9d

< plmaxbd (35)

Assuming d = h — ¢ = 200 — 30 = 170mm, Asmax = P1maxbd = 0.0185 % 100 * 170 = 314.5mm?.
Which is about one 20 mm diameter strand that should easily fit inside the cross section.

With all parameters known we can also see that Mg, should stay below f;,;0.9dp;mqxbd = 435 *
0.9 %170 % 0.0185 * 100 * 170 = 20.93 kNm

The moment at which cracking occurs is assumed to be the moment where the tensile strength of
the concrete is reached.
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fctbh2 2.9 * 100 * 20072
cr = 2 = 2

= 5.8kNm (3.6)

After cracking, the concrete in tension is not as effective, and the beam’s stiffness is dominated by
the steel reinforcement and the concrete in compression. After cracking, the bending moment is redis-
tributed, and the stiffness reflects the contribution of reinforcement and compression zone, resulting in
a reduced stiffness.

Shear Force
The shear stress for which shear reinforcement is needed is

Vrae = Umin = 0.035  k3/2 % \[f, = 0.035 % 2.03/2 /30 = 0.54 N/mm? (3.7)
VRa.c = Vminbd = 0.54 * 100 * 170 = 9180N = 9.2kN (3.8)

A simple check if shear reinforcement is needed is then
Vea < Vra,c (3.9)

The higher the shear force above Vg, . the more shear reinforcement is needed with a maximum of
Vrdmax = VRamaxbd = 542 100+ 170 = 92.14 kN

Displacements

Displacement is often a governing measure in designing floors and beams. The following definitions
of maximum displacement were used to analyze and score a module configuration.

Under SLS conditions according to A1.4.3 from NEN-EN 1990+A1+A1/C2/NB floors carrying walls
vulnerable to cracking the deflection should stay below:

Winax = /500 = 0.004 * 2 * 2000 = 8 mm (3.10)
And for other floors and roofs for aesthetics the deflection should stay below :
Winax = 1/250 = 0.004 % 2 ¥ 2000 = 16 mm (3.11)

The structural analysis results from the configurations in Figure 3.10 are compared in table 7.9. The
first and last designs are the ones with the lowest and highest mass. The second design has poles at
the columns and the third one also has a pole in the middle. The two other designs are randomized.
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Figure 3.10: 2x2 Module samples to compare

Table 3.1: Exploration of different design constraints

Modules Mass [ton/m?] | Mygq[kNm] | Vzgy[kN] | d [mm]
Grid 0.225 13.34 21.07 10.13
4 Corners | 0.252 11.33 9.71 9.50

8 Corners | 0.286 10.97 11.10 8.36
Random 1 | 0.306 15.88 21.67 8.95
Random 2 | 0.297 17.36 21.78 9.05
Heaviest 0.344 12.10 12.74 8.30
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From Table 7.9 it can be seen that My, gets close but stays underneath the maximum value Myp,.
Vzgq however, stays far below Vzp,4, but is 1-3 times larger than Vzg4 .. A lower value of Vzg,; means
less shear reinforcement is needed, which would lead to less material use. So designs with Vzg, higher
above Vzg,4 . could be punished. The shear seems to be divided in two categories and does not seem
to follow one distribution.

The designs that were expected to perform better indeed have lower moments and shear forces,
which occur at positions were they are to be expected. Maximum shear force at the supports and max-
imum moment at the midspan. The not symmetric randomized designs have the highest moments and
shear forces. The forces are not spread equally to the supports leading to peaks in shear forces and
moments.

Design against punching, fire and deviation effects of curved reinforcement are important in ribbed
floors design (6), bit might prove difficult to implement only using Karamba3D.

Punching failure: right now a slab is excluded from the model but the connection between beams
and the column can still be critical because of high shear forces causing punching/shear failure. Ways
to prevent punching failure are to apply mushroom columnheads or designing a smooth transition be-
tween the columns and ribs. The fact that the modular elements are not designed to all have columns at
all four corners, makes it difficult to implement a smooth transition in the design. Some kind of column
head could of course be possible assuming a connection could be made to the modules that allows for
disassembly. For this thesis it is assumed that a column module connection can be made that ensures
punching shear at the columns is not governing.

Curved ribs and moments: All modules are designed with ribs consisting of straight elements with
kinks at most of the connections between different ribs. Ignoring the reinforcement or assuming the
reinforcement is also kinked and not bend, there is no deviation force due to curved ribs in between
two connections.

Fire safety: Eurocode 2 REIGO0 fire resistance class gives two options for enough concrete cover
to protect the reinforcement. b,,;, = 120 mm with minimum bar axis distance a,;;;, = 25 mm or
bmin = 100 mm with minimum bar axis distance a,;;, = 35 mm

3.4. Selecting a cross-section

In the GH script the different concrete classes can be selected as material and C30/37 is selected.
From the material properties and the cross-section some estimations can be made for the maximum
moments and shear forces this cross-section can take up. These maxima are based on rules for
maximum reinforcement in relation to the rib dimensions from EC2.

VRd,max = de,maxbd =542 bd (3.12)

Vra,c = Vminbd = 0.54 x bd (3.13)
bh?

o = f“T (3.14)

Mgy = fydo-gdpl,maxbd (3.15)

The following cross-sections were considered:



3.4. Selecting a cross-section

Table 3.2: Different cross sections and their resistance

Cross-section | height [cm] | width [cm] | Mgpg[kNm] | Vrg[kN] | Vramax[kN]
20cm x10cm | 20 10 27.8 9.2 92.1

30cm x15cm | 30 15 105.3 19.7 219.5
40cm x 20cm | 40 20 263.7 31.4 401

To select one of the cross-sections above the structural analysis is performed for all three cross-
section options with only the normal grid module increasing from the 2x2 to the 5x5 problem. For the
20 cm by 10 cm cross section the larger floor plans were not considered due to the limited moment
capacity.

Table 3.3: Exploration of different cross-sections, 20cm x 10cm

20x10 | Mgy[kNm] | Vg4[kN] | mass [ton/m?] | d [mm] | elastic energy [KNm]
2x2 13.3 211 0.22 10 0.89
3x3 32.6 46.9 0.22 55 11
Table 3.4: Exploration of different cross-sections, 30cm x 15cm
30x15 | Mgy[kNm] | Vgq[kN] | mass [ton/m?] | d [mm] | elastic energy [kNm]
2x2 18.0 28.7 0.51 3 0.33
3x3 43.8 63.4 0.49 15 3.9
4x4 81.2 111.6 0.48 49 23
5x5 130 173 0.47 121 90
max 105.3 220 - nx4 -

Table 3.5: Exploration of different cross-sections, 40cm x 20cm

40x20 | Mgy[kNm] | Vgq[kN] | mass [ton/m?] | d [mm] | elastic energy [kNm]
2x2 25 39 0.90 1 2

3x3 59 86 0.87 7 2.3

4x4 110 151 0.85 21 13

5x5 176 236 0.84 53 52

max 264 401 - nx4 -

The 30cm x 15cm cross sections was selected as most interesting to use because the maximum
moment resistance and maximum allowed displacement are surpassed somewhere half way when
increasing the floorsize from 2x2 to 5x5 modules. This means that for the smaller problems the mini-
mization of weight should be quite simple, but when increasing the problem size the constraints take a
larger role and only grid modules will not be sufficient.






Optimization Workflow using VAE

In the first section of this chapter the optimization workflow is proposed. An overview is given how this
workflow is developed and how it will be implemented in the following chapters. In the other sections
the VAE architecture and the Gradient descent algorithm and workflow are discussed.

4.1. General Workflow

The optimization workflow takes the following steps:

Floorplan Cross-section Loading Structural metrics  Dataset generation VAE training Performance score  Gradient descent

Figure 4.1: Workflow

Define a floor plan

Choose the modules and their parameters

Choose a structural model and load cases

Select metrics to calculate structural behavior

Select a dataset generation method and calculate the structural behavior

Perform model selection / hyperparameter tuning on the VAE and train the model to predict struc-
tural behavior

Select a performance score to optimize the design for

Generate new samples with the VAE and optimize with gradient descent on the selected perfor-
mance score

ok whN =

© N

The general setup of the structural model and the possible optimization objectives and constraints
and how a performance score can be calculated, were discussed in the previous chapters. The archi-
tecture of the VAE is explained in this chapter. The following sections explain different considerations
in the optimization workflow and how they lead to a number of research questions. These question
lead to numerical experiments with results in the next chapters

4.1.1. Dataset Generation and the effects of problem size and data quality
To train the VAE model a dataset is needed. Datasets are created by storing the bits for every corner
point, a pole (1) or not (0) in one tensor together with some kind of performance. What this performance
is and how to store it in the datasets depends on the rest of the workflow.
Two different approaches for training the VAE were considered:
1. Create one single numeric performance score to train the VAE. This approach was tried first and
showed to work well. The downside of this approach is that the structural knowledge is lost in the
model and the results are completely depended on the definition of the performance score.
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2. Train the VAE on all structural performance data collected. The VAE could learn to predict the
actual structural performance in the measures shown above. With generated samples from the
VAE different optimizations can be performed without training the VAE again.

The first option results in a tensor with one numeric score at the end, and the second option with
multiple values.

For both approaches the questions arises how to create the datasets. The quality of the predictions
of the VAE will be dependent on the size and quality of the datasets. For the first approach it is easy to
create datasets of "good” samples, that have a high performance score. This could be done by using
generic algorithms to create datasets. This is done in chapter 6 to test if the VAE can generate better
configurations than the generic algorithms.

When training to predict all structural data it is not clear what are good samples as it is not yet
defined what good performance is. The effect of different dataset creation strategies, the size of the
datasets, and the problem size on the prediction quality is researched in chapter 7.

To test the effect on the performance of the VAE four different symmetric floor plans ranging from
2x2 modules up to 5x5 modules are considered. All use the same structural model with columns at
the corners and the same loading and cross-sections. The number of possible configurations increase
significantly from 16* = 105 for the 2x2 problem up to 162> = 103° for 5x5 modules.

The 1D tensor is created by first taking the bitmaps of the modules increasing in x-direction and then
in y-direction, as depicted in Figure 4.2. The performance score or in this case multiple performance
metrics are normalized and added to the tensor. The resulting tensor is:

Tensor :[0,0,0,1,0,0,1,0,1,0,0,0,0,1,0,0,0.466,0.234,0.876,0.564, 0.765] (4.1)
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Figure 4.2: Order of modules in 1D tensor

4.2. VAE Architecture

From the literature review the hypothesis arose that a simplified discrete representation with a 1D ten-
sor, including the module bitmaps and performance metrics, can be used to train a VAE using shallow
dense layers and a small latent space. This approach was tested first and is explained in the next
section. Because the VAE architecture in this approach was not designed for discrete problems, al-
ternatives were considered as well. Suggestions from the literature review are to use a VQ-VAE to
quantize the latent space and to use a categorial cross-entropy for the reconstruction loss to further
increase the performance of the VAE.

4.2.1. Shallow VAE

Figure 4.3 shows the architecture of this VAE. An example input is given with the input dimensions
D being equal to 4 times the number of modules plus the number of performance metrics collected.
Because the VAE does not need to extract complex spatial patterns, no convolutional layers are needed.
The architecture is shallow because it only uses a few hidden layers and in this case only one.
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Figure 4.3: VAE architecture

Functions

The used VAE Architecture is based on an example from the DSAIE course used for generating mi-
crostructures. PyTorch is used as main package for the VAE. The VAE is initialized in a class with the
following functions:

» init: initializes the layers that make up the two halves of the autoencoder. This function receives
the hyperparamters.

* encode: Encodes data from real space x to a Gaussian approximation q(z) of p(z|x)

* decode: Decodes data from latent space z to real space x

* reparameterize: Performs the reparametrization trick

» forward: Performs a complete forward pass through the autoencoder

* generate: Samples from the prior p(z) and uses the decoder to generate new data

* loss function: Computes the loss function of the VAE

* performance function: Allows to choose a performance function and the weights

* generate withoptimizer: Samples new data with the decoder and uses the performance
function and gradient descent to optimize the performance score.

4.2.2. Architecture and hyperparameters

This VAE architecture is set up with adaptable values for the input dimensions, latent dimensions, hid-
den layers and hidden units. The defined architecture makes the model symmetric, but this could be
changed. Activation functions for the hidden layers can be changed in the definition of the VAE itself
and are set to SELU activation by standard. The train one epoch function is defined to train the model
for a full epoch. The model can be initialized by defining the number latent dimensions, hidden layers
and hidden units. The input dimensions are given by the input dataset. In the model initialization the
number of epochs and the optimizer can also be chosen, which is by standard set to the Adam optimizer.

This VAE is tested on the simple 4 modules case in chapter 6. This smaller problem allows to test
and compare methods more easily, because solutions for the problem can be found with brute force,
i.e. computing all possible solutions. From this case the problem can be extended in more complex
cases for which the VAE should give better and quicker results than the previously discussed heuristic
and generic methods.

4.2.3. Training

During the training of the VAE the workflow as seen in figure 4.3 is used. In the VAE class a model
is initialized by defining the number of latent dimensions and hidden units and beta, the weighing for
the KL divergence loss term. During the training process the model with the lowest validation loss is
saved, with the goal to have a resulting model that can predict the structural behavior of a random
bitmap sample as good as possible. For every dataset the training process has to be done separately.



38 4. Optimization Workflow using VAE

4.3. Gradient Descent in latent space

To find an optimized solution when generating new samples the workflow in figure 4.4 is followed.
A model trained for a specific dataset is loaded. The gradient descent function samples from the
latent space and after decoding and selecting a performance function, optimizes for this function. The
resulting predictions can then be denormalized to the real metrics, so they can be compared with a GH
calculation.
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Figure 4.4: VAE workflow with gradient descent check if arrows are correct

The performance function takes a decoded sample and the mode that should be used, defin-
ing a specific performance function from a number of options. With the performance metrics different
combinations of scores can be defined. To combine multiple metrics into one score, the metrics are
kept normalized during the calculation of the score. From all the defined performance functions one
can be selected every time the optimizer runs.

Denormalization is performed with the denormalize function using stored min/max values from
the normalization.

The generate withoptimizer function takes the number of samples, the number of steps, the
learning rate and the performance function as arguments. The number of samples is set to 1, but could
be increased to n to initialize a latent matrix z with shape n, latent dim. Decoding the samples
returns a shape [n, input dim]. When more than 1 sample is used a shared optimization process
using batched gradient descent needs to be applied to improve all n samples in parallel. This method
allows more design candidates in one run.

The number of steps is the number of optimization iterations. It determines how long the optimization
will run. More steps gives more time to converge and could potentially lead to to better results. Too
many steps could lead to overfitting.

The learning rate controls the size of each gradient step. A larger learning rate results in faster
convergence but gives a higher risk of overshooting or instability. A smaller learning rate is slower but
a safer way to run the optimizer. The learning rate is set to Ir = 0.01 by standard and can be altered.

An early stopping mechanism is implemented as well to stop the optimizer after a number of epochs
without improvement, considering a certain threshold.

After running the generate withoptimizer function the track and export function can be
used to plot and save the results. In this function the performance metrics are denormalized and the
now continuous bitmap values are clipped to 0 or 1.

The resulting sample is not necessarily the best performing one, it can also be under or overpredict-
ing the structural behaviour the most. The only way to know this and filter these results out is to run the
samples in GH. Two options are considered to overcome this issue. The first one is to use the parallel
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optimization of multiple samples to come to a set of design candidates of which the best one can be
selected. The other option is to save for example the last 100 samples of the optimization process and
calculate the actual performance. Because the difference in the last 100 samples might be small, there
is not a lot of improvement in the end, the samples may all contain the same bad predictions. The first
option results in more varied designs, with higher changes one of them being correctly predicting the
good performance.

Using multiple latent vectors in parallel encourages the diversity in designs, reducing the risk of
converging to the same overly optimistic prediction. It increases the change that at least one candidate
is close to the true optimal. This method still relies on the predictive accuracy of the decoder. It also
requires more post-processing running all samples in GH to evaluate the actual performance. It might
also require more computational resources.

4.3.1. Resulting algorithms

The difficulty of controlling the GD algorithm led to different approaches for the optimization process.

The first algorithm is from now on referred to as the random sampling algorithm. Instead of per-
forming gradient descent it draws a large number of samples z and calculates the performance score.
This process is very quick meaning 100,000 samples can be evaluated in a few seconds. Only the
best sample is saved, the memory is cleared and multiple runs are performed. Because only the best
of 100,000 samples is stored, the performance is always optimistic. An evaluation in GH of all best
samples should determine the actual performance scores.

The second algorithm is referred to as the GD optimizer. This is the optimizer described in the
previous part of this section. A drawback of this method that if it starts with poor starting points the
optimization will often not be able to end in a good scoring result. To overcome this during further
application, this algorithm was combined with the random sampling algorithm.

The final algorithm is the GD optimizer with initial random sampling, combining the previous two
methods. To ensure good starting points first a number of samples z are drawn and only the best
scoring one is optimized with the GD optimizer.

Although the The GD optimizer with initial random sampling performs the best, the experiments
with the other two algorithms also include important results, and all three are included in the following
chapters.






Performance score

If we only minimize for mass, a design consisting of only the lightest regular ribbed modules [0000]
will be the best. Other objectives and constraints need to be included in this optimization process as
well. To implement code based constraints in the performance based objective mass or elastic energy
a performance score can be used.

For this optimization problem there are two distinctive categories of constraints; structural perfor-
mance based and stock constraints. In this chapter the general implementation of the performance
score is discussed. In chapter 8 the performance score is extended with stock constraints.

5.1. Structural Performance with penalties

Using penalty functions to deal with constraints is a common approach in optimization problems (10).
With modules of all equal rib dimensions the regular rib module has the lowest mass. To produce
interesting results the design with only regular rib modules should not satisfy the other constraints
otherwise this option is automatically the best.

To combine different performance metrics and improve model training the normalization is applied
to all datasets with the following function, resulting in a score between 0, lowest and 1, highest value.

lized data data — min(data) 51
normalized data = max(data) — min(data) ol

To the mass, penalty values for the code based constraints can be added. Two options are consid-
ered, a linear and a squared penalty. The penalty is calculated as the (squared) difference between
the calculated value and the defined maximum value. The resulting penalties from multiple constraints
can be added with additional weighing factors to tune the optimization process.

Algorithm 1 Linear displacement penalty

if d < d;q, then
dpenalty =0
else
dpenalty = (d — dmax)
end if

The penalties can be added to the normalized values of the mass with a performance function. The
scoring can be tuned with using a weight «

Poveral = MASSnormalizea T & * penalty (5.2)
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Algorithm 2 Squared displacement penalty

if d < d;q, then

dpenalty =0
else

dpenalty =(d- dmax)z
end if

5.2. Python Application

In the python script the performance score can be set for both inside and outside the VAE model. Inside
the model the performance function can be used to evaluate performance scores when optimizing in
latent space. Outside the model the performance can be calculated of samples that are coming from
GH.

The performance function needs samples as input and allows you to set a mode, constraints, penalty
weight, stock weight and available modules. From the samples to be evaluated the performance
metrics are extracted. The mode defines which performance function to select, some examples are:
min mass,min energy, constrained min mass linear,andconstrained min mass_ squared
using the linear and squared algorithms above. The constraints that are passed to the function need
to be normalized. This can be done with the normalize with reference function, that uses a
perf.min () and perf.max () saved during the normalization of the dataset as a reference to nor-
malize the constraints. The penalties are computed with torch.relu(displacement - con-
straint). After the difference between the performance metrics and the constraint is calculated.
torch.relu filters out the negatives values, so when the constraint is not violated is passes zero.
The penalties are first summed and then added with a penalty weight to the performance objec-
tive. Multiple different weights for constraints could be implemented by changing the performance
functions that are being used. The performance function that is used inside the VAE to optimize, takes
the mean of the resulting score to ensure the gradient magnitude stays consistent regardless of how
many samples are in the batch.

Due to the normalization the resulting score, if the penalty weights are not too large, are usually
between 0 and 1. However the performance objective is minimized, so if a sample is found that is
better than the dataset used for the normalization and there are no or small penalties the score will go
below zero.



Performance score based training

This chapter covers the alternative approach of performance based training that was abandoned at
a later stage of this thesis, but still gives a lot of insights in model selection and dataset generation
strategies. Performance based training means that the VAE model is trained on the the calculated
performance score, a single numeric value. Performance based training was done for two cases,
a symmetric 4 module case and a more complicated 13 module floor plan. The dataset generation
depends on the values that were collected, which are mass, elastic energy and displacement. The
VAE training is done after calculating the score. If another performance score or optimization objective
is desired the VAE training and optimization has to be redone but the dataset generation not.

6.1. Performance score

For this chapter another structural model was used also considering a slab, columns and wall, which
were removed later to make the structural analysis much faster. Note that this is the only case in which
a score is maximized and not minimized.

The mass of the entire model is directly available after assembling the model. The maximum dis-
placement and change in elastic energy are available directly after analyzing the model. Because other
measures such as utilization are available after running another Karamba3D component, slowing down
computation time for dataset generation, they are left out in this case.

A dataset is generated by running it through the GH script recording the bitmaps together with the
outputs from Karamba3D for mass, displacement and elastic energy. Before a performance score can
be calculated these results have to be normalized with the following function:

liveddata = data — min(data) 6.1
noTmantzedaata = o ix(data) — min(data) e

After normalizing the different measures there is a dataset with values between 0 and 1. Because
we want all three measures to be minimized and a higher score to be better the performance is simply
calculated as:

Pmass = 1 —mass (6.2)

Pelasticenergy = 1 — elasticenergy (6.3)
Daisplacement = 1 — displacement (6.4)
(6.5)

The performance function takes into account the importance of the different structural performance
measures and should be correctly weighed to prevent a bias for one measure.

Modules with more poles have more ribs and are heavier. These heavier modules result in lower
displacement and elastic energy change, conflicting with the objective to minimize mass. For now some
arbitrary weights were selected to test the VAE.
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Poveral = 0-4pmass + 0-4pelasticenergy + 0-2pdisplacement (6-6)

6.2. Case 1: 4 Modules

When including the performance score at the end of the bit representation it results in a 1D tensor with
17 inputs for 4 modules e.g.
[0,1,0,1,1,0,1,0,1,0,1,0,0,1,0,1,0.450612]

Case 1 has a total of 216 = 65536 combinations, making it possible to use brute force to calculate all
of them. With a simple python script in GH all 65636 combination of a 16 bit tensor are passed through
the structural analysis. The resulting mass, elastic energy and displacement are saved to a csv file.
In python the structural performance score formulas are applied to this dataset. Figure 6.1 shows the
non normalized mass, displacement, elastic energy and the performance score after normalization and
applying the performance score formulas.
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Figure 6.1: Histograms of Case 1: 4 Modules dataset

6.2.1. Hyperparameters
The following hyperparameters are considered for the model selection:

* latent dimensions

* hidden layers

+ hidden units

* kld-loss

The VAE is trained to reconstruct these samples from the dataset. One difficulty that occurs is that
the reconstruction with the standard VAE setup is not forced to reconstruct integers. For the recon-
struction it is possible to clip the values to 0 or 1 afterwards to overcome this.

Table A.1 in Appendix A shows the different inputs for the hyperparameters that were tested. The
simplest model tested was with 1 latent dimension, 1 hidden layer and 10 hidden units. All tests were
done for 10 epochs. The following was concluded on changing these hyperparameters:
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» Changing only the latent dimensions gave the best result for 12 dimensions.

* Increasing the number of hidden layers did not result in a lower validation loss for both 1 and 12
latent dimensions with 10 hidden units.

* With 12 latent dimensions and 1 hidden layer, 200 hidden units gave the best result

* Running the training again with these hyperparamters but instead of 10 epochs, 100 epochs and
an early stopping mechanism with a patience of 10, the best validation loss is 0.0114 and training
was finished after 34 epochs.

+ After removing the best 100 samples the training results in a slightly higher loss as seen in Figure
6.2

» The loss gives an indication how far of the reconstructions are, so 0.011 on a score between 0
and 1 could be good enough to make predictions, a loss of 0.1 might not work. More experiments
on a relationship between the value of the loss and the prediction quality are performed in the
next chapter.
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Figure 6.2: Losses after removal of 100 best samples: best validation loss is 0.0122, with early stopping triggered after 21
epochs

6.2.2. Sample generation

When samples are generated by the VAE generate function these new configurations consist of a
tensor of floats instead of bits. These can be rounded to bits after the generation, but that does not
overcome the problem that the the possible amount of samples to generate are not bound to just
216 = 65536 anymore. So when a certain amount of samples are generated, with afterwards rounding
the floats to bits many duplicate solutions with different performance scores should be generated and
many possible configurations could be missed out. Fortunately the generate function can generate
100,000 new samples and sort out the best ones. Because this does not always result in the best
solution, a function was written that performs these 100,000 generations, stores the best results, clears
the memory, and runs it again.

To validate this method further the 20 best samples were removed from the dataset above to test
if the VAE model was able to generate those configuration without having seen them in training. The
generate function ran 300 times taking around 2.5 minutes every time saving the best of 100,000
generations. Of the 300 best results, 12 times the best possible solution determined by brute force was
found. The calculated performance score of this configuration is 0.6919.

The order in the 300 predictions, the predicted scores and the errors are in Table 6.2. With a average
score of 0.6754 and an average error of 0.0165 below the actual score of 0.6919. However, they are
all higher than the highest performance score in training of 0.6522.
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Table 6.1: Best generations with 4 Modules

Order | Predicted Score | Error

280 0.6653 0.02659
261 0.6662 0.02526
240 0.6684 0.02345
218 0.6702 0.02165
150 0.6745 0.01730
128 0.6757 0.01620
102 0.6776 0.01431
93 0.6778 0.01405
78 0.6792 0.01269
64 0.6809 0.01099
63 0.6811 0.01083
22 0.6875 0.00441

To test it further the training was done again with the removal of the 100 best samples as well.
Removing the 100 best samples the highest performance score is 0.6327.
Again 12 correct best samples were found.

Table 6.2: Best generations with 4 Modules

Order | Predicted Score | Error

28 0.6696 0.02233
40 0.6652 0.02670
91 0.6569 0.03499
129 0.6532 0.03866
135 0.6524 0.03945
165 0.6502 0.04171
190 0.6483 0.04358
230 0.6446 0.04728
246 0.6431 0.04880
254 0.6424 0.04944
285 0.6390 0.05288
295 0.6367 0.05517

6.2.3. Conclusion 4 Module case
With the 4 module case the VAE is able to generate the best sample after removing the best 100
known samples. 12 out of the 300 best sample generations generated the best result known by brute
force. If the best result is unknown the performance of a number of best samples has to be calculated
to validate which are actually correctly predicting a high score and which are over-predicting a non-
optimal configuration. This proves a VAE is able to generate samples that are better than the training

data.
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6.3. Case 2: 13 Modules

For the 13 Module case it is not possible anymore to obtain a brute force dataset with all possible
configurations as this dataset would contain 163 = 105 samples. For this case one of the datasets
has to be chosen. The hyperparameters have to be tuned again as well.

6.3.1. Dataset generation

Different options for dataset generation were considered in the 13 Modules case. The histograms are
shown in Figures 6.3 ,6.4 and 6.5.

1. Random samples can be used to create a dataset with n completely random chosen configu-
rations of modules. A disadvantage can be that a large part of the samples performs badly and
the VAE is not able to generate samples with a high performance score. 17293 random samples
were generated with a best performance score of 0.7778, without removal of samples.

2. Evolutionary algorithm output can be used to create a dataset saving all the outputs from
the generic solver. Because the solver is already trying to optimize the performance score the
samples are expected to yield higher scores, so the VAE can be trained with these higher scoring
samples. After two runs of the evolutionary algorithm and removal of duplicates, the dataset
consists of 7500 samples, with a highest performance score of 0.8284.

3. Simulated Annealing algorithm output After two runs of the simulated annealing algorithm and
removal of duplicates the dataset consists of 4874 samples, with a highest score of 0.8284

4. Combination of Evolutionary and Simulated annealing The Evolutionary and simulated an-
nealing datasets combined consist, after removal of duplicates, of 12014 samples, with a highest
preformance score of 0.8284.

5. Combination of all options to create the largest dataset with some bias for good performing
configurations. After removal of duplicates the All Combined dataset consist of 29307 samples,
with a highest performance score of 0.8284.
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6.3.2. Hyperparameter tuning
To tune the hyperparameters three datasets were combined; 10,000 random samples, 2601 Evolution-
ary samples and 4876 simulated annealing samples. These datasets were used to get a firstimpression
of the hyperparamters and were later extended.

Table A.2 and A.3 show the different combinations of hyperparamters explored. A model with 13
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latent dimensions, 1 hidden layer, 300 hidden units and a kld-loss of 5.00e-4 was chosen.

6.3.3. Dataset Selection

The model selected above was trained with three different datasets. The 17293 Random samples
dataset, the 12378 samples Generic combined dataset and the 29671 samples All Combined dataset.
The training process is shown in Figure 6.6
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(c) Losses using the All Combined dataset: best validation loss is
0.067076, with early stopping triggered after 96 epochs

Figure 6.6: Training losses for three different 13 Module datasets
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6.3.4. Sample generation
The trained model with the lowest loss, resulting from the Generic Combined dataset, was selected to
use for the generation of new samples. From 300 runs of 100,000 generated samples the best one
was selected, resulting in 300 configurations with high predicted performance scores.
The 300 bitmaps were loaded in GH to calculate the actual performance score for these configurations.
Out of 300 samples 22 have a higher calculated performance score than the dataset. The highest
score found was 0.8667, which is also higher than the The manual configuration from the paper (24)
that results in a performance score of 0.8415. Although note that in this paper elastic energy was
minimized, and now a combination of mass, displacement and elastic energy is optimized. Figure 6.7
shows the best 4 configurations.

Interesting to note is that:

» The second best option was found twice

» The manual configuration was not found

» The best sample from the dataset was not reconstructed and found
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Figure 6.7: Generated samples with highest performance score
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Application






VAE predicting structural behavior

In this chapter the VAE workflow is tested predicting the structural behavior of the modular ribbed
floor system. The prediction capability of the VAE is tested on two aspects, increasing the problem
size and increasing the dataset size and/or quality used for training. The datasets are created with
random configurations or using generic solvers optimizing for displacement and storing all results. The
performance based training from the previous chapter is compared with the metrics based training in
this chapter. By the end of this chapter it should be possible to draw conclusions on which model and
strategy to use, also including choice of dataset in relation to the problem size.

Hypotheses: The following effects were expected before starting these experiments:

» The dataset size needs to increase for larger problems to result in the same prediction error.

» The prediction error will be the lowest when using brute force to calculate all possible combina-
tions.

+ Dataset generation methods using a generic algorithm with a bias for certain designs are expected
to work better in VAE training resulting in a lower prediction error.

7.1. Problem Definition

To test the effect of increasing the problem size the structural model is increased in size from 2x2 up
to 5x5 modules, see Figure 7.1. The 2x2 problem has 65,536 possible combinations. The order of
magnitude of the number of combinations increases for the 3x3 problem to 10%, for the 4x4 to 101°
and the 5x5 up to 103°.

Figure 7.1: floor plans increasing in size from 2x2 to 5x5 modules

For this chapter one cross-section was selected, which is kept the same for all problem sizes. The
height is 30 cm and the width 15 cm with a concrete class C30/37.

The same structural model as in previous chapters was used with a 5kN/m? loading and the fol-
lowing load combinations:

53
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ULS = 135G + 1.5Q (7.1)

SLS = 1.0G + 1.0Q (7.2)

As a result from chapter 3 the following metrics were selected to be interesting for the optimization
problem:

+ Mass [ton/m?]

» Maximum Moment [KNm]

* Maximum Shear Force [kN]

* Maximum Displacement [mm]

* Elastic Energy [KNm]

After the selection of the module parameters it is visible that the deflection is the limiting constraint
most of the time. Because one cross-section is kept when increasing the problem size, the smaller
problems might stay within the constraints and the larger problems might not satisfy any of them. This
has no influence on comparing the effect of the problem size and dataset quality and size on the pre-
diction error.

7.2. Dataset creation

For every problem size different datasets are created increasing the number of samples and using
different methods to create the datasets. The evolutionary and simulated annealing solvers can be
used with a fitness on a specific structural performance measure, or random dataset generation can
be used. For the 2x2 case it is also possible to use brute force to create a dataset with all possible
configurations. Appendix B shows all the histograms of the datasets. As the displacement is the limiting
factor in most cases it is used as fitness for the generic solvers.

From the histograms only, a few things can already be noted:

* When using generic solvers the shear force has two peaks. The lower shear force peak probably
corresponds to designs with poles located at the supporting corners and the higher shear force
to designs with one or more non poles at supports. In this case the shear force has less ribs to
spread over leading to higher forces per rib. This is probably also the reason that the shear force
is the most difficult to predict.

» For the 2x2 and 3x3 modules case the two shear force peaks are separated by a region without
any samples and when using random samples there are very few samples in the low shear force
area resulting in a lack of a second peak, see Figure 7.2a and 7.2b.

» The annealing solver results in a much more skewed histogram for displacement. It has more
samples with a lower displacement, which is the optimization target in this case. However, evo-
lutionary datasets seem to lead to better predictions.

7.3. Model selection and VAE Training

for every dataset the following steps are performed in a python script:
Load the dataset csv file

Plot histograms for the dataset

Normalize the data

Train the VAE

Generate 100 sample predictions and export

Calculate 100 samples in GH

Compute the difference between calculation and prediction

NoOkrON =

7.3.1. Model Selection

For simplicity the same architecture and hyperparamters are selected for all datasets. For both encoder
and decoder, unless noted otherwise, an architecture with 1 layer with 200 units is used and 9 latent
dimensions and 5e-4 kld-loss. The training is performed for 100 epochs with an early stopping after 10
epochs without improvement.
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For the datasets with random samples the validation loss is relatively high compared to the generic
datasets. To test if a lower validation loss can lead to even better predictions the VAE architecture is

reconsidered in this case.

Increasing the latent dimensions up to 70 results in the lowest validation

loss. The prediction error does not seem to change much compared to 9 latent dimensions with a
higher validation loss. Because the training is not slower due to the increased latent dimensions it is
kept on 70 for the random datasets.

7.3.2. Prediction quality

To test the prediction quality of all the models trained with different datasets 100 new samples are
generated and then verified in GH. The mean absolute error is calculated for all the predicted structural
metrics and shown in tables below. The full tables can be found in Appendix B

Table 7.1: Prediction error 2x2 datasets

2x2 Mass | Moment | Shear Force | Displacement | Elastic Energy | v-loss
Evolutionary 10000 | 2.3% | 4.6% 8.9% 1.7% 2.7% 0.013
Annealing 10000 21% | 4.0% 12.2% 1.8% 2.6% 0.013
Combined 20000 24% | 5.0% 7.7% 1.6% 2.6% 0.012
Brute Force 65536 | 2.1% | 7.0% 4.6% 1.4% 2.3% 0.0M1
Table 7.2: Prediction error 3x3 datasets
3x3 Mass | Moment | Shear Force | Displacement | Elastic Energy | v-loss
Evolutionary 10000 1.1% | 6.3% 6.2% 0.8% 1.3% 0.020
Annealing 10000 1.5% | 4.7% 11.7% 1.1% 1.6% 0.037
Combined 20000 1.6% | 5.4% 7.0% 1.0% 1.6% 0.031
Random 30000 1.6% | 6.7% 4.2% 1.0% 1.5% 0.063
Random 30000 (70lat) | 2.0% | 5.1% 5.9% 1.3% 2.0% 0.028
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Table 7.3: Prediction error 4x4 datasets

4x4 Mass | Moment | Shear Force | Displacement | Elastic Energy | v-loss
Evolutionary 20000 1.2% | 4.0% 6.8% 1.0% 1.3% 0.045*
Annealing 20000 1.5% | 5.8% 10.7% 2.6% 2.9% 0.039*
Combined 40000 1.4% | 4.6% 8.8% 1.0% 1.4% 0.05*
Random 20000 1.6% | 5.3% 5.8% 1.2% 1.8% 0.15
Random 20000 (70lat) | 1.3% | 5.6% 5.6% 1.2% 1.8% 0.046

*Only the training graph is saved, not the exact validation loss

Table 7.4: Prediction error 5x5 datasets

5x5 Mass | Moment | Shear Force | Displacement | Elastic Energy | v-loss
Evolutionary 8000 0.57% | 2.9% 4.1% 0.6% 0.8% 0.046
Random 5000 (70lat) 14% | 4.1% 6.3% 1.0% 1.5% 0.12
Random 10000 (70lat) | 1.0% | 4.2% 6.5% 0.8% 1.3% 0.12
Random 20000 (70 lat) | 1.2% | 5.0% 6.0% 0.9% 1.3% 0.12

On the dataset creation strategy it can be concluded that:

Lower validation loss does not necessarily mean better predictions.

Using the Evolutionary solver leads to better prediction of the shear force than the Annealing
solver.

Combining Evolutionary and Annealing solvers does not lead to better predictions.

Random datasets have about the same prediction quality as datasets created with the Evolution-
ary solver.

Increasing the dataset size does not lead to a smaller prediction error, but it is still expected
the dataset size matters for the generation of new samples and the optimization, which will be
covered in the next section.

On the prediction quality in general it can be concluded that:

Selecting the right dataset the prediction error of the mass, displacement and elastic energy is
around 1-3% and of the moment and shear force is about 5-7%.

The mass, displacement and elastic energy are better predicted than the moment and shear
force. This is probably because the moment and shear force are highly depended on the path
the forces can flow towards the supports and the symmetry of the design. If poles are situated
at the supports the shear forces are divided over more ribs. If the design is more unsymmetrical
higher moments can occur on one edge of the floor compared to the others. The VAE seems to
have more difficulty to recognize and predict these cases.

On the problem size can be concluded that:

7.4.

The prediction error for the 2x2 case is probably higher because a change of modules has a
larger effect on the structural behaviour. Or in other words, with a larger problem there are more
ways in which the forces can flow towards the supports making the differences in performance
for different designs smaller.

The validation loss slightly increases when the problem size increases. The 5x5 problem starts to
show some overfitting and especially for the random datasets it is needed to increase the latent
dimensions up to 70 to keep this overfitting to a minimum.

Dataset creation takes longer when increasing the problem size. For example, it takes 32 seconds
to create 100 samples for the 2x2 the problem and 49 seconds for the 5x5 problem.

Optimization without constraints

How the gradient descent algorithm works was discussed in the chapter on the optimization workflow. In
this section early stopping is turned on with a patience=100 andamin_ delta=1le-4. The algorithm
is set to a learning rate of 0.01. The choice for the number of steps and the number of samples is
discussed. The number of samples used is different throughout this section. This is not only to test
how many samples need to be verified with a calculation, but also how many are practical to export to
GH. The GH script for example supports a maximum of 254 samples to be imported in the 4x4 case, so
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it was decided to use 250 samples. If more samples are wished the script should be changed (which
is done in a later stage of this thesis) or the calculation has to run multiple times.

7.4.1. GD number of steps and clipping error

For this experiment the 5x5 Evolutionary dataset is selected because it is a bigger problem and the
training results were very good. Different settings for the Gradient descent algorithm are tested. Early
stopping is usually executed between the 6000 and 8000 steps. It was noticed that when the algorithm
runs to the end until there is no improvement, the predictions become quite bad under-predicting all
performance metrics. To confirm this and to find a solution for this issue different settings for the GD
algorithm are tested. Table 7.5 increases the number of optimizations steps from 500 to 8000, to see
what happens to the optimization of the mass and the prediction of the other metrics. The performance
function used is minimization of mass without constraints. Every time the 20 best predicted samples
are verified in GH.

Table 7.5: Gradient Descent to minimize mass, 5x5 datasets

Steps | lowest Mass | Mass error | Moment | Shear F. | Displ. | Elastic E. | clipping error
500 0.5703 1.45% 3.19% 6.92% 0.6% | 0.92% 0.0973
1000 | 0.5751 3.3% 4.6% 2.8% 0.42% | 0.66% 0.0951
2000 | 0.5719 3.8% 9.1% 10.3% 0.8% 1.5% 0.0731
4000 | 0.5669 3.6% 10.5% 16.7% 1.7% 1.7% 0.0608
6000 | 0.5727 3.6% 13.7% 21.7% 23% | 2.7% 0.0453
8000 | 0.5698 3.7% 12.7% 23.5% 1.9% | 2.8% 0.0544

Increasing the number of steps increases the prediction error and does not result in a lower mass.
The best strategy to find a better performance seems to be to calculate more predicted samples in
GH. When following this strategy using less steps makes the optimization much faster. Running time
increases from about 3 min for 500 steps with 250 samples to over 35 min for 8000 steps with 250
samples, including early stopping usually triggered around 6000-7000 steps.

Something else that could be happening here is that the GD algorithm tries to optimize the perfor-
mance by a small amount at the end by slightly changing the input bit values. This is possible because
in this process these values are continuous and are only clipped to 0 or 1 later. The algorithm is then
wasting a lot of time finetuning the performance to solutions that not really exist. To test this the clip-
ping error is saved, which is the mean difference between the actual predicted values and the bits they
are clipped to. Counterintuitively, the clipping error goes down for a larger number of steps, while the
prediction error of the structural metrics is going up.

7.4.2. Bechmarking the 2x2 problem with GD

The 2x2 Brute Force dataset can be used to test if the VAE can come up with the best possible solution.
When using the complete dataset and only minimizing the mass the VAE struggles to make a sample
with all 0’s, so the lowest mass is not found, see table 7.6. When minimizing for elastic energy the
lowest value is found, see table 7.7. The lowest possible mass is 0.506 ton/m? for the grid structure
(all 0’s) and the lowest possible elastic energy is 0.2817 kNm.

Table 7.6: Gradient Descent to minimize mass, 2x2 datasets

Steps | lowest Mass | Mass error | Moment | Shear Force | Displacement | Elastic Energy
500 0.5214 4.5% 4.2% 23.3% 1.4% 3.6%
1000 | 0.5214 6.5% 4.3% 40.5% 2.0% 4.4%

Table 7.7: Gradient Descent to minimize elastic energy, 2x2 datasets

Steps

lowest Energy

Mass error

Moment

Shear Force

Displacement

Elastic Energy

1000

0.2817

5.6%

13.3%

9.0%

4.1%

21%
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7.5. Optimizing with a performance function

In this section the performance function is integrated in the optimization process and some small exper-
iments are done to get some insights in the best strategy to follow for the optimization. After defining the
workflow, models, performance function and constraints the first experiment compares if metrics based
or performance score based training results in better predictions using the Random Sampling Method.
The second experiment looks into the effect of the stepsize using the GD Method. The third experiment
compares the results of the GD Method for the Random, Evolutionary, and Annealing datasets. In the
last experiment the GD optimizer is used again for all problem sizes with the best found settings in the
previous experiments.

7.5.1. Workflow and training

The python script for metrics based training is altered to perform performance score based training.
Now the scores have to be calculated before the training begins. This results in the following workflow:

* Load dataset

* set constraints

» Normalize dataset and constraints

+ activate a performance score function

+ calculate scores and export a dataframe with the scores added
+ Drop the performance metrics columns

+ create a training and validation loader

* Train the model

* Load the model

* Select a number of runs and samples and generate

» Make a dataframe with the best scoring samples per run

» Export the predicted scores and the bitmaps

+ Calculate strucutral performance of the predicted bitmaps
+ Calculate the score and check if there is a new best score

In previous experiments it was noted that one single sample from the dataset can be much better
scoring than the rest. In previous experiments sometimes datasets were made by sampling a number
of samples from a larger dataset every time the script was run. To make sure the comparison is com-
pletely fair in this experiment for every problem a dataset with exactly 20000 random samples without
duplicates is made that can be used for both workflows. New models are trained with the new random
20000 datasets for the metrics based training as well. Because in chapter 6 training on performance
score with 12 latent dimensions gave the lowest validation loss, that was the starting point here as
well. However, changing the number of latent dimensions to higher values for larger problems seems
to have a large effect in lowering the score. For the 4x4 case 70 latent dimensions worked well (which
is higher than the dimension of the input data) and for the 5x5 case trained on performance metrics
as well. For the 5x5 case trained on the score 70, 100 and 120 latent dimensions was tried but for all
cases the best scores are almost twice as high as in the dataset. The same latent dimensions are used
for the metrics based training. An overview is given in Table 7.8.

Table 7.8: Latent dimensions

Problem size | latent dimensions
2x2 12
3x3 12
4x4 70
5x5 70

For every problem size some fictive constraints are chosen that force to look for solutions with a
lower moment and displacement when minimizing mass. The performance score with a 1.0 linear
penalty on these constraints is used. The constraints are summarized in Table 7.9
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Table 7.9: constraints

Problem size | Moment constraint [KNm] | displacement constraint [mm]
2x2 22 25

3x3 55 14

4x4 100 44

5x5 150 112

7.5.2. Performance based versus metric based training with the Random Sam-
pling Method

With metrics based training the model is trained to predict all 5 performance metrics when creating new
samples and the performance score is calculated when new samples are generated. With performance
score based training the performance score is applied on the dataset and only the bitmap with the score
is used to train the model. The disadvantage of the last approach is that it is not possible to compare
different performance score functions or penalty values without retraining the model again, which can
take up to 10 minutes for larger datasets. The predictions are generated with 200 runs with 100,000
samples each, taking between 1 and 4 minutes to generate, depending on problem size. Table 7.10
shows for every problem size the best 5 scores from generated samples versus the best 5 scores from
the dataset.

Table 7.10: Best 5 scores from dataset versus best 5 predictions, trained on scores

2x2 VAE | 2x2 data | 3x3 VAE | 3x3 data | 4x4 VAE | 4x4 data | 5x5 VAE | 5x5 data
0.3197 0.3171 0.1017 0.1488 0.2695 0.3410 0.5417 0.3570
0.3197 0.3386 0.1139 0.1894 0.2993 0.3910 0.7065 0.3745
0.3197 0.3452 0.1223 0.2024 0.3140 0.3915 0.7143 0.3792
0.3372 0.3495 0.1226 0.2072 0.3543 0.3961 0.7382 0.3838
0.3372 0.3536 0.1226 0.2211 0.3684 0.4026 0.7408 0.4502

The best results from performance based training are compared to the datasets as well with the
results shown in Table 7.11

Table 7.11: Best 5 scores from dataset versus best 5 predictions, trained on performance metrics

2x2 VAE | 2x2 data | 3x3 VAE | 3x3 data | 4x4 VAE | 4x4 data | 5x5 VAE | 5x5 data
0.3167 0.3171 -0.1258 | 0.1488 0.3076 0.3410 0.2903 0.3570
0.3167 0.3386 -0.0604 | 0.1894 0.3450 0.3910 0.3158 0.3745
0.3167 0.3452 -0.0392 | 0.2024 0.3539 0.3915 0.3441 0.3792
0.3167 0.3495 -0.0154 | 0.2072 0.3753 0.3961 0.3648 0.3838
0.3167 0.3536 -0.0077 | 0.2211 0.3756 0.4026 0.3650 0.4502

The VAE trained on the performance metrics gives better results than the datasets every time but
most of the time quite minimal except for the 3x3 case that results in a much better score, being negative
as the weight is lower than the lowest weight from the dataset. The performance score trained VAE
doesn’t work well for the 5x5 module problem. It could be that the VAE trained on performance metrics
scales better.

7.5.3. Stepsize of the GD method

The random sampling and GD method are compared by running it for 200 samples with a learning rate
of 0.1. The number of steps is increased to see if there is an optimal number steps in this case. 250
steps results in the best found score, being quite close but not beating the random sampling method.
The GD optimizer with 250 steps takes about 1 minute to run.
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Table 7.12: Best 5 scores from dataset versus best 5 predictions, trained on performance metrics with GD

3x3 data | 10 steps | 50 steps | 100 steps | 200 steps | 250 steps | 300 steps | 400 steps
0.1488 0.2395 0.1072 0.0156 -0.0089 -0.0413 -0.0069 0.0228
0.1894 0.2914 0.1781 0.0.0705 | 0.0119 0.0173 0.0294 0.0443
0.2024 0.3367 0.1833 0.1144 0.0238 0.0249 0.0347 0.0482
0.2072 0.3526 0.1900 0.1283 0.0510 0.0426 0.0608 0.0494
0.2211 0.3610 0.2013 0.1392 0.0763 0.0426 0.0614 0.0535

7.5.4. Different Dataset Generation Strategies

To compare the dataset generation methods a Random, Evolutionary and Annealing dataset for the
4x4 problem of all 20000 samples are compared. They are all trained with 70 latent dimensions for 100
epochs with early stopping with a patience of 10. The VAE results are generated with the GD method
using 200 samples, 250 steps and a learning rate of 0.1. The Annealing dataset has the best score,
but got the lowest VAE improvement. The Random dataset works much better than the Evolutionary or
Annealing dataset. Comparing Table 7.13 with Table 7.11 it is also visible that with using the GD here
instead of the random sampling method the VAE predictions are much better for the Random dataset.
The clipping errors are very similar for all datasets with 0.058 for the Random 0.046 for the Evolutionary
and 0.063 for the Annealing dataset.

Table 7.13: Best 5 scores from dataset versus best 5 predictions

Random data | Random VAE | EVO data | EVO VAE | Annealing data | Annealing VAE
0.3410 0.0777 0.3577 0.2053 0.3133 0.2113
0.3910 0.0857 0.3584 0.2095 0.3293 0.2196
0.3915 0.0926 0.3587 0.2136 0.3521 0.2299
0.3961 0.0937 0.3627 0.2151 0.3564 0.2328
0.4026 0.0947 0.3668 0.2239 0.3583 0.2465

7.5.5. Comparing problem size with Random dataset and tuned GD
To create Table 7.14 the same process is repeated as for Table 7.11, but now with the GD using 200
samples, with 250 steps and a learning rate of 0.1. The results for the 5x5 problem improve by a lot.
The scores of the 2x2 problem are still barely improving. Repeating the same workflow with the 2x2
BruteForce dataset of all 65536 samples the best possible score of 0.287694 is found from the dataset,
so the result is quite close.

When creating manual designs for the 3x3 case, the grid design scores 0.0050, the 4 corners design
-0.1674 and the 8 corners design 0.0466, so only the maual designed 4 corner design scores better
than the VAE result and is not found by the VAE.

Table 7.14: Best 5 scores from dataset versus best 5 predictions, after tuning GD optimizer

2x2 VAE | 2x2 data | 3x3 VAE | 3x3 data | 4x4 VAE | 4x4 data | 5x5 VAE | 5x5 data
0.3167 0.3171 -0.0413 | 0.1488 0.0777 0.3410 -0.0162 | 0.3570
0.3176 0.3386 0.0173 0.1894 0.0857 0.3910 0.0076 0.3745
0.3197 0.3452 0.0249 0.2024 0.0926 0.3915 0.0177 0.3792
0.3202 0.3495 0.0426 0.2072 0.0937 0.3961 0.0579 0.3838
0.3206 0.3536 0.0426 0.2211 0.0947 0.4026 0.0629 0.4502

7.6. Rules of thumb for training

This section aims to make a connection between number of modules and required number of latent
dimensions and the number of dataset samples, resulting in rules of thumb. First the number of latent
dimensions are altered for the different problem sizes. The best validation loss per problem size is
shown in Table 7.15, considering increments of 10 for the latent dimensions. The number of samples
is kept on 20,000 random samples. The training is performed with 1 hidden layer, 200 hidden units and
a kld-weight of 5e-4. To keep the training time limited the maximum number of epochs is 100 with early
stopping with a patience of 10.
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Table 7.15: Best latent dimensions per problem size

Problem size | latent dimensions | v-loss

3x3=9 40 0.02708
4x4=16 70 0.04801
5x5=25 120 0.08361

As a rule of thumb for the number of latent dimensions 4-5 times the number of modules is a good
starting point to find the optimal.
The possibility of using smaller datasets could be very valuable information as the dataset genera-
tion is the most time consuming step in the optimization process. The results using the GD optimizer
on the performance scores with 200 samples, 250 steps, learning rate 0.01, penalty weight 1.0 with the
constraints from Table 7.9 are shown in Tables 7.16, 7.17 and 7.18.

Table 7.16: Decreasing the dataset size, 3x3 with GD optimizer

20,000 VAE | 20,000 data | 10,000 VAE | 10,000 data | 5,000 VAE | 5,000 data | 2,000 VAE | 2,000 data
-0.1548 0.1488 -0.1235 0.2401 -0.1278 0.2447 -0.0904 0.2447
-0.1258 0.1894 -0.0829 0.2443 -0.1077 0.2454 -0.0873 0.2454
-0.1258 0.2024 -0.0779 0.2448 -0.1074 0.2490 -0.0855 0.2772
-0.1132 0.2072 -0.0592 0.2454 -0.0949 0.2589 -0.0842 0.2857
-0.0967 0.2211 -0.0571 0.2457 -0.0855 0.2715 -0.0780 0.3057
Table 7.17: Decreasing the dataset size, 4x4 with GD optimizer
20,000 VAE | 20,000 data | 10,000 VAE | 10,000 data | 5,000 VAE | 5,000 data | 2,000 VAE | 2,000 data
0.0803 0.3410 0.0831 0.3697 0.0589 0.3708 0.0812 0.3873
0.0987 0.3910 0.0948 0.3705 0.1367 0.4448 0.0995 0.4701
0.1013 0.3915 0.1027 0.4437 0.1388 0.4732 0.1540 0.5134
0.1107 0.3961 0.1256 0.4732 0.1389 0.4895 0.1546 0.5478
0.1127 0.4026 0.1371 0.4889 0.1420 0.4914 0.1670 0.5537
Table 7.18: Decreasing the dataset size, 5x5 with GD optimizer
20,000 VAE | 20,000 data | 10,000 VAE | 10,000 data | 5,000 VAE | 5,000 data | 2,000 VAE | 2,000 data
-0.0299 0.3570 -0.0897 0.3892 -0.0670 0.4591 -0.1066 0.5384
-0.0266 0.3745 -0.0414 0.4643 0.0018 0.4882 -0.0999 0.5994
-0.0156 0.3792 -0.0389 0.4847 0.0821 0.4941 -0.0628 0.6158
-0.0094 0.3838 0.0076 0.5053 0.0900 0.5161 -0.0461 0.6817
-0.0006 0.4404 0.0091 0.5115 0.0919 0.5185 -0.0354 0.6950

For all datasets used in this section the mean clipping error of 10,000 random generated samples,
so not during the optimization, was calculated and is shown in Table 7.19. The error increases when
the problem size increases and when the dataset size decreases. Both are in line with the increasing
validation loss and the deceasing predictive abilities of the corresponding models.

Table 7.19: dataset size and clipping error

Dataset size | 3x3 4x4 5x5

20,000 0.041 | 0.058 | 0.067
10,000 0.043 | 0.059 | 0.073
5000 0.060 | 0.071 | 0.084
2000 0.091 | 0.072 | 0.095
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7.7. Limits on the problem size

Although still performing well during the training process the VAE started to show some overfitting for
the 5x5 module size. The problem size is increased further to seek the limiting size. Increasing the
problem size to 6x6 results in 36 modules meaning 10*3 combinations. Following the rules of thumb
160 latent dimensions was used for the training. Figure 7.3 shows the training process for 4000 and
20,000 random samples is still stable. The increase of the validation loss continues with the increase
of problem size, as could be seen before in Table 7.15. However, this increase in validation loss was
not a problem for the performance of the VAE for the 5x5 case that is not the case anymore for the 6x6
problem. The clipping error is further increased to 0.115.

—— ftraining loss | —— ftraining loss

validation loss 0.20 validation loss
0.22

0.19

0.20 018

0.18 017

Loss
Loss

0.16
0.186
0.15

0.14 0.14

0.13
0.12

0 20 40 60 80 100 0 20 40 60 80 100
Epochs Epochs

(a) Training 6x6 modules with 4000 random samples, val-loss = 0.15042 (b) Training 6x6 modules with 20,000 random samples, val-loss = 0.13684

Figure 7.3

7.7.1. Optimizing the 6x6 problem

The GD optimizer with initial sampling is used with 300 samples, 10,000 initial samples, 400 steps, and
a learning rate of 0.01. The results for both the 4000 and 20,000 samples datasets are compared to
those of the evolutionary solver in Table 7.20. The increase in performance between the 4000 and the
20,000 samples is rather small. The VAE still outperforms the evolutionary solver when it runs for only
3 minutes. Running it for 10 minutes, the results are quite similar.

Table 7.20: Benchmarking the Evolutionary solver with the 6x6 problem

Dataset Elastic Elastic

Samples : Training | Optimization | Verification Energy [kNm]
generation Energy [kKNm]
Dataset

4000 45 min 43s 10 min 3.5 min 6.30 6.63
20,000 3 hours 45 min | 11 min 15 min 3.5 min 6.27 6.63
EVO 3 min 6.66
EVO 10 min 6.28

7.7.2. Optimizing the 15x15 problem

Finally a 15x15 problem is tested resulting in 225 modules giving 1027° possible combinations. Creating
datasets for this problem size takes much more time as well with 8000 samples already taking 3.5 hours.
The model is trained with 900 latent dimensions this time and the not very promising result is shown in
Figure 7.4. The mean clipping error is now 0.474. Looking at the generated samples near all of them
are around 0.5 instead of near 0 or 1 and some of them are around -0.5 strangely enough. Together
with the high validation loss and the overfitting training graph, this already indicates that the problem
size limits of the model are passed and the model cannot be trusted anymore.

Although the training results do not look very promising and trustworthy some small experiments
are performed to see what the behavior of the model is. First the VAE is benchmarked again against
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Figure 7.4: Training 15x15 modules with 8000 random samples, v-loss = 0.24950

the evolutionary solver minimizing elastic energy. The GD optimizer with initial sampling is used with
300 samples, 10,000 initial samples, 500 steps, and a learning rate of 0.01. The results are shown in
Table 7.21. The VAE still works but is not able to outperform the evolutionary solver anymore.

Table 7.21: Benchmarking the Evolutionary solver with the 15x15 problem

Dataset - o e Elastic Elastic

Samples ; Training | Optimization | Verification Energy [kNm]
generation Energy [kKNm]
Dataset

2000 53 min 30s 10 min 14 min 31.15 31.18
8000 3:30 hours | 2 min 21 min 14 min 30.28 31.18
EVO 25 min 30.92
EVO 1:15 hours 29.97
EVO 2:20 hours 28.80

Both solvers are no able to get close to an intuitive well performing design. The design shown in
Figure 7.5 only includes poles at the columns and uses the grid modules to stay as light as possible.
This results in an elastic energy of 24.47 kNm. The design with only the grid modules results in an
elastic energy of 31.46 kNm.

Figure 7.5: Intuitive good 15x15 module design with elastic energy of 24.47 kNm
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7.7.3. Train with the EVO solver results

Another possibility is to train the model with the results from the evolutionary solver and look for a small
local optimization. 3000 samples from a run of the evolutionary solver are used to train the model. From
the histograms in Figure 7.6b can already be seen that the samples are very uniform. The training loss
is not as stable as normally the case but the validation loss is. The optimizer is not able to find any
improvement in elastic energy, but is very good in generating new samples with a very low clipping
error with a 0.0046 average, meaning it is on average 0.0046 away from a 0 or a 1. The generated
samples are very accurate predictions with around 5% error for the moment and only between 1 and
2% error for the other performance metrics.
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7.7.4. The 15x15 problem with stock constraints

The last experiment with the 15x15 module problem is to optimize with stock constraints as will be
introduced in chapter 8. The stock from Figure 7.7 is available to use for the optimization problem.
Both the VAE and the evolutionary solver are used. Using the dataset with 2000 samples the best
score from the dataset is 0.49. The VAE and the evolutionary solver were not able to beat this score.

The optimizer uses 10,000 initial samples, 400 steps and a learning rate of 0.01. To attempt to
decrease the optimization both 20 and 300 samples are optimized taking about a minute and 10 minutes
respectively. The results are in Table 7.22.

0:30 1:70 2:70 3:20 4:50 5:30

Figure 7.7: The available stock for the 15x15 problem with stock constraints
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Table 7.22: Benchmarking the Evolutionary solver with the 15x15 problem with stock constraints

Elastic Stock Used

Samples Energy [kNm] | violations modules Score
2000, 20 31.99 8 86554255320 | 1.29
2000, 300 31.77 6 116554235319 | 0.89
EVO 3 min | 33.26 4 0.93
EVO 10 min | 31.96 6 0.79

7.8. Conclusions
Metrics based training and performance score based training both work. Metrics based training is
preferred because it allows for more flexibility in changing constraints and performance scores.

The random sampling and GD optimizer proof to both be working to generate better samples. How-
ever, when running the GD algorithm longer the bitmap does not change anymore but it keeps lowering
the predicted score. This happens because the tensor values are clipped to bits after a new sample
is generated. So it starts to optimize away from the bits with a predicted score based on non-existing
samples. The advantage of the random sampling method is that it is possible to simply keep increasing
the number of sample generations to seek for better solutions. The combination of both methods into
one optimizer increases the performance further and this optimizer is used in the rest of this thesis.

As the problem size increases the number of latent dimensions should increase as well with 4 to 5
times the number of modules to reach the best validation loss. The validation loss keeps increasing with
the problem size and starts to overfit. For smaller problems, 25 modules or less, it is difficult to see a
negative effect on the optimization performance of the VAE. For 36 modules the VAE optimizer behaves
similar as the evolutionary solver. Increasing the problem size further the training process becomes
more unstable, but the predicting qualities of the VAE still remain. However optimizing towards better
samples than already in the dataset becomes very difficult.

The dataset creation strategy has a large effect on the performance. At first using generic algorithms
to create datasets seemed to lead to better samples in the dataset, so also better generated samples.
However, as can be seen in the histograms of the dataset this also gives more irregular distributions of
performance metrics, making it more difficult for the VAE to predict and as a result models trained with
random datasets perform more consistently well. Using generic solvers also decreases the flexibility
of the model, because the dataset generation needs to use a fit on one certain performance metric.
When using a random dataset the optimization objectives can quickly be changed using the same
trained model. During the remaining chapters the VAE will be trained with random datasets to allow
for this flexibility. If one wishes to create a VAE that makes very accurate predictions using a generic
solver could still be the preferable choice losing some flexibility as result.






Stock constraints

Until now symmetric problems have been shown with intuitive solutions. Although the VAE resulted in
better performance in some cases, using engineering sense on these problems could also lead to good
solutions. In this chapter stock constraints are introduced leading to extra complexity encouraging the
use of the VAE workflow.

8.1. Motivation for stock constraints

As stated earlier in this thesis the motivation to make the ribbed floor system modular is to allow for
disassembly and re-usability. One could imagine a building that is no longer wanted, fit for purpose, orin
the way of something else, and that therefore must be disassembled. The modules could then be used
in another structure. The availability of the modules then depends on the modules that come available
from disassembly. If not enough modules are available or the correct number of certain modules is
not available, they should be fabricated. This results in a stock constraints problem that balances less
efficient designs with available modules with the disadvantages of creating new modules needed for
more efficient designs. In this chapter a performance score function is used that balances the stock
constraints with the performance in a way that the optimizer behaves stable.

In a real application the performance function should be weighed such that the cost of producing
a new module is balanced in terms of cost or embodied carbon compared with the design only using
reused modules. This process must take into account the full life cycle of these modules, which can be
very complicated and extensive. For example, also the carbon emissions from the transportation should
be compared between a new and a reused module. Another difficult question is if the embodied carbon
of a module should be accounted for over its entire life span, or only the first project and when reused,
the embodied carbon does not have to be accounted for again, but only things like transportation and
the erection of the building do. All of this could greatly change the formulation of an optimization problem
with stock constraints, of course.

8.2. Workflow

The stock constraints workflow uses the metrics based workflow from the previous chapter. A new
stock constraint function is created that is called in the performance function of the VAE. The complete
workflow to perform a stock constraints case is as follows:

» Load dataset and previously trained model

» Set raw constraints

+ Set stock weight, penalty weight, available modules and output folder

» Normalize constraints

* Setmode to constrained min mass(or energy) stockconstraints

+ Set performance function with the defined constraints, weights, modules, mode

» Generate new samples and calculate the performance score including the penalty for stock con-

straints
* Run the GH script for the new samples
» Load and normalize the verification file of the samples

67
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+ Calculate the actual performance score

The complete performance score is:

score = mass + constraint_weight x constraint_penalty + stock_weight * stock_penalty (8.1)

With the penalty being the difference between the constraints for moment, shear and displace-
ment if above the constraints. The scoring can be tuned by changing the penalty weight and the
stock weight. The stock penalty is calculated with a new check stock constraints function.
The function divides the complete bitmap tensor into the 4 bit module pieces, which are then converted
into an integer index, from 0 to 15 using the big-endian binary representation. With 4 bits the following
formula converts the bits into a integer index:

index =8xby+4%b, +2xby+1%b, (8.2)
Index | Binary (Bitmap) | Module group
0 [0,0,0,0] 0
1 [0, 0,0, 1] 1
2 [0,0,1,0] 1
3 [0,0,1,1] 3
4 [0,1,0,0] 1
5 [0,1,0,1] 3
6 [0,1,1,0] 2
7 [0,1,1,1] 4
8 [1,0,0,0] 1
9 [1,0,0,1] 2
10 [1,0,1,0] 3
11 [1,0,1,1] 4
12 [1,1,0,0] 2
13 [1,1,0,1] 4
14 [1,1,1,0] 4
15 [1,1,1,1] 5

Table 8.1: All 16 possible 4-bit module bitmaps and their corresponding indices.

Then it is checked if the used modules are the same as the available modules given when running
the function described by Algorithm 3. If one module used is not in the available modules list that is
counted as one violation and the total number of violations is summed. This integer penalty value can
than be weighed in the calculation of the performance score.

Algorithm 3 Stock Constraints

Convert each module’s bits to integer indices
Map each of the 16 orientation IDs to a base module ID
Define tensors of zeros for the penalties and used counts
for All samples do Count the occurrence of each base module and save in used counts
for Each base module do
if used count > stock limit then
add penalty
end if
end for
end for
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8.3. Generating samples with random sampling only removing cer-

tain modules

The code described in the previous section can take quite some time to run. A faster method that could
sometimes be sufficient to solve the problem is to only restrict certain modules and no to count all of
them. This method is used in the following example.

As an example the 3x3 Random 20000 dataset is loaded into the python script. The same still a
bit arbitrary constraints are used as before with Moment = 55 kNm and Displacement = 14 mm and
no constraint or in practice a very high value for the shear force. Now the available modules can be
defined and the weights should be able to tune the importance of the module availability, the weight
and the constraints. Only the grid module is given as not available. With the random sampling method
the best prediction of 100,000 samples is saved 200 times. Note that the score is built up with a
structural performance part, which is a prediction and a stock constraints part, which doesn’t need any
verification. When calculated in GH. The best of these 200 samples are shown in Table 8.2 together with
the structural results and if they violate the stock constraint. The lowest mass can be found by making
the constraints more "soft”, with smaller penalty values. With larger penalty values the constraints are
strictly enforced and the mass found is still slightly lower than the best sample from the dataset.

Table 8.2: Stock constraints removing grid module

penalty-, stock- weight Mass Moment | Displacement | Score | violations
VAE constraints: 1.0, stock: 1.0 | 0.5479 | 52.87 14.17 0.1050 | O
Data constraints: 1.0, stock: 1.0 | 0.5755 | 55.82 13.75 0.2355 | O
VAE constraints: 0.1, stock: 0.1 | 0.5412 | 55.80 14.23 0.1102 | 1
Data constraints: 0.1, stock: 0.1 | 0.5548 | 59.62 14.61 0.1198 | O
VAE constraints: 0.5, stock: 0.5 | 0.5548 | 54.24 13.91 0.0832 | 0
Data constraints: 0.5, stock: 0.5 | 0.5754 | 55.82 13.75 0.2232 | O
VAE constraints: 2, stock: 10 0.5566 | 56.23 13.88 0.1672 | O
Data constraints: 2, stock: 10 0.5754 | 55.82 13.75 0.2600 | O
VAE constraints: 10, stock: 10 0.5686 | 53.88 13.75 0.1684 | O
Data constraints: 10, stock: 10 0.5841 | 54.814 13.93 0.2644 | O
VAE constraints: 2, stock: 1 0.5635 | 54.63 13.79 0.1367 | O
Data constraints: 2, stock: 1 0.5755 | 55.82 13.75 0.2600 | O
VAE constraints: 1, stock: 2 0.5635 | 56.33 13.95 0.1763 | O
Data constraints: 1, stock: 2 0.5755 | 55.82 13.75 0.2355 | 0

Table 8.3 shows how many of the 200 samples violate the stock constraints for each penalty com-
bination.

Table 8.3: Stock constraints violations out of 200 best samples

penalty-, stock- weight violations
constraints: 1.0, stock: 1.0 | 156
constraints: 0.1, stock: 0.1 | 179
constraints: 0.5, stock: 0.5 | 156
constraints: 2, stock: 10 138
constraints: 10, stock: 10 140
constraints: 2, stock: 1 140
constraints: 1, stock: 2 151

Only removing one or more modules completely without keeping track of available stock allows for
the evolutionary to solve this problem without the need for a scoring mechanism for the stock. The
modules that are not available can simply be removed before the evolutionary solver starts not using
them at all. When counting the modules used and restricting the use to a certain amount this is not
possible and both methods need to use the check stock constraints function. Now the VAE
becomes more relevant and in the next section it is compared with the evolutionary solver.
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8.4. Benchmarking the evolutionary solver with stock constraints
To benchmark the evolutionary solver with stock constraints the 13 Module case is used, resulting
in about 10'° possible combinations. The 10 cm x 20 cm cross-section is selected with C30/37 and
still the same loading conditions. The constraints from section 3.4 are used with Mz, = 27.8 kNm,
VrRamax = 92.1 kN and a maximum displacement of d = 12 mm. The VAE is trained with 30,000
random generated samples to support the optimization for both mass or elastic energy, instead of a
dataset specifically for one of the two. During training again a shallow model with only one layer, 200
hidden units and a kld-weight of 5¢ — 4 was used. During training the number of latent dimensions
was varied from 40 up to 80 and 60 latent dimensions was selected because it resulted in the lowest
validation loss, see Figure 8.1. To lower the time required for the whole process of the VAE, random
subsets of the dataset are used with a lower amount of samples.

—— training loss
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Figure 8.1: Training progress, 13 Modules, 30,000 random samples, best v-loss: 0.03772

Every module thatis used and not available is counted and the total is multiplied withthe stock weight
and added to the score. The linear penalty function is used adding the value above the normalized
constraints to the score function multiplied with a constraint penalty weight. For this case the
elastic energy is minimized making the complete performance function:

score = energy + constraint_weight * constraint_penalty + stock_weight * stock_penalty

(8.3)

8.4.1. Comparing different methods to the dataset

First both the GD optimizer and the Random sampling method are compared to the dataset and after
that the combination of the GD optimizer with initial sampling is made. For the first case the stock from
Figure 8.2 is used.

0:0 1:10 2:10 3:10 4:10 5:1

Figure 8.2: Stock with the module id followed by the number of available modules

In this case the best score from the dataset is 0. This means that the sample with the lowest elastic
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energy in the dataset, fulfills the constraints of the performance metrics and of the stock constraints.
This result is already very good and will be difficult to beat, because there is no information in the
dataset how to make a configuration with a lower elastic energy. Both the GD and random sampling
optimizer are used. With the GD optimizer 300 samples were generated optimizing them for 400 steps
with a learning rate of 0.005. The resulting floor plans with the elastic energy and there score are shown
in Figure 8.3.

Both optimizers beat the dataset score and lower the elastic energy by about 3 percent, fulfilling
all constraints. Figure 8.3d already uses the combined optimizer with initial sampling and lowers the
score and elastic energy even further. In the next section this method is compared with the evolutionary
solver

S
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(a) random sampling: Elastic energy = (b) Dataset: Elastic energy = 1.300983,
1.268140, score = -0.038693 score = 0.000

(c) GD: Elastic energy = 1.266528, score =

20.040592 (d) Elastic energy = 1.247022, score = -

0.063572

Figure 8.3

8.4.2. Benchmark results

Because the modules with one pole and two poles next to each other are used frequently those are
restricted more in the problem that will be compared with the evolutionary solver. Figure 8.4 shows
the available stock. The best sample from the dataset does not have a score of 0 anymore, meaning
that the sample with the lowest elastic energy does not fulfill the constraints and does not result in the
lowest score. This makes it more interesting to look for a better solution because now the VAE should
be able to come up with lower elastic energy samples and optimize towards those that also fulfill the
stock constraints.
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Figure 8.4: Available stock per module

The random sampling method runs again to generate 300 best samples out of 10,000 each time.
It finds a solution sticking to the constraints of the performance metrics and of the stock. The GD
optimizer also finds a solution that is better than the dataset, but not as good as the random sampling
result, see Figure 8.5
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(a) random sampling: Elastic energy = (b) Dataset: Elastic energy = 1.456656, ( . . - -
A : . » (c) GD: Elastic energy = 1.436862, score =
1.427588, score = 0.149155 score = 0.183401 0.160081

Figure 8.5

To improve the result the random sampling method and GD method are combined into one new
optimizer. First, for every run a large number of initial samples are generated. These are decoded and
the score is calculated with the performance score. Then only the best sample of each run is optimized
with the same method as the GD optimizer from before. Then the best result of every run is exported
to GH and calculated. Due to the large number of initial samples only samples satisfying the stock
constraints from the start are optimized and the others are thrown away. Running this method with 300
runs, 10,000 initial samples per run, optimizing for 400 steps with a learning rate of 0.005, took about
12 minutes and results in the best score and lowest elastic energy as shown in Figure 8.6. For one
attempt to improve the result further the number of initial samples was increased to 100,000 taking an
hour to run, but the same best result was found as with 10,000 samples.
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Figure 8.6: Elastic energy = 1.331942, score = 0.136473

The simplicity of the evolutionary solver is that everything is performed in one step. No separate
dataset generation, training or verification of results is needed. The algorithm to count the modules
used and the stock violations used in the python script is transferred to GH to calculate the performance
score. The resulting score can be used as the value to minimize by the Galapagos evolutionary solver
in GH.

For the VAE results the GD optimizer with initial sampling is used optimizing the best 300 samples of
10,000 initial samples with 400 steps and a learning rate of 0.01 and no early stopping. The time it takes
is mainly dependent on the dataset generation and optimization processes. Because the optimization
happens with normalized constraints and metrics, the results depend on the normalization process
and can therefore be different when different datasets lead to different normalizations. With 10,000
samples the chances of finding samples with higher or lower elastic energy are higher which and as
the minimum value means a zero score the needed elastic energy for this zero score can be lower
than with a 1000 sample dataset. To give a better picture of the results the stock violations and the de-
normalized elastic energy are included in the results as well. The performance score of the evolutionary
solver is calculated with the normalization values of the 10,000 samples dataset.

In earlier chapters often the best 5 samples were shown to get some insight in how depended the
optimization process is on randomness/luck. To quantize this more this stock constraint problem was
optimized repeatedly with both the VAE and the evolutionary solver. The best results are given together
with the mean of 10 runs. The complete results are in Appendix C

Table 8.4 shows the time it takes for both optimization processes and the results. The stock viola-
tions average, is the average number of modules violating the stock constraints per run. Running the
evolutionary solver for 30 minutes and 3 hours was only done once. Because the VAE optimizer with
2000 samples was behaving well the GD optimizer with initial sampling was also tried with only 100
samples instead of 300 to decrease the optimization time and see if it still works well. Although the
evolutionary solver is good in minimizing the elastic energy quickly, running it longer does not result
in lower elastic compared to the VAE. It takes more time for the evolutionary solver to produce results
that stick to the stock constraints, compared to the VAE only using the available stock except when a
much lower elastic energy is found making it worth the extra penalty violating the stock constraints. For
this specific problem it can be concluded that the VAE optimizer with initial sampling behaves better
independent on how much time is available to run the optimization.

Of course, the evolutionary solver does not require the dataset generation time, but to make a
performance score with normalized performance metrics some kind of dataset is still needed to get
the normalization values. That makes it difficult to conclude if for a quick and approximate result the
evolutionary solver could be faster and easier to use for this problem. But if one wants to find a solution
that is a few percent better than that, it is worth to use the VAE. Also if it should be possible to change
the stock constraints quickly and frequently due to changing stock the VAE can be the better method to
choose as it does not require to redo the dataset generation and training steps in these cases, meaning
it can be worth it to invest more time in these processes. This way to invest to gain a small improvement
cannot really be done with the evolutionary solver, which does not seem to improve anymore after a
certain time. However it seems there is a limit to this ability to invest in a larger dataset as using the
full 30,000 sample dataset does not results in any improvement. Note that the score is also higher due
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to different normalization values due to more extremes in the dataset.

Table 8.4: Benchmarking the Evolutionary solver with stock constraints

Dataset - Lo T Elastic .Sto.Ck score

Samples : Training | Optimization | Verification violations

generation Energy [kNm] average

average
1000 8 min 14 s 10 min 2 min 1.36 0.4 0.0675
2000 16 min 30s 10 min 2 min 1.34 0.5 0.0506
2000, 100 | 16 min 30s 3 min 45s 1 min 1.36 0.7 0.0844
5000 40 min 1 min 10 min 2 min 1.36 0.6 0.0864
10,000 80 min 3 min 15 min 2 min 1.34 0.3 0.0479
30,000 240 min 3 min 12 min 2 min 1.34 0.6 0.1066
EVO 10 runs 3 min 1.44 2.2 0.3661
EVO 10 runs 10 min 1.38 23 0.2489
EVO 1 run 30 min 1.47 0 0.1676
EVO 1run 3 hours 1.44 0 0.1289

Running both optimizers for 10 minutes the VAE leads to a on average 1.5% lower elastic energy

and including the stock penalties a 20% lower score.

8.4.3. Optimizing mass

With the same datasets, trained models and optimizer, the mass can also be optimized with stock

constraints. Only this time using the normalized mass the performance score simply changes to:

score = mass + constraint_weight x constraint_penalty + stock_weight * stock_penalty (8.4)

This time not a complete sensitivity analysis is performed but a few different settings are tried with
the optimizer. With the 2000 sample dataset only 100 samples are optimized in parallel to lower the
optimization time as much as possible. The 10,000 dataset is used optimizing 300 samples in parallel
to try to get the best result in around 10 minutes, which was tried twice. The EVO solver was used
three times running it for 3 minutes and one time for 10 minutes. All the results are in Table 8.5. The
results for the evolutionary solver and the VAE optimizer are quite similar and not one method seems
to perform consistently better than the other in this specific case.

Table 8.5: Benchmarking the Evolutionary solver with stock constraints

Samples Penalty | Stock Optimization Mass Stock score
weight | weight ton/m? | violations

2000, 100 0.1 0.1 3 min 35s 0.26 2 0.4030
2000, 100 0.1 0.2 3 min 45s 0.27 1 0.5547
10,000, 300, 1 | 01 0.1 13 min 20s 0.26 1 0.4289
10,000, 300, 2 | 01 0.1 15 min 15s 0.26 2 0.4134
EVO 3 min 0.26 2 0.4480
EVO 3 min 0.26 1 0.3150
EVO 3 min 0.26 2 0.5115
EVO 10 min 0.24 5 0.4200

8.5. Optimizing for Embodied Carbon

To incorporate embodied carbon (EC) into the optimization process with stock penalties, reliable data
on EC values is required. In this work, the Inventory of Carbon and Energy (ICE) database (9) is used
as the primary source for material EC. For processing steps and transportation, emission factors (EF)

are applied, expressed as the equivalent kilograms of CO, (kg CO5e) emitted per unit of activity.
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8.5.1. Embodied Carbon of New and Reused Modules

The EC of producing a new module can be expressed as:
ECLew = (material mass x material EF) + processing + transport. (8.5)

In contrast, reusing an existing module avoids most of the material and processing emissions, but still
requires:

EC euse = inspection + cleaning + refurbishment + transport. (8.6)

The marginal carbon gap is defined as the additional embodied carbon incurred when opting for a
newly manufactured module instead of reusing one:

Marginal Carbon Gap = ECpew — E Creuse: (8.7)

This marginal gap represents the penalty that should be applied in the performance score when reuse
is possible but not selected.

8.5.2. Material and Transport Emission Factors

The EC of concrete elements is strongly influenced by the cementitious content of the mix. Many
alternative mixes can achieve the same strength class with different cement replacements, resulting
in significantly lower EC values. In Table 8.6 three options from the ICE database (9) of reinforced
concrete with approximately the same strength class are compared. The worst scoring mixture uses
ordinary Portland cement with a cementitious content of 380 kg/m?. The PFA (Pulverized Fuel Ash),
also known as fly ash and the GGBS (Ground Granulated Blast-Furnace Slag) mixtures both have a
strength class of C32/40 according to the database.

Table 8.6: Carbon emission factors for reinforced concrete

OPC 167 kgCO,e/ton
30% PFA 134 kgCO,e/ton
70% GGBS | 87 kgCOye/ton

When integrating the carbon penalty with other design constraints, the EC-based penalty must be
normalized to ensure it is weighted appropriately relative to other performance criteria.

For the transport of precast concrete modules, Table 8.7 presents typical emission factors for vehi-
cles capable of carrying up to two tonnes, based on data from (34). In a future reuse-oriented market,
detached floor modules will likely be transported to centralized storage and reconditioning facilities.
The transport distance for reused elements may be shorter if multiple demolition sites and projects
are located within the same region. However, if opportunities for reuse are infrequent, transportation
distances to new sites could be substantially longer than for new modules sourced directly from a
manufacturing plant.

Table 8.7: Carbon emission factors for transportation

Gasoline | 0.344 kgCOye/(t - km)
Diesel 0.286 kgCOse/(t - km)
EV 0.239 kgCO,e/(t - km)

In accordance with EN standards, the applied allocation method is the cut-off approach, meaning
that all production-related emission flows are attributed to the first life cycle of the elements (1).

The EF for the processing, inspection, cleaning and refurbishment steps are difficult to estimate
so for this example the very arbitrary estimate of 0.02 kgCO,e/ton is used. Different scenarios are
assessed with the given EF for the material and the transportation.

8.5.3. scenario Definition
A number of scenarios is set up that varies the material, the transport type and the transport distances
for new and reused modules.
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Table 8.8: Emission factors and distances for different scenario’s

Scenario | Material EF (kgCO,e/ton) | Transport EF (kgCO,e/(t-km)) | dnew [kM] | dreuse [kmM]
S1 OPC (167) Gasoline (0.344) 200 50
S2 30% PFA (134 Diesel (0.286) 100 50
S3 30% PFA (134 EV (0.239) 100 50
S4 70% GGBS (87) EV (0.239) 50 200
S5 70% GGBS (87) EV (0.239) 50 20

8.5.4. Workflow Integration
Two pathways are possible depending on the optimization scope:

1. Optimization without structural constraints: In this case, only embodied carbon is optimized.
Random bitmaps can be generated directly in Python, bypassing Grasshopper dataset genera-
tion. EC is then computed for each configuration using the module stock and the scenario-specific
EF values.

2. Optimization with structural constraints: When structural performance must be considered,
existing datasets with structural metrics are required. The EC is then integrated within the per-
formance score rather than pre-computed in the dataset. This prevents scenario-dependent
datasets and allows flexible evaluation under multiple carbon scenarios.

8.5.5. Optimizing with structural constraints

When structural constraints are included the datasets with the structural performance metrics are
needed. The embodied carbon can be either included in the datasets as well calculating the values
for every sample before training or it can be calculated inside the performance score as was done
until now with the stock constraints. When it is included before training the datasets become scenario
dependent, so to prevent that the calculation will be performed in the performance score.

The problem definition from section 8.4 is used and the same 30,000 random samples dataset is
used as well. The stock from Figure 8.4 is used.

The EC is calculated with the calculate embodied carbon function. With a given bitmap,
available modules and the EC per ton for both reusing and new modules the total EC can be calculated.
It is similar to the stock constraint functions but instead of keeping track of penalties modules violating
the stock limits are added to the new modules and the modules withing the stock limits are saved as
reused modules. The mass of these modules can than be calculated and multiplied with the EC for
both reusing and using new modules coming to a total EC.

The calc _ec per ton function calculates EC’s per ton for new and reused modules. The input
for this function is the scenario data that should be used for this specific optimization problem. The
scenarios from Table 8.8 are used. For reusing a module 0.02 kgCO,e/ton is added to the EC. The
maximum and minimum total EC for the different scenario’s can be found in Table 8.9.

Table 8.9: Minimum and maximum embodied carbon in dataset for different scenario’s

Scenario | EC min (kgC0,e) | EC max (kgCO0,e)
S1 148.24 766.57
S2 136.69 533.86
S3 127.32 517.60
S4 266.61 367.77
S5 98.75 327.25

Inside the VAE the calculate embodied carbon function is used inside the performance func-
tion. The total EC is normalized using the minimum and maximum values from Table 8.9. The optimizer
minimizes the EC and penalties from the performance constraints are added to the normalized EC with
a penalty weight of 0.1.

For the VAE results the GD optimizer with initial sampling is used optimizing the best 300 samples
of 10,000 initial samples with 400 steps and a learning rate of 0.01 and no early stopping.

Table 8.10 shows the results from the VAE optimizer versus the 30,000 samples dataset.
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Table 8.10: Embodied carbon improvement found with VAE

Scenario | EC dataset (kgC0,e) | EC VAE (kgC0,e) | improvement %
S1 148.24 144.82 23
S2 136.69 132.60 3.0
S3 127.32 124.38 23
S4 266.61 266.05 0.2
S5 98.75 95.30 35

The available reuse stock levels are halved and doubled to gain some further insight. With double
the stock the VAE behaves similar. For three of the five scenarios the EC is improved by 1-2%, see
Table 8.11. For the other two scenarios the resulting EC is just above the best of the dataset. Halving
the stock the VAE struggles to find good solutions and the generated samples are usually far of from
the dataset best, see Table 8.12.

Table 8.11: Comparison of EC witch double the stock

Scenario | ECyataset [KGCO,€e] | ECyae [kgCO,e] | Improvement [%]
S1 141.03 141.17 -
S2 130.03 131.68 -
S3 121.12 119.97 0.9
S4 257.03 252.01 2.0
S5 93.94 92.95 1.1

Table 8.12: Comparison of EC with half the stock

Scenario | ECyataset [KgCO,€] | ECyae [kgCO,€] | Improvement [%]
S1 214.20 259.42 -
S2 180.83 204.44 -
S3 170.40 221.51 -
S4 288.98 288.98 -
S5 125.01 156.20 -

8.5.6. Pareto Front: Embodied Carbon vs Structural Performance

In addition to scenario-based optimization, the problem can be framed as a multi-objective optimization
task. Two competing objectives are considered:

» Minimization of embodied carbon (EC), expressed in kg COse,
* Minimization of elastic energy, representing the structural performance objective.

These two objectives are inherently conflicting: reducing EC often requires increasing reuse, which
may limit the structural performance due to constraints in available stock; conversely, minimizing elastic
energy may require selecting new modules with higher cement content, leading to higher EC.

The trade-off between these objectives can be visualized using a Pareto front. Each point in the plot
corresponds to a feasible design generated either from the dataset or by the VAE optimizer. The Pareto
front highlights the non-dominated solutions, i.e., designs for which no other solution is strictly better
in both objectives simultaneously. Figure 8.7 shows the Pareto front for the whole 30,000 samples
dataset.
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Pareto Front: Embodied Carbon vs Elastic Energy

@ Al solutions ®
—— Pareto front

20

Elastic Energy [kNm]

100 150 200 250 300
Embodied Carbon [kgCOz€]

Figure 8.7: Pareto front of Embodied Carbon (EC) vs Elastic Energy. Gray dots represent all sampled solutions, while the red
line indicates the Pareto front.

This representation allows decision-makers to select an appropriate compromise depending on
project priorities. For example, one might choose a low-carbon solution with a small sacrifice in stiff-
ness, or alternatively, a high-performance solution with slightly higher EC. Such trade-off analysis sup-
ports a more transparent and balanced decision-making process compared to single-objective opti-
mization. The visualization can help make an informed decision instead of relying on a hidden scoring
mechanism to come to a best solution between conflicting objectives. Figure 8.8 shows the Pareto
Front for all 5 scenarios in one figure, which enables to see what the increase of elastic energy or
embodied carbon could be when the scenario changes.
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Figure 8.8: Pareto front of Embodied Carbon (EC) vs Elastic Energy. Different colours represent VAE samples for different
scenarios



Problem Generalization and Extensions

The developed method to solve the combinatorial problem still has some drawbacks that could be over-
come by a further generalization. The method now depends on one single cross-section per problem
which allows an optimization of mass given this cross section, but choosing a smaller cross section
or a mixture of cross sections could of course have a much larger impact. In this chapter some sug-
gestions are made how the inclusion of multiple cross sections in a problem can be made, but is not
implemented besides some minor tests.

Maybe the largest question is if the VAE can be generalized so far that it can work for every given
floor plan without generating a new dataset every time. A start was made by optimizing the column
and wall placement and suggestions are given how this full generalization could potentially work.

9.1. Including multiple cross sections

Until now in every problem one cross section was selected and kept the same throughout the problem.
Because of different spans within floor plans it could be more efficient to use multiple different cross
sections. Due to simplification in the structural model it is complicated to include this, but some ideas
were already considered in chapter 3.

The generation of new samples with the VAE works if the cross section is added as extra bitmap,

so 0 or 1 with two cross sections. or [00, 01, 10, 11] with four cross sections. Now the question is when
this is practical to use.

It could make more sense to include multiple cross-sections within one floor. But then difficulties
with compatibility arise. What does the jump in cross section do with shear forces? How would this
connection work? And what to do with middle and edge beams of modules?

Furthermore, the constraints are now defined as a maximum moment, shear force and/or displace-
ment. The maximum displacement is still valid, but the moment and shear force not. They are given
as a numerical value depending on the maximum reinforcement allowed in the cross section. If mul-
tiple cross sections are involved one numerical value as constraint does not work anymore. Only the
maximum values of the moment and shear force are stored in the dataset and not the location, so with
this model it is not possible to know in which cross section these forces occur. Because a change in
the model is needed to reach a useful result the inclusion of multiple cross sections is not implemented
any further in this thesis.

One lesson learned here that when including more input parameters in the VAE as long as it is
represented by binary values the VAE recognizes this and although using continuous values in the
generation of samples they stick very close to the binary values with only a small clipping error. When
cross sections were for example represented by integers [ 1, 2, 3, 4] or the cross section in cm [10, 20,
30, 40] the VAE does not understand this when training and generating new samples. So the rule for
the use of this VAE when including more input parameters is to use a bitmap, so a combination of 0’s
and 1’s for discrete parameters and for continuous parameters a normalized value between 0 and 1,
in this case being the performance metrics.

79
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9.2. Multiple Load Cases

In this section the best results from the paper minimizing the elastic energy of the 13 module floor
plan are used to to compare with the VAE. Note that in the paper all modules had equal weight and
now they have equal cross sections resulting in modules with more poles to be heavier. The optimizer
with initial sampling is used minimizing only for elastic energy with 300 samples, 10,000 initial samples
per sample, 400 steps and a learning rate of 0.005. The VAE results in a new best result lowering
the elastic energy from 1.283 kNm to 1.242 kNm. combining insights from both results some manual
configurations were tried and one lowered the elastic energy further to 1.235 kNm. The resulting floor
plans are in Figure 9.1

(a) Manual paper: elastic energy: 1.283301 (b) Best VAE without constraints: elas- (c) Manual aﬁer_ VAE: elastic energy:
kNm, displacement 10.698659 mm tic energy: 1.241696 kNm, displacement: 1.235033 kNm, displacement: 10.047501
9.394274 mm mm

Figure 9.1

Like in the paper (24) it can also be assessed what the effect of different load cases is on the elastic
energy. The same Q = 5 kN/m? is placed on two different areas as seen in Figure 9.2.
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Figure 9.2

The same load combinations as earlier are used:
ULS1=135%xG+1.5*Q1 (9.1)
ULS2=135%G + 1.5+ Q2 (9.2)

ULS3 =135%G + 1.5+ Q3 (9.3)
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ULS4 =1.35%G + 1.5 = Q4 (9.4)

Table 9.1 shows the resulting elastic energy for the three different load cases for the four floor plans,
now also including the grid modules design. For the regular load case the manual configuration created
after seeing the results of the VAE had the lowest elastic energy, but when considering the asymmetric
load cases the configuration from the VAE behaves slightly better.

Table 9.1: Elastic energy for different load cases in kNm

Load case Manual paper | Best VAE | Manual after VAE | Grid

G+Q 1.283 1.242 1.235 1.989
G+Q1 0.931 0.920 0.922 1.217
G+Q2 1.046 0.983 1.024 1.417
G+Q3 0.994 0.942 0.947 1.485
G+Q4 0.526 0.538 0.520 0.793
G+Q5 0.848 0.819 0.826 1.292
G+ Q6 0.642 0.638 0.622 0.937
G+Q7 0.924 0.887 0.878 1.364
G+Q8 0.442 0.466 0.442 0.733
Mass [ton/m2] | 0.202 0.223 0.206 0.178

9.3. Optimizing column and wall placement

The placement of columns and walls is usually defined by architectural and project requirements, for
example demanding an open floor plan. In this section the goal is to create a model that can help design
the combination of column and wall placement with the configuration of the floor modules to come to
an optimal design. To reach this goal the VAE is trained including random configurations of columns,
walls and floor modules. When generating new samples the number and/or location of columns and
walls can be guided to restrictions or wishes. The VAE is trained on one dataset with the idea that the
scoring can be quickly adapted. The floor plan itself and the cross sections are kept fixed using the
3x3 symmetric floor plan with the 30 cm by 15 cm cross section with C30/37 concrete.

9.3.1. Dataset generation with random columns and walls

In a 3x3 symmetric floor plan there are 16 possible placements of columns and 24 for the walls. Defining
the placement of a column or a wall in a bitmap, results in 40 bits with (0) being no column or wall and (1)
being a column or a wall. A dataset with random configuration of these 40 bits can easily be generated,
but some refinement is needed for the dataset to make sense. In the GH model the first 16 bits are
linked to the 16 possible column positions and the last 24 bits to those of the walls.

Columns and walls can easily share the same position. This causes an error in Karamba3D stating
that two supports are placed in the same location. The easy solution to make the model work is to
remove duplicate points before the supports are created, to remove these columns placed in walls, but
then the bitmap still includes these columns. A better way to solve this issue is to prevent columns to
be at wall locations in the generation process already. This can be done in the python script in GH that
generates the random bitmaps, by linking the number of columns to those of walls that correspond and
setting the bit of the column to zero if both equal one. The duplicate points still have to be removed
afterwards for walls that connect.

A probability of generating a 0 or a 1 is added to the script as well to influence the average amount of
columns and walls created. The probability of generating a column or wall is set to 0.2. For 16 column
and 24 wall positions this means that on average about 3 columns and 5 walls are generated. With the
removal of columns placed in the same position of walls the amount of columns will be lower.

Another issue is that some generated support configurations are just not feasible, for example only
columns at one edge of the floor plan, causing very large forces and deformations. These samples can
break the VAE, due to normalization issues with extremely large values. Because there is no need to
train and generate these kind of samples they can easily be removed before the training process by
setting a maximum for all performance metrics and for elastic energy also a minimum value of zero.
This results in a 20,000 sample dataset represented by the histograms in Figure 9.3.
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Figure 9.3

A lot of the samples still contain quite large values for the displacement and elastic energy. Although
not visual in the histograms due to the low frequency there are a few samples close to the set maximum
that influence mainly the normalization. The dataset can be made smaller removing these samples to
see if the performance improves. A 10,000 sample subset from the 20,000 random dataset is made by
removing all samples with a displacement larger than 4 mm and after that taking the 10,000 samples

with the lowest elastic energy to result in Figure 9.4.
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Figure 9.4: Histograms from the 10,000 samples case

9.3.2. VAE training

For the 3x3 case the 16 bits for the columns, 24 for the walls and 36 for the modules results in a
total of 76 bits and 5 performance metrics. First the dataset with 20,000 samples is used to train the
model. With the lessons learned from the previous chapters only metrics based training is performed
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and because the problem is different, a different number of latent dimensions is tried as shown in Table
9.2. For each case 200 hidden units, 200 epochs with patience of 10 and a kld-loss of 5e-4 was used.
Figure 9.5a shows the training progress.

Table 9.2: Training the random column and wall placement

Latent Training Early

. . . ; best v-loss
dimensions time stopping
30 1 min 18 epochs | 0.10227
50 4 min 91 epochs | 0.045179
70 2 min 36 epochs | 0.041694
75 3 min 57 epochs | 0.041260
80 1.5 min | 34 epochs | 0.041631
120 2 min 28 epochs | 0.041907
0.1 | —— training loss 0.14 | —— ftraining loss
| validation loss | validation loss
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(a) Training progress 20,000 random samples, best v-loss = 0.04126 (b) Training progress 10,000 random samples, best v-loss = 0.04415
Figure 9.5

The 10,000 sample dataset results in a slightly higher validation loss, see Figure 9.5b

9.3.3. Performance score

Some constraints are set that in practice would come from the project requirements. No constraints
are set on the moment, shear force and displacement this time. The elastic energy or mass needs
to be minimized and at the same time we want to control the amount of columns and walls. The
performance function must be minimizing elastic energy or mass and adding penalties for the amount
of columns. Inside the performance function the new modes columns and walls min energy
and columns and walls min mass are defined that call the new count columns and walls
function and sums the elastic energy or mass times a weight with the penalty for the supports times a
weight. The count columns and walls function simply counts the amount of columns and walls
for every sample and returns a penalty. The walls can be given a higher penalty than the columns to
penalize these more. Important is to give a maximum amount of columns and/or walls to allow without
giving a penalty. Without this, the VAE is pushed to create samples without supports, still predicting
good scores although the samples are unfeasible when running them in GH. Furthermore samples with
less then 2 supports are given an extra penalty, which is now set to 3.

The random sampling method is used with 200 runs of 10,000 samples to assess how the perfor-
mance function is behaving for different numbers of columns and walls and different penalties. Table
9.4 shows that the VAE is generating samples that are close to the best dataset result but not yet better
performing ones.

The best dataset result has two columns and two walls, see Figure 9.6. Although causing a penalty
when restricting the problem to 2 columns and 1 wall, this then still remains the best scoring sample.
The score depends on which weights are used. The elastic energy of this sample is 0.018947 kNm.
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Figure 9.6: Columns, wall and module placement for best performing dataset sample

Table 9.3: Results 20,000 samples dataset

Energy | support Elastic

weight | weight | Energy KkNm Score, dataset

Columns | Walls

3 2 0.1 0.1 0.258529 0.000733, 0.000032
3 2 1.0 1.0 0.270114 0.007666, 0.000321
2 1 0.1 0.1 0.438340 0.001259, 0.000032
2 1 1.0 1.0 0.418008 0.011992, 0.000321

9.3.4. GD optimizer

The GD optimizer with initial sampling is used to see if it is suitable to generate and optimize better
than yet known samples. Because the samples with insufficient supports are removed from the training
process, the VAE has no information on the problems this causes and the GD is encouraged to optimize
towards samples with insufficient supports. Because including these invalid samples causes problems
with normalization and training they are still left out and the problem is dealt with in the generation and
optimization process. When generating initial samples for the GD a check is done if there are minimal
two supports and if not the samples are removed. In the optimization process an extra early stopping
criteria is enforced if a samples has less than two supports.

The optimizer is set to use 10,000 initial samples, optimize 200 samples with 400 steps and a
learning rate of 0.005, taking between 2 and 3 minutes to run. Increasing the learning rate to 0.01 or
0.1 results in the early stopping for less than two supports being triggered very quickly and results in
samples with higher elastic energy and scores.

Table 9.4: Results 20,000 samples dataset

Energy | support Elastic

weight | weight | Energy kNm Score, dataset

Columns | Walls

3 2 0.1 0.1 0.189829 0.000532, 0.000032
3 2 1.0 1.0 0.258529 0.007327, 0.000321
2 1 0.1 0.1 0.296106 0.000843, 0.000032
2 1 1.0 1.0 0.325058 0.009273, 0.000321

A VAE workflow was successfully constructed that can generate new samples including the place-
ment of columns and walls. The optimizer with initial sampling results in better samples than the random
sampling method, but does not optimize to better results than the dataset yet. For this thesis no more
time is invested to research this specific problem further, but some conceptual ideas for a more overall
generalization are given.

9.4. VAE optimizer independent of floor plan

With the workflow in place for the optimization of column and wall placement the step to a complete
problem generalization could be made to train a VAE independent of the floor plan that is wished. This
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model could then be used to optimize every floor plan in certain bounds removing the need for training
the model for different problems. Of course this leads to a larger amount of input data for the VAE and
as was seen with trying a very large 225 module problem this would likely lead to overfitting using the
given architecture. That is also why no attempts are made to try this within this thesis but ideas are
shared as recommendations for future research.

A grid size should be selected which will be the maximum size the floor plan can be. Within this grid
modules can be placed or not, which has to be encoded in the bitmap.

Infeasible designs have to be prevented or removed by implementing rules in the generation pro-
cess. For example that every module should touch at least one other module.

The VAE optimizer could be pushed towards the wished floor plan by penalizing every module that
should not be in the floor plan or is missing. The same can be done for the amount or location of
columns and walls.

Because this generalization of the problem leads to so many more possible solutions it would be
possible that it is already difficult to generate a corresponding and if the optimizer is then still able to
also optimize the module configuration.
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Conclusions

The main research question of this thesis was:

“How can the combinatorial problem of modular ribbed floor systems be optimized using
the latest optimization techniques, including generative machine learning?”

To address this, a number of sub-questions were posed that are answered below.

1. Which structural analysis objectives need to be optimized?
The performance based objectives mass and elastic energy can be optimized with the maximum mo-
ment, shear force and displacement being used as code based constraints.

2. Can an existing optimization workflow be adapted to optimize these objectives?

The idea to create the datasets by running the Karamba solver in Grasshopper came from previous
thesis studies. The VAE methodology was adapted from the DSAIE course. Literature on using the
bitmap as data representation of such a 3D geometry with structural information encoded into it was
not found, meaning that to test different VAE architectures was pure trial and error. A shallow 1 layer
model was already effective and adding more layers did not prove to be gaining any improvements.
The number of latent dimensions most suitable for the training process appeared to be dependent on
the problem size. Suitable values for other hyperparameters of the VAE were selected but did not
appear to results in large differences between different problems and datasets.

3. What are the advantages and disadvantages of different optimization workflows?

The choice of methodology to solve this optimization problem partly came from the proposed type of
input data representation and the optimization objectives. Using a Variational Autoencoder or Rein-
forcement Learning were both state-of-the-art methods that were successfully used for other structural
optimization problems. The main advantage of using the VAE over RL was the prior knowledge avail-
able, and when a first script was working the RL method was abandoned.

4. Can a heuristic or generic method be used to create an initial dataset with configurations?

As dataset generation strategies the generic methods available in Grasshopper, being the evolutionary
solver and simulated annealing solver are compared with random generated samples. It was expected
that using generic solvers to create datasets would lead to better results than randomly created ones.
Datasets created with the evolutionary solver can have very good predictive abilities and often result
in lower validation losses than with random generated samples. The annealing solver and combined
datasets of the two solvers lead to a larger prediction error in the shear force. When optimizing with
these different datasets it becomes clear that the model trained with the random generated data is the
best in optimizing below the results available in the dataset.

5. How many samples should a dataset have to sufficiently train the model

Increasing the number of samples decreases the clipping error, depending on the problem size on
average from 0.9 for 2000 samples to 0.6 for 20,000 samples. Minimizing the elastic energy with con-
straints for the symmetric problems the 2,000 and 20,000 samples datasets produced similar results,
with about half of the time either one outperforming the other.
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6. How is the performance of a configuration evaluated?

The performance of a configuration is evaluated as the lowest score, if within the normalized dataset
boundaries between 0 and 1 or otherwise slightly above or underneath it. The performance function
defines which performance objective is used for this score. Other structural performance metrics can be
included in the score as constraints allowing different functions to be set with different penalty functions
and weights to tune how hard or soft constraints are penalized and thus enforced.

7. Can stock constraints be included in the optimization method?

Stock constraints were successfully implemented optimizing a performance score that minimizes mass
or elastic energy adding penalties for using not available stock. These penalties can be used to enforce
the constraints aiming to only use the available penalties, but could also act as the cost of producing a
new module and therefore find a trade-off between more efficient designs with extra modules and less
efficient designs with only available modules.

As the motivation for this floor system was the decrease of embodied carbon this was also set as an
optimization objective, including the use of new and reused modules and the transportation. Although
improvements were minor 1-3% and not always stable for every number of available modules, further
work could make this a stable optimizer.

8. Can the chosen method be used to generate better configurations than solvers in GH?

The VAE workflow was found to produce better results in the 13 module case optimizing elastic energy
than the evolutionary solver. It was quicker in finding solutions that do not violate the stock constraints
and found designs with a lower elastic energy overall. Running both optimizers for 10 minutes the VAE
leads to a on average 1.5% lower elastic energy and including the stock penalties a 20% lower score.
Still, the VAE does not have the ability to follow some simple insights. For example when minimizing
mass, why would the best result include the heaviest module when you can also fulfill the constraints
without it? With some insight the best found configuration can often be improved manually.

9. Do the generated configurations only use the assigned modules?

The fact that the VAE architecture only allows for continuous values to be generated leads to the clipping
of these continuous values to the desired bits. Often the generated values are very close to 0 or 1. As
was expected this clipping error increases when the problem size increases and the validation loss of
the model increases as well. When using the Gradient Descent optimizer the moment that the number
of optimization steps does lead to larger prediction errors the clipping error was expected to increase
as well. It would make sense that during ongoing optimization the VAE would try to make samples that
are further away from the given bits to seek for extra improvement. However, in this case the clipping
error decreases and the optimized mass stays about the same.

10. What kind of surrogate optimizer is best to include based on the optimization objectives?

Two different optimization strategies were considered, one drawing a large amount of initial samples
from the VAE and the other optimizing a sample in latent space. A better but still quick working optimizer
was set up by combining these two allowing to use a large amount of initial samples and only optimizing
the best one in latent space.

11. What are the limits on the use of the method?

The validation loss keeps increasing with the problem size and starts to overfit. For smaller problems,
25 modules or less, it is difficult to see a negative effect on the optimization performance of the VAE.
For 36 modules the VAE optimizer behaves similar as the evolutionary solver. Increasing the problem
size further the training process becomes more unstable, but the predicting qualities of the VAE still
remain. However, optimizing towards better samples than already in the dataset becomes very difficult.

12. Can the trained model optimize other floor plans?

No, but this could be possible by further generalizing the method. For example, the combinatorial
problem can be further generalized with learning the VAE for example the placement of columns, walls,
or different cross sections and implementing this in the workflow as long as it is represented by a bit
input as well.
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13. How can the method be used by others?

The method could be implemented in a GH workflow. All numerical experiments were now performed
with the structural analysis and dataset generation in GH and the VAE training and optimization in
Python in Visual studio Code, coupling the two with csv files with the datasets and optimization results.
This was separated to allow for quicker and more stable editing and running of the python code com-
pared to the Rhino python environment. The final python script could be split in two and implemented
in GH. One part allows you to feed it with data, choose the training settings, train the model and save
it. The other part lets you select a trained model, define all the optimization objectives and optimizer
settings, and runs the optimizer. The last step would still be to calculate the actual performance of the
optimized samples with the structural analysis in GH.

Contribution to Structural Optimization

The resulting optimizer can contribute most towards structural optimization when problems become
more complex, when for example including stock constraints, including multiple load cases, or perform-
ing a multiobjective optimization with embodied carbon and elastic energy. In these cases it is difficult
to find solutions by hand with only structural insight. For small problems structural insight sometimes
leads to better designs than the VAE optimizer. This indicates that it understands the the structural
behavior in a different way than engineers do. Combining the VAE designs with human knowledge on
how the forces flow through a floor can lead to further improvements. The VAE optimizer in this case
acts as a design tool that gives some almost optimized starting designs. The structural engineer is
then able to tweak those designs to find an even better solution or include more design requirements
or wishes the VAE was not able to implement.
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Discussion and Future work

Structural simplifications

In this thesis the main focus was on the optimization workflow itself, and as noted at the scope definition
and the introduction of the structural model, simplifications were made. The largest simplification is
that the whole ribbed floor structure is modeled as completely fixed ribs, which is of course completely
against the idea of a modular structure. Because the connections of a modular floor system are a whole
research subject by itself, this simplification is left in place and this subject is for further research. A
bolted or otherwise connected system would lead to a different structural model as a whole. These
connections would be subject to shear forces and moments that need additional code checks. The
whole structure would become less stiff leading to larger displacements.

Discrete vs. continuous VAE

Although discussed, a discrete VAE was not implemented but clipping the generated values of the
samples to bits was used. When a sample is optimized and one or more values of a bitmap are not
close to 0 or 1 but around 0.5 this could mean the VAE is steering towards a combination of modules.
One could investigate if in these cases the it would make sense to use a rib design that is in between
the two modules. A discrete VAE is not used entirely in this thesis so the performance of such a
method is still unknown. It was decided not to use it because this simpler method was working and not
investigating it further allowed for more time for numerical experiments. However it could be possible
that a discrete VAE performs better if the clipping errors are not something to deal with anymore.
Implementing a discrete VAE was seen as complicated, because the input data has a discrete, the
bitmap, and a continuous part, the performance metrics. The coupling of these two parts with a different
VAE architecture will be a challenge, that was now avoided.

Prediction errors

With almost all datasets it was possible to train the VAE model with prediction errors below 10% for all
performance metrics. For mass, elastic energy and displacement the VAE often could make predictions
for new configurations with an average 1-2% error. For the moment and the shear force this was usually
in the 5-10% error range, with sometimes predicting the shear force much worse: 15-20% error. This
indicates that the moment and shear force are more difficult to learn from the dataset, which makes
sense. The relationship between the module bitmaps and the mass is the easiest to understand and
learn. When the VAE learns that certain combinations of 0’'s and 1’s lead to a certain mass, it can easily
predict the mass on a new configuration as that is the only factor influencing it. With the displacement
and the elastic energy the relation already becomes more complicated as the location of the modules
now also matters in some extend, such as placing more ribs towards a column or wall and less in the
middle of a floor span. The moment and shear force however, is something largely influenced by local
effects and therefore more difficult to predict. Placing a module with a pole at a column increases the
amount of ribs from 2 to 5, decreasing the maximum shear force often by more than 50%, depending on
the design. So, if the VAE misses the relationship that a module with a pole or not (0 or 1) is located at
a column it can easily make an prediction error of over 50%. As the location of supports is not included
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in the bitmap in any way (in the non generalized model at least) and the only information on the shear
force the VAE receives is the maximum shear force of the whole floor, it is not that surprising that this
often goes wrong and actually impressive that the VAE reaches a shear force prediction error below
10% for so many datasets.

The maximum moment on the other hand is mostly depended on the continuity within the rib design.
If two or more modules connect with both being poles or not, the moment usually transfers smoothly.
If for example on the edge of a floor, one module ends with a pole and the other not, this can lead
to a large jump in the moment larger than the moment would be in the middle of the floor with only
grid modules. Something else that happens is that columns or walls in the middle of continuous floors
can lead to large hogging moments. The module configurations around these supports have a large
influence in creating extreme values for these hogging moments that often also result in the maximum
moment of the entire floor. When making module configurations manually one could already see that
the design looks weird, or structurally nonlogical, but the VAE is not able to see this and relies on data
only. If one small change of one bit can lead to such a peak in the maximum moment this also makes
it more difficult to predict.

Possible solutions that might decrease the prediction error of the moment and the shear force and
get more insight on the local effects are to include the moment and shear force of all ribs or nodes to the
dataset, or to add the supports to the datasets as is done in the further generalization of the problem.

Normalization

The optimization process is dependent on the normalization of the datasets. As was discussed with
the results of the stock constraints benchmark with the evolutionary solver in chapter 8, this can make
it difficult to compare performance scores. The score depends on the minimum and maximum values
of the mass or elastic energy and lower generated values result in a negative performance score. This
makes it difficult to compare the performance score between the results generated from two different
datasets and is also why the elastic energy or mass and the number of stock violations was reported.

Cross-sections

The multiple cross section problem is still something to deal with. When minimizing mass a problem
has to be very close to the constraints for the optimization to make sense. The improvement in for
example displacement by finding a better configuration is often quite small, so a grid solution should
just be above this constraint for another configuration to fulfill it when minimizing mass.

Module optimization

The modules itself could still be further optimized. The module geometry exists of straight lines between
nodes, although curved ribs could be more efficient. The curvature of ribs would be more complicated
to model, leading to more elements and thus a longer computation time. Furthermore, the curvature
of ribs leads to additional moments caused by the curved reinforcement, leading to additional code
checks.

Another possible module optimization could be to change the cross-section within modules. A
more efficient rib design would require an increase in cross-section height in the middle of floor spans
to increase the stiffness and thus decrease the deflection. Or modules could be further optimized
considering supports. Every module optimization that tackles a local structural problem will cause a
trade-off between structural efficiency and mass-production and re-usability, by creating extra modules
or making their use too specific.

Future work

In the last chapter a first step towards a generalization of the model was made by including the place-
ment of columns and walls. The generalization could be taken further in training a larger model for more
floor plans at once. The input dimensions within this model have to stay the same, but with for example
creating a bitmap for not using a module different floor plans within a certain grid can be possible. If
you can specify what your floor plan is in the optimizer it could maybe generate configurations for this
floor plan. The following steps should be taken to perform this complete generalization:
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* The inclusion of a module should be included. This could for example be done with including
separate bits for including a module in that location of the floor (1) or not (0). Then the bitmaps
for the specific modules can be added, and then the bits for the columns and walls.

» Dataset generation should enforce that all modules are connected and the supports are feasible.
Rules have to be written in the script that generates the random bitmap samples, so that these
samples are excluded before the structural analysis runs and breaks on these unfeasible samples.
The model probably has to be large and varied enough to work.

+ A different architecture might be needed to overcome the overfitting of the model. As the larger
problem sizes already showed overfitting and the random column and wall placement model was
not able to find improvements it is expected that the current architecture will not work, or at least
will not generate better samples when optimizing. Maybe implementing a discrete approach for
generating the bits could work.

+ Just like the stock constraints similar functions can be used for the exact location of modules and
walls to enforce a specific floor plan design.

The advantages of this complete problem generalization would be that the dataset generation and
training steps of the workflow only have to be performed once and this model only has to be downloaded
and loaded by anyone that wants to use it.

The expected disadvantages are that the prediction accuracy will be lower and that the optimization
step takes longer and leads to less improvement than with a dedicated problem description and dataset.

Besides the problem generalization other contributions in future work could be to:

» Look at other materials. This is a very small change in the model. Only the material, the cross
sections and constraints have to be altered. Datasets have to be generated again of course, but
could all be done with control of the parameters in GH without changing the workflow.

» Develop this optimization method further into a design tool in GH that can give quicker and better
results than the already implemented tools, without the need to perform so many steps as are
now needed.






Hyperparameter optimization

Table A.1: VAE Hyperparameter tuning

Latent dimensions | Hidden layers | Hidden Units] | kld weight | val-loss

1 1 10 5e-04 0.194275
5 1 10 5e-04 0.139817
8 1 10 5e-04 0.110614
9 1 10 5e-04 0.122681
10 1 10 5e-04 0.121501
11 1 10 5e-04 0.123745
12 1 10 5e-04 0.108412
13 1 10 5e-04 0.109473
14 1 10 5e-04 0.122932
15 1 10 5e-04 0.107895
16 1 10 5e-04 0.122117
17 1 10 5e-04 0.122027
18 1 10 5e-04 0.140689
16 1 10 1 0.235572
12 2 10 5e-04 0.138333
12 5 10 5e-04 0.151289
12 1 100 5e-04 0.013624
12 1 150 5e-04 0.012475
12 1 180 5e-04 0.012889
12 1 200 5e-04 0.012369
12 1 220 5e-04 0.012749
12 1 250 5e-04 0.012740
12 1 300 5e-04 0.013744
12 2 100 5e-04 0.012924
12 3 100 5e-04 0.014973
12 5 100 5e-04 0.024666
1 1 10 5e-04 0.194275
1 2 10 5e-04 0.193491
1 3 10 5e-04 0.193748
1 4 10 5e-04 0.197853
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A. Hyperparameter optimization

Table A.2: VAE Hyperparameter tuning 13 Modules, 10 epochs

Latent dimensions | Hidden layers | Hidden Units] | kld weight | val-loss
1 1 10 5e-04 0.191867
5 1 10 5e-04 0.181720
8 1 10 5e-04 0.177527
9 1 10 5e-04 0.178251
10 1 10 5e-04 0.174662
11 1 10 5e-04 0.174027
12 1 10 5e-04 0.174921
13 1 10 5e-04 0.172009
14 1 10 5e-04 0.173989
15 1 10 5e-04 0.175810
16 1 10 5e-04 0.173495
17 1 10 5e-04 0.175149
18 1 10 5e-04 0.175456
12 1 100 5e-04 0.140774
13 1 100 5e-04 0.137901
13 1 200 5e-04 0.136302
13 2 200 5e-04 0.134024
Table A.3: VAE Hyperparameter tuning 13 Modules, 50 epochs

Latent dimensions | Hidden layers | Hidden Units] | kid weight | val-loss
1 1 10 5e-04 0.188156
13 1 10 5e-04 0.162463
13 2 10 5e-04 0.168605
13 3 10 5e-04 0.175633
1 1 100 5e-04 0.185763
13 1 100 5e-04 0.111289
13 1 200 5e-04 0.100471
13 1 300 5e-04 0.100400
13 2 10 5e-04

13 2 100 5e-04

13 2 200 5e-04




VAE predicting structural behavior

Table B.1: Prediction error 2x2 datasets

2x2 Mass | Moment | Shear Force | Displacement | Elastic Energy | v-loss
Evolutionary 10000 | 2.3% | 4.6% 8.9% 1.7% 2.7% 0.013
Annealing 10000 2.1% | 4.0% 12.2% 1.8% 2.6% 0.013
Combined 10000 2.1% | 5.4% 7.7% 1.8% 3.1% 0.012
Combined 20000 2.4% | 5.0% 7.7% 1.6% 2.6% 0.012
Brute Force 65536 | 2.1% | 7.0% 4.6% 1.4% 2.3% 0.011
Table B.2: Prediction error 3x3 datasets
3x3 Mass | Moment | Shear Force | Displacement | Elastic Energy | v-loss
Evolutionary 5000 1.0% | 6.4% 4.7% 1.0% 1.4% 0.025
Evolutionary 10000 1.1% | 6.3% 6.2% 0.8% 1.3% 0.020
Annealing 10000 1.5% | 4.7% 1.7% 1.1% 1.6% 0.037
Combined 10000 14% | 5.7% 8.3% 1.2% 1.7% 0.039
Combined 20000 1.6% | 5.4% 7.0% 1.0% 1.6% 0.031
Random 30000 1.6% | 6.7% 4.2% 1.0% 1.5% 0.063
Random 2000(70lat) 2.0% | 6.3% 6.6% 1.5% 2.3% 0.031
Random 5000 (70lat) 1.8% | 7.1% 6.3% 1.4% 2.0% 0.028
Random 30000 (70lat) | 2.0% | 5.1% 5.9% 1.3% 2.0% 0.028
Table B.3: Prediction error 4x4 datasets
4x4 Mass | Moment | Shear Force | Displacement | Elastic Energy | v-loss
Evolutionary 20000 1.2% | 4.0% 6.8% 1.0% 1.3% 0.045*
Annealing 20000 1.5% | 5.8% 10.7% 2.6% 2.9% 0.039*
Combined 10000 14% | 4.3% 10.4% 1.4% 1.7% 0.057
Combined 20000 14% | 4.7% 9.9% 1.0% 1.3% 0.06*
Combined 30000 1.2% | 4.5% 9.1% 1.1% 1.5% 0.05*
Combined 40000 1.4% | 4.6% 8.8% 1.0% 1.4% 0.05*
Shear EVO 10000 1.0% | 6.9% 8.8% 0.6% 1.0% 0.036
Random 10000 1.5% | 5.5% 4.7% 1.1% 1.7% 0.18
Random 20000 1.6% | 5.3% 5.8% 1.2% 1.8% 0.15
Random 20000 (70lat) | 1.3% | 5.6% 5.6% 1.2% 1.8% 0.046

*Only the training graph is saved, not the exact validation loss
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Table B.4: Prediction error 5x5 datasets

5x5 Mass | Moment | Shear Force | Displacement | Elastic Energy | v-loss
Evolutionary 8000 0.57% | 2.9% 4.1% 0.6% 0.8% 0.046
Random 5000 (70lat) 1.4% | 4.1% 6.3% 1.0% 1.5& 0.12
Random 10000 (70lat) | 1.0% | 4.2% 6.5% 0.8% 1.3& 0.12
Random 20000 (70 lat) | 1.2% | 5.0% 6.0% 0.9% 1.3% 0.12
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Figure B.11: Trainingprogress of 5x5 case






Benchmarking evolutionary solver

Table C.1: Benchmarking the Evolutionary solver with stock constraints: 1000 samples

Run Elastic Stock Used Score
Energy [KNm] | violations | modules
1 1.35 0 102343 | 0.0128
2 1.42 0 202540 | 0.0996
3 1.35 1 203332 | 0.1101
4 1.31 0 102442 | -0.0340
5 1.42 0 202243 | 0.0989
6 1.33 1 003442 | 0.0834
7 1.42 0 302332 | 0.0976
8 1.31 1 003442 | 0.0635
9 1.38 0 102532 | 0.0460
10 1.34 1 212242 | 0.0967
average | 1.36 0.4 0.0675
Table C.2: Benchmarking the Evolutionary solver with stock constraints: 2000 samples
Run Elastic Stock Used Score
Energy [KNm] | violations | modules
1 1.36 0 301441 | 0.0309
2 1.34 1 012541 | 0.0954
3 1.36 1 203440 | 0.1258
4 1.32 0 102343 | -0.0286
5 1.30 1 103243 | 0.0528
6 1.31 1 012433 | 0.0552
7 1.36 0 102343 | 0.0309
8 1.32 1 011542 | 0.0891
9 1.40 0 202432 | 0.0755
10 1.32 0 002542 | -0.0206
average | 1.34 0.5 0.0506

1M1
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C. Benchmarking evolutionary solver

Table C.3: Benchmarking the Evolutionary solver with stock constraints: 2000 samples, with 100 samples optimization

Run Elastic Stock Used Score
Energy [KNm] | violations | modules
1 1.36 0 301441 | 0.0309
2 1.29 1 111442 | 0.0335
3 1.37 0 202441 | 0.0355
4 1.34 1 002551 | 0.0967
5 1.34 1 012541 | 0.0954
6 1.38 1 101551 | 0.1508
7 1.36 2 101461 | 0.2222
8 1.45 0 202243 | 01397
9 1.36 1 203440 | 0.1258
10 1.35 0 001642 | 0.0092
average | 1.36 0.7 0.0844
Table C.4: Benchmarking the Evolutionary solver with stock constraints: 5000 samples
Run Elastic Stock Used Score
Energy [KNm] | violations modules
1 1.36 0 302341 | 0.0335
2 1.38 0 101542 | 0.0642
3 1.37 0 202342 | 0.0479
4 1.38 0 302233 | 0.0625
5 1.33 1 112432 | 0.104
6 1.33 1 303340 | 0.1041
7 1.36 1 303340 | 0.1379
8 1.32 1 012442 | 0.0855
9 1.33 1 212242 | 0.1045
10 1.35 1 012442 | 0.1203
average | 1.36 0.6 0.0864
Table C.5: Benchmarking the Evolutionary solver with stock constraints: 10000 samples
Run Elastic Stock Used Score
Energy [KNm] | violations | modules
1 1.36 0 102721 | 0.0383
2 1.31 0 002641 | -0.0180
3 1.35 0 202441 | 0.0257
4 1.32 1 100552 | 0.0893
5 1.34 0 301342 | 0.0170
6 1.27 1 112441 | 0.0278
7 1.34 0 302332 | 0.0173
8 1.37 0 102631 | 0.0504
9 1.35 1 112342 | 01218
10 1.42 0 002542 | 0.1093
average | 1.34 0.3 0.0479
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Table C.6: Benchmarking the Evolutionary solver with stock constraints: 30000 samples

Run Elastic _ Sto_ck Used Score
Energy [KNm] | violations | modules
1 1.34 1 114442 | 0.1463
2 1.34 0 200632 | 0.0510
3 1.40 0 402340 | 0.1148
4 1.32 0 002542 | 0.0194
5 1.31 1 212341 | 01112
6 1.39 0 102532 | 0.1009
7 1.34 1 002551 | 0.1447
8 1.37 1 003343 | 01779
9 1.29 1 112540 | 0.0910
10 1.31 1 203143 | 0.1087
average | 1.34 0.6 0.1066
Table C.7: Benchmarking the Evolutionary solver with stock constraints: EVO 10 min
Run Elastic Stock Used Score
Energy [KNm] | violations modules
1 1.42 2 113440 | 0.3056
2 1.35 2 413230 | 0.2140
3 1.39 2 122710 | 0.2666
4 1.42 2 413410 | 0.3032
5 1.38 0 302440 | 0.0567
6 1.30 4 024520 | 0.3426
7 1.37 2 113530 | 0.2410
8 1.30 4 042430 | 0.3458
9 1.30 4 042430 | 0.3458
10 1.31 1 112540 | 0.0673
average | 1.35 23 0.2489
Table C.8: Benchmarking the Evolutionary solver with stock constraints: EVO 3 min
Run Elastic Stock Used Score
Energy [KNm] | violations modules
1 1.43 2 122440 | 0.3146
2 1.40 1 103630 | 0.1742
3 1.65 2 222340 | 0.6013
4 1.38 3 023620 | 0.3529
5 1.48 2 422230 | 0.3782
6 1.41 3 032620 | 0.3917
7 1.36 1 012640 | 0.1269
8 1.42 3 123430 | 0.4087
9 1.41 3 205510 | 0.3946
10 1.47 2 213430 | 0.3661
average | 1.44 2.2 0.3509
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Figure D.1: M,, for ULS with 5 kN /m? distributed load
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Figure D.2: V, for ULS with 5 kN /m? distributed load
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Figure D.3: M,, for ULS with 5 kN /m? distributed load
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Figure D.4: Vv, for ULS with 5 kN/m? distributed load
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