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Abstract
The history of space exploration shows a widespread interest in asteroids. These small bodies were
visited by multiple spacecrafts made by different space organizations through time. The asteroids
give us information about the history of the solar system, due to their unchanged state since the early
beginning of the Solar System. In the future, these rocky bodies could provide resources for use on
Earth or during human spaceflight. Besides these benefits, so­called near­Earth asteroids can be of
danger by the possibility of collision. In the history of Earth, asteroid impacts had large consequences
for life on Earth.

During missions towards asteroids, navigation is challenged by the gravity field of the asteroid.
Asteroids are relatively small and often have a very irregular shape. The relatively small and irregular
gravity field of the asteroid on the spacecraft, makes the acceleration difficult to predict. Therefore,
gaining knowledge about this gravity field during the mission improves the safety of the spacecraft.

Gravity fields of celestial bodies often modeled and estimated using the spherical harmonics model.
This model has the disadvantaged that its convergence is limited to the body’s circumscribing sphere,
called the Brillouin sphere. Because of their often irregular shape, this model is not suitable for orbits
close to the asteroid, reaching inside this reference sphere. To eliminate this problem, the alternative
mascon (mass concentration) gravity model is implemented in an extended Kalman filter (EKF). This
model distributes point­masses along the asteroid’s body. The gravitational parameters of each defined
mascon are estimated by the EKF using noisy position measurements.

To test the performance of the EKF, a spacecraft is simulated in an asteroid environment. For this
simulator, the polyhedron gravity model using the 433 Eros shape model is defined as the real­world
gravity field. This high­precision and non­diverging gravity field model assumes a constant density in
the asteroid. The model is adjusted such that it also can include density differences inside the asteroid
shape by dividing the surface shape model into numerous volume elements. Each element is assigned
a density according to the smoothing Mátern Covariance function, which depends on the Euclidean
distance between the elements.

The EKF is capable of handling asteroids with a heterogeneous density distribution with the same
accuracy as for homogeneous asteroids. Its performance depended highly on the chosen mascon
positions, as point masses can be highly correlated. The EKF can estimate the gravity field as accu­
rate as the spherical harmonics degree 8 using noisy position measurements with 10 meter standard
deviation.
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1
Introduction

The thesis work is introduced in this chapter. In section 1.1, arguments are given for studying and
heading towards asteroids. After which, section 1.3 gives an overview of the problems that are faced
during missions towards asteroids. Subsequently, the research objective and questions are given in
section 1.5. Finally, in section 1.6 the structure of the report is highlighted.

1.1. Interest in asteroids
An asteroid is a term generally used for rocky minor planets that orbit the Sun at distances ranging
from interior to Earth’s orbit to a bit exterior to the orbit of Jupiter (Lissauer and de Pater, 2013). The
term asteroid could be confused with comets. Lissauer and de Pater refer to comets, when a coma
and/or tail has been detected. Asteroids vary in sizes from a single meter in diameter till the largest
asteroid Ceres, which has a radius of about 475 km. Objects smaller than 1 meter in diameter are
called meteoroids. When a meteoroid or an asteroid enters Earth’s atmosphere it is called a meteor
and when it survives the trip it is called a meteorite (Lissauer and de Pater, 2013).

Space organizations such as NASA, ESA and JAXA have shown their common interest in small ce­
lestial bodies. Multiple missions towards asteroids or comets have resulted in groundbreaking scientific
returns. But what makes these small bodies such as asteroids so interesting? Multiple arguments can
explain this common interest in these small bodies, as in particular asteroids.

First, so­called near­Earth asteroids can be of danger by the possibility of collision. In the history
of Earth, asteroid impacts had large consequences for life on Earth. Such large impacts can occur
again in the future, what argues for monitoring and understanding near­Earth objects (Lissauer and
de Pater, 2013). The upcoming Asteroid Impact & Deflection Assesment (AIDA) collaboration between
NASA and ESA illustrates the desires of humanity for a planetary defense system (Michel et al., 2018).
This mission consists of a first spacecraft, the Double Asteroid Redirection Test (DART) Mission, led by
NASA, and a second spacecraft, Hera, led by ESA. The first spacecraft will hit the asteroid called Didy­
mos, after which Hera will analyze the impact by DART on the asteroid its geophysical and dynamical
properties (Michel et al., 2018).

Second, asteroid mining is a hot topic. The scarcity of some raw materials on Earth could be
decreased by mining it in space (Michel et al., 2015). It could generate a completely new commercial
space market, providing data from mining missions of which science could benefit. Also, asteroid
mining is mentioned as a technique by which human spaceflight would benefit. Mining resources in
space instead of taking it with us from Earth could increase the capabilities of interplanetary travel. For
example, the asteroid material could help in protecting astronauts against galactic cosmic ray (GCR)
radiation (Brophy et al., 2014).

Besides these arguments, the interest in asteroids is mainly caused by the fact that asteroids are
leftovers of the Solar System formation process. This means the asteroids, whose composition has not

1



2 1. Introduction

Figure 1.1: A picture of asteroid (433) Eros taken by the NEAR spacecraft. Credit: NASA

altered since the beginning of the Solar System, can give us more information about the solar nebula
in which the planet in the Solar System are formed. They can give insights in how life was formed on
Earth by searching for building blocks of life in these asteroids (Michel et al., 2015). This curiosity is
expressed by the multiple recent asteroid­focused sample and return missions (Siddiqi, 2018).

1.2. Asteroid missions
As stated, there have been multiple missions towards asteroids. Below, some of these missions are
highlighted.

1.2.1. NEAR­Shoemaker
The NEAR­Shoemaker mission was launched in 1996. The primary objective was to obtain information
on the physical properties, mineral components, morphology, internal mass distribution, and magnetic
field of asteroid 433 Eros (Siddiqi, 2018). A picture taken by NEAR is shown in Figure 1.1. On its way
to Eros, it also gathered information about asteroid 253 Mathilde during a flyby. The spacecraft became
the first human­made object in orbit around a minor planet on 14 February 2000. The initial orbit was
an eccentric orbit with a minimum periapsis radius of 321 km and maximum apoapsis radius of 366 km
(Williams, 2002). The altitude decreased gradually to be able to do scientific research, which led to
improvements of the physical model of the Eros environment.

The spacecraft had lost control with its inertial guidance system for some time. To compensate for
this, the rocket propulsion system was fired to correct its orbit. This caused an extensive amount of fuel
loss, which was not taken into account in the mission design. Because of the low propellant margin
and expiration of an already extended funding, the idea of landing the spacecraft on Eros became a
realistic end­of­mission scenario (Antreasian et al., 2002). On 12 February 2001 the NEAR Shoemaker
spacecraft became the first spacecraft to land on an asteroid (Siddiqi, 2018). To the suprise of NASA,
the spacecraft survived the touch down, what lead to even more scientific results.

1.2.2. Hayabusa
TheHayabusawas a sample returnmission by JAXA towards irregular shaped asteroid (25143) Itokawa,
launched on 9 May 2003. The mission aimed to be the first to visit a minor planet and return samples
from it. The lifetime of the Hayabusa spacecraft resembles the ingenuity of mankind, since the team
faced some setbacks during its journey towards the asteroid and back to Earth. With malfunctioning
ion thrusters and degraded solar cells, the team managed to let the spacecraft collect 1500 grains of
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Figure 1.2: Image of asteroid (25143) Itokawa taken by the
Hayabusa spacecraft. Credit: JAXA

Figure 1.3: Image of comet 67P/Churyumov­Gerasimenko
taken by Rosetta’s OSIRIS narrow­angle camera on 3 august
2014. Credit: ESA

dust from Itokawa. On 13 June 2010, this became the second sample ever returned to Earth from a
different celestial body than the Moon (Siddiqi, 2018). This was three years later than anticipated.

An observation image taken by Hayabusa of Itokawa is shown Figure 1.2. The asteroid is a so­
called rubble pile. Such rubble pile is defined as a gravitationally bound collection of smaller bodies
and internal void spaces (Lissauer and de Pater, 2013).

1.2.3. Rosetta
On 2March 2004, the European Space Agency (ESA) launched the Rosetta spacecraft. This spacecraft
had a total mass of 3000 kg, containing a 100 kg lander called Philae (Siddiqi, 2018). Although the
mission aimed for a comet instead of an asteroid and thus has some different objectives, the mission
is interesting since the spacecraft orbited an irregular shaped minor body. The Rosetta mission had
multiple objectives, but the prime objective was the in­situ analysis of cometary matter by rendezvous
(Hechler, 1997). After the launch was delayed, the team had to cancel the plan to rendezvous with
comet 46P/Wirtanen and selected 67P/Churyumov­Gerasimenko as its new destination. An image of
this comet is shown in Figure 1.3. During the journey towards this comet, the spacecraft performed a
flyby past asteroid 2867 Steins which provided a vast amount of useful scientific data about this asteroid
(Siddiqi, 2018).

The Rosetta mission appeared to become one of ESA’s most successful planetary missions by re­
trieving an enormous amount of data about the comet’s properties that lead to crucial findings. Rosetta
detected water vapor, molecular nitrogen, molecular oxygen, water ice on the surface, the amino acid
glycine, and the component of DNA phosphorus for the first time on a comet (Siddiqi, 2018). These
discoveries support the theory that comets and asteroids contain the building blocks of life.

1.2.4. DAWN
The mission by NASA called Dawn, can be seen as a very successful mission. This is emphasized by
the two times the mission got extended, despite having multiple malfunctions causing the spacecraft
entering safe mode, and components becoming unusable during the mission lifetime. The spacecraft
launched on 27 September 2007 visited two celestial bodies, what was a first in the history of deep
space missions. By reaching the asteroid Vesta in 2011 the spacecraft became the first spacecraft to
orbit an object in the main asteroid belt (Siddiqi, 2018). After having orbited the asteroid on multiple
altitudes from 2700 to 210 km the spacecraft escaped from Vesta and continued its journey towards
dwarf planet Ceres on 5 September 2012. On 7 March 2015 Dawn was maneuvered into an orbit
around the largest object known in the main asteroid belt, Ceres (Siddiqi, 2018). Since Ceres is also
recognized as a dwarf planet, Dawn became the first spacecraft to study a dwarf planet. Vesta and
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(a) Picture of asteroid Vesta. Credit: NASA (b) Picture of Ceres. Credit: NASA

Figure 1.4: Celestial bodies orbited by Dawn

Ceres are shown in Figures 1.4a and 1.4b, respectively. The spacecraft did orbit Ceres in multiple
configurations till November 2018 from altitudes of 1470 till 35 km above the surface (Siddiqi, 2018).

1.2.5. OSIRIS­REx
The sample return mission by primarily NASA and the University of Arizona which launched on 8
September 2016 has the name OSIRIS­REx. This is an abbreviation for Origins, Spectral Interpreta­
tion, Resource Identification, Security, Regolith Explorer, what refers to its objectives and capabilities.
The main objective of the mission is to collect a sample from the rubble pile asteroid 101955 Bennu
and return it to Earth in September 2023 (Siddiqi, 2018). Because of the inclusion of multiple thruster
systems that provide redundancy, the spacecraft had the ability to repeat the Touch­And­Go (TAG)
procedure multiple times to be sure to collect enough sample. Nevertheless, NASA confirmed in a
press­release that on 20 October 2020 the first TAG event already collected more than the minimum
amount (59.5 g) of sample 1 and a repetition was thus not required.

1.3. Unpredictable environment
To obtain material from an asteroid, a spacecraft has to reach the surface of the asteroid. This could in­
clude a complete landing or a so­called Touch­and­Gomaneuver, where the spacecraft only touches the
surface for a moment. However, asteroids are small in size and often have a very irregular shape. The
relatively small mass of the asteroid and thus small gravitational attraction on the spacecraft, makes the
acceleration difficult to predict. Small, unexpected perturbations can therefore have big consequences
(Hesar et al., 2016). The spacecraft could escape or collide with the asteroid unintentionally.

As missions generally use radiometric measurements using the Deep Space Network (DSN) to de­
termine their position and velocity, the frequency of updating estimation parameters is limited, because
of the signal travel times between the spacecraft and Earth stations. This stirs up the desire for au­
tonomous navigation, which can update its state in higher frequency and correct faster for unexpected
perturbations (Gil­Fernandez and Ortega­Hernando, 2018). Also, when going closer to the surface of
the asteroid, the connection to the DSN is not assured what emphasizes the need for autonomous
navigation even more. Such autonomous navigation system requires to make no use of radiometric
tracking from base stations on Earth. The navigation system should depend on other sources, such as
the optical navigation (star tracking, landmark tracking) and light detection and ranging (LIDAR) laser
altimeters. When closer to the surface, there can be made use of landmark tracking. A landmark is a
1website: https://www.nasa.gov/press­release/nasa­s­osiris­rex­spacecraft­collects­significant­amount­of­asteroid Date ac­
cessed: 10/1/2020

https://www.nasa.gov/press-release/nasa-s-osiris-rex-spacecraft-collects-significant-amount-of-asteroid
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Figure 1.5: Shape model of Itokawa from (Furfaro et al., 2021)

body­fixed vector from the body center towards the surface. It is the center of a small digital terrain,
which is a map over a fraction of the surface (Mastrodemos et al., 2011). The contrast in brightness
is used to distinguish landmarks. Gaskell et al. (2008) developed a method and software suite used
for multiple missions to identify and progress landmark positions (Gaskell et al., 2008; Mastrodemos
et al., 2011; Williams et al., 2018). The study describes how a landmark position on the surface can be
processed using the positions on images and the spacecraft positions. It explains that when landmark
positions are known with respect to the body after a survey phase, the landmark maps will be correlated
with new images used to determine the relative spacecraft state in close proximity.

During the Hayabusa mission, the navigation system switched to autonomous mode for the landing
phase. The spacecraft was equipped with a crucial laser range finder, which had four beams that
have provided both altitude information as attitude with respect to the surface. During the descent
the orbit of the spacecraft was synchronized with the rotation of the asteroid such that the observed
surface was fixed below the spacecraft. The navigation of the horizontal motion relative to the surface
was performed by setting an artificial target marker on the surface what gets tracked. In this way the
spacecraft could determine how to correct for the horizontal motion (Kubota et al., 2006). This method
can be suitable for landing using an asteroid­rotation fixed orbit. However, if it is desired to orbit the
asteroid at a relatively low altitude, it is convenient for the navigation system to have knowledge about
the asteroid environment. The more accurate the dynamical model of the asteroid, the more accurate
the predicted accelerations on the spacecraft.

The general method used for modeling the gravity field of a celestial body is spherical harmonics.
Unfortunately, this method diverges inside the object circumscribing sphere, called the Brillouin sphere
(Hesar et al., 2016; Takahashi et al., 2013). As asteroid shapes are often very different from spherical,
using the spherical harmonics model for navigation, would make the navigation system unusable in re­
gions around the asteroid inside this Brillouin sphere. This property of the spherical harmonics method
creates the demand for different approaches to predict or correct for the influences of the gravity field.

One alternative for modeling the gravity field is the polyhedron gravity model. This model requires
an available shape model. Such shape model consists of vertices and faces describing the spatial form
of the asteroid. An example is given in Figure 1.5, showing the shape model of asteroid Itokawa. By
assuming a constant density in this volume, the gravitational attraction caused by the virtual body can
be calculated (Werner and Scheeres, 1997). However, relative to other models, this polyhedron model
is computationally expensive.

Another alternative for the spherical harmonics is using point­masses. The gravity model used by
the Hayabusa mission gives an example of such point­mass model. This gravity field model consists
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Figure 1.6: Gravity model for the hayabusa mission using six point masses (Yoshimitsu et al., 2009).

of 6 points masses, divided over the shape of Itokawa. The point mass positions are illustrated in
Figure 1.6 (Yoshimitsu et al., 2009). This gravity field model was made of optical images describing
the shape and estimations for the gravitational parameters before approaching Itokawa.

Besides the shape of the asteroid, another property which influences its gravity field is the possible
heterogeneous interior density distribution (Scheeres et al., 2020). Density differences or void spaces
inside the asteroid cause a different gravity field than would be expected if mass of the asteroid would
be homogeneously distributed through its body. As fluctuations in the experienced acceleration by the
spacecraft is related to the mass distribution of the target body, determining the gravity field could give
information about the density differences and thus the interior structure of the asteroid (Park et al.,
2010; Scheeres et al., 2020). This could give insights in the asteroid its past or eventually help with
selecting a landing site.

As a result from earlier missions, constraints have been made about interiors of targeted asteroids.
Asteroids could appear to have a quite uniform mass distribution. An example of such asteroid is Eros.
The polyhedron model of Eros appeared to be quite consistent with the measured gravity field and
the constant­density assumption would thus give a good approximation (Yeomans et al., 2000). Also,
according to Miller et al. (2002), the center of figure and center of mass of the asteroid only deviated
30 meters. Relative to the maximum intersection of Eros of about 32 kilometers, this deviation is small,
what also indicates small heterogeneity.

On the contrary, asteroids Itokawa and Bennu appeared to have a non­uniformmass distribution. By
comparing the measured gravity field with the modeled gravity field from theoretically possible density
distributions of Bennu, Scheeres et al. (2020) found that a distribution as shown in Figure 1.7 would
explain the measured gravity field best. The computed model contains lower densities at Bennu’s
equatorial bulge and center, and higher densities in the middle layer. These mass regions are indicated
in the figure.

Itokawa is expected to have a non­uniform density distribution through its body. This expectation
was raised by the relatively large difference between the center of mass and center of figure. According
to Kanamaru et al. (2019), this offset can be explained by a ”compressed head” model. This model
splits the body of Itokawa in two density regions, as shown in Figure 1.8. The head is expected to have
an average density of 2,450 kg/m3, while the body is expected to have a density of about 1,930 kg/m3.

1.4. Thesis heritage
This study can be considered as an extension on the work done by Razgus (2016) and Bourgeaux
(2020). Both studies focussed on missions around minor bodies and developed a Kalman filter.

Razgus (2016) investigated how to make relative navigation techniques more robust, reliable and
autonomous in asteroid missions. To answer this question, he tested the dual­quaternion approach
to represent the spacecraft’s pose. In the study, the dual­quaternion approach is compared with the
conventional one (Cartesian coordinates for position and quaternions for attitude) using an extended
Kalman filter. Both methods appeared to have identical performances. Possible reasons for this sim­
ilarity in performance are given. It could be caused by a high dependency on measurements, as the
models have similar measurement equations. The high process noise, which causes the model to rely
more on the measurements, means that the gravity field of the asteroid is inaccurate. This appeared
to be the case, as for example for asteroid Kleopatra, where the difference between the central grav­
ity field and the polyhedron gravity field can be about 80% at an altitude of 100 km. For a transient
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Figure 1.7: Three­component density model for asteroid
101955 Bennu as hypothesized by Scheeres et al. (2020).

Figure 1.8: Compressed Head Model for Itokawa, where the
head and body density regions are indicated with the red and
blue color, respectively (Kanamaru and Sasaki, 2019).

mission phase, the dual­quaternion method appeared to be moderately more accurate. The dual­
quaternion extended Kalman filter, the convergence time appeared to be about 500 seconds lower,
tested by Monte­Carlo simulations. However, the computational time appeared to be 40­50% higher
than the conventional quaternion­vector filter. Also, it was found that improving the ’on­board’ gravity
field, made convergence possible even in an unfavourable scenario and increased estimation accu­
racy. Besides designing the filter, Razgus (2016) invented an approach for simulating the navigation
camera. By this simulation, the number of visible landmarks can be simulated.

In the recommendations of Razgus (2016), it is mentioned that the filters should be tested using a
more precise gravity model. The suggestion is raised to estimate this corresponding gravity field real­
time. This was exactly what Bourgeaux (2020) has done. She implemented the spherical harmonics
model into a filter to estimate the gravity field together with the spacecraft state.

Bourgeaux (2020) investigated how to increase the safety of autonomous navigation for asteroid
missions. For her research, a spacecraft was simulated in the environment of asteroid 433 Eros. It was
concludedmultiple points based on her findings. Measuring the forces and torques acting on the space­
craft in an asteroid environment as accurately as possible will improve the safety of the autonomous
navigation. The measurements should provide as much environmental information as possible. Also,
the research showed that solar radiation pressure (SRP) and third­body perturbations cannot be ne­
glected, as they cause significant errors in the estimation of the gravitational parameter. This requires
the navigation software to be able to predict these forces and apply these to the dynamical model.
Last, it was concluded that the gravity field of the asteroid shall be included in the estimation. It is
added that the spherical harmonics model is a suitable model, but only before the landing phase. In
this phase, the spacecraft reaches altitudes below the sphere of reference (Brillouin sphere), in which
the spherical harmonics model diverges. The polyhedron gravity field is mentioned as an alternative,
but has the disadvantage of being computationally heavy. Modeling the gravity field by a single point
mass appeared to give errors up to 30% at low altitude orbits, what emphasizes the importance of
the gravity model. Bourgeaux (2020) developed a unscented Kalman filter, which used only on­board
data and measurements. The unscented Kalman filter appeared to be much easier to implement as
the extended Kalman filter. The difference in performance did not show to be significant. Besides the
state, this filter estimated the asteroid Eros’ spherical harmonic gravity field up to degree and order 8
below 10% error. The state of the spacecraft was estimated with errors below 10 meters for position
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and 0.01 m/s for velocity. The model was capable of estimating higher order gravity field coefficients.
However, it was decided to limit the estimation to degree and order 8, because of the relatively small
increase in accuracy with respect to the increased computational costs.

In addition to these conclusions, Bourgeaux (2020) gives some recommendations to improve the
model. The recommendations highlight the dependency of the model on the shape of the asteroid. For
example, as Eros has an irregular shape, the 𝐽2 effect could be estimated accurately in an early mission
phase. Because of this early accuracy in the 𝐽2 parameter, this parameter is not estimated during later
mission phases to increase computational efficiency. Some asteroids are less irregular, what could
require this parameter to be estimated for a longer duration. By testing the software in other environ­
ments with other settings, its efficiency can be evaluated. Also, as the model used some constant
values, such as the solar radiation pressure and rotational rate, the system should be tested includ­
ing these parameters in the estimation, without assuming these values as given. The most relevant
recommendation for this thesis work, was to investigate alternative gravity field estimation techniques
for the last phase of the mission. This recommendation arises from the spherical harmonics model its
disadvantage of divergence inside the Brillouin sphere, and emphasizes the need for different gravity
modeling techniques.

1.4.1. Gravity field estimation
As the need for a different gravity model close to asteroids is emphasized in earlier work, the focus
of this thesis is on investigating another gravity field model. As the polyhedron model is computa­
tionally expensive, it was shown in Chanut et al. (2015) that a point­mass distribution is a faster al­
ternative. Using this model, the asteroid is filled with a number of point masses, so called mascons
(mass­concentrations), all influencing the gravitational attraction on a spacecraft. In Park et al. (2010)
it was shown that such model can be implemented in an estimation filter and is a promising model for
navigation using measurements inside the Brillouin sphere of asteroids.

1.5. Research Questions
From the previous sections in this chapter, the relevancy of asteroid missions and the challenges re­
garding navigation are highlighted. As this thesis will build upon the studies highlighted in these sec­
tions, the focus is set on improving gravity field estimation for navigation. Since the spherical harmonics
model has proven to be suitable till reaching the Brillouin sphere, the focus is on using a gravity model
which eliminates this limitation. This thesis title ”Asteroid gravity field estimation below Brillouin sphere”
is based on this choice. Therefore, the following research objective is defined:

Increase the safety of navigation near asteroids by improving the gravity field estimation
inside the Brillouin sphere.

As the mascon model converges inside the Brillouin sphere and showed promising results when im­
plemented in a state estimation filter, this model will be examined to reach the objective. To achieve
the objective using this model, the following research question has to be answered:

Can the implementation of themascongravity fieldmodel for estimationmakeautonomous
navigation more robust inside the Brillouin sphere of a heterogeneous asteroid?

To answer this research question, the following sub questions will be answered:

a) What is the best approach to implement the mascon gravity field model during a multi­phase
mission.

b) What is the effect of gravity field estimation on the accuracy and convergence speed of the esti­
mation?

c) How does density heterogeneity influence the estimation performance?
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To give the research some guidance, the following requirements and assumptions are given below.

Requirements

REQ­01 The spacecraft shall travel through the asteroid’s circumscribing sphere.

REQ­02 The spacecraft’s trajectory shall not go through the asteroid body.

REQ­03 The shape of Eros shall be used.

REQ­04 The polyhedron gravity model shall be used to model the real­world asteroid gravity field.

REQ­05 The simulator shall be able to model density differences inside the asteroid shape.

REQ­06 Multiple degrees of density heterogeneity shall be tested.

REQ­07 Density differences shall be modeled up to minimal precision of 1 km3.

REQ­08 Themasconmodel shall be implemented in navigation system and its gravitational parameters
shall be estimated.

REQ­09 The navigation system shall estimate the spacecraft’s position, velocity.

REQ­10 The position of the spacecraft in the close proximity phase shall be estimated with a 1𝜎 accu­
racy of 1 meter and the velocity shall be determined with an accuracy of 1 mm/s.

REQ­11 The navigation system shall use the extended Kalman filter.

REQ­12 The navigation system shall be tested with multiple mascon models for a certain number of
point masses.

REQ­13 The navigation system shall determine the spacecraft’s relative position and velocity.

Assumptions:

• The orbit of the asteroid around the Sun is not taken into account.

• The SRP is estimated in an early stage of the mission. The perturbing force is thus assumed
known and not estimated.

• The sensors shall have no misalignment or scaling errors.

• The shape model is determined before reaching the close proximity phases.

• There is no guidance or control system that influences the spacecraft’s trajectory or attitude.

• The asteroid rotates at a constant rate around its z­axis.

1.6. Outline
To finally answer these research questions, a spacecraft is simulated in an asteroid environment. The
concept of asteroids and the dynamics of such asteroid environment are explained in chapter 2. The
asteroid of interest is 433 Eros as this asteroid has an elongated shape and is also used in Bourgeaux
(2020). Besides this real­world simulator, a state estimator is designed in the form of an extended
Kalman filter (EKF), which uses measurements as input based on the simulated trajectories. The mas­
con gravity field is implemented in this EKF. The design of the software will be addressed in chapter 4.
The steps taken during and the results from analysis are given in chapter 5. Finally, the research
questions will be answered and recommendations on future work will be given in chapter 6.
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2
Asteroid environment

In this section, the dynamics and kinematics of an asteroid environment are addressed. First, the
concept of asteroids and their relevant properties are highlighted in section 2.1. Next, the reference
frames used in the software are explained in section 2.2. In section 2.3 the forces influencing the
translational motion of a spacecraft in an asteroid environment are explained, followed by the rotational
motion in section 2.4.

2.1. Asteroids
In this section, relevant asteroid properties concerning asteroid heterogeneity are introduced. Also, the
properties of target body, asteroid 433 Eros, are highlighted.

2.1.1. Location
Asteroids are classified based on multiple aspects. The first criterion is the location of the asteroid in
the Solar System. The three main groups of asteroids in the Solar System are:

• Main Belt Asteroids (MBAs): As the name states these asteroids are located in the main
asteroid belt at distances between 2.1 and 3.3 au from the Sun. The asteroid orbits have a
mean eccentricity of about 0.14 and a mean inclination of 15∘ with the ecliptic plane. At certain
resonance areas with Jupiter there are so­called Kirkwood gaps, where no or almost no asteroids
are located (Lissauer and de Pater, 2013).

• Near Earth Objects (NEOs): All asteroids and comets that have perihelia smaller 1.3 au are
called NEOs. Because of their orbits that come relatively close to Earth’s orbit it could mean that
there is a chance of collision with our planet. This could possibly mean danger for the habitants
of planet Earth (Lissauer and de Pater, 2013).

• Trojan Asteroids: Thousands of asteroids have been discovered near the stable Sun­Jupiter 𝐿4
and 𝐿5 points. These objects are called Trojan asteroids (Lissauer and de Pater, 2013).

2.1.2. Composition
Asteroids are classified based on their composition. The most influential technique in obtaining infor­
mation about the composition is spectroscopy. Based on reflectance spectra and albedo information,
an asteroid is classified by a taxonomic class. The main taxonomic classes are given in Table 2.1.
Most asteroids belong to the C­type, also the carbonaceous type. About 40% of all discovered aster­
oids belongs to this group of dark bodies. Most C­type asteroids are found near the outer regions of
the main belt. According to NASA1, these asteroids are examples of the most ancient objects in the
1https://solarsystem.nasa.gov/asteroids­comets­and­meteors/asteroids/in­depth/ Date accessed: 04/12/2020
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Table 2.1: Asteroid Taxonomic Types (Adapted from Lissauer and de Pater 2013)

Type Characteristics

C Carbonaceous asteroids; similar in surface composition to Cl and CM meteorites. Dominant
in outer belt (>2.7 AU)

D Extreme outer belt and Trojans. Red featureless spectrum, possibly due to organic material.
P Outer and extreme outer belt. Spectrum is flat to slightly reddish, similar to M types, but

lower albedo.
S Stony asteroids. Major class in inner­central belt.
M Stony­iron or iron asteroids; featureless flat to reddish spectrum.
W Visible light spectra similar to those of M types but have an absorption band near 3 𝜇m

(indicative of hydration).
V Similar to basaltic achondrites. Type example: 4 Vesta

Table 2.2: Table from Consolmagno et al. (2008), containing the carbonaceous chondrite average densities and porosities.

Class Avg. grain density (g/cm3) ± Avg. bulk density (g/cm3) ± Avg. porosity (%) ± (%)
CI 2.46 0.04 1.6 0.03 35 –
CM 2.90 0.08 2.25 0.08 23.1 4.7
CO 3.41 0.23 3.03 0.19 10.8 9.1
CVo 3.30 0.15 2.79 0.06 21.8 1.7
CVr 3.45 0.09 0.12 0.25 9.7 4.9
CK 3.58 0.09 2.85 0.08 21.8 2.2

Solar System and probably consist of clay and silicate rocks. With 30 to 35% of the asteroids, the class
with stony S­type asteroids is the second largest group. These bright reddish asteroids are especially
present with large numbers in the inner parts of the main belt and contain silicate materials and nickel­
iron. The metallic nickel­iron M­type asteroids are mostly seen in the central region of the main asteroid
belt. D­ and P­type asteroids only are identified in the extreme outer parts of the main asteroid belt and
as Trojan asteroids (Lissauer and de Pater, 2013). These two types are expected to contain organic
rich silicates, carbon and anhydrous silicates with possibly water ice (Nelson et al., 1993). The W­type
asteroid were classified as M­type earlier, but distinguish themselves because of the indication of water
in the spectrum. The V­type asteroids are expected to contain olivine and pyroxene. By comparison
with meteorites it is concluded that the surface of V­type asteroids is covered with basaltic material
(Lissauer and de Pater, 2013; Nelson et al., 1993).

In a study by Bus (2002), the SMASSII classification was introduced. This classification is of higher
precision and (sub)divides the earlier mentioned taxonomic classes, based on the spectral characteris­
tics. The carbonaceous asteroids (C­class) for example, can be distinguished in the classes as shown
in Table 2.2.

Besides spectroscopic measurements, there are also remnants of asteroids or meteoroid on Earth.
These meteorites survived the passage through Earth’s atmosphere as a meteor. The properties of
these meteorites can be linked with asteroid types, as is done in Table 2.2. Besides the densities of
these samples, also the porosity is an important property. The porosity is a measure of voids an cracks
inside a volume. These flaws in the physical arrangement of mass create a discrepancy between the
bulk density 𝜌𝑏 and the grain density 𝜌𝑔, where the bulk density is the overall density of the complete
volume, and the grain density is the density of the material. The porosity describes the relation between
these two densities as follows (Consolmagno et al., 2008):

𝒫 = (1 − 𝜌𝑏𝜌𝑔
) × 100% (2.1)

When studying a certain asteroid, its reflectance spectrum can be used to indicate a meteorite with
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Table 2.3: Table adapted from Consolmagno et al. (2008), containing the density and macro­porosity of Eros, Itokawa, Vesta,
and the averaged values per asteroid­type S, C and M.

Object Density (g/cm3) ± Mass (kg) Class Meteorite analog Macro­porosity (%) ± (%)
Average S 2.69 0.04 S L Chondrite 19.9 1.2
Average C 1.40 0.05 C CM 37.7 2.2
Average M 4.7 0.5 M Iron 40 13
433 Eros 2.67 0.03 6.68×1015 S L Chondrite 20.5 0.9
25143 Itokawa 1.95 0.14 3.58×1010 S L Chondrite 42.0 4.2
4 Vesta 3.44 0.12 2.74×1020 V L Chondrite 0.0 3.6

a similar spectrum, which can be used as analog. This meteorite can than be used to make estimations
about the asteroid’s interior properties. If the mass and volume of an asteroid are estimated, its bulk
density can be determined and compared with the grain density of the analog meteorite. In this way,
the bulk porosity of an asteroid can be obtained using Eq. (2.1). This bulk porosity is a combination
of the micro­porosity, which can be assumed equal to the porosity of the meteorite, and the macro­
porosity, which is caused by large­scale cracks and voids in the asteroid. Consolmagno et al. (2008)
summarized multiple studies to these meteorite and asteroid properties. In Table 2.3, a part of the result
of this study is shown. The average density and macro­porosity of common asteroid­types are given in
this table, together with the properties of three extensively studied asteroids. The table also indicates
the meteorite analog used to determine its properties, where the L chondrite refers to the stony L­type
of the SMASS taxonomy, which is a subdivision of the S­type. The values in these Tables 2.2 and 2.3
helped in designing asteroid density distributions.

In the history of the Solar System, collisions of bodies have played an important role. The collisions
of bodies can have consequences for their shape, mass and orbit. When an impact is not that energetic
and bodies are not dispersed, only shattered or fractured, fragments can form a single body again.
Such single body is then called a rubble pile, which was already introduced in section 1.2. When two
bodies form a system rotating around their barycenter, this is called a binary system. If these bodies are
gravitated towards each other till they form one body, this is called a contact­binary asteroid (Margot
et al., 2015). Such contact­binary can have a clear density difference between the two lobes forming
one asteroid.

2.1.3. Eros
For the thesis work, Eros has been used as the target asteroid. This S­type asteroid is, as mentioned
earlier, visited by the NEAR­spacecraft. Because of this mission, a detailed shape model is available of
the asteroid and mass and density are determined accurately. In Table 2.3, Eros’ bulk density, porosity
and mass are given according to Yeomans et al. (2000). Eros has a size of 34.4×11.2×11.2 and orbits
the Sun with a mean semi­major axis of 1.458 au 2. The rotation period of Eros is equal to 5.27 Earth
hours and the surface normal gravitational accelerations range from 2.1 to 5.5 mm/s2 (Yeomans et al.,
2000).

Since Eros has an elongated shape, it has a relatively large reachable space around its body that is
inside the Brillouin sphere. This makes the asteroid suitable for traveling through the Brillouin sphere.
Also, Bourgeaux (2020) studied the implementation of the spherical harmonics model with Eros as
target asteroid. The use of the same asteroid is useful for comparison between the two models.

2JPL Small­Body Database Lookup:https://ssd.jpl.nasa.gov/tools/sbdb_lookup.html#/?sstr=2000433; Accessed on 21/10/2021

https://ssd.jpl.nasa.gov/tools/sbdb_lookup.html#/?sstr=2000433
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Figure 2.1: Schematic visualization of the used reference frames.

2.2. Reference frames
When describing the dynamics during the mission, it is important to know in what reference frame these
dynamics are described. During this thesis, three reference frames are used. These three reference
frames are explained below and schematically visualized in Figure 2.1

• Inertial reference frame:
This reference frame has its origin fixed in the center of the asteroid and its axes are inertially
fixed. Vectors or matrices in the inertial reference framed are indicated by the subscript 𝐼.

• Asteroid­fixed reference frame:
The origin of the asteroid­fixed reference frame is placed in the center of the asteroid, similar to
the inertial reference frame. In contrary to the inertial frame, the axes of this reference frame
rotate synchronous to the asteroid rotation around. The x­axis of this reference frame is fixed to
the asteroid its prime meridian. For a rotation around the z­axis, the z­axis of the asteroid frame
remains equal to the z­axis of the intertial reference frame. The frame is indicated by the subscript
𝐴.

• Body­fixed reference frame:
The origin of the body­fixed reference frame is fixed in the center of the spacecraft. The axes of the
frame, x, y, and z, are defined along the length, width and height of the spacecraft, respectively.
These axes are kept fixed with respect to the spacecraft body. The frame is indicated by subscript
𝐵.

2.2.1. Conversion between reference frames
To translate vectors from one reference frame to another, aDirection Cosine Matrix (DCM) can be used.
Considering the vector r = (𝑟1 𝑟2 𝑟3)𝑇𝐴 in the asteroid reference frame, vector r can be converted to the
body reference frame using the DCM C𝐵/𝐴 as follows:

r𝐵 = C𝐵/𝐴r𝐴, (2.2)

A DCM is an orthonormal matrix with the following properties:

C𝑇𝐵/𝐴 = C𝐴/𝐵 = C−1𝐵/𝐴 (2.3)

C𝐴/𝐵C𝑇𝐴/𝐵 = C𝑇𝐴/𝐵C𝐴/𝐵 = I (2.4)
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Consider two sets of orthogonal unit vectors (a1,a2,a3)𝑇 and (b1,b2,b3)𝑇 in the asteroid­ and body­
fixed reference frame, respectively. Using the angles between the unit vectors, the unit vectors of b
can be described in terms of unit vectors of i as follows (Wie, 2008):

(
b1
b2
b3

) = [
cos𝜃11 cos𝜃12 cos𝜃13
cos𝜃21 cos𝜃22 cos𝜃23
cos𝜃31 cos𝜃32 cos𝜃33

] (
a1
a2
a3

) = C𝐵/𝐴 (
a1
a2
a3

) (2.5)

Alternative methods to obtain the DCM of two frames, which can be more efficient and/or robust
are available. One example is using Euler angles. This method can simplify the maximum number of
parameters for describing the rotation from nine to three parameters. The method splits the rotation in
three separate rotations around each of the three axes. Each rotation about one of the axes requires
one rotation matrix 𝐶𝑖(𝜃𝑖) with only one angle 𝜃𝑖. The DCM can then be computed according to the
following relation (Wie, 2008):

C𝐵/𝐴 = C1(𝜃1)C2(𝜃2)C3(𝜃3) (2.6)
One should mind the sequence of rotations is of importance using Euler angles.

The attitude of a body is often represented by quaternions. These four­dimensional hyper­complex
numbers can also be used to compute the DCM for conversion between reference frames. A quaternion
q is defined as:

q = 𝑞1𝑖 + 𝑞2𝑗 + 𝑞3𝑘 + 𝑞4, (2.7)
where it yields that ||q|| = 1 and the symbols 𝑖, 𝑗, 𝑘 indicate imaginary numbers with the following
properties:

𝑖𝑗 = −𝑗𝑖 = 𝑘
𝑗𝑘 = −𝑘𝑗 = 𝑖
𝑘𝑖 = −𝑖𝑘 = 𝑗

𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1
(2.8)

For attitude operations, the quaternion is considered a four­component vector, where the first three
components represent the vectorial part q1∶3 = (𝑞1, 𝑞2, 𝑞3)𝑇 and the fourth component the scalar part
𝑞4:

q = ( q1∶3
𝑞4 ) (2.9)

The quaternion does not rotate a certain angle around each unit axis, but only one angle 𝜙 along a
single so­called Euler axis of rotation n. Considering such rotation, the quaternion is defined as:

q(n, 𝜙) = ( n sin𝜙/2
cos𝜙/2 ) (2.10)

Using quaternions, the DCM can be computed as follows:

C(q) = (𝑞24 − ‖q1∶3‖
2) I3 − 2𝑞4 [q1∶3×] + 2q1∶3q𝑇1∶3 (2.11)

with

[q1∶3×] = [
0 −𝑞3 𝑞2
𝑞3 0 −𝑞1

−𝑞2 𝑞1 0
] (2.12)

Substituting Eq. (2.12) into Eq. (2.11) gives:

C(q) = [
𝑞21 − 𝑞22 − 𝑞23 + 𝑞24 2 (𝑞1𝑞2 + 𝑞3𝑞4) 2 (𝑞1𝑞3 − 𝑞2𝑞4)
2 (𝑞1𝑞2 − 𝑞3𝑞4) −𝑞21 + 𝑞22 − 𝑞23 + 𝑞24 2 (𝑞2𝑞3 + 𝑞1𝑞4)
2 (𝑞1𝑞3 + 𝑞2𝑞4) 2 (𝑞2𝑞3 − 𝑞1𝑞4) −𝑞21 − 𝑞22 + 𝑞23 + 𝑞24

] (2.13)

If the attitude, of for example the spacecraft, q𝐵/𝐼 is known through measurements during a mission
with respect to the inertial reference frame, DCM 𝐶𝐵/𝐼 can be computed and transformations between
the body and inertial reference frame can be executed.



16 2. Asteroid environment

2.3. Translational Motion
The translational motion of a spacecraft orbiting an asteroid is dependent on the forces acting on the
spacecraft. According to Newton’s law, the relation between the acceleration of the spacecraft and the
resultant of all forces acting on the spacecraft F is described in the following equation:

r̈𝐼 = F/𝑀 (2.14)

Here, r𝐼 indicates the position of the spacecraft body with respect to the inertial frame. The accelera­
tions on the spacecraft due to the different forces can be split in the acceleration due to the gravitational
attraction g of the orbited asteroid and other perturbing forces a𝑝𝑒𝑟𝑡. Doing this, the translational motion
of the spacecraft can be described by the following equation of motion:

r̈𝐼 = g𝐼 + a𝑝𝑒𝑟𝑡,𝐼 (2.15)

The translational kinematics of the spacecraft are described by:

ṙ𝐼 = v𝐼 (2.16)

where, the velocity of the spacecraft is indicated with the symbol v. As Newtons equation, Eq. (2.14),
only yields in the inertial reference frame, the equations of motion are defined with respect to this frame.
If accelerations and velocities would be described in the body­ or asteroid­fixed reference frame, it
would require to include apparent forces. As for simulations of the real­world motion all accelerations
are defined in the inertial reference frame, Eqs. (2.15) and (2.16) can be used as stated.

2.3.1. Gravitational acceleration
The main contributor to the acceleration of the spacecraft is the gravitational acceleration due to the
asteroid’s attraction. A way commonly used to model the gravitational influence of a body at a great
distance is assuming it as a point mass. When the distance between the spacecraft and the body is
much greater than the diameter of the body, the body may be assumed as point with the total mass of
the body. Using Newton’s gravitational law, the gravitational force F12 acting on the body with mass
𝑀2 can be described as:

F12 = −𝐺
𝑀1𝑀2
||r12||3

r12 (2.17)

where r12 indicates the vector pointing from body 1 towards body 2, 𝐺 the gravitational constant and
𝑀1 the mass of the spacecraft. When coming closer to a body, the influence of the size and shape of
the body cannot be neglected. Below, alternative, more precise, methods to model the gravity field are
evaluated.

Spherical Harmonics
The spherical harmonic (SH) gravity field, also called the exterior gravity field is an efficient approach
to model a celestial body’s gravity field. This gravity is modeled using harmonic functions by the gravi­
tational potential 𝑈, which is dependent on the position of the spacecraft with respect to the body. The
gravity field is expressed by the following equation (Takahashi et al., 2013):

𝑈(𝑟, 𝜙, 𝜆) = 𝐺𝑀
𝑟 [1 +

∞

∑
𝑛=1

(𝑅𝑟 )
𝑛 𝑛

∑
𝑚=0

𝑃𝑛𝑚(sin𝜙) × [𝐶𝑛𝑚 cos(𝑚𝜆) + 𝑆𝑛𝑚 sin(𝑚𝜆)]] (2.18)

In this equation 𝑟 is the distance between the spacecraft the center of the spherical body with reference
radius 𝑅, 𝜙 and 𝜆 the latitude and longitude of the spacecraft, respectively, 𝐺 the gravitational constant,
𝑃𝑛𝑚 the Legendre function of degree 𝑛 and order 𝑚, and 𝐶𝑛𝑚 and 𝑆𝑛𝑚 are the spherical harmonic
coefficients. The Legendre function 𝑃𝑛𝑚 is defined as:

𝑃𝑛𝑚(𝑡) =
1
2𝑛𝑛!(1 − 𝑡

2)𝑚/2 𝑑
𝑛+𝑚

𝑑𝑡𝑛+𝑚 (𝑡
2 − 1)𝑛 (2.19)
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Figure 2.2: Examples of the three different kinds of spherical harmonics: (a) zonal harmonics, (b) tesseral harmonics, and (c)
sectorial harmonics; with colatitude 𝜗 = 𝜋 − 𝜃 (Hofmann­Wellenhof and Moritz, 2006)

Eq. (2.18) can be rewritten using the normalized coefficients 𝐶̄𝑛𝑚 and 𝑆̄𝑛𝑚. Using these normalized
coefficients requires the Legendre polynomials also to be normalized using 𝑃̄𝑛𝑚. The normalization
uses the following relations:

𝐶𝑛𝑚 = Π𝑚𝑛 𝐶̄𝑛𝑚
𝑆𝑛𝑚 = Π𝑚𝑛 𝑆̄𝑛𝑚

𝑃𝑛𝑚 =
𝑃̄𝑛𝑚
Π𝑚𝑛

Π𝑚𝑛 = √
(𝑛 −𝑚)!(2𝑛 + 1)(2 − 𝛿𝑚0 )

(𝑛 + 𝑚)!

Here 𝛿𝑚0 is the the Kronecker­delta which in this case is equal to 1 when 𝑚 = 0, else it is equal to
0. Substituting the coefficients and polynomials in Eq. (2.18) using the relations above, the equation
becomes (Hofmann­Wellenhof and Moritz, 2006):

𝑈(𝑟, 𝜙, 𝜆) = 𝐺𝑀
𝑅

∞

∑
𝑛=0

(𝑅𝑟 )
𝑛+1 𝑛

∑
𝑚=0

𝑃̄𝑛𝑚(sin𝜙) × [𝐶̄𝑛𝑚 cos(𝑚𝜆) + 𝑆̄𝑛𝑚 sin(𝑚𝜆)] (2.20)

From the gravitational potential the acceleration on a spacecraft can be determined by taking the deriva­
tive as follows:

g = (𝑔𝑟 𝑔𝜙 𝑔𝜆)
𝑇 = −∇𝑈 = (−𝜕𝑈𝜕𝑟 − 1

𝑟 cos 𝜆
𝜕𝑈
𝜕𝜙 − 1𝑟

𝜕𝑈
𝜕𝜆 )

𝑇
(2.21)

The more degree and order coefficients are determined, the more precise the gravity field model. Dif­
ferent degree and order harmonics correspond with different geometrical characteristics (Hofmann­
Wellenhof and Moritz, 2006). When order 𝑚 is zero and degree 𝑛 is not, it is classified as zonal
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harmonics because it depends on the latitude and not on the longitude, and can be divided in zonals
since the sign changes 𝑛 times. In general, the sign changes 𝑛−𝑚 times in the interval 0 ≤ 𝜙 ≤ 𝜋. For
the harmonics where 𝑛 and 𝑚 are equal and nonzero, the term sectorial harmonics is used. Because
of the zero changes of sign over the interval in latitude(𝑛 −𝑚) it only changes in sign over the interval
0 ≤ 𝜆 ≤ 2𝜋 what divides the harmonics over positive and negative sectors. Every other combination
where 𝑛 and 𝑚 are not equal and nonzero divides the sphere in compartments because it changes
sign over both the intervals. These harmonics are called tesseral harmonics. Examples of all three
particular harmonics are visualized in Figure 2.2.

The spherical harmonics estimation accuracy is dependent on the altitude of the spacecraft orbit.
The study by Bourgeaux (2020) showed, the closer a spacecraft is to the surface, the more accurate the
estimation. This is expressed by errors of a lower percentage in the estimated spherical coefficients,
with respect to their estimated value, for lower altitudes.

Point­mass distribution
Another method to model the gravity field is defining a distribution of point masses, mascons (mass
concentrations), over the shape of the body. One example is the simple model of Itokawa for the
Hayabusa mission shown in Figure 1.6. The size of the ring indicates the mass and thus the gravi­
tational force by the point mass. This is a very simplified distribution of only six points. A commonly
used approach is defining an evenly spaced grid of points with individual masses filling the shape of
the body (Werner and Scheeres, 1997). The sum of the individual masses is equal to the total mass of
the asteroid. Other options are to define a non­uniform grid, or to randomly distribute masses with an
uniform distribution (Bolatti, 2020).

With this method it is possible to model gravitational variations of any irregular shape and mass
distribution characterizing the asteroid. The complexity and accuracy of the model is dependent on
the number of mass points used. In this way, the minimal computational effort required for a desired
accuracy can be selected. Nevertheless, according to Werner and Scheeres (1997), modeling the
gravitational field using a evenly spaced point mass distribution has multiple deficiencies. The com­
putational effort is higher for the same desired accuracy as harmonic modeling and significant errors
remain even with large numbers of mascons.

Another technique is using the polyhedral shape model of an asteroid to construct a shape model.
In Chanut et al. (2015) two models are described using the triangular facets of a shape model and
connecting the vertexes with the center of the asteroid. The first model places a mascon in the centroid
of the formed tetrahedron giving it a mass proportional to the volume of the tetrahedron with respect
to the complete mass of the asteroid. This model with one mascon per tetrahedron is called Mascon
1. The second model, called Mascon 3, divides the tetrahedron in three parts. In the center of every
part is placed a mascon proportional to the volume. The resulting mascon models for asteroid 216
Kleopatra are given in Figure 2.3a and 2.3b. These models appeared to be quite consistent with the
polyhedral model with a relative error of about 0.1 km2s−2 in potential, and convergent close to the
surface. Especially Mascon 3 performed well close to the surface (Chanut et al., 2015).

Polyhedron gravity field
The last method to model the gravity field evaluated in this chapter is the earlier mentioned polyhe­
dron method. In this method the asteroid is modeled as a polyhedron with a constant density. The
polyhedron consists of a number of planar faces. These polygons meet at edges. By increasing the
number of faces such polyhedron shape model can be made very accurate including craters, caves,
overhangs or big rocks. In this way there can be dealt with the irregular shape up to high detail. The
volume defined by the shape is assumed to have a constant density, what results in the total mass of
the asteroid. The exterior gravitation caused by the body can be derived analytically in a closed form
(Werner and Scheeres, 1997). In Figure 1.5 an example of such shape model is given.

The polyhedron model eliminates potential critical problems. First, since the gravitation can be
derived in closed form analytically from the shape model, the total error can be fully reduced to errors
in the shape model. Second, the polyhedron gravity model does always converge. Third, by evaluating
the Laplacian of the potential it can be determined whether a point is inside or outside the shape. When
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(a) Visualization of Mascon 1 model of asteroid 216 Kleopatra by
(Chanut et al., 2015)

(b) Visualization of Mascon 3 model of asteroid 216 Kleopatra by
(Chanut et al., 2015)

the Laplacian is equal to zero, the field point is outside the shape and when it is not zero the point is
inside the shape (Werner and Scheeres, 1997). This easy way of determining whether a point is inside
or outside the shape could for example avoid collision.

The gravitational potential at a field point at position r can be determined by summation over the
faces and edges following Eq. (2.22), where 𝜌 is the density and 𝐺 the gravitational constant. Suffixes
𝑒 and 𝑓 specify whether an edge or face are considered, respectively (Park et al., 2010; Werner and
Scheeres, 1997).

𝑈(r) = 1
2𝐺𝜌 ∑

𝑒∈𝑒𝑑𝑔𝑒𝑠
r𝑇𝑒E𝑒r𝑒 ⋅ 𝐿𝑒 −

1
2𝐺𝜌 ∑

𝑓∈𝑓𝑎𝑐𝑒𝑠
r𝑇𝑓F𝑓r𝑓 ⋅ 𝜔𝑓 (2.22)

Each face has a normal vector n̂𝑓 pointing outwards. Each edge has a normal vector n̂𝑒 pointing
outward and perpendicular to n̂𝑓. Every edge or face has its own dyadic product E𝑒 or F𝑓 respectively
as defined below:

E𝑒 = n̂𝐴(n̂𝐴12)𝑇 + n̂𝐵(n̂𝐵21)𝑇

F𝑓 = n̂𝑓n̂𝑇𝑓

Here 𝐴 and 𝐵 are two faces that are connected by the edge that connects vertices 𝑃1 and 𝑃2 as in
Figure 2.4. Dimensionless per­edge factor 𝐿𝑒 is defined as:

𝐿𝑒 = ln
𝑟𝑖 + 𝑟𝑗 + 𝑒𝑖𝑗
𝑟𝑖 + 𝑟𝑗 − 𝑒𝑖𝑗

, (2.23)

where 𝑟𝑖 = ||r𝑖||, with r𝑖 as the vector from field point location towards vertex 𝑃𝑖, and 𝑒𝑖𝑗 as the length
between vertices 𝑃𝑖 and 𝑃𝑗. The dimensionless per­face factor 𝜔𝑓 is defined as follows for a triangular
face defined by vertices 𝑃𝑖, 𝑃𝑗 and 𝑃𝑘 (Park et al., 2010; Werner and Scheeres, 1997):

𝜔𝑓 = 2arctan
r𝑖 ⋅ r𝑗 × r𝑘

𝑟𝑖𝑟𝑗𝑟𝑘 + 𝑟𝑖(r𝑗 ⋅ r𝑘) + 𝑟𝑗(r𝑘 ⋅ r𝑖) + 𝑟𝑘(r𝑖 ⋅ r𝑗)
(2.24)

The gravitational acceleration at a certain field point location can then be determined by taking the
derivative of the gravitational potential. This results in Eq. (2.25).

g(r) = 𝜕𝑈(r
𝜕r = −𝐺𝜌 ∑

𝑒∈𝑒𝑑𝑔𝑒𝑠
E𝑒r𝑒 ⋅ 𝐿𝑒 + 𝐺𝜌 ∑

𝑓∈𝑓𝑎𝑐𝑒𝑠
F𝑓r𝑓 ⋅ 𝜔𝑓 (2.25)

The method has relatively high requirements for computation and memory. Determining the potential
requires summation over the complete surface of the polyhedron shape model. The high computational
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Figure 2.4: Visualization of normal vector definitions for faces and edges. From (Werner and Scheeres, 1997).

Table 2.4: Models compared on CPU time (Chanut et al., 2015).

Asteroid (216) kleopatra (433) Eros (4769) Castalia (4179) Toutatis
CPU speed 3.10 GHz 2.27 GHz 3.10 GHz 2.27 GHz 3.10 GHz 2.27 GHz 3.10 GHz 2.27 GHz
Mascon 1 9 m 14 s 11 m 45 s 17 m 02 s 21 m 17 s 9 m 16 s 11 m 32 s 69 m 26 s 113 m 12 s
Mascon 3 11 m 37 s 19 m 48 s 25 m 55 s 36 m 28 s 11 m 39 s 19 m 46 s 105 m 07 s 194 m 58 s
Polyhedron 190 m 50 s 458 m 55 s 469 m 30 s 801 m 4 s 191 m 30 s 460 m 36 s 2338 m 12 s 4630 m 12 s

load of the polyhedron gravity field computation has been demonstrated by Chanut et al. (Chanut et
al., 2015), who compared gravity field computation using the mascon distribution models described
in subsection 2.3.1 with the polyhedron gravity field computation. In Table 2.4 the CPU time for two
different computer speeds are shown for four different asteroid shape models. The table clearly shows
the increased CPU time for computing the gravity field using the polyhedron model, for both computers
and all four different asteroid shape models. Regarding autonomous navigation with limited on­board
computer performance and memory storage the aspects of computational load and memory require­
ments shall be considered when selecting a gravity model for implementation. Also, one shall not forget
the controversial assumption of a constant density. The polyhedron model can, because of its known
homogeneous density and unlimited convergence, be used as reference method to discover hetero­
geneity or to define the nominal gravity field, to which gravity fields computed using other models can
be compared (Park et al., 2010; Scheeres et al., 2020; Takahashi et al., 2013).

2.3.2. Third­body perturbation
One of the external perturbations, besides the gravitational attraction by the asteroid body, is the grav­
itational attraction by other celestial bodies besides the asteroid. This could, for example, be planets
as Mars and Jupiter, or the Sun. The environment defined for simulation includes only the Sun as a
third­body. As the Sun is at an average distance of 1.458 au from Eros, this third body perturbation is
modeled as a point­mass. Therefore, the third body perturbation a3𝑟𝑑 caused by the Sun, with respect
to the defined inertial reference frame, is given by (Wakker, 2015):

a3𝑟𝑑 = −𝐺𝑀𝐴
r𝐵

‖r𝐵‖3
+ 𝐺𝑀𝑆 (

r𝐵𝑆
‖r𝐵𝑆‖

3 −
r𝑆

‖r𝑆‖
3) (2.26)

Here, 𝐺 is the gravitational constant, 𝑀𝐴 and 𝑀𝑆 are the mass of the asteroid and Sun, respectively, r𝐵
is the position of the spacecraft, r𝑆 is the position of the Sun, and r𝐵𝑆 = r𝐵 − r𝑆 is the relative position
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of the spacecraft with respect to the Sun.

2.3.3. Solar Radiation Pressure
Besides the Sun its gravitational attraction, the photons which are emitted by the Sun generate a force
on the spacecraft when they hit the body. This is another perturbing force called solar radiation pressure
(SRP). The SRP during a mission does influence the orbit of the spacecraft. Since the gravitational
force of an asteroid relatively small compared to when orbiting a planet, the SRP has relatively high
influence (Scheeres, 1999). In Kato and van der Ha (2012), the acceleration due to SRP is modeled for
the Rosetta spacecraft during its mission cruise phases. During these phases the spacecraft traveled
from a distance with the Sun of 0.9 au towards a distance of 5.3 au. The acceleration due to SRP
appeared to range from 10−7 to 10−8 m/s2. With a simple calculation of the point mass near an asteroid,
this value can be compared with acceleration due to the gravitational pull of the asteroid. The point
mass acceleration by, for example, Eros, with a gravitational parameter 𝜇 = (4.461 ± 0.001) × 105
m3/s2 and an orbit around the Sun ranging from 1.13 till 1.76 au (Yeomans et al., 2000), at a distance
𝑑 of 500 km would be 𝜇

𝑑2 ≈ 1 × 10
−6 m/s2. This is only an order 10 higher than the SRP force, what

motivates for including this force in the simulation.
According toMarkley and Crassidis (2014), the SRP force can bemodeled according to the following

equation:

F𝑆𝑅𝑃 = −𝑃⊙
𝑁

∑
𝑖=1

cos𝜃𝑖𝐴𝑖 ((1 − 𝜖𝑖)e𝑆/𝐵,𝑖 + 2𝜖𝑖 cos𝜃𝑖n̂𝑖) (2.27)

Here, the spacecraft is modeled as a collection of 𝑁 planes, each with a surface area 𝐴𝑖, normal vector
n̂𝑖, and reflectivity coefficient 𝜖𝑖. The symbol 𝑃⊙ indicates the solar radiation pressure, 𝜃𝑖 the angle
between the Sun vector and the plane normal vector, and e𝑆/𝐵,𝑖 the unit vector directed towards the
Sun from the spacecraft.

2.3.4. Overview
As the simulator is required to be able to simulate the spacecraft inside the Brillouin sphere, the polyhe­
dron model is selected as the gravity model used for simulation. The spherical harmonics model is not
used for simulation, but only used for comparison of estimated gravity field accuracies. The point­mass
distribution is used in the state estimator, which is explained in more detail in chapter 3, because of its
relatively low computational costs, and large region of convergence.

As the Sun is the main perturbing body, its influences are included in the modeled asteroid envi­
ronment. Other possible disturbing bodies as Jupiter, Mars or Earth are assumed to be too far away
to have a negligible contribution. Thereby, it is not complicated to include this perturbation, knowing
the Sun’s gravitational parameter. Besides this third body perturbation, the Sun also unduces the SRP
force. Bourgeaux (2020) showed that whether or not these forces are included in the gravity field esti­
mation can make a difference in its performance. Therefore, it is decided to include these perturbation
in the simulation.

2.4. Rotational motion
Besides position and velocity, also the attitude of a spacecraft is of importance during a mission. If a
spacecraft has the desired attitude, the instruments give the best measurements. Elsewise, the control
system should correct to reach the desired attitude. The quaternions, which are used to describe the
attitude, are already introduced in subsection 2.2.1. In this section, it is described how these quater­
nions evolve over time according to dynamic and kinematic laws. A distinction can be made between
the attitude of our two bodies of interest, the spacecraft and asteroid.

2.4.1. Spacecraft rotation
As a body has a certain angular velocity described by the angular velocity vector 𝝎 = (𝜔1, 𝜔2, 𝜔3)𝑇,
the quaternion vector q changes over time. According to Wie (2008), the attitude kinematics equation
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adapted for the spacecraft body is:

q̇𝐵/𝐼 =
1
2𝝎

𝐵
𝐵/𝐼⊗ q𝐵/𝐼 =

1
2𝛀(𝝎

𝐵
𝐵/𝐼)q𝐵/𝐼 (2.28)

with 𝝎𝐵𝐵/𝐼 describing the angular velocity of the body­frame with respect to the inertial frame expressed
in the body­frame, and 𝛀(𝝎) as:

𝛀 = 𝝎⊗ = [ −[𝝎×] 𝝎
−𝝎𝑇 0 ] =

⎡
⎢
⎢
⎣

0 𝜔3 −𝜔2 𝜔1
−𝜔3 0 𝜔1 𝜔2
𝜔2 −𝜔1 0 𝜔3
−𝜔1 −𝜔2 −𝜔3 0

⎤
⎥
⎥
⎦

(2.29)

This equation describes the behavior of the attitude over time dependent on the angular velocity vec­
tor. This angular velocity can also evolve over time, depending on the forces working on the body.
These forces can induce a torque, which influences the change in angular velocity. The dynamics of
the angular velocity are described by Euler’s rotational equation (Wie, 2008), which, adapted for the
spacecraft body is given by:

𝝎̇𝐵𝐵/𝐼 = 𝐉−1(−𝝎𝐵𝐵/𝐼 × (𝐉𝝎) + 𝝉) (2.30)
Here, the symbol J indicates the moment of inertia tensor of the body, and the symbol 𝝉 indicates the
resultant torque working on the body. As 𝝉 is a resultant torque, this can be the sum of multiple torques.
It could be for example be an internal torque, which is induced due to the control system, or external
torques due to disturbances.

Solar Radiation Pressure Torque
Besides the SRP force caused by the emitted photons of the Sun, these also influence the rotational
motion of the spacecraft. According to Markley and Crassidis (2014) this gravitational torque can be
obtained with the following equation:

𝝉𝑆𝑅𝑃 =
planes

∑
𝑖=1

r𝐵,𝑖 × F𝑆𝑅𝑃,𝐵,𝑖 (2.31)

In this equation, the sum is taken over the product of the center of plane positions with respect to the
body­fixed frame r𝐵,𝑖 and the SRP force per plane F𝑆𝑅𝑃,𝐵,𝑖.

Gravity Gradient Torque
Another external torque that could influence the attitude of the spacecraft is the gravity gradient torque.
This torque is induced by differences in the gravitational attraction over the dimensions of the spacecraft
body. By describing the spacecraft body by 𝑁 number of point­masses, the gravity gradient torque can
be approximated, using the following equation (Razgus et al., 2017; Wie, 2008):

𝝉𝐺𝐺 =
𝑁

∑
𝑖=1

r𝐵,𝑖 ×𝑚𝑖g𝐵,𝑖 (2.32)

Here, r𝐵,𝑖 is the position of, 𝑚𝑖 the mass of, and g𝐵,𝑖 the acceleration on the 𝑖th point­mass. For this
numerical approach to approximate the gravity gradient torque, it yields that the more point­masses
are used to model the spacecraft, the more accurate the model becomes with reality. However, It is
chosen to neglect this torque as it increases simulation time tremendously and only influences the
rotational motion of the spacecraft directly. Indirectly it influences the solar radiation pressure, which
depends on this attitude. However, in the navigation system, this force is assumed known and thus not
influencing the estimation performance. As it is chosen not to estimate the attitude of the spacecraft and
the acceleration dependent on this attitude is assumed known, this simulation time increasing torque is
ignored. The simulation time increase is due to the the fact that the gravity gradient torque requires the
gravitational acceleration to be determined for each of the point masses which models the spacecraft,
according to Eq. (2.32). As the minimum number of point­masses required to model the spacecraft
dimensions is 16, the summation as in Eq. (4.6) has to be done 17 times each time step.



2.4. Rotational motion 23

2.4.2. Asteroid rotation
During the thesis work, the asteroid is assumed to rotate with a constant speed around the 𝑧­axis. This
makes propagation of the attitude of the asteroid only require the kinematic equation:

q̇𝐴/𝐼 =
1
2𝝎

𝐴
𝐴/𝐼⊗ q𝐴/𝐼 (2.33)

Here, again, 𝝎𝐴/𝐼⊗ can be determined using Eq. 2.29. The fixed angular velocity makes the angular
velocity vector of the asteroid­fixed frame with respect to the inertial frame expressed in the asteroid­
fixed frame equal to: 𝝎𝐴𝐴/𝐼 = (0, 0, 𝜔𝑧)𝑇.



24 2. Asteroid environment



3
Navigation

Before investigating performances of navigation systems near asteroids, one shall have insights in
how navigation systems work. A major element in navigation systems is the navigation filter. Such
filter estimates the state of the spacecraft using input from, for example, sensors. An established type
of filter is the Kalman filter, of which the basic definitions are highlighted in section 3.1. As a solution for
non­linear system as, for example, asteroid environments, the Extended Kalman filter is explained in
section 3.2. Also, in existing software used by Bourgeaux (2020), Kalman filters are used to estimate
the state of a simulated spacecraft over time. The Extended Kalman Filter is compared by Bourgeaux
with the Unscented Kalman Filter. The Unscented Kalman Filter is also capable of handling non­linear
systems. Bourgeaux showed that the Unscented Kalman Filter had a comparable performance as
the EKF and is easier to implement when using spherical harmonics. Therefore, also the Unscented
Kalman Filter is addressed in section 3.3. After these explanations about the two different Kalman filter
types, the method applied in Park et al. (2010) for mascon gravity field estimation is evaluated. Finally,
the two Kalman filter types are discussed and a in section 3.5.

3.1. Kalman Filter
A Kalman filter (KF) is an estimator based on a very effective and versatile procedure. It estimates the
state combining a dynamical system with uncertainties and noisy sensor outputs. Examples of books
in which the Kalman filter is described are Haykin (2001) and Mooij E (2019). The simplest example of
a KF is the Linear Kalman Filter (LKF). This filter estimates the state x𝑘 of a linear system which can
be described as:

x𝑘+1 = 𝚽𝑘x𝑘 + B𝑘u𝑘+1 +w𝑘 (3.1)

Using the measurements z𝑘:
z𝑘 = H𝑘x𝑘 + v𝑘 (3.2)

Here u represents the control input, 𝚽 the state­transition matrix which defines how the state relates
with the next state, B the control matrix, H𝑘 the measurement matrix, which indicates how measure­
ments are related to the state,w the system noise, and v the measurement noise. The index 𝑘 indicates
the time step.

3.2. Extended Kalman Filter
However, such linear system does not represent a system that will describe the situation in which
the spacecraft will be placed in. This requires a KF that can handle non­linear systems such as the
Extended Kalman Filter (EKF). The following equation can express the non­linear system:

x𝑘+1 = f(x𝑘 ,u𝑘 ,w𝑘) (3.3)

25
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with measurements
z𝑘 = h(x𝑘 ,v𝑘) (3.4)

The EKF estimates the next state using first­order Taylor series approximations of the system around
the current state estimate. The noises w𝑘 and v𝑘 are assumed to be uncorrelated (white noise) and
their probability distribution is given by:

𝑝(v𝑘) ∼ 𝑁(0,R𝑘) (3.5)
𝑝(w𝑘) ∼ 𝑁(0,Q𝑘) (3.6)

where R and Q are the noise of the measurement device and the uncertainty in the system model,
respectively. Although white noise cannot exist, it is often used for design and analysis. The white
noise is for the system often identical to the real noise, as it only responds to a range of frequencies
defined by the so­called ”bandpass” (Welch and Bishop, 2001).

An estimation is done in two steps. First, an a­priori estimate is obtained, after which an a­posteriori
estimation is performed. The a­priori estimate x̂−𝑘 is an estimate using only the dynamical model.
The a­priori estimate is then updated and refined into the a­posteriori estimate x̂𝑘 by including the
measurements. The errors of these a­priori and a­posteriori estimates e−𝑥𝑘 and e𝑥𝑘 are defined as:

e−𝑥𝑘 = x𝑘 − x̂−𝑘 (3.7)
e𝑥𝑘 = x𝑘 − x̂𝑘 (3.8)

Using the a­posteriori estimate from the previous timestep, the new a­priori estimate can be derived
and measurements can be estimated by using:

x̂−𝑘+1 = f(x̂𝑘 ,u𝑘+1,0) (3.9)
ẑ𝑘 = h(x̂−𝑘 ,0) (3.10)

In the initializing step, the a­priori estimate is derived using the initial state x̂0 and covariance matrix
P0, which are defined as:

x̂0 = 𝐸[x0] (3.11)
P0 = 𝐸[(x0 − 𝐸[x0])(x0 − 𝐸[x0])𝑇] (3.12)

Linearization of the Eqs. (3.9) and (3.10) gives:

x𝑘+1 ≈ x̂−𝑘+1 +𝚽𝑘 (x𝑘 − x̂𝑘) +W𝑘w𝑘 (3.13)
z𝑘 ≈ ẑ−𝑘 +H𝑘 (x𝑘 − x̂𝑘) + V𝑘v𝑘 (3.14)

Here, 𝚽, B,W and V indicate the Jacobian matrices of the system used for linearization defined as:

𝚽𝑘 =
𝜕f
𝜕x |(x̂𝑘 ,u𝑘+1 ,0)

(3.15)

H𝑘 =
𝜕h
𝜕x |(x̂−𝑘 ,0)

(3.16)

V𝑘 =
𝜕h
𝜕v |(x̂−𝑘 ,0)

(3.17)

W𝑘 =
𝜕f
𝜕w |(x̂𝑘 ,û𝑘+1 ,0)

(3.18)

The Jacobian 𝚽 is also called the state­transition matrix. The a­priori prediction error e−𝑥𝑘 and mea­
surement residual e−𝑧𝑘 are approximated by:

e−𝑥𝑘 = x𝑘 − x̂−𝑘 ≈ 𝚽𝑘−1(x𝑘−1 − x̂𝑘−1) + 𝝐𝑘 (3.19)
e−𝑧𝑘 = z𝑘 − ẑ−𝑘 ≈ H𝑘(ê−𝑥𝑘) + 𝜼𝑘 (3.20)
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Here 𝜂 and 𝜖 are the linear approximations of noises v and w with distributions:

𝑝 (𝜖𝑘) ∼ 𝑁 (0,W𝑘−1Q𝑘−1W𝑇
𝑘−1) (3.21)

𝑝 (𝜂𝑘) ∼ 𝑁 (0,V𝑘R𝑘V𝑇𝑘) (3.22)

To estimate the prediction error, the difference can be computed between the a­posteriori and a­priori
errors in equations (3.7) and (3.8). This error shall be equal to the state update for which Kalman gain
K is defined. This gives:

ê𝑘 = x̂𝑘 − x̂−𝑘 = K(ê−𝑧𝑘) (3.23)
Using this equation, the a­posteriori state estimation can be written as:

x̂𝑘 = x̂−𝑘 +K(z𝑘 − ẑ𝑘) (3.24)

This results in the covariance matrix P and gain equations:

P−𝑘+1 = 𝚽𝑘P𝑘𝚽𝑇
𝑘 +W𝑘Q𝑘W𝑇

𝑘 (3.25)

K = K𝑘 = P−𝑘H
𝑇
𝑘 (H𝑘P−𝑘H𝑇𝑘 + V𝑘R𝑘V𝑇𝑘)

−1
(3.26)

where:
P𝑘 = (I−K𝑘H𝑘)P−𝑘 (3.27)

These steps are repeated over time by deriving the a­priori estimate from the previous a­posteriori
estimate.

3.3. Unscented Kalman Filter
An alternative for the EKF is the Unscented Kalman Filter (UKF) using Unscented Transformation (UT).
UT is defined by Wan and Van Der Merwe (2000) as a method for calculating the statistics of a random
variable which undergoes a nonlinear transformation. It describes a set of sample points instead of
only one point, resulting in a more precise estimate. By calculating the statistics of carefully chosen
sample points instead of only one point it is able to capture the posterior mean and covariance to the
third order Taylor series expansion (Wan and Van Der Merwe, 2000).

Unscented transformation works as follows. Imagine a random variable x of dimension 𝐿 in non­
linear system y = 𝑔(x) . A matrix of 2𝐿 + 1 so­called sigma vectors 𝝌𝑖 is formed, with 𝑖 ∈ {0, ..., 2𝐿}, to
calculate the statistics of y. These vectors are assigned a weight 𝑊𝑖. The sigma vectors are defined
as follows:

𝝌0,𝑘 = x̄𝑘
𝝌𝑖 = x+ (√(𝐿 + 𝜆)Px)𝑖 𝑖 = 1,… , 𝐿
𝝌𝑖 = x− (√(𝐿 + 𝜆)Px)𝑖−𝐿 𝑖 = 𝐿 + 1,… , 2𝐿

𝑊(𝑚)
0 = 𝜆/(𝐿 + 𝜆)
𝑊(𝑐)
0 = 𝜆/(𝐿 + 𝜆) + (1 − 𝛼2 + 𝛽)

𝑊(𝑚)
𝑖 = 𝑊(𝑐)

𝑖 = 1/{2(𝐿 + 𝜆)} 𝑖 = 1,… , 2𝐿

(3.28)

Here the covariance is indicated by P𝑥 , the mean of the random variable by x. 𝜆 = 𝛼2(𝐿 + 𝜅) and 𝜅
are scaling parameters, where 𝛼 determines the spread of the sigma points and 𝛽 is used influence
the distribution of x with prior knowledge. Propagating the sigma vectors using 𝒴𝑖 = 𝑔 (𝝌𝑖), the mean
and covariance for y can than be approximated using:

y ≈
2𝐿

∑
𝑖=0
𝑊(𝑚)
𝑖 𝒴𝑖 (3.29)

Py ≈
2𝐿

∑
𝑖=0
𝑊(𝑐)
𝑖 {𝒴𝑖 − y} {𝒴𝑖 − y}

𝑇
(3.30)
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With an extension of UT on Eq.(3.24) from the EKF, the UKF is made. Here the random variable is
defined as a concatenation of the state and noise variables as x𝑎𝑘 = (x𝑇𝑘 v𝑇𝑘 w𝑇𝑘)

𝑇
. The sigma points

and weights can be calculated using Eq.(3.28) realizing 𝝌𝑎 = ((𝝌x)𝑇 (𝝌v)𝑇 (𝝌w)𝑇)𝑇 . The time update
can be performed by using:

𝒳𝑥
𝑘∣𝑘−1 = f (𝒳𝑥

𝑘−1, 𝒳𝑣𝑘−1) (3.31)

x̂−𝑘 =
2𝐿

∑
𝑖=0
𝑊(𝑚)
𝑖 𝒳𝑥

𝑖,𝑘∣𝑘−1 (3.32)

P−𝑘 =
2𝐿

∑
𝑖=0
𝑊(𝑐)
𝑖 (𝒳𝑥

𝑖,𝑘∣𝑘−1 − x̂−𝑘 ) (𝒳𝑥
𝑖,𝑘∣𝑘−1 − x̂−𝑘 )

𝑇
(3.33)

𝒵𝑘∣𝑘−1 = h (𝒳𝑥
𝑘∣𝑘−1, 𝒳𝑤𝑘−1) (3.34)

ẑ−𝑘 =
2𝐿

∑
𝑖=0
𝑊(𝑚)
𝑖 𝒵𝑖,𝑘∣𝑘−1 (3.35)

The equations for updating the state based on the measurements are given by:

Pẑ𝑘ẑ𝑘 =
2𝐿

∑
𝑖=0
𝑊(𝑐)
𝑖 [𝒵𝑖,𝑘∣𝑘−1 − ẑ−𝑘 ] [𝒵𝑖,𝑘∣𝑘−1 − ẑ−𝑘 ]

𝑇
(3.36)

Px𝑘z𝑘 =
2𝐿

∑
𝑖=0
𝑊(𝑐)
𝑖 [𝒳𝑖,𝑘∣𝑘−1 − x̂−𝑘 ] [𝒵𝑖,𝑘∣𝑘−1 − ẑ−𝑘 ]

𝑇
(3.37)

K = Px𝑘z𝑘P
−1
z̃𝑘z̃𝑘

(3.38)

x̂𝑘 = x̂−𝑘 +K (z𝑘 − ẑ−𝑘 ) (3.39)
P𝑘 = P−𝑘 −KPz̃𝑘z̃𝑘K𝑇 (3.40)

Again, the steps can be iterated over time using the a­posteriori estimate to determine the next a­priori
estimate.

3.4. Direct estimation
An approach to include the asteroid its mass distribution in state estimation is given by Park et al. (2010).
The done study describes how to estimate the density of finite elements inside the asteroid shape
directly from radiometric measurements. Here, a spacecraft is simulated in a trajectory around Itokawa.
Itokawa is modeled using a finite number of cubes or spheres as shown in Figure 3.1. Both the cube­ as
the sphere­elements models are used for density distribution estimation. A Square Root Information
Filter (SRIF) was used to perform a covariance analysis. It appeared that this finite element based
approach can provide a good approximation of the polyhedral gravity field. The accuracy depends on
the resolution of the finite elements and field­point distance.

When the densities are assigned to the elements, the gravitational potential and acceleration can
be computed using these densities according to the following equations:
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Figure 3.1: Differences between shape models by (Park et al., 2010).

• Cubes:

𝑈𝑐(r) = ∑
𝑖∈ cubes

(12𝐺𝜌𝑖 ∑
𝑒∈ edges

r𝑇𝑒E𝑒r𝑒 ⋅ 𝐿𝑒 −
1
2𝐺𝜌𝑖 ∑

𝑓∈ faces
r𝑇𝑓F𝑓r𝑓 ⋅ 𝜔𝑓) (3.41)

𝜕𝑈𝑐
𝜕r = ∑

𝑖∈ cubes
(−𝐺𝜌𝑖 ∑

𝑒∈ edges
E𝑒r𝑒 ⋅ 𝐿𝑒 + 𝐺𝜌𝑖 ∑

𝑓∈ faces
F𝑓r𝑓 ⋅ 𝜔𝑓) (3.42)

• Spheres:

𝑈𝑚(r) = ∑
𝑖∈ spheres

4𝜋
3 𝑟

3
𝑚𝑖𝐺𝜌𝑖

1
‖r− r𝑖‖

(3.43)

𝜕𝑈𝑚
𝜕r = ∑

𝑖∈ spheres
−4𝜋3 𝑟

3
𝑚𝑖𝐺𝜌𝑖

r− r𝑖
‖r− r𝑖‖

3 (3.44)

As can be observed, the cubic elements are considered as distinguishable small polyhedrons applying
the theory described in Figure 2.3.1, while the spheres are considered point masses with a position r𝑖
and radius 𝑟𝑚𝑖. The total potential and acceleration is calculated by summing up the influences of all
different elements (Park et al., 2010).

The state defined for estimation by Park et al. (2010) is defined as:

x = (
r
v
𝝆
) , (3.45)

consisting of position vector r, velocity vector v and density array 𝝆 = (𝜌1, 𝜌2, ..., 𝜌𝑁)𝑇 containing the
densities of all 𝑁 elements.

Results for the finite sphere model covariance analysis done by Park et al. (2010) are given in Fig­
ure 3.2 and Figure 3.3. The figures show a clear improvement of the estimation accuracy at lower
altitudes. A remarkable observation is that the outer point­masses are estimated with a lower uncer­
tainty. The cubes appeared to give about the same results in accuracy. Nevertheless, spheres are
easier to implement and are computationally faster. The study showed that the finite element method
is a promising technique for implementation in close­proximity navigation, because measurements be­
low Brillouin sphere can be used. A disadvantage of the method is the error caused by neglecting the
surface variation.
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Figure 3.2: Results of covariance analysis for simulation of
trajectory around Itokawa with semi­major axis of 823 meters
as initial condition; a) visualization of simulated trajectory and
finite­sphere shape model(211 elements); b) resulting density
uncertainties along x­y cross section (%) (Park et al., 2010)

Figure 3.3: Results of covariance analysis for simulation of
trajectory around Itokawa with semi­major axis of 199 meters
as initial condition; a) visualization of simulated trajectory and
finite­sphere shape model(211 elements); b) resulting density
uncertainties along x­y cross section (%) (Park et al., 2010)
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Figure 3.4: Error in estimating 𝜇 of Eros with initial condition 𝑥0 = [2500000] and standard deviations of 100 m for position and
10 m/s for velocity in the noise covariance matrix by Bourgeaux (2020).

3.5. Discussion
A Kalman filter is an estimator that is based on a very effective and versatile procedure. It estimates the
state combining a dynamical system with uncertainties and noisy sensor outputs. The linear Kalman
filter would have its shortcomings on the dynamical system of such autonomous mission towards an
asteroid. The Extended Kalman Filter (EKF) is a solution, because of its ability to handle nonlinear
systems using a first­order Taylor series approximation around the estimate (Mooij E, 2019). Another
solution was found in the Unscented Kalman Filter (UKF). This Kalman filter uses Unscented Trans­
formation. It describes a set of sample points instead of only one point, resulting in a more precise
estimate. By calculating the statistics of carefully chosen sample points instead of only one point, it is
able to capture the posterior mean and covariance up to the third order Taylor series expansion (Wan
and Van Der Merwe, 2000).

Bourgeaux (2020) gave preference to the UKF over the EKF. Especially, because the algorithm
was easier to implement as the Jacobian matrix increases when increasing the order and degree of
expansions. This would require analytical expressions of the derivatives for each state parameter. Also,
the UKF performed slightly better when estimating only the 𝜇 parameter with large noise measurements
as can be seen in Figure 3.4. Because of these reasons, Bourgeaux (2020) decided to do higher order
estimations using the UKF.

Regarding computational costs, literature gives different answers. As for example, it is stated by
Julier and Uhlmann (2004) and Wan and Van Der Merwe (2000) the computational cost and complexity
of the UKF algorithm are of the same order of magnitude as the EKF, while St­Pierre and Gingras (2004)
demonstrates the computational costs of the UKF are significantly higher when implemented in an
integrated navigation information system. The results of these study, shown in Table 3.1, show a clear
increase in computational time. This study simulated a car on a road, using measurements of a real car
traveling on the same route as used in the simulator. The system fused four types of measurements
(GPS, IMU, Odometer, Inclinometer). As stated in the study, the increase in computational time is
related to the evaluation of 75 sigma points using the UKF, instead of one point using the EKF. It
indicates the computational time of the UKF depends on the number of sigma points. The preference
for one of the two navigation system appears to depend on multiple aspects.

Themodels used by Park et al. (2010) showed promising results with regards to using finite elements
for direct estimation. Because the spherical shaped elements have lower computational costs and give
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Table 3.1: Mean computational time for position estimation (St­Pierre and Gingras, 2004)

EKF (s) UKF (s) Gain(%)

0.0028 0.0658 ­2250

similar results, these are beneficial over the cubic shaped elements. As the spheres are considered
point masses, with a fixed position in a regular grid, it gives a clear example of a way to implement
mascon model parameters in state estimation. However, since the finite model is bound to a regular
grid and finding the real density distributions is not the main focus of this thesis, the density array in the
state is replaced by the mascon gravitational parameters 𝜇 = 𝐺𝑀.

This gravity field model will be implemented in an EKF. By using an augmented state definition sim­
ular to Eq. (3.45), the state can get lengthy. Using the UKF would require the system to calculate a lot
of sigma point each time step. Therefore, a UKF would be computationally expensive as it calculates
multiple sigma points for each state element. Also, in comparison to when using the spherical harmon­
ics model, the derivatives in the state transition matrix, Eq. (3.15), are easier to derive analytically. As
the performance differences found by Bourgeaux (2020) were small, the EKF is preferred above the
UKF and will be used for state estimation.



4
Software Design

In this chapter, there is elaborated on the structure of the used software. The general structure is
addressed in section 4.1. The software consists of two systems, the real­world simulator and the
navigation system. The real­world simulator is explained in section 4.2, after which in section 4.3 the
navigation system is addressed.

4.1. Top­level architecture
Figure 4.1 shows the main structure of the software. As visualized in the figure, a spacecraft trajectory
in an asteroid environment is simulated. The acceleration a the spacecraft would experience in the
defined environment is calculated. The existing software uses spherical harmonics to determine the
gravitational acceleration a𝑆𝐻 by the asteroid. The spherical harmonic coefficients can be based on
measurements done by real missions or can be derived from the constant­density polyhedron model.
Besides the gravitational acceleration, the model includes solar radiation pressure a𝑆𝑅𝑃 and 3rd body
perturbation by the Sun a𝑔,𝑆𝑢𝑛. The simulation is done to determine the sensor measurements the
spacecraft would obtain during the mission. Since the focus of this study is on the influence of the in
the navigation system implemented gravity model, it is assumed the measurements only experience
noise. The noise is added to the simulated ”real” trajectory of the spacecraft and taken as input for the
navigation system.

For this study, the implemented spherical harmonics gravity model will be replaced by the polyhe­
dron model. The algorithm to calculate the polyhedron gravitational acceleration, as written by Razgus
et al. (2017) and Werner (1997), is adjusted to be able to include density heterogeneity in the asteroid
model. The real states x𝑝𝑟𝑜𝑝 over time are saved to be used as reference trajectory for the estimated
trajectory.

The navigation software will consist of a state estimating Kalman filter. This Kalman filter will be
an Extended Kalman Filter (EKF). Since the state of for estimation can become lengthy, the EKF is
considered as the more efficient option. As mentioned in chapter 3, the UKF is computationally more
expensive because of the calculation of multiple sigma points. Bourgeaux (2020) pointed out the accu­
racy difference is small. Because the derivation for a point­mass model is considered as less compli­
cated, the EKF has been selected for analysis, as this is the more obvious choice. In this Kalman filter,
the mascon gravity field will be implemented and the gravitational parameter of each modeled mascon
is estimated.

4.2. Real­World simulator
To obtain measurements required as input for the navigation system, a real­world simulator is made.
The structure of the real­world simulator is shown in Figure 4.2.
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Propagate real world dynamics
and trajectory

Initial
conditions Add noise

Navigation filter

Estimated states 

Real states 

= Input






   = Output

Figure 4.1: Top­level structure of the software.

4.2.1. Spacecraft model
For the spacecraft model, the model defined by Razgus et al. (2017) is used. This spacecraft is based
on the Rosetta mission orbiter. Below the dimensions, mass properties and reflectance properties of
this spacecraft are given.

• Dimensions
The spacecraft consists of a body and two solar panels. The body is a box of 2.1×2.0×2.8
meters along the X­, Y­ and Z­axis of the body­frame, respectively. The center of figure is in
the body frame origin. The two solar panels are attached at the points (0 1 0) and (0 ­1 0) with
1 m between the beginning of the solar panel area and the attachment point. The 14×2.3 m
panels are placed on the YZ­plane and elongated along the Y­axis. In Figure 4.3, the simplified
Rosetta spacecraft model by Razgus et al. (2017) is given. The solar panels are assumed to
have negligible thickness.

• Mass properties
The dry mass of Rosetta is about 1300 kg. Including the fuell, the total mass of the spacecraft
was 3000 kg during launch 1. At rendezvous with its target body, this mass 𝑀𝑆𝐶 was decreased
towards about 2100 kg (Razgus et al., 2017). As the mass of the solar panels are estimated to
have a mass𝑀𝑠𝑝 of 75 kg each, the body has a mass𝑀𝑏 of 1950 kg. When assuming a constant
density through its components, the spacecraft’s inertia tensor I𝑆𝐶 can be calculated using the
following equations:

I𝑆𝐶 = I𝑏 + 2I𝑠 (4.1)

1NASA archive: http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=2004­006A; accessed at: 07/2/2021

http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=2004-006A
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Figure 4.3: Spacecraft model used for simulation visualized in the Body­fixed reference frame. The yellow/brown box indicates
the spacecraft’s body, and the blue planes indicate the solar panels.

with:

I𝑏 =[

1
12𝑀𝑏(𝑙

2
𝑦 + 𝑙2𝑧) 0 0
0 1

12𝑀𝑏(𝑙
2
𝑥 + 𝑙2𝑧) 0

0 0 1
12𝑀𝑏(𝑙

2
𝑥 + 𝑙2𝑦)

] (4.2)

I𝑠𝑝 =[

1
12𝑀𝑠(𝑠

2
𝑦 + 𝑠2𝑧 ) + 𝑀𝑠𝑑2𝑥 0 0
0 1

12𝑀𝑠𝑠
2
𝑧 0

0 0 1
12𝑀𝑠𝑠

2
𝑦 +𝑀𝑠𝑑2𝑧

] (4.3)

Here, 𝑙𝑖 and 𝑠𝑖 are the dimensions of the body and solar panels, respectively, along axis 𝑖. 𝑑𝑖 indi­
cates the displacement of the principal axis of rotation, which is 9 meters in the x and z direction.
The resulting inertia tensor is given below:

I𝑆𝐶 = [
16590 0 0
0 2057 0
0 0 15964

] kg m2 (4.4)

The moment of inertia is important for simulating the rotational motion of the spacecraft.

• Reflectivity
The reflectivity of the spacecraft starts with defining the faces of the spacecraft enclosing the
mass as done in Figure 4.3. The blue colored solar panels are given a reflectivity of 𝜖 = 0.21,
based on Montenbruck and Gill (2000). The reflectivity of the body is assumed 𝜖 = 0.5.

4.2.2. Asteroid model
Besides the spacecraft, also the target asteroid is defined before running the simulation. This asteroid
is assumed as the real situation. The polyhedron shape models are used to represent the irregular
body of the asteroid. To have a realistic defined asteroid, the density, rotational rate and shape model
of Eros are used. The elongated shape of Eros motivates to use a different gravity model than spherical
harmonics, as a relatively large region exterior to the asteroid is in the Brillouin sphere. Besides the
shape, also the rotational rate and density shall be defined.
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(a) Eros shape model 49152 faces (Gaskell, 2008) (b) Simplified Eros shape model 5144 faces.

Figure 4.4: Original shape model (a) from Gaskell (2008) of 433 Eros, and it’s simplified model used for simulation.

4.2.3. Shape model
The shape model of Eros is visualized in Figure 4.4a. This shape model consisting of 49152 faces is
simplified to 5144 faces. This simplification is done with the software package called MeshLab2. The
resulting shape model is visualized in Figure 4.4b. Comparing the two shape models shows the loss
of detail, but overall shape preserves. The volume of the simplified shape model is only 0.02% smaller
than the Gaskell 50k shape model.

With the existing software package gmsh3 the shape model of the target asteroid is divided into
elements. The algorithm which divides the shapemodel is based on Delauney triangulation. The model
is simplified, because the size of the surface triangles determines the precision of the volume shape
model. The simplified shape model still results in mass elements with a maximum size of less than 1
km3. In Figure 4.5 the obtained 3D volume shapemodel is visualized. The figure shows that the volume
shape model is completely filled with connected tetrahedra. These tetrahedra can be distinguished as
asteroid mass elements. For each element in the mesh, all faces and edges are defined, such that
calculations can be done over every single element.

4.2.4. Density distribution
As the polyhedron is divided into distinguishable elements, a density distribution can be assigned to
the asteroid. The resolution of this density distribution depends on the size of the elements. In order to
quantify the density distribution on characterizing parameters, the Mátern covariance function is used.
The Matérn covariance function is given by(Bachoc, 2013):

M(𝑟) = 𝜎2
Γ(𝜈)2𝜈−1 (

2√𝜈
𝑙 𝑟)

𝜈

𝒦𝜈 (2√𝜈𝑙 𝑟) , (4.5)

where 𝑟 is the distance, Γ the Gamma function, 𝒦𝑛𝑢 the Bessel function. The parameter 𝜎2 is the
variance, 𝜈 the smoothness parameter, and 𝑙 the scale parameter. This function can be applied on
numerous problems as the Matérn covariance is dependent on the distance between points. For ex­
ample, Thor (2016) used the Matérn covariance function to map the thickness of the Martian elastic
lithosphere. He determined the covariance function using the difference in degrees on a sphere be­
tween mapping points.

The effect of the smoothness parameter is shown in Figure 4.6a. The graphs show that for increas­
ing 𝜈, the inflection point increases in distance. This means the covariance is high between points of a
2Documentation about the MeshLab software can be found on: meshlab.net
3Documentation about the gmsh software can be found on: gmsh.info

meshlab.net
gmsh.info
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X

Y

Z

Figure 4.5: Volume shape model as visualized in gmsh.

certain distance compared to the resulting covariance when using a lower value of 𝜈. The effect of the
scale parameter is shown in Figure 4.6b. Here, the convergence of the covariance to zero increases
with increasing 𝑙. The effect of these parameters becomes clear when it is used to generate a distribu­
tion. When considering a 1D problem with equally spaced distances between consecutive points on a
line, the resulting random numbers using the covariance matrix are shown in Figures 4.7a and 4.7b. It
clearly shows that for increasing 𝜈 the short­wavelength variations decrease and the curve becomes
smoother. On the contrary, for increasing 𝑙, the long­wavelength variation decreases.

This covariance function is applied on the asteroid­case, using the distance between the centers
of mass of the polyhedral elements. A covariance matrix is generated with the rows 𝑖 and columns 𝑗
referring to a single element. Matrix­element (𝑖, 𝑗) refers to the covariance using the Euclidean distance
between element numbers 𝑖 and 𝑗. This covariance matrix is then used to generate a distribution of
densities with an average equal to the known bulk­density of the asteroid. The rate of heterogeneity
can then be varied using the explained parameters. The ranges of parameter values are based on the
realism of the obtained density distributions.

4.2.5. Dynamics
Gravity
In the simulator, a gravity model is implemented to determine the gravitational acceleration on the
spacecraft caused by the target asteroid. As stated before, the general method to model an irregular
gravity field of celestial bodies is using spherical harmonics as most bodies of interest are spherical.
Another often used option is using the polyhedron model. This method is mostly used for irregularly
shaped bodies. Bothmodels were implemented in earlier versions of the simulator. Razgus et al. (2017)
implemented the polyhedron model in a real­world simulator assuming a uniform density distribution.
Bourgeaux (2020) implemented the spherical harmonics model in both the real­world simulator as the
navigation system to see whether this model could be used to increase the navigational performance.

Since a goal of this study is to test the dependency of the designed navigation system performance
on the heterogeneity of the asteroid, the constant­density polyhedron model does not suffice. While
the spherical harmonics model does include density differences, the model diverges below the Bril­
louin sphere. Therefore, an alternative approach is applied. As the measurements for a trajectory only
have to be computed once, separately from the estimation, the computational time for the real­world
simulator is not of major importance. To include density differences, the asteroid is divided into ele­
ments. The number of elements determines the resolution of the density distribution. These individual
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Figure 4.6: Plots of Matérn covariance against the distance for different values of (a) smoothing parameter 𝜈 and (b) scaling
parameter 𝑙. Reproduced from Bachoc (2013)
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Figure 4.7: Random generated numbers using the Mátern covariance over distance for different values of (a) smoothing param­
eter 𝜈 and (b) scaling parameter 𝑙. For reproducibility, the fixed seed 2 was used.
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elements 𝑖 can then be assigned a density value 𝜌𝑖. The contribution of the element on the gravi­
tational acceleration on the spacecraft can then be calculated using the constant­density polyhedron
model. Summing up the contributions of all elements according to the equation below gives the total
gravitational acceleration by the heterogeneous asteroid.

𝜕𝑈(r)
𝜕r = 𝐺 ∑

𝑖∈𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠
{−𝜌𝑖 ∑

𝑒∈𝑒𝑑𝑔𝑒𝑠
E𝑒r𝑒 ⋅ 𝐿𝑒 + 𝜌𝑖 ∑

𝑓∈𝑓𝑎𝑐𝑒𝑠
F𝑓r𝑓 ⋅ 𝜔𝑓} (4.6)

Here, the symbols in this equation are the same symbols as used in Eq. (2.25).

Solar Radiation Pressure
Besides the target asteroid, also the Sun is included in the environment. The photons emitted by the
Sun cause a force on the spacecraft. This solar radiation pressure can be determined using Eq. (2.27).
The equation sums up the solar pressure per plane. To do this, the planes first are defined using point
masses. The point masses are placed at the corners of the rectangular spacecraft. Connecting the
point masses defines the planes of which the area and normal vector can be determined. This vector
depends on the used reference frame and attitude of the spacecraft. Also, the angle the planes make
with the Sunlight is dependent on the attitude. Therefore, it is important to also determine the spacecraft
attitude during the simulation.

As the solar radiation pressure induces a force on the planes of the spacecraft, this can induce a
torque. The torque can be calculated using the following equation:

𝝉𝑆𝑅𝑃 =
𝑝𝑙𝑎𝑛𝑒𝑠

∑
𝑖

r𝑖 × F𝑆𝑅𝑃,𝑖 (4.7)

This torque contributes to the change in rotational motion as described in Eq. (2.30). Integration of this
change in rotation gives the rotational rate at the next time step. Using this rotational rate, the change
in attitude is determined using Eq. (2.28). Integrating results in the attitude state of the spacecraft at
the next time step.

Using this new attitude, the angle between the normal vectors of the spacecraft’s planes and the
Sunlight can again be determined. Consequently, the new F𝑆𝑅𝑃 can be calculated. However, as the
defined spacecraft model is axi­symmetric, this torque has negligible influence.

Third body perturbation
Besides the SRP, the Sun’s gravity also has an effect on the spacecraft’s trajectory. Because of the
relatively short simulation time, the orbit of the asteroid around the Sun is not simulated, and the dis­
tance between asteroid and the Sun is assumed constant. Because of the large distance, the Sun is
modeled as a point mass. Using Equation 2.26, this gravitational perturbation is calculated.

Asteroid Attitude Kinematics
As the asteroid rotational rate is assumed constant, only Eq. (2.33) is required to determine the attitude
over time. By integrating the equation using the initial attitude, the attitude can be determined over time
and be used as input to translate the spacecraft position from the inertial frame to the asteroid fixed
frame.

4.2.6. Verification & Validation
Shape model verification
As the written software divides the shape model into numerous elements, the total volume of all el­
ements should be equal to the original volume of the shape model. The volume of each polyhedron
is calculated using the divergence theorem. This is done for spherical shapes with a varying volume
and varying number of elements. The results are shown in Table 4.1. It shows that the maximum error
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Table 4.1: Volume verification

Radius (km) Volume sphere (m3) Volume error shape model (m3) Number of Elements (­) Volume difference surface
and volume shape (m3)

1 4.18879e9 0.148517e9 637 9.53674e­7
10 4188.79e9 147.029e9 650 2.92969e­3
100 4.18879e15 0.148324e15 676 5
200 3.35103e16 1.17673e15 660 0
300 1.13097e17 3.89311e15 662 96
600 9.04779e17 3.14715e16 709 0
800 2.14466e18 7.45990e16 709 1536
1000 4.18879e18 1.45701e17 709 6144

10 4188.79e9 147.029e9 650 2.92969e­3
10 4188.79e9 37.4167e9 4957 1.90430e­2
10 4188.79e9 9.39608e9 39673 1.80664e­2
10 4188.79e9 2.35165e9 295576 2.44141e­3

caused by the shape division is not significant compared to the volumes. In some situations this error is
zero, what implies that the error is purely caused by numerical errors in the used software. Increasing
the precision of the shape model reduces the volume error in the surface shape model, but this reduc­
tion is not observed in the error by splitting the shape into volume elements. However, for verification
of the splitting algorithm, the error caused by the division of the shape model into elements should be
compared to the surface shape volume.

Density distribution
To verify the working of the written Mátern covariance function, the results by Bachoc (2013) and Thor
(2016) have been reproduced. This verified the implementation of the function as the expected de­
pendencies of the covariance on the parameters were obtained. Figure 4.6a is one example of a
reproduced result from Bachoc (2013).

Besides the verification of the implementation of the Matérn covariance function, the application
on the asteroid problem shall be validated. First, the distribution is visualized by assigning a color to
every element based on their density value. The color scale then represents the density distribution.
This is done for varying parameter values to see whether the distribution changes as expected. It
appeared the distances should be scaled to obtain significant covariances. Having the knowledge of
the relations in Figures 4.6a and 4.6b, it is chosen to scale the vertices of the shape model by dividing
them by the Euclidean distance of the vertex which is furthest away from the origin. By doing this, the
Matérn covariance function decreases significantly over the range of distances between the elements
of target asteroid for similar parameter values as used by Bachoc (2013) and Thor (2016). By plotting
the covariances over the distances for varying 𝜈, as done in Figure 4.8, this behavior is verified. In
Figure 4.9 the density distributions for varying smoothness parameter 𝜈 are shown. It clearly shows the
expected relation as neighboring elements become more correlated for increasing 𝜈. While the density
distribution is still quite random for a very low value of 𝜈, the short wavelength variation disappear for
higher values of 𝜈.

Integration equations of motion
To verify whether the simulator integration and spacecraft position propagation, a circular orbit is gener­
ated by assuming a point­mass gravity field. The point­mass is given a mass of 6.5684⋅1015 kg. Since
the point­mass gravity model is assumed and the mascon is positioned at the origin of the inertial frame,
an circular Kepler orbit is expected when using the following initial velocity:

𝑣𝑐𝑖𝑟𝑐 = √
𝐺𝑀
𝑅 (4.8)
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Figure 4.8: Covariance between elements plotted over their distance for varying smoothness parameter 𝜈.

Figure 4.9: Generated density distributions for asteroid Kleopatra with varying smoothness parameter 𝜈.
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Figure 4.10: Plot of Cartesian position elements over simulation time for a circular orbit around a point­mass.

For an equatorial orbit with initial conditions r𝑖𝑛 = (20 0 0)𝑇 km, the initial velocity vector is v𝑖𝑛 =
(0 4.6818 0)𝑇 m/s. The orbital period 𝑇 is equal to:

𝑇 = 2𝜋√ 𝑅
3

𝐺𝑀 ≈ 9.4897 ⋅ 103 s (4.9)

The resulting positions from simulation are plotted over time in Figure 4.10. This plot shows a repetitive
orbit with constant properties. Since a equatorial orbit is considered, the position in the z­direction
remains zero. The obtained orbital period is equal to the calculated value. Also, the radius and thus
the magnitude of the acceleration remain constant. These results corresponds with a circular Kepler
orbit, what verifies the translational motion simulation. Thereby, the rotational motion of the spacecraft
and asteroid are tested in a torque free environment. By plotting the resulting quaternion elements of
q𝐴/𝐼 and q𝐵/𝐼 against the time as a part of their set rotational period, Figure 4.11 is obtained. This figure
shows the continuity in these quaternions and their repetitive behavior over two rotation periods. This
is as expected according to quaternion theory, because two quaternions can indicate the same attitude
(Razgus et al., 2017). The constant rotation was also observed in the obtained angular velocity vector
over time. These results verify the working of the rotational motion simulation.

Gravitational acceleration
To verify the gravity field calculation using the heterogeneous polyhedron model, the resulting gravity
field is compared with the existing and verified polyhedron gravity field calculation by Razgus et al.
(2017). The gravity field of the Eros simplified shape model over the XY­plane is visualized in Fig­
ure 4.12. This gravity field is also generated using the 3D­shape and the summation over the mass
elements, all with the same density. As these gravity fields should be identical, the difference between
the two gravity fields is calculated and visualized in Figure 4.13. The value range is similar to the gravity
field of Eros as given in Chanut et al. (2014). As can be seen, the errors are minimal and of the range
of numerical errors. This verifies the summation of the polyhedron elements in the calculation of the
gravitational acceleration.

The next step is to test whether a heterogeneous mass distribution gives the expected change in
acceleration with respect to the homogeneous case. When the shape has a clear mass distribution
where one side has a higher density than the other side, the direction of the acceleration shall point
towards the side with the higher density with respect to the homogeneous case. This can be visualized
as done in Figure 4.14, where it is shown the gravitational acceleration points towards the higher density
region. This corresponds with the expected behavior. This test has been performed at multiple positions
with respect to the asteroid and the result appeared to be consistent. Taking the difference between
the gravity field of a homogeneous asteroid and a heterogeneous asteroid with the same total mass,
the effect can be visualized of the density distribution on the gravity field of the asteroid. It is expected
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Figure 4.11: Plots of quaternion elements against the time for (a) asteroid attitude quaternion q𝐴/𝐼, and (b) spacecraft attitude
quaternion q𝐵/𝐼, with respect to the inertial frame.

Figure 4.12: Polyhedron gravity field of 433 Eros over the XY­
plane.

Figure 4.13: Difference between the polyhedron gravity field
and the sum of the polyhedron gravity fields of each element.
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Figure 4.14: Comparison of gravitational acceleration direction between heterogeneous density distribution and homogeneous
density distribution.

that the region with the higher density results in a higher gravitational acceleration with respect to
the homogeneous case, and for the lower density region vice versa. In Figure 4.15, the used mass
distribution is given. This distribution shows the same lateral distribution as the asteroid in Figure 4.14,
but with total mass equal to the constant density model. To show the expected result is obtained, the
difference between the obtained gravity field from the asteroid in Figure 4.15 and the homogeneous
asteroid’s gravity field has been calculated and visualized in Figure 4.16. This figure clearly shows the
expected result, as the side with a higher density results into a higher gravitational attraction.

4.3. Navigation filter
As mentioned before, the EKF is considered as the better option for state estimation compared to the
computationally more expensive UKF. To elaborate on this algorithm for the spacecraft situation, first a
state has to be defined. The augmented state for the mascon model is written as:

x =
⎛
⎜
⎜

⎝

r
v
𝜇1
𝜇2
⋮
𝜇𝑁

⎞
⎟
⎟

⎠

(4.10)

This state consists of the position, velocity, and 𝑁 number of gravitational parameters of all point­
masses. For state propagation the Euler step method is used. The nominal state thus gets propagated
as follows:

x𝑘+1 = x𝑘 +
𝜕x
𝜕𝑡 Δ𝑡 = x𝑘 + ẋΔ𝑡 = x𝑘 + g(x)Δ𝑡 (4.11)

Here, the time derivative of the state is defined as:

ẋ = g(x) =
⎛
⎜
⎜

⎝

v
a
0
0
⋮
0

⎞
⎟
⎟

⎠

(4.12)
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Figure 4.15: Visualization of heterogeneous asteroid.

Figure 4.16: Surface plot over the XY­plane at Z=0 of differences
in gravitational attraction between the homogeneous polyhedron
gravity field and the heterogeneous polyhedron gravity field.

The equations of motion are used to determine the acceleration on the spacecraft. Using the mascon
model, the accelerations on the spacecraft are defined as:

a𝑡𝑜𝑡𝑎𝑙 = r̈ = a𝑔,𝑚𝑎𝑠𝑐𝑜𝑛 + a𝑆𝑅𝑃 + a𝑔,𝑆𝑢𝑛 , (4.13)

where gravitational acceleration by the mascons is defined as:

a𝑔,𝑚𝑎𝑠𝑐𝑜𝑛 =
𝑁

∑
𝑖=1

𝜇𝑖
|r− r𝑖|3

(r− r𝑖) (4.14)

The symbol 𝜇𝑖 indicates the gravitational parameter of the 𝑖𝑡ℎ mascon from a total of 𝑁 mascons, and
r𝑖 indicates the position vector of the 𝑖𝑡ℎ mascon with respect to the inertial frame.

4.3.1. Measurements
As measurements, the position of the spacecraft over time with an added Gaussian noise is used,
because the focus of this study is not to simulate the sensors. This is an assumption made in order
to analyze the filter’s dependence on the heterogeneity and used gravity model. The simulation itself
would bemademore realistic, if the sensors also would be simulated. However, since no control system
is simulated, the orbit and thus measurements would be the same for every estimation filter. As, the
focus of this study is to analyze the dependence of the performance of the navigation system on the
used gravity model and its configuration and not the dependency on the accuracy of the measurements,
the assumption is made. The noisy position­measurement can be written as:

z = r+ 𝝂𝑟 (4.15)

Here, the Gaussian noise 𝝂𝑟 is added to the position r. The simulation of the sensors is given as a
recommendation for further research.

4.3.2. Extended Kalman Filter
The general algorithm of the EKF is explained in section 3.2 and visualized in Figure 4.17. As the
state is propagated according to Eq. (4.11), the non­linear system as in Eq. (3.3) is described by this
equation. The state transition matrix (Eq. (3.15)) then becomes:

𝚽 = 𝜕f
𝜕x = I+ 𝜕ẋ𝜕xΔ𝑡 = I+ 𝜕g(x)𝜕x Δ𝑡 = I+GΔ𝑡 (4.16)
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Here, knowing Eq. (4.13) and Eq. (4.12), the Jacobian matrix G is equal to:

G = 𝜕g(x)
𝜕x =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 1 0 0 0 … 0
0 0 0 0 1 0 0 … 0
0 0 0 0 0 1 0 … 0
𝜕𝑎𝑥
𝜕𝑥

𝜕𝑎𝑥
𝜕𝑦

𝜕𝑎𝑥
𝜕𝑧 0 0 0 𝜕𝑎𝑥

𝜕𝜇1
… 𝜕𝑎𝑥

𝜕𝜇(𝑁−6)
𝜕𝑎𝑦
𝜕𝑥

𝜕𝑎𝑦
𝜕𝑦

𝜕𝑎𝑦
𝜕𝑧 0 0 0 𝜕𝑎𝑦

𝜕𝜇1
… 𝜕𝑎𝑦

𝜕𝜇(𝑁−6)
𝜕𝑎𝑧
𝜕𝑥

𝜕𝑎𝑧
𝜕𝑦

𝜕𝑎𝑧
𝜕𝑧 0 0 0 𝜕𝑎𝑧

𝜕𝜇1
… 𝜕𝑎𝑧

𝜕𝜇(𝑁−6)
0 0 0 0 0 0 0 … 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 0 0 0 … 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦[𝑁×𝑁]

(4.17)

The complete derivatives of this matrix are given in Appendix A.
As explained before, the measurements are assumed to be the Cartesian position of the spacecraft

with an added white noise. Therefore the gradient matrix H from Eq. (3.16) is defined as:

H = [I3×3 03×(𝑁−6)] (4.18)

Knowing these matrices, the gain and covariance matrix can be determined using Eqs. (3.26) and
(3.25), respectively. The measurement update can be done applying Eq. (3.24) and Eq. (3.27). As the
measurement noise is known, following the example by Musoff and Zarchan (2009), the measurement
noise matrix will be defined as the diagonal matrix:

R = [
𝝂2𝑟 0 0
0 𝝂2𝑟 0
0 0 𝝂2𝑟

] (4.19)

The initial covariance matrix P0 can be based on the uncertainty in the initial guess. Since it includes a
simulation of which the intial values are known, the initial state deviation is used to initialize this initial
covariance matrix. As it appeared to be a consistent method, the covariance matrix is initialized as
a diagonal matrix with the squared state deviations in the diagonal elements. By these choices, the
tuning process is limited especially to adjusting the process covariance matrix Q. The values in this
matrix are tweaked by trial and error. The resulting values are given in Appendix A.

Equality constraint
During the simulations, there is applied an equality constraint once to see whether the results improves
when fixing the total mass of the asteroid in the EKF. Such equality constraint can be applied easily by
using the algorithm as described in Simon (2010) and Ungarala et al. (2007). An equality constraint is
written as:

Dx = d (4.20)

, where d is a known vector and D is a known matrix. The constrained a­posteriori state estimation is
then given by:

x̂𝑘,𝑐𝑜𝑛𝑠𝑡𝑟 = x̂𝑘 − P𝑘D𝑇(DP𝑘D𝑇)−1(Dx̂𝑘 − d) (4.21)

The constraint also has consequences for the covariance matrix, as this matrix is constrained according
to the following equation:

P𝑘,𝑐𝑜𝑛𝑠𝑡𝑟 = (I𝑁×𝑁 − P𝑘D𝑇(DP𝑘D𝑇)−1)P𝑘 (4.22)

Here, 𝑁 is length of augmented state x.
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Figure 4.18: Estimation errors using one point­mass.

4.3.3. EKF verification & validation
The Kalman filter, with the mascon gravity field model implemented, is tested using a real­world which
also uses the mascon gravity model, such that the estimated gravity field can directly be compared with
the defined real world. For this test, the polyhedron model as described in section 4.2 is replaced by
the same gravity field model as used in the navigation system, as described in section 4.3. If the state
estimating EKF works as expected, the state­variables converge to the values defined in the real­world
simulator.

The first test is estimating a single point­mass. For this case, the initial conditions for a circular orbit
at with a radius of 200 kilometers are used as input for the real­world simulator. The resulting orbit is
close to a Kepler orbit, because it only uses one point­mass for the gravity of themain body. It is no exact
Kepler orbit as the third body perturbation and SRP are included in the dynamical environment. This
orbit is given a noise with a standard deviation of 100 meter before using it as measurements. Using
these measurements, the value for the gravitational parameter is estimated accurately as expected.
The resulting errors are shown in Figure 4.18.

Next, the system is tested using more than one point­mass. Placing two point masses of both half
the mass of Eros at the positions (𝑥 𝑦 𝑧) = (±5, 0, 0) km gives the following results for a close to
circular orbit at 200 kilometers with an inclination of 90 degrees. As shown in Figure 4.19, the error
in the estimation of the gravitational parameters 𝜇1 and 𝜇2 is increased significantly compared for the
one point­mass. However, looking at the sum of these parameters in the upper plot, one can see the
total mass was estimated very accurately. This suggests that the lower­order term attraction, the total
mass, is the dominant force and the spacecraft is experiencing the higher order terms relatively little.

However, this effect is observed with the set position measurement standard deviation of 100 me­
ters. This seen effect should decrease when increasing the measurement accuracy from a standard
deviation of 100 meters to a lower standard deviation of 1 meter. This effect is clearly seen in Fig­
ure 4.20. With this measurement accuracy, the influence on the trajectory of the higher order terms is
also seen quite accurate.
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Figure 4.19: Estimation accuracies of the gravitational parameters and the error in the sum of these parameters, using position
measurement with an accuracy of 1 meter. Applied for a circular polar orbit at 200 kilometers around 2 point masses placed on
x­axis
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Figure 4.20: Estimation accuracies of the gravitational parameters, using position measurement with an accuracy of 1 meter.
Applied for a circular polar orbit at 200 kilometers around 2 point masses placed on x­axis
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Figure 4.21: Plot of GNSS position accuracy over time from Ngoc et al. (2019), where scenario #1 has a relatively high Q and
scenarios #2 and #3 have Q set close to its true values.

Tuning
As for example done in Musoff and Zarchan (2009), the behavior of the filter with respect to its tuning
parameters is tested by observing the differences in the estimation accuracy for varying tuning param­
eter values. To validate the behavior of the filter, it is compared to tests done by Musoff and Zarchan
(2009) and Ngoc et al. (2019).

Since Q is defined as the process noise covariance matrix, it refers to the uncertainty in the dynam­
ical model. The higher the values in this matrix, the less confidence the system has in its dynamical
model. The lower these values, the higher the confidence of the system in the dynamical model. The
first case is clearly shown in the study by Ngoc et al. (2019). Figure 4.21 shows the obtained GNSS
position accuracy over time for different tuning scenarios. Only scenario #1 has a high Q, where the
other have Q set close to the correct values. The figure shows clearly a worse estimation for sce­
nario #1, which is not stable and less smooth. This makes sense as there is put more weight on the
measurements, which contain a certain noise. The opposite is shown in a test performed by Musoff
and Zarchan (2009) where the process noise covariance matrix is set equal to a zero matrix. After 20
seconds the estimation clearly diverges as the error increases rapidly. This is explained as the filter
ignoring new measurements after a certain time, because of a maximal confidence in its dynamical
model.
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Figure 4.22: Plot of diverging altitude estimate of a falling object as performed by Musoff and Zarchan (2009), using the EKF
with zero process noise (Φ𝑠) and noisy measurements (standard deviation 𝜎𝑣).

To validate the designed EKF its behavior with respect to the tuning, it is tested whether the EKF
shows similar behavior for very high and very low values for the process noise covariance matrix Q. To
be able to directly compare the estimated gravitational parameters, again a mascon model real world
is defined with positions equal to the defined mascon model in the EKF. Using 3 point­masses, 𝜇1
positioned at (5, 0, 0)𝑇, 𝜇2 at (0, 0, 0)𝑇 and 𝜇3 at (−5, 0, 0)𝑇 km, a 100 meter measurement noise and
initial deviations of 10meter and 1m/s in each direction, and 30% of the 𝜇­values, the resulting errors for
a 60 degrees inclined 50 km radius circular orbit for Q = I and Q = 0 are shown in Figure 4.23. These
figures clearly show the expected results based on the mentioned examples. For a high process noise,
Figure 4.23a shows the noise is dominant in the resulting accuracy. This is the result as expected,
because the measurements are assumed to only have Gaussian noise with a standard deviation of
100 meters in each direction and, for example, has no bias or scaling errors. For zero process noise,
Figure 4.23b also shows the expected result. Because the filter ignores the measurements after a
certain time, the remaining errors are propagated and the estimation diverges from the real state. This
behavior is similar compared to the results shown in Figures 4.21 and 4.22.
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Figure 4.23: Plot of the position, velocity, and total 𝜇 error over time using (a) Q = I, and (b) Q = 0.
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5
Results

In this chapter, the results of the analysis are given. First, some insight in the tuning process is given
in section 5.1. Next, the dependencies of the EKF performance on model parameters and orbit char­
acteristics are analyzed in section 5.2. During this sensitivity analysis, the point mass model is applied
in the simulator for reference. After this, in section 5.3 the performance of the EKF in a polyhedron
real world is assessed for multiple mission phases. Here, a stepwise approach is applied to increase
the model accuracy and estimation performance. Along this stepwise approach, relevant observed
dependencies are highlighted. Multiple mascon models are tested in this section. In section 5.4, it
is investigated whether the EKF performance depends on the level of heterogeneity in the asteroid’s
mass distribution. Also, it is tried to derive the density distribution from the estimated mass distribu­
tion. Finally, the model performance is assessed by comparing it with the performance of the spherical
harmonics model in Bourgeaux (2020), and testing the system inside the Brillouin sphere.

5.1. Tuning
As the EKF has to be tuned properly, each scenario and filter setting is assessed based on the acquired
accuracy and stability of the estimation. As measurement noise matrix R is defined using the set
measurement accuracy (Eq. (4.19)), and the initial covariance matrix P0 diagonal elements is initialized
according to the set initial estimation error, the tuning proces during this thesis is focused on manually
tweaking the process noise matrix Q. During the filter tuning process it is tried to minimize the set
values for matrix Q, such that the estimated position and velocity reach a converged solution toward a
stable orbit, of which is at least about 68% of the state error inside the estimated 1𝜎 error obtained from
the a­posteriori covariance matrices. This process minimized the resulting position and velocity error
while the a­posteriori variances give a correct approximation of the uncertainties in the estimation. The
state error can be calculated for position and velocity as the real values are known. However, as the
real world simulator uses a different gravity model than the EKF, the estimated gravitational parameters
cannot be directly compared to the real­world. Therefore, the diagonal elements in the initial covariance
matrix for the gravitational parameters are based on possible density ranges of a certain asteroid­type.
More details on tuning the EKF are given in Appendix A.

5.2. Mascon model sensitivity
The EKF its basic dependencies are investigated simulating the spacecraft orbiting the mascon model
with equal mascon positions as the defined mascon model in the EKF. By doing this, the resulting
gravitational parameter estimations can directly be compared to the real­world values.

55
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Figure 5.1: Resulting deviation from a­posteriori variances as a percentage of the parameter value plotted against orbit inclination.
Done for 200 km circular orbit.

5.2.1. Estimation point mass gravity­field
As shown already during the verification of the EKF, with a higher deviation in the measurements, the
system estimates the higher­order terms less accurately. To investigate how the resulting accuracy
depends on the orbit characteristics, the orbit is altered. First, the inclination is changed. As the
attraction is dependent on the distance between the spacecraft and the point­masses (Eq. (2.17)),
a lower inclination would increase the change in relative distance between the spacecraft and the
equatorial aligned point­masses. Comparing the resulting variances after estimation during one orbital
revolution, Figure 5.1 is acquired. This figure clearly shows the expected increasing accuracy with
decreasing inclination. The variances of the gravitational parameters are almost identical. As the
gravity field of the two identical point masses is symmetric with respect to the YZ­plane, and the orbit
is close to circular, this similarity in resulting variances is not unexpected. Defining a mass­difference
between the two point­masses results in a higher estimation accuracy for the heavier point­mass, as the
spacecraft is attracted more by this mascon. The incremental relation as in Figure 5.1 is still observed.
Also, the relation is observed for circular orbits with a lower radius. The found relation between the
inclination and the accuracy arguments for a well­thought orbit­design depending on the defined relative
position between the point­masses.

Orbits relatively close to the surface result in higher accuracies for the gravitational parameters
compared to orbits further away from the surface. This can be explained by a greater influence of an
error in the gravitational model on the deviation of the expected acceleration with the felt acceleration,
as the gravitational acceleration is larger when close to the surface relative to when at a large altitude.
In Figure 5.2a, a surface plot is shown, which shows the relations between the resulting error in the
estimated 𝜇 values, inclination and orbit radius. The figure clearly shows the decreasing error with
decreasing altitude and inclination. However, when increasing the number of point­masses, the relation
between accuracy and orbit inclination changes significantly. As shown in Figure 5.2b, the average error
increases for decreasing inclination at most altitudes. This inverse of the relation found for a two point­
mass model is caused by the addition of the extra point­mass in the middle. For an equatorial orbit,
where the orbit plane is parallel to plane of the mascons’ movement, such middle mascon is almost the
complete time further away from the spacecraft than one of the outer point­masses and for a large part
of the time hidden behind the other mascons from spacecraft perspective. Therefore, the estimation
results in high uncertainties. At higher inclinations, the time in which the acceleration is dominated
by one of the outer mascons and the time it is behind another mascon is decreased. Therefore, the
estimation uncertainties of these mascons also decrease, what explains the observed relationship for
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(a) (b)

Figure 5.2: Plot of the average error in the gravitational parameters against the orbit radius and inclination for (a) a two point­mass
model and (b) a three point­mass model.
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Figure 5.3: Error in estimated 𝜇 averaged over the number of
point­masses, plotted over the number of point­masses.

Figure 5.4: Distribution of the estimation error over the eight
point­masses.

more than two point masses. Also, the error increases when adding more point masses along the
x­axis. This is shown by plotting the resulting error against the number of point­masses. Here, the total
mass of the mascon model is kept constant and the mass of each mascon is equal. For example, for a
circular orbit at an altitude of 100 kilometers, plotting the error in estimated 𝜇, averaged over the number
of point­masses, against the number of point­masses, as done in Figure 5.3, shows a clear increase
in error with the number of point­masses. By looking at the spatial distribution of this error, as shown
in Figure 5.4, it is observed that the error is lower when more on the outside of the mascon model.
As the outer point­masses come closest to the spacecraft with respect for the inner point­masses, its
acceleration influences the spacecraft most and these mascons are estimated most accurately. This
corresponds with the explanation given for the observed relationship in Figure 5.2b.

5.2.2. Covariance analysis
Besides the resulting variances of the parameters, the EKF also gives covariances. Using the co­
variance matrices, given as output by the EKF, the correlations between the state parameters can be
derived. Using the resulting covariances between state­parameters, the correlation between these two
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Figure 5.5: Correlation after convergence for three point­masses.

variables can be calculated using:

𝑐𝑜𝑟𝑟(𝑋, 𝑌) = 𝑐𝑜𝑣(𝑋, 𝑌)
𝜎𝑋𝜎𝑌

, (5.1)

where 𝜎𝑋 and 𝜎𝑌 are the standard deviations of variables X and Y. If the estimation converges, for
example, when using 3 point­masses, 𝜇1 positioned at (5, 0, 0)𝑇, 𝜇2 at (0, 0, 0)𝑇 and 𝜇3 at (−5, 0, 0)𝑇
km, a correlation matrix as visualized in Figure 5.5 is given by the EKF. It is observed that the outer
two point­masses have a clear positive correlation. This makes sense, as the center of mass would
be influenced when these would have an error independently from each­other. This change of center
of mass would influence the direction of acceleration highly. The middle point­mass has a negative
correlation with both the outer point­masses. This correlation is also as expected. If the correlated
outer would have an error, the middle mass would have an opposite error which compensates for
this mass error to obtain the same acceleration. However, such higher average error in estimated
gravitational parameter for more point­masses does not necessarily mean a higher error in position
and velocity.

Besides the gravitational parameters, there exist also correlations between position and velocity
coefficients. The correlations in Figure 5.5 show that the velocity directions are correlated with the
corresponding position directions. Because an error in the velocity in the 𝑥­, 𝑦­ or 𝑧­direction, would
result in a position error in this same direction, this is as expected. A converged solution, should give
a similar correlation matrix.

To see what happens if the weight is put on the measurements and the estimation accuracy is
dominated by the noise in the measurements, the diagonal elements of the process noise matrix Q are
set to the relatively high value of 1. Since this refers to the test done in subsection 4.3.3, the resulting
accuracies in position, velocity, and the sum of gravitational parameters were plotted in Figure 4.23a
against the time. These plots clearly show a by noise dominated estimation in all state parameters.
The resulting correlation matrix, as shown in Figure 5.6a, also shows the relation between the position
and velocity, but the relation between the gravitational parameters and with any other state parameter
is lost. This emphasizes the dominance of the measurements, as the relations between the dynamical
model defining gravitational parameters are ignored by the filter.

The opposite can be done, by setting very low values for diagonal matrix Q and thus putting more
weight on the dynamical system. When setting all values ofQ equal to zero, as done in subsection 4.3.3
the accuracies in position and velocity as shown in Figure 4.23b are obtained. The plots clearly show
divergence at some point. The final correlation matrix corresponding to the shown divergence is given
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Figure 5.6: Plot of the resulting correlation matrix using (a) Q = I, and (b) Q = 0, corresponding to the results in Figure 4.23.

in Figure 5.6b. The matrix shows correlations between parameters, but distributed randomly. The cor­
relation between position and velocity directions is almost gone and other correlations have appeared.
This clearly shows the filter does not work as desired.

5.3. Mission phases
From this point on in the thesis, the EKF is tested using measurements from the real­world simulator
using the polyhedronmodel. By using the polyhedron gravity model, the estimatedmascon gravitational
parameters cannot be directly related to the real world. The behavior of the gravitational parameter
estimation is analyzed with respect to the orbit characteristics and mascon model definition. To see
what final model precision results from gradually refining the mascon model, a three mission phases at
different altitudes are simulated. Over time, the distance between spacecraft and asteroid is decreased
during the mission. In this section, the performance of the EKF is analyzed along the asteroid mission
consisting of three phases at an initial semimajor axis of 200, 50 and 35 kilometers.

5.3.1. Scenarios
As stated, the mission phases differ in initial altitude. Using the simulator, the spacecraft is initialized
according to a circular orbit around a mascon of the mass of the defined asteroid Eros. The initial
positions r𝑖𝑛 = (𝑥𝑖𝑛 𝑦𝑖𝑛 𝑧𝑖𝑛)𝑇 of the three mission phases are set on the x­axis, what implies 𝑦𝑖𝑛 and
𝑧𝑖𝑛 are equal to 0. The orbit radius is thus equal to 𝑥𝑖𝑛, which are set to 200, 50 and 35 kilometers for
the first three mission phases. The initial velocity is then set using:

vin =
⎛
⎜

⎝

0
√ 𝜇
||r𝑖𝑛||

cos(𝑖)

√ 𝜇
||r𝑖𝑛||

sin(𝑖)

⎞
⎟

⎠

, (5.2)

where the orbit’s inclination is indicated with 𝑖. For this analysis, an asteroid with a homogeneous
density distribution is defined. Later, the results are compared with results using simulations around
heterogeneous asteroids.
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Figure 5.7: Errors in position, velocity and gravitational parameter plotted over time for a 200 km orbit using 1 point mass and
position measurements with a standard deviation of 100 meters.

5.3.2. Increasing model accuracy
During a mission, the closer the spacecrafts gets, the higher the required accuracy in the gravity model
becomes. Close to the asteroid, the gravitational pull from the asteroid is higher, what includes small
differences in the gravity field due to the irregular asteroid shape and mass distribution also having
more influence. The more point­masses, the higher the precision of the gravity field model. However,
the first step is to define one point mass in the center of the asteroid, which should represent the total
mass of the asteroid. An orbit with an inclination of 60 degrees is simulated for the first steps. The
initial values for the simulator and EKF are given in Table 5.1.

Table 5.1: Initial values for the simulator and EKF.

Initial position (km) r𝑖𝑛 (200 0 0)
Initial velocity (m/s) v𝑖𝑛 (0 0.7473 1.2944)

Initial position estimate (km) r0 (201 1 1)
Initial velocity estimate (m/s) v0 (1 ­0.2912 1.7455)

The initial error and uncertainty in the total mass are set to 30%, because it is assumed some
preliminary knowledge is gained about the possible density ranges of the asteroid by spectroscopy.
Assuming a carbonaceous asteroid, the density can vary from about 2000 to 3000 kg/m3, would mean
a spread of about +20 to ­20%. With an additional buffer, the broad estimate is set to 30%. At 200
kilometers, the gravitational parameter 𝜇 = 𝐺𝑀 can be estimated up to high accuracy using noisy po­
sition measurements with a standard deviation of 100 meters. This is shown in Figure 5.7. Also, the
position and velocity are improved significantly by the EKF compared to the measurement accuracy
and initial errors. The next step is to see whether the model improves using two point­masses. As the
felt gravitational attraction by the spacecraft is most sensitive for position, the defined position of the
point­masses is of importance. Consequently, the estimated gravitational parameters are dependent
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Figure 5.8: Estimation errors in the gravitational parameters plotted over time for a 2 point­mass model at 200 km.

on their position in the asteroid. Since the conversion from the polyhedron model towards the mascon
model cannot be done analytically, single values for the gravitational parameters towards which the
EKF should converge cannot be determined. An estimation is done using the 3D­volume shape model
and summing up the mass elements in the asteroid closest to the mascon position. When defining the
two point­masses on the x­axis of the asteroid­frame at +10 and ­10 kilometer, the resulting estimated
values agree with these expected values. Assuming the expected value is the correct value, the esti­
mation error is plotted over time in Figure 5.8. The plot shows a clear decrease in convergence speed
and accuracy with respect to the single point­mass model. This can be explained by the higher order
gravity field effects being felt less accurately compared to the total 𝜇. Nevertheless, the accuracy in
estimation of the total mass as the sum of the two estimated values is similar to the result when using
one point­mass. The variance over time can be calculated using the following equation (Park et al.,
2010):

𝜎2𝜇,𝑡𝑜𝑡𝑎𝑙 = var(𝜇𝑡𝑜𝑡𝑎𝑙) =∑
𝑖
∑
𝑗

cov(𝜇𝑖 , 𝜇𝑗) (5.3)

Here, it yields that cov(𝑋, 𝑋) = var(𝑋). As the EKF gives the complete covariance matrix over time, this
equation can be applied to calculate the 1𝜎 error over time of the sum of the gravitational parameters.
This smaller improvement for the individual point­masses compared to the total emphasizes the high
negative correlation between the two point masses.

Using a lower measurement error, the estimation converges towards different values for the grav­
itational parameters. As the position and velocity is determined with higher accuracy when using a
lower measurement error, the acceleration is also determined with higher accuracy. As the position
and thus acceleration can be estimated more accurately, the EKF is expected to be more sensitive for
the error in the estimated gravitational parameter. To see which measurement accuracy gives a better
estimation, the differences between the real gravity field and the estimated gravity fields are given in
Figure 5.9. For comparison: at 200 km, the point­mass acceleration is 1.117⋅10−5 m/s2. Comparing
the two figures, it shows lower extrema in the gravity error for the higher measurement accuracy. This
result is as expected, because a small measurement error increases convergence speed and accuracy,
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(a) Error of estimated gravity field using 𝜎𝑧 = 100 m. (b) Error of estimated gravity field using 𝜎𝑧 = 10 m.

Figure 5.9: Difference in gravitational acceleration between real polyhedron gravity field and estimated mascon gravity field at
R=200 km.

as higher order gravity field influences on the spacecraft position can be detected more accurately.

Dependency on mascon position
By increasing the mascon model to three point masses, the resulting variances show the importance of
position. As seen earlier, point masses in the middle of other point­masses result in a more uncertain
estimation. This is also the case when adding one mascon between the mascons of the 2 point mass
model. Besides this option, Model 3­1, an alternative point­mass models is considered. The alternative
model, Model 3­2, is chosen manually trying to represent the shape best as possible. This model does
not have a middle point­mass, but all three mascons are placed near an extreme of the shape. The
position vectors of the Model 3­2 mascons are (­14 ­0.2 0), (­1.2 4 0), and (12 ­4 0) km. Both models
are visualized in Figure 5.10 with their resulting estimation uncertainty. The model was again initialized
with a 30% error and uncertainty for both models in order to be able to compare the results. The figures
shows a large improvement in its uncertainty when using, Model 3­2, with respect to Model 3­1. This
shows the importance of the selected position for the point­masses. The difference between the two
models is also shown in the resulting correlations between the point masses. Both models result in high
correlations between the point­masses. However, Model 3­1 results in higher correlations with respect
to Model 3­2. The absolute correlations between the point masses of Model 3­1 are all higher than 0.85,
while these resulting correlations start from 0.53 for Model 3­2. This emphasizes the disadvantage of
having middle point masses as already found in section 5.2, because a high covariance between point­
masses makes it difficult for filter to decouple the estimates (Park et al., 2010).

Increasing the model to 4 point masses does not show clear convergence for measurements of 100
meters accuracy. Therefore, the altitude is decreased to 50 kilometers. As the higher order gravity
terms influence the trajectory of the spacecraft more when the spacecraft is closer, the estimation con­
verges faster and the uncertainties become smaller. Again, the positions of the point­masses appear
to play a major role in obtaining estimated values which are in the range of expected values. Also
for the 4 point masses, two approaches to distribute the point masses are assessed. The first model
model, Model 4­1, splits the asteroid in four quarters by, first, dividing the shape in two halves using
the YZ­plane at the center of mass. Subsequently, the center of mass of both halves is determined
and each half is divided by the XY­plane through their center of mass. The center of mass of the four
quarters determine the position of the mascons. The positions of the second model, Model 4­2, are
selected manually based on the shape of Eros. The position vectors of the Model 4­2 mascons are
(­12 ­0.2 0), (­3.3 5 0), (7.5 2 0), and (10 ­5 0) km.

Again, the choice of mascon positions is of influence on the estimation. The estimation results
regarding 𝜇­estimation are given in Table 5.2. Both models result in small uncertainties. However,
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(a) Model 3­1. (b) Model 3­2.

Figure 5.10: Resulting accuracy in 𝜇 estimation as a percentage of the resulting estimated value for a circular orbit with a 200
km radius.

(a) Model 4­1 (b) Model 4­2

Figure 5.11: Surface plot of the error in gravitational acceleration magnitude on a sphere with a radius of 50 kilometers for the 4
mascons models.

again the manual model, Model 4­2, results in smaller uncertainties in the estimation of the gravitational
parameters. Besides this smaller uncertainty, the estimated values resulting using Model 4­2 give
values inside the range of expected values. If it is desired to relate the estimated distribution to the
density distribution of the asteroid, these values seem more relatable to reality. However, when looking
at the estimated accelerations, Model 4­1 results in a more accurate gravity field. Using Model 4­2
results in a less accurate total mass estimation, what could cause this higher error in the gravity field.
Therefore, a constraint is put on the sum of the estimated parameters. Although the small error (≈
0.1 %) in the total mass of the point­masses is eliminated, the asteroid gravity field using Model 4­2 is
still worse than Model 4­1. This is shown in Figure 5.11. For comparison: at 50 km, the point­mass
acceleration is 1.787⋅10−4 m/s2. The on the centers­of­masses based Model 4­1 does represent the
gravity field better as the resulting error in gravitational acceleration is lower.

As the results converged for four point­masses, the complexity of the gravity model is increased
to eight point­masses. Again, two models are tested. Model 8­1 uses the same method as Model
4­1, but splits the asteroid in eight parts by splitting each part of Model 4­1 by the XZ­plane through
their center of mass. The eight mascons are placed in the center of mass of each part. Model 8­2
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Table 5.2: Results for the 4 point mass models at a 50 km orbit with 60 degrees inclination after a simulation time of 1,500,000
seconds.

Model Final covariance (%) RMSE (10­6 m/s2) RMSPE (%) MAE (10­6 m/s2) MAPE (%) Maximum error (%)
4­1 unconstrained 1.9250 1.2626 0.6949 1.1024 0.6149 1.9410
4­1 constrained 1.9247 1.2651 0.6971 1.1125 0.6209 1.9227
4­2 unconstrained 1.2279 3.0791 1.7297 2.9761 1.6765 2.9039
4­2 constrained 1.2274 3.1103 1.7506 3.0075 1.6956 2.8248

Table 5.3: Results for the 8 point mass models at a 50 km orbit with 60 degrees inclination after a simulation time of 1,500,000
seconds.

Model Final covariance (%) RMSE (10­6 m/s2) RMSPE (%) MAE (10­6 m/s2) MAPE (%) Maximum error (%)
8­1 10.7836 1.5907 0.8797 1.4711 0.8234 2.2222
8­2 9.8824 2.6702 1.4985 2.5612 1.4421 2.5382

uses the chosen X and Y positions of Model 4­2, and defines a point mass at +2 and ­2 km in the
Z­direction for each X­Y combination of Model 4­2. The results are given in Table 5.3. According to
these results, Model 8­1 based on the centers of mass gives the best gravity field estimation. However,
the gravitational parameters are not yet completely converged towards one solution. For model 8­
2, the estimation clearly converges towards certain values. The observations that Model 8­1 did not
converge towards one solution in the set simulation time, but the acceleration does, which are shown
in Figures 5.12 and 5.13, respectively, emphasizes the ambiguity of the mascon model. The 𝜇 values
converge towards values which minimize the acceleration error as far as possible, but this is not a clear
single stable optimum. The gravitational parameters seem to slowly converge from this state towards
their final value. However, coming closer to this value does not seem to increase the accuracy of the
acceleration prediction. The variation in the acceleration error is due to the spacecraft position during
the simulation with respect to the asteroid body. As the asteroid rotates around the z­axis and the
spacecraft orbits the asteroids, the relative spacecraft position changes quickly over time. As can be
seen in, for example, Figures 5.9 and 5.11, the discrepancy between the mascon model and real­world
polyhedron model varies over the relative position. Especially near the elongated poles, the errors
becomes largest, what explains the periodic peaks in Figure 5.13. Since lowering the measurement
accuracy, and consequently increasing position and velocity estimation accuracy, does not increase
the acceleration accuracy, the error in this acceleration estimation dominated by the discrepancy of
the defined model with the polyhedron model. Decreasing the altitude does not solve the problem of
convergence for Model 8­1. The values for the gravitational parameters show the same behavior as
for Model 4­1.

Dependency on orbit characteristics
As shown before, the estimations converge more quickly at low altitudes, because the gravitational
pull is higher closer to the asteroid. Also the uncertainty of the gravity estimation decreases faster
and further when orbiting the asteroid at a lower altitude. However, the uncertainty in the estimation
of the position and velocity increases with lowering the altitude. Nevertheless, also this behavior is
as expected, because the influence of the gravity field increases and the difference between the used
gravity model and the reference real­world model becomes more dominant. Increasing the number of
point­masses should decrease this error, as the accuracy of the gravity field should increase.

To test whether the position and velocity estimates increase when using more point­masses, the
obtained errors are plotted over the number of mascons. To obtain these plots, the mascon models
3­2, 4­2 and 8­2 are used besides the single and double point­mass models as described above.
For a fair comparison, initial state­errors are kept equal, with an initial position error of 100 meters
in each direction and an initial estimated error of 30% of the expected value, which is calculated as
stated before. The used measurement standard deviation is 100 meters and each 60 degrees inclined
trajectory is simulated for 500,000 seconds.

The resulting Figures 5.14a and 5.14b show a decrease in the estimated 1­𝜎 errors with increasing
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Figure 5.12: Estimations of the gravitational parameters over
time with their uncertainties using Model 8­1 at 50 kilometers.
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Figure 5.13: Error in acceleration plotted over time using
Model 8­1 at 50 kilometers.

the number of point masses. This estimated accuracy is dependent on the process noise matrix Q. It
appeared that themore elements used in themasconmodel, the lower the tuning values can be set, and
thus the more the filter can rely on its dynamic model. For an orbit radius of 200 kilometer, the gravity
field seems to be modeled quite well using one or two mascons, as the accuracies do not to consistently
improve with increasing the number of point masses. Looking at the obtained acceleration accuracy
in Figure 5.14c confirms this explanation. For the orbits closer to the asteroid, a similar behavior as
in the position and velocity estimated accuracy is shown in the observed acceleration accuracy, while
the acceleration at a radius of 200 kilometer the acceleration does not follow the same trend over the
number of mascons.

Besides the their uncertainties, also the estimated values for the gravitational parameters appear to
be dependent on the orbit characteristics. In Figure 5.15, the estimated values after 500,000 seconds
are plotted against the orbit inclination for multiple altitudes, using Model 3­2. This model is chosen as
it showed convergence for each altitude. The figure shows the model depends on the orbit character­
istics. The figure shows a variation in the estimation values over the inclination of a orbit. However, the
variation over orbit inclination decreases when lowering altitude, as also the estimated error decreases.
This decrease in variation can be explained by the higher order gravity terms having more influence on
the spacecraft’s trajectory at lower altitude and therefore more consistent estimation. With respect to
the orbit radius, the estimated values vary significantly, as most values do not lay in the error margins
the values estimated at a higher orbit. Such variation can be explained by the discrepancy between
the gravity model and the real world. As the assumed mascon gravity model does not model the real
gravity field correctly, lowering orbit could require the estimated values to adjust to different values as
the influence of higher order terms increases. These findings imply the estimated values for cannot be
assumed true before going to a different orbit without doing more research.

5.3.3. Stepwise approach
When using three different mission phases at 200, 50 and 35 kilometers, the resultingmodel estimations
of one phase can be used as a starting point for the next mission phase. Each mission phase consists
of initially circular orbits of the inclinations 90, 60, 45 and 0. When a change of inclination is made, the
resulting position error is used as the initial error and the resulting covariance matrix is used as the initial
covariance matrix. When decreasing altitude, the initial position and velocity error are estimated to be
about 100 meters and 0.01 m/s. Using information from earlier results when increasing the number
of mascons to describe the asteroids gravity field appears to be quite difficult. To be able to use the
information of an earlier estimation, the number of mascons is doubled each improvement. In this way,
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Figure 5.14: Plots of (a) the estimated accuracy in position, (b) the estimated accuracy in velocity, and (c) maximum acceleration­
error of the last period, plotted over the number of mascons for different altitudes.
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Figure 5.15: Resulting value and uncertainty of gravitational parameter after 500,000 seconds using the Model 3­2 plotted over
orbit inclination.

a point mass can be split in two and used as initial guess for the next step. The method used for splitting
the asteroid in parts, as used for Model 4­1 and 8­1, based on the centers of mass of asteroid parts
is used when defining the mascon positions. The initial guess for the 𝜇­values of these new mascons
is based on the estimated density, using the volumes of the 3D­volume elements which are closest to
the particular mascon position. This estimated density is then used to calculate the estimated mass of
the new mascon with a smaller assigned volume. The initial guess for the deviation of the gravitational
parameter values are based on the possible density­differences between the two parts that formed one
part a step earlier, assuming a carbonaceous asteroid with a maximum density of 3000 and minimum
density of 2000 kg/m3. Hereby it is assumed there is some knowledge about the possible composition
by spectroscopy. For example, the estimated single point­mass gives an average density 𝜌𝑎𝑣𝑔 for
the whole asteroid. Knowing this average density and having the shape model available, the extreme
cases where one half of the asteroid only consists of the highest possible and the other of the lowest
possible density can be calculated. In other words, the highest and lowest possible 𝜇’s are calculated
and the largest difference between the average and these maxima are used as initial covariance. At
200 kilometers, the estimations are performed for the one and two mascon model. At 50 kilometers, the
two and four mascon models are used for estimation. Finally, at 35 kilometers, the four and eight point­
mass gravitational parameters are estimated. When repeating an estimation of a certain mascon model
at lower altitude, the values and estimated covariances for this model are used as initial conditions.

The estimated values and their uncertainty using the eight­point­mass model are given in Fig­
ure 5.16a. The initial values for these mascon parameters are based on the estimations of the four
mascon model. As can be seen, some 𝜇­values go below zero. These point masses represent a
negative mass. Although these estimated values give no direct expectation about the mass distribu­
tion inside the asteroid, the resulting gravity field at 35 kilometers is quite similar to the polyhedron
gravity field. The difference between the resulting gravity field and the real gravity field, calculated for
100,000 points over a sphere with a radius of 35 kilometers, is given in Figure 5.16b. The point mass
acceleration at 35 kilometer is 3.647⋅10−4 m/s2 The RMS error and mean error of the gravity field are
6.9041⋅10−6 and 6.2497⋅10−6 m/s2 (1.8521 and 1.7173%), with a maximum error of 2.2123⋅10−5 m/s2
(5.1694%). The relatively large difference between the maximum and mean error indicates the small
area in which the relatively high errors occur, which can be seen in Figure 5.16b, indicated by the blue
area.
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(a) Gravitational parameter estimated value plotted against the time for
a 35 kilometer orbit.

(b) Surface plot of the error in the estimated gravity field.

Figure 5.16: Gravitational parameter estimation results for asteroid configuration 2 using the CoM­based model.

Using the chosen models, as in Model 4­2 and Model 8­2, and using the same technique as for
the above assuming a split of a part of the asteroid when doubling the number of mascons, different
results are observed. The results of this model are given in Figure 5.17. The RMSE and MAE of this
result are equal to 1.1121⋅10−5 m/s2 and 1.0687⋅10−5 (3.1347 and 2.9982%), with a maximum error of
1.5712⋅10−5 (4.7265%).

5.4. Heterogeneity
To analyze the dependence of the Kalman filter on the asteroid interior, the spacecraft is brought into
orbits around three different asteroid­configurations. These asteroid­configurations differ in their degree
of heterogeneity, expressed by its density­range. The first asteroid is the homogeneous case, which
has an uniform density and is already analyzed intensively. This homogeneous distribution is indicated
as distribution 1. The two other configurations are heterogeneous asteroids. The density distributions
are generated using the Matérn covariance function, all with the same random seed 1. This seed is
selected based on its longitudinal characteristic. This longitudinal distribution represents a hypothetical
contact­binary asteroid.

Density distribution number 2 is defined using a smoothness parameter of 1.5, a scaling parameter
of 2 and a standard deviation of 300. It is made sure the total mass of the homogeneous asteroid is
equal to the mass of this asteroid. The range of densities is based on the range of average bulk den­
sities determined in carbonaceous chondrite types CM and CO, according to Table 2.2 (Consolmagno
et al., 2008). The asteroid and its density distribution is visualized in Figure 5.18a. Because of the
longitudinal distribution, the +X­side of the asteroid has a lower density than the −X­side. The third
used density distribution, distribution 3, is highly heterogeneous. The range of densities of this hypo­
thetical extreme case is based on the densities of an average M­ and C­type asteroid as mentioned
in Table 2.3 (Consolmagno et al., 2008). To obtain such distribution, the maximum is set equal to the
iron­rich M­type average bulk density value of 4700 kg/m3 and the standard deviation 𝜎 is increased
to 1400 kg/m3. This gives the distribution as visualized in Figure 5.18b. As shown, the longitudinal
distribution is applied again.

As for the homogeneous case, the EKF is tested on he three mission phases at 200, 50 and 35
kilometers. The same models are defined and the same steps are taken during the mission as de­
scribed in subsection 5.3.3 for the homogeneous case. The initial conditions follow Equation 5.2, with
𝜇 according to the defined asteroid mass.

During the high orbit phase, the point­mass gravity 𝜇 = 𝐺𝑀 is estimated. This high­orbit phase is
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(a) Gravitational parameter estimated value plotted against the time for
a 35 kilometer orbit.

(b) Surface plot of the error in the estimated gravity field.

Figure 5.17: Gravitational parameter estimation results for asteroid configuration 1 using the chosen model.

(a) Distribution 2. (b) Distribution 3.

Figure 5.18: Heterogeneous density distributions
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Figure 5.19: Estimation errors over time in position, velocity and gravitational parameter for 200 kilometer with point mass located
at the CoF.

a circular orbit with a semi­major axis of 200 km with an inclination of 90 degrees. In Figure 5.19, the
errors in estimated position and velocity components, and gravitational parameter are plotted against
the time in orbital revolutions. Because of the great distance from the asteroid, the orbit is almost
completely circular, whereby the asteroid can be approximated by a single point­mass effectively. This
causes the estimation to be quite accurate. However, compared to the homogeneous case the accuracy
is worse and a fluctuation is observed. As can be seen in the figure, the fluctuation in the figures
corresponds with the rotation period of the asteroid. This is because the single point­mass is set at
the CoF. One should mind, that the CoM of heterogeneous asteroids is misaligned with the CoF. As
bodies rotate around their center of mass, which in this case is not the center of figure, the asteroid
real world is unrealistic. Therefore, an adaptation to the asteroid model is made. The new center of
mass of these mass­distribution is manually aligned with the origin of the asteroid and inertial reference
frame. In other words, the asteroid shape model its vertices are all shifted with the difference between
the CoF and CoM. As the shape model used for the real­world simulator is shifted, consequently, also
the chosen point­mass models for the navigation system are shifted with the same displacement.

5.4.1. Outcomes
For each density distribution and model, the estimation of the gravitational parameters are plotted over
time with their estimated uncertainty, and the resulting gravity field at 35 kilometers are plotted. A
summary of these results is given in Table 5.4, in which the corresponding figure is referenced per
distribution­model combination. As can be seen in this table, comparing the results of the different
density distribution, quite similar accuracies are observed for each model. This implies there are no
disadvantages found of having a heterogeneous density distribution.

5.4.2. Density estimation
It appeared difficult to make a link between the estimated mascons and the asteroid’s density distri­
bution. Assigning the mass elements in the asteroid 3D volume shape model to the closest mascon
and summing up the volume of the elements for each mascon, gives an estimated density distribution.
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Table 5.4: Summary of results

Distribution Model Figure Final covariance RMSE RMSPE MAE MAPE Max error Max error percentage
(%) (10−5 m/s2) (%) (10−5 m/s2) (%) (10−5 m/s2) (%)

1 CoM 5.16 5.5769 0.69041 1.8521 0.62497 1.7173 2.2123 5.1694
2 CoM A.1 6.2058 0.70778 1.9110 0.65431 1.8022 2.0406 4.7750
3 CoM A.3 5.7906 0.75989 1.8797 0.69086 1.7437 1.9417 4.2445

1 Chosen 5.17 3.8051 1.1121 3.1347 1.0687 2.9982 1.5712 4.7265
2 Chosen A.2 4.6331 1.1119 3.1389 1.0667 2.9951 1.6183 4.7738
3 Chosen A.4 4.1004 1.2988 3.3379 1.2157 3.1275 2.5839 5.6334

Figure 5.20: Estimated mass and density distribution for asteroid configuration 2.

Unfortunately, resulting density distributions do not relate directly to the real density distribution inside
the asteroid. However, when looking at the resulting mass distributions, a comparison can be made
between distributions 1 and 2.

As stated before, the chosen mascon model results in more relatable estimations for the gravita­
tional parameters. The resulting mass and density distribution estimates for distribution 2 are shown
in Figure 5.20. The real distribution is shown in Figure 5.18a. The estimated mass distribution shows
more mass at the more dense side of the asteroid. However, it cannot be related directly to the inte­
rior of the asteroid. Using the volumes assigned to the mascons, the resulting density distribution in
Figure 5.20 does not show a similar distribution as the real distribution.

Meanwhile, when looking at the difference between the estimated values for a homogeneous aster­
oid and the heterogeneous asteroid of the same mass (distributions 1 and 2, respectively), constraints
could be made about the density distribution. As can be seen in Figure 5.21, the differences show a
similar distribution as the real distribution. However, this only worked for the quickly towards relatable
values converging chosen models. Although these chosen models resulted in a worse gravity field
estimation, this indicates the advantage of this model. Using these found differences, possibly density
constraints could be put on the target asteroid’s interior.

5.5. Model performance
In earlier work, performed by Bourgeaux (2020), the spherical harmonics coefficients were estimated for
different position noises. The spacecraft was launched into a polar 45 kilometer orbit for 107 seconds.
It appeared that the spherical harmonics coefficients could be estimated up to degree 8 when using
a position noise of 10 meters. The eighth degree spherical harmonics coefficients splits the sphere
in eight parts in both directions, what defines 64 parts on the sphere. To be able to compare this
precision with the point­mass model, a link between this spatial precision and the precision acquired
with the point­mass model shall be made. Since analytical solution is found, this is done by defining a
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Figure 5.21: Difference between mass and density distributions 1 and 2.

mascon model out of 64 point masses. As it was observed that inner point­masses enclosed by other
point­masses give high uncertainties, the approach studied by Chanut et al. (2015) is used, which is
described in subsection 2.3.1. Here, a mascon model is defined using the shape model. This model
connects the vertices with the center of the asteroid, such that a tetrahedron is formed for each face
of the polyhedron shape model. Then, a mascon is placed at the center of each tetrahedron, by which
the mascon model represents the shape of the asteroid. As the used shape model in the simulator
consists of about five thousand faces, the shape model is first simplified further to a 64­faced shape
model. The resulting shape model, containing the formed tetrahedra and point­masses, is visualized
in Figure 5.22.

As this mascon model has a much higher precision with respect to the eight point­mass models, the
added process­noise can be set much lower and the position and velocity error decrease significantly.
Where, the position is estimated accurate up to about 2.5 meters using a measurement noise of 10
meters and eight point masses, the shape based 64 mascons model results in a maximum error of
about 0.9 meter after 500,000 seconds. The velocity decreases from a max error of 4.9 mm/s to 0.36
mm/s.

The improvement because of the higher precision gravity model is especially observable in the ac­
celeration. In Figure 5.23, the acceleration­error is plotted over time. This plot shows the improvement
of the expected acceleration over time because of the increasing accuracy in the gravity model. Un­
fortunately, this improvement in the acceleration estimation is not observed in the estimated variances
for the gravitational parameter estimation. As the average initial error in the gravitational parameters
was set to 30%, this value only converges to an average estimated error of 20.7%.

Although this relatively high uncertainty from covariance analysis, the resulting gravity field appears
to be quite accurate relatively to the degree 8 spherical harmonics gravity field. Using the estimated
values for the gravitational parameters and the 64 mascons model, the error in the gravity field with
the polyhedron gravity field on a sphere with a radius of 20 kilometer is calculated and visualized in
Figure 5.24. At 20 kilometer, the point­mass acceleration has a magnitude of 1.1⋅10−3 m/s2. The
RMS of the error in gravitational acceleration is 1.0772⋅10−5 m/s2. For comparison, the difference
between the 15th and 8th degree and order measured gravity field of Eros on a sphere with a radius of
20 kilometers is given in Figure 5.25. The shown error in the spherical harmonics gravity fields is of
a similar order as the error in the estimated gravity field. The RMS of the error is 2.9684⋅10−5 m/s2,
which is higher than that of the estimated gravity field. This shows the mascon model can obtain a
similar accuracy in gravity field estimation as the spherical harmonics gravity field.

Using the approach by Chanut et al. (2015), the theoretical model is defined by calculating the
masses of the 64 point masses by multiplying the asteroid density with the tetrahedron volume which
is scaled with the volumes with the volume of the polyhedron used for simulation divided by the total
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Figure 5.22: 64 faced shape model of Eros divided in tetrahe­
dra with mascon placed at the centroid of each tetrahedron.
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Figure 5.23: Acceleration error over time for a 45 km orbit
using a 64 mascons model.

Figure 5.24: Surface plot of the error in the estimated 64 mas­
cons gravity field on a sphere with a radius of 20 kilometers.

Figure 5.25: Differences between the Eros real measured
gravity fields of spherical harmonics degree 15 and 8 on a
sphere with a radius of 20 kilometers.

volume of the 64­faced polyhedron to eliminate the volume difference between the shape models. On a
sphere of 20 kilometers, the error in the gravity field obtained by this model has a RMS of 5.0120⋅10−5
m/s2 and MAE of 2.9611⋅10−5 m/s2. The MAE of the found gravity field is 5.0864⋅10­6 m/s2. Both
values show an increase in the obtained gravity field.

In the situation where no gravity field estimation would be done assuming the single point­mass
gravity field, the error in the gravity field at 20 kilometers would have a RMS error of 2.7368⋅10­4 m/s2.
Compared to the found gravity field, this is an improvement of a factor 10. Considering the MAE, this
improvement is even larger. A single point mas results in a MAE of 2.4007⋅10­4 m/s2. This emphasizes
the importance of gravity field estimation.

5.5.1. Inside Brillouin Sphere
As it is difficult to find a stable orbit inside the Brillouin with a fast­rotating asteroid without a guidance
and control system, the asteroid is assumed to have no rotation for this test. A polar orbit with a
radius of 15 kilometers is initialized. The resulting orbit is shown in Figure 5.26, which goes inside the
Brillouin sphere. Using the estimated 𝜇­values from the results at 35 kilometer as initial estimation,
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Figure 5.26: Polar orbit with an initial radius of 15 kilometers, which is inside the Brillouin sphere of Eros.

the gravitational parameters decrease from a 30% uncertainty to an average error of 4.5705% in the
gravitational parameters, where position and velocity converge towards a stable orbit estimation with
1­𝜎 errors of about 1.1 meter and 9 mm/s using position measurements with a 10 meter standard
deviation. However, when using the 64­point mass model estimations, these errors are decreased to
0.8 meter in position and 1 mm/s in velocity. After an estimation of 500,000 seconds, the estimated
error in the sum of the gravitational parameter was decreased from 20.7% to 14.3%. These found
accuracies indicate the system also works for altitudes below the minimum Brillouin sphere of Eros.

5.6. Additional discussion
Although some promising effects are investigated of having the mascon gravity field implemented in the
dynamical model for state estimation, the performed research should be put into perspective. Some
limitations and made assumptions influenced the study.

It was shown that, using position measurements with a 10 meter Gaussian noise in each direction,
the gravity field could be estimated more accurate than a eight degree and order spherical harmonics
estimation. However, this was shown by comparing the resulting gravity fields on a sphere with a
radius of 20 kilometers. As the analytical derivation between the polyhedron or spherical harmonics
gravity model and the mascon model to find the correct mass distribution is lacking, the accuracy in the
estimated values has to be shown in an alternative way. Compared to the results in Bourgeaux (2020),
the obtained gravity field resolution exceeded the estimation accuracy using the spherical harmonics
model in a similar setting. However, Bourgeaux (2020) limited the estimation to the eighth degree and
could have possibly also obtained an even more accurate gravity field.

Compared to the results by Park et al. (2010), the designed EKF showed similarities to their co­
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variance analysis. As observed in the results from Park et al., outer point­masses were estimated with
a higher estimated precision than the inner point masses. Also, it was shown that lowering the or­
bit radius and increasing measurement accuracy, increase the estimated accuracy in the gravitational
parameters. Both relations were also observed during this thesis, what confirms their observations.

The main benefit with respect to the spherical harmonics model is the ability to reach the space
inside the Brillouin sphere without divergence of the dynamical model. However, as the inversion
from the measured gravity field to asteroid interior knows ambiguity, this ambiguity was also observed
in the obtained mascon distributions. This ambiguity was expressed, for example, in estimations that
converged to negative values. As themascons are correlated, a positivemass can, for example, correct
for a negative mass to obtain the felt acceleration. It was shown that such estimated gravity field, which
does not represent the real mass­distribution in the asteroid, can represent the real gravity field more
accurate than a gravity field estimation with values that could represent the real mass­distribution. This
emphasizes that the found solution does not limit the state estimation inside the Brillouin sphere.

An important assumption that was made are the noisy position measurements, what makes it a
loosely coupled system. By choosing not to model the spacecraft sensors, the found results are dif­
ferent from the expected results during a real mission. Simulating the sensors would make the mea­
surement accuracy, for example, be dependent on the spacecraft attitude with respect to the asteroid
attitude. However, the performed study, using the ’ideal situation’ of measurements with a known noise,
eliminates this measurement accuracy variation, what helps in understanding dependencies of state
estimation using the mascon model but represents reality less.

It should also be mentioned that the acquired performance has been obtained assuming a known
solar radiation pressure and rotational rate of the asteroid. A next step would be to also estimate
these properties and analyze the influence of these additions to the estimation performance. As the
solar radiation also depends on the spacecraft attitude, the spacecraft’s attitude could, for example, be
estimated using appropriate sensors.

Also, it should be kept in mind that the tuning is done with human interpretation and can possibly be
improved further by optimization. However, the used trial and error method appeared to be a suitable
option to obtain the desired results.

From the performed analysis, it is experienced that it requires effort to take gained information from
estimation when increasing model precision. Thereby, when it is required to obtain mass distributions
relatable to real masses, human interference is most likely required. This makes themodel less suitable
for autonomous navigation, as this requires minimal human interference.
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6
Conclusions and Recommendations

During this study, the steps taken are performed to be able to answer the research questions defined in
chapter 1. In this chapter, the research done is reflected on. In section 6.1, the main research question
is answered with the help of its sub­questions. Since this study has a scope in, for example, time, there
are points of improvement. As a result of these points of improvement and follow­up questions risen
during this thesis, recommendations are formalized in section 6.2.

6.1. Conclusion
To evaluate the performance of the mascon gravity model implemented in a navigation system, an Ex­
tended Kalman Filter has been designed and tested among different circumstances. The gravitational
parameters of these mascons representing the asteroid’s gravity field are estimated by the EKF, along
with the spacecraft’s position and velocity. The benefit of this gravity model is that it does converge
below the body’s circumscribing sphere, while the commonly used spherical harmonics model does
not.

The dependencies of the EKF performance on the number of point masses and orbit characteristics
were analyzed by defining a real world with a target body modeled as a mascon model, whose mascon
positions are equal to the model defined in the EKF. The EKF uses noisy position measurements.
From covariance analysis, it appeared that models of three or more mascons give a lower estimated
variance with a higher inclination because of a higher coverage. Thereby, central mascons between
other mascons closer to the spacecraft resulted in higher uncertainties. From covariance analysis,
strong correlations between the point masses are found. The correlations between the mascons can
approach perfect correlation.

To test the EKF in a more realistic situation, the spacecraft is simulated around a polyhedron model
of asteroid 433 Eros. This created a discrepancy between the real gravity field and the gravity field
modeled in the filter. At high altitude, a lower precision in the implemented gravity model is required
and a model consisting of one or two point­masses could suffice. When getting closer to the asteroid,
this model should be increased as higher order terms in the gravity field of the asteroid have more
impact on the spacecraft’s trajectory. From analysis, the defined mascon positions appear to have
a major influence on the estimated distribution. As a distribution of eight point masses resulted in
solutions with a wide range of mascon masses from negative masses up to 30% of the total mass,
the other distribution gave values corresponding to more realistic density ranges. Nevertheless, the
seemingly unrealistic estimated mass distribution can be closer to the real polyhedron gravity field than
the distribution with more realistic estimated values. However, these solutions with a high range of
masses take a much longer time to converge to its final distribution with respect to the fast converging
solution towards the seemingly realistic density values.

The EKF can handle asteroids with a non­uniform density. To test this ability, the asteroid polyhedron
model has been divided into mass elements. Each mass element is assigned a density according
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to the Matérn Covariance function, which is dependent on the distance between the elements. This
covariance function provides a smoothed density distribution inside the asteroid body. The polyhedron
gravity model has been altered such that it includes each element with specific density. Comparing the
estimated distributions for the heterogeneous asteroid with the homogeneous estimated distribution
gave a similar change in density distribution as assigned to the heterogeneous asteroid.

Finally, the performance of the EKF is assessed by comparing the estimated gravity field after 107
seconds at 45 kilometers with the degree and order 8 spherical harmonics gravity field. The estimated
gravity field using a mascon model with 64 point masses placed according to the shape of Eros was
more accurate with respect to the defined real polyhedron gravity field than the eighth degree and order
gravity field of Eros with respect to the fifteenth degree and order gravity field.

With the findings of the previous chapter, the research questions are answered below:

a) What is the best approach to implement the mascon gravity field model during a multi­
phase mission.
During the research, a stepwise approach is performed decreasing the altitude and increasing
the defined number of point­masses. Multiple orbit inclinations were combined for each mission
phase. In general a higher inclination appeared to give a smaller variance. As, for a low number
of mascons, the estimated values can vary somewhat over orbit characteristics, it is advised to
not increase the model precision directly after lowering altitude. The found estimations can be
used as initial model gravitational parameter values for the next step in the mission. One should
not set these parameter values fixed, as changing altitude can give different estimated values
due to the discrepancy between the set gravity field model and real­world gravity field.

The mascon model definition can depend on the objectives of the mission, since the defined
positions of the mascons influence the range of estimated gravitational parameters. If it is desired
to gather information about the asteroid’s interior, it could be beneficial to use mascon models
that result in relatable values for the gravitational parameters. From a different perspective, if an
as accurate as possible distribution is desired, it could be beneficial to use the mascon model
that converges to a distribution not directly relatable to a mass distribution, but representing the
asteroid gravity field more accurate.

b) What is the effect of gravity field estimation on the accuracy and convergence speed of
the estimation?
Gravity field estimation clearly showed an increase of accuracy in the expected gravitational ac­
celeration, on which the velocity and position estimation depend. As a more precise gravity field
model enables the estimation filter to rely more on its dynamical model, the effect of measurement
errors can be reduced further.

As not estimating the gravity field would apply a constant environmental model. The errors of this
model with reality would remain constant and become more dominant when getting closer to the
asteroid. This would require the filter to become more and more dependent on its measurements,
which have limited accuracy. For example, when assuming a single point­mass model as asteroid
gravity field in the estimation filter would give no large issues when at large distance from the
asteroid as the higher order terms do not alter the orbit of the spacecraft significantly. However,
when getting closer to the asteroid, its deviation from a single point­mass has a higher influence on
the spacecraft’s orbit. For example, estimating the gravity field using themasconmodel consisting
of 64 masses resulted in a gravity field, which had a mean­absolute error with the used Eros
polyhedron model at 20 kilometer of about 50 times smaller than that of a single point mass. As
a consequence of such large error in the not­estimated gravity field, the a­priori estimation error
becomes larger, what would require the filter to be more dependent on its measurements in order
to not have a diverging estimation.

As the point­masses are correlated, the total mass is estimated quickly. Because of this, the
convergence time in position and velocity is not altered much when increasing model precision.
On the contrary, gravitational parameter estimations can take a long time in reaching their final
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solution. In general, the convergence time increases with model precision. However, this con­
vergence time also depends on the mascon positions. Some mascon models converge to a less
stable optimum, what causes the filter to take longer to converge towards a final distribution.

c) How does heterogeneity influence the estimation performance?
The EKF appeared capable of handling heterogeneous asteroid distributions. No difference was
observed between estimation in orbit around asteroids with a homogeneous or heterogeneous
density distribution.
As the gravity field is related to the mass distribution of an asteroid, the estimated mascon model
can be used to develop expectations and possibly put constraints on the density distribution inside
the asteroid body. Unfortunately, the conversion from the mascon model to a density distribution
along the polyhedron shape appeared not to be straightforward. This is due to the ambiguity and
the mass distribution.
A suggested approach is to compare the estimated gravitational parameters with the estimated
gravitational parameters from simulation around a homogeneous polyhedron model. Comparing
the estimated gravitational parameters from a simulated orbit around a heterogeneous asteroid
with the estimated values from a simulated orbit around a homogeneous asteroid gave promising
results. The mass difference between the two estimations did correspond with the defined mass
distribution in the heterogeneous asteroid. Unfortunately, this only worked for a mascon model
that converges to values relatable to real masses. Therefore, although the promising results, it
cannot be concluded that the estimated mascon distributions can be directly linked to the density
distribution inside the asteroid body.

With these answers on the sub­questions, the main research question is answered below:

Can the implementation of themascongravity fieldmodel for estimationmakeautonomous
navigation more robust inside the Brillouin sphere of a heterogeneous asteroid?

In this thesis, it is shown the EKF using the mascon model converges inside the Brillouin sphere. This
ability of the model is beneficial in comparison with the spherical harmonics model.

Whether this model is suitable for autonomous navigation cannot be concluded. Autonomous nav­
igation requires the system to be able to navigate without human interference. The mascon model
appeared to be dependent on the chosen mascon positions and would benefit from interim human
evaluation. Thereby, a shape model is required to include the asteroid’s shape into the mascon model.
Such model could be made preliminary to the mission, but can be made more precise using optical
measurements from the mission.

The polyhedron model is often used for the mission phases going inside this circumscribing sphere.
However, this model is computationally expensive in comparison with other gravity models. In earlier
research by Chanut et al. (2015), it was already shown the mascon model can reduce the computa­
tional time significantly. The computational time using the mascon model depends on the number of
mascons defined to model the asteroids. The higher the number of mascons, the more computationally
expensive the model is. Therefore, the precision of the model can be adjusted to a required accuracy.
The polyhedron gravity model assumes a constant density in the complete asteroid. As no difference
between the performance of the EKF near a homogeneous or heterogeneous asteroid density distri­
bution is shown during this thesis, it is demonstrated that another benefit of the mascon model, with
respect to the polyhedron model, is the ability to include heterogeneity.
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6.2. Recommendations
Below, recommendations for further research, arisen due to lack of time are given.

Changes to the model:

• As stated in the discussion, the sensors are not simulated. To obtain a realistic assessment of
the expected navigation system performance during an asteroid mission, required sensors shall
be modeled.

• To decrease computational time and increase precision, the spherical harmonics and mascon
model could be combined. In Wittick and Russell (2019) such hybrid model was studied for Eros,
what gave promising results. This could be an extension on the mascon model as modeled for
this thesis.

• The SRP, spacecraft attitude and asteroid rotation shall be included in the estimation, as this will
be required for a real mission. Also, the gravity gradient torque shall be included in the simulation
as it influences the rotation. Especially, when getting very close to the asteroid.

• The asteroid rotation is now modeled as a rotation around its z­axis at a constant rate. As het­
erogeneity could influence this rotation, the effect of heterogeneity shall be investigated. For
example, knowledge about the rotational axis and the center of figure of the shape model could
acquire some initial estimation of the rate of heterogeneity in the density distribution.

• As the designed heterogeneous polyhedron model for the simulator is very expensive in terms of
CPU time, this method shall be improved or possibly simplified to an extend that is acceptable.

• The system can be extended by including a guidance and control system. Because of the rel­
atively low gravitational attraction of asteroids, this can be required to stay in orbit around the
target body. Thereby, asteroids often rotate relatively fast. To decrease altitude towards inside
the Brillouin sphere could require a guidance and control system to not hit the asteroid body.

• The EKF should be assessed on its CPU efficiency. As the computational load increases with
the number of mascons defined, it should be investigated what precision the system could reach,
while satisfying requirements on CPU effort.

Additional analysis

• The system should be analyzed around bodies with a different mass, shape and semi­major axis.
For example, an interesting use case could be Itokawa, which is expected to have some density
differences.

• The system should be tested on the dependency of the measurement time step. As the measure­
ments during the estimation were given as input each evaluation step (1 second), the influence
on the system with a different measurement input frequency as the estimation frequency should
be evaluated. Also, the time step of estimation can be varied for further analysis.

• The tuning of the filter shall be analyzed further. As the process noise matrix is now assumed
as a diagonal matrix, it could possibly be improved further by adding noises to the non­diagonal
elements.

• The model performance should be assessed during a landing­phase or Touch­And­Go phase.
Since this analysis is limited to reaching the Brillouin sphere, the question remains whether it can
reach the required accuracy to properly travel down to the surface.
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Additional work

• As only the UKF and EKF were evaluated in the choice for a navigation filter, it is not sure whether
the EKF is the most suitable filter. Therefore, it should be evaluated what filter is the best per­
forming filter for missions towards asteroids.

• It shall be studied how density differences inside asteroids can best be modeled. For example,
it shall be studied how so­called void spaces are present in asteroids. The system can then be
tested on such different realistic situations.

• To relate the estimated masses with the real­world polyhedron model, a way to connect these
models shall be studied.

• An algorithm should be designed which gradually increases the mascon model precision and
could be applied autonomously. As during a real mission, the shape model will possibly be in­
accurate or not available at all, a method to develop the mascon model over time should be
developed.

• It should be studied how to implement a constrained Kalman filter properly to obtain mass distri­
butions directly giving information about the inner mass distribution in the asteroid.

• To optimize the tuning process, an optimization algorithm could be designed.

• Since the mascon position definitions influences the mascon performance, this position could
possibly be estimated or given some sort of degree of freedom. It should be studied whether this
can increase the performance of the model.
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A
Appendix

A.1. EKF Equations
Knowing the equations of motion of the dynamical model of the estimator, which is repeated below:

a𝑡𝑜𝑡𝑎𝑙 = r̈ = a𝑔,𝑚𝑎𝑠𝑐𝑜𝑛 + a𝑆𝑅𝑃 + a𝑔,𝑆𝑢𝑛 , (A.1)

the elements of Jacobian matrix G can be derived. The equation for this Jacobian matrix is also re­
peated below:

G = 𝜕g(x)
𝜕x =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 1 0 0 0 … 0
0 0 0 0 1 0 0 … 0
0 0 0 0 0 1 0 … 0
𝜕𝑎𝑥
𝜕𝑥

𝜕𝑎𝑥
𝜕𝑦

𝜕𝑎𝑥
𝜕𝑧 0 0 0 𝜕𝑎𝑥

𝜕𝜇1
… 𝜕𝑎𝑥

𝜕𝜇𝑁−6𝜕𝑎𝑦
𝜕𝑥

𝜕𝑎𝑦
𝜕𝑦

𝜕𝑎𝑦
𝜕𝑧 0 0 0 𝜕𝑎𝑦

𝜕𝜇1
… 𝜕𝑎𝑦

𝜕𝜇𝑁−6𝜕𝑎𝑧
𝜕𝑥

𝜕𝑎𝑧
𝜕𝑦

𝜕𝑎𝑧
𝜕𝑧 0 0 0 𝜕𝑎𝑧

𝜕𝜇1
… 𝜕𝑎𝑧

𝜕𝜇𝑁−6
0 0 0 0 0 0 0 … 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 0 0 0 … 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦[𝑁×𝑁]

(A.2)

As the acceleration due to SRP is assumed known and given to the system as a constant. The derivative
of the accelerations can be split into two parts: the derivative of the asteroid gravity and that from the
Sun as follows:

𝜕a
𝜕x =

𝜕a𝑔,𝑚𝑎𝑠𝑐𝑜𝑛
𝜕x +

𝜕a𝑔,𝑆𝑢𝑛
𝜕x (A.3)

Here, the derivatives of the mascon model are:

𝜕𝑎𝑔,𝑚
𝜕𝑟𝑚

=
𝑁

∑
𝑖=1
𝜇𝑖 (3

(𝑟𝑚 − 𝑟𝑖,𝑚)2
||(r− r𝑖)||5

− 1
||(r− r𝑖)||3

) (A.4)

𝜕𝑎𝑔,𝑚
𝜕𝑟𝑛

=
𝑁

∑
𝑖=1
3𝜇𝑖

(𝑟𝑚 − 𝑟𝑖,𝑚)(𝑟𝑛 − 𝑟𝑖,𝑛)
||(r− r𝑖)||5

(A.5)

where 𝑚, 𝑛 ∈ {1, 2, 3} indicating the element of the position vector r = (𝑥 𝑦 𝑧)𝑇 and acceleration vector
a = (𝑎𝑥 𝑎𝑦 𝑎𝑧)𝑇, and 𝑁 is the length of the state. The derivatives of the third body perturbation by the
Sun is given by:

𝜕𝑎𝑔,𝑚
𝜕𝑟𝑚

= 𝜇𝑆𝑢𝑛 (3
(𝑟𝑚,𝑆𝑢𝑛 − 𝑟𝑚)2
||r𝑆𝑢𝑛 − r||5

− 1
||r𝑆𝑢𝑛 − r||.3

) (A.6)
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𝜕𝑎𝑔,𝑚
𝜕𝑟𝑛

= 3𝜇𝑆𝑢𝑛(𝑟𝑚,𝑆𝑢𝑛 − 𝑟𝑚)(𝑟𝑛,𝑆𝑢𝑛 − 𝑟𝑛)||r𝑆𝑢𝑛 − r||5
(A.7)

The derivatives of the acceleration towards the gravitational parameters are:

𝜕𝑎𝑚
𝜕𝜇𝑖

= − 1
||r− r𝑖||3

(𝑟𝑚 − 𝑟𝑖,𝑚) (A.8)

A.2. Tuning
In this section the values for the process covariance matrix are given. The process covariance matrix
is defined as:

Q = [
I3×3 ⋅ 𝜎21 0 0

0 I3×3 ⋅ 𝜎22 0
0 0 I3×3 ⋅ 𝜎23

] (A.9)

Where the values of 𝜎𝑖 are tuned till a convenient estimation performance. It is observed that 𝜎2 has
the most influence on the estimation. For the other two scalar values, it appeared that these should be
given a sufficient low value, such that 𝜎2 could be tweaked till convenience.

Table A.1: Tuning values for process noise matrix Q.

Orbit radius number of mascons 𝜎21 𝜎22 𝜎23 𝜈𝑟
200 1 1⋅10−7 5⋅10−12 1⋅10−15 100

2 1⋅10−14 1⋅10−12 1⋅10−18 100
3 1⋅10−14 1⋅10−12 1⋅10−18 100
4 1⋅10−7 8⋅10−13 1⋅10−5 100
8 1⋅10−7 5⋅10−13 1⋅10−5 100

50 1 1⋅10−7 1⋅10−7 1⋅10−5 100
2 1⋅10−7 5⋅10−8 1⋅10−5 100
3 1⋅10−7 3⋅10−8 1⋅10−5 100
4 1⋅10−7 1⋅10−8 1⋅10−5 100
8 1⋅10−7 5⋅10−9 1⋅10−5 100

35 1 1⋅10−7 5⋅10−6 1⋅10−5 100
2 1⋅10−7 5⋅10−7 1⋅10−5 100
3 1⋅10−7 3⋅10−7 1⋅10−5 100
4 1⋅10−7 1⋅10−7 1⋅10−5 100
8 1⋅10−7 7⋅10−8 1⋅10−5 100

15 8 1⋅10−5 1⋅10−6 1⋅10−5 10

45 64 1⋅10−17 5⋅10−12 1⋅10−15 10
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(a) Gravitational parameter estimated value plotted against the time for
a 35 kilometer orbit.

(b) Surface plot of the error in the estimated gravity field.

Figure A.1: Gravitational parameter estimation results for asteroid configuration 2 using the CoM­based model.

(a) Gravitational parameter estimated value plotted against the time for
a 35 kilometer orbit.

(b) Surface plot of the error in the estimated gravity field.

Figure A.2: Gravitational parameter estimation results for asteroid configuration 2 using the chosen model.



90 A. Appendix

(a) Gravitational parameter estimated value plotted against the time for
a 35 kilometer orbit.

(b) Surface plot of the error in the estimated gravity field.

Figure A.3: Gravitational parameter estimation results for asteroid configuration 3 using the CoM­based model.

(a) Gravitational parameter estimated value plotted against the time for
a 35 kilometer orbit.

(b) Surface plot of the error in the estimated gravity field.

Figure A.4: Gravitational parameter estimation results for asteroid configuration 3 using the chosen model.
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