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Abstract

With more advanced methods and increasing computational power, the simulation of reinforced
concrete in a Finite Element Analysis (FEA) has become more and more realistic. In a non-
linear analysis of reinforced concrete, cracking behaviour and the maximum load-capacity can
be determined. Such analyses sometimes suffer from unstable behaviour, especially when large
parts of the structure crack at the same time. It is expected that spatially varying concrete material
properties will affect crack initialization, crack patterns and the stability of the analysis. In this
report, the use of spatial variability in the material properties of concrete in a Finite Element
Analysis (FEA) was investigated.

To incorporate spatial variation in the Finite Element method (FEM), discretized random fields are
used which are assigned to elements or integration points in the Finite Element (FE) model. In this
research the following methods are implemented and have been assessed on their performance:

• Covariance Matrix Decomposition method (CMD)
• Fast Fourier Transform method (FFT)
• Local Avarage Subdivision method (LAS)
• Expansion Optimal Linear Estimation method (EOLE)

To be appropriate for the implementation in a general purpose FEM program the method has to be
efficient with respect to computation time, accurate in representing the statistical characteristics of
concrete and easy to implement in the program.

In a literature review, a large variation was found in the used values for the statistical characteristics
which are involved in the modelling of the spatial variation of concrete properties. In the assessment
of the random field generators this range of values was used as input. From literature and the
assessment it was found that the CMD method is easy to implement and is the most accurate
in representing the statistical characteristics of concrete. With respect to efficiency, the method
performs poorly when the number of nodes increases. This is the case for random fields in multiple
dimensions and/or for random fields with a small correlation length. The FFT method is slightly less
accurate but performs very well with respect to efficiency when the number of nodes increase. The
derivation of the one sided Spectral Density Function (SDF), which is needed in the FFT method, is
however quite difficult. The threshold value in the correlation function and the distribution type
have the largest influence on the accuracy of the random field. If the threshold value increases, and
a log-normal distribution type with a high coefficient of variation (COV) is selected, the accuracy
of the different methods decreases. The FFT method is slightly more accurate in representing the
statistical characteristics in that case. With a large correlation length and a threshold value, the
values in the random field are strongly correlated. It was found that in such a case the assumption
of ergodicity does not hold any more.
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In the general purpose FEM program DIANA, a random field application has been developed. The
guidelines in the JCSS Probabilistic Model Code are followed and implemented as a material model
in the program. This material model is used in an example to assess the model code and the
influence of spatially varying material properties on a non-linear FEA. A concrete floor submitted to
a shrinkage load was analysed using the JCSS material model and some variations on this material
model. Unfortunately, none of the analyses reached the convergence norm in all the load steps
where cracking occurs. The results are therefore not reliable since the true equilibrium path may not
be followed. However, they do give insight in the influences of spatially varying material properties
on a non-linear FEA. The analysis resulted in non-symmetric cracking patterns, more gradual grow
in the total number of cracks and crack initialization on the weakest point in the structure. In
future studies the observations from this research can be used in a probabilistic analysis where the
uncertainty in the material properties, which vary in space, can be taken into account which will
yield a more accurate estimate of the reliability of a structure.
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1Introduction

1.1 Numerical analysis and structural reliability
Engineering firms often make use of computer programs to design new structures and to reassess
existing structures. In these programs an idealized reality is modelled to determine the behaviour
of structures. Such a model requires input variables (which describe the loading, geometry and
material properties), response variables (displacements, strains and stresses) and the relationships
between these variables. Since the 19th century a lot of research is done to describe these
relationships. For example, structural models (bars, beams, plates, shells, ...) and constitutive laws
(elasticity, plasticity, damage models, ...) were developed and improved [1].

With the development of computer science, more and more numerical methods have been developed
to solve the boundary value problems of mechanical systems. The last decades a spectacular growth
of the computational power of computers led to a great development of these methods. The Finite
Element Method (FEM) is currently the most used method. The behaviour of structures can be
described very well with this method.

In FEM the input variables are often described by deterministic values. However, in reality these
variables have a random nature. For example, the execution quality of concrete is not known
beforehand. Another example is the uncertainty of the wind loading on a structure during its life
time. To deal with this variability, partial safety factors are applied on the loading parameters
and material properties. These partial safety factors are based on the statistical properties of the
input variables. Although these factors are based on a probabilistic framework, they give no insight
in the reliability of the structure. Beside that, this approach may lead to conservative results. In
case the engineer wants to optimize a structure, insight in the structural reliability is desirable.
Especially in the case of a reassessment, it could be very valuable if it turns out that a structure
meets its requirements and does not have to be replaced. To gain more insight into the reliability
of a structure, probabilistic design methods are combined with FEM. This led to a collection of
methods which are denoted by the collective term, the Stochastic Finite Element Method (SFEM)
[2].

1.2 Spatial variabilty and random fields
To capture the spatial variability of the input variables, random fields are used. A realization of
a random field can be generated with different methods and results in a spatial function. The
statistical characteristics of the input variable, such as the mean, variance and covariance structure,
can be obtained via experiments. An appropriate method to generate a random field represents
these statistical characteristics accurately and is efficient in terms of computation time. With the
use of random fields the uncertainty of properties varying in space can be taken into account in a
FEM program, yielding a more precise estimate of the reliability. Random field can be beneficial
for a non-linear Finite Element Analysis (FEA) with respect to numerical stability. In a non-linear
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analysis, phenomena as plasticity and cracking are taken into account. This leads to a change in the
response of the model during loading, i.e. the stiffness of the model changes in every load step.
The true equilibrium path is sought for by applying an iteration scheme to find static equilibrium in
every load step. If multiple failure mechanisms can occur, for example in case of symmetry or a
zone with constant strain in the model, it can be very hard to find a static equilibrium since the
model fails in multiple failure mechanisms at once. In reality however, failing starts with a single
mechanism in such a case due to inhomogeneous material properties. When this variation in space
is taken into account with a random field, the model may show more realistic material behaviour
and failure mechanisms. With the use of a random field, crack initialization will occur more locally
(weakest point) which may lead to more numerical stable non-linear analyses.

1.3 Aim and scope of the study
In literature many examples, especially for soil structures, can be found where random fields are
applied in the analysis of a structure. It is very convenient to do so for soil, since the variability in
space for the material properties is large and has a significant influence on the failure behaviour.
Another material for which it may be interesting to apply a random field is reinforced concrete.
Concrete is composite material which is build up out of aggregates which are ’glued’ to each other
with hardened cement. Since the aggregates differ in shape and size, and are not distributed
equally during the production of concrete, the material properties vary in space. The concrete is
reinforced with steel to improve the bearing capacity. The (spatial) variation in the steel properties
is however much lower. It is therefore questionable if it is relevant to take the spatial variability
of the concrete material properties into account in a analysis of reinforced concrete. In literature,
a limited number of examples can be found where a random field is applied in the analysis of a
reinforced concrete structure. In this study the focus is therefore on random field generation for
reinforced concrete models. It is investigated which method to generate a random field is most
efficient and accurate in representing the statistical characteristics of concrete. Next, the influences
of spatially varying material properties on a non-linear concrete cracking analysis is explored. Both
subjects are investigated in order to answer the following research question:

"To what extent are the available random field generators suitable to represent the statistical
characteristics of concrete in a general purpose program, and what is the influence of spatially varying

concrete material properies on a non-linear FEA?"

Different methods to generate a random field are described and applied in literature. Which method
is the most accurate and efficient may differ for every concrete property since it depends on the
following input variables:

• The type of probabilistic density function
• Coefficient of variation
• Type of correlation function
• Size of the model/random field

Even though comparisons of different methods are available in literature, one cannot apply them
for concrete, as the statistical characteristics of concrete are different from the used characteristics
in these comparisons.
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The most promising methods are implemented in the general FEM program DIANA for a non-linear
FEA of a reinforced concrete model. The random field application is integrated in the work flow of
the program. It may function as the input for a reliability analysis. Besides that, it may also be of
use with respect to crack initialization and numerically stability of a non-linear FEA.

In this research the focus will be on finding a random field generator which is efficient and describes
the statistical characteristics of concrete the most accurate. This random field generator will be
used in the non-linear analyses where spatially varying material properties are included in the
analysis. Only a couple of analyses with spatially varying material properties are carried out to
investigate the differences in the behaviour of the model, compared to the case where no variation
is applied in the properties of the model. This will give useful insights in what practical issues can
be encountered in the work flow and the results of such an analysis. These have to be explored
first, before carrying out a full probabilistic analysis where the total number of non-linear FEA is
very large. Selecting the appropriate settings for every single non-linear analysis in such a case is
very important with respect to efficiency and numerical stability. For example the selected element
size or the iteration scheme are factors which have a large influence on those aspects. The findings
of this research will be a good starting point for studies which aim to do a full probabilistic analysis
with spatially varying concrete material properties.

1.4 Thesis Structure
In this report the raised research question will be answered step by step. First, the theoretical
background, required to understand the different concepts and methods within this field of research,
is described in chapter 2. Different methods to generate a random field will be explained. Next
to the theoretical background, a review of literature on random fields generation for reinforced
concrete structures is presented in this chapter. For some of the statistical characteristics, that
describe the spatial variation of concrete parameters, a large variation was found in the used values.
In chapter 3 an assessment of the different methods to generate a random field is carried out.
Implementation issues of the selected methods for this assessment are considered. The different
parameters involved in this comparison are varied, based on the range of values found during the
literature review. This will give a basis to select the most appropriate method for the generation of
a random field for the different concrete properties. In chapter 4 one of the probabilistic model
codes is chosen for the implementation in DIANA. This model code gives guidelines for the different
statistical characteristics involved in the generation of a random field for reinforced concrete. An
extra comparison is carried out to check if the findings hold in general. Examples of random fields
for the different material parameters, which described in the selected model code, will be given at
the end of the chapter. In chapter 5 an example of the implemented functionality in DIANA will be
presented to investigate the influence of a random field on a non-linear FEA. Finally the work in
this report will be discussed and an answer will be formulated in the last chapter of this report.
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2Theory

In this first chapter a basis is formed for this study. All the theory which is needed tot understand
the different concepts and methods is explained. Also a notation is introduced which is used
throughout the remainder of this report. For a more complete overview reference is made to [1,
3–6]. First, basic statistics and random variables will be explained. Second, the concept of random
fields and the available random field generators will be explained. Thereafter, different approaches
are considered to take into account spatial variation in a reliability analysis of reinforced concrete
structures. In the last section the structure of a general purpose FEM program a will be given.

2.1 Random variables and basic statistics
To be able to define random variables and random fields, first, the mathematical construct to model
a real world process should be defined as shown hereafter. The possible outcomes of an experiment
are called events, and the collection of all possible outcomes of an experiment is called the sample
space [Θ]. The collection of outcomes in this sample space which have a well-defined probability
is called the σ−algebra, denoted by F . The probability measure of an event is denoted by P .
The mathematical construct for modelling an experiment is called the probability space (Θ,F , P ).
The likelihood of the occurrence of event A is denoted by P [A] and satisfies the following three
axioms:

1. For any event A,

P [A] ≥ 0 (2.1)

2. The probability associated with the entire sample space (or a certain event) is:

P [Θ] = 1 (2.2)

3. For any sequence of disjoint events, A1, A2, ...,Am:

P [A1 ∪A2 ∪ ... ∪Am] = P [A1] + P [A2] + ...+ P [Am] (2.3)

From these three fundamental assumptions, all the other rules for probability calculations are
defined.

2.1.1 Random variables

A random variable, denoted by X, is a means to map from a sample space Θ to real numbers. To
underline the random nature of X, the dependency on the outcomes may be added in some cases
as in X(θ). An example of a random variable is whether a stranger is left- or right-handed. This
could be written as, X(left) = 0 and X(right) = 1. Than X > 0 means the person is right-handed.
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Or it could be written as x = X(Right), where the lower case, x, refers to the known outcome of
the experiment. One can say that x is a realisation of the random variable X.

A distinguish can be made between continuous and discrete random variables. In this study only
continuous random variables are of interest. An example of a continuous random variable is the
tensile strength of a steel bar. As for many engineering applications, the sample space is already
expressed in real numbers. In that case direct mapping (X = fy(N/mm2)) can be applied. It is a
continuous random variable because the variable could attain any value between 0 and∞.

2.1.2 Probabilistic distributions

The cumulative distribution function (CDF) of X is defined by:

FX(x) = P [X ≤ x] =
∫ x

−∞
fX(y)dy (2.4)

and has the following properties:

• 0 ≤ FX(x) ≤ 1
• limx→∞FX(x) = 1
• limx→−∞FX(x) = 0
• FX(x) is non-decreasing
• FX(x) is right continuous

Since P [X = x] is infinitesimally small for a continuous random variable, one can not speak of a
probability. Therefore, it is defined as a density, which has to be multiplied by a length to obtain a
probability. The probability density function (PDF) is defined by:

fX(x) = dFX(x)
dx

(2.5a)

fX(x)dx = P [x < X ≤ x+ dx] (2.5b)

and has the following properties:

• fX(x) ≥ 0
•
∫∞
−∞ fX(x)dx = 1

2.1.3 Random vectors

In many problems more than one random variable is considered. For example the mean temperature
in Rotterdam and in Amsterdam at a certain day. The observation is than expressed as a random
vector as:

X =
[
X1

X2

]
(2.6)

where, according to the example, X1 is the temperature in Rotterdam and X2 the temperature in
Amsterdam. A random vector can have any length. Also different capital letters can be used to
denote different random variables.
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2.1.4 Characteristics of random variables

A random variable is fully defined by its PDF. In this section, useful characteristics of a random
variable are derived from the PDF.

Mean The first moment of the PDF is a measure for the mean of a random variable. It gives
information about where the PDF is centred.

µ =
∫∞
−∞ xfX(x)dx∫∞
−∞ fX(x)dx

=
∫ ∞
−∞

xfX(x)dx (2.7)

Variance The second central moment of the PDF is called the variance of the random variable.
The variance gives information about degree of scatter.

σ2 = Var[X] =
∫ ∞
−∞

(x− µ)2fX(x)dx (2.8)

The positive square root of the variance is called the standard deviation and is denoted by σ. It has
the same units as X and µ and is another measure for the degree of scatter.

σ =
√

Var[X] (2.9)

The dimensionless coefficient of variation, COV , is defined as σ
µ . For the evaluation of the spread of

a random variable around its mean, this normalised value gives us more insight.

Covariance The linear dependence between two random variables can be determined with the
covariance, and is defined by:

Cov[X,Y ] =
∫ ∞
−∞

∫ ∞
−∞

(x− µX)(y − µY )fXY (x, y)dx dy (2.10)

where fXY denotes the joint probability density function of the random variables X and Y. The
variance can actually be seen as a special case of the covariance, namely Cov[X,X] = Var[X]. If
the variable X has no affect on the value Y, the variables are called independent. The covariance is
equal to zero in that case. The converse is not necessarily true, i.e. if Cov[X,Y ] = 0, X and Y are
not necessarily independent. It can can only be said that they are uncorrelated. The normalized
quantity of the covariance is called the correlation coefficient and is defined by:

ρXY = Cov[X,Y ]
σXσY

− 1 ≤ ρ ≤ 1 (2.11)

Logically, this value will again be equal to zero when X and Y are uncorrelated. A value of 1 indicates
that the random variables are fully correlated and -1 that they are fully negatively correlated.
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Expected value The expected value of g(X), which can be any function of X, is defined by:

E[g(X)] =
∫ ∞
−∞

g(x)fX(x)dx (2.12)

where E[·] is the expectation operator. The mean, variance and covariance can be expressed using
this operator as follows:

µ =
∫ ∞
−∞

xfX(x)dx = E[X] (2.13)

σ2 =
∫ ∞
−∞

(x− µ)2fX(x)dx = E[(X − µ)2] = E[X2]− E2[X] (2.14)

Cov[X,Y ] =
∫ ∞
−∞

∫ ∞
−∞

(x− µX)(y − µY )fXY (x, y)dx dy = E[(X − µX)(Y − µY )]

= E[XY − µYX − µXY + µXµY ] = E[XY ]− E[X]E[Y ] (2.15)

Following the rules of integration, other calculation rules for the determination of the expectation
can be derived, like:

E[g(X)± h(Y )] = E[g(X)]± E[h(Y )] (2.16)

E[aX ± bY ± c] = a E[X]± b E[Y ]± c (2.17)

Following the same reasoning for the variance, its calculation rules reads:

Var[aX ± bY ± c] = a2 Var[X] + 2ab Cov[X,Y ] + b2 Var(Y ) (2.18)

And for the covariance the following calculation rules hold:

Cov[X, y ± Z] = Cov[X,Y ]± Cov[X,Z] (2.19)

Cov[aX ± b, cY ± d] = ac Cov[X,Y ] (2.20)

2.1.5 Common distributions

Uniform distribution The simplest distribution is the uniform distribution and is defined by:

fX(x) =
{

1
b−a if a ≤ x ≤ b
0 otherwise.

(2.21)

Its characteristics are:

µ = E[X] =
∫ b

a

x

b− a
dx = 1

2(a+ b) (2.22a)

σ2 = Var[X] =
∫ b

a

x2

b− a
dx− E2[X] = 1

12(b− a)2 (2.22b)
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Normal distribution One of the most commonly used types is the normal distribution or Gauss-
distribution. It is defined by:

fX(x) = 1√
2πσX

exp
(
− (x− µX)2

2σ2
X

)
(2.23a)

FX(x) = 1/2 + 1/2 erf
(
x− µX
σ
√

2

)
(2.23b)

where erf is the error function and is defined as:

erf(x) =
2
(∫ x

0 e
−t2dt

)
√
π

(2.24)

The PDF is symmetric about the mean µ and its maximum is at µ. When a random variable is
normal distributed, it is denoted as X ∼ N(µ, σ2). The standard normal distribution has a mean
equal to zero and a standard deviation equal to one. A Gaussian random variable X with mean µ
and standard deviation σ can be obtained by:

X = σY + µ (2.25)

where Y is a standard normally distributed random variable.

Log-normal distribution If a variable X has a log-normal distribution, than in the expression
Y = ln(X), the variable Y is normal distributed. Log-normal random variables only have outcomes
greater than zero. To acquire a log-normal distributed random variable, the following transformation
is carried out:

X = exp(µY + σY Y ) (2.26)

where Y is a standard normal variable. The required parameters can be expressed as:

σ2
Y = ln

(
1 + σ2

X

µ2
X

)
, µY = ln(µX)− 1

2σ
2
Y (2.27)

where µX and σX are respectively the mean and standard deviation of the log-normal random
variable X.

2.1.6 Central limit theorem

According to the central limit theorem, the sum of a large number of independent random variables
having arbitrary distributions result in a random variable which is (almost) normally distributed. As
a consequence of the central limit theorem, the sum of two normally distributed random variables is
also normally distributed. Analogously tot the central limit theorem for the sum of large number of
independent random variables, the product of a large number of independent random variables is
(almost) log-normally distributed. In practise the normal and log-normal distribution are often used
since a lot of properties are sums or products of random variables. An example of such a property is
the mean compressive strength of a number of concrete samples, which will be normally distributed.
For estimating maxima and minima of a set of random variables, other so called asymptotic extreme
value distributions are used.
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2.1.7 Random number generators

In probabilistic analyses often use is made of a random number generator. In this section it is
explained how Gaussian distributed random numbers can be obtained. Also the requirements for a
’good’ random number generator will be given.

To generate Gaussian distributed random numbers, use is made of uniform distributed random
numbers. As for others distributions (eg. exponential, weibull and poisson), Gaussian random
numbers can be obtained by a transformation of uniformly distributed random numbers. This is
convenient to do because uniformly distributed random numbers can be generated very well. This
arises from the fact that every number in the range has an equal likelihood to be drawn from the
distribution.

For the transformation the inverse PDF is used for most of the distributions. However, for the
Gaussian distribution no closed-form of the inverse PDF exists. The transformation method of Box
and Muller [7] provides a good alternative, which is exact and efficient, and is given by:

x1 =
√
−2ln(u1)cos(2πu2) (2.28a)

x2 =
√
−2ln(u1)sin(2πu2) (2.28b)

where u1 and u2 are uniformly distributed random numbers between zero and one and x1 and x2

are two independent standard Gaussian distributed random numbers.

The most common methods to generate uniformly distributed random numbers are the so called
arithmetic generators. These consecutive methods generate numbers based on one or multiple
preceding values following a fixed algorithm. These type of generators are not truly random since
the random numbers are derived from previous numbers in a deterministic way. They are therefore
often called pseudorandom number generators. Such a method has to posses the following properties
to be appropriate [5]:

1. the generated numbers should appear to be independent and uniformly distributed
2. the code should be fast and not require large amounts of storage
3. have the ability to reproduce a given stream of random numbers exactly
4. should have a very long period.

When a random number generator is used for the generation of a random field it has to satisfy
these properties in order to achieve no distortion in the field.

2.2 Random fields
Many processes around us show variation in time and space. If, for example a measurement of
the wind speed on a certain location is considered, the signal has a random character. On another
location, close to this measurement, the wind speed will be different from, and correlated to this
signal. When this variability is captured into a model we come to the concept of random fields.
According to Vanmarcke [6], a distinction can be made between uncertainty about the properties
of a random medium, which is independent of time, and a space-time process, where properties at
different points in space change randomly with time. In this study only the first type of random
fields will be considered. An example of such a random field can be found in figure 2.1
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Fig. 2.1.: Example of a random field.

"A random field can be defined as a curve in L2(Θ,F , P ), that is a collection of random variables
indexed by a continuous parameter x ∈ Ω, where Ω is an open set of Rd describing the system
geometry [1]." In this definition, L2 denotes the inner product space of real random variables with
finite second moments (E[X2] < ∞). L2(Θ,F , P ) belongs to the Hilbert space and is complete,
which implies that the techniques of calculus can be used in this space [8].

A random field H(x, θ) is thus a continuous function in space, consisting of infinite small parts
which are associated with a random variable. The random field is completely defined by the set of
infinite many random variables and its joint distribution function. However, this joint distribution
function is very complex since there are infinite many random variables. If the random field H(x, θ)
is considered at a fixed location, x, it is a random variable and is called a sample. For a fixed
outcome, θ, of all the possible outcomes in the sample space, H(x, θ) is a deterministic function of
x and is called a realisation of the field. A random field can also be denoted with H(x) in short.

In the above definition only one variable is considered. Such a random field is called a univariate
random field. When more than one variable is considered, for example the tensile strength and
Young’s modulus of concrete, the random variable is replaced by a random vector, H(x). Such a field
is called a multivariate random field. The random field can be defined in one dimension H(x, θ),
where x is a spatial variable or in multiple dimensions H(x, θ) where x is a vector, containing spatial
variables.

Covariance function In reality it is likely that two points in a system which are close to each
other have approximately the same value. Contrariwise, two points which are separated by a large
distance are not correlated with each other. In a random field this interdependence can be described
with the Covariance function. This function describes the covariance between two points (x1 and
x2) having a certain distance to each other and is defined by:

B(x1, x2) = Cov[X1, X2] = E[X1X2]− E[X1]E[X2] (2.29)

where X1 = H(x1) and X2 = H(x2).

The correlation function is related to the covariance function and is defined by:

ρ(x1, x2) = B(x1, x2)
σ(x1)σ(x2) (2.30)
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Gaussian and non-Gaussian random fields A random field is Gaussian if the random variables
(H(x1), (H(x2), . . . , (H(xn) are all normally distributed. When the mean and covariance function
of a Gaussian random field are known the random field is completely defined. Conversely, if the
random variables are non-Gaussian, the random field is non-Gaussian. If a non-linear transformation
is possible between the non-Gaussian random variable and the normally distributed random variable,
the non-Gaussian random field can be obtained by a non-linear transformation of a Gaussian random
field. Not only the random variables, but also the covariance structure of the field is transformed
non-linear. For log-normally distributed random fields a transformation of the correlation function
exists. The log-normal distributed random fields are very important in the modelling of engineering
problems due to its non-negative domain. This transformation will be explained in more detail in
section 2.3.1.

Statistical homogeneity When the joint PDF is independent of the spatial position, the random
field is called homogeneous. This implies that the mean, variance and higher order central moments
of this distribution are constant in space. The covariance function (and correlation function) only
depend on the relative distance between two points in the field, i.e. B(x1, x2) = B(∆x), where ∆x
is called the lag distance. When a random field is called weakly homogeneous it is only required that
the mean is independent of the location in the field and the covariance function only depends on
the lag distance. In this study it is assumed that all the random fields are weakly homogeneous and
it is just referred to as ’homogeneous’. As a consequence of statistical homogeneity the covariance
function is even, positive definite and bounded. Its maximum value is equal to the variance of
the random field. The variance can be obtained at the origin of the covariance function, i.e.
BX(0) = σ2

X .

Ergodicity A random field can be ergodic with respect to any statistical property. Ergodicity can
be explained best by an example. For this example two different mean values are defined first. The
mean value of a single random field can be determined with:

H̄ = 1
Ω

∫
Ω
H(x)dx (2.31)

where Ω is the domain of the random field.

The sample mean for a certain position, x1, in the random field can be determined with:

X̄1 = 1
N

N∑
H(x1) (2.32)

where N is the number of realisations of the random field. If Ω and N are significantly large and
the mean value of a single random field is equal to the sample mean, the random field is ergodic
with respect to the mean. As a consequence of ergodicity, all the information about the joint PDF of
a random field can be obtained form a single realization of the random field.

2.2.1 Spectral representation of random fields

In some cases it could be interesting to express the second-order properties of a random field in the
frequency domain. The second order properties can be expressed with the Spectral Density Function
(SDF), which is comparable with the covariance function in the spatial domain. The SDF will be
derived in the following paragraph for a one dimensional random field. In higher dimension the
SDF can easily be found by extending the SDF for one dimension.
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According to Priestley [9], a homogeneous random field, with ρ(∆x) continuous at ∆x = 0, can be
expressed as a sum of sinusoids with mutually independent amplitudes and phase angles as:

H(x) = µH +
K∑

k=−K
Ck cos(ωkx+ Φk) (2.33)

where µH is the mean value of the random field, Ck are the random amplitudes, ωk are the
frequencies which are equal to ∆ω(2k − 1)/2 and Φk are the phase angles which are uniformly
distributed over the interval [0, 2π]. Now the variance of the kth component of the summation is
examined by squaring this component and taking the expectation:

σ2
k = E[(Ck cos(ωkx+ Φk))2] = E[C2

k ]E[cos2(ωkx+ Φk)] = 1
2E[C2

k ] (2.34)

where E[cos2(ωkt+ Φk)] = 1
2 since Φk is uniformly distributed over the interval [0, 2π]. Every Ck

is coupled to a ωk. So, the variance of a the kth component is a function of ωk. To express this
relation, the spectral mass function is introduced and is defined by:

S(ωk)∆ω = 1
2E[C2

k ] (2.35)

The variance of the random field can be expressed as the summation of all the variances of the
components of the summation as:

σ2
H =

K∑
k=−K

σ2
k =

K∑
k=−K

1
2E[C2

k ] (2.36)

Combining equation 2.35 and equation 2.36 and letting K approach to infinity, the variance of the
random field can be expressed as:

σ2
H = lim

K→∞

K∑
k=−K

S(ωk)∆ω =
∫ ∞
−∞

S(ω)dω (2.37)

where S(ω) is called the two sided SDF of H(x) since it is defined for negative and positive
frequencies. The summation sign can be replaced by an integral sign since ∆ω → 0 when k →∞.
In figure 2.2 the two sided spectral density function is shown. According equation 2.37, the variance
of the random field is equal to area under the SDF.

S(ω
k
)     =1/2 E[C  ]

ω
                        ω

S(  )ω

∆ω

−ω
k                                                                         k

∆ω
2

 k

Fig. 2.2.: Two sided spectral density function [5].
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Wiener-Khinchine Relations The wiener-Khinchine relations give the relation between the SDF
and the covariance function. To come to this relation the covariance function for a homogeneous
field is rewritten using equation 2.29.

B(∆x) = Cov[H(0)H(∆x)] = E[H(0)H(∆x)]− E[H(0)]E[H(∆x)]

= E[(µH +
K∑

k=−K
Ck cos(Φk))(µH +

K∑
j=−K

Cj cos(ωj∆x+ Φj))]−

E[µH +
K∑

k=−K
Ck cos(Φk)]E[µH +

K∑
j=−K

Cj cos(ωj∆x+ Φj)]

(2.38)

Rearranging terms result in:

B(∆x) =
K∑

k=−K

K∑
j=−K

E[CkCj cos(Φk) cos(ωj∆x+ Φj)] + µ2
H

− µ2
H −

K∑
k=−K

K∑
j=−K

E[Ck cos(Φk)]E[Cj cos(ωj∆x+ Φj)] (2.39)

The expectation of cos(Φ) is equal to zero since Φ is uniformly distributed over the interval [0, 2π].
Now Using the fact that the random amplitudes Ck and phase angles Φk are independent result
in:

B(∆x) =
K∑

k=−K
E[C2

k cos(Φk) cos(ωk∆x+ Φk)]

=
K∑

k=−K
E[C2

k ]E[ 12(cos(ωk∆x+ 2Φk) + cos(ωk∆x))]

=
K∑

k=−K

1
2E[C2

k ]cos(ωk∆x)

=
K∑

k=−K
S(ωk)∆ω cos(ωk∆x) (2.40)

Again the summation sign can be replaced by an integral sign letting ∆ω → 0. This leads to the
Wiener-Khinchine relations which relates B(∆x) to S(ω) as follows:

B(∆x) =
∫ ∞
−∞

S(ω)cos(ω∆x)d∆x (2.41)

S(ω) = 1
2π

∫ ∞
−∞

B(∆x)cos(ω∆x)d∆x (2.42)
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From equation 2.42 and cos(−ω∆x) = cos(ω∆x) it follows that if the covariance function is
symmetric the two sided SDF is also symmetric. The SDF can therefore be expressed as a one sided
SDF as:

G(ω) = 2S(ω) for ω ≥ 0 (2.43)

The Wiener-Khinchine relations in terms of G(ω) then become:

B(∆x) =
∫ ∞

0
G(ω)cos(ω∆x)d∆x (2.44)

G(ω) = 2
π

∫ ∞
0

B(∆x)cos(ω∆x)d∆x (2.45)

As a last remark, it can be shown that equation 2.41 and 2.42 are equivalent to the Fourier transform
pair in equation 2.46 and 2.47. Expressing exp(iω∆x) as cos(ω∆x) + i sin(ω∆x), the imaginary
parts will cancel out for functions which are even and real. Which holds for both B(∆x) and
S(ω).

B(∆x) =
∫ ∞
−∞

S(ω)exp(iω∆x)d∆x (2.46)

S(ω) = 1
2π

∫ ∞
−∞

B(∆x)exp(−iω∆x)d∆x (2.47)

2.2.2 Local averages of random fields

Basically all the data around us is observed with a certain resolution. Therefore all engineering
properties are in some way measured as a local average. For example, in a compressive test
of a concrete block, the compressive strength is determined by dividing the failure load by the
cross-section of the block. In this case, failure is not a function of the strength of a single point in
the block but a function of an average bond strength along the failure surface [5].

It is therefore very relevant to determine statistical properties as a spatial average over a certain
domain. In this section, the formulas will be given for the general case of an n-dimensional random
field. The formulas, for example for a 1D random field, can be easily found by leaving out the
higher dimension terms and integrals.

For a n-dimensional random field a local average over the domain D of size |D| = D1D2 . . . Dn and
centred at x is defined as:

HD(x) = 1
|D|

∫ xn+Dn/2

xn−Dn/2
. . .

∫ x1+D1/2

x1−D1/2
H(ξ1, . . . , ξn)dξ1 . . . dξn (2.48)

where ξ is a spatial variable which is bounded by the domain over which the random field is
averaged.

HD(x) is sometimes also referred to as the moving local average of the random field. The mean is
not effected by the local averaging of the random field. This can be shown by taking the expectation
of equation 2.48:

E[HD(x)] = E
[

1
|D|

∫
D

H(ξ)dξ
]

= 1
|D|

∫
D

E[H(ξ)]dξ = E[H(x)] (2.49)
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The variance and the covariance are however are effected by locally averaging the random field.
First the covariance between two local averages is derived.

Covariance of two local averages The covariance between two local averages can be derived
by considering two averaging domains of size |Da| and |Db|, centred at the points xa and xb and
taking expectations.

E[HDaHDb ] = E
[

1
|Da|

∫
Da

H(ξ)dξ 1
|Db|

∫
Db

H(η)dη
]

= 1
|Da| |Db|

∫
Da

∫
Db

E[H(ξ)H(η)]dξdη (2.50)

According to equation 2.29, the covariance function for two local averages can be written as:

BDaDb(xa − xb) = 1
|Da| |Db|

∫
Da

∫
Db

E[H(ξ)H(η)] dξdη − E2[H(x)] (2.51)

For a homogeneous zero mean random field the covariance of two local averages, having the same
domain of size |D| and separated by a distance equal to knDn in every direction, can be written as
follows:

BD(kD) = 1
|D|2

∫ D

0

∫ (n+1)D

nD

E[H(ξ)H(η)] dξdη

= 1
|D|2

∫ Dn

0

∫ (kn+1)Dn

knDn

. . .

∫ D1

0

∫ (k1+1)D1

k1D1

B(ξ1 − η1, . . . , ξn − ηn)dξ1dη1 . . . dξndηn

(2.52)

Where kn is a positive real number.

To simplify this equation the following change of variables is applied:

ξn = ∆yn + ∆xn (2.53)

ηn = ∆yn (2.54)
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Thereafter the 2n-fold integral is reduced to a n-fold integral by integrating over ∆yn for every n.
This leads to the following expression for the covariance function of two local averages having the
same domain size.

BD(kD) = 1
|D|2

2∑
j1=1

. . .

2∑
jn=1

∫
Ajn,n

. . .

∫
Aj1,1

(Cj1,1) . . . (Cjn,n)B(∆x1, . . . ,∆x2)d∆x1 . . . d∆xn

(2.55a)

where

∫
A1,n

=
∫ knDn

(kn−1)Dn∫
A2,n

=
∫ (kn+1)Dn

knDn

(2.55b)

C1,n = (kn + 1)Dn −∆xn
C2,n = ∆xn − (kn − 1)Dn (2.55c)

and ∆x1 till ∆xn are the lag distances in different directions which are bounded by the size of the
domain. The derivation of equation 2.55 can be found in appendix C.

Variance function The variance of a local average is reduced with increasing domain size |D|. It
can be expressed as:

Var[HD(x)] = γ(|D|)σ2 (2.56)

where γ(|D|) is by definition the variance function of HD(x), which expresses the reduction of the
point variance σ2 of the random field under local averaging. So after this operation the obtained
field is more flatten out.

To find the expression for the variance function a special case of the covariance between two local
averages is considered. The variance of the moving local average can be obtained at the origin of
the covariance function, i.e. Var[HD(x)] = BD(0). This can be achieved by letting kn be equal to
zero in every direction, which is the same as overlapping the two domains.
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For a homogeneous zero mean random field the variance of the moving local average can be written
as:

BD(0) = 1
|D|2

2∑
j1=1

. . .

2∑
jn=1

∫
Ajn,n

. . .

∫
Aj1,1

(Cj1,1) . . . (Cjn,n)B(∆x1, . . . ,∆x2)d∆x1 . . . d∆xnn

(2.57a)

where

∫
A1,n

=
∫ 0

−Dn∫
A2,n

=
∫ Dn

0
(2.57b)

C1,n = Dn −∆xn
C2,n = ∆xn −Dn (2.57c)

Making use of the fact that the correlation function is an even function, i.e. ρ(−∆x) = ρ(∆x) The
2n n-fold integrals can be taken together. According to equation 2.56, the variance function can
thus be written as:

γ(D1, . . . , Dn) = 2n

|D|2
∫ Dn

0
. . .

∫ D1

0
(D1 −∆x1) . . . (Dn −∆xn)ρ(∆x1, . . . ,∆xn)d∆x1 . . . d∆xn

(2.58)

Like the correlation function the variance function is also an even function and is bounded (0 ≤
γ(D1, . . . , Dn) ≤ 1). Considering the limits of the domain size D leads to the following findings
[10]:

AsD → 0
HD(x)→ H(x) σ2

D → σ2 γ(D → 0)→ 1 (2.59)

As| : D →∞
HD(x)→ H̄(x) σ2

D → 0 γ(D →∞)→ 0 (2.60)

Covariance function in terms of variance function The covariance between two local averages
can also be expressed in terms of the variance function. In n-dimensions the formula, derived by
Vanmarcke [6], is given by:

BDαDβ (∆x) σ2

2n |Dα| |Dβ |

3∑
j1=0

. . .

3∑
jn=0

(−1)j1 . . . (−1)jn |Dj1j2...jn |
2
γ(D1j1 , . . . , Dnjn) (2.61)

where |Djkl| = D1jD2kD3l. The distances used in this formula can be found in figure 2.3.
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Fig. 2.3.: Distances characterizing the relative location of the volumes Dα and Dβ in the three-dimensional
parameter space [6].

2.2.3 Correlation length

The correlation length or scale of fluctuation is a measure for the variability in the random field.
In literature it is often denoted by θ. In this report however it will be denoted by Lc since the θ
symbol is already used to indicate a possible outcome of the sample space. The correlation length is
defined by Vanmarcke [6] as Lc = lim

D→∞
Dγ(D). Using equation 2.58 the correlation length can be

written as:

Lc =
∫ ∞
−∞

ρ(∆x) d∆x = 2
∫ ∞

0
ρ(∆x) d∆x (2.62)

The correlation length is thus equal to the area under the correlation function. One necessary
condition for Lc to exist , i.e. to be finite, is given by:

lim
D→∞

1
D

∫ D

0
∆xρ(∆x)d∆x = 0 (2.63)

Using equation 2.45, the correlation length can also be written in terms of the one sided SDF as:

Lc = πG(0)
σ2 (2.64)

In practice it could be very hard to determine the correlation length. The scatter in the data of
experiments can be to high and/or the correlation length depends mostly on multiple factors.
Examples of such factors for reinforced concrete are the shape of the mould and the used aggregate
sizes.
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The influence of the correlation length in a random field visualized in figure 2.4. It shows two
random fields for the compression strength in a concrete beam of 5 m long with a different
correlation length. In the left picture a correlation length of 50 cm is used and in the right picture a
correlation length of 200 cm is used.

Fig. 2.4.: Random fields for the compressive strength in a concrete beam of 500 cm long. Left Lc=50 cm,
right Lc=200 cm [11].

2.3 Generation of random fields
To generate a random field several steps have to be taken. This process is visualised in figure 2.5.
In the first step statistical properties like the distribution type, mean, variance and covariance of a

Detemine statistical 
properties of a 

parameter

Define 
random field 

mesh

Generate 
random 

field

Check the properties 
of the generated 

random field

Fig. 2.5.: Process random field generation.

parameter are determined. For most of the parameters the statistical properties can be found in
databases which are based on experimental data. The next step is to define a random field mesh.
This can be the same mesh as the finite element mesh, but most of the time a separate mesh is more
desirable. On locations where the stress gradient is high the spatial variability does not have to be
high and vice versa. Next to that, also a refinement of the finite element mesh can be sometimes
desirable. In such case it is more practical that the random field mesh can be left unchanged. The
size of the elements of the random field mesh depends on the type of correlation function and
the correlation length. According to Sudret [1] the element size of the RF-mesh (LRF ) should
be taken between Lc/10 and Lc/5 for the exponential correlation function and should be taken
between Lc/4 and Lc/2 in other cases. After the random field mesh is defined, a random field can
be generated. Several methods are available to generate a random field. Which method is the most
efficient and accurate to generate a random field differs for every parameter and case. It depends
for example on the type of correlation function and the size of the random field.

After the random field is generated a check should be performed to see if the field is accurate
enough. An evaluation of the generated field can be done to see if the characteristics like the mean,
variance and covariance are represented well by the field, i.e. if they correspond to the input values
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of the random field generator. If the required accuracy is not met the random field mesh has to be
refined or another method to generate a random field has to be selected.

2.3.1 Nataf transformation

All the random field generators generate a Gaussian random field. However, for concrete properties
a non-Gaussian field, having a log-normal distribution, is desirable. To acquire such a random
field, a standard normal distributed field has to be transformed. The values in the random field
can be transformed according to equation 2.26. Where the mean and the standard deviation
are transformed according to equation 2.27. Also the correlation function has to be transformed.
This has to be done in such a way that after the transformation, the obtained random field has a
correlation structure which corresponds with the untransformed correlation function ρ(∆x). The
transformation of the correlation function is given by:

ρT (∆x) = exp(σ2
T ρ(∆x))− 1

exp(σ2
T )− 1 (2.65)

Where ρT (∆x) is the transformed correlation function, ρ(∆x) is the untransformed correlation
function and σT is the transformed standard deviation. This transformation is called the Nataf
transformation [12]. The derivation of equation 2.65 is given in appendix B

The variance function and SDF of the transformed covariance function can not be derived exact.
The variance function will be approximated numerically. For the SDF it will be assumed that the
transformed SDF is approximately the same as the untransformed SDF. This is a good assumption
when the mean value is at least twice as big as the standard deviation of the log-normal random
field.

2.3.2 Classification of random field generators

In literature a number of methods are available to generate a random field. These methods can be
divided into two classes. An overview of these methods and classification is shown in figure 2.6.
First the two different classes will be introduced shortly whereafter all the different methods will
be explained in more detail.

Class 1 generators In the first class, generators of spatially correlated random variables are
combined with a discretization method. For every node in the random field mesh a random variable
is evaluated which is correlated to the other nodes in the random field. These spatially correlated
random variables have to be allocated to an element or integration point in the FE model. This
can be done with different discretization methods. These discretization methods can be divided
into three categories. The first category are the point discretization methods (orange blocks) which
result in a piecewise constant random field. The second category are the point discretization
methods (green blocks) which result in a continuous random field. In these methods use is made
of interpolation function between the spatially correlated random variables. The third category
are the so-called average discretization methods (red blocks). Not all combinations are possible
between the generators of spatially correlated random variables (1st column) and discretization
methods (2nd column) as will be shown at the end of section 2.5.
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Random field generators

Class 2Class 1

Discretization methods

Midpoint method (MP) Karhunen Loève expansion (KL)
Covariance Matrix 

Decomposition (CMD)

Integration point method (IP) Orthogonal Series 
Expansion (OSE)

Moving Average (MA)

Shape Function method (SF) Expansion Optimal Linear
Estimation method (EOLE)

Discrete Fourier 
Transform (DFT)

Optimal Linear Estimation 
method (OLE)

Nyström methodFast Fourier Transform (FFT)

Spatial Average method (SA) Galerking based methods
 (FEM & FCM)

Turning Bands Method (TBM)

Weighted Integral method (WI) Polynomial Chaos expansion (PC)
Local Average Subdivision 

method (LAS)

Series expansion methodsGenerators of spatial 
correlated variables

Fig. 2.6.: Classification random field generators.

Class 2 generators The second class of random field generators are the so-called series expansion
methods. The random field is represented by a sum of functions which are multiplied by a random
variable. These methods result in a continuous random field. It can be reasoned that the Discrete
and Fast Fourier Transform methods belong to class 2 since these methods yield a series expansion
of sinusoids to generate the random field. However the generated field is not continuous, it is only
determined on the nodes of the random field. Therefore it is classified as a class 1 method.

In the FE model the continuous random fields have to be numerically integrated. This comes
down to a summation of the evaluated values of the continuous functions at the integration points
multiplied by the weight of the corresponding integration point. Which integration scheme is
the most accurate is questionable, since the continuous function does not have to be an nth-order
polynomial.

If an uncorrelated random field is desired these methods do not have to be applied. In that case a
random number generator belonging to the distribution type of the parameter has to be used. The
random numbers can be generated for every element or every integration point in the FE model.

In the section 2.4 the generators of spatially correlated random variables will be explained. In
section 2.5 the different discretization methods will be explained. However, the weighted integral
method will not be considered in this report. In section 2.6 the class 2 methods will be explained
briefly.
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2.4 Class 1 generators
In this section the different methods to generate spatially correlated random variables are explained.
These correlated random variables are collected in a vector as follows:

In 1D zc(x) = zc(xi) =


zc(x1)

...
zc(xn)

 (2.66a)

In 2D and 3D zc(x) = zc(xi) =


zc(x1)

...
zc(xn)

 (2.66b)

Where N is equal to the number of nodes in the random field mesh and xi gives the nodal location
of the ith node. The correlated random variables zc(xi) are only evaluated on the locations of the
nodes. When the generator is coupled with a discretization method a random field is acquired
which can be implemented in a FE model. In 2D the correlated random variables can also be
expressed in a matrix to match its 2D character.

Zc(x) = Zc(xi, yj) =


Zc(x1, y1) Zc(x1, y2) . . . Zc(x1, ym)
Zc(x2, y1) Zc(x2, y2) . . . Zc(x2, ym)

...
...

. . .
...

Zc(xn, y1) Zc(xn, y2) . . . Zc(xn, ym)

 (2.67)

Where N is equal to the number of nodes in x direction and M is equal to the number of nodes in
the y direction in the random field mesh. In 3D it becomes a three-dimensional matrix.

All the methods in this section describe how spatially correlated random variables, which are
standard normal distributed, can be generated. These random variables (X) can be transformed to
normally distributed random variables having a variance equal to σ2 and a mean equal to µ (Y) as
follows:

Y = µ+ σX (2.68)

To obtain spatially correlated random variables which are log-normally distributed, the Nataf
transformation, described in section 2.3.1, can be applied.

The information in this section is based on the following references [4, 5, 13, 14]
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2.4.1 Covariance Matrix Decomposition method (CMD)

With the Covariance Matrix Decomposition method (CMD) a set of correlated random variables can
be generated as follows:

zc(x) = Lχ (2.69)

where:

zc(x) = vector containing spatially correlated random variables

χ = vector of independent zero mean, unit variance, normally distributed

random variables

L = decomposed correlation matrix

For a set of N random variables which are collected in vector y, the correlation matrix is defined
as:

Rij = Cov(yi, yj)√
Var(yi)Var(yj)

=


1 ρ(y1, y2) . . . ρ(y1, yn)

1 ρ(y2, yn)
. . .

...
symmetric 1

 (2.70)

This matrix has to be decomposed such that the multiplication of Lχ results in a vector (χc) of
normally distributed random variables having a zero mean, a unit variance and a specific correlation.
Using equation 2.29 it can be shown that the correlation matrix of the vector xc can be decomposed
into two matrices as follows:

R = Cov[χc,χc] = E[χcχ
T
c ]− 0 · 0 = E[χcχ

T
c ] = E[LχLχT ] = LE[χχT ]LT

= LILT = LLT (2.71)

Where matrix L can be taken out of the expectation since the elements only consist constants.

The correlation matrix is symmetric and positive definite. It can therefore be decomposed using
Cholesky decomposition and eigendecomposition to obtain a real valued matrix L. With Cholesky
decomposition the matrix is decomposed in an upper triangular matrix and a symmetric lower
triangular matrix like R = LLT .

The eigendecomposition of a square matrix entails the following factorization:

R = QΛQ (2.72)

Where Λ is a diagonal matrix with the eigenvalues (λi) of matrix R on the diagonal and matrix Q
contains the associated eigenvectors. The matrix L is obtained as follows:

R = QΛ̃Λ̃Q = LLT → L = QΛ̃ (2.73)

Where Λ̃ = diag(
√
λ)
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The values in the correlation matrix (equation 2.70) can be evaluated using a correlation functions.
In the next chapter, two common used correlation functions are given in equation 3.1 and 3.2.
The coordinates of the nodes associated with the two random variables are the arguments for this
correlation function.

The computation becomes very computational intensive as N increases, i.e. the matrices become
very large. Also the method is more prone to round off errors when N increases [14]. So this
method is less suited for random fields with many nodes.

2.4.2 Moving Average method (MA)

With the Moving Average method (MA) the correlated random variables are constructed by averaging
an underlying white noise process. In 1D the values of the random field can be calculated with:

zc(xi) =
N∑
k=1

f(xk − xi)Wk (2.74)

Where Wk is the discrete white noise process, which has a zero mean and unit variance and f is a
weighting function which satisfies:

σ2ρ(∆x) =
∫ ∞
−∞

f(x)f(x−∆x)dx (2.75)

This method is computationally very slow and it is difficult to compute f for an arbitrary correlation
function [14].

2.4.3 Discrete Fourier Transform method (DFT)

In the Discrete Fourier Transform method (DFT) the random field is represented as a sum of sinusoids.
In order to obtain the values for the correlated random variables the following function is evaluated
at every grid point of the random field mesh:

zc(xi) =
N∑
k=1

Akcos(ωkxi) +Bksin(ωkxi) (2.76)

The Ak and Bk coefficients are mutually independent and normally distributed random variables
with zero mean and variances equal to:

E[A2
1] = E[B2

1 ] = 1
2G(ω0)∆ω (2.77)

E[A2
k] = E[B2

k] = G(ωk)∆ω, for k = 2, 3, . . . , N (2.78)

Where G(ω) is the one sided spectral density function. This function is discretized into N parts. An
example of this function and the determination of the variances of the coefficients Ak and Bk can
be found in figure 2.7. In equation 2.76 only the real part of the discrete Fourier transform is given
since the random field only consist of real values. The DFT method is computationally very slow,
especially in 2D and 3D [14].
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Fig. 2.7.: Spectral density function which is discretized into 7 parts. The area under the graph per part gives
the variance for the coefficients [13].

2.4.4 Fast Fourier Transform method (FFT)

As the name indicates, the Fast Fourier Transform method (FFT) can calculate the Discrete Fourier
Transform in equation 2.76 more efficient. For this, the number of spatial points is taken the same
as the number of frequency points (N = K) and they are discretized equispaced according to:

xj = (j − 1)∆x = (j − 1)D
N − 1 , for j = 1, 2, . . . , N (2.79)

ωk = (k − 1)∆ω = 2π(k − 1)(N − 1)
ND

, for k = 1, 2, . . . , N (2.80)

where D is the size of the random field mesh and N is equal to the number of nodes in the random
field mesh. In this method N has to be equal to a power of 2, i.e. 2m.

Based on this discretization and using the inverse Fourier relationships, the variances of the
coefficients Ak and Bk can be found [4], which results in:

Var[Ak] =


1
2G(ωk)∆ω if k = 1
1
4 [G(ωk) +G(ωN−k+2)]∆ω if k = 2, . . . , N2
G(ωk)∆ω if k = 1 + N

2

(2.81)

Var[Bk] =
{

0 if k = 1 or k = 1 +N/2
1
4 [G(ωk) +G(ωN−k+2)]∆ω if k = 2, . . . , N2

(2.82)

The coefficients have the following symmetries [5]:

Ak = 1
N

N∑
j=1

zc(xj)cos(2π (j − 1)(k − 1)
N

) = AN−k+2 (2.83a)

Bk = 1
N

N∑
j=1

zc(xj)sin(2π (j − 1)(k − 1)
N

) = −BN−k+2 (2.83b)
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This arises from the equispaced discretization and the real valued values of zc(xj). Therefore only
half of the coefficients have to be generated. The values of the spatially correlated random variables
in 1D can then be calculated by applying a FFT algorithm on the following Fourier transform:

zc(xj) =
N∑
k=1

[Ak − iBk]exp (i2π(j − 1)(k − 1)/N) (2.84)

FFT method in 2D According to [4], the discrete Fourier transform in 2D and its characteristics
are given by:

Zc(xi, yj) =
Nx∑
l=1

Ny∑
m=1

Almcos
(

2π(l − 1)(i− 1)
Nx

+ 2π(m− 1)(j − 1)
Ny

)
+ Blmsin

(
2π(l − 1)(i− 1)

Nx
+ 2π(m− 1)(j − 1)

Ny

)
(2.85)

Where Nx and Ny are the number of nodes in the random field in x and y direction respectively.
Using the inverse Fourier transform relationships will result in the following planar symmetries for
the Fourier coefficients:

ANx−l+2,Ny−m+2 = Al,m, BNx−l+2,Ny−m+2 = −Bl,m
ANx−l+2,m = Al,Ny−m+2, BNx−l+2,m = −Bl,Ny−m+2 (2.86)

for l,m = 2, 3, . . . , 1 + Nα
2 , where Nα is either Nx or Ny. Where it is convenient to choose the

direction with the highest number of nodes. Also the following line symmetries can be found:

An,Ny−m+2 = An,m, Bn,Ny−m+2 = −Bn,m
ANx−l+2,n = Al,n, BNx−l+2,n = −Bl,n (2.87)

which hold for the same range of l and m as for the planar symmetries and n equal to 1 or 1 + Nα
2 .

The graphical impression of the symmetries is shown in figure 2.8.

Only the coefficients in the grey areas and on the four half lines along n = 1 or 1 + Nα
2 have to

be generated. The mean value of these coefficients is again equal to zero. The variances can be
determined as follows:

E[A2
lm] = ∆ωx∆ωyGd(ωl, ωm) for l = 1, 1 + Nx

2 andm = 1, 1 + Ny
2 (2.88)

E[B2
lm] = 0 for l = 1, 1 + Nx

2 andm = 1, 1 + Ny
2 (2.89)

and

E[A2
lm] = E[B2

lm] =


1
4∆ωx∆ωy(Gd(ωl, ωm) +Gd(ωl, ωNy−m+2)) for l = 1, 1 + Nx

2
1
4∆ωx∆ωy(Gd(ωl, ωm) +Gd(ωNx−l+2, ωm)) form = 1, 1 + Ny

2
1
8∆ωx∆ωy(Gd(ωl, ωm) +Gd(ωl, ωNy−m+2)
+Gd(ωNx−l+2, ωm) +Gd(ωNx−l+2, ωNy−m+2)) otherwise

(2.90)
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where

Gd(ωl, ωm) = G(ωl, ωm)
2d (2.91)

where d is the number of components of (ωl, ωm) equal to zero. The values of the spatially correlated
random variables in 2D can then be calculated by applying a FFT algorithm on the discrete Fourier
transform in equation 2.85.

l

m

+11
Nx
2 N x

1

1+
Ny
2

N y

Fig. 2.8.: Graphical impression of the planar and line symmetries in the variances of the Fourier coefficients
[4].

Performance FFTmethod According to Fenton [4], the Fast Fourier Transform is computationally
more efficient than the preceding methods. However, to acquire accurate results, the method has to
be applied carefully. As shown in [4], the covariance function of a real FFT process is symmetric
about the midpoint of the field regardless of the desired target correlation structure. To bypass
this problem, the random field size has to be enlarged at least with Lc in every dimension. After
the generation of spatially correlated random variables the variables outside the original domain
are left out. Within the original domain the variables will approximately have the desired target
covariance structure. Another issue of the FFT method has to do with frequency discretization.
This discretization is coupled to the space discretization. The frequency discretization has to be
sufficiently fine, in order to approximate the area under the one-sided SDF appropriately. Therefore,
the random field mesh has to be determined carefully to be sure the frequency discretization is fine
enough to omit erroneous results.
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2.4.5 Turning Bands Method (TBM)

The Turning Bands Method (TBM) can only generate spatially correlated random variables for 2D
and 3D random fields. They can be generated from a series of 1D processes. First a number of lines
with a random direction are defined in the domain. For every line a random process is simulated
with the FFT method. The values at the grid points of the random field mesh are determined by
the sum of orthogonal projections of the 1D processes to that point divided by the square root of
the number of lines. In figure 2.9 the turning bands method with two lines is visualised. Also the
formula to determine the values of the random field is given.

Initially, this method is proposed by Matheron [15]. The performance of this method is considered
by Fenton in [4]. It is stated that if 16 lines are used in 2D, the method is as efficient as the FFT
method in 2D. However, more lines have to be used to acquire no distortion in the field. It is
mentioned that 64 lines are sufficient. Yet, the method becomes 3-5 times slower than the FFT
method. Another issue of this method is the selection of the correlation function or the SDF for the
1D process. This function has to be chosen such that correlated random variables, for the random
field in 2D or 3D, have the desired target correlation structure. To find this correlation function or
SDF is quite hard in general. If the number of lines is increased, the method becomes very accurate.
The efficiency although decreases as the number of lines increases.

Zc(xi)

H1(ξk1)

H2(ξk2)

u1

u2

Fig. 2.9.: Visualisation of the turning bands method [4].

2.4.6 Local Average Subdivision method (LAS)

The Local Average Subdivision method (LAS) is a fast and accurate method to generate discontinuous
random fields which are locally averaged. In this method the spatially correlated random variables
are automatically discretized with the spatial average method to obtain the random field. The
variance of the random variables is reduced based on the element size of the random field mesh. As
explained in section 2.2.2, this reduction can be determined with the variance function. In section
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2.5.5, the spatial average discretization method will be explained in more detail. In this section the
method as proposed by Fenton in [4, 14] will be explained.

The LAS algorithm starts with a very coarse random field mesh. With this mesh, a discontinuous
random field is generated using the CMD method combined with the spatial average discretization
method. As mentioned in section 2.4.1, the CMD method performs well for fields with a low
number of nodes. Thereafter the random field mesh is repeatedly divided till the desired coarseness
is obtained. This top down approach is visualised schematically in figure 2.10, where the starting
random field mesh has only one element. In this method not the nodes but the centre of the
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Fig. 2.10.: Top-down approach of the local average subdivision process[5].

elements are taken as reference point to determine the covariance between the different random
variables. In the following text the word cells will be used which refers to the elements of the
random field mesh. First the LAS method in 1D will be explained, next the 2D algorithm will be
explained and thereafter the performance of the method will be discussed.

LAS method in 1D As mentioned above, the algorithm starts with the generation of a random
field with a coarse random field mesh, thereafter the cells are divided repeatedly. The values of
the cells which are divided in stage i are indicated with Zic(x2j−1) and Zic(x2j), where j is the cell
number of the parent cell in previous stage. This numbering is visualised in figure 2.11. The values
of the newly created cells are normally distributed and should fulfil the following requirements:

1. They posses the correct variance. The variance is reduced according to the variance function
(equation 2.58), where the new cell size is taken as domain size.

2. They are properly correlated with each another according to equation 2.55.
3. The average value is equal to the parent cell value, i.e. 1

2 (Zic(x2j−1) + Zic(x2j)) = Zi−1
c (xj).

4. They are properly correlated with the neighbouring cells of the parent cell, Zi−1
c (xj−1) and

Zi−1
c (xj+1).

Stage (i-1)

Stage i

Zc
i-1(xj)

Zc
i(x2j-1) Zc

i(x2j)

Fig. 2.11.: Numbering cells LAS in 1D.

Because the value of each cell is correlated with its neighbours, in the end the random field will
have the desired target covariance structure. The value of the right cell of one of the divided cells
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in stage i is determined by estimating its mean and adding a zero mean discrete white noise ciW i
j

having variance (ci)2 which results in:

Zic(x2j) = M i
2j + ciW i

j (2.92)

WhereM i
2j is the best linear estimate for the mean, which can be determined by a linear combination

of the values of the neighbouring cells in the previous stage as follows:

M i
2j =

j+n∑
k=j−n

ai−1
k−jZ

i−1
c (xk) (2.93)

The number of neighbouring cells n can be chosen equal to 1 or 2. The value of its accompanying
left cell (Zic(x2j−1)) can be determined using requirement three which results in:

Zic(x2j−1) = 2Zi−1
c (xj)− Zic(x2j) (2.94)

The c and a coefficients for every stage can be found by following the four requirements mentioned
above. To find the values for the a coefficients, equation 2.92 is multiplied by Zi−1

c (xm), with
m = j − n, . . . , j + n. Taking expectations and using the fact that W i

j is uncorrelated with the stage
i-1 values result in:

E[Zic(x2j)Zi−1
c (xm)] =

j+n∑
k=j−n

ai−1
k−jE[Zi−1

c (xk)Zi−1
c (xm)] (2.95)

The c coefficients can be determined by squaring equation 2.92, taking expectations and employing
the result of equation 2.95, which results in:

(ci)2 = E[Zic(x2j)2]−
j+n∑

k=j−n
ai−1
k−jE[Zic(x2j)Zi−1

c (xk)] (2.96)

The cross-stage covariances (E[Zic(x2j)Zi−1
c (xm)]) in equation 2.95 and 2.96 can be determined

with:

E[Zic(x2j)Zi−1
c (xm)] = 1

2E[Zic(x2j)Zic(x2m−1)] + 1
2E[Zic(x2j)Zi−1

c (x2m)] (2.97)

Where use is made of the third requirement, which demands upwards averaging.

The covariances in the equations above can be determined using equation 2.55 or 2.61. In these
equations the domain size of a cell in stage i is determined with:

Di = D

k12i (2.98)

Where D is the domain of the random field and k1 is the number of cells of the random field in
stage 0.

At the boundaries of the random field, the algorithm may require values from cells of a previous
stage which lie outside the domain of the random field. Fenton [4] handles with this problem by
assuming that what happens outside the domain is uncorrelated with what happens within the
domain. This may lead to an error, but it is considered to be insignificant.
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LAS method in 2D In two dimensions the rectangular cells are repeatedly divided into four
equal sized cells. The division of one cell and the numbering is visualised in figure 2.12. The
values of the cells which are divided in stage i are indicated with Zic(x2j−1, y2k−1), Zic(x2j−1, y2k),
Zic(x2j , y2k−1) and Zic(x2j , y2k), where j and k are the cell numbers of the parent cell in previous
stage. The same requirements as in the 1D algorithm are used to come to the following expression
of the new cell values:

Zi1 = Zic(x2j−1, y2k−1) = ci11W
i
1jk +

nxy∑
l=1

ai−1
l1 Zi−1

c (xm(l), yn(l)) (2.99a)

Zi2 = Zic(x2j−1, y2k) = ci21W
i
1jk + ci22W

i
2jk +

nxy∑
l=1

ai−1
l2 Zi−1

c (xm(l), yn(l)) (2.99b)

Zi3 = Zic(x2j , y2k−1) = ci31W
i
1jk + ci32W

i
2jk + ci33W

i
2jk +

nxy∑
l=1

ai−1
l3 Zi−1

c (xm(l), yn(l)) (2.99c)

Zi4 = Zic(x2j , y2k) = 4Zi−1
c (xj , yk)− Zic(x2j−1, y2k−1)− Zic(x2j−1, y2k)− Zic(x2j , y2k−1)

(2.99d)

Where m(l) and n(l) are functions which indicate the neighbouring cells in the previous stage
which are shown in orange in figure 2.12. The a coefficients can be determined with:

E[Zic(x2j , y2k)Zi−1
c (xm(p), yn(p))] =

nxy∑
l=1

ai−1
l1 E[Zi−1

c (xm(l), yn(l))Zi−1
c (xm(p), yn(p))] (2.100a)

E[Zic(x2j , y2k−1)Zi−1
c (xm(p), yn(p))] =

nxy∑
l=1

ai−1
l2 E[Zi−1

c (xm(l), yn(l))Zi−1
c (xm(p), yn(p))]

(2.100b)

E[Zic(x2j−1, y2k)Zi−1
c (xm(p), yn(p))] =

nxy∑
l=1

ai−1
l3 E[Zi−1

c (xm(l), yn(l))Zi−1
c (xm(p), yn(p))]

(2.100c)

Where p varies from 1 to nxy, which results in a covariance matrix at the RHS of the formulas
in equation 2.100. To find the c coefficients, it is assumed that they can be found in the lower
triangular matrix ci, according to:

ci(ci)T = R (2.101)

Where R is a symmetric matrix and is given by:

Rrs = E[ZirZis]−
nxy∑
l=1

ai−1
lr E[Zi−1

c (xm(l), yn(l))Zis] for r, s = 1, 2, 3 (2.102)

In this equation the index notation, which is given at the left hand side of equation 2.99, is used. In
green the same index notation can be found in figure 2.12.

The cross-stage covariances in the formulas above can be determined by considering the formula
which ensures upwards averaging, i.e.

Zi−1
c (xm, yn) = 1

4Z
i
c(x2m, y2n) +Zic(x2m−1, y2n) +Zic(x2m, y2n−1) +Zic(x2m−1, y2n−1) (2.103)
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Fig. 2.12.: Numbering of cells for the LAS method in 2D where only the centre parent cell is divided in four
rectangular new cells which are indicated with blue.

Multiplying by Zic(x2j , y2k) and taking expectations gives:

E[Zic(x2j , y2k)Zi−1
c (xm, yn)] = 1

4E[Zic(x2j , y2k)Zic(x2m, y2n)] . . .

. . . + 1
4E[Zic(x2j , y2k)Zic(x2m−1, y2n)] . . .

. . . + 1
4E[Zic(x2j , y2k)Zic(x2m, y2n−1)] . . .

. . . + 1
4E[Zic(x2j , y2k)Zic(x2m−1, y2n−1)] (2.104)

Performance LAS method According to Fenton [4], in most cases the LAS method is slightly less
or as efficient as the FFT method. Especially, if the symmetric covariance structure is amended
in the FFT method. With increasing field size and in multiple dimensions the method then even
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surpass the efficiency of the FFT method. For homogeneous random fields, the calculation of the a
and c coefficients only have to be done once for every stage because they are independent of the
position of the cell in the field. To deal with the boundary conditions a distinction has to made
between interior, corner and side cells. The a and c coefficients will be different for the cells at the
boundary of the random field since it is assumed that what happens inside the random field domain
is uncorrelated with the values outside the domain.

The values of the random field with the LAS method are automatically averaged locally, which
results in a lower variance in the values of the random field. However, if the random field mesh
becomes fine enough it is virtually indistinguishable from the limiting continuous random field. The
point variance of the random field is approached since the reduction of the variance is negligible
small. Thus the method can be used to approximate continuous random fields as well.

2.5 Discretization methods for class 1 generators
After the spatially correlated variables are generated they have to be assigned to the elements or
integration points of the finite elements in some way. To do so, different discretization methods are
available. The first four discretization methods are the so called point discretization methods and
are visualised in 1D and 2D in figure 2.13

Midpoint
method

1D

2D

Integration point 
method

Shape Function 
method

Optimal linear 
estimation method

Fig. 2.13.: Visualization of the discretization methods in 1d and 2D.

2.5.1 Midpoint method

In the midpoint method, the nodes of the random field mesh coincide with the midpoints of the
finite elements. In this method the random field mesh is not independent of the finite element
mesh. After applying the midpoint method, a piecewise constant random field is created which is
discontinuous at the finite element boundaries. In the FEM program every element is assigned a
spatially correlated value of the discontinuous random field.

The discretized random field Ĥ(x) can be expressed as:

Ĥ(x) = zc(xc), x ∈ Ωe (2.105)

Where xc is the coordinate of the midpoint of an element and Ωe is the domain of the element.
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If the random field mesh does not coincide with the midpoints of the finite elements, mapping
techniques can be used to obtain a value. The value for a certain finite element can then be
determined by taking for example the value of the nearest grid point of the random field to the
centre of the finite element.

2.5.2 Integration point method

In the integration point method, the grid points of the random field coincide with the integration
points of the finite elements. Every integration point is provided with its own value. The random
field mesh is more refined than the finite element mesh. The discontinuities are not only localized
at the element boundaries but also within the finite element. Again mapping techniques can be
used if the grid points of the random field mesh do not coincide with the integration points.

The discretized random field can be expressed as:

Ĥ(x) = zc(xi), x ∈ Ωi (2.106)

Where xi is the coordinate of an integration point of an element and Ωi is the domain of that
integration point.

2.5.3 Shape function method

In the shape function method, shape functions are used to interpolate between the grid points of
the random field mesh. These shape functions may be the same as used for the description of the
displacement field, but may also be arbitrarily chosen. This method results in a continuous random
field.

The discretized random field can be expressed as:

Ĥ(x) =
q∑
i=1

Ni(x)zc(xi), x ∈ Ωe (2.107)

Where q is the number of nodes of the random field element e, xi is the coordinate of the ith node
of that element and Ni are the shape functions.

2.5.4 The Optimal Linear Estimation (OLE) method

In this method the functions to interpolate between the grid points of the random field mesh are
such that the variance of the approximation error for each point inside the field is minimized. It is a
special case of regression on linear functionals and result in a kind of optimal shape functions. The
result is a continuous random field.
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The discretized random field can be expressed as:

Ĥ(x) = a(x) +
q∑
i=1

bi(x)zc(xi) (2.108)

Where q is the number of nodal points involved in the approximation and a(x) and b(x) are given
by:

a(x) = µ(x)− bT (x)µ (2.109)

b(x) = R−1
zczcRH(x)zc (2.110)

Where Rzczc is the correlation matrix as defined in 2.70 and RH(x)zc is a vector of length q
containing the covariances between a node and any location in the field, which are thus functions
of the coordinate x. The derivation of equation 2.108 is given in [16].

The optimized shape functions can now be defined as:

NOLE
i = (R−1

zczcRH(x)zc)i =
q∑
j=1

(R−1
zczc)ijσ(x)σ(xj)ρ(x,xj) (2.111)

2.5.5 Spatial average method

The spatial average method belongs to the second class of discretization methods, namely the
average discretization methods. The method is based on the idea that in the stochastic finite element
method the weighted average, which is normally found by numerical integration of a continuous
random field, is already unified in the discretization method. Like measurement of material
properties, which are carried out on a certain volume, the values of the random field are also local
averages. Based on local average theory in section 2.2.2, the point variance is reduced with the
variance function (2.58) and the covariance function between two local averages (2.55) is used.

The discretized random field can be expressed as:

Ĥ(x) =
∫

Ωe H(x)dΩe
|Ωe|

≡ z̄c(xc), x ∈ Ωe (2.112)

Where z̄c(xc) are spatially correlated random variables according to the local average theory, xc is
the coordinate of the midpoint of an element and Ωe is the domain of the element.

Matthies et al.[17] mention that this method is not applicable for non-rectangular elements in the
random field mesh. For such domains the covariance function and variance function are hard to be
found. However, if the random field mesh and FE mesh do not coincide the weighted average can
be taken to determine the values for a certain element or integration point. In this way this problem
can be omitted since the random field elements stay rectangular. This approach is visualised in
figure 2.14. In both cases the weighted averages can be taken of the cells which are overlapped by
the blue surface.
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Fig. 2.14.: Weighted average for one element or an integration point.

An advantage of this method is that low order finite elements can be used in the FE model. In a
FEM program a continuous random field is numerically integrated. For rough random fields this
requires a very fine FE mesh or high order elements.

2.5.6 Comparison discretization methods

In [16] the different methods are compared for a 1D and 2D zero mean and unit variance random
fields. The following three different correlation functions are considered in this comparison:

ρ(∆x) = exp
(
−∆x
Lc

)
Exponential correlation function (2.113)

ρ(∆x) = exp
(
−∆x2

L2
c

)
Squared Exponential correlation function (2.114)

ρ(∆x) =
sin
(

2.2∆x
Lc

)
2.2∆x
Lc

Cardinal Sine correlation function (2.115)

In this report only the results for the Exponential (Exp) and Squared Exponential (SExp) correlation
function are considered which are both used often in engineering problems. In this comparison the
relative error in the variance of the random field is used to quantify the accuracy of the methods as:

E(Ωe) = sup
x∈Ωe

Var[H(x)− Ĥ(x)]
Var[H(x)] (2.116)

The results of the comparison are shown in figure 2.15. In this comparison linear shape functions
are selected in the SF method. The following remarks can be made with regard to these graphs.
For the Exp correlation function the error remains large, even for a small element size. For both
correlation functions the SF and OLE method are the most accurate. OLE is even slightly more
accurate than SF for the SExp correlation function.
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Fig. 2.15.: Comparison of errors for MP, SA, SF and OLE methods for varying element size[16].

2.5.7 Combining generators with a discretization method

In figure 2.6, an overview was given of the different generators of spatially correlated random
variables and discretization methods. In this section the combinations which are not possible are
enlightened.

The OLE method entails a eigendecomposition of the covariance matrix to find the optimised
shape functions. It is therefore convenient to combine the OLE method with the CMD method
using eigendecomposition as decomposition method. Other combinations are possible but are less
advantageous.

The Spatial average method can be combined with the CMD method quite easily. The covariance
matrix is then composed using the covariance function between two local averages. With the LAS
method, the random variables are automatically discretized with the spatial average method. For
the other methods the SDF function of the covariance function between two local averages has to
be found, which is quite hard in general. Jha and Ching [18] show an approach to combine the
spatial average discretization method with the FFT method.

2.6 Class 2 Generators
The second class of random field generators entail the series expansion methods. The random field
is not a combination of discretized sections any more. Instead, the random field is described by
a continuous function which holds for the whole domain of the random field. As for other series
representation methods, like the Fourier series expansion, such a function is build up by a set of
deterministic functions which are each multiplied by a constant. In this case, these constants are
random variables ci(θ) which all have their own variance based on the contribution of the basis
functions fi to the series expansion. The series expansion for random fields can be expressed as:

H(x, θ) =
∞∑
i=1

ci(θ)fi(x) (2.117)
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The summation of the complete set of basis function is now truncated to find an expression for the
random field, which gives an approximation Ĥ(x) of a continuous random field H(x). This can be
seen as the discretization of the random field and leads to the following expression:

Ĥ(x, θ) =
N∑
i=1

ci(θ)fi(x) (2.118)

It is very advantageous to sort the constants and basis functions such that the first terms have the
largest contribution to the expansion. As remark, it is interesting to see that, in some sense, space
and randomness of the random field are separated in these equations [1].

2.6.1 Karhunen-Loève (KL) expansion

A widely used series expansion method is the Karhunen-Loève (KL) expansion. The KL expansion
entails a spectral decomposition of the covariance function. The discretized expression of the KL
expansion is given by:

Ĥ(x, θ) = µ(x) +
N∑
i=1

√
λiφi(x)χi(θ) (2.119)

Where µ(x) is the mean and χi(θ) are uncorrelated N(0,1) distributed random variables. λi and
φi(x) are the eigenvalues and eigenfunctions of the following eigenvalue problem:∫

Ω
B(x1,x2)φk(x2)dx2 = λiφi(x1) (2.120)

This eigenvalue problem is called the Fredholm integral equation of the second kind where the
covariance function is used as kernel. A valid covariance function is a bounded, symmetric and
positive semi-definite kernel [6]. The eigenfunctions are continuous and orthonormal to each other,
i.e. ∫

Ω
φi(x)φj(x) = δij (2.121)

Where δij is the Kronecker delta. The derivation of equation 2.119 can be found in appendix D.
In this derivation it can be seen that the KL expansion is a optimal representation of the random
field in the sense that the mean square error is minimized. The KL expansion can be viewed as a
decomposition of the random field along the orthogonal random basis vectors with φi(x) being the
projections along the random basis vectors.

2.6.2 Numerical methods to solve the KL expansion

The eigenvalue problem in equation 2.120 can be solved analytically for only a few covariance
functions and geometries of the random field. In the case an analytical solution can not be found, a
numerical method to solve the KL expansion have to be selected.
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The following methods approximate the eigenvalues en eigenfunctions to find a solution for the KL
expansion:

• Orthogonal Series Expansion (OSE) - the basis functions for the series expansion are chosen
arbitrarily.

• Expansion Optimal Linear Estimation (EOLE) method - eigenvectors and eigenvalues of the
covariance matrix are used to find the approximated eigenfunctions and eigenvalues for the
KL expansion

• Nyström method - the integral (2.120) is approximated by a numerical integration scheme.
For a specific selection of the parameters this method is equivalent to the EOLE method [19]

• Galerking based methods - entails the FEM and Finite Cell method (FCM) and are practical in
problems with complex geometries.

The EOLE method will be explained in the next section. For more detailed information about
the other methods reference is made to [19]. In a comparison between the preceding expansion
methods, it depends on the used correlation function and geometry of the domain which method is
the most accurate [1, 19].

2.6.3 Expansion Linear Optimal Estimation method

In the EOLE method, the eigenfunctions and eigenvalues for the KL expansion are approximated
with the eigenvalues and eigenvectors of the covariance matrix. The approximated eigenfunctions
φ̂i(x) are determined as follows:

φ̂i(x) = 1
λ̂i

N∑
j=1

QijB(xj , x) (2.122)

Where λi are the eigenvalues and Q is a matrix containing the eigenvectors of the covariance
matrix. B(xi, x) is the covariance function with xi the nodal coordinate of one of the nodes in the
random field mesh and x a continuous spatial variable. The KL expansion can then be approximated
as follows:

Ĥ(x, θ) = µ(x) +
M∑
i=1

χi√
λ̂i

N∑
j=1

QijB(xj , x) (2.123)

Where χ is a vector containing independent zero mean, unit variance, normally distributed random
variables. More detailed information can be found in [19].

2.6.4 Series expansion for Non-Gaussian random fields

In general, the generation of non-Gaussian random fields with the KL expansion is quite hard. The
Polynomial Chaos (PC) expansion may be of use for generating non-Gaussian fields. It is another
widely used method to represent the random field. It can be shown that the KL-expansion is a
special case of polynomial chaos expansion.

If a non-linear transformation, like the Nataf transformation, is possible, KL expansion is possible.
However, it can not be confirmed that the transformed field inherits the optimal representation of
the random field [19].
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2.7 Random field generation for reinforced concrete
structures
In this section the generation of random fields, specific for reinforced structures, is considered.
First, a short introduction to reinforced concrete is given. Next, the different parameters which
have a stochastic character are considered. In the end, a review of literature where random fields
are used to model reinforced concrete structures is presented.

2.7.1 Introduction to reinforced concrete

Concrete is a composite material which is build up out of aggregate, cement, water and often some
additives. When the cement is in contact with the water the cement starts to harden which binds
the aggregates together. If the different components are mixed well and with the right proportions,
a material is fabricated which can resist high compressive stresses. The tensile strength is only
10% of the compressive strength. To counteract the low tensile strength of concrete in structures,
concrete is combined with reinforcement steel.

During the hardening process the concrete shrinks due to emission of water from the pores and
the ongoing hydration process. If the shrinkage is restrained at the boundaries, for example the
interface with the sub-base, piles and columns, cracks will occur in the concrete. This mechanism is
often neglected in the design phase and can have undesired consequences. Cracks can precipitate
degradation of the concrete and are perceived as aesthetically unappealing.

In the failure modes of concrete, as for other materials, a distinction is made between the Ultimate
Limit State (ULS) and the Serviceability Limit State (SLS). In the ULS the failure load of the
construction is determined using partial safety factors. A distinction can be made in failure due to
bending, shear, tension or crushing of the concrete in the compression zone. In the SLS the focus is
on the limitation of the crack width in the concrete. No partial safety factors are applied in such
calculations.

Due to the inhomogeneity in concrete, the material properties have a high variation. Especially the
tensile strength of concrete has a high COV of 0.3. The high variation results in relative high safety
factors for concrete material properties. The variation in the material properties of reinforcement
steel is very low.

2.7.2 Modelling the variability of reinforced concrete

If the different parameters, which are involved in an analysis of a reinforced concrete structure, are
considered, three different categories can be identified. In table 2.1 an overview of the different
parameters with a random character is given.

Depending on the material model chosen in the non-linear analysis, some of the parameters are
linked to other parameters and can therefore not be chosen independently. Another point of concern
is that some material parameters, like the Poisson’s ratio, have limited boundaries. The mean value
and standard deviation of the material parameters depend on the concrete or steel class. The
associated distribution varies for every parameter. Most common distribution types are the normal,
truncated normal and log-normal distribution type.
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Tab. 2.1.: Examples of parameters in concrete with a uncertain character.

Parameter type Parameter

Geometry Dimensions structural element, e.g. thickness
and position of reinforcement bar

Material Young’s modulus
Poisson ratio
Tensile strength
Compression
Ultimate strain
Fracture energy
Hardening modulus
Angle of internal friction
Cohesion coefficient
Yield stress steel

Loading Pre-stressing

In the CEB-FIB 2010 model code, deterministic relations between the different parameters are
given. They can be used to determine the mean values of a material parameter, based on another
material parameter. The only guideline which gives probabilistic relations between the different
parameters is the Probabilistic Model Code of the Joint Committee on Structural Safety (JCSS)
[20]. In this code it is advised to take into account the spatial variability for the material properties
of concrete only. Other parameters as the cover of the reinforcement or yield stress of the steel
should be taken into account in a reliability analysis with one single random variable.

The correlation function used in this code entails a threshold value, which is different from all
the other approaches found in literature. It is stated that in one batch of concrete the material
properties are correlated with a minimum of 0.5. The used correlation function is a variant of the
SExp correlation function and is given by:

ρ(∆x) = c1 + (1− c1)e−( ∆x
Lc

)2
(2.124)

with the correlation length equal to 5 meters and c1 equal to 0.5. For two different jobs, the values
are uncorrelated according the JCSS model code. The correlation length of 5 m is quite large in
comparison to other approaches in literature, which are given in the next section. This correlation
function should be used only for structural elements. For smaller elements, where local failure
mechanisms are studied, this correlation function is not appropriate. For very large structures the
influence of the spatial variability is negligible. The variation should then be taken into account
with a random variable for the whole structure or parts of the structure.

2.7.3 Review of random field generation for reinforced concrete
structures

In literature several efforts have been made to carry out a non-linear probabilistic analysis for
reinforced concrete structures. In this section an overview of the different approaches to take into
account the spatial variation is given.

In [21, 22] the reliability of concrete bridges is determined by just simply assigning random
variables to several material, load and geometrical properties which are correlated to each other. In
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this case the spatial distribution of the properties is not taken into account. According to Milton and
Zhang [23, 24], this approach is however only appropriate when the dimensions of the construction
are smaller than the correlation length. It is shown that when the dimensions of the construction are
larger than the correlation length, the spatial variation has a significant influence on the structural
reliability. In [25], Lee and Mosalam observed that neglecting the spatial variability of concrete
properties can lead to overestimation of the variation in the load-capacity of a concrete structure.
An interesting contribution is made by De Vasconcellos. In [11] he concludes that the impact on the
reliability due to the spatial variation of concrete properties depends on the failure mechanism of
the concrete structure. For a concrete structure where ductile rupture of the reinforcement steel
was the failure mechanism, it had little influence on the reliability. In that case the variation in the
yield strength of the steel had the most impact on the reliability. For a concrete structure where
crushing of the concrete was the failure mechanism, the variability in the concrete properties did
have an impact on the reliability. In both cases it was shown that the variation in geometrical
properties had a small influence on the reliability. In case of the serviceability limit state, where the
deflections are governing, the variation in concrete properties did have an impact on the reliability.
Also it was noticed that the variation in deflection is larger when the structure is in the cracked
stage than in the non-cracked stage.

An overview of the different methods to model the spatial variation of the concrete properties with a
random field is given in table 2.2. If these methods are compared, some similarities and differences
can be pointed out. First of all, most scholars apply the Covariance Matrix Decomposition (CMD)
method. Next, the method is only applied on a small scale structure as for example a column or a
beam. The CEB 90 model code is often used to relate other concrete properties to the compressive
strength of the concrete. The correlation length varies between 0.5 and 10 m and the coefficient of
variation varies between 0.1 and 0.3. The squared exponential covariance function is mostly used
without the threshold value proposed in the probabilistic model code of JCSS. In all the articles
the reliability is determined with the Monte Carlo Simulation (MCS) method. In most cases, MCS
is combined with a sampling technique to reduce the calculation time. Matthies [17] uses more
advanced techniques, but he only performs linear analyses. No specific information about the
computational performance of different methods is given by the authors. Some authors mention
that other random field generators have to be applied for larger structures and for models in 3D.

Beside the articles mentioned in table 2.2, where the applied method is described and applied on
an (academic) example, there are a couple of articles where software is used to determine the
reliability of a concrete structure. In [26–32] use is made of the Non-linear FEM program ATENA
which is combined with the probabilistic module FREET. The combination of this software is called
SARA. In this program the CMD is used for random field generation and MCS is applied with Latin
Hypercube Sampling and Simulated Annealing. Specific information about correlation lengths or
the used correlation function is not given. If other random field generators are used is also not
mentioned.

Other examples of probabilistic software, which can be used in combination with deterministic FEM
software, are COSSAN-X/OpenCOSSAN [33], NESSUS [34] and CalREL/FERUM/OpenSees [35].
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Tab. 2.2.: Comparison random field generation methods for reinforced concrete structures.

Ref. Construction Scale Method Variable Distribution COV CF Lc Dim. Remarks

[11] Simply suppor- Small FFT Ec Normal 0.15 SExp ∼ 2D Geometric and steel properties are
considered as RV’s and Lc is assigned
three values (h, 4 · h and 10m) to check
its affect on the reliability.

ted beam & fc Normal 0.15 SExp ∼ 2D
a column fct Noraml 0.2 SExp ∼ 2D

[23] Eccentric loa- Small CMD+MP Ec Normal (trunc.) 0.1 SExp 6 · b 1D RF-mesh and FE-mesh coincide,
correlation length depends on width of
column and steel propetries and loads
are considered as RV’s.

ded column fc Normal (trunc.) 0.1 SExp 6 · b 1D
fct Normal (trunc.) 0.2 SExp 6 · b 1D

[36] Blast load Small CMD+MP Cover Normal (trunc.) 0.12 SExp 1.0 m 1D RF-mesh and FE-mesh coincide,
correlation lengths are based on
experimental data and steel propetries
are considered as RV’s.

on column fc log-normal 0.12 SExp 0.5 m 1D

[37] Seismic action Large CMD+MP fc Normal (trunc.) 0.2 SExp - 2D RF-mesh and FE-mesh coincide, other
concrete properties are obtained via
deterministic relations with fc, and Lc
is not mentioned.

on gravity dam

[38] Simply suppor- Small OSE/EOLE fc Log-normal 0.100 Exp 0.6 1D The RF’s of fc, fct and Ec are
correlated, geometry properties and the
load are taken as RV’s, FE-mesh is in
3D, values of RF’s are assigned to MP of
FE.

ted bending fct Log-normal 0.211 Exp 0.6 1D
beam Ec Log-normal 0.105 Exp 0.6 1D

Gf Log-normal 0.341 Exp 0.6 1D
α Log-normal 0.050 Exp 0.6 1D
Ec Log-normal 0.1 Exp - 2D FORM is applied in stead of MCS.

[39] Three point Small CMD+IP fct Log-normal 0.2 Exp 0.6 2D Eigendecomposition is applied, only the
eigenvectors belonging to the largest
eigenvalues are taken into account. In
the second case, two values for COV
and Lc are applied and compared with
an experiment.1

bending beam Ec log-normal 0.2 Exp 0.6 2D
Gf Log-normal 0.2 Exp 0.6 2D

Simply suppor- Small CMD+IP fct Log-normal 0.3/0.25 Exp 0.5/2.1 2D
ted beam Ec Log-normal 0.3/0.25 Exp 0.5/2.1 2D

Gf Log-normal 0.3/0.25 Exp 0.5/2.1 2D
1 In [40] this approach is improved with regard to computational efficiency by applying Artificial Neural Networks
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2.8 FEM and methods for probabilistic FEM
In this section some of the methods where a probabilistic design method is combined with the
Finite Element Method (FEM) are briefly considered. They belong to a collection of methods which
are denoted by the collective term, the Stochastic Finite Element Method (SFEM). First a short
introduction to FEM is given to refresh the memory.

The FEM is a numerical method to find approximate solutions to boundary value problems for elliptic
partial differential equations (PDEs). These PDEs describe the behaviour of physical phenomena.
Such a PDE can be written in its ’weak form’ which can be found with variational methods. This
has the effect of reducing the order of the derivatives appearing in the equation, and leads to
a from which is convenient for a numerical solution. The domain of the problem is subdivided
into smaller parts which are called finite elements. Shape functions are then used along which
the approximated solution can be projected. For solid mechanics problems the displacements
are usually the fundamental unknowns which are approximated by minimizing the error in the
displacement field. This approach is a called the Galerkin method which gives a solution which
is optimal in terms of the strain energy. Based on the solution for the displacement field other
properties as the strains, stresses and internal forces can be determined. To solve the displacement
field a system of equations has to be solved which can be expressed as:

Ku = f (2.125)

Where matrix K is commonly known as the stiffness matrix, vector f as the right hand side (RHS)
vector and vector u as the displacement vector, which can be found by solving the linear system of
equations. This entails the inversion of the stiffness matrix which is quite an expansive operation.
Different solvers are available to do so. For non-linear problems the true failure path can be
found with iterative solvers. The stiffness matrix changes during such an analysis which makes a
non-linear analysis quite expansive in terms of computation time.

2.8.1 Monte Carlo Simulation (MCS)

The Monte Carlo Simulation (MCS) method is the simplest method to perform a SFEM analysis.
This method involves the repeated simulation of a stochastic process to determine the probability
of a certain outcome. The probability of occurrence can be determined by observing the number
of times the simulated outcome is equal to the considered outcome. By the law of large numbers,
the outcome will converge to the expected value. When FEM is combined with MCS, the reliability
of a structure can be determined by the following procedure. As input for the MCS a number of
random variables or random fields are generated. With every random variable or random field a
FEM analysis is carried out. A selection is made in the output, for example the deflection of the
tip of a cantilever beam, and statistical operations are carried out to determine the characteristics
of the distribution of the selected variable. If enough runs are carried out, the MCS is the most
accurate method. The MCS procedure is visualised in figure 2.16.

The problem with MCS is that the computation time for computation intensive problems becomes
very large since the stiffness matrix for the FEM analysis changes for every run. Sampling methods,
where a different sampling distribution than the original distribution is chosen, can be used to
reduce the number of needed runs to acquire a certain accuracy. During the simulation a large
fraction of realisations will be obtained in the failure domain [40]. Examples of sampling methods
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FEM
Input Output

µ ux

p(ux)

Fig. 2.16.: MCS procedure visualised where the FEM program functions as a black box. On the RHS an
example of the analysis of the response of the system.

are Latin Hypercube Sampling, importance sampling and the response surface method. When a
sampling method is applied it is often referred to as improved Monte Carlo simulations. Another
improvement can be made by taking a ’mean’ stiffness matrix and correct for the deviation in the
load vector [37]. Figure 2.17 illustrates the difference between the use of a random variable and a
random field in the Monte Carlo simulation. When random variables are used the property has
a constant value in the model while random fields result in variability within the model. All the
random field generation methods mentioned earlier can be applied in the MCS method.

Run 1: E1=E2=E3=a
Run 2: E1=E2=E3=b
...
Run n: E1=E2=E3=c

With a, b and c as 
random variables

Run 1: E1=a1, E2=a2, E3=a3
Run 1: E1=b1, E2=b2, E3=b3
...
Run 1: E1=c1, E2=c2, E3=c3

With a, b and c being vectors
containing correlated random 
variables 

E1
E3

E2

Random fieldRandom variable

Fig. 2.17.: Comparison between the use of random variables and random fields in MCS.

The MCS method is statistically consistent, it is therefore often used as a reference solution to test
other methods to determine the reliability.

2.8.2 Other probabilistic FEM methods

For computational intensive problems it is advantageous to use a more efficient method which can
determine the reliability of a structure. In this section some of the methods are briefly described.

Perturbation method In the perturbation method a Taylor series expansion of the stochastic
finite element matrix, the loading vector and the displacement vector is made around the mean
of the random variables involved. A statistical evaluation can be made of the displacement vector
which results in an expression for the approximation of statistical properties as the mean and
covariance [41]. The accuracy of the approximation increases when a higher order of the Taylor
expansion is used. The increase in the accuracy is however small compared to the increase in
computational time. The method works quite well for problems with a small COV (<0.2). This can
be explained by the fact Taylor expansion is made around the mean. The tail of the response is
therefore hard to approximate [2]. In literature some examples can be found where the perturbation
method is applied. In [1] it is combined with random fields generated with a class 1 generator and
discretized as piecewise constant random fields. In [42] an example can be found where they are
discretized with the shape function method.
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Finite Element Reliability Method (FERM) The method couples the classical reliability methods,
like FORM and SORM, with the FEM. The probabilities of failure of the different components of a
system are determined by approximating the limit state function belonging to the failure of that
component. The needed information like the design point and the gradient can be determined by
an algorithm combined with FEM. In literature some examples can be found where the reliability
method is applied. In [43] it is combined with random fields generated with a class 1 generator
and discretized as piecewise constant random fields. In [44] an example can be found where it is
combined with a series expansion method.

Spectral Stochastic Finite Element Method (SSFEM) In this method the random field is expressed
using the KL or PC expansion. This expression is used in the definition of the stiffness matrix. For
example, E(x, θ) can be the expanded random field for the Young’s modulus in the stiffness matrix.
The solution of the system, which are the displacements, can now be expanded using one of the
expansion methods. The displacements can be expressed as a function of the set of used random
variables. Sudret [1] states that SSFEM is limited to linear problems only. Material non-linearity or
geometrical non-linearity cannot be dealt with by SSFEM in its latest state of development. The
SSFEM is always combined with class 2 generator methods.

2.8.3 SFEM for non-linear FEM

The FE analyses of concrete structures are almost always non-linear. It is therefore convenient
to consider which of the SFEM methods can be used in a non-linear analysis. In literature only
examples of the MCS method combined with a non-linear analysis can be found. The other
methods become to involved to determine the reliability of the structure. No examples where those
methods are combined with a non-linear analysis can be found in literature till now. Although the
MCS method is not very efficient, it seems the only possible method for non-linear analyses. For
improvements in computation time a proper sampling technique should be selected to reduce the
number of samples in the MCS analysis.

2.9 Structure of general purpose FEM program
In this section the work flow of a general purpose FEM program will be considered, where use
is made of reference [45]. Thereafter it is indicated where random fields could possibly be
implemented in the work flow of such a program.

2.9.1 Work flow FEM program

The structure of a FEM program can be divided into three steps, namely: preprocessing, analysis
and post-processing.

Preprocessing The first step in the FE analysis is known as preprocessing. This step involves
generating a FE mesh. For larger models this it is convenient to use a mesh generation program.
For a FE mesh the element type, the coordinates of the nodes, the boundary conditions and element
connectivity have to be specified. For every element the material data, like the Young’s modulus,
the Poissons’s ratio and the density of the material, have to be specified. All the data of this step is
stored and can be used as input for the FE analysis.
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Analysis This phase starts with reading the input data from the preprocessing stage. Next, the
element stiffness matrix Ke is formed for every element and added into the global stiffness matrix
K. The element RHS vector fe of each element is formed. If a Dirichlet (displacement) boundary
conditions is applied on a degree of freedom the corresponding element in the element RHS is
modified. Thereafter all the element RHS vectors are added into the global RHS vector f . Now the
Neumann (loading) boundary condition are applied by adding them into the RHS vector. Thereafter,
the main part of this stage can be carried out in which the system of equations, given in equation
2.125, is solved. The best method to solve this system of equation depends on the nature of the
problem and its size.

Post processing The solution to the system of equations is now processed to obtain other
interesting quantities as the displacement field, strains, stresses and reaction forces. For static
problems the internal force vector should be zero where no Dirichlet boundary conditions are
applied. This means that the body is in equilibrium.

2.9.2 Non-linear FE analysis

The work flow has to be modified when a non-linear analysis is carried out. A FEA involves
non-linearities when for example the material behaviour is described by non-linear relations (e.g.
crushing and cracking). Large displacements can also introduce non-linearities in the FE analysis.
In that case the configuration is changed such that equilibrium equations must be rewritten with
respect to the deformed structural geometry. Also the load directions and magnitudes may change.

To find a solution which is in equilibrium the loads or displacements are increased with small
increments. In every step equilibrium is sought for by an iterative algorithm. In figure 2.18
an example of such an algorithm is given in case the load is increased. The unbalance can be
determined in terms of displacements, force or energy. If the convergence criteria is met the next
load step is executed.

begin
increment

Stop 
iteration?

no yes End 
increment

Increase 
external load fext

∆u=0

Determine new 
internal force fint

Calculate 
‘out-of-balance force’ 

g=fext-fint,1

Predict change in 
displacements ∂u
∆ui+1=∆ui+∂ui+1

Fig. 2.18.: Solution procedure Incremental-Iterative methods [46].
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2.9.3 Implementation of Random fields in FEM

In the work flow of a general purpose FEM program the material data can be specified in the
preprocessing stage. The random fields for the different parameters should be generated before the
analysis phase. The values in the random field can be assigned to the model on element level or
integration point level. These values have to be stored on the database during the whole analysis.
In the different steps during the analysis, for example when the stiffness matrix is assembled, the
values per element or integration point can be retrieved from the database. An example of a linear
FEM code of a bar in tension, where a random field for the Young’s modulus can be defined, can be
found in appendix E.
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3Assessment of random field
generators

In this chapter the performance of the different methods to generate a random field are considered.
To do so, some of the methods mentioned in chapter 2 are modelled to asses their performance. In
the first section the set-up for the comparison is described. In the next section information is given
on how the selected methods are implemented. Thereafter the results of the comparison will be
given. The conclusions of the comparison will be drawn in the last section of this chapter. After
this assessment the performance of the different methods will be more clear. This will give a basis
for the selection of the most accurate and efficient random field generator for the modelling of
concrete. Besides that the influence of the different parameters on the accuracy and efficiency will
be described.

3.1 Set-up for comparison of random field generators
In this section the set-up for the comparison of the random field generators will be considered.
Based on findings in literature and on the current structure of DIANA, some of the methods
to generate a random field will be selected. Next, the parameters which are considered in the
comparison are given. In the last part of this section the criteria for the comparison to asses the
methods on accuracy and efficiency are given.

3.1.1 Selection of methods for comparison

There are different methods to generate a random field. An overview of the methods to generate a
random field is given in figure 2.6 and the description of the different methods is given in section 2.4
till section 2.6. First the structure of the DIANA program will be considered to asses the boundary
conditions of the program for the generation of a random field.

Structure of DIANA program for random fields In the preprocessing part of the DIANA program
a function exists which can specify the spatial variation of properties in a FE model. This is used in
problems where a priori the relation with a spatial coordinate is known. An example is the increase
of the stiffness of soil with increasing depth. For this function in DIANA an orthogonal grid is
defined. This can be done in 1D, 2D and 3D. Every point in the grid can be assigned a value. In the
FEM analysis the material properties for every integration point can be determined by interpolating
between the grid points.

This description matches perfectly with the approach where a class 1 generator is used in com-
bination with the Shape Function (SF) method. It is therefore very advantageous to select a
class 1 generator which is discretized with the SF method. The structure of DIANA can of course
be changed, but this effort has to result in an increase in performance when another method is
chosen.
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Selection of methods First, a selection is made in the class 1 methods. Based on the findings
in literature, which are reported in section 2.4, the CMD, FFT and LAS method are selected as
most promising generators of spatially correlated random variables. The CMD method is easy to
implement and straight forward, which makes it an attractive option. It is stated that in higher
dimensions and for a large number of nodes this method becomes slow and prone to round of
errors. It is therefore of interest to check to what extend this method is workable in a FEA. The FFT
method and LAS method promise to be very efficient in higher dimensions and for a large number
of nodes. The methods, however, are harder to implement and may be more complex for the user
to understand. In terms of accuracy it is not clear which one of these methods will perform the
best. The MA and DFT method where not selected because they are less efficient than the FFT and
LAS method and also hard to implement. The TBM method is not selected because it is not clear
a priori how many lines have to be selected to acquire accurate results and the derivation of the
correlation function for the 1D process is difficult.

As discretization method the SF method will be selected. In figure 2.15 it is shown that only the
OLE method is slightly more accurate when the Squared Exponential correlation function is used.
The performance of other discretization methods than the SF method will not be assessed in this
report.

As class 2 method the EOLE method is selected to generate random fields. This method is straight
forward to implement and efficient in obtaining a random field approximation. It is however less
efficient in the evaluation of a realization of the field than other methods [19]. No comparison is
made in literature yet between class 1 and class 2 methods to asses them on efficiency and accuracy.
In advance, it can therefore not be stated if the application of a class 2 methods outweighs the
efforts of changing the structure of the DIANA program for the implementation of a random field.
It is therefore very interesting to explore the differences between class 1 and 2 methods.

3.1.2 Selection of parameters for comparison

In this section the different parameters, which may have a fixed or varying value, will be described.
It is chosen to compare the methods in 1D and 2D only. In most cases one or two of the dimensions
are smaller than the correlation length in concrete structures. In such a case the number of
dimensions for the random field can be smaller than the number of dimensions in which the FE
model is modelled. A slender concrete beam can for example be modelled with a 2D FE model
and with a 1D random field. In 1D 2000 fields and in 2D 200 fields will be generated for the
comparison.

The values for the statistical characteristics of concrete are determined based on the review of
literature in chapter 2. In this review, the values used for the correlation length varies from 0.5 till
5 m in most cases. In a single case it was equal to 10 m, but this was not assumed to be realistic.
Therefore 0.5 m, 2.5 m and 5 m are selected as correlation lengths.
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For the determination of the domain size and number of nodes the following considerations are
taken into account:

• For the exponential correlation function the element size of the RF-mesh LRF should be taken
between Lc/10 and Lc/5

• For other correlation functions the element size needs to be taken between Lc/4 and Lc/2.
• For some of the methods it is required that the number of nodes needs to be a power of 2.

The domain size is set equal to 17.5 m in 1D and 17.5 m x 17.5 m in 2D. For a correlation length of
0.5 m the number of nodes is chosen equal to 64, 128 and 256 in each direction. For a correlation
length of 2.5 m the number of nodes is chosen equal to 16, 32 and 64 in each direction. For a
correlation length of 5 m the number of nodes is chosen equal to 8, 16 and 32 nodes in each
direction. An overview of the different correlation lengths, number of nodes, element size of the
RF-mesh and the ratio between the correlation length and the element size of the RF-mesh is given
in table 3.1.

Tab. 3.1.: Number of nodes and corresponding element size of random field mesh for the
different correlation lengths.

Correlation length Number of nodes Element size RF-Mesh Lc/LRF

5 m 8 2.5 m 2
16 1.17 m 4.3
32 0.5645 m 8.9

2.5 m 16 1.17 m 2.1
32 0.5645 m 4.4
64 0.2778 m 9

0.5 m 64 0.2778 m 1.8
128 0.1378 m 3.6
256 0.0686 m 7.3

With all the methods standard normal random fields are generated which are thereafter transformed
to the desired distribution having a certain value for the mean and standard deviation. In the review
of random field generation for concrete structures both the normal and log-normal distribution
type are used. It is therefore chosen to consider both distribution types in the comparison. When a
normal distribution is chosen the mean is set equal to 0 and the standard deviation is set equal to 1,
which corresponds to a standard normal distributed random field. With the Nataf transformation,
which is described in section 2.3.1, a random field with a log-normal distribution is acquired. It
is expected that if the standard normal random field can be generated accurately the log-normal
random field will also be accurate. This is checked by generating log-normal random fields with
both mean and standard deviation equal to 1. A COV of 1 is higher than the COV for concrete
material properties which varies from 0.1 - 0.3. For a COV of 1, the transformation to a log-normally
distributed random field is stronger than for a lower COV. The differences between the use of a
normal and log-normal distribution type will be more clear in this way.

In literature both the the Exponential (Exp) and Squared Exponential (SExp) correlation function
are used often for engineering practices. For concrete structures the SExp correlation function is
used more often. In some rare cases the Exp correlation function is used. This type of correlation
function is more suitable for the modelling of the spatial variability of soil properties.
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In a comparative study between generators of random fields [47] the Exp correlation function is
used. It is then assumed that for other correlation functions the same holds for the performance of
the different generators. However, in [1] it is shown that the accuracy of a generator does depend
on the used correlation function. It is therefore chosen to select both correlation functions for the
comparison to check the differences. Furthermore a threshold value (c1) for the correlation function
of 0.5 is suggested by the Joint Commission of Structural Safety (JCSS). In the comparative studies,
mentioned above, this threshold value is not considered, i.e. c1 = 0. In the comparative study of
this research a value of 0 and 0.5 is used. The correlation functions, used in the assessment, are
given below.

(Exp) ρ(∆x) = c1 + (1− c1)exp
(
−∆x
Lc

)
(3.1)

(SExp) ρ(∆x) = c1 + (1− c1)exp

(
−
(

∆x
Lc

)2
)

(3.2)

where ∆x = |x1 − x2|.

3.1.3 Selection of criteria for comparison

All the methods will be assessed on efficiency and accuracy. With respect to efficiency a distinction
is made between the initialization time and the realization time. For the generation of a random
field, first, some quantities have to be determined which can then be used in the generation of
every single field. For example in the CMD method a correlation matrix has to be assembled and
decomposed before a random field can be generated. This decomposed matrix can then be used
for the generation of every random field. The time to determine the quantities which have to be
determined once is denoted with the initialization time. The time to generate 2000 random fields
in 1D and 200 random fields in 2D with this data is denoted with the realization time. Both the
initialization and realization time are measured in CPU-time. The method which takes the least
time will, logically, perform the best with respect to efficiency.

With respect to accuracy a distinction is made in the representation of the mean, standard deviation
and correlation structure of the field. For every field the mean value and the standard deviation is
determined. Of all the mean values of the different fields the mean value, µm, and the standard
deviation in the mean values, µs, is determined. For the standard deviation the same is done and is
denoted with σm and σs. For the mean values, µm and σm, the absolute error with the target value
is determined. A smaller error indicates that the method is accurate. The deviations µs and σs have
to be as small as possible for an accurate method.

The correlation structure will be estimated over all the generated random fields. For all the lag
distances equal to a multiple of the element size of the random field mesh the correlation coefficient
is determined. This value is compared with the exact value, which is determined with the exact
correlation function. The mean value of the absolute differences is called the mean correlation
error, Cerr,m. The deviation in these values is called the deviation in the correlation error, Cerr,s.
A low value for Cerr,m and Cerr,s will indicate that the method is accurate. A higher value for
Cerr,s indicates that on certain locations the correlation deviates strongly from desired correlation
structure.
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The Matlab code in which the statistical properties of the random fields are determined to asses the
accuracy of the method can be found in appendix F

3.2 Implementation of random field generator methods
In this section, information is given on how the different methods are implemented and some
implementation issues are considered. For the implementation of the different methods, the
variance function and one sided SDF have to be known. These will be derived in the next subsection.
Also the characteristics of the used correlation functions are studied to give a better understanding
of the results of the comparison.

3.2.1 Characteristics of the used correlation functions

In this study the Exponential (Exp) and Squared Exponential (SExp) correlation function are used.
These functions are given in equation 3.1 and equation 3.2. In this section the characteristics of
these functions will be considered

First, the differences between the Exp and SExp correlation function are considered. To do so, two
fields which are generated with the different correlation functions are examined. In figure 3.1 two
realizations of standard normal random fields, having a domain size of 17.5 m x 17.5 m and a
correlation length of 5 m, are shown. At LHS the field which is generated with the Exp correlation
function is shown and at the RHS the field which is generated with the SExp correlation function
is shown. The field, generated with the Exp correlation function, shows a very rough pattern in
comparison with the random field which is generated with the SExp correlation function. This can
be explained by examining the graph at the LHS in figure 3.2 where both correlation functions are
plotted. It can be observed that the correlation decreases faster for the Exp correlation function
with increasing lag distance than for the SExp correlation function. This can also be concluded
when the formulas of both correlation functions are examined. For the SExp correlation function
the values in the random field are stronger correlated when the lag distance is smaller than the
correlation length and less strong correlated when the lag distance is larger than the correlation
length. This results in a very smooth field as can be observed in figure 3.1.

20
15

10
5

00

5

10

15

-3

-2

-1

0

1

2

20

20
15

10
5

00

5

10

15

2

0

1

3

-1

-2
20

Fig. 3.1.: Two standard normal random fields with a correlation length of 5 m. Left: Exponential correlation
function, right: Squared Exponential correlation function.
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The influence of the correlation length (Lc) can be clarified by observing figure 3.2. At the LHS the
correlation functions are plotted with a correlation length of 5 m and at the RHS with a correlation
length of 1 m. The graph is horizontally scaled to the y-axis when the correlation length decreases.
The values are correlated less strong when the correlation length decreases which will lead to a
rougher surface of the field.
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Fig. 3.2.: Effect of the correlation length on the shape of the correlation function.

The influence of the threshold value (c1) for the minimum correlation in the random field can be
clarified by observing figure 3.3. At the LHS the correlation functions are plotted with a threshold
value of zero and at the RHS with a value of 0.5. It can be seen that the correlation decreases less
slow with increases lag distance. Also it can be observed that when the lag distance increases the
correlation will be equal to the threshold value. If the threshold value increases, the field will be
more smooth since values are stronger correlated with each other.
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Now the one sided spectral density functions and variance functions will be given for the 1D and
2D case. These will be used in the algorithms of the different random field generators which will be
explained in the next sections.

In 1D the one sided SDF and the variance function for both correlation functions are given by:

(Exp) G(ω) = 2σ2c1δ(ω) + 2(1− c1)σ2Lc
π(L2

cω
2 + 1) (3.3)

(SExp) G(ω) = 2σ2c1δ(ω) + (1− c1)σ2Lc√
π

exp
(
−ω

2L2
c

4

)
(3.4)

(Exp) γ(D) = c1 + 2(1− c1)
D2

(
DLc + L2

cexp(−D
Lc

)− L2
c

)
(3.5)

(SExp) γ(D) = c1 + (1− c1)
D2

(
L2
c(exp(−D

2

L2
c

)− 1) +D
√
πLcerf( D

Lc
)
)

(3.6)

In those functions the δ(ω) is the Dirac delta function and erf(D/Lc) is the error function.

In 2D both correlation functions are as follows:

(Exp) ρ(∆x1,∆x2) = c1 + (1− c1)exp

(
−

√
(∆x1

Lc,1
)2 + (∆x2

Lc,2
)2

)
(3.7)

(SExp) ρ(∆x1,∆x2) = c1 + (1− c1)exp
[
−
(

(∆x1

Lc,1
)2 + (∆x2

Lc,2
)2
)]

(3.8)
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The one sided spectral density functions in 2D are given by:

(Exp) G(ω1, ω2) = 4σ2c1δ(ω1)δ(ω2) + 2σ2(1− c1)Lc,1Lc,2
π(1 + ω2

1L
2
c,1 + ω2

2L
2
c,2) 3

2
(3.9)

(SExp) G(ω1, ω2) = 4σ2c1δ(ω1)δ(ω2) +

σ2(1− c1)Lc,1Lc,2
π

exp

[
−

(
ω2

1L
2
c,1

4 +
ω2

2L
2
c,2

4

)]
(3.10)

The variance functions in 2D are not derived exact. The derivations of the given one sided SDF’s
and variance functions can be found in appendix G.

Covariance of two local avarages The different methods to generate spatially correlated random
variables can be combined with the SA discretization method. For the LAS method it is even
automatically combined with this discretization method. The reduced variance can be determined
with the variance functions which are given in this section. To determine the covariance of two
local averages equation 2.61 is used where again the variance function has to be applied. The
covariance of two local averages can also be computed using gauss quadrature. In the case the
variance function is not known, which is the case in 2D, the covariance has to be determined
applying gauss quadrature. The Matlab Code to determine the covariance of two local averages
using gauss quadrature can be found in appendix H for 1D and 2D.

The implementation of the different methods and some implementation issues will now be consid-
ered.

3.2.2 Covariance Matrix Decomposition method

The theory of the CMD method is explained in section 2.4.1. The Matlab code for the CMD method
can be found in appendix I.1 for 1D and in appendix I.2 for 2D.

The first step in the algorithm is the assembly of the correlation matrix. This matrix has size
Nx ·Ny ·Nz. So in case a random field is generated in multiple dimensions the size of the matrix
increases strongly when the number of nodes increases. Thereafter the correlation matrix is
decomposed with one of the selected decomposition methods. In the last step, the decomposed
matrix is multiplied with a vector, containing normally distributed random variables, having a
zero mean and a standard deviation equal to the desired standard deviation of the field. If the
CMD method is combined with the SA discretization method, the correlation matrix is filled with
covariances according to the local average theory, which are determined with gauss quadrature.

Decomposition issues For the decomposition of the correlation matrix, three methods can be
selected to do so. These are the Cholesky decomposition, modified Cholesky decomposition and
modified eigendecomposition. The modified decomposition methods are created to avoid numerical
problems which were encountered during the comparison.

It was observed that when the SExp correlation function is selected and the number of nodes is
relatively high in comparison with the correlation length, the correlation matrix becomes non-
positive definite, i.e. not all eigenvalues of the matrix are positive any more. In such a case
Cholesky decomposition is not possible any more since this method requires positive eigenvalues.
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The eigendecomposition results in an imaginary field since the square root of the eigenvalues is
taken to form the decomposed matrix. In the case that some of the eigenvalues are negative, it
will result in complex numbers. In theory the correlation matrix is positively definite. Therefore,
such a problem should arise from numerical issues. In the previous section, it was shown that the
derivative of the SExp correlation function is zero at its origin. For nodes which are close to each
other, the correlation is therefore very close to one. The numbers on the diagonal of the correlation
matrix are therefore approximately the same as the numbers on first off-diagonal. This results in a
correlation matrix which is (numerically) linear dependent. The matrix becomes nearly singular
and has eigenvalues which are slightly less then zero.

In the Cholesky decomposition algorithm, the diagonal terms are composed by taking the square
root of the corresponding diagonal term in the correlation matrix, which is subtracted by the
squared values of the corresponding row of the decomposed matrix like:

Lkk =

√√√√Rkk −
k−1∑
j=1

L2
kj (3.11)

where k is equal to the row number of the computed diagonal element.

When the matrix becomes non-positive definite, the argument of the square root becomes negative.
In the modified Cholesky decomposition algorithm, the argument is set equal to zero when this
value is smaller then a tolerance value, which can be chosen slightly larger than zero, to acquire
stable results. In this way, the algorithm can find an ’approximated’ Cholesky decomposition. The
Matlab code with the modified Cholesky decomposition can be found in appendix J.

In the modified eigendecomposition algorithm, the absolute value of the eigenvalues is taken to
form the decomposed matrix like:

1 L=vec*sqrt(abs(lambda)

Where vec is the matrix containing the eigenvectors and lambda is a matrix containing the eigenval-
ues on the diagonal of the matrix.

Nataf transformation To generate random fields having a log-normal distribution, the Nataf
transformation is applied. Before the decomposition is carried out the standard deviation, the mean
and the correlation matrix are modified in the code as follows:

1 std_norm=sqrt(log(1+(std_RF/mean_RF)^2));

2 mean_norm=log(mean_RF)-0.5*std_norm^2;

3 Cor_M=(exp(Cor_M*std_norm^2)-1)/(exp(std_norm^2)-1);

The modified correlation matrix is then decomposed. With the decomposed correlation matrix and
the modified standard deviation and modified mean, the random fields are computed as follows:

1 RF(:,j)=exp(mean_norm+L*RV(:,j)*std_norm); % Generate random field

Where j corresponds to the jth field of the total number of fields which are generated.
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3.2.3 Fast Fourier Transform method

The theory of the FFT method is explained in section 2.4.4. The Matlab code for the FFT method
can be found in appendix I.3 for 1D and in appendix I.4 for 2D.

The algorithm starts with the discretization of the spatial and spectral domain as specified in the
theory section. The one sided SDF is then evaluated on the spectral coordinates. The one sided
SDF’s, which where given in section 3.2.1, are used without the part with the Dirac delta function.
This would otherwise result in an infinite value for G(ω = 0), which results in an infinite value for
the variance of the A1 coefficient, which is not correct. For the right contribution of this part to the
variance of the A1 coefficient, it is important to keep in mind how the coefficients are determined.
As stated in the theory section, they can be found by following the inverse Fourier relationships.
In [4], it is stated that instead of taking the evaluated values of the one sided SDF on the spectral
coordinates for the determination of the variances of the coefficients it is even more precise to use
the following expression:

G(ωk) =
∫ ωk+ 1

2 ∆ω

ωk− 1
2 ∆ω

G(ω)dω (3.12)

Which is noting else but the area under the one sided SDF. For the part with the dirac delta function,
this can be evaluated in 1D as follows:

G(ωk) =
∫ ωk+ 1

2 ∆ω

ωk− 1
2 ∆ω

2σ2c1δ(ω)dω = 2σ2c1 (3.13)

According to equation 2.81, the contribution in 1D to the variance of A1 is equal to σ2c1. In 2D the
same procedure can be followed and leads to the same contribution for the variance of coefficient
A11. Both contributions can be found back in the matlab codes.

The rest of the variances can be determined as reported in the theory section. After the first half of
the A and B coefficients are generated, the symmetry conditions are used to find the other half of
the coefficients. Thereafter, an inverse FFT algorithm is used to transform the coefficients to the
spatial domain. This algorithm can be found in appendix K. The real part of the Fourier transform,
i.e. the Ak coefficients, will be a zero-mean random field, having the desired standard deviation
and correlation structure. To acquire the random field with the desired mean value, the mean value
is added to the Ak coefficients.

Symmetric correlation structure In the statistical evaluation of the fields, a symmetric correlation
structure was observed. This drawback of the method was already mentioned in the theory section.
To deal with this problem, the domain of the random field is taken twice as big. After the whole
field is generated, only half of the random field is taken in 1D and a quarter of the field is taken in
2D. This decreases the efficiency of the method but strongly increases the accuracy of the method
since the random fields will have the desired correlation structure.

Some improvement in efficiency can be obtained by increasing the domain of the field in each
direction only with Lc or twice Lc. The domain for which the values are created is smaller in that
case. Another option is to take the values of the unused parts. The domain, in that case, stays twice
as big in every direction. In 1D the realisation time will be twice as small and in 2D even four times
as small.
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Nataf transformation For the FFT method, only the mean and the standard deviation are trans-
formed. This is done in the same manner as for the CMD method. The correlation function is not
transformed since the exact expression for SDF could not be derived. This gives rise to an error in
the correlation structure of the random field. For a small coefficient Of variation (COV) this error is
however very small since the transformed correlation function is approximately the same as the
untransformed correlation function, as can be seen in figure 3.4. For the material parameters of
concrete, the COV is equal or smaller than 0.3, so it can be concluded that no big error is made
when the untransformed correlation function is used.

3.2.4 Local Average Subdivision method

The theory of the LAS method is explained in section 2.4.6. The Matlab code for the LAS method
can be found in appendix I.5 for 1D and in appendix I.6 for 2D.

The LAS algorithm start with the assembly of the correlation matrix for the initial random field
of stage 0. Thereafter the matrices and vectors containing the a and c coefficients are allocated
for every stage. The neighbourhood size in 1D can be chosen equal to 3 or 5. In 2D only a
neighbourhood size of 3 is possible. All these values are determined as specified in the theory
section where all the covariances are determined according to the local average theory. In 1D, both
the exact variance function as gauss quadrature are used to determine the covariances. In 2D only
gauss quadrature is used. The values for stage zero are generated as performed in the CMD method,
whereby the covariances in the correlation matrix are determined according to the local average
theory. Thereafter, the cells are divided multiple times till the desired coarseness is reached. In each
stage, the a and c coefficients of that stage are used in the determination of the new values of the
field to acquire the desired statistical characteristics. In the end, the desired mean value is added to
the generated values to acquire the right mean value.

boundary conditions Taking into account the boundary conditions is one of the most involved
parts of the LAS method. For cells which lay at boundary of the domain, the algorithm requires
values which lay outside the domain. It is assumed that the values inside the domain are uncorre-
lated with the values outside the domain. In 1D the values outside the domain are simply set equal
to 0 and it is assumed that it has no effect on the a and c coefficients. In 2D a more sophisticated
approach is followed. Again it is assumed that the values inside the domain are uncorrelated with
what happens outside the domain. Here a distinction is made in the a and c coefficients for the
determination of the side values, corner values and interior values. The side and corner coefficients
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Fig. 3.4.: Influence of the coefficient of variation on the Nataf transformation of the covariance function.
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are determined by taking the best linear estimation with only the cells which lie inside the domain.
The a and c coefficients for the interior values are determined in the regular way.

Combining LAS with the SF disretization method To combine the LAS method with the SF
discretization method, the centre of the cell is taken as nodal coordinates for the random field mesh.
The generated field is made a half cell larger at every side in order to match the domain size with
the coordinates of the random field mesh. The generated field has to be fine enough in order to
obtain te correct variance in the field. In such a case the reduction of the variance is negligible.

Nataf transformation If a log-normal field is required, only gauss quadrature can be used to
obtain the right transformed covariances of two local averages. The transformed covariances of
two local averages are obtained by using the expression in equation 2.65 in the gauss quadrature
algorithm. The mean value and the standard deviation are transformed in the same way as done in
the CMD method. In the end, the values of the obtained field is placed in the exponent to obtain
the field which is log-normally distributed.

3.2.5 Expansion Optimal Linear Estimation method

The EOLE method is one of the numerical methods to solve the KL expansion which is explained in
section 2.6.1 and 2.6.3. The Matlab code for the EOLE method can be found in appendix I.7 for 1D
and in appendix I.8 for 2D.

The algorithm starts with the assembly of the covariance matrix. In contrast with the other
methods, where the correlation matrix was assembled, here the covariance function has to be
used instead of the correlation function. The covariance matrix is decomposed with the modified
eigendecomposition algorithm, described in CMD method section. Thereafter, the eigenvalues
and corresponding eigenvectors are sorted from the largest eigenvalue to the smallest eigenvalue.
Only the M largest eigenvalues and corresponding eigenvectors are then used to determine the M
approximated eigenfunctions. The approximated eigenfunctions and eigenvalues are then used
to generate the continuous random field. This field is then evaluated on the coordinates which
correspond to the locations of the gauss points in the FE model. The evaluated values are used for
the determination of the accuracy of the method.

3.3 Results of comparative study
In this section, the results of the comparative study will be presented. First, the performance with
respect to efficiency will be considered. Thereafter, the performance with respect to accuracy will be
considered. All the data used in this comparison can be found in appendix M. This data is obtained
by running the Matlab-files which are described in the previous section where implementation
issues where considered. It is assumed that the results in DIANA will be the same since they are
programmed in the same way. This assumption is checked by comparing the performance for some
cases in DIANA with the data obtained with Matlab. With respect to accuracy, comparable results
where obtained with DIANA which gives some ground for the assumption. With regard to efficiency
some significant differences were observed. These will be described in section 3.3.1.

As mentioned, the CMD method combined with Cholesky decomposition could not decompose the
covariance matrix in some cases since the matrix became non-positive definite. This was the case in
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both 1D and 2D for Lc is equal to 5 and the number of nodes equal to 32, Lc is equal to 2.5 and the
number of nodes equal to 64 and Lc is equal to 0.5 and the number of nodes equal to 256. Next to
these cases, in 2D also Lc is equal to 5 and the number of nodes equal to 16, Lc is equal to 2.5 and
the number of nodes equal to 32 and Lc is equal to 0.5 and the number of nodes equal to 128 gave
no solution to the decomposition. For these cases no results are obtained.

In 2D, no results for the CMD method with 256 nodes in both directions could be obtained since
the correlation matrix of 65536 x 65336 became to large to store.

Only the results obtained with gauss integration are presented in this section. If the variance
function is used to determine the covariances in the LAS method, the method is slower than when
exact integration is used. The variance function has to be evaluated multiple times in equation
2.61 to determine the covariance of two local averages which takes more time. When the variance
function is used in the LAS method, comparable results are obtained with respect to accuracy.

The results of the EOLE method have been left out in this comparison since the performance of this
method is very poor. Especially the realization time of this method is very large. The evaluation
of the continuous function on coordinates of the integration points takes a lot time. On every
coordinate the contribution of every mode has to be determined. A more efficient way to evaluate
such a function on the coordinates of the integration points may be found in future studies.

3.3.1 Efficiency performance random field generators

Initialization time In 1D the initialization time of all methods is very small. For all cases the CPU-
time never exceeds a value of 0.25 s. The initialization time for the FFT method is slightly larger
than for the other methods. There are no significant differences in the initialization time when the
correlation type, threshold value or distribution type is changed. In 2D the initialization time for
the FFT and LAS method is very small in all cases. For the CMD methods the initialization time
increases very strong for fields having more than 64 nodes in each direction. The decomposition
time of the correlation matrix increases strongly. In figure 3.5, the initialization time of the different
methods as function of the number of nodes is plotted. In this figure the line of the FFT method
overlaps the line of the LAS method. Again there are no significant differences when the correlation
type, threshold value or distribution type is changed.
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In DIANA the initialization time for CMD with modified Cholesky decomposition is about 7 times as
short as in Matlab. The initialization time for LAS and FFT are negligible small. For the CMD method
with eigendecomposition the initialization time is approximately the same in case 8, 16 or 32 nodes
are used in each direction. When more nodes are used the initialization time strongly increases. This
can be explained by the fact that the used algorithm in DIANA to perform an eigendecomposition
differs from the one applied in Matlab. Some improvement in the initialization time in DIANA for
the eigendecomposition could be achieved by applying a more efficient algorithm.

Realization time In 1D the realization time is the smallest for the CMD method. The realisation
time for the LAS method is slightly larger and for the FFT method the realisation time is the largest.
If the FFT method is applied without making the domain twice as big, to omit the symmetric
correlation structure, the method is as fast as the LAS method. In figure 3.6 the realization time of
2000 fields in 1D are plotted as function of the number of nodes. A linear relation can be found for
all the methods between the number of nodes and the realization time. In figure 3.7 the realization
time of 200 fields in 2D is plotted as function of the number of nodes in each direction of the field.
Here the relation seems to be quadratic. Between the total number of nodes in the random field
and the realization time again a linear relation is found. The CMD method is again the fastest
method in terms of CPU-time and the FFT method is the slowest method with respect to realization
time. Both in 1D as in 2D, no significant differences can be found if the correlation type, correlation
length, threshold value or distribution type is changed.
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represented by CMD.

In Diana also a linear relation was found between the total number of nodes and the realization
time. The realization time for the CMD method is about 4 times larger in Matlab. The realization
time for the FFT and LAS method is about 4 times smaller in Matlab.

Overall performance efficiency If the initialization time and realization time are considered
both, the CMD method is the fastest in 1D. In 2D the CMD method is the fastest for fields having
less then 64 nodes in each direction. If the fields have more than 64 nodes in each direction the
LAS methods it the fastest method.

The time to determine the statistical properties of the random field is also considered. This time
increases when the number of nodes increases. No significant differences can be found between the
different methods, which is logical since the same procedure is followed for every method after the
random field is generated to determine the statistical properties.
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3.3.2 Accuracy performance random field generators

Before the accuracy of the random field generators is assessed, it is checked if the random number
generators fulfil the requirements of section 2.1.7. To do so, a sample of 2 · 105 generated standard
normal random numbers generated in both Matlab and DIANA are assessed on their accuracy. In
both cases the samples have the desired mean value and standard deviation. A Z-test is performed
to see if the numbers are normally distributed. In both cases, a very small deviation is observed at
the tails of the distribution. The CPU-time to generate the both samples is very small (i.e. around
0.03 seconds). Both random number generators can reproduce a given stream of random numbers
exactly by initializing a seed value and both methods have a very long period. Despite the small
deviations in the tails, it can therefore be concluded that both random number generators are
accurate and fulfil the requirements of section 2.1.7. The results of the Z-test for both methods can
be found in appendix L.

Representation of the mean value For the representation of the mean, a distinction is made
between the mean value of all the mean values of the generated fields (µm) and the standard
deviation of all the mean values of the generated fields (µs). First, the mean value of all the mean
values (µm) is considered.

When the normal distribution is selected as distribution type all the methods represent the mean
very well. The absolute error in µm is approximately equal to 0.01 in 1D and 0.02 in 2D. The
number of nodes, the correlation type or method seems to have no influence on this value. The
threshold value does have an influence. Both in 1D and 2D, this value is on average twice as high
in case the threshold value (c1) is set equal to 0.5. The maximum absolute error is equal to 0.05 in
1D and 0.15 in 2D.

When the log-normal distribution type is selected, the absolute error in µm is larger in 1D when the
LAS method with a neighbourhood size of 5 is selected. The other methods perform the same as in
the case the normal distribution type is selected.

For all the methods where the absolute error µm was small, the values for µs were approximately
the same. The values for µs averaged over all the method where the absolute error in µm was small
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are given in table 3.2. It can be seen that the standard deviations of all the mean values (µs) are
quite high, especially when the threshold value is equal to 0.5 and the correlation length is large.

Tab. 3.2.: Averaged value µs for different values of the correlation length, threshold value and distribution
type given for the 1D and 2D case.

1D 2D

c1=0 c1=0.5 c1=0 c1=0.5
Lc normal log-normal normal log-normal normal log-normal normal log-normal

5 0.64 0.57 0.84 0.75 0.43 0.36 0.77 0.65
2.5 0.49 0.43 0.79 0.69 0.26 0.21 0.73 0.60
0.5 0.23 0.20 0.73 0.61 0.06 0.05 0.70 0.59

In 1D, the CMD with the modified Cholesky decomposition gives deviating results in some of
the cases where regular Cholesky decomposition could not obtain a solution. The decomposed
correlation matrix is not approximated well by the modified Cholesky decomposition. The deviation
in the mean values is larger in those cases. When the tolerance value for the argument of the
square root in the modified Cholesky algorithm is changed this error can be made smaller. When
the log-normal distribution was selected in 1D, the LAS method with a neighbourhood of 5 gives
higher values for µs.

Overall the LAS method with a neighbourhood size of 5 and a log-normal distributed random field
gave higher values for the errors in µm and µs. The rest of the methods give approximately the
same results. The errors in the representation of the mean are relative small which makes those
methods appropriate for representing the mean value. The deviation in the mean values is quite
large. Increasing the number of samples does not give a change in this value. As will be shown
in the next section, the distribution in the field will be changed when the variables are stronger
correlated. This is the case when a correlation function is used with a threshold value equal to 0.5
and a large correlation length. The deviation in the mean values is slightly smaller when a SExp
correlation function is used then when a Exp correlation function is used.

Representation of the standard deviation In the assessment of the random field generators on
the representation of the standard deviation a distinction is made in the mean value of all the
standard deviations (σm) and deviation in the all the standard deviations (σs).

When the results are observed for σm it can be seen that, for all the methods, the standard deviation
reduces when the correlation length increases and a threshold value of 0.5 is selected. Exactly in
the same way the deviation in the mean (µs) values increases, the mean values of all the standard
deviations of each field decreases. This can be seen in table 3.3, where the values of σm are averaged
over all the methods. For uncorrelated variables, the mean value of all the standard deviations
should be equal to 1. In the case of random fields the random variables are however correlated
with each other. The desired value is therefore not known a priori. Because all the method have
approximately the same values for σm, it is assumed that the methods which have values close to
the values in table 3.3 are accurate with respect to the representation of the standard deviation.
The LAS method slightly deviates from these values since the variance is further reduced by the
variance function. If the domain size is small compared to the correlation length this deviation
is almost negligible. The values are then approximately the same as in table 3.3. In 1D, the LAS
method with a neighbourhood size of 5 the values for σm are all larger than the values in the table.
When the CMD method is combined with modified Cholesky decomposition the value for σm is
higher for the same cases as where the mean value was represented poorly.
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Tab. 3.3.: Averaged value σm for different values of the correlation length, threshold value and distribution
type given for the 1D and 2D case.

1D 2D

c1=0 c1=0.5 c1=0 c1=0.5
Lc normal log-normal normal log-normal normal log-normal normal log-normal

5 0.71 0.62 0.52 0.46 0.87 0.81 0.62 0.58
2.5 0.83 0.74 0.59 0.55 0.95 0.91 0.67 0.64
0.5 0.96 0.90 0.68 0.64 0.98 0.96 0.69 0.67

When the deviation in standard deviations (σs) are considered, again a clear pattern in the results
can be found if the normal distribution type is selected. The averaged values are given in table
3.4. It can be seen that the value for σs increases when the correlation length increases. When the
SExp correlation function is chosen, the values are larger then when the Exp correlation function
is chosen. If a threshold value of 0.5 is applied the values are smaller. The values for LAS with a
neighbourhood size of 5 deviates slightly from the values given in the table.

Tab. 3.4.: Averaged value σs for different values of the correlation length, threshold value and correlation
function given for the 1D and 2D random fields which are normally distributed.

1D 2D

c1=0 c1=0.5 c1=0 c1=0.5
Lc Exp SExp Exp SExp Exp SExp Exp SExp

5 0.23 0.30 0.16 0.22 0.14 0.18 0.09 0.13
2.5 0.21 0.26 0.15 0.18 0.10 0.11 0.07 0.08
0.5 0.12 0.13 0.08 0.09 0.03 0.02 0.02 0.02

When the log-normal distribution type is selected, the pattern in the results is less clear, especially
when a threshold value of 0.5 is selected. In that case, most of the values are close to 0.4 both in
1D and 2D. Again the values for σs are slightly larger when the SExp correlation is chosen in stead
of the Exp correlation function.

In general, the LAS method with a neighbourhood size of 5 gives deviating results, which indicates
that this method represents the standard deviation less accurate. The LAS method in general under
represent the variance because it is reduced by the variance function. This is correct if this method
is combined with the SA discretization method. If it is however combined with the SF discretization
method a small domain size have be selected to represent the point variance of the random field
correct.

Representation of the correlation structure The correlation structure of the generated random
fields is compared with the exact correlation function. For all the lag distances equal to a multiple
of the element size of the random field mesh the correlation coefficient is determined. The absolute
error with the exact correlation function is then determined. The mean values of all these errors is
called the mean correlation error (Cerr,m ) and the deviation in these values is called the deviation
in the correlation error (Cerr,s).

When the mean correlation error is considered it can be seen that the error depends significantly on
the used method. The values are therefore averaged per method and are given in table 3.5 till 3.7.
The mean correlation error is a lot smaller in case the normal distribution is chosen instead of the
log-normal distribution. If the normal distribution type is selected, the CMD method combined with
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Cholesky or eigendecomposition gave the smallest error in both 1D and 2D. When the log-normal
distribution is selected, the FFT method gives the smallest error both in 1D and 2D. Especially when
the a threshold value of 0.5 is selected, this error is a lot smaller then for the other methods. Despite
of the untransformed correlation function, the FFT method seems to represent the correlation
structure very well when a strong transformation to the log-normal distribution is performed. The
mean correlation error of LAS with a neighbourhood size of 3 is in between the errors of the CMD
and FFT method for both 1D and 2D. When a neighbourhood size of 5 is selected the error is the
largest.

Tab. 3.5.: Averaged value of the mean correlation error for every method (part 1).

1D

CMD FFT
Cholesky Eigen Mod. Chol.

c1 Exp SExp Exp SExp Exp SExp Exp SExp

Normal 0 0.0083 0.0078 0.0074 0.0073 0.0103 0.0398 0.0095 0.0111
0.5 0.0055 0.0071 0.0071 0.0085 0.2331 0.2575 0.0126 0.0107

Log-normal 0 0.0479 0.0302 0.0487 0.0311 0.0618 0.0620 0.0215 0.0162
0.5 0.1523 0.1503 0.1578 0.1590 0.4450 0.4433 0.0735 0.0758

Tab. 3.6.: Averaged value of the mean correlation error for every method (part 2).

1D 2D

LAS CMD
nbh=3 nbh=5 Cholesky Eigen

c1 Exp SExp Exp SExp Exp SExp Exp SExp

Normal 0 0.0210 0.0176 0.0239 0.0283 0.0101 0.0134 0.0095 0.0087
0.5 0.0251 0.0159 0.0717 0.0935 0.0212 0.0083 0.0191 0.0292

Log-normal 0 0.0357 0.0316 0.0931 0.0766 0.0509 0.0286 0.0609 0.0367
0.5 0.1415 0.1597 0.3171 0.3607 0.1673 0.1635 0.1458 0.1454

Tab. 3.7.: Averaged value of the mean correlation error for every method (part 3).

2D

CMD FFT LAS
Mod. Chol.

c1 Exp SExp Exp SExp Exp SExp

Normal 0 0.0156 0.0682 0.0114 0.0099 0.0218 0.0167
0.5 0.1958 0.2966 0.0293 0.0146 0.0309 0.0205

Log-normal 0 0.0926 0.0901 0.0226 0.0254 0.0291 0.0336
0.5 0.3174 0.3837 0.0298 0.0270 0.1081 0.1555

The deviation in the correlation error is strongly linked to the mean correlation error. When the
mean error is small, the deviation in the values is also small and visa versa. When the normal
distribution type is selected, these values are slightly smaller as the mean values. In case the
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log-normal distribution is selected, these value are slightly higher than the mean values. This means
that in case the log-normal distribution is selected, the correlation structure shows a more rough
pattern then when the normal distribution is selected.

To illustrate the absolute error in the correlation structure, the correlation structures for some cases
are plotted. In figure 3.8 the correlation structure, estimated over 2000 normal distributed 1D
random fields, is shown. The squared exponential correlation function is used with a correlation
length of 5 m and no threshold value. In figure 3.9 the correlation structure, estimated over
2000 log-normal distributed 1D random fields, is shown. The squared exponential correlation
function is used with a correlation length of 5 m and a threshold value of 0.5 m. In figure 3.10
the correlation structure, estimated over 200 normal distributed 2D random fields, is shown. The
exponential correlation function is used with a correlation length of 2.5m and a threshold value
of 0.5 m. The same observations can be made with regard to the absolute error in the correlation
structure as done in the previous paragraphs. When no threshold value is applied, the LAS method
with neighbourhood size of 5 gives the largest deviation in the correlation structure. When the
log-normal distribution is selected the FFT methods represents the correlation structure the most
accurate.

Correlation structure
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Fig. 3.8.: Correlation structure of different methods in 1D estimated over 2000 realizations for normal
distributed random fields generated with a squared exponential correlation function with no
threshold value.
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Fig. 3.9.: Correlation structure of different methods in 1D estimated over 2000 realizations for log-normal
distributed random fields generated with a squared exponential correlation function with a threshold
value of 0.5.
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Fig. 3.10.: Correlation structure of different methods in 2D estimated over 200 realizations for normal
distributed random fields generated with a exponential correlation function with a threshold value
of 0.5.
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3.3.3 Strong correlation and loss of ergodicity

It was observed that for random fields with a correlation function having a large correlation length
and a threshold value of 0.5, the variance in the field decreases and the deviation in the mean values
increases. In this section this behaviour is studied in more detail. To do so, several histograms are
considered which are shown in figure 3.11 and 3.12. At the LHS of those figures, the histograms
are plotted with values of one single random field. At the RHS of the figures, the histograms are
plotted with the values on a single location in the field for all the 1024 generated random fields.
The 2D normal distributed random fields have a SExp correlation function and a domain size of
17.5 x 17.5 m. The number of nodes in each direction is equal to 32, which results in 1024 nodes
per field. In figure 3.11 the correlation length was equal to 0.5 m and in figure 3.12 the correlation
length was equal to 5 m. The threshold value ranges from zero to 0.5. The following observations
can be made for the histograms at the RHS of the figures:

• The mean of the distribution is equal to zero.
• The width of the distribution stays approximately the same.
• The shape of the distribution looks like a normal distributed sample.

For the histograms at the LHS of the figure the following observation can be made:

• The mean deviates from zero and the width of the distribution is smaller.
• The shape of the distribution deviates from the shape of a normal distribution.
• Both effects are observed stronger when the correlation length increases and when the

threshold value is equal to 0.5 as can be seen in figure 3.12.

From this observations it can be concluded that ergodicity is lost when the values in the field
are strongly correlated with each other. This is the case when the correlation length is large in
comparison with the domain size and when a threshold values is applied. Normally, it is assumed
that random fields are ergodic, however, for random fields where the values are strongly correlated
this assumption is not valid. The joint PDF of the random field can not be determined by a single
realization of the random field any more. Unfortunately, no explicit relation is found between the
used correlation function and the target value for the standard deviation in the field and deviation
in the mean values. It can only be stated that those values are in some way related to the area
under the correlation function. A larger area results in a smaller deviation in the field and a larger
deviation in the mean values of the random fields. When random fields are generated for the
modelling of spatial variations in concrete this effect has to be considered.
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Fig. 3.11.: Histograms with values of the random field for Lc equal to 0.5 m and different values for c1. Left:
values for one field, right: values for 1024 field at one point.
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3.4 Conclusion
In this chapter, the influence of the different parameters on the statistical properties of a random
field is studied. Also the performance of the different generators is assessed. In this section these
aspects are both summarized to come to a conclusion. This conclusion can then be used in the
next chapter where a method is chosen based on the selected correlation function, distribution
type and other statistical characteristics for the modelling of spatial variability of concrete material
properties. First, the influence of the different parameters on the statistics of a random field is
considered.

3.4.1 Influence of different parameters on the statistics of random fields

The number of nodes in each direction is varied based on the desired ratio between the correlation
length and the element size of the random field mesh. This indeed led to accurate results for the
random fields for both the Exp and SExp correlation function. Both the initialization time and
realization time increases when the number of nodes increases. A linear relation is found between
the number of nodes and the realization time for all methods.

Between the Exp and SExp correlation function no significant differences where found with respect
to efficiency. With respect to accuracy the differences were very small. The deviation in the mean
values were slightly smaller and the deviation in the standard deviations were slightly larger when
a SExp correlation function is chosen in stead of the Exp correlation function. In general it can
be concluded that the correlation function type has no significant influence on the efficiency and
accuracy of the random fields. It has an effect on the pattern of the random fields. The nodes
separated by a lag smaller than Lc are stronger correlated and the nodes separated by a lag larger
than Lc are less strong correlated when the SExp correlation function is chosen in stead of the Exp
correlation function. The fields will therefore have a more smooth surface when a SExp correlation
function is chosen. With regard to implementation issues some problems were encountered with the
decomposition of the covariance matrix when the SExp correlation function is selected, especially
when the ratio between Lc and LRF was relatively high.

The correlation length has no significant influence on the accuracy of the different methods. For a
larger correlation length the mean correlation error is slightly larger. With respect to ergodicity the
correlation length has a significant influence. The deviation in the mean values increases and the
mean standard deviation decreases when the correlation length is larger. It can unfortunately not
be stated if the obtained values for the deviation in the mean and the mean values of the standard
deviations are accurate since there is no explicit relation known.

The use of a threshold value for the correlation function has a negative influence on the accuracy
of the random field. In general, the defined errors became somewhat larger, especially when
a threshold value was used in combination with the log-normal distribution type. The use of a
threshold value results in a stronger correlation between the different random variables in the
random field which again leads to a loss of ergodicity.

A very strong transformation from a Gaussian random field to a log-normal distributed random field
with a COV of 1.0 was carried out to study the influence on the accuracy. It can be concluded that
the distribution type has a significant influence on the accuracy of the random fields. The error in
the mean of all the mean values increased. The error in the mean value of the standard deviations
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became slightly smaller in most cases. With respect to the representation of the correlation
structure the largest differences where observed. The errors became much larger when a log-
normal distribution type was selected. In the case of concrete parameters, the COV is much smaller,
which gives a less strong transformation. The errors will be more close to the errors found when a
normal distribution type was selected.

3.4.2 Performance different random field generators

In this section the performance of the different methods is discussed. From the assessment it can
be concluded that the LAS with a neighbourhood size of 5 is inappropriate for the generation of
random fields. The accuracy of the method is lower than for the other methods, which can be
attributed to the poor determination of the values at the boundary of the field. When a SExp
correlation function is selected, the CMD method with Cholesky decomposition is inappropriate
because the covariance matrix can not be decomposed in most cases. If the modified Cholesky
decomposition method is used instead, it gave accurate results for most of these cases. However,
for some cases the results where not accurate. The decomposed matrix is not approximated very
well, which leads to larger errors. For the CMD with eigendecomposition, FFT and LAS with a
neighbourhood size of 3, no large errors were observed. It depends on the selected parameters
which method is the most appropriate to select.

First, the case that a normal distribution is selected as distribution type is considered. In 1D
the CMD method with eigendecomposition is the best method to choose. It is the most efficient
method, gives solutions for both the Exp and SExp correlation function and gives the most accurate
result for the representation of the mean value and correlation structure. In 2D the CMD method
with eigendecomposition represents the mean the most accurate. The correlation structure is
represented by the best by the FFT method and CMD method with eigendecomposition. With
respect to efficiency the LAS method performs the best. Till 64 nodes in each direction the CMD
method with eigendecomposition is as fast as the LAS method. For models which have less than 64
nodes in both directions it is therefore concluded that the CMD method with eigendecomposition is
the best method. If the number of nodes increases the FFT method can be selected best. Although
the method is less efficient than the LAS method it is slightly more accurate then LAS which is
considered as more important for non-linear analysis of concrete models. In comparison with the
runtime of such models this difference in efficiency can be neglected.

If the log-normal distribution is selected, the error in the correlation structure is quite large for most
of the methods, especially when the threshold value is equal to 0.5. The FFT method represents the
correlation structure the most accurate in 1D and 2D. The representation of the mean value by the
FFT method is comparable with the other methods. The FFT method should therefore be selected
for random fields with a strong transformation to a log-normal distributed random field.

For random fields with a log-normal distribution and a COV between 0.1 and 0.3, what is the case
for concrete material properties, the error in the correlation structure will be closer to the error
when the normal distribution is selected. Based on the results in this chapter one unambiguous
conclusion which method performs the best with respect to accuracy is therefore hard to draw for
such a case. With respect to efficiency the FFT method performs much better than the CMD method
combined with eigendecomposition when the total number of nodes is large.
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4Random field generation for
reinforced concrete

In the previous chapter, the different methods to generate a random field were assessed. In this
assessment a wide range of values, based on findings in literature (see section 2.7), was used for the
statistical characteristics which are involved in the modelling of the spatial variability of concrete
material properties. In this chapter specific values for these statistical characteristics are selected
for the implementation in DIANA. Based on the findings in the previous chapter, a selection is
made of random field generators which perform the best with the selected statistical characteristics.
Between the two most appropriate methods, a more specific comparison is made to identify the best
method. In this comparison, the selected statistical characteristics are used and the size and shape
of the domain of the random field is varied. After this comparison the most appropriate method
is selected. At the end of this chapter, plots of random fields for the different material properties
of concrete are shown to give an impression on how they vary in space. In the next chapter, the
implemented approach to model the spatial variability of concrete properties is tested in a small
example. In the case poor results are obtained, other statistical characteristics can be selected to
follow the same selection procedure, starting with the findings of the assessment in the previous
chapters.

4.1 Selection of statistical characteristics of concrete
In the different approaches to determine the reliability of concrete structures, a large variation was
found in the statistical characteristics which are involved in the modelling of the spatial variation of
concrete properties. An overview of the used values can be found in table 2.2. In some cases, the
values where determined by fitting the results of the FE analysis with experimental results [39]. In
other cases, a sensitivity analysis was carried out with varying values for the different statistical
characteristics, to determine their influence on the reliability of a concrete structure [11]. For the
deterministic relations between the different material properties, often the CEB-FIB 1990 model
code is used. In general it seems hard to determine the statistical characteristics with regard to
spatial variations directly from experimental tests. For example, the correlation length varies from
0.5 to 5 m. Only in [36] reference is made to experimental data where a correlation length of 0.5
m is found. In the other approaches no reference to experimental data or test is made to support
the chosen value.

The Probabilistic Model Code of the Joint Committee on Structural Safety (JCSS) gives a thorough
guideline for the modelling of the spatial variation in the material properties of concrete. In
literature however, no example was found where the JCSS model code was applied in a FE analysis
of a concrete structure. It is therefore a very interesting approach to follow. Beside the lack of an
application, the relatively high correlation length and the use of a threshold value in the advised
correlation function make it also worthwhile to investigate this guideline. A large correlation length
is beneficial with respect to computation time. When a correlation length of 5 m is applied, the
random field mesh can be more coarse. As shown in the previous chapter the initialization and
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realization time, increases with increasing number of nodes in the random field mesh. In all the
other examples found in literature a smaller correlation length is applied. The JCSS approach is
thus different from other approaches which makes it interesting to explore the use of this guideline.
The JCSS model code is therefore chosen to follow for the implementation in DIANA to model the
spatial variation of concrete material properties. No information is given for the spatial variation
of the loading or geometric properties in the JCSS model code. Examples of geometric properties
are the thickness of a plate or the cover for the reinforcement. Additionally, spatial variations of
the properties of reinforcement steel are not taken into account. All these variations are taken into
account by using a random variable instead of a random field in the JCSS model code. In this study,
only variations in material properties of concrete will therefore be considered.

4.1.1 Model code of Joint Committee on Structural Safety

In this section the probabilistic model code of the Joint Committee on Structural Safety (JCSS) for
concrete properties will be explained. This specification for the material properties of concrete can
be found in the third part of the JCSS probabilistic model code [20] which contains the resistance
models.

According to this guideline, one single log-normal random field has to be generated to which the
material properties are related. This random field represents the basic compression strength of
concrete (fc0) which is based on standard test specimens (cylinder of 300 mm height and 150 m
diameter), tested according to standard conditions and at a standard age of 28 days. On a particular
point i in a given structure j it is expressed as:

fc0,ij = exp(UijΣj +Mj) (4.1)

where Uij is the collection of spatially correlated standard normal random variables which represent
the variability within one structure. These values are correlated according to the SExp correlation
function using a correlation length of 5 m and a threshold value of 0.5 which result in the following
correlation function:

ρ(∆x) = 0.5 + 0.5 · exp

(
−
(

∆x
5

)2
)

(4.2)

Σj andMj are the transformed standard deviation and mean value of the basic concrete compression
strength. If no data is available a priori, the values in table 4.1 can be used. In this table also the
untransformed values for the mean and the standard deviation of the log-normal distributed basic

Tab. 4.1.: Mean and standard deviation of the basic compressive strength.

Concrete type Grade M Σ µln σln

Ready Mixed C15 3.40 0.192 30.52 5.90
Ready Mixed C25 3.65 0.164 39.00 6.45
Ready Mixed C35 3.85 0.123 47.35 5.86
Ready Mixed C45 3.98 0.096 53.76 5.17

Pre-cast elements C25 3.80 0.123 45.04 5.57
Pre-cast elements C35 3.95 0.110 52.25 5.74
Pre-cast elements C45 4.08 0.090 59.39 5.38
Pre-cast elements C55 4.15 0.065 63.57 4.11
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compressive strength are given. All the values in the table are sorted per concrete type and grade. If
prior data is available for job j, the values for Σj and Mj can be determined based on the available
information using a student distribution for fc0.

The probabilistic relation of the concrete compressive strength (fc) with the basic compression
strength (fc0) is given by:

fc,ij = α(t, τ)(fc0,ij)λY1,j (4.3)

Where:

α(t, τ) is a deterministic function which takes into account the concrete age at the loading
time t [in days] and the duration of loading τ [in days]. For most cases α(t, τ) is equal
to 0.8. This value is therefore used for the implementation in DIANA.

λ is a factor taking into account the systematic variation of in-situ compressive strength,
and strength of standard test. In most cases it is sufficient to take λ as a deterministic
variable and equal to 0.96.

Y1,j is a log-normal variable representing additional variations due to the special placing,
curing and hardening conditions of in-situ concrete at job j.

Other material properties like the concrete tensile strength (fct), the modulus of elasticity (Ec)
and the ultimate compression strain (εu) are related with the concrete compressive strength as
follows:

fct,ij = 0.3f2/3
c,ijY2,j (4.4)

Ec,ij = 10.5f1/3
c,ijY3,j(1 + βdφ(t, τ))−1 (4.5)

εu,ij = 6 · 10−3f
−1/6
c,ij Y4,j(1 + βdφ(t, τ)) (4.6)

Where:

βd is the ratio of the permanent load to the total load and depends on the type of the
structure. In DIANA a value of 0.7 is take for this value.

φ(t, τ) is the creep coefficient which is set equal to 1.0 in the implementation in DIANA since
it is assumed that creep does not take place. For short term loading this is a good
assumption.

Y2,j , Y3,j and Y4,j are log-normal distributed random variables which mainly reflect variations due
to factors not accounted for by concrete compressive strength. Examples are the gravel type and
size, chemical composition of cement and other ingredients and climactic conditions. The mean
values and coefficient of variation (COV) of those variables and of the random variable Y1,j are
given in table 4.2. Again these values may also be determined from direct measurements. In the
relations of the concrete material parameters, the variables Y1,j to Y4,j may also be taken as a
spatially varying random fields. However, no correlation coefficients between the different variables
and no correlation functions for the different variables are given in the JCSS model code.
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Tab. 4.2.: Mean and COV for the different random variables used in the relations for the material properties
of concrete.

Variable µ COV Related to:

Y1,j 1.0 0.06 Compression
Y2,j 1.0 0.30 Tension
Y3,j 1.0 0.15 E-modulus
Y4,j 1.0 0.15 Ultimate strain

Based on the values of the random field for the basic compressive strength, the values for all other
material parameters for concrete can be determined. The schematic stress-strain relationship for
concrete is shown in figure 4.1. The material properties are shown in blue in this scheme, which
vary for every position in a model, when the JCSS model code is applied. The use of JCSS in a FEM
analysis results thus in a different stress-strain relationship for all the gauss points.

σ(
N

/m
m

)
ε(-)

εu

Ec

fct

fc

Fig. 4.1.: Schematic stress-strain relationship according to JCSS where fc, fct, Ec and εu vary for every
integration point.

4.2 Selection of a random field generator
In this section, the best method to generate a random field with the described properties in the
JCSS model code will be selected. This will be done based on the findings in chapter 3 and on
an additional comparison. In this comparison different domain sizes and shapes are used and the
coarseness for the random field mesh is varied. This comparison will give a more solid ground for
concluding which method is the best, and it will give an indication for the desired coarseness of the
random field. First, the findings of chapter 3 with respect to the selected statistical characteristics
will be discussed.

4.2.1 Findings from the assessment of random field generators

In the JCSS model code, a log-normal random field with a squared exponential correlation function
having a correlation length of 5 m and a threshold value equal to 0.5 is advised. The COV varies
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from 0.6 to 0.19 for the different concrete grades given in table 4.1. For the C15 ready mixed
concrete type the highest COV is found, which is equal to 0.19. Based on the findings of the
assessment between the different random field generators, it cannot be concluded which of the
methods is the most accurate. Both the CMD method combined with eigendecomposition as the
FFT method could be a good alternative. It can however be stated that for random fields with a
large number of nodes the FFT outperforms the CMD method combined with eigendecomposition.
In the next section the results of an additional comparison are presented.

4.2.2 Additional assessment of random field generators

To investigate which of the methods is the most accurate for the specific statistical characteristics of
the JCSS model code, an extra comparison is made. The suggested correlation function in equation
4.2 is used and the C15 ready mixed concrete type is selected for this assessment. Only the 2D case
is considered since no significant differences were found between the results for 1D and for 2D. In
2D, the domain size and shape is varied to investigate if the conclusions can be drawn in general.
The size of the square is varied from 5 m to 80 m and the elongated rectangle had a size of 5 m x
40 m. For both cases the number of nodes is varied to study the desired coarseness of the random
field. This comparison is carried out in DIANA. In table 4.3 an overview of different domain sizes
and the used number of nodes is given.

Tab. 4.3.: Set-up for the additional comparison made in DIANA.

Shape of domain Size of domain Number of nodes in x and y direction

Square 5 m x 5 m 2x2, 4x4 and 8x8
10 m x 10 m 2x2, 4x4 8x8 and 16x16
20 m x 20 m 2x2, 4x4 8x8, 16x16 and 32x32
40 m x 40 m 2x2, 4x4 8x8, 16x16, 32x32 and 64x64
80 m x 80 m 2x2, 4x4 8x8, 16x16, 32x32, 64x64 and 128x128

Elongated rectangle 5 m x 40 m 2x16, 2x32 4x16 and 4x32

Next to the FFT method and the CMD method combined with eigendecomposition the results for
the LAS method and CMD method combined with modified Cholesky decomposition are given.
This gives some reference for the performance of the FFT and CMD method combined with
eigendecomposition. The different errors with respect to accuracy will now be considered.

Representation of the mean value In figure 4.2 the absolute errors in the mean value of all the
square random fields are plotted against the number of nodes in x-direction. It can be seen that
the deviation in the values decreases when the number of nodes increases. No specific relation is
found between the absolute error in the mean and the ratio between the correlation length and
the element size of the random field. In this figure no significant differences between the different
methods can be observed. If the averaged value of the error in the mean value is checked for every
method, also no significant differences are observed. The averaged values are shown in table 4.4.

Tab. 4.4.: Averaged value of absolute error in the value per method.

CMD FFT LAS CMD
Eigen Mod. Chol

0.257 0.255 0.251 0.273
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Fig. 4.2.: The absolute error in the mean of the mean values of the random field estimated over 200 fields.

Representation of the standard deviation If the representation of the standard deviations is
considered, it can be observed that it is significantly related to the ratio between the correlation
length and the element size of the random field mesh. The plot with mean values of the standard
deviation is shown in figure 4.3 and the plot with the deviation in the standard deviation is shown
in figure 4.4, both for the square shaped random field of 80 m x 80 m. In both plots, it can be
observed that the value converges to the target value when the ratio between the correlation length
and the element size of the random field increases, i.e. the random field mesh becomes more
refined. It can be observed that the CMD method converges faster than the FFT method and the
FFT method converges faster then the LAS method to the target value. The target value of the
mean value of the standard deviation is smaller than 5.9, which is the standard deviation of the
C15 concrete grade. This can be explained by the loss of ergodicity due to the strong correlation in
the random field. The ratio between the correlation length and the element size of the random
field mesh should be larger than 2 according to these plots to acquire accurate results.
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Fig. 4.3.: The mean value of the standard deviation of the random field estimated over 200 fields.
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Fig. 4.4.: The deviation in the standard deviation of the random field estimated over 200 fields.

Representation of the correlation structure If the mean value of the absolute error in the corre-
lation structure is considered, no significant relation with the ratio between the correlation length
and the element size of the random field mesh can be observed. In figure 4.5 the mean value of the
absolute error in the correlation structure is plotted against this ratio. However, it is observed that
for a small ratio the values are somewhat higher. If the different methods are compared, it can be
observed that the error for the LAS method is higher than for the other methods. The error for the
other methods is comparable. The averaged values for the cases that the ratio is between 1.5 and 4
is given in table 4.5 for the different methods. It can be seen that the value for the CMD method
combined with eigendecomposition is slightly lower than the value for the FFT method and the
CMD method combined with modified Cholesky decomposition. The LAS method has the largest
error in the correlation structure.
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Fig. 4.5.: The mean absolute error in the correlation structure of the random field estimated over 200 fields.
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Tab. 4.5.: Averaged mean error in the correlation structure per method for Lc/LRF between 1.5 and 4.

CMD FFT LAS CMD
Eigen Mod. Chol

0.014 0.018 0.033 0.019

4.2.3 Overall performance and selection

From the additional comparison it can be concluded that the CMD method combined with eigende-
composition is the most accurate method when the suggested statistical characteristics from the
JCSS model code are used. For other concrete types and grades, the COV is even lower which will
probably lead to even smaller errors in the representation of the statistical characteristics. The FFT
method and the CMD method combined with modified Cholesky decomposition are slightly less
accurate and the LAS method is the least accurate method. If the efficiency of the different methods
is also taken into account the FFT method outperforms the CMD method. Especially in DIANA, the
initialization time is very large for the eigendecomposition. Above a total number of 1032 nodes
the computation time strongly increases which lead to impractical situations. An iterative solver has
been applied, in order to try to decrease the computation time for the eigendecomposition, without
any success. An overview of the total runtime for the CMD combined with eigendecomposition and
the FFT method for different number of nodes is given in table 4.6.

Tab. 4.6.: Total runtime in seconds for the generation of 200 fields in 2D.

Number of nodes CMD Eigen FFT

4 0.04 s 0.06 s
16 0.06 s 0.13 s
64 0.15 s 0.36 s
256 0.81 s 1.20 s
1024 57.1 s 16.9 s
4096 7384 s 66.7 s

It can be seen that the runtime for the FFT method stay quite small with increasing number of nodes.
Although the FFT method is slightly less accurate it is therefore selected for the implementation in
DIANA in the JCSS random field application.

4.2.4 Optimal element size

Based on the comparison in this chapter, it can be concluded that the element size of the random
field mesh should smaller than half the correlation length. If the results from [16], which were
shown in figure 2.15, are taken into account it can be concluded that this ratio is also sufficient
when the shape function discretization method is selected. A higher ratio leads to even more
accurate results. Please note that in figure 2.15 the inverse ratio is shown on the x-axis. When this
inverse ratio decreases, the relative error in the variance decreases. Based on this ratio the number
of nodes can be specified for every domain size by ensuring that the ratio is always higher than 2.
If the size of the domain is smaller than 5 m in one direction the dimension of the random should
be lowered one order. If in all directions the sizes of the domain are smaller than 5 m, a random
variable should be applied in stead of a random field since the variation in the field is negligible
small.
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Tab. 4.7.: Required number of nodes specified for every domain size.

Domain size in meters Number of nodes

5 - 7.5 4
7.5 - 17.5 8

17.5 - 37.5 16
37.5 - 77.5 32
77.5 - 157.5 64

157.5 - 317.5 128
317.5 - 637.5 256
637.5 - 1277.5 512

1277.5 - 2557.5 1024
2557.5 - 5117.5 2048

4.3 Work flow & in and output of DIANA
In DIANA the JCSS model code is implemented as a material model. In this section the work flow
in DIANA for the user is explained. Also some implementation issues will be discussed. Finally,
plots for different material properties will be shown, generated with the JCSS material model.

The user can select the JCSS Probabilistic Model Code material model for one of the material
definitions, which can be assigned to element sets in the program. A total strain rotating crack
model with linear softening in tension and a constant curve in compression is selected. The random
ultimate compression strain is left out of the implementation. The user can select the concrete type
and class which automatically defines the average and standard deviation of the basic compressive
strength according to table 4.1. Other material parameters as the Poisson’s ratio, the fracture energy
and the density can also be defined by the user. The different random field generators, the number
of nodes in each direction, the distribution type and correlation function can be specified by the
user. Also a constant field can be selected which is appropriate for small models or models where
spatial variability is not important.

It is the authors opinion that the number of nodes should be coupled to the size of the element
set to which the material definition is assigned, according to table 4.7. If two dimensions are
larger than 0.5 · Lc a 2D random field should be generated. If only one of the dimensions is larger
than 0.5 · Lc a 1D random field should be generated. If all dimensions are smaller than 0.5 · Lc a
constant field depending on a random variable should be generated. In 1D the CMD method with
eigendecomposition and in 2D the FFT method should be selected automatically.

In an analysis for every node in the random field mesh, a correlated random variable is evaluated
for the basic compressive strength, based on the selected input. For every integration point a value
is determined for the basic compressive strength by interpolating between the values of the nodes.
The other material properties are then determined for every integration point with equations 4.3
till 4.5.

Examples of the spatial function for the Young’s modulus, compression strength and tensile strength
in a concrete plate of 25 x 25 m can be found in figure 4.6 till 4.8. It can be seen that the different
fields show the same pattern. This is due to the fact that in the JCSS probabilistic model the values
are coupled with one single relation (equation 4.3-4.5). The random variable in these relations
can be changed in a random field, i.e. for all the material properties spatially correlated random
variable are generated for every node in the random field mesh.
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Fig. 4.6.: Example of a spatially varying function for the Young’s modulus of concrete.
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Fig. 4.7.: Example of a spatially varying function for the compressive strength of concrete.
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Fig. 4.8.: Example of a spatially varying function for the tensile strength of concrete.
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5Spatially varying material properties
in a concrete floor

In most industry halls a large concrete floor is poured. Due to restrained shrinkage, often cracks
arise in the floor over time. Shrinkage in a floor can be restrained by its sub-base, piles, columns and
perimeter strips. In the example of this chapter, only the restraint of the sub-base will be considered.
This problem is typically a non-linear FEM problem where equilibrium is hard to find, since cracking
occurs at once over the whole length of the plate, and in both directions. In the load steps in which
these cracks arise, highly non-linear behaviour occurs, which is hard to model in a FEA. The analysis
will be carried out with and without spatially varying material properties. It is investigated if the
analysis becomes more stable when a random field is applied in the material definition. Also the
crack initialization and patterns will be compared. It would be very advantageous if the analysis
would be numerical stable. In such a case the design of the floor can be made using a FEM program.
The thickness and reinforcement ratio can be determined in a economical way and damage due to
cracks in the floor can be prevented.

At the end of this chapter the impact on a non-linear analysis of spatially varying properties will be
more clear. Also the JCSS Probabilistic Model Code will be evaluated and some recommendation
will be given. First a description of the model is given.

5.1 Model description
The reinforced concrete floor is modelled in 3D. The mechanical scheme of the reinforced concrete
floor on a linear elastic Winkler bedding submitted to a shrinkage load is given in figure 5.1. The
deformation of the floor is restrained by the sub-base which induces stresses in the floor. When the
stresses exceed the maximum tensile strength of concrete, cracks will arise.

Reinforcement

Reinforced concrete floor

Sub-base

Wrinkler bedding

Shinkage
load

Fig. 5.1.: Mechanical scheme of concrete floor on a linear elastic bedding with reinforcement at 0.05 m from
the top.

To model the linear elastic bedding, interface elements (Q24IF) are placed between the supports
and the bottom nodes of the floor. The configuration of the floor with the embedded reinforcement,
the interface elements and supports is shown in figure 5.2. The nodes below the interface elements
are supported in all translation directions. The shear stiffness of the interface element is equal to
108N/m3 and in the normal direction it is equal to 1014N/m3. Reinforcement is placed in both
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directions, at 0.05 m from the top of the plate. The orthogonal grid is smeared out and has a
equivalent thickness of 0.0008 m. This corresponds to a reinforcement ratio of 0.4%.

Embedded
reinforcement

50 mm

150 mm

Interface layer

Fig. 5.2.: Configuration of the model with embedded reinforcement, interface elements and the nodes at the
sub-base which are supported in all translation directions.

The size of the floor is 25 x 25 x 0.2 m. It consist out of 15625 eight-noded isoparametric solid
brick elements (HX24L) of 0.2 x 0.2 x 0.2 m. In figure 5.3 the 3D model is shown. A shrinkage load
of 0.4 ‰ is applied on the model. All the brick elements are thus submitted to a prescribed strain
of -0.0004.

25 m

25 m

Fig. 5.3.: 3D FE model of a concrete floor on a linear elastic bedding with reinforcement at 0.05 m from the
top.

The material properties of concrete with spatially varying properties and concrete with constant
properties are given in table 5.1. For the material with spatial variation, the model code of JCSS
is followed. The input parameters are given in this table and give all the information required to
generate the basic random field. All material parameters required for the material crack model of
concrete can be derived from this field for every integration point, as described in chapter 4. For
the reinforcement steel, Von misses plasticity is selected as material model with no hardening and
also no bond-slip is taken into account. The Young’s modulus is equal to 2 · 105 MPa and the yield
strength is equal to 500 MPa.
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Tab. 5.1.: Material properties of concrete.

Concrete random field Concrete homogeneous
spatial varying properties no variation in properties

Concrete Class C35 Concrete Class C35
Concrete type Ready mixed Concrete type Ready mixed
µ of fc01 47.35 MPa fc 32.46 MPa
σ of fc01 5.86 MPa fct 3.05 MPa
Distribution type log-normal Ec 1.97 · 104 MPa
RF method FFT Poisson ratio 0.15
Nx & Ny 16 Fracture energy 100 N/m
Correlation function SExp
Threshold value 0.5
Correlation length 5 m
Poisson ratio2 0.15
Fracture energy2 100 N/m
1 The fields for fc, fct and Ec can be derived from the basic compressive strength (fc0) field accord-
ing to equations 4.3 till 4.5. The variables Y1,j , Y2,j , Y3,j are kept equal to 1 in every realisation of
the random field.
2 These property are constant in the model where spatially varying materials are used.

Analysis settings In the non-linear FEA, the Secant-Newton BFGS iteration scheme is used
in combination with a line-search technique. As convergence criteria a displacement norm and
force norm have been selected with a tolerance value of 0.01. If at least one of both criteria is
met, the analysis will continue to the next load step. If, after the maximum number of iterations,
none of the criteria is met, the analysis is forced to continue at the following load step. In this
situation, unreliable results are obtained since the true equilibrium path is not followed. It is
however interesting to consider the results because the relative out of balance force and relative
displacement variation will give insight in the numerical stability of the analysis. Additionally, it
will provide insight in where the crack initialization starts and the crack patterns can be compared.
The step sizes and maximum iterations for the analyses are given in table 5.2

Tab. 5.2.: Step sizes and maximum number iterations in iteration scheme.

Step size Maximum itterations

1 x 0.4, 4 x 0.01, 50 x 0.001 5
50 x 0.01 20

5.2 Results
In this section the results for the different models will be given, with respect to numerical stability,
crack initialization and crack patterns. For the models that include spatially varying material
properties, three analyses are carried out to estimate the deviation in the results. It is important
to keep in mind that in none of the analyses the convergence norm is reached in the load steps in
which cracking occurs. The true equilibrium path may not be followed, which makes the results
unreliable. The results of the analysis will be described in the next sections to give some insight in
the influence of spatially varying material properties on the FEA.
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5.2.1 Crack initialization

To show how the cracks develop during the analyses, the first principal crack strain is plotted for all
the analyses, starting in the load steps where the first cracks arises. In the plots of the subsequent
load steps, each with a step size of 0.001, the area with crack strains expands in the concrete floor.
These plots are shown in figure 5.4 and 5.5. The load step number and maximum crack strain are
shown in the lower right corner of every plot.
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Fig. 5.4.: First principal cracks strains for the loadsteps subsequent to the loadstep where cracking starts. In
the lower right corner the load step and maximum crack strain is given which correspond to the red
lines in the plots.
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Fig. 5.5.: First principal cracks strains for the subsequent load steps of the last load step in figure 5.4. In the
lower right corner the load step and maximum crack strain is given which correspond to the red
lines in the plots.

5.2 Results 93



Considering the plots of the crack strains (figure 5.4-5.5) a few observations can be made. It can
be seen in every case that the cracks initialize at a single location and develop from bottom to top
and from left to right. For the plate without spatial variation, this crack is developed in a lower
number of load steps. The load step number where crack initialization takes place is different for
every analysis when a random field is applied. The maximum crack strain is somewhat higher in
the case spatially varying properties are applied. The (maximum) crack strain increases strongly in
the load steps where cracking starts. When the crack has developed from bottom to top and from
left to right, the crack strains stay approximately the same. In case no spatial variation is applied
the crack starts perfectly in the middle of the floor. The highest stresses occur in the middle of the
plate, since the floor is restrained at the bottom by the linear elastic bedding.

To give a better understanding of this behaviour, the shear stress in the interface elements is
plotted along the plate for different load factors. This plot is given in figure 5.6. When the plate is
uncracked, it can be seen that at both sides of the floor, the shear stresses are the highest. When
the concrete floor shrinks, all the nodes have a displacement to the middle of the floor. This
displacement is restrained by the bedding which lead to tensile stresses in the floor. These tensile
stresses are build up from the side to the middle of the floor, where the tensile stresses are the
highest. When the tensile stresses exceed the tensile strength of the concrete a crack arise. On that
location a jump in the shear stress can be seen in the graphs. After the floor is cracked in four parts,
the same phenomena starts again with a quarter of the plate and secondary cracks arise.
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Fig. 5.6.: Shear tractions along the plate at x=20 m for the first analysis of the concrete floor with spatially
varying material properties.

For the analysis where a random field is applied, cracking starts somewhere close to the middle. If
the tensile strength in the plate, see figure 5.7, is compared to the starting plot in figure 5.4, it can
be observed that cracking starts at a weaker point in the structure.
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Fig. 5.7.: Tensile strength in the concrete floors for the cases where a random field is applied in the material
definition.

In figure 5.8 the number of cracks, as function of the load factor, can be seen. It can be observed
that for the analyses with spatial variation in the material properties, the total number of cracks is
lower than for the analysis without spatial variation. It can also be seen that around load step 0.43
a large amount of crack occur in all cases. The cracks in the floor develop over the whole length in
that step. It can be seen that for the analyses with a spatial variation in the material properties, the
cracks occur more gradual than for the one with no spatial variation.

0

10000

20000

30000

40000

50000

60000

70000

80000

0 0.2 0.4 0.6 0.8 1

N
um

be
r 

of
 C

ra
ck

s

Load factor

Total number of cracks during analyis

Random Field 1

Random Field 2

Random Field 3

Constant properties

Fig. 5.8.: Number of cracks during the analysis as function of the load factor.

5.2.2 Crack patterns

The patterns in the cracks for the cases where spatially varying material properties are applied,
differ somewhat from the case where constant material properties are used. Here, the crack patterns
are not perfect symmetric any more. The crack strains for the load factors which correspond to
a submitted strain of 0.2, 0.3 and 0.4 ‰ are shown in figure 5.9. Again, it can be observed that
the crack patterns are not symmetric, as in the analysis with no spatial variation in the material
properties. When spatially varying material properties are applied, it can be observed that the
secondary cracks, which develop in both radial direction and tangential direction, grow more
gradual. This corresponds with figure 5.8, where it can be seen that the secondary cracks for the
case where no spatial variation is applied, develop in just a few load steps.
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Fig. 5.9.: First principal crack strain corrosponding to a submitted strain of 0.2‰ (top), 0.3‰ (middle) and
0.4‰ (bottom). The crack strains give a good impression of the crack patterns in the concrete.

5.2.3 Numerical stability

In both cases, with and without spatial variability, the analysis diverges from its equilibrium path in
the load steps where the crack develops from the middle of the floor to the sides. To give some
insight in why the analyses do not converge, the relative strain is plotted in figure 5.10. The relative
strain is determined by dividing the difference in the displacement of two nodes by the distance
between those nodes. A large jump in the relative strain can be observed at the load factor where
the crack develops over the length of the plate. This large jump is observed in all the analyses and
shows the nature of the problem. A large strain energy is build up before cracking, which leads to
an explosive growth of the cracked area, after the initialization of the crack.
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Fig. 5.10.: Relative crack strain as function of the load factor. Relative strain is determined by dividing the
difference in the displacement of two points by the distance between those points.

In all the analyses the convergence norm is reached in the first two or three load steps after crack
initialization takes place. Thereafter strong deviations from the convergence norm are observed.
The maximum number of iterations is therefore limited to 5 in order to limit the divergence from
the true equilibrium path. Since all the analyses diverge from the true equilibrium path, it is hard
to say something strict about the numerical stability of the analysis. Though, it can be observed that
the number of cracks grows more gradual when spatially varying material properties are applied,
especially when secondary cracks are developing. Also, the maximum relative out of balance force,
see table 5.3, is somewhat larger in the case where there is no spatial variation in the material
properties. Both observations are indications that with spatially varying material properties the
analysis is somewhat more stable than without spatially varying material properties.

Tab. 5.3.: Maximum relative out of balance force.

RF 1 RF 2 RF 3 No RF

1.17 0.90 1.00 1.15

5.3 Variations on the JCSS Probabilistic Model Code
In order to get a better picture of what the influence of spatially varying material properties is
on a non-linear FEA, a few additional analyses are carried out. Up till now the analyses did not
reached the convergence norm in the load steps after the first cracks occur. Additionally, the cracks
do not localize, the band of cracks spreads out over several elements. The variations on the JCSS
Probabilistic model code may not be realistic but are all aiming on stimulating crack localization,
which may lead to a more stable analysis. In this section only the results which differ from the
previous analysis will be presented.

5.3.1 Increasing the variation in the field

In the JCSS Probabilistic Model Code a quite large correlation length is used, and the COV of 0.12
is quite low in comparison with the used values found in the review of literature. Additionally,
a threshold value is used which is not used in other approaches. In this section the analyses are
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presented where the variation in the values of the field are increased by lowering the correlation
length, increasing the COV and not applying a threshold value. The used input parameters are
given in table 5.4. The used values will result in fields for the material parameters with a more
coarse surface and with larger fluctuations. The extreme case, where a correlation length of 0.05
m is used, corresponds to the case where the values in the random field are uncorrelated. Every
integration point is assigned a value which is uncorrelated with other values. Due to the increase
in the variation in the fields, the load factor where cracking arises is lower than in the previous
case. The used sizes for the load steps in the analyses are also given in table 5.4. Again, none of the
analyses reached the convergence norm in all the load steps.

Tab. 5.4.: Used Lc and COV in additional analyses.

Analysis number Lc COV Load steps

Analysis 1 0.5 m 0.3 1x 0.30, 1x 0.01, 50 x 0.001 and 64 x 0.01
Analysis 2 0.5 m 0.5 1x 0.27, 1x 0.01, 50 x 0.001 and 67 x 0.01
Analysis 3 0.05 m 0.3 1x 0.30, 1x 0.01, 50 x 0.001 and 64 x 0.01
Analysis 4 0.05 m 0.5 1x 0.30, 1x 0.01, 50 x 0.001 and 64 x 0.01

In figure 5.11, the plots of the tensile strength for different correlation lengths is given. For all
cases, the COV is equal to 0.3 and no threshold value is used in the correlation function. It can be
seen that the fluctuation is much more gradual when the correlation length is higher. This has a
significant effect on the analysis as will be shown.

Lc = 5 m Lc = 0.5 m Lc = 0.05 m

Fig. 5.11.: Tensile strength in concrete floor with different values for correlation length. COV is equal to 0.3
and c1 is equal to zero.

In figure 5.12 the crack strains are plotted for analysis 1 and analysis 3 for several load steps. It
can be observed that the cracks arise on more locations as the correlation length decreases. The
cracks develop on different locations and grow to each other. As in the previous example, again
a cross pattern arises. In the case where a correlation length of 0.5 m is used, the crack band is
somewhat smaller than in the case of a correlation length of 5 m. This could be an indication for a
more stable analysis. If the correlation length decreases further, the number of integration points
which are in the cracked state is much larger than for the other cases.

When the COV is increased to 0.5, the crack patterns are comparable to the analysis where a COV
of 0.3 is used, and are therefore not shown. On average, the load factor where cracking starts is
lower in the analyses with a COV of 0.5. The crack band is approximately the same. From these
observations it can be concluded that especially the correlation length has a significant influence on
the crack patterns.
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Analysis 1

load factor: 0.3 load factor: 0.31 load factor: 0.324 load factor: 0.5

Analysis 3

load factor: 0.3 load factor: 0.331 load factor: 0.352 load factor: 0.5

Fig. 5.12.: Crack strains for analysis 1 and analysis 3 for several load steps.

5.3.2 Homogeneous Young’s modulus

In chapter 4, it was stated that in the JCSS Probabilistic Model Code, the different material
parameters are fully correlated. This can also be seen in the figures 4.6 till 4.8. In these figures,
the maxima and minima are on the same locations in the field for every material parameter. Using
the expression in the JCSS Probabilistic Model Code, the strain at which cracking occurs can be
expressed as follows:

εcrack = fct
Ec

= 0.3f2/3
c Y2

10.5f1/3
c Y3(1 + βdφ(t, τ))−1

= 0.3
10.5f

1/3
c (1 + βdφ(t, τ)) (5.1)

The variables Y2 and Y3 are set equal to 1 in all analyses for every realization of a random field.
The tensile strain at which cracking occurs is thus a function of the compression strength only. This
function is plotted in figure 5.13. It can be observed that for the concrete class C35 the tensile
strain, at which cracking occurs, varies only little. This can be one of the reasons that, although
spatially varying material properties are used, the cracks do not localize.

To increase the variation in the tensile strain at which cracking occurs, the analysis is carried out
with a constant Young’s modulus. This again led to divergence from the true equilibrium path. The
primary cracks again occur in just a few load steps. The crack patterns where comparable with the
case where the Young’s modulus is varied. It also gave no other development of the total number of
cracks in the model.
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Fig. 5.13.: The strain at which cracking occurs as function of the compression strength.

5.4 Evaluation
In this chapter a concrete floor which is submitted to shrinkage is considered. The crack patterns,
occurring in the analyses, are as expected. Based on examples in reality, it was expected that the
floor would crack in four parts due to restrained shrinkage. Based on the presented results it can
not be stated if the FEA becomes more stable when a random field is applied, since in all cases
the analysis diverges from the true equilibrium path. The iteration scheme and step sizes have
been varied to find a converging solution without any success. After the first cracks arise, the crack
develops in both directions over the full length of the floor in a few load steps. This explosive
growth of cracks is hard to model with the FEM. Arc length control would be a good method to
improve the numerical stability. Unfortunately, it can not be applied since the strain load is defined
such that it is not included in the external load vector. This leads to a division by zero in the arc
length control method.

The Young’s modulus is kept constant in one of the analysis to increase the variation in the tensile
strain at which cracking occurs. This gave no improvement in the numerical stability of the analysis.
From this observation, it can be reasoned that if instead of random variables, random fields would
be used for the variables Y1 to Y3, such a modification will give no improvement in the numerical
stability of the analysis. The cracking occurs very explosive, which is not different when spatially
varying material properties are used. For other highly non-linear problems it could be that the use
of a random field would improve the numerical stability of the analysis.

With regard to the load step selection some remarks can be made. In case spatially varying material
properties are applied, it is not known a priori at which load factor non-linear behaviour starts
occurring. This leads to a more practical problem. The zone over which smaller load steps are
taken, have to be larger in order to be sure that the transition of linear to non-linear behaviour
is in one of the smaller load steps. This problem may be omitted by doing first a linear analysis
to estimate the load factor where non-linear behaviour starts occurring and thereafter doing a
non-linear analysis using the same random field for the model. It is the authors opinion that more
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models should be examined using a random field to explore other practical issues which may not
be advantageous when a MCS or other reliability analysis is carried out.

The material model which have been developed according to the JCSS Probabilistic model Code
can also be improved in order to stimulate localization of cracks. In the model code, nothing is
mentioned about the fracture energy. This value is therefore kept as a constant in the analysis. In
figure 5.14, the tension-softening stress-strain diagram is given, which corresponds to the material
model according JCSS. In the left diagram, the relation between the fracture energy Gf and other
parameters is given. The parameter h is the crack band width over which the crack is smeared out.
In the right diagram, two softening curves for two different integration points are given, which each
have a different Young’s modulus and tensile strength. They have the same value for the fracture
energy which results in a different slope for the softening part of the diagram. During an analysis,
the integration points with a higher tensile strength will have a stiffer response, when they are in
the cracked stage, than the integration points with a lower tensile strength. It could be the case
that in a load step the integration point with the lowest tensile strength will be in the cracked state
because the maximum tensile stress is exceeded. In a next step, the stress in another integration
point, close to the first integration point which is in the cracked state, may also exceed the tensile
strength and will be in the cracked state. Due to the stiffer response of the integration point with a
higher tensile strength, it will attract more of the deformation energy. This will lead to a wider area
of integration points which are in the cracked state.
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Fig. 5.14.: Left: Tension-softening stress-strain diagram with indication of different parameters. Right: Two
softening curves with differnt values for Ec and fct and the same value for Gf .

From a practical point of view, it would also be better to vary the fracture energy based on the
tensile strength and the Young’s modulus. In the analysis with a COV of 0.5, the program gave an
error that the tensile strength had to be reduced. The softening curve would other wise be in the
direction of a strain which is lower than the strain belonging to the tensile strain at which cracking
occurs. For a high tensile strain, the fracture energy should also be higher to avoid this problem.

Next to the fracture energy, another remark can be made with regard to the JCSS Probabilistic
Model Code. The average value for the Young’s modulus is around 20 GPa for a concrete class of
C35. This is value is quite low in comparison to the value used in the Eurocode for that concrete
class. The value in the JCSS Probabilistic Model Code is equal to the value which is used for cracked
concrete. It is therefore not clear if this code can be applied for every problem with reinforced
concrete.

5.4 Evaluation 101



5.5 Conclusion
A reinforce concrete floor was modelled on a linear bedding with and without spatially varying
concrete material properties. Crack patterns are as expected, but can not be relied on since the
analyses did not converge in the load steps after the first cracks occurred in the floor. Based on
the results of the different analyses, it can not be stated if the application of a random field in a
non-linear FEA would be beneficial for the numerical stability. The more gradual grow in the total
number of cracks and the somewhat higher convergence norm may be indications that this is the
case.

From the plot of the relative strain around a crack, it can be concluded that a large strain energy is
build up before cracking occurs. This results in an explosive growth of cracks after the first crack
arises. With and without spatially varying material properties this is the case. The cracks did not
localise in a single element but where spread out over several elements. To stimulate localization,
which may lead to more numerical stable results, several variations on the JCSS Probabilistic Model
Code have been applied in an analysis. The correlation length and COV have been varied to increase
the variation in the field. With a correlation length of 0.5 m the cracks localised somewhat more
than in the other cases. The analysis did however still not converge to the convergence norm.
When the correlation length is decreased further, the cracks arise on a large number of locations in
the floor. This leads to a very broad area with cracks which is not beneficial for the analysis with
respect to numerical stability. The increase of the COV did not had an influence on the pattern in
the cracks. Only the load factor from which cracking occurs became lower. By taking the Young’s
modulus constant, it was explored if it would help if the different material parameters would not
be fully correlated to each other. This gave no improvement with regard to the numerical stability
of the analysis.
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6Discussion

In this report the research question, raised in the introduction, is tried to be answered with literature
study, comparative studies and the examination of an example. In this section the results in this
research is placed in perspective and is discussed.

Initially, the focus was put on the probabilistic aspect of using a random field in a non-linear FEA.
During the research it turned out that possible problems with numerical stability of the analysis
should be explored first before doing a full probabilistic analysis. Finally, the research resulted
in an application in the general purpose FEM program DIANA, where spatial variation can be
assigned to any material property. The application is integrated in the work flow of the program. In
literature and practise only examples of external modules can be found which can be combined with
existing FEM software. The research gives an approach which can be followed by other scholars
and companies to find out which method is the most appropriate to incorporate spatial variability
in a FEA. The same approach could be followed for other unexplored materials such as masonry or
timber. Most scholars assume that random fields, used in their research, are ergodic with respect to
the mean and standard deviation. In this research it is showed that this assumption is only valid in
a limited number of cases.

6.1 Assesment of random field generators
The assessment, carried out in chapter 3, gives a good insight in the influence of the different
statistical characteristics on the accuracy and the efficiency of a random field generator. It also
gives insight in what method performs best, when specific statistical characteristics for the concrete
material properties are selected. When a log-normal distribution with a COV between 0.1 and 0.3
is selected, the assessment gives no clear conclusion on what method to use. In order to deal with
this problem, an extra comparison could be made with a log-normal distribution type and a COV
between 0.1 and 0.3. In chapter 4 this extra comparison is carried out only for the correlation
function which is suggested in the JCSS Probabilistic Model Code to see which method is the most
appropriate.

In the assessment the mean and standard deviation are considered per random field. It would also
be very interesting to consider those values per node in the random field mesh, estimated over
a large number of random fields. In this case, it can be checked if the method is accurate in the
representation of the mean and the standard deviation. It could be the case that in this comparison
one of the methods would outperform the others. This comparison is already carried out with
values for the statistical characteristics which are used for soil material properties [14].

The full potential of class 2 methods is not yet considered. In order to do this, another set-up in the
definition of the spatial function should be defined in the DIANA program. When these methods
are assessed it could turn out that one of them outperforms the CMD or FFT method. At a glance,
these methods seem quite hard to implement in a general purpose program.
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The focus of the assessment of random field generators in this research is put on the accuracy of the
random field generators. For a MCS reliability assessment this is very important, since the number
of samples can be lower with an accurate random field generator. For a non-linear crack analysis
where it is not clear where the crack starts, for example the concrete floor, a random field can be
favourable for the numerical stability. In such a case the accuracy of the random field is of less
importance.

6.2 Probabilistic Model Code JCSS
In this research the Probabilistic Model Code of the JCSS was selected to implemented as a material
model in the FEM program DIANA. Its applicability is assessed by applying it in a non-linear FE
example, namely a concrete floor submitted to a shrinkage load. The model code is selected because
it is the only guideline which gives an integral overview on how to take into account the spatial
variability in concrete material properties. Also no other examples where the spatial variability of
concrete parameters is taken into account according to the JCSS Probabilistic Model Code were
found in literature. The used correlation functions entails a relative large correlation length and a
threshold value of 0.5. Both are different from most of the other approaches found in literature. It
is not clear on what experimental data the used correlation function or other parameters are based.
The suggested values in the JCSS model code are therefore open for discussion in future research. A
large correlation length is nonetheless advantageous for the efficiency of the random field methods
since the random field mesh can be more coarse, which means less random variables are needed to
acquire an accurate random field. More experiments should be carried out to find the appropriate
values for the statistical characteristics, which are involved in the modelling of spatial variation
in concrete material properties. In the review of literature a large variation was found in these
values. The determination of the correct values could be very hard in practise, especially for the
correlation function this is difficult. First of all a lot of experiments have to be carried out to have
enough data on which the correlation function can be based. Next to that, it could be the case that
the correlation length depends on several factors, of which each has its own scale of fluctuation.
For example the fluctuation can be influenced by the way the concrete is poured, the shape of the
mould and the used aggregate sizes. In that case the correlation function would be dependent on
several factors and would thus be different for every problem considered.

Due to the high correlation length and the use of a threshold value, the variance in a single field
reduces significantly. It is questionable if this reduction of the variance is significantly large in
reality too. If this is not the case this could be an indication that the advised correlation function in
the model code is not correct. A smaller correlation length or/and no threshold value should be
used in that case.

The JCSS model code is implemented with the variables Y1,j , Y2,j , Y3,j and Y4,j being a random
variable. It should be more appropriate to apply a random field for those variables. In that case,
the different material parameters are not fully correlated any more, which would be more realistic.
Also, the fracture energy should variate in the model to improve the material model in DIANA.
However, in the model code no suggestions are given for the fracture energy. The fracture energy
could be made dependent on the tensile strength and Young’s modulus, or a random field can be
generated for the fracture energy which is correlated to the other material parameters. This may
stimulate crack localization, which may increase the numerical stability of the analysis.
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The average value for the Young’s modulus in the JCSS model code is equal to the one of cracked con-
crete, which is lower than the Young’s modulus of uncracked concrete. It is therefore questionable
for what kind of analysis the model code is applicable.

6.3 Non-linear analysis and random fields
The concrete floor which is submitted to a shrinkage load is modelled on a linear bedding. In
reality the connection between the floor and the sub-base will fail at a certain shear stress. It would
therefore be more appropriate to model the concrete floor on a non-linear bedding with a τmax
at which the shear stress in the interface element is limited to the maximum friction shear stress.
This will result in more realistic behaviour of the model. This will enlarge the area over which the
maximum tensile stress is build up in the centre of the plate, and cracks will occur when the floor
is submitted to a higher shrinkage. However, because of practical considerations it is decided to
model floor with a linear bedding. By keeping the bedding linear it was intended to let the analysis
converge to the convergence norm in the load steps where cracks arise. Another reason is that
the floor should be larger to get similar crack patterns which would increase the CPU-time of the
analysis strongly.

The model is modelled with 3D linear brick elements. It would also be sufficient to model the
problem with membrane elements, since no significant 3D effect where observed in the results
of the analyses. To increase the numerical stability of the analysis, membrane elements with a
quadratic interpolation and Gauss integration scheme could be selected. The variability in the
material properties could be captured better in that case.

Based on this single example no conclusion can be drawn in general. More applications and cases
should be considered to explore the difficulties which are faced when a random field is applied in
combination with a non-linear analysis of reinforced concrete. The observation with regard to this
aspect are however valuable for further research.
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7Conclusion and recommendations

7.1 General research findings
Concerning the literature review on random field generation for reinforced structures, which was
reported in 2.7.3, the following conclusions can be drawn:

1. A wide variety is found in literature for the statistical characteristics, which are involved in
the modelling of spatial variability. Both the Exp and SExp correlation function are suggested
with correlation lengths varying from 0.5 m to 5 m. As distribution type the normal, truncated
normal and log-normal distribution are used and the COV varies from 0.1 to 0.3. For the
deterministic relations between the different material properties, to determine the mean value,
often the CEB-FIB 90 model code is used. The wide variety in the statistical characteristics
can be mainly attributed to the lack of experimental data on which the appropriate values
can be based.

2. The JCSS Probabilistic Model Code gives a complete guideline for the modelling of spatial
variability in the material properties of concrete. In this guideline, a threshold value for the
correlation function is introduced to take into account the fact that within one structural
element the properties are correlated with a minimum value, since it is poured with one batch
of concrete.

3. The number of dimensions in which the random field should be generated, should be equal to
the number of dimensions of the structure which are larger than Lc. In the case the dimension
is larger than Lc, taking into account the spatial variability has a significant influence on the
structural reliability [23, 24].

4. Neglecting the spatial variability in a concrete structure can lead to an overestimation of the
variation in the load capacity of a concrete structure [25].

5. In a reliability analysis of reinforced concrete, it is only relevant to take into account the
spatial variation in concrete properties in case of an ULS analysis where crushing of the
concrete is governing in the failure mechanisms and in a SLS analysis [11].

In the assessment of the random field generators in chapter 3, the influence of the input parameters
on the accuracy and efficiency of the generated random field is determined. For the different
statistical characteristics the following conclusions can be drawn:

1. The threshold value in the correlation function and the distribution type both have a significant
influence on the accuracy of the random field. If the threshold value increases the defined
errors became larger. For a log-normal distributed random field the errors where also larger.
Especially the error in the correlation structure becomes larger in both cases.

2. Loss of ergodicity is observed for strongly correlated random fields. This is the case when
a correlation function with a large correlation length or/and a threshold value is applied.
Ergodicity can not be assumed any longer in such cases. The deviation in the values of the
random field decreases, and the deviation in the mean values increases. No direct relation was
found between the used correlation function and the change in these statistical properties.
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3. No significant differences where found with respect to efficiency and accuracy when a Exp or
SExp correlation function was applied. The pattern of the random field is however different.
For the SExp correlation function the fields have a much smoother surface.

4. The initialization time and realization time increase with increasing number of nodes in
the random field mesh. A linear relation is found between the number of nodes and the
realization time for all the methods.

In this study the random field generators are categorized into two classes. The first class entails
generators which evaluate correlated random variables on the nodes in the random field mesh.
The correlated random variables are thereafter assigned to the elements or integration points with
one of the discretization methods. Class 2 entail the series expansion methods where a number of
continuous functions is multiplied with a random variable and summed to acquire a continuous
random field. A realization of a continuous random field can be numerically integrated to acquire
the values for the integration points. In literature the methods in the second class promise to be
accurate and efficient. However, the preliminary results of the EOLE method, which is a class 2
method, were very poor with respect to efficiency. Also the program structure in DIANA is very well
suited for class 1 methods. It was therefore chosen to focus on class 1 methods in the assessment of
the random field generators. With regard to the performance of the class 1 random field generators
the following conclusions can be drawn:

1. The CMD method is very accurate in the representation of the mean and the correlation
structure of the random field. The decomposition methods are modified to avoid problems
with a (numerical) non-positive definite correlation matrix. For the generation of random
fields with more than 1000 nodes the method becomes very poor with respect to efficiency. In
case a log-normal distributed random field with a COV of 1 is generated, the method is less
accurate.

2. The FFT method is a very efficient method. It is also very accurate in the representation of
the mean and the correlation structure in the case of a normal and log-normal distributed
random field. It is slightly less accurate than the CMD method when the normal distribution
type is selected. With respect to efficiency it is slightly less efficient than the LAS method.

3. The LAS method is the most efficient method. With respect to accuracy the method gave
more accurate results when a neighbourhood size of 3 was selected, instead of 5. This has to
do with the poor treatment of the boundary conditions in the 1D LAS algorithm. The method
is less accurate than the other assessed methods in this study.

4. The MA, DFT and TBM were not selected for the assessment. With respect to efficiency the
first two methods are said to perform very poor in comparison with the FFT and LAS method.
The TBM method is competitive in efficiency with the FFT and LAS method. For this method
it is however not clear a priori how many lines have to be selected to acquire accurate results.
It is also hard to determine the correlation function for the 1D process for every line in the
algorithm.

The JCSS Probabilistic Model Code for concrete material properties was followed to investigate the
influence of spatially varying material properties on the behaviour and performance of a non-linear
analysis. The model code is implemented as a material model in the general purpose FEM program
DIANA. For the suggested correlation function in the model code, the one sided SDF and the
variance function, which are needed in some of the random field generators, are derived in this
research (see appendix G). A concrete floor submitted to shrinkage was considered. In this model
the developed material model and some variations on this model have been used in the analyses.
The results are compared with a model with no spatial variation in the material properties. Based
on the observation in these analyses the following conclusion can be drawn:
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1. When spatially varying material properties are used, it was observed that cracking starts at
the weakest point in the structure. From this location the cracks develop over the full length
and width of the plate. The crack patterns in the floor are non-symmetric.

2. All the analyses did not reached the convergence norm in the load steps where cracking
occurs. In the floor a large strain energy is build up before cracking occurs. This leads to
an explosive growth of the crack after the initialization of the first crack. The application of
spatially varying material properties gave no change in this behaviour.

3. In other problems, the application of spatially varying material properties may improve the
numerical stability. This is based on the following indications:

• The width of the area with crack strains became smaller, especially when a correlation
length of 0.5 m was used. Localization of cracks is an important condition for an analysis
to be numerical stable.

• The growth in total number of integration points which were in the cracked stage was
more gradual in the case that spatially varying material properties were applied.

4. When a random field is applied in a non-linear FEA, its not known a priori when the model
switches form linear to non-linear behaviour. Smaller load steps have to be selected over a
zone where it could be the case that no non-linear behaviour is present. This problem can be
omitted by doing a linear analysis prior to the non-linear analysis with the same random field.
The load factor where the first cracks arise can be estimated in this way.

7.2 Response to the research question
Based on the findings of this research, an answer on the raised research question is formulated in
this section. The research question of this study is formulated as:

"To what extent are the available random field generators suitable to represent the statistical
characteristics of concrete in a general purpose program, and what is the influence of spatially varying

concrete material properies on a non-linear FEA?"

With regard to the first part of the research question, it can be concluded that all the assessed
class 1 methods are appropriate in representing the statistical characteristics of concrete. None
of the methods gave erroneous results. The full potential of class 2 methods is not considered in
this research. These methods could be competitive to class 1 methods or even outperform them.
Further research is necessary to explore the applicability of such methods in a general purpose FEM
program. Of the class 1 methods, the CMD method is the most accurate method. However, this
method becomes very slow when the number of nodes increases which makes it less suited for a
general purpose program. The FFT method is slightly less accurate and stays very efficient with
increasing number of nodes. If another correlation function is desired by the user, the one sided
SDF of this correlation function have to be derived first. This makes the method less flexible, which
is a disadvantage when the method is used in a general purpose program. The LAS method is the
most efficient method, but is less accurate then the other methods. In this method the random field
is automatically discretized with the spatial average method. This gives some restriction on how
the method could be implemented in a general purpose program, which is disadvantageous.

When spatially varying material properties are incorporated in a FE analysis the cracking behaviour
is affected. In the investigated example, it resulted in non-symmetric cracks which initialize at the
weakest point in the structure. Additionally, indications of a more stable analysis where observed in
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the different analyses. More cases and applications have to be explored to come to a more solid
foundation for the answer of the second part of the research question.

7.3 Recommendations for further research
In the last section of this report, direction for future research are identified, as shown in the
following paragraphs:

More experiments In the literature review it was found that there is no agreement on what
statistical characteristics of reinforced concrete should be used. In the FE analyses it was shown
that the correlation length has a significant influence on the cracking behaviour in the concrete
floor. To come to more realistic models it is very important to have more information on what
statistical characteristics should be used. Especially, in a reliability analysis of a reinforced concrete
structure this is desirable. More experimental data and analysis of such data is needed in future
research to determine the statistical characteristics of reinforced concrete.

Class 1 methods vs. Class 2 methods In this report the available methods are divided into two
classes. In literature, assessments of the class 1 methods and of the class 2 methods can be found.
The performance of the methods in class 1 are however not compared to the performance of the
class 2 methods in literature. This would be very interesting to investigate.

Reliability analysis In a reliability analysis of a reinforced concrete structure it is recommended
to use the FFT method as random field generator. To come to an accurate estimate of the reliability,
the focus should be on finding the most appropriate sampling technique which can be used in the
MCS method. Other reliability methods seems to be become too involved when they are combined
with a non-linear analysis of a reinforced concrete structure.

More cases and applications Before coming to a conclusion on the additional value of random
fields in a probabilistic analysis, more cases and applications with spatially varying material
properties need to be explored. When this is done, the influence of spatially varying material
properties on a non-linear FEA can be determined on a more solid ground. Next, it is important to
explore other practical issues which are faced during such analyses. With this information, robust
solution procedures can be selected which can be used in a MCS.

Improving material model The developed material model can be improved by varying the frac-
ture energy in the model. No suggestions are given in the JCSS model code for this material
parameter. It can be related deterministically to the tensile strength and Young’s modulus or a
random field which is correlated to these material parameters can be generated to include variations
of the fracture energy in the model. Stimulation of localization of cracks in a FEA is expected.
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AProject outline

Stochastic spatial distributed properties in nonlinear
crack-analysis
Usually in finite element analysis the domain is considered as a continuum with constant properties
in space. In non-linear analysis where softening material failure is considered, strains can localize
and onset and development of failure can be strongly effected by stochastic spatial distributions of
material properties. Recent design code allows that lower safety factors are applied when spatially
distributed properties are used in analysis. There are also indications that spatially distributed
material properties are advantageous for the robustness of the non-linear analysis, especially for
conditions with large areas with constant loadings.

In the present DIANA product version variations of material properties can only be defined by
assigning different properties to individual elements by hand. TNO DIANA BV wants to extend the
DIANA program with option to define spatially distributed material properties automatically for
the next release and provide users guidance and technical background for using this option. TNO
DIANA BV wishes to have a Master-student involved in this development project, to make sure that
the relevant procedures are considered for implementation. As each parameter has a particular
domain and uncertainty, probably different distributions must be considered.

The following tasks are foreseen:

• Literature review, resulting in overview of relevant procedures to define spatial distribu-
tion based on standard deviations and characteristic length and may be other engineering
parameters.

• Selection of procedure for implementation together with TNO DIANA developers
• Software implementation together with TNO DIANA Developers, inclusive documentation

and testing
• Application on real structures, such as assessment of loading capacity of existing bridge or

stability of a soil-slope
• Reporting

This project shall result in a functional extension of the DIANA product version.

The project shall be done in the TNO DIANA office in Delft, preferably in the period of February-
August 2015.

Potential literature for review:

• Simulation of random fields for stochastic finite element analysis, M.Vorechovsky and D.
Novak, ICOSSAR 2005, ISBN 90 5966 040 4
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• Influence of heterogeneity on the reliability and failure of a long 3D slope, M.A. Hicks and A.
Spencer, Computers and Geotechnics 37 (2010)

• Stochastic approach to slope stability analysis with in-situ data, J. Nuttall, M. Hicks and M.
Lloret-Cabot

• The stochastic Finite Element Method (SFEM), Master thesis Rein de Vries TUD, May 2013.
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BDerivation of the Nataf
Transformation

In this appendix the transformation of a normally distributed random field to a log-normally
distributed random field is derived. This transformation named after scientist A. Nataf.

As given in equation 2.23a, the PDF of the normal distribution is given by:

fY (y) = 1√
2πσY

exp
(
− (y − µY )2

2σ2
Y

)
(B.1)

The mapping to a normal distributed random variable Y to a log-normal distributed random
variable X is given by:

X = exp(Y ) or Y = ln(X) (B.2)

According to the change of variable theorem, the PDF of the log-normal random variable can then
be written as:

fX(x) = gY (y)dy
dx

= g(ln(x)) 1
x

= 1√
2πσY x

exp
(
− (ln(x)− µY )2

2σ2
Y

)
(B.3)

The t-th order moment can be determined as follows:

E[Xt] = E[exp(tY )] =
∫ ∞
−∞

exp(ty) 1√
2πσY

exp
(
− (y − µY )2

2σ2
Y

)
dy (B.4)

Now the following substitution is applied: z = y − µY , which results in:

E[Xt] =
∫ ∞
−∞

exp(t(z + µY )) 1√
2πσY

exp
(
− z2

2σ2
Y

)
dz

= exp(tµY )
∫ ∞
−∞

1√
2πσY

exp
(

2tzσ2
Y − z2

2σ2
Y

)
dz

= exp(tµY )
∫ ∞
−∞

1√
2πσY

exp
(
−(z − tσ2

Y )2 + t2σ4
Y

2σ2
Y

)
dz

= exp(tµY + t2σ2
Y

2 )
∫ ∞
−∞

1√
2πσY

exp

(
−
(
z − tσ2

Y√
2σY

)2)
dz

= exp(tµY + t2σ2
Y

2 )I (B.5)
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To determine integral I, the following substitution is applied: x = z−tσ2
Y√

2σY
. Thereafter the integral is

squared which results in:

I =
∫ ∞
−∞

√
2√

2π
exp(−x2)dx

I2 =
∫ ∞
−∞

∫ ∞
−∞

√
2√

2π
exp(−x2)

√
2√

2π
exp(−y2)dxdy

= 1
π

∫ ∞
−∞

∫ ∞
−∞

exp(−(x2 + y2))dxdy (B.6)

No the variables are substituted by polar coordinates.

I2 = 1
π

∫ 2π

0

∫ ∞
0

exp(−r2)rdrdθ

= 2π
π

[
−1

2exp(−r2)
]∞

0
= 1 → I = 1 (B.7)

The tth order moment is then equal to:

E[Xt] = exp(tµY + t2σ2
Y

2 ) (B.8)

The mean and second moment of a log-normal random variable can be expressed as:

µX = E[X] = exp(µY + σ2
Y

2 ) (B.9)

E[X2] = exp(2µY + 2σ2
Y ) (B.10)

According with equation 2.14, the variance of a log-normal random variable can then be expressed
as:

Var = E[X2]− E[X]2 = exp(2µY + 2σ2
Y )−

(
exp(2µY + 2σ2

Y )
)2

= exp(2µY + σ2
Y )(exp(σ2

Y )− 1) (B.11)

The standard deviation of a log-normal random variable is then equal to:

σX =
√

exp(2µY + σ2
Y )(exp(σ2

Y )− 1) =
√

exp(2µY + σ2
Y )
√

exp(σ2
Y )− 1

= µX

√
exp(σ2

Y )− 1 (B.12)

Equation B.9 and B.12 can be rewritten such that equation 2.27 is obtained.
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According to equation 2.30, the correlation function for two log-normal random variables can be
written as:

ρX1,X2 = Cov[X1, X2]
σX1σX2

= E[X1X2]− E[X1]E[X2]
σX1σX2

(B.13)

E[X1X2] can be evaluated as follows:

E[X1X2] = E[exp(µY1 + σY1Y1)exp(µY2 + σY2Y2)]
= exp(µY1 + µY2)E[exp(σY1Y1 + σY2Y2)]

= exp(µY1 + µY2)exp(1
2(σ2

Y1
+ 2σY1σY2ρY1,Y2 + σY2) (B.14)

The correlation function then becomes equal to:

ρX1,X2 =
exp(µY1 + µY2)exp( 1

2 (σ2
Y1

+ 2σY1σY2ρY1,Y2 + σY2)− exp(µY2 + σ2
Y2
2 )exp(µY2 + σ2

Y2
2 )√

exp(2µY1 + σ2
Y1

)(exp(σ2
Y1

)− 1)
√

exp(2µY2 + σ2
Y2

)(exp(σ2
Y2

)− 1)

=
exp(µY1 + µY2 + 1

2σY1
1
2σY2)(exp(σY1σY2ρY1,Y2)− 1)

exp(µY1 + µY2 + 1
2σY1

1
2σY2)

√
exp(σ2

Y1
)− 1

√
exp(σ2

Y2
)− 1

= (exp(σY1σY2ρY1,Y2)− 1)√
exp(σ2

Y1
)− 1

√
exp(σ2

Y2
)− 1

(B.15)

For a homogeneous field, i.e. σY1 = σY2 and µY1 = µY2 , the correlation function for log-normal
random fields then becomes equal to:

ρX = exp(σY ρY )− 1
exp(σY )− 1 → ρT (∆x) = exp(σ2

T ρ(∆x))− 1
exp(σ2

T )− 1 (B.16)

Which is equal to equation 2.65. The transformed standard deviation σY can be determined with
equation 2.27.
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CDerivation of the covariance function
for two local averages having the
same domain size

The covariance between two local averages can be derived by considering two averaging domains
of size |Da| and |Db|, centred at the points xa and xb and taking expectations.

E[HDaHDb ] = E
[

1
|Da|

∫
Da

H(ξ)dξ 1
|Db|

∫
Db

H(η)dη
]

= 1
|Da| |Db|

∫
Da

∫
Db

E[H(ξ)H(η)]dξdη (C.1)

According to equation 2.29, the covariance function for two local averages can be written as:

BDaDb(xa − xb) = 1
|Da| |Db|

∫
Da

∫
Db

E[H(ξ)H(η)] dξdη − E2[H(x)] (C.2)

For a homogeneous zero mean random field the covariance of two local averages, having the same
domain of size |D| and separated by a distance equal to knDn in every direction, can be written as
follows:

BD(kD) = 1
|D|2

∫ D

0

∫ (n+1)D

nD

E[H(ξ)H(η)] dξdη

= 1
|D|2

∫ Dn

0

∫ (kn+1)Dn

knDn

. . .

∫ D1

0

∫ (k1+1)D1

k1D1

B(ξ1 − η1, . . . , ξn − ηn)dξ1dη1 . . . dξndηn

(C.3)

Where kn is a positive real number.

To simplify this integral the following change of variables is applied:

ξn = ∆yn + ∆xn and ηn = ∆yn for all n (C.4)
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Thereafter the 2n-fold integral is reduced to a n-fold integral by integrating over ∆yn for every n.
First for n=1 the change of variables and integration over ∆y1 is carried out, which results in:

BD(kD) = 1
|D|2

∫ Dn

0

∫ (kn+1)Dn

knDn

. . .

∫ D2

0

∫ (k2+1)D2

k2D2

. . .

. . .

∫ k1D1

(k1−1)D1

∫ D1

k1D1−∆x1

B(∆x1, ξ2 − η2, . . . , ξn − ηn)d∆x1d∆y1dξ2dη2 . . . dξndηn

+ 1
|D|2

∫ Dn

0

∫ (kn+1)Dn

knDn

. . .

∫ D2

0

∫ (k2+1)D2

k2D2

. . .

. . .

∫ (k1+1)D1

k1D1

∫ (k1+1)D1−∆x1

0
B(∆x1, ξ2 − η2, . . . , ξn − ηn)d∆x1d∆y1dξ2dη2 . . . dξndηn

(C.5)

Where dξ1dη1 could be replaced according:

dξ1dη1 =
∣∣∣∣ ∂(ξ1, η1)
∂(∆x1,∆y1)

∣∣∣∣ d∆x1d∆y1 =
(

∂ξ1
∂∆x1

∂η1

∂∆y1
− ∂ξ1
∂∆y1

∂η1

∂∆x1

)
d∆x1d∆y1

= (1 · 1− 1 · 0)d∆x1d∆y1 = d∆x1d∆y1 (C.6)

The new domains of the integrals can be found by substitution of the new variables into the
boundaries of the original domain like:

ξ1 = k1D1 → ∆y1 + ∆x1 = k1D1

ξ1 = (k1 + 1)D1 → ∆y1 + ∆x1 = (k1 + 1)D1

η1 = 0 → ∆y1 = 0
η1 = D → ∆y1 = D

(C.7)

The old and new domain are drawn in figure C.1. The area is split up in two to find the new
domains for the integrals.

Now equation C.5 is integrated over ∆y1, which results in:
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kD

(k-1)D kD (k+1)D

(k+1)D

D ∆x
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∆y

kD

(k+1)D
old domain

D

1st new domain

2nd new domain

∆y=(k+1)D-∆x

∆y=kD-∆x

Fig. C.1.: Old and new domains of the integrals.

BD(kD) = 1
|D|2

∫ Dn

0

∫ (kn+1)Dn

knDn

. . .

∫ D2

0

∫ (k2+1)D2

k2D2

. . .

. . .

∫ k1D1

(k1−1)D1

(∆x1 − (k1 − 1)D1)B(∆x1, ξ2 − η2, . . . , ξn − ηn)d∆x1dξ2dη2 . . . dξndηn

+ 1
|D|2

∫ Dn

0

∫ (kn+1)Dn

knDn

. . .

∫ D2

0

∫ (k2+1)D2

k2D2

. . .

. . .

∫ (k1+1)D1

k1D1

((k1 + 1)D1 −∆x1)B(∆x1, ξ2 − η2, . . . , ξn − ηn)d∆x1dξ2dη2 . . . dξndηn

(C.8)
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This procedure can be repeated n times to acquire the following expression for the covariance
function:

BD(kD) = 1
|D|2

2∑
j1=1

. . .

2∑
jn=1

∫
Ajn,n

. . .

∫
Aj1,1

(Cj1,1) . . . (Cjn,n)B(∆x1, . . . ,∆x2)d∆x1 . . . d∆xn

(C.9a)

Where

∫
A1,n

=
∫ knDn

(kn−1)Dn∫
A2,n

=
∫ (kn+1)Dn

knDn

(C.9b)

C1,n = (kn + 1)Dn −∆xn
C2,n = ∆xn − (kn − 1)Dn (C.9c)

∆x1 till ∆xn are the lag distances in different directions which are bounded by the size of the
domain.
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DDerivation of the Karhunen-Loève
expansion

The Karhunen-loève expansion is a series expansion method where the mean square error is
minimized. To do so, use is made of orthonormal function in the Hilbert Space. The sequence of
orthonormal functions {φj(x)}∞j=1 are such that:

∫ b

a

φi(x)φj(x)dx = δij (D.1)

Which is the inner product of two real functions on the interval [a, b]. Just as for vectors, the inner
product of two orthonormal functions is equal to zero.

A random field H(x, θ) can be expressed as a convergent series of these orthonormal functions:

H(x, θ) =
∞∑
i=1

ci(θ)φi(x) (D.2)

With cj(θ) being random variables and H(x, θ) not necessarily mean-square periodic, Gaussian or
stationary.

To find the correct values for ci(θ) the mean square error is minimized. The mean square error is
represented as:

ε =
∫

Ω
[H(x, θ)−

∞∑
i=1

ci(θ)φi(x)]2dx (D.3)

To find the minimum the derivative is set equal to zero which leads to:

∂ε

∂ck
=
∫

Ω
2[H(x, θ)−

∞∑
i=1

ci(θ)φi(x)]φj(x)dx = 0 (D.4)

Now an expression for ck(θ) can be found.∫
Ω
H(x, θ)φj(x)dx =

∫
Ω

∞∑
i=1

ci(θ)φi(x)φj(x)dx =
∞∑
i=1

∫
Ω
ci(θ)φi(x)φj(x)dx = ck(θ) (D.5)

Assumed is that the variables {cj(θ)}∞j=1 are mutually independent, so:

E[ci(θ)cj(θ)] =
∫
P

ci(θ)cj(θ)dP (θ) =< ci(θ)cj(θ) >= λδij (D.6)

Where dP (θ) is the joint PDF of the random variables.
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Multiplying equation D.2 by cj(θ) and taking expectations results in:

E[cj(θ)H(x)] =
∞∑
i=1

E[ci(θ)cj(θ)]φi(x) = λjφj(x) (D.7)

Now ck(θ) =
∫

ΩH(x, θ)φj(x)dx is inserted twice in equation D.7 which results in:

E[cj(θ)H(x)] =
∞∑
i=1

E[H(x2, θ)φj(x2)dx2ci(θ)]φi(x1) = . . .

. . . =
∫

Ω
E[H(x2, θ)H(x1, θ)]φj(x2)dx2 = λjφj(x1) (D.8)

It follows from equation D.8 that:∫
Ω
B(x1,x2)φj(x2)dx2 = λjφj(x1) (D.9)

Where B(x1,x2) is the covariance function which behaves as a kernel for the eigenvalue problem
where φk(x) are the eigenfunctions and λk are the corresponding eigenvalues. The random field
can now be expressed as:

H(x, θ) = µ(x) +
∞∑
i=1

√
λiφi(x)χi(θ) (D.10)

Where µ(x) is the mean and χ(θ) are uncorrelated N(0,1) random variables. The optimal discretized
expression for the KL expansion as given in equation 2.119 can be obtained by truncating the
summation in this derivation.
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EBar in tension with a spatially varying
Young’s modulus

In this appendix, the Matlab code of a bar in tension with a spatially varying Young’s modulus is
given. It is modelled with 3 noded bar elements in 1D. In this model the integration point methods
is used as discretization method. The function file for the generation of the random field according
to the CMD methods is given. In the last code, the bar is modelled with 3 noded triangular elements
in 2D. In this code the midpoint methods is used as discretization method.

3 noded bar in 1D with integration point discretization
method

1 %% Integraion point method with correlated random variables for a bar in 1D

2 % made by Robin van der Have

3

4 clear; close all; clc;

5 tic % start timer

6 %eta=sym('eta');

7

8 %% Input model

9 % Input model parameters

10 E=10; % Mean youngs modulus

11 E_std=5; % Standard deviation youngs modulus

12 A=1; % Cross-sectional area

13 LL=10; % Length of the beam

14 NE=10; % Number of elements

15 NI=2; % Number of integration points

16

17 % Dependend model parameters

18 NN=2*NE+1; % number of nodes

19 xx=linspace(0,LL,NN); % X-coordinates

20 NC=[1:NN;xx]'; % Nodal coordinates (Node number, Nodal coordinate)

21 ENC=zeros(NE+1,2); % Matrix for Endnode coordinates (Node number, Nodal coordinate)

22 for i=1:NE+1

23 for j=1:2

24 ENC(i,j)=NC(2*i-1,j);

25 end

26 end

27 MNC=zeros(NE,2); % Matrix for midnode coordinates (Node number, Nodal coordinate)

28 for i=1:NE

29 for j=1:2

30 MNC(i,j)=NC(i*2,j);

31 end

32 end

33 % Matrix with element connectivity (element, node 1, node 2, node 3)

34 CM=[(1:NE)' ENC(1:length(ENC)-1,1) MNC(:,1) ENC(2:length(ENC),1)];

35 ll=LL/NE; % Length of one element
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36

37 % Boundary conditions (1=dirichlet, 0=neuman)

38 % node bc type value

39 BC=[1 1 0; % Clamped at x=0

40 NN 0 10]; % Force at end of beam in kN

41 NB=size(BC,1);

42

43 %% Shape functions for three noded bar element

44 %N1= 0.5*eta^2-0.5*eta;

45 %N2= -eta^2+1;

46 %N3= 0.5*eta^2+0.5*eta

47 %B1=eta-0.5;

48 %B2=-2*eta;

49 %B3=eta+0.5;

50 %Diff=[B1 B2 B3];

51 %J=Diff*CMX;

52

53 %Gaussian integration with 2 integrationpoints

54 G=[-1/sqrt(3) 1/sqrt(3)]; % Locations of Gausspoints

55 W=[1 1]; % Weigths

56 J=ll/2; % dx=Length/2*deta

57

58 %% Random field

59 % Input random field

60 Dim=1; % Model/RF dimension

61 mean=E; % Mean RF

62 std=E_std; % Standard deviation RF

63 CF='SExp'; % Type of correlation function (Exp, SExp, CSin)

64 c1=0; % Threshold value for correlation

65 lc=1; % Correlation length

66 Dec='eigen'; % Decomposition method

67 distribution='normal'; % Distribtuion type

68

69 % Random field mesh (midpoint method)

70 IP=zeros(NE*NI,1); % Vector for coordinates midpoints

71 for i=1:NE % Loop to determine coordinates of midpoints elements

72 IP(i*2-1)=MNC(i,2)+G(1)*ll/2;

73 IP(i*2)=MNC(i,2)+G(2)*ll/2;

74 end

75 Mesh=IP;

76

77 % Random field mesh (integration point method)

78

79 % Generate random field

80 RF=CovDec(Dim,mean,std,CF,c1,lc,Mesh,Dec,distribution);

81 CRV=RF(:,2);

82

83 % Constant field

84 %CRV=linspace(E,E,NE)';

85 %RF=[Mesh CRV];

86

87 % plot random field

88 y=linspace(0,0,NN);

89 yy=[RF(:,2); RF(length(Mesh),2)];

90 figure()

91 stem(RF(:,1),RF(:,2),'-x')

92 hold on

93 plot(xx,y,'o')

94 stairs(NC(1:length(NC),2),yy)

95 hold off

96

97 % Check RF (add display of error)
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98 m=sum(CRV)/length(Mesh);

99 sigma=sqrt(sum((CRV-m).^2)/length(Mesh));

100

101

102 %% start solve

103 % Assemble global stiffness matrix

104 k_e=zeros(3,3); % Create matrix for element stiffness matrix

105 K=zeros(NN,NN); % Create matrix for global stiffness matrix

106 for i=1:NE

107 for j=1:2

108 g=G(j);

109 B=2/ll*[g-0.5 -2*g g+0.5];

110 k_e=k_e+B'*RF(i*2+j-2,2)*A*B*W(j)*J;

111 end

112 for p=2:4

113 for q=2:4

114 r=CM(i,p);

115 s=CM(i,q);

116 K(r,s)=K(r,s)+k_e(p-1,q-1);

117 end

118 end

119 k_e=zeros(3,3);

120 end

121 %K=sparse(K);

122

123 % Create Force vector

124 F=zeros(NN,1);

125

126 % Impose dirichlet boundary conditions

127 for i=1:NB

128 if BC(i,2)==1;

129 K(BC(i,1),:)=0;

130 K(:,BC(i,1))=0;

131 K(BC(i,1),BC(i,1))=1;

132 F(BC(i,1))=BC(i,3);

133 end

134 end

135

136 % Apply neuman boundary conditions

137 for i=1:NB

138 if BC(i,2)==0;

139 F(BC(i,1),1)=BC(i,3);

140 end

141 end

142

143 %Solve system Ku=f

144 u=K\F;

145

146 %analytical solution based on the mean value of E

147 u_anal=LL*BC(2,3)/(m*A);

148

149 %plot displacements

150 figure()

151 plot(xx,u)

152 hold on

153 plot([0 LL],[0 u_anal])

154 hold off

155 toc
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Covariance matrix decomposition method for random
field generation

1 function RF = CovDec(Dim,mean,std,CF,c1,lc,Mesh,Dec,distribution)

2 %CovDec returns correlated random variables for a isotropic gaussain field

3 %

4 % Output:

5 % RF: Matrix containing the coordinates and correlated random variables

6 % belonging to that coordinate

7 %

8 % Input:

9 % Dim: Model dimension (1, 2, 3)

10 % mean: Mean value random field

11 % std: Standard deviation random field

12 % CF: Type of correlation function ('Exp', 'SExp')

13 % Exp: Exponential correlation function

14 % Exp = c1+(1-c1)*exp(-delta_x/lc)

15 % SExp: Squared exponential correlation function

16 % SExp = c1+(1-c1)*exp(-(delta_x/lc)^2)

17 % Where delta_x is the lag distance which can be detemined with

18 % the coordinates of the Mesh

19 % c1: threshold value for correlation function

20 % lc: Correlation length/scale of fluctuation in both directions

21 % Mesh: Matrix containing the coordinates of the random field mesh

22 % Dec: Decomposition method (chol/eigen)

23

24 if Dim==1

25 %Determine Correlation matrix

26 Cor_M=zeros(length(Mesh),length(Mesh));

27 if strcmp(CF,'Exp')==1

28 for i=1:length(Mesh)

29 for j=1:length(Mesh)

30 Cor_M(i,j)=c1+(1-c1)*exp(-abs((Mesh(i)-Mesh(j)))/lc);

31 end

32 end

33 elseif strcmp(CF,'SExp')==1

34 for i=1:length(Mesh)

35 for j=1:length(Mesh)

36 Cor_M(i,j)=c1+(1-c1)*exp(-((abs(Mesh(i)-Mesh(j)))/lc)^2);

37 end

38 end

39 else

40 disp('CorF must be equal to Exp or SExp')

41 end

42

43 elseif Dim==2

44 %Determine Correlation matrix

45 Cor_M=zeros(length(Mesh),length(Mesh));

46 if strcmp(CF,'Exp')==1

47 for i=1:length(Mesh)

48 for j=1:length(Mesh)

49 Cor_M(i,j)=c1+(1-c1)*exp(-(sqrt((Mesh(i,1)-Mesh(j,1))^2 ...

50 +(Mesh(i,2)-Mesh(j,2))^2))/lc);

51 end

52 end

53 elseif strcmp(CF,'SExp')==1

54 for i=1:length(Mesh)

55 for j=1:length(Mesh)

140 Appendix E Bar in tension with a spatially varying Young’s modulus



56 Cor_M(i,j)=c1+(1-c1)*exp(-((sqrt((Mesh(i,1)-Mesh(j,1))^2 ...

57 +(Mesh(i,2)-Mesh(j,2))^2))/lc)^2);

58 end

59 end

60 else

61 disp('CorF must be equal to Exp or SExp')

62 end

63

64 elseif Dim==3

65 disp('not programmed')

66 end

67

68 if strcmp(distribution,'lognormal')==1

69 std_norm=sqrt(log(1+(std/mean)^2));

70 mean_norm=log(mean)-0.5*std_norm^2;

71 Cor_M=(exp(Cor_M*std_norm^2)-1)/(exp(std_norm^2)-1);

72 end

73

74 % Decomposition correlation matrix

75 if strcmp(Dec,'chol')==1

76 L=chol(Cor_M,'lower');

77 elseif strcmp(Dec,'eigen')==1

78 [vec,lambda]=eig(Cor_M);

79 L=vec*sqrt(abs(lambda));

80 elseif strcmp(Dec,'mod chol')==1

81 L=chol2(Cor_M);

82 L=L';

83 else

84 disp('Dec must be equal to chol, mod chol or eigen')

85 end

86 RV=normrnd(0,1,[length(Mesh),1]);

87 if strcmp(distribution,'normal')==1

88 CRV=mean+L*RV*std; % Generate random field

89 elseif strcmp(distribution,'lognormal')==1

90 CRV=exp(mean_norm+L*RV*std_norm); % Generate random field

91 end

92 RF=[Mesh CRV];

93 end
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3 noded bar in 2D with midpoint discretization method

1 %% Midpoint method with correlated random variables for a bar in 2D

2 % made by Robin van der Have

3

4 clear; close all; clc;

5 tic % start timer

6

7 %% Input model

8 % Input model parameters

9 E_m=10; % Mean youngs modulus

10 E_std=5; % Standard deviation youngs modulus

11 nu=0; % Poisson ratio

12 A=1; % Cross-sectional area

13 LL=10; % Length of the beam

14 HH=1; % Height of the beam

15 t=1; % Thickness

16 NB=10; % Number of collections of 4 triangle elemtns

17 NI=1; % Number of integration points

18 DOF=2; % Number of degrees of freedom per node

19

20 % Dependend model parameters

21 NE=4*NB;

22 NN=3*NB+2; % number of nodes

23 xx=linspace(0,LL,NB*2+1); % X-coordinates

24 yy=linspace(0,HH,3); % Y-coordinates

25 ll=LL/NB; % Length of one block of 4 elements

26

27 % Form D matrix for plane stress

28 D = 1/(1-nu^2)*[1 nu 0 ; nu 1 0; 0 0 (1-nu)/2] ;

29

30 % Matrix with nodal coordinates (Node number, x-coordinate, y-coordinate)

31 NC=zeros(NN,3);

32 NC(:,1)=1:NN;

33 NC(1,2)=xx(1); NC(2,2)=xx(1); NC(1,3)=yy(1); NC(2,3)=yy(3);

34 for i=1:NB

35 NC(i*3,2)=xx(i*2+1);

36 end

37 for i=1:NB

38 NC(i*3+1,2)=xx(i*2+1);

39 end

40 for i=1:NB

41 NC(i*3+2,2)=xx(i*2);

42 end

43 for i=1:NB

44 NC(i*3,3)=yy(1);

45 end

46 for i=1:NB

47 NC(i*3+1,3)=yy(3);

48 end

49 for i=1:NB

50 NC(i*3+2,3)=yy(2);

51 end

52

53 % Matrix with element connectivity (element, node 1, node 2, node 3)

54 CM=zeros(NE,4);

55 CM(:,1)=1:NE;

56 for i=1:NB

57 CM(i*4-3:i*4,2:4)=[i*3-3 i*3 i*3+2; i*3 i*3+1 i*3+2; i*3+2 i*3+1 i*3-2; i*3-3 i*3+2 i*3-2];

58 end
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59 CM(1,2)=1; CM(4,2)=1; CM(3,4)=2; CM(4,4)=2;

60

61 % Coordinates of nodes per element

62 CMX=changem(CM(:,2:4),NC(:,2)',1:NN);

63 CMX=CMX';

64 CMY=changem(CM(:,2:4),NC(:,3)',1:NN);

65 CMY=CMY';

66

67 % Boundary conditions (1=dirichlet, 0=neuman) dof 1=x and dof 2=y

68 % node bc type dof value

69 BC=[1 1 1 0; % Clamped at x=0

70 1 1 2 0 % Clamped at x=0

71 2 1 1 0 % Clamped at x=0

72 NN-2 0 1 5 % Half of the force at end of beam in kN

73 NN-1 0 1 5]; % Half of the force at end of beam in kN

74 NBC=size(BC,1); % Number of boundary conditions

75

76 %% Random field

77 % Input random field

78 Dim=2; % Model/RF dimension

79 mean=E_m; % Mean RF

80 std=E_std; % Standard deviation RF

81 CF='SExp'; % Type of correlation function (Exp, SExp)

82 c1=0; % Threshold value for correlation

83 lc=1; % Correlation length

84 Dec='eigen'; % Decomposition method

85 distribution='normal'; % Distribtuion type

86

87 % Random field mesh (midpoint method)

88 MP=zeros(NE,2); % Vector for coordinates midpoints

89 for i=1:NB % Loop to determine coordinates of midpoints elements

90 MP(i*4-3:i*4,1:2)=[1/2*ll+ll*(i-1) 1/6*HH; 5/6*ll+ll*(i-1) 1/2*HH; ...

91 1/2*ll+ll*(i-1) 5/6*HH; 1/6*ll+ll*(i-1) 1/2*HH];

92 end

93 Mesh=MP;

94

95 % Generate random field

96 RF=CovDec(Dim,mean,std,CF,c1,lc,Mesh,Dec,distribution);

97 CRV=RF(:,3);

98

99 % Constant field

100 %CRV=linspace(E,E,NE)';

101 %RF=[Mesh CRV];

102

103 % plot random field

104 CRVP=[CRV'; CRV'; CRV'];

105

106 figure()

107 fill3(CMX,CMY,CRVP,CRV')

108 colormap autumn

109 axis equal

110 view (0,90)

111

112 % Check RF (add display of error)

113 m=sum(CRV)/length(Mesh);

114 sigma=sqrt(sum((CRV-m).^2)/length(Mesh));

115

116 %% Derivatives of shape functions evaluated at integraion points for two noded bar element

117 %N1= -xi-eta+1;

118 %N2= xi;

119 %N3= eta

120 %N=[N1 N2 N3];
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121

122 Diff=[-1 1 0; % Derivatives of shape functions (dN1/dx dN2/dx dN3/dx; dN1/dy dN2/dy dN3/dy)

123 -1 0 1];

124 Jx=Diff*CMX;

125 Jy=Diff*CMY;

126 J=[Jx;Jy]; % Jacobian matrix

127

128 % Derivatives of shapes function with respect to x and y for every element

129 dN=zeros(6,NE);

130 for i=1:NE

131 for j=1:3

132 dN(j*2-1:j*2,i)=1/(J(1,i)*J(4,i)-J(3,i)*J(2,i))*[J(4,i) -J(3,i); -J(2,i) J(1,i)]*Diff(:,j);

133 end

134 end

135

136 % Weigth for gauss integration, equal to 0.5 since the surface of the parent element is 0.5

137 W=1/2;

138 %% start solve

139 % Assemble global stiffness matrix

140 k_e=zeros(6,6); % Create matrix for element stiffness matrix

141 K=zeros(NN*DOF,NN*DOF); % Create matrix for global stiffness matrix

142 for i=1:NE

143 B=[dN(1,i) 0 dN(3,i) 0 dN(5,i) 0;

144 0 dN(2,i) 0 dN(4,i) 0 dN(6,i);

145 dN(2,i) dN(1,i) dN(4,i) dN(3,i) dN(6,i) dN(5,i)];

146 j=(J(1,i)*J(4,i)-J(3,i)*J(2,i));

147 k_e=B'*RF(i,3)*D*B*j*t*W;

148 for p=2:4

149 for q=2:4

150 r=2*CM(i,p)-1; % Assemble values corresponding to dof in x direction

151 s=2*CM(i,q)-1;

152 K(r,s)=K(r,s)+k_e((p-1)*2-1,(q-1)*2-1);

153 r=2*CM(i,p); % Assemble values corresponding to dof in y direction

154 s=2*CM(i,q);

155 K(r,s)=K(r,s)+k_e((p-1)*2,(q-1)*2);

156 end

157 end

158 k_e=zeros(3,3);

159 end

160 %K=sparse(K);

161

162 % Create Force vector

163 F=zeros(NN*DOF,1);

164

165 % Impose dirichlet boundary conditions

166 for i=1:NBC

167 if BC(i,2)==1;

168 if BC(i,3)==1 %BC in x direction

169 K(2*BC(i,1)-1,:)=0;

170 K(:,2*BC(i,1)-1)=0;

171 K(2*BC(i,1)-1,2*BC(i,1)-1)=1;

172 F(2*BC(i,1)-1)=BC(i,4);

173 elseif BC(i,3)==2 % BC in y direction

174 K(2*BC(i,1),:)=0;

175 K(:,2*BC(i,1))=0;

176 K(2*BC(i,1),2*BC(i,1))=1;

177 F(2*BC(i,1))=BC(i,4);

178 end

179 end

180 end

181

182 % Apply neuman boundary conditions
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183 for i=1:NBC

184 if BC(i,2)==0;

185 if BC(i,3)==1 %BC in x direction

186 F(2*BC(i,1)-1,1)=BC(i,4);

187 elseif BC(i,3)==2 %BC in y direction

188 F(2*BC(i,1),1)=BC(i,4);

189 end

190 end

191 end

192

193 %Solve system Ku=f

194 u=K\F;

195

196 %analytical solution based on the mean value of E

197 u_anal=LL*BC(4,4)*2/(m*A);

198

199 %plot displacements

200 Ux=u(1:2:NN*2-1);

201 Uy=u(2:2:NN*2);

202 X=NC(:,2);

203 Y=NC(:,3);

204 figure()

205 scatter(X,Ux)

206 hold on

207 plot([0 LL],[0 u_anal])

208 hold off

209 toc
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FMatlab code: Determination
statistical properties random fields

1 function [mean_m,mean_s,std_m,std_s,c_err_m, c_err_s]= stat_prop( RF,runs,dim,Mesh,CF,c1,d)

2 % stat_prop determines the statistical properties of a number of random

3 % fields

4 %

5 % Written by Robin van der Have, Delft, 25 September 2015

6 %

7 % Output:

8 % mean_m: mean of the mean values of the random fields

9 % mean_s: standard deviation of the mean values of the random fields

10 % std_m: Mean of the standard deviations of the random fields

11 % std_s: Standard deviation of the standard deviations of the random

12 % fields

13 %

14 % Input:

15 % RF: Matrix containing the random field

16 % runs: Number of random fields

17 % dim: Dimension of the random field

18

19 if dim==1

20 N=size(RF,1);

21 m=zeros(1,runs); % Allocate vector for mean values

22 sigma=zeros(1,runs); % Allocate vector for standard deviations

23

24 % Determine mean and std per field

25 for i=1:runs

26 m(i)=sum(RF(:,i))/N;

27 sigma(i)=sqrt(sum((RF(:,i)-m(i)).^2)/(N));

28 end

29

30 % Determine statistical properties for all fields

31 mean_m=sum(m)/length(m);

32 mean_s=sqrt(sum((m-mean_m).^2)/length(m));

33 std_m=sum(sigma)/length(sigma);

34 std_s=sqrt(sum((sigma-std_m).^2)/length(sigma));

35

36 % Determine correlation of random fields

37 lag=Mesh(1:N-1); % Lag distance

38 C=zeros(N-1,1);

39 for i=1:(N-1) % Loop for every lag

40 s=0;

41 RF1=0;

42 RF2=0;

43 RF1_s=0;

44 RF2_s=0;

45 for k=i:N % Summations to determine mean value

46 for j=1:runs % Loop for every run

47 RF1=RF1+RF(k-i+1,j);

48 RF2=RF2+RF(k,j);

49 end

50 end
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51 RF1_m=RF1/(runs*(N-i+1));

52 RF2_m=RF2/(runs*(N-i+1));

53 for k=i:N

54 for j=1:runs

55 s=s+(RF(k-i+1,j)-RF1_m)*(RF(k,j)-RF2_m);

56 RF1_s=RF1_s+(RF(k-i+1,j)-RF1_m)^2;

57 RF2_s=RF2_s+(RF(k,j)-RF2_m)^2;

58 end

59 end

60 C(i)=s/(sqrt(RF1_s)*sqrt(RF2_s));

61 end

62

63 % Exact correlation function

64 if strcmp(CF,'Exp')==1

65 CF=c1+(1-c1)*exp(-(lag./d));

66 elseif strcmp(CF,'SExp')==1

67 CF=c1+(1-c1)*exp(-(lag./d).^2);

68 else

69 disp('CF must be equal to Exp or SExp')

70 end

71

72 % Plot of covariance

73 figure()

74 axis([0 17.5 0 1])

75 hold on

76 plot(lag,C)

77 plot(lag,CF)

78 hold off

79

80 % Determine error correlation

81 err=abs(C-CF');

82 c_err_m=sum(err)/length(err);

83 c_err_s=sqrt(sum((err-c_err_m).^2)/length(err));

84

85 elseif dim==2

86 N1=size(RF,1);

87 N2=size(RF,2);

88 L_cx=d(1,1);

89 N=N1*N2;

90 m=zeros(1,runs); % Allocate vector for mean values

91 sigma=zeros(1,runs); % Allocate vector for standard deviations

92

93 % Determine mean and std per field

94 for i=1:runs

95 m(i)=sum(sum(RF(:,:,i)))/N;

96 sigma(i)=sqrt(sum(sum((RF(:,:,i)-m(i)).^2))/N);

97 end

98

99 % Determine statistical properties for all fields

100 mean_m=sum(m)/length(m);

101 mean_s=sqrt(sum((m-mean_m).^2)/length(m));

102 std_m=sum(sigma)/length(sigma);

103 std_s=sqrt(sum((sigma-std_m).^2)/length(sigma));

104

105 % Determine correlation of random fields

106 lag=Mesh(1:N1-1); % Lag distance

107 C=zeros(N1-1,1);

108 for i=1:(N1-1) % Loop for every lag

109 s=0;

110 RF1=0;

111 RF2=0;

112 RF1_s=0;
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113 RF2_s=0;

114 for k=i:N1 % Summations to determine mean value

115 for l=1:N2

116 for j=1:runs % Loop for every run

117 RF1=RF1+RF(k-i+1,l,j);

118 RF2=RF2+RF(k,l,j);

119 end

120 end

121 end

122 RF1_m=RF1/(runs*N2*(N1-i+1));

123 RF2_m=RF2/(runs*N2*(N1-i+1));

124 for k=i:N1

125 for l=1:N2

126 for j=1:runs

127 s=s+(RF(k-i+1,l,j)-RF1_m)*(RF(k,l,j)-RF2_m);

128 RF1_s=RF1_s+(RF(k-i+1,l,j)-RF1_m)^2;

129 RF2_s=RF2_s+(RF(k,l,j)-RF2_m)^2;

130 end

131 end

132 end

133 C(i)=s/(sqrt(RF1_s)*sqrt(RF2_s));

134 end

135

136 % Exact correlation function

137 if strcmp(CF,'Exp')==1

138 CF=c1+(1-c1)*exp(-(lag./L_cx));

139 elseif strcmp(CF,'SExp')==1

140 CF=c1+(1-c1)*exp(-(lag./L_cx).^2);

141 else

142 disp('CF must be equal to Exp or SExp')

143 end

144

145 % Plot of covariance

146 figure()

147 axis([0 17.5 0 1])

148 hold on

149 plot(lag,C)

150 plot(lag,CF)

151 hold off

152

153 % Determine error correlation

154 err=abs(C-CF');

155 c_err_m=sum(err)/length(err);

156 c_err_s=sqrt(sum((err-c_err_m).^2)/length(err));

157

158 else

159 disp('Not programmed')

160 end
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GSDF and variance function for
Exponential and Squared
Exponential covariance function

In this appendix the one sided Spectral Density Functions (SDF) and variance functions which are
given in section 3.2.1 will be derived.

SDF 1D Exponential Covariance function

G(ω) = 2
π

∫ ∞
0

B(∆x)cos(ω∆x)d∆x

= 2σ2

π

∫ ∞
0

(
c1 + (1− c1)exp

(
−∆x
Lc

))
cos(ω∆x)d∆x

= 2σ2

π

[∫ ∞
0

c1cos(ω∆x)d∆x+
∫ ∞

0
(1− c1)exp

(
−∆x
Lc

)
cos(ω∆x)d∆x

]
= 2σ2

π
(I1 + (1− c1)I2) (G.1)

The first integral can be solved easily since it is known that the Fourier transform of a constant is
equal to the Dirac delta functions times that constant. Because c1 is a real and even function, the
integral can be rewritten as equation 2.47, which results in:

I1 =
∫ ∞

0
c1cos(ω∆x)d∆x

= 2π
2

1
2π

∫ ∞
−∞

c1exp(−iω∆x)d∆x

= πc1δ(ω) (G.2)

To solve the second integral, integration by parts is applied twice:

I2 =
[
exp(−∆x

Lc
)sin(ω∆x) 1

ω

]∆x=∞

∆x=0
−
∫ ∞

0
− (1)
Lc

exp
(
−∆x
Lc

)
sin(ω∆x) 1

ω
d∆x

=
[
exp(−∆x

Lc
)sin(ω∆x) 1

ω

]∆x=∞

∆x=0
−
[

1
Lcω2 exp(−∆x

Lc
)cos(ω∆x)

]∆x=∞

∆x=0

− 1
L2
cω

2

∫ ∞
0

exp
(
−∆x
Lc

)
cos(ω∆x)d∆x (G.3)
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In the last term the original integral can now be recognized. This part can be taken to the LHS to
find an expression for I2.

I2

(
1 + 1

L2
cω

2

)
=

[
exp(−∆x

Lc
)sin(ω∆x) 1

ω

]∆x=∞

∆x=0
−
[

1
Lcω2 exp(−∆x

Lc
)cos(ω∆x)

]∆x=∞

∆x=0

I2 =

[
exp(−∆x

Lc
)sin(ω∆x) 1

ω

]∆x=∞

∆x=0
−
[

1
Lcω2 exp(−∆x

Lc
)cos(ω∆x)

]∆x=∞

∆x=0(
1 + 1

L2
cω

2

)
=

[0− 0] +
[
0 + 1

Lcω2

]
(

1 + (1−c1)
L2
cω

2

) = Lc
L2
cω

2 + 1 (G.4)

Now I1 and I2 are substituted in equation G.6 to find the expression for the one sided SDF.

G(ω) = 2σ2

π
(I1 + (1− c1)I2) = 2σ2c1δ(ω) + 2(1− c1)σ2Lc

π(L2
cω

2 + 1) (G.5)

SDF 1D Squared Exponential Covariance function

G(ω) = 2
π

∫ ∞
0

B(∆x)cos(ω∆x)d∆x

= 2σ2

π

∫ ∞
0

[
c1 + (1− c1)exp

(
−
(

∆x
Lc

)2
)]

cos(ω∆x)d∆x

= 2σ2

π

[∫ ∞
0

c1cos(ω∆x)d∆x+
∫ ∞

0
(1− c1)exp

(
−
(

∆x
Lc

)2
)

cos(ω∆x)d∆x
]

= 2σ2

π
(I1 + (1− c1)I2(ω)) (G.6)

The first integral is given in equation G.2. To solve the second integral, differentiating under the
integral sign is applied.

I ′2(ω) =
∫ ∞

0
−∆xexp

(
−
(

∆x
Lc

)2
)

sin(ω∆x)d∆x (G.7)
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Now integration by parts is applied.

I ′2(ω) =
[
L2
c

2 sin(ω∆x)exp

(
−
(

∆x
Lc

)2
)]∆x=∞

∆x=0

− ωL2
c

2

∫ ∞
0

cos(ω∆x)exp

(
−
(

∆x
Lc

)2
)
d∆x

= 0− ωL2
c

2 I2(ω)→ I ′2(ω) + ωL2
c

2 I2(ω) = 0 (G.8)

A solution of this differential equation is equal to I2(ω) = Cexp
(
−ω

2L2
c

4

)
. The constant C is the

only unknown in this equation. It can be found by setting ω equal to 0.

I2(0) =
∫ ∞

0
exp

(
−
(

∆x
Lc

)2
)

cos(0 ·∆x)d∆x = Cexp(0)

C =
∫ ∞

0
expxp

(
−
(

∆x
Lc

)2
)

∆x

C2 =
(∫ ∞

0
exp

(
−
(

∆x1

Lc

)2
)

∆x1

)(∫ ∞
0

exp

(
−
(

∆x2

Lc

)2
)

∆x2

)

=
∫ ∞

0

∫ ∞
0

exp
(
−∆x2

1 + ∆x2
2

L2
c

)
∆x1∆x2 (G.9)

The variables are now substituted by polar coordinates.

I2(0) =
∫ π

2

0

∫ ∞
0

r exp
(
− r

2

L2
c

)
∆r∆θ

= π

2

∫ ∞
0

r exp
(
− r

2

L2
c

)
∆r (G.10)

The following substitution is applied: u = r2

L2
c
.

C2 = πL2
c

4

∫ ∞
0

exp(−u)du = πL2
c

4 (G.11)

C =
√
πL2

c

4 = Lc
√
π

2 (G.12)

Now I1 and I2 are substituted in equation G.6 to find the expression for the one sided SDF.

G(ω) = 2σ2

π
(I1 + (1− c1)I2) = 2σ2c1δ(ω) + (1− c1)σ2Lc√

π
exp

(
−ω

2L2
c

4

)
(G.13)
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Variance function 1D Exponential Covariance function

γ(D) = 2
D2

∫ D

0
(D −∆x)ρ(∆x)d∆x

= 2
D2

∫ D

0
(D −∆x)

(
c1 + (1− c1)exp

(
−∆x
Lc

))
d∆x

= 2
D2

∫ D

0
Dc1d∆x− 2

D2

∫ D

0
∆xc1d∆x+ 2

D2

∫ D

0
D(1− c1)exp

(
−∆x
Lc

)
d∆x

− 2
D2

∫ D

0
∆x(1− c1)exp

(
−∆x
Lc

)
d∆x

= 2
D2 [I1 − I2 + I3 − I4] (G.14)

Now the different integrals are solved and substituted in equation G.14. To solve the fourth integral
integration by parts is applied.

I1 =
∫ D

0
Dc1d∆x = Dc1 [∆x]∆x=D

∆x=0 = D2c1 (G.15)

I2 =
∫ D

0
∆xc1d∆x = c1

[
1
2∆x2

]∆x=D

∆x=0
= 1

2D
2c1 (G.16)

I3 =
∫ D

0
D(1− c1)exp

(
−∆x
Lc

)
d∆x = D(1− c1)

[
−Lcexp

(
−∆x
Lc

)]∆x=D

∆x=0

= −LcD(1− c1)exp
(
−D
Lc

)
+ LcD(1− c1) (G.17)

I4 =
∫ D

0
∆x(1− c1)exp

(
−∆x
Lc

)
d∆x

=
[
−(1− c1)∆xLcexp

(
−∆x
Lc

)]∆x=D

∆x=0
+ Lc(1− c1)

∫ D

0
exp

(
−∆x
Lc

)
d∆x

= −(1− c1)DLcexp
(
−D
Lc

)
+ 0 +

[
−L2

c(1− c1)exp
(
−∆x
Lc

)]∆x=D

∆x=0

= −(1− c1)DLcexp
(
−D
Lc

)
− (1− c1)L2

cexp
(
−D
Lc

)
+ (1− c1)L2

c (G.18)

γ(D) = 2
D2 [I1 − I2 + I3 − I4]

= c1 + 2(1− c1)
D2

(
DLc + L2

cexp(−D
Lc

)− L2
c

)
(G.19)
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Variance function 1D Squared Exponential Covariance function

γ(D) = 2
D2

∫ D

0
(D −∆x)ρ(∆x)d∆x

= 2
D2

∫ D

0
(D −∆x)

[
c1 + (1− c1)exp

(
−
(

∆x
Lc

)2
)]

d∆x

= 2
D2

∫ D

0
Dc1d∆x− 2

D2

∫ D

0
∆xc1d∆x

+ 2
D2

∫ D

0
D(1− c1)exp

(
−
(

∆x
Lc

)2
)
d∆x

− 2
D2

∫ D

0
∆x(1− c1)exp

(
−
(

∆x
Lc

)2
)
d∆x

= 2
D2 [I1 − I2 + I3 − I4] (G.20)

The first and the second integral are already solved (G.16 and G.17). The third integral is solved by
substituting ∆x

Lc
by u. Thereafter the error functions, as defined in equation 2.24, is used.

I3 =
∫ D

0
D(1− c1)exp

(
−
(

∆x
Lc

)2
)
d∆x

= D(1− c1)Lc
∫ D

Lc

0
exp

(
−u2) d∆x

= D(1− c1)Lc
√
π

2 erf

(
D

Lc

)
(G.21)

To solve the fourth integral ∆x2

L2
c

is substituted by u.

I4 =
∫ D

0
∆x(1− c1)exp

(
−
(

∆x
Lc

)2
)
d∆x

= (1− c1)L2
c

2

∫ D2
L2
c

0
exp(−u)du

= (1− c1)L2
c

2

(
1− exp

(
−D

2

L2
c

))
(G.22)

Now the solutions to the integrals are substituted in equation G.20 to find the expression for the
variance function.

γ(D) = 2
D2 [I1 − I2 + I3 − I4]

= c1 + (1− c1)
D2

(
L2
c(exp(−D

2

L2
c

)− 1) +D
√
πLcerf( D

Lc
)
)

(G.23)
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SDF 2D Squared Exponential Covariance function First the one sided SDF for the Squared
Exponential (SExp) covariance function is derived. The SExp covariance function is separable,
i.e. ρ(∆x1,∆x1) = ρ(∆x1)ρ(∆x2). According to Vanmarcke [6], the normalized spectral density
function of which the covariance function is separable can be written as: g(ω1, ω2) = g(ω1)g(ω2).
The normalized spectral density function is defined as: g(ω) = 1

σ2G(ω).

G(ω1, ω2) =
(

2
π

)2
σ2
∫ ∞

0

∫ ∞
0

B(∆x1,∆x2)cos(ω1∆x1)cos(ω2∆x2)d∆x1d∆x2

=
(

2
π

)2
σ2
∫ ∞

0

∫ ∞
0

[
c1 + (1− c1)exp

(
−
(

(∆x1

Lc,1
)2 + ∆x2

Lc,2
)2
))]

cos(ω1∆x1)cos(ω2∆x2)d∆x1d∆x2

=
(

2
π

)2
σ2
∫ ∞

0

∫ ∞
0

c1cos(ω1∆x1)cos(ω2∆x2)d∆x1d∆x2

+
(

2
π

)2
σ2
∫ ∞

0

∫ ∞
0

(1− c1)exp
[
−
(

(∆x1

Lc,1
)2 + ∆x2

Lc,2
)2
)]

cos(ω1∆x1)cos(ω2∆x2)d∆x1d∆x2

= σ2g1(ω1, ω2) + σ2g2(ω1, ω2) (G.24)

For both g1(ω1, ω2) and g2(ω1, ω2) the covariance kernel can be separated as follows:

ρ1(∆x1,∆x2) = c1
→ ρ1(∆x1)ρ1(∆x2) =

√
c1
√
c1 (G.25)

ρ2(∆x1,∆x2) = (1− c1)exp
[
−
(

(∆x1

Lc,1
)2 + ∆x2

Lc,2
)2
)]

→ ρ2(∆x1)ρ2(∆x2) = (1− c1)exp
(
−(∆x1

Lc,1
)2
)

exp
(
−(∆x2

Lc,2
)2
)

(G.26)

The SDF for the SExp covariance function in 2d then becomes equal to:

G(ω1, ω2) = σ2g1(ω1, ω2) + σ2g2(ω1, ω2)
= σ2 (2

√
c1δ(ω1)) (2

√
c1δ(ω2))

+
[

(1− c1)Lc,1√
π

exp

(
−
ω2

1L
2
c,1

4

)][
Lc,2√
π

exp

(
−
ω2

2L
2
c,2

4

)]
= 4σ2c1δ(ω1)δ(ω2)

+ σ2(1− c1)Lc,1Lc,2
π

exp

[
−

(
ω2

1L
2
c,1

4 +
ω2

2L
2
c,2

4

)]
(G.27)
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SDF 2D Exponential Covariance function Now the one sided SDF for Exp is derived. First it is
rewritten.

G(ω1, ω2) =
(

2
π

)2
σ2
∫ ∞

0

∫ ∞
0

B(∆x1,∆x2)cos(ω1∆x1)cos(ω2∆x2)d∆x1d∆x2

=
(

2
π

)2
σ2
∫ ∞
−∞

∫ ∞
−∞

[
c1 + (1− c1)exp

(
−

√
(∆x1

Lc,1
)2 + ∆x2

Lc,2
)2

)]
cos(ω1∆x1)cos(ω2∆x2)d∆x1d∆x2

=
(

2
π

)2
σ2
∫ ∞

0

∫ ∞
0

c1cos(ω1∆x1)cos(ω2∆x2)d∆x1d∆x2

+
(

2
π

)2
σ2
∫ ∞

0

∫ ∞
0

(1− c1)
(
−

√
(∆x1

Lc,1
)2 + ∆x2

Lc,2
)2

)
cos(ω1∆x1)cos(ω2∆x2)d∆x1d∆x2

= σ2g1(ω1, ω2) + σ2g2(ω1, ω2) (G.28)

g1(ω1, ω2) is given in equation G.27, and is equal to 4c1δ(ω1)δ(ω2). Now g2(ω1, ω2) is derived, of
which the covariance kernel is not separable. First the one sided normalized SDF is first written as
a two sided normalized SDF. Then the following substitutions are made.

∆x′1 = ∆x1

Lc,1
, ∆x′2 = ∆x2

Lc,2
, ω′1 = ω1Lc,1, ω′2 = ω2Lc,2 (G.29)

Which results in:

g2(ω′1, ω′2) = 4
(2π)2σ

2(1− c1)Lc,1Lc,2
∫ ∞
−∞

∫ ∞
−∞

exp
(
−(∆x′1 + ∆x′2)2)

exp (−i(ω′1∆x′1 + ω′2∆x′2)) d∆x′1d∆x′2 (G.30)

Then the variables are substituted by polar coordinates and then the equation is rewritten.

g2(ω′1, ω′2) = 4
(2π)2σ

2(1− c1)Lc,1Lc,2
∫ ∞

0

∫ 2π

0
r exp (−r)

exp (−irζcos(θ − φ)) dθdr

= 2
(π)σ

2(1− c1)Lc,1Lc,2
∫ ∞

0
r exp (−r) J0(rζ)dr (G.31)
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Where J0 is the zero order Bessel function of the first kind and ζ2 = ω′21 + ω′22 . The solution of this
integral can be found in [48] (page 702, equation 6.623-2) and is equal to:

g2(ω1, ω2) = 2
(π)σ

2(1− c1)Lc,1Lc,2
∫ ∞

0
r exp (−r) J0(rζ)dr

= 2
(π)σ

2(1− c1)Lc,1Lc,2
2Γ(3/2)

√
π(1 + ζ2) 3

2

= 2σ2(1− c1)Lc,1Lc,2
π(1 + ζ2) 3

2

= 2σ2(1− c1)Lc,1Lc,2
π(1 + ω2

1L
2
c,1 + ω2

2L
2
c,2) 3

2
(G.32)

The SDF for the Exp covariance function in 2d then becomes equal to:

G(ω1, ω2) = σ2g1(ω1, ω2) + σ2g2(ω1, ω2)

= 4σ2c1δ(ω1)δ(ω2) + 2σ2(1− c1)Lc,1Lc,2
π(1 + ω2

1L
2
c,1 + ω2

2L
2
c,2) 3

2
(G.33)
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HMatlab code: Gauss quadrature to
determine covariance and variance
according local average theory

1 function vario = varfn_Gauss(CF,distribution,Dx,lag,L_c,c1,var)

2 % Numeric integration to determine covariances of two local averages

3 %

4 % Written by Robin van der Have, Delft, 25 September 2015

5 %

6 % Based on subroutine dcvab1.f and dcvaa1.f of RFEM software which is written by

7 % Gordon A. Fenton. Free available on http://courses.engmath.dal.ca/rfem/

8

9 ng=16;

10 z=[-.989400934991649932596; -.944575023073232576078; -.865631202387831743880; ...

11 -.755404408355003033895; -.617876244402643748447; -.458016777657227386342; ...

12 -.281603550779258913230; -.095012509837637440185; 0.095012509837637440185; ...

13 0.281603550779258913230; 0.458016777657227386342; 0.617876244402643748447; ...

14 0.755404408355003033895; 0.865631202387831743880; 0.944575023073232576078; ...

15 0.989400934991649932596];

16 w=[0.027152459411754094852; 0.062253523938647892863; 0.095158511682492784810; ...

17 0.124628971255533872052; 0.149595988816576732081; 0.169156519395002538189; ...

18 0.182603415044923588867; 0.189450610455068496285; 0.189450610455068496285; ...

19 0.182603415044923588867; 0.169156519395002538189; 0.149595988816576732081; ...

20 0.124628971255533872052; 0.095158511682492784810; 0.062253523938647892863; ...

21 0.027152459411754094852];

22

23 r1=0.5*Dx;

24 d1=0;

25 if lag==0

26 for i=1:ng

27 xi=r1*(1+z(i));

28 if strcmp(distribution,'normal')==1

29 if strcmp(CF,'Exp')==1

30 d1=d1+w(i)*(1-z(i))*(c1+(1-c1)*exp(-xi/L_c));

31 elseif strcmp(CF,'SExp')==1

32 d1=d1+w(i)*(1-z(i))*(c1+(1-c1)*exp(-(xi/L_c)^2));

33 else

34 Disp('Correlation function not programmed')

35 end

36 elseif strcmp(distribution,'lognormal')==1

37 if strcmp(CF,'Exp')==1

38 d1=d1+w(i)*(1-z(i))*((exp(var*(c1+(1-c1)*exp(-xi/L_c)))-1)/(exp(var)-1));

39 elseif strcmp(CF,'SExp')==1

40 d1=d1+w(i)*(1-z(i))*((exp(var*(c1+(1-c1)*exp(-(xi/L_c)^2)))-1)/(exp(var)-1));

41 else

42 Disp('Correlation function not programmed')

43 end

44 else

45 Disp('Distribution type not programmed')

46 end

47 end
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48 vario=0.5*d1;

49 else

50 s1=2*lag-1;

51 s2=2*lag+1;

52 for i=1:ng

53 xi1=r1*(z(i)+s1);

54 xi2=r1*(z(i)+s2);

55 if strcmp(distribution,'normal')==1

56 if strcmp(CF,'Exp')==1

57 d1=d1+w(i)*((1+z(i))*(c1+(1-c1)*exp(-xi1/L_c)) ...

58 +(1-z(i))*(c1+(1-c1)*exp(-xi2/L_c)));

59 elseif strcmp(CF,'SExp')==1

60 d1=d1+w(i)*((1+z(i))*(c1+(1-c1)*exp(-(xi1/L_c)^2)) ...

61 +(1-z(i))*(c1+(1-c1)*exp(-(xi2/L_c)^2)));

62 else

63 Disp('Correlation function not programmed')

64 end

65 elseif strcmp(distribution,'lognormal')==1

66 if strcmp(CF,'Exp')==1

67 d1=d1+w(i)*((1+z(i))*((exp(var*(c1+(1-c1)*exp(-xi1/L_c)))-1)/(exp(var)-1)) ...

68 +(1-z(i))*((exp(var*(c1+(1-c1)*exp(-xi2/L_c)))-1)/(exp(var)-1)));

69 elseif strcmp(CF,'SExp')==1

70 d1=d1+w(i)*((1+z(i))*((exp(var*(c1+(1-c1)*exp(-(xi1/L_c)^2)))-1)/(exp(var)-1)) ...

71 +(1-z(i))*((exp(var*(c1+(1-c1)*exp(-(xi2/L_c)^2)))-1)/(exp(var)-1)));

72 else

73 Disp('Correlation function not programmed')

74 end

75 else

76 Disp('Distribution type not programmed')

77 end

78 end

79 vario=0.25*d1;

80 end

81

82 end
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IMatlab codes random field
generators

In this appendix, the different Matlab codes are given for the random field generators which are
assessed in chapter 3. The following codes can be found in this appendix:

• Covariance Matrix Decomposition 1D
• Covariance Matrix Decomposition 2D
• Fast Fourier Transform method in 1D
• Fast Fourier Transform method in 2D
• Local Average Subdivision in 1D
• Local Average Subdivision in 2D
• Expansion Optimal Linear Estimation in 1D
• Expansion Optimal Linear Estimation in 2D
• Modified Cholesky decomposition
• Inverse Fourier Transform algorithm

I.1 Matlab code: Covariance Matrix Decomposition 1D

1 % CMD_1D returns correlated random variables for a homogeneous gaussain field

2 % in 1D applying the Covariance Matrix Decomposition method

3 %

4 % Written by Robin van der Have, Delft, 25 September 2015

5 %

6 % Output:

7 % RF: Matrix containing the coordinates and correlated random variables

8 % belonging to that coordinate

9 % it: Intialization time random fields

10 % rt: Realization time random fields

11 % st: Time to determine the statistical properties of random

12 % fields

13 % mean_m: Mean of the mean values of the random fields

14 % mean_s: Standard deviation of the mean values of the random fields

15 % std_m: Mean of the standard deviations of the random fields

16 % std_s: Standard deviation of the standard deviations of the random

17 % fields

18 % c_err_m: Mean absolute error in correlation in all the random fields

19 % c_err_s: Standard deviations in the absolute errors of the the

20 % correlation in all the random fields

21 %

22 % Input:

23 % runs: Number of random fields created

24 % dim: dimension random field

25 % Mean_RF: Mean value random field

26 % std_RF: Standard deviation random field

27 % CF: Type of correlation function ('Exp', 'SExp')

28 % Exp: Exponential correlation function
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29 % Exp = c1+(1-c1)*exp(-delta_x/lc)

30 % SExp: Squared exponential correlation function

31 % SExp = c1+(1-c1)*exp(-(delta_x/lc)^2)

32 % Where delta_x is the lag distance which can be detemined with

33 % the coordinates of the Mesh

34 % c1: threshold value for correlation function

35 % L_C: Correlation length/scale of fluctuation

36 % D: Size random field

37 % N: Number of nodes in random field

38 % Dec: Decomposition method (chol/eigen)

39 % Var_fn: Reduction of variance applied (yes/no)

40

41 clc, close all, clear all

42 t=cputime;

43

44 % Input values:

45 runs=2000;

46 dim=1;

47 mean_RF=0;

48 std_RF=1;

49 CF='SExp';

50 c1=0;

51 L_c=2.5;

52 D=17.5;

53 N=64;

54 Dec='mod chol';

55 Var_fn='no';

56 distribution='normal';

57

58 Mesh=linspace(0,D,N); % Random field Mesh

59 RF=zeros(length(Mesh),runs); % Allocate matrix voor values RF

60 var=std_RF^2;

61

62 %Determine Correlation matrix

63 Cor_M=zeros(length(Mesh),length(Mesh));

64 if strcmp(Var_fn,'yes')==1

65 dx=D/(N-1);

66 Cov=zeros(N,1);

67 for i=1:N

68 lag=i-1;

69 Cov(i)=varfn_Gauss(CF,distribution,dx,lag,L_c,c1,var);

70 end

71 for i=1:length(Mesh)

72 for j=1:i

73 Cor_M(i,j)=Cov(i-j+1);

74 end

75 end

76 Cor_M=Cor_M+Cor_M'-diag(diag(Cor_M));

77 elseif strcmp(Var_fn,'no')==1

78 if strcmp(CF,'Exp')==1

79 for i=1:length(Mesh)

80 for j=1:length(Mesh)

81 Cor_M(i,j)=c1+(1-c1)*exp(-abs((Mesh(i)-Mesh(j)))/L_c);

82 end

83 end

84 elseif strcmp(CF,'SExp')==1

85 for i=1:length(Mesh)

86 for j=1:length(Mesh)

87 Cor_M(i,j)=c1+(1-c1)*exp(-((abs(Mesh(i)-Mesh(j)))/L_c)^2);

88 end

89 end

90 else
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91 disp('CF must be equal to Exp or SExp')

92 end

93 else

94 disp('Var_fn must be equal to yes or no')

95 end

96

97 if strcmp(distribution,'lognormal')==1

98 std_norm=sqrt(log(1+(std_RF/mean_RF)^2));

99 mean_norm=log(mean_RF)-0.5*std_norm^2;

100 Cor_M=(exp(Cor_M*std_norm^2)-1)/(exp(std_norm^2)-1);

101 end

102

103 % Decomposition correlation matrix

104 if strcmp(Dec,'chol')==1

105 L=chol(Cor_M,'lower');

106 elseif strcmp(Dec,'eigen')==1

107 [vec,lambda]=eig(Cor_M);

108 L=vec*sqrt(abs(lambda));

109 elseif strcmp(Dec,'mod chol')==1

110 L=chol2(Cor_M);

111 L=L';

112 else

113 disp('Dec must be equal to chol, mod chol or eigen')

114 end

115

116 it=cputime-t;

117

118 % Generation random fields

119 RV=randn(length(Mesh),runs); % Standard normal random variables

120

121 for j=1:runs

122 if strcmp(distribution,'normal')==1

123 RF(:,j)=mean_RF+L*RV(:,j)*std_RF; % Generate random field

124 elseif strcmp(distribution,'lognormal')==1

125 RF(:,j)=exp(mean_norm+L*RV(:,j)*std_norm); % Generate random field

126 end

127 end

128 rt=cputime-t;

129

130 % plot of 1st random field

131 figure()

132 plot(Mesh,RF(:,1))

133

134 % Determin statistical properties random field

135 [mean_m,mean_s,std_m,std__s,c_err_m,c_err_s]=stat_prop(RF,runs,dim,Mesh,CF,c1,L_c);

136 st=cputime-t;

137

138 table=[std_RF it rt st mean_m mean_s std_m std__s c_err_m c_err_s];

I.1 Matlab code: Covariance Matrix Decomposition 1D 163



I.2 Matlab code: Covariance Matrix Decomposition 2D

1 % CMD_2D returns correlated random variables for a homogeneous gaussain field

2 % in 2D applying Covariance Matrix decomposition

3 %

4 % Written by Robin van der Have, Delft, 25 September 2015

5 %

6 % Output:

7 % RF: Matrix containing the coordinates and correlated random variables

8 % belonging to that coordinate

9 % it: Intialization time random fields

10 % rt: Realization time random fields

11 % st: Time to determine the statistical properties of random

12 % fields

13 % mean_m: Mean of the mean values of the random fields

14 % mean_s: Standard deviation of the mean values of the random fields

15 % std_m: Mean of the standard deviations of the random fields

16 % std_s: Standard deviation of the standard deviations of the random

17 % fields

18 % c_err_m: Mean absolute error in correlation in all the random fields

19 % in x-direction

20 % c_err_s: Standard deviations in the absolute errors of the the

21 % correlation in all the random fields in x-direction

22 %

23 % Input:

24 % runs: Number of random fields created

25 % dim: dimension random field

26 % Mean_RF: Mean value random field

27 % std_RF: Standard deviation random field

28 % CF: Type of correlation function ('Exp', 'SExp')

29 % Exp: Exponential correlation function

30 % Exp = c1+(1-c1)*exp(-delta_x/lc)

31 % SExp: Squared exponential correlation function

32 % SExp = c1+(1-c1)*exp(-(delta_x/lc)^2)

33 % Where delta_x is the lag distance which can be detemined with

34 % the coordinates of the Mesh

35 % c1: threshold value for correlation function

36 % L_cx: Correlation length/scale of fluctuation in x-direcion

37 % L_cy: Correlation length/scale of fluctuation in y-direcion

38 % Dx: Size random field in x direction

39 % Dy: Size random field in y direction

40 % Nx: Number of nodes in random field in y direction

41 % Ny: Number of nodes in random field in y direction

42 % Dec: Decomposition method (chol/eigen)

43

44 clc, close all, clear all

45 t=cputime;

46

47 % Input values:

48 runs=200;

49 dim=2;

50 mean_RF=0;

51 std_RF=1;

52 CF='Exp';

53 c1=0.5;

54 L_cx=2.5;

55 L_cy=2.5;

56 Dx=17.5;

57 Dy=17.5;

58 Nx=32;
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59 Ny=32;

60 Dec='eigen';

61 Var_fn='no';

62 distribution='normal';

63

64 Meshxy=zeros(Nx*Ny,2); % Allocate matrix voor RF-mesh

65 CRV=zeros(length(Meshxy),runs); % Allocate matrix voor values RF

66 RF=zeros(Nx,Ny,runs);

67

68 for i=1:Nx

69 for j=1:Ny

70 Meshxy((j-1)*Nx+i,1:2)=[(i-1)*Dx/(Nx-1) (j-1)*Dy/(Ny-1)];

71 end

72 end

73 Meshx=linspace(0,Dx,Nx); % X-Coordinates

74 Meshy=linspace(0,Dy,Ny); % Y-Coordinates

75 var=std_RF^2;

76

77 %Determine Correlation matrix

78 Cor_M=zeros(length(Meshxy),length(Meshxy));

79 if strcmp(Var_fn,'yes')==1

80 ii=0;

81 dx=Dx/(Nx-1);

82 dy=Dy/(Ny-1);

83 for j=1:Ny

84 lagy=j-1;

85 for i=1:Nx

86 ii=ii+1;

87 lagx=i-1;

88 Cor_M(1,ii)=varfn2D_Gauss(CF,distribution,dx,dy,lagx,lagy,L_cx,L_cy,c1,var);

89 end

90 end

91 for j=2:length(Meshxy)

92 mxj=mod(j-1,Nx);

93 myj=floor((j-1)/Nx);

94 for i=2:j

95 mxi=mod(i-1,Nx);

96 myi=floor((i-1)/Nx);

97 m=1+(abs(mxj-mxi))+Nx*(abs(myj-myi));

98 Cor_M(i,j)=Cor_M(1,m);

99 end

100 end

101 Cor_M=Cor_M+Cor_M'-diag(diag(Cor_M));

102 elseif strcmp(Var_fn,'no')==1

103 if strcmp(CF,'Exp')==1

104 for i=1:length(Meshxy)

105 for j=1:length(Meshxy)

106 Cor_M(i,j)=c1+(1-c1)*exp(-sqrt(((Meshxy(i,1)-Meshxy(j,1))/L_cx)^2 ...

107 +((Meshxy(i,2)-Meshxy(j,2))/L_cy)^2));

108 end

109 end

110 elseif strcmp(CF,'SExp')==1

111 for i=1:length(Meshxy)

112 for j=1:length(Meshxy)

113 Cor_M(i,j)=c1+(1-c1)*exp(-(((Meshxy(i,1)-Meshxy(j,1))/L_cx)^2 ...

114 +((Meshxy(i,2)-Meshxy(j,2))/L_cy)^2));

115 end

116 end

117 else

118 disp('CF must be equal to Exp or SExp')

119 end

120 else
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121 disp('Var_fn must be equal to yes or no')

122 end

123

124 if strcmp(distribution,'lognormal')==1

125 std_norm=sqrt(log(1+(std_RF/mean_RF)^2));

126 mean_norm=log(mean_RF)-0.5*std_norm^2;

127 Cor_M=(exp(Cor_M*std_norm^2)-1)/(exp(std_norm^2)-1);

128 end

129

130 % Decomposition correlation matrix

131 if strcmp(Dec,'chol')==1

132 L=chol(Cor_M,'lower');

133 elseif strcmp(Dec,'eigen')==1

134 [vec,lambda]=eig(Cor_M);

135 L=vec*sqrt(abs(lambda));

136 elseif strcmp(Dec,'mod chol')==1

137 L=chol2(Cor_M);

138 L=L';

139 else

140 disp('Dec must be equal to chol, mod chol or eigen')

141 end

142

143 it=cputime-t;

144

145 % Generation random fields

146 RV=randn(length(Meshxy),runs);

147

148 for j=1:runs

149 if strcmp(distribution,'normal')==1

150 CRV(:,j)=mean_RF+L*RV(:,j)*std_RF; % Generate random field

151 elseif strcmp(distribution,'lognormal')==1

152 CRV(:,j)=exp(mean_norm+L*RV(:,j)*std_norm); % Generate random field

153 end

154 end

155 for j=1:runs

156 for i=1:Ny

157 RF(:,i,j)=CRV((i-1)*Nx+1:i*Nx,j);

158 end

159 end

160 rt=cputime-t;

161

162 % plot of 1st random field

163 figure()

164 surf(Meshx,Meshy,RF(:,:,1)')

165

166 % Determin statistical properties random field

167 Mesh=Meshx;

168 L_c=[L_cx; L_cy];

169 [mean_m,mean_s,std_m,std_s,c_err_m,c_err_s]=stat_prop(RF,runs,dim,Mesh,CF,c1,L_c);

170 st=cputime-t;

171 table=[it rt st mean_m mean_s std_m std_s c_err_m c_err_s];
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I.3 Matlab code: Fast Fourier Transform method in 1D

1 % FFT_1D returns correlated random variables for a homogeneous gaussain field

2 % in 1D applying the Fast Fourier Transformation method

3 %

4 % Written by Robin van der Have, Delft, 25 September 2015

5 %

6 % Output:

7 % RF: Matrix containing the coordinates and correlated random variables

8 % belonging to that coordinate

9 % it: Intialization time random fields

10 % rt: Realization time random fields

11 % st: Time to determine the statistical properties of random

12 % fields

13 % mean_m: Mean of the mean values of the random fields

14 % mean_s: Standard deviation of the mean values of the random fields

15 % std_m: Mean of the standard deviations of the random fields

16 % std_s: Standard deviation of the standard deviations of the random

17 % fields

18 % c_err_m: Mean absolute error in correlation in all the random fields

19 % c_err_s: Standard deviations in the absolute errors of the the

20 % correlation in all the random fields

21 %

22 % Input:

23 % runs: Number of random fields created

24 % dim: dimension random field

25 % Mean_RF: Mean value random field

26 % std_RF: Standard deviation random field

27 % CF: Type of correlation function ('Exp', 'SExp')

28 % Exp: Exponential correlation function

29 % Exp = c1+(1-c1)*exp(-delta_x/lc)

30 % SExp: Squared exponential correlation function

31 % SExp = c1+(1-c1)*exp(-(delta_x/lc)^2)

32 % Where delta_x is the lag distance which can be detemined with

33 % the coordinates of the Mesh

34 % c1: threshold value for correlation function

35 % L_c: Correlation length/scale of fluctuation

36 % D: Size random field

37 % N: Number of nodes in random field

38 % Var_fn: Reduction of variance applied (yes/no)

39

40 clc,clear,close all

41 t=cputime;

42

43 % Input values:

44 runs=1;

45 dim=1;

46 mean_RF=30.5;

47 std_RF=1;

48 CF='SExp';

49 c1=0.5;

50 L_c=5;

51 D=35;

52 N=16;

53 distribution='lognormal';

54 doublesize='yes';

55

56 if strcmp(distribution,'normal')==1

57 var=std_RF^2; % Variance of random field

58 elseif strcmp(distribution,'lognormal')==1
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59 std_norm=sqrt(log(1+(std_RF/mean_RF)^2));

60 mean_norm=log(mean_RF)-0.5*std_norm^2;

61 var=std_norm^2;

62 end

63

64 if strcmp(doublesize,'yes')==1

65 N2=N*2;

66 D2=D*2+D/(N-1);

67 elseif strcmp(doublesize,'no')==1

68 N2=N;

69 D2=D;

70 end

71

72 Mesh=linspace(0,D,N); % X-Coordinates

73 delta_w=2*pi*(N2-1)/(N2*D2); % Delta w (width of a inteval in power spectrum density function)

74 w=linspace(0,delta_w*(N2-1),N2); % Coordinates w for power spectrum density function

75 RF=zeros(N2,runs); % Allocate matrix voor values RF

76

77 % Determine one sided SDF

78 if strcmp(CF,'Exp')==1

79 G=(1-c1)*2*var*L_c./(pi*(1+L_c^2*w.^2));

80 elseif strcmp(CF,'SExp')==1

81 G=(1-c1)*var*L_c./(sqrt(pi)*exp(L_c^2*w.^2/4));

82 else

83 disp('CF must be equal to Exp or SExp')

84 end

85

86 % Plot of power spectrum density function

87 figure()

88 plot (w,G)

89

90 % Determening the standard deviation of coefficients Ak and Bk

91 V=2:N2/2;

92

93 Var_A(V)=0.25*(G(V)+G(N2+2-V))*delta_w;

94

95 if strcmp(distribution,'normal')

96 Var_A(1)=G(1)*0.5*delta_w+c1*var; % Addition for dirac delta function c1(w)*std^2

97 elseif strcmp(distribution,'lognormal')

98 Var_A(1)=G(1)*0.5*delta_w+c1*var;

99 end

100 Var_A(N2/2+1)=G(N2/2+1)*delta_w;

101 std_A=sqrt(Var_A);

102

103 it=cputime-t;

104 % Generation random fields

105 for i=1:runs % Loop for every random field

106 Z_CRV=zeros(N2,1); % Starting values loop

107 Ak=zeros(N2,1);

108 Bk=zeros(N2,1);

109 for k=1:N2/2+1

110 Ak(k)=normrnd(0,std_A(k)); % Determine Ak coefficients

111 Bk(k)=normrnd(0,std_A(k)); % Determine Bk coefficients

112 end

113 Bk(1)=0;

114 Bk(N2/2+1)=0;

115 Ak(N2/2+V)=Ak(fliplr(V)); % Make use of symmetry condition

116 Bk(N2/2+V)=-Bk(fliplr(V));

117

118 % Determine values of random field at x-coordinates

119 [Ak,Bk]=invFFT1D(Ak,Bk,log2(N2));

120
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121 % tranformation of standard normal gaussian field

122 if strcmp(distribution,'normal')==1

123 RF(:,i)=mean_RF+Ak(:,1);

124 elseif strcmp(distribution,'lognormal')==1

125 RF(:,i)=exp(Ak(:,1)+mean_norm);

126 end

127 end

128 rt=cputime-t;

129

130 % plot of 1st random field

131 figure()

132 plot(Mesh,RF(1:N,1))

133

134 % Determin statistical properties random field

135 [mean_m,mean_s,std_m,std__s,c_err_m,c_err_s]=stat_prop(RF(1:N,1:runs),runs,dim,Mesh,CF,c1,L_c);

% mean and std RF

136 st=cputime-t;

137 table=[std_RF it rt st mean_m mean_s std_m std__s c_err_m c_err_s];
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I.4 Matlab code: Fast Fourier Transform method in 2D

1 % FFT_2D returns correlated random variables for a homogeneous gaussain field

2 % in 2D applying the Fast Fourier Transform method

3 %

4 % Written by Robin van der Have, Delft, 25 September 2015

5 %

6 % Output:

7 % RF: Matrix containing the coordinates and correlated random variables

8 % belonging to that coordinate

9 % it: Intialization time random fields

10 % rt: Realization time random fields

11 % st: Time to determine the statistical properties of random

12 % fields

13 % mean_m: Mean of the mean values of the random fields

14 % mean_s: Standard deviation of the mean values of the random fields

15 % std_m: Mean of the standard deviations of the random fields

16 % std_s: Standard deviation of the standard deviations of the random

17 % fields

18 % c_err_m: Mean absolute error in correlation in all the random fields

19 % in x-direction

20 % c_err_s: Standard deviations in the absolute errors of the the

21 % correlation in all the random fields in x-direction

22 %

23 % Input:

24 % runs: Number of random fields created

25 % dim: dimension random field

26 % Mean_RF: Mean value random field

27 % std_RF: Standard deviation random field

28 % CF: Type of correlation function ('Exp', 'SExp')

29 % Exp: Exponential correlation function

30 % Exp = c1+(1-c1)*exp(-delta_x/lc)

31 % SExp: Squared exponential correlation function

32 % SExp = c1+(1-c1)*exp(-(delta_x/lc)^2)

33 % Where delta_x is the lag distance which can be detemined with

34 % the coordinates of the Mesh

35 % c1: threshold value for correlation function

36 % L_c: Correlation length/scale of fluctuation in both directions

37 % Dx: Size random field in x direction

38 % Dy: Size random field in y direction

39 % Nx: Number of nodes in random field in y direction

40 % Ny: Number of nodes in random field in y direction

41

42 clc, close all, clear all

43 t=cputime;

44

45 %% Input values:

46 runs=200;

47 dim=2;

48 mean_RF=30.5;

49 std_RF=5.9;

50 CF='SExp';

51 c1=0;

52 L_cx=5;

53 L_cy=5;

54 Dx=40;

55 Dy=40;

56 Nx=32;

57 Ny=32;

58 doublesize='yes';
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59 distribution='lognormal';

60

61 if strcmp(distribution,'normal')==1

62 var=std_RF^2; % Variance of random field

63 elseif strcmp(distribution,'lognormal')==1

64 std_norm=sqrt(log(1+(std_RF/mean_RF)^2));

65 mean_norm=log(mean_RF)-0.5*std_norm^2;

66 var=std_norm^2;

67 end

68

69 if strcmp(doublesize,'yes')==1

70 Nx2=Nx*2;

71 Ny2=Ny*2;

72 Dx2=Dx*2+Dx/(Nx-1);

73 Dy2=Dy*2+Dy/(Ny-1);

74 elseif strcmp(doublesize,'no')==1

75 Nx2=Nx;

76 Ny2=Ny;

77 Dx2=Dx;

78 Dy2=Dy;

79 end

80

81 RF=zeros(Nx2,Ny2,runs);

82 Meshx=linspace(0,Dx,Nx); % X-Coordinates

83 Meshy=linspace(0,Dy,Ny); % Y-Coordinates

84 delta_wx=2*pi*(Nx2-1)/(Nx2*Dx2); % Delta w

85 delta_wy=2*pi*(Ny2-1)/(Ny2*Dy2); % Delta w

86 wx=linspace(0,delta_wx*(Nx2-1),Nx2); % Coordinates w for power spectrum density function

87 wy=linspace(0,delta_wy*(Ny2-1),Ny2); % Coordinates w for power spectrum density function

88

89 %% Determine one sided SDF

90 G_c=zeros(Nx2,Ny2);

91 if strcmp(CF,'Exp')==1

92 for i=1:Nx2

93 for j=1:Ny2

94 G_c(i,j)=2*(1-c1)*var*L_cx*L_cy/(pi*(1+wx(i)^2*L_cx^2+wy(j)^2*L_cy^2)^1.5);

% spectral density function of Exp with c1=0

95 end

96 end

97 elseif strcmp(CF,'SExp')==1

98 for i=1:Nx2

99 for j=1:Ny2

100 G_c(i,j)=(1-c1)*var*L_cx*L_cy/(pi*exp(wx(i)^2*L_cx^2/4+wy(j)^2*L_cy^2/4));

101 end

102 end

103 else

104 disp('CF must be equal to Exp or SExp')

105 end

106

107 G=G_c;

108 G(1,:)=G(1,:).*0.5;

109 G(:,1)=G(:,1).*0.5;

110 delta_w=delta_wx*delta_wy;

111

112 % Plot of one sided SDF

113 figure()

114 surf(wx,wy,G_c')

115

116 %% Determening the standard deviation of coefficients Ak and Bk

117 Var=zeros(Nx2,Ny2/2+1);

118 for i=2:Nx2

119 for j=2:Ny2/2
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120 Var(i,j)=1/8*delta_w*(G(i,j)+G(i,Ny2+2-j)+G(Nx2+2-i,j)+G(Nx2+2-i,Ny2+2-j));

121 end

122 end

123 i=1;

124 for j=2:Ny2/2

125 Var(i,j)=1/4*delta_w*(G(i,j)+G(i,Ny2-j+2));

126 end

127 i=1+Nx2/2;

128 for j=2:Ny2/2

129 Var(i,j)=1/4*delta_w*(G(i,j)+G(i,Ny2-j+2));

130 end

131 j=1;

132 for i=2:Nx2/2

133 Var(i,j)=1/4*delta_w*(G(i,j)+G(Nx2-i+2,j));

134 end

135 j=1+Ny2/2;

136 for i=2:Nx2/2

137 Var(i,j)=1/4*delta_w*(G(i,j)+G(Nx2-i+2,j));

138 end

139 Var(1,1)=delta_w*G(1,1)+var*c1;

140 Var(1+Nx2/2,1)=delta_w*G((1+Nx2/2),1);

141 Var(1,1+Ny2/2)=delta_w*G(1,1+Ny2/2);

142 Var(1+Nx2/2,1+Ny2/2)=delta_w*G(1+Nx2/2,1+Ny2/2);

143

144 std_coef=sqrt(Var);

145

146 it=cputime-t;

147

148 %% Generation random fields

149 RF=zeros(Nx2,Ny2,runs); % Matrix for realisations of random field

150 for run=1:runs % Loop for every random field

151 Ak=zeros(Nx2,Ny2); % Starting values loop

152 Bk=zeros(Nx2,Ny2);

153 for j=1:Nx2

154 for k=1:Ny2/2+1

155 Ak(j,k)=normrnd(0,std_coef(j,k)); % Determine Ak coefficients

156 Bk(j,k)=normrnd(0,std_coef(j,k)); % Determine Bk coefficients

157 end

158 end

159 Bk(1,1)=0;

160 Bk(Nx2/2+1,1)=0;

161 Bk(1,Ny2/2+1)=0;

162 Bk(Nx2/2+1,Ny2/2+1)=0;

163

164 Ak1=rot90(Ak(2:Nx2,2:Ny2),2);

165 Ak(2:Nx2,Ny2/2+2:Ny2)=Ak1(1:Nx2-1,Ny2/2+1:Ny2-1);

166 Ak(Nx2/2+1:Nx2,Ny2/2+1)=Ak1(Nx2/2:Nx2-1,Ny2/2);

167 Ak2=flipud(Ak(2:Nx2/2,1));

168 Ak3=fliplr(Ak(1,2:Ny2/2));

169 Ak(Nx2/2+2:Nx2,1)=Ak2;

170 Ak(1,Ny2/2+2:Ny2)=Ak3;

171

172 Bk1=rot90(Bk(2:Nx2,2:Ny2),2);

173 Bk(2:Nx2,Ny2/2+2:Ny2)=-Bk1(1:Nx2-1,Ny2/2+1:Ny2-1);

174 Bk(Nx2/2+1:Nx2,Ny2/2+1)=-Bk1(Nx2/2:Nx2-1,Ny2/2);

175 Bk2=flipud(Bk(2:Nx2/2,1));

176 Bk3=fliplr(Bk(1,2:Ny2/2));

177 Bk(Nx2/2+2:Nx2,1)=-Bk2;

178 Bk(1,Ny2/2+2:Ny2)=-Bk3;

179

180 m1=log2(Nx2);

181 m2=log2(Ny2);
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182 ta=zeros(Ny2,1);

183 tb=zeros(Ny2,1);

184 for i=1:Nx2

185 for j=1:Ny2

186 ta(j)=Ak(i,j);

187 tb(j)=Bk(i,j);

188 end

189 [ta,tb]=invFFT1D(ta,tb,m2);

190 for j=1:Ny2

191 Ak(i,j)=ta(j);

192 Bk(i,j)=tb(j);

193 end

194 end

195 for j=1:Ny2

196 [Ak(:,j),Bk(:,j)]=invFFT1D(Ak(:,j),Bk(:,j),m1);

197 end

198

199 if strcmp(distribution,'normal')==1

200 RF(:,:,run)=mean_RF+Ak;

201 elseif strcmp(distribution,'lognormal')==1

202 RF(:,:,run)=exp(mean_norm+Ak);

203

204 end

205 end

206 rt=cputime-t;

207 %% Plot the random field of the first run

208 figure()

209 surf(Meshx,Meshy,RF(1:Nx,1:Ny,1)')

210

211 % Determin statistical properties random field

212 Mesh=Meshx;

213 [mean_m,mean_s,std_m,std_s,c_err_m,c_err_s] ...

214 =stat_prop(RF(1:Nx,1:Ny,1:runs),runs,dim,Mesh,CF,c1,L_cx); % mean and std RF

215 st=cputime-t;

216

217 table=[it rt st mean_m mean_s std_m std_s c_err_m c_err_s];
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I.5 Matlab code: Local Average Subdivision in 1D

1 % LAS_1D returns correlated random variables for a homogeneous gaussain field

2 % in 1D applying the Local Average Subdivision method

3 %

4 % Written by Robin van der Have, Delft, 25 September 2015

5 %

6 % Based on subroutine las1g.f of RFEM software which is written by

7 % Gordon A. Fenton. Free available on http://courses.engmath.dal.ca/rfem/

8 %

9 % Output:

10 % RF: Matrix containing the coordinates and correlated random variables

11 % belonging to that coordinate

12 % it: Intialization time random fields

13 % rt: Realization time random fields

14 % st: Time to determine the statistical properties of random

15 % fields

16 % mean_m: Mean of the mean values of the random fields

17 % mean_s: Standard deviation of the mean values of the random fields

18 % std_m: Mean of the standard deviations of the random fields

19 % std_s: Standard deviation of the standard deviations of the random

20 % fields

21 % c_err_m: Mean absolute error in correlation in all the random fields

22 % c_err_s: Standard deviations in the absolute errors of the the

23 % correlation in all the random fields

24 %

25 % Input:

26 % runs: Number of random fields created

27 % dim: dimension random field

28 % Mean_RF: Mean value random field

29 % std_RF: Standard deviation random field

30 % CF: Type of correlation function ('Exp', 'SExp')

31 % Exp: Exponential correlation function

32 % Exp = c1+(1-c1)*exp(-delta_x/lc)

33 % SExp: Squared exponential correlation function

34 % SExp = c1+(1-c1)*exp(-(delta_x/lc)^2)

35 % Where delta_x is the lag distance which can be detemined with

36 % the coordinates of the Mesh

37 % c1: threshold value for correlation function

38 % L_c: Correlation length/scale of fluctuation

39 % D: Size random field

40 % m: Number of devisions

41 % k1: Number of cells for stage 0

42 % nbh: Neigberhood cells (3 or 5)

43

44 clc,clear,close all

45 t=cputime;

46

47 % Input values:

48 runs=2000;

49 dim=1;

50 mean_RF=1;

51 std_RF=1;

52 CF='SExp';

53 c1=0.5;

54 L_c=5;

55 D=17.5;

56 m=1;

57 k1=8;

58 nbh=3;

174 Appendix I Matlab codes random field generators



59 distribution='lognormal';

60

61 if strcmp(distribution,'normal')==1

62 var=std_RF^2; % Variance of random field

63 elseif strcmp(distribution,'lognormal')==1

64 std_norm=sqrt(log(1+(std_RF/mean_RF)^2));

65 mean_norm=log(mean_RF)-0.5*std_norm^2;

66 var=std_norm^2;

67 end

68

69 N=k1*2^m; % Number of Cells of random field

70 RF=zeros(N,runs); % Allocate matrix voor values RF

71

72 %% Determine initial values

73 % Generate RF values for stage 0

74 Dx=D/k1; % Cell size stage 0

75

76 % Determine Correlation matrix stage 0 using the variance function

77 Cov=zeros(k1,1);

78 for i=1:k1

79 lag=i-1;

80 Cov(i)=varfn_Gauss(CF,distribution,Dx,lag,L_c,c1,var);

81 end

82 Cor_m=zeros(k1,k1);

83 for j=1:k1

84 for i=1:j

85 Cor_m(j,i)=Cov(j-i+1);

86 end

87 end

88 L=chol(Cor_m,'lower'); % Decomposition correlation matrix

89

90 % Determine a_l and c coefficients

91 Cov=zeros(nbh,1); % Allocate vector for covariances

92 C_Cov=zeros(nbh,1); % Allocate vector for cross-covariances

93 Cor_M=zeros(nbh,nbh); % Allocate matrix for correlation matrix

94 A=zeros(3,m); % Allocate matrix for a_l coefficients

95 c=zeros(m,1); % Allocate vector for c coefficients

96 for j=1:m

97 % Determin Correlation matrix for stage m

98 for i=1:nbh

99 lag=i-1;

100 Cov(i)=varfn_Gauss(CF,distribution,Dx,lag,L_c,c1,var);

101 end

102 for l=1:nbh

103 for k=1:l

104 Cor_M(k,l)=Cov(l-k+1);

105 Cor_M(l,k)=Cov(l-k+1);

106 end

107 end

108 Dx=Dx/2;

109 % Determin cross-covariances for stage m

110 for i=1:nbh

111 lag1=abs(i*2-nbh-2);

112 lag2=abs(i*2-nbh-1);

113 C_Cov1=varfn_Gauss(CF,distribution,Dx,lag1,L_c,c1,var);

114 C_Cov2=varfn_Gauss(CF,distribution,Dx,lag2,L_c,c1,var);

115 C_Cov(i)=0.5*C_Cov1+0.5*C_Cov2;

116 end

117 % Collect a_l and c coefficients

118 A(1:nbh,j)=Cor_M\C_Cov;

119 c(j)=varfn_Gauss(CF,distribution,Dx,0,L_c,c1,var)-A(:,j)'*C_Cov;

120 end
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121 cc=sqrt(c);

122 it=cputime-t;

123

124 %% Generation random fields

125 RV=randn(N,runs); % k1*2^m random variables are needed

126 for k=1:runs

127 z=zeros(N,1);

128 z(1:k1)=L*RV(1:k1,k);

129 % Exepion if 1 cell at stage 0

130 if k1==1

131 z(2)=A(nbh/2+0.5,1)*z(1)+RV(2,k)*cc(1);

132 z(1)=2*z(1)-z(2);

133 else

134 z_p=z;

135 j=1;

136 for i=1:k1*2^(j-1)

137 % Boundary values

138 if i==1

139 z(2*i)=A(nbh/2+0.5:nbh,j)'*z_p(i:i+nbh/2-0.5)+RV(k1*2^(j-1)+i,k)*cc(j);

140 elseif i==2

141 if nbh==3

142 z(2*i)=A(:,j)'*z_p(i-nbh/2+0.5:i+nbh/2-0.5)+RV(k1*2^(j-1)+i,k)*cc(j);

143 else

144 z(2*i)=A(2:nbh,j)'*z_p(i:i+3)+RV(k1*2^(j-1)+i,k)*cc(j);

145 end

146 elseif i==k1*2^(j-1)-1

147 if nbh==3

148 z(2*i)=A(:,j)'*z_p(i-nbh/2+0.5:i+nbh/2-0.5)+RV(k1*2^(j-1)+i,k)*cc(j);

149 else

150 z(2*i)=A(1:4,j)'*z_p(i-3:i)+RV(k1*2^(j-1)+i,k)*cc(j);

151 end

152 elseif i==k1*2^(j-1)

153 z(2*i)=A(1:nbh/2+0.5,j)'*z_p(i-nbh/2+0.5:i)+RV(k1*2^(j-1)+i,k)*cc(j);

154 % Internal values

155 else

156 z(2*i)=A(:,j)'*z_p(i-nbh/2+0.5:i+nbh/2-0.5)+RV(k1*2^(j-1)+i,k)*cc(j);

157 end

158 z(2*i-1)=2*z_p(i)-z(2*i);

159 end

160 end

161 if m>=2

162 for j=2:m

163 z_p=z;

164 for i=1:k1*2^(j-1)

165 % Boundary values

166 if i==1

167 z(2*i)=A(nbh/2+0.5:nbh,j)'*z_p(i:i+nbh/2-0.5)+RV(k1*2^(j-1)+i,k)*cc(j);

168 elseif i==2

169 if nbh==3

170 z(2*i)=A(:,j)'*z_p(i-nbh/2+0.5:i+nbh/2-0.5)+RV(k1*2^(j-1)+i,k)*cc(j);

171 else

172 z(2*i)=A(2:nbh,j)'*z_p(i:i+3)+RV(k1*2^(j-1)+i,k)*cc(j);

173 end

174 elseif i==k1*2^(j-1)-1

175 if nbh==3

176 z(2*i)=A(:,j)'*z_p(i-nbh/2+0.5:i+nbh/2-0.5)+RV(k1*2^(j-1)+i,k)*cc(j);

177 else

178 z(2*i)=A(1:4,j)'*z_p(i-3:i)+RV(k1*2^(j-1)+i,k)*cc(j);

179 end

180 elseif i==k1*2^(j-1)

181 z(2*i)=A(1:nbh/2+0.5,j)'*z_p(i-nbh/2+0.5:i)+RV(k1*2^(j-1)+i,k)*cc(j);

182 % Internal values
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183 else

184 z(2*i)=A(:,j)'*z_p(i-nbh/2+0.5:i+nbh/2-0.5)+RV(k1*2^(j-1)+i,k)*cc(j);

185 end

186 z(2*i-1)=2*z_p(i)-z(2*i);

187 end

188 end

189 end

190

191 % tranformation of standard normal gaussian field

192 if strcmp(distribution,'normal')==1

193 RF(:,k)=std_RF*z+mean_RF;

194 elseif strcmp(distribution,'lognormal')==1

195 RF(:,k)=exp(std_norm*z+mean_norm);

196 end

197

198 end

199 rt=cputime-t;

200

201 % plot of 1st random field

202 figure()

203 Mesh=linspace(0,D-Dx,N); % X-Coordinates

204 plot(Mesh,RF(:,1))

205

206 % Determin statistical properties random field

207 [mean_m,mean_s,std_m,std__s,c_err_m,c_err_s] ...

208 =stat_prop(RF,runs,dim,Mesh,CF,c1,L_c); % mean and std RF

209 st=cputime-t;

210 table=[it rt st mean_m mean_s std_m std__s c_err_m c_err_s];
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I.6 Matlab code: Local Average Subdivision in 2D

1 % LAS_2D returns correlated random variables for a homogeneous gaussain field

2 % in 2D applying the Local Average Subdivision

3 %

4 % Written by Robin van der Have, Delft, 25 September 2015

5 %

6 % Based on subroutine las2g.f of RFEM software which is written by

7 % Gordon A. Fenton. Free available on http://courses.engmath.dal.ca/rfem/

8 %

9 % Output:

10 % RF: Matrix containing the coordinates and correlated random variables

11 % belonging to that coordinate

12 % it: Intialization time random fields

13 % rt: Realization time random fields

14 % st: Time to determine the statistical properties of random

15 % fields

16 % mean_m: Mean of the mean values of the random fields

17 % mean_s: Standard deviation of the mean values of the random fields

18 % std_m: Mean of the standard deviations of the random fields

19 % std_s: Standard deviation of the standard deviations of the random

20 % fields

21 % c_err_m: Mean absolute error in correlation in all the random fields

22 % in x-direction

23 % c_err_s: Standard deviations in the absolute errors of the the

24 % correlation in all the random fields in x-direction

25 %

26 % Input:

27 % runs: Number of random fields created

28 % dim: dimension random field

29 % Mean_RF: Mean value random field

30 % std_RF: Standard deviation random field

31 % CF: Type of correlation function ('Exp', 'SExp')

32 % Exp: Exponential correlation function

33 % Exp = c1+(1-c1)*exp(-delta_x/lc)

34 % SExp: Squared exponential correlation function

35 % SExp = c1+(1-c1)*exp(-(delta_x/lc)^2)

36 % Where delta_x is the lag distance which can be detemined with

37 % the coordinates of the Mesh

38 % c1: threshold value for correlation function

39 % L_cx: Correlation length/scale of fluctuation in x-direcion

40 % L_cy: Correlation length/scale of fluctuation in y-direcion

41 % Dx: Size random field in x direction

42 % Dy: Size random field in y direction

43 % mm: Number of devisions

44 % k1: Number of cells in x direction for stage 0

45 % k2: Number of celss in y direction for stage 0

46 % nbh: Neighborhood cells

47 % Int: Exact integration or Gauss integration for varaince

48 % function (Exact/Gauss) Exact only works for SEXP with c1=0

49

50 clc, close all, clear all

51 t=cputime;

52

53 %% Input values:

54 runs=200;

55 dim=2;

56 mean_RF=30.5;

57 std_RF=5.9;

58 CF='SExp';
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59 c1=0.5;

60 L_cx=5;

61 L_cy=5;

62 Dx=17.5;

63 Dy=17.5;

64 k1=8;

65 k2=8;

66 mm=2;

67 nbh=3;

68 Int='Gauss';

69 distribution='normal';

70 if strcmp(distribution,'normal')==1

71 var=std_RF^2; % Variance of random field

72 elseif strcmp(distribution,'lognormal')==1

73 std_norm=sqrt(log(1+(std_RF/mean_RF)^2));

74 mean_norm=log(mean_RF)-0.5*std_norm^2;

75 var=std_norm^2;

76 end

77

78 N1=k1*2^mm; % Number of cells in random field in x direction

79 N2=k2*2^mm; % Number of cells in random field in y direction

80 NN=N1*N2; % Number of Cells of random field

81 RF=zeros(N2,N1,runs); % Allocate matrix voor values RF

82

83 % Matices for boundaries (corners and sides)

84 mc=[1 4 2 5; 2 5 3 6;4 7 5 8; 5 8 6 9];

85 ms=[4 2 1 1; 5 3 2 2; 6 5 4 3; 7 6 5 4; 8 8 7 5; 9 9 8 6];

86

87 %% Determine initial values

88 dx=Dx/k1; % Cell size stage 0

89 dy=Dy/k2;

90

91 % Determine covariances

92 ii=0;

93 kk=k1*k2;

94 Q=zeros(kk,kk);

95 if strcmp(Int,'Exact')==1

96 cov=zeros(1,kk);

97 for i=1:k2

98 n=i-1;

99 for j=1:k1

100 m=j-1;

101 ii=ii+1;

102 if n==0 && m==0

103 cov(ii)=var*varfn2D(dx,dy,L_cx,L_cy,c1,CF);

104 else

105 var1=(m-1)^2*(n-1)^2*varfn2D((m-1)*dx,(n-1)*dy,L_cx,L_cy,c1,CF);

106 var2=-2*(m-1)^2*(n)^2*varfn2D((m-1)*dx,(n)*dy,L_cx,L_cy,c1,CF);

107 var3=(m-1)^2*(n+1)^2*varfn2D((m-1)*dx,(n+1)*dy,L_cx,L_cy,c1,CF);

108 var4=-2*(m)^2*(n-1)^2*varfn2D((m)*dx,(n-1)*dy,L_cx,L_cy,c1,CF);

109 var5=4*(m)^2*(n)^2*varfn2D((m)*dx,(n)*dy,L_cx,L_cy,c1,CF);

110 var6=-2*(m)^2*(n+1)^2*varfn2D((m)*dx,(n+1)*dy,L_cx,L_cy,c1,CF);

111 var7=(m+1)^2*(n-1)^2*varfn2D((m+1)*dx,(n-1)*dy,L_cx,L_cy,c1,CF);

112 var8=-2*(m+1)^2*(n)^2*varfn2D((m+1)*dx,(n)*dy,L_cx,L_cy,c1,CF);

113 var9=(m+1)^2*(n+1)^2*varfn2D((m+1)*dx,(n+1)*dy,L_cx,L_cy,c1,CF);

114 if n==0 && m==1

115 cov(ii)=var/4*(var4+var6+var7+var9);

116 elseif n==0 && m>=2

117 cov(ii)=var/4*(var1+var3+var4+var6+var7+var9);

118 elseif n==1 && m==0

119 cov(ii)=var/4*(var2+var3+var8+var9);

120 elseif n==1 && m==1
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121 cov(ii)=var/4*(var5+var6+var8+var9);

122 elseif n==1 && m>=2

123 cov(ii)=var/4*(var2+var3+var5+var6+var8+var9);

124 elseif n>=2 && m==0

125 cov(ii)=var/4*(var1+var2+var3+var7+var8+var9);

126 elseif n>=2 && m==1

127 cov(ii)=var/4*(var4+var5+var6+var7+var8+var9);

128 else

129 cov(ii)=var/4*(var1+var2+var3+var4+var5+var6+var7+var8+var9);

130 end

131 end

132 end

133 end

134 Q(1,:)=cov;

135 elseif strcmp(Int,'Gauss')==1

136 for j=1:k2

137 lagy=j-1;

138 for i=1:k1

139 ii=ii+1;

140 lagx=i-1;

141 Q(1,ii)=varfn2D_Gauss(CF,distribution,dx,dy,lagx,lagy,L_cx,L_cy,c1,var);

142 end

143 end

144 else

145 Disp('Int must be equal to Exact or Gauss')

146 end

147

148 % Assemble correlation matrix stage 0

149 for j=2:kk

150 mxj=mod(j-1,k1);

151 myj=floor((j-1)/k1);

152 for i=2:j

153 mxi=mod(i-1,k1);

154 myi=floor((i-1)/k1);

155 m=1+(abs(mxj-mxi))+k1*(abs(myj-myi));

156 Q(i,j)=Q(1,m);

157 end

158 end

159 Q0=chol2(Q);

160

161 % Determine correlation matrix stage 1

162 if k1<=2 || k2<=2

163 cov=zeros(nbh^2,1);

164 Cor_M=zeros(nbh^2,nbh^2);

165 ii=0;

166 if strcmp(Int,'Exact')==1

167 for i=1:3

168 n=i-1;

169 for j=1:3

170 m=j-1;

171 ii=ii+1;

172 if n==0 && m==0

173 cov(ii)=var*varfn2D(dx,dy,L_cx,L_cy,c1,CF);

174 else

175 var1=(m-1)^2*(n-1)^2*varfn2D((m-1)*dx,(n-1)*dy,L_cx,L_cy,c1,CF);

176 var2=-2*(m-1)^2*(n)^2*varfn2D((m-1)*dx,(n)*dy,L_cx,L_cy,c1,CF);

177 var3=(m-1)^2*(n+1)^2*varfn2D((m-1)*dx,(n+1)*dy,L_cx,L_cy,c1,CF);

178 var4=-2*(m)^2*(n-1)^2*varfn2D((m)*dx,(n-1)*dy,L_cx,L_cy,c1,CF);

179 var5=4*(m)^2*(n)^2*varfn2D((m)*dx,(n)*dy,L_cx,L_cy,c1,CF);

180 var6=-2*(m)^2*(n+1)^2*varfn2D((m)*dx,(n+1)*dy,L_cx,L_cy,c1,CF);

181 var7=(m+1)^2*(n-1)^2*varfn2D((m+1)*dx,(n-1)*dy,L_cx,L_cy,c1,CF);

182 var8=-2*(m+1)^2*(n)^2*varfn2D((m+1)*dx,(n)*dy,L_cx,L_cy,c1,CF);
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183 var9=(m+1)^2*(n+1)^2*varfn2D((m+1)*dx,(n+1)*dy,L_cx,L_cy,c1,CF);

184 if n==0 && m==1

185 cov(ii)=var/4*(var4+var6+var7+var9);

186 elseif n==0 && m==2

187 cov(ii)=var/4*(var1+var3+var4+var6+var7+var9);

188 elseif n==1 && m==0

189 cov(ii)=var/4*(var2+var3+var8+var9);

190 elseif n==1 && m==1

191 cov(ii)=var/4*(var5+var6+var8+var9);

192 elseif n==1 && m==2

193 cov(ii)=var/4*(var2+var3+var5+var6+var8+var9);

194 elseif n==2 && m==0

195 cov(ii)=var/4*(var1+var2+var3+var7+var8+var9);

196 elseif n==2 && m==1

197 cov(ii)=var/4*(var4+var5+var6+var7+var8+var9);

198 else

199 cov(ii)=var/4*(var1+var2+var3+var4+var5+var6+var7+var8+var9);

200 end

201 end

202 end

203 end

204 elseif strcmp(Int,'Gauss')==1

205 for i=1:3

206 lagy=i-1;

207 for j=1:3

208 ii=ii+1;

209 lagx=j-1;

210 cov(ii)=varfn2D_Gauss(CF,distribution,dx,dy,lagx,lagy,L_cx,L_cy,c1,var);

211 end

212 end

213 else

214 Disp('Int must be equal to Exact or Gauss')

215 end

216 kx=[0 1 2 0 1 2 0 1 2];

217 ky=[0 0 0 1 1 1 2 2 2];

218 for l=1:nbh^2

219 for k=1:l

220 m=1+abs(kx(l)-kx(k))+3*abs(ky(l)-ky(k));

221 Cor_M(k,l)=cov(m);

222 Cor_M(l,k)=cov(m);

223 end

224 end

225 else

226 Cor_M=zeros(9,9);

227 kx=[0 1 2 0 1 2 0 1 2];

228 ky=[0 0 0 1 1 1 2 2 2];

229 for j=1:9

230 for i=1:j;

231 m=1+abs(kx(j)-kx(i))+k1*abs(ky(j)-ky(i));

232 Cor_M(i,j)=Q(1,m);

233 end

234 end

235 Cor_M=Cor_M+Cor_M'-diag(diag(Cor_M));

236 end

237

238 %% Determine a_l and c coefficients

239 Ai=zeros(9,3,mm); % Allocate matrix for interior values for a_l coefficients

240 Ci=zeros(6,mm); % Allocate matrix for interior values for c coefficients

241 Ac=zeros(4,3,4,mm); % Allocate matrix for corner values for a_l coefficients

242 Cc=zeros(6,4,mm); % Allocate matrix for corner values for c coefficients

243 As=zeros(6,3,4,mm); % Allocate matrix for side values for a_l coefficients

244 Cs=zeros(6,4,mm); % Allocate matrix for side values for c coefficients
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245

246 % Loop for every stage

247 for div=1:mm

248 dx=dx/2;

249 dy=dy/2;

250 cov=zeros(1,16);

251 c_cov=zeros(9,3);

252 if strcmp(Int,'Exact')==1

253 ii=0;

254 for i=1:4

255 n=i-1;

256 for j=1:4

257 m=j-1;

258 ii=ii+1;

259 if n==0 && m==0

260 cov(ii)=var*varfn2D(dx,dy,L_cx,L_cy,c1,CF);

261 else

262 var1=(m-1)^2*(n-1)^2*varfn2D((m-1)*dx,(n-1)*dy,L_cx,L_cy,c1,CF);

263 var2=-2*(m-1)^2*(n)^2*varfn2D((m-1)*dx,(n)*dy,L_cx,L_cy,c1,CF);

264 var3=(m-1)^2*(n+1)^2*varfn2D((m-1)*dx,(n+1)*dy,L_cx,L_cy,c1,CF);

265 var4=-2*(m)^2*(n-1)^2*varfn2D((m)*dx,(n-1)*dy,L_cx,L_cy,c1,CF);

266 var5=4*(m)^2*(n)^2*varfn2D((m)*dx,(n)*dy,L_cx,L_cy,c1,CF);

267 var6=-2*(m)^2*(n+1)^2*varfn2D((m)*dx,(n+1)*dy,L_cx,L_cy,c1,CF);

268 var7=(m+1)^2*(n-1)^2*varfn2D((m+1)*dx,(n-1)*dy,L_cx,L_cy,c1,CF);

269 var8=-2*(m+1)^2*(n)^2*varfn2D((m+1)*dx,(n)*dy,L_cx,L_cy,c1,CF);

270 var9=(m+1)^2*(n+1)^2*varfn2D((m+1)*dx,(n+1)*dy,L_cx,L_cy,c1,CF);

271 if n==0 && m==1

272 cov(ii)=var/4*(var4+var6+var7+var9);

273 elseif n==0 && m>=2

274 cov(ii)=var/4*(var1+var3+var4+var6+var7+var9);

275 elseif n==1 && m==0

276 cov(ii)=var/4*(var2+var3+var8+var9);

277 elseif n==1 && m==1

278 cov(ii)=var/4*(var5+var6+var8+var9);

279 elseif n==1 && m>=2

280 cov(ii)=var/4*(var2+var3+var5+var6+var8+var9);

281 elseif n>=2 && m==0

282 cov(ii)=var/4*(var1+var2+var3+var7+var8+var9);

283 elseif n>=2 && m==1

284 cov(ii)=var/4*(var4+var5+var6+var7+var8+var9);

285 else

286 cov(ii)=var/4*(var1+var2+var3+var4+var5+var6+var7+var8+var9);

287 end

288 end

289 end

290 end

291

292 elseif strcmp(Int,'Gauss')==1

293 ii=0;

294 for i=1:4

295 lagy=i-1;

296 for j=1:4

297 lagx=j-1;

298 ii=ii+1;

299 cov(ii)=varfn2D_Gauss(CF,distribution,dx,dy,lagx,lagy,L_cx,L_cy,c1,var);

300 end

301 end

302 else

303 Disp('Int must be equal to Exact or Gauss')

304 end

305

306 B=[cov(1) cov(2) cov(5); cov(2) cov(1) cov(6); cov(5) cov(6) cov(1)];
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307

308 c_cov(1,1)=0.25*(cov(11)+cov(12)+cov(15)+cov(16));

309 c_cov(2,1)=0.25*(cov(9)+cov(10)+cov(13)+cov(14));

310 c_cov(3,1)=0.25*(cov(10)+cov(11)+cov(14)+cov(15));

311 c_cov(4,1)=0.25*(cov(3)+cov(4)+cov(7)+cov(8));

312 c_cov(5,1)=0.25*(cov(1)+cov(2)+cov(5)+cov(6));

313 c_cov(6,1)=0.25*(cov(2)+cov(3)+cov(6)+cov(7));

314 c_cov(7,1)=0.25*(cov(7)+cov(8)+cov(11)+cov(12));

315 c_cov(8,1)=0.25*(cov(5)+cov(6)+cov(9)+cov(10));

316 c_cov(9,1)=0.25*(cov(6)+cov(7)+cov(10)+cov(11));

317

318 c_cov(1,2)=c_cov(7,1);

319 c_cov(2,2)=c_cov(8,1);

320 c_cov(3,2)=c_cov(9,1);

321 c_cov(4,2)=c_cov(4,1);

322 c_cov(5,2)=c_cov(5,1);

323 c_cov(6,2)=c_cov(6,1);

324 c_cov(7,2)=c_cov(1,1);

325 c_cov(8,2)=c_cov(2,1);

326 c_cov(9,2)=c_cov(3,1);

327

328 c_cov(1,3)=c_cov(3,1);

329 c_cov(2,3)=c_cov(2,1);

330 c_cov(3,3)=c_cov(1,1);

331 c_cov(4,3)=c_cov(6,1);

332 c_cov(5,3)=c_cov(5,1);

333 c_cov(6,3)=c_cov(4,1);

334 c_cov(7,3)=c_cov(9,1);

335 c_cov(8,3)=c_cov(8,1);

336 c_cov(9,3)=c_cov(7,1);

337

338 % Determine interior parameters

339 Ai(:,:,div)=Cor_M\c_cov;

340 RR=B-c_cov'*Ai(:,:,div);

341 BBchol=chol2(RR);

342 ii=0;

343 for j=1:3

344 for i=1:j

345 ii=ii+1;

346 Ci(ii,div)=BBchol(i,j);

347 end

348 end

349

350 % Determine corner parameters

351 RC=zeros(4);

352 DA=zeros(4,1);

353 BB=zeros(3,3);

354 for j=1:4

355 for i=1:j

356 RC(i,j)=Cor_M(mc(i,1),mc(j,1));

357 end

358 end

359 RC=RC+RC'-diag(diag(RC));

360 for nc=1:4

361 for j=1:3

362 for i=1:4

363 DA(i)=c_cov(mc(i,nc),j);

364 end

365 DA=RC\DA;

366 for i=1:4

367 Ac(i,j,nc,div)=DA(i);

368 end
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369 for i=1:j

370 BB(i,j)=B(i,j)-c_cov(mc(1,nc),i)*DA(1)- c_cov(mc(2,nc),i)...

371 *DA(2)-c_cov(mc(3,nc),i)*DA(3)-c_cov(mc(4,nc),i)*DA(4);

372 end

373 end

374 BBchol=chol2(BB);

375 ii=0;

376 for j=1:3

377 for i=1:j

378 ii=ii+1;

379 Cc(ii,nc,div)=BBchol(i,j);

380 end

381 end

382 end

383

384 % Determine side parameters

385 BB=zeros(3,3);

386

387 for ns=1:4

388 RS=zeros(6,6);

389 for j=1:6

390 for i=1:j

391 RS(i,j)=Cor_M(ms(i,ns),ms(j,ns));

392 end

393 end

394 RS=RS+RS'-diag(diag(RS));

395 for j=1:3

396 for i=1:6

397 DA(i)=c_cov(ms(i,ns),j);

398 end

399 DA=RS\DA;

400 for i=1:6

401 As(i,j,ns,div)=DA(i);

402 end

403 for i=1:j

404 BB(i,j)=B(i,j)-c_cov(ms(1,ns),i)*DA(1)-c_cov(ms(2,ns),i) ...

405 *DA(2)-c_cov(ms(3,ns),i)*DA(3)-c_cov(ms(4,ns),i) ...

406 *DA(4)-c_cov(ms(5,ns),i)*DA(5)-c_cov(ms(6,ns),i)*DA(6);

407 end

408 end

409 BBchol=chol2(BB);

410 ii=0;

411 for j=1:3

412 for i=1:j

413 ii=ii+1;

414 Cs(ii,ns,div)=BBchol(i,j);

415 end

416 end

417 end

418

419 % Determine Correlation matrix for next stage

420 kx=[0 1 2 0 1 2 0 1 2];

421 ky=[0 0 0 1 1 1 2 2 2];

422 Cor_M=zeros(9,9);

423 for l=1:nbh^2

424 for k=1:l

425 m=1+abs(kx(l)-kx(k))+4*abs(ky(l)-ky(k));

426 Cor_M(k,l)=cov(m);

427 Cor_M(l,k)=cov(m);

428 end

429 end

430 end
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431 it=cputime-t;

432

433 %% generate field

434 for run=1:runs

435 %Generate values stage 0

436 RV0=randn(kk,1);

437 z(1:kk)=Q0'*RV0;

438

439 for i=1:mm

440 z_p=z;

441

442 % Corners

443 % Old positions corners

444 cor12=k1*2^(i-1)*(k2*2^(i-1)-1);

445 cor11=cor12-1;

446 cor14=k1*2^(i-1)*(k2*2^(i-1));

447 cor13=cor14-1;

448

449 cor22=k1*2^(i-1);

450 cor21=cor22-1;

451 cor24=2*k1*2^(i-1);

452 cor23=cor24-1;

453

454 cor31=k1*2^(i-1)*(k2*2^(i-1)-2)+1;

455 cor32=cor31+1;

456 cor33=k1*2^(i-1)*(k2*2^(i-1)-1)+1;

457 cor34=cor33+1;

458

459 cor41=1;

460 cor42=2;

461 cor43=k1*2^(i-1)+1;

462 cor44=cor43+1;

463

464 % New positions corners

465 v11=k1*2^i*(k2*2^i);

466 v12=k1*2^i*(k2*2^i-1);

467 v13=v11-1;

468 v14=v12-1;

469

470

471 v21=2*k1*2^i;

472 v22=k1*2^i;

473 v23=v21-1;

474 v24=v22-1;

475

476 v33=k1*2^i*(k2*2^i-1)+1;

477 v34=k1*2^i*(k2*2^i-2)+1;

478 v31=v33+1;

479 v32=v34+1;

480

481

482 v43=k1*2^i+1;

483 v44=1;

484 v41=v43+1;

485 v42=v44+1;

486

487 RV=randn(3,4);

488

489 %Corner 1

490 z(v11)=Cc(1,1,i)*RV(1,1)+z_p([cor11 cor12 cor13 cor14])*Ac(:,1,1,i);

491 z(v12)=Cc(2:3,1,i)'*RV(1:2,1)+z_p([cor11 cor12 cor13 cor14])*Ac(:,2,1,i);

492 z(v13)=Cc(4:6,1,i)'*RV(1:3,1)+z_p([cor11 cor12 cor13 cor14])*Ac(:,3,1,i);
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493 z(v14)=4*z_p(cor14)-z(v13)-z(v12)-z(v11);

494

495 %Corner 2

496 z(v21)=Cc(1,2,i)*RV(1,2)+z_p([cor21 cor22 cor23 cor24])*Ac(:,1,2,i);

497 z(v22)=Cc(2:3,2,i)'*RV(1:2,2)++z_p([cor21 cor22 cor23 cor24])*Ac(:,2,2,i);

498 z(v23)=Cc(4:6,2,i)'*RV(1:3,2)++z_p([cor21 cor22 cor23 cor24])*Ac(:,3,2,i);

499 z(v24)=4*z_p(cor22)-z(v23)-z(v22)-z(v21);

500

501 %Corner 3

502 z(v31)=Cc(1,3,i)*RV(1,3)+z_p([cor31 cor32 cor33 cor34])*Ac(:,1,3,i);

503 z(v32)=Cc(2:3,3,i)'*RV(1:2,3)+z_p([cor31 cor32 cor33 cor34])*Ac(:,2,3,i);

504 z(v33)=Cc(4:6,3,i)'*RV(1:3,3)+z_p([cor31 cor32 cor33 cor34])*Ac(:,3,3,i);

505 z(v34)=4*z_p(cor33)-z(v33)-z(v32)-z(v31);

506

507 %Corner 4

508 z(v41)=Cc(1,4,i)*RV(1,4)+z_p([cor41 cor42 cor43 cor44])*Ac(:,1,4,i);

509 z(v42)=Cc(2:3,4,i)'*RV(1:2,4)+z_p([cor41 cor42 cor43 cor44])*Ac(:,2,4,i);

510 z(v43)=Cc(4:6,4,i)'*RV(1:3,4)+z_p([cor41 cor42 cor43 cor44])*Ac(:,3,4,i);

511 z(v44)=4*z_p(cor41)-z(v43)-z(v42)-z(v41);

512

513 % sides

514 if k1<=2 && i==1

515 else

516 % old starting positions sides

517 sid11=1-1;

518 sid12=2-1;

519 sid13=3-1;

520 sid14=k1*2^(i-1)+1-1;

521 sid15=sid14+1;

522 sid16=sid15+1;

523

524 sid41=k1*2^(i-1)*(k2*2^(i-1)-2)+1-1;

525 sid42=sid41+1;

526 sid43=sid42+1;

527 sid44=k1*2^(i-1)*(k2*2^(i-1)-1)+1-1;

528 sid45=sid44+1;

529 sid46=sid45+1;

530

531 % new positions sides

532 w11=k1*2^i+4-2;

533 w12=4-2;

534 w13=w11-1;

535 w14=3-2;

536

537 w41=k1*2^i*(k2*2^i-1)+4-2;

538 w42=k1*2^i*(k2*2^i-2)+4-2;

539 w43=w41-1;

540 w44=w42-1;

541

542 % Side 1

543 for j=1:k1*2^(i-1)-2

544 RV=randn(3,1);

545 sid11=sid11+1;

546 sid12=sid12+1;

547 sid13=sid13+1;

548 sid14=sid14+1;

549 sid15=sid15+1;

550 sid16=sid16+1;

551

552 w11=w11+2;

553 w12=w12+2;

554 w13=w13+2;
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555 w14=w14+2;

556

557 z(w11)=Cs(1,1,i)*RV(1,1)+z_p([sid11 sid12 sid13 sid14 sid15 sid16]) ...

558 *As(:,1,1,i);

559 z(w12)=Cs(2:3,1,i)'*RV(1:2,1)+z_p([sid11 sid12 sid13 sid14 sid15 sid16]) ...

560 *As(:,2,1,i);

561 z(w13)=Cs(4:6,1,i)'*RV(1:3,1)+z_p([sid11 sid12 sid13 sid14 sid15 sid16]) ...

562 *As(:,3,1,i);

563 z(w14)=4*z_p(sid12)-z(w13)-z(w12)-z(w11);

564 end

565 % Side 4

566 for j=1:k1*2^(i-1)-2

567 RV=randn(3,1);

568 sid41=sid41+1;

569 sid42=sid42+1;

570 sid43=sid43+1;

571 sid44=sid44+1;

572 sid45=sid45+1;

573 sid46=sid46+1;

574

575 w41=w41+2;

576 w42=w42+2;

577 w43=w43+2;

578 w44=w44+2;

579

580 z(w41)=Cs(1,4,i)*RV(1,1)+z_p([sid41 sid42 sid43 sid44 sid45 sid46]) ...

581 *As(:,1,4,i);

582 z(w42)=Cs(2:3,4,i)'*RV(1:2,1)+z_p([sid41 sid42 sid43 sid44 sid45 sid46])...

583 *As(:,2,4,i);

584 z(w43)=Cs(4:6,4,i)'*RV(1:3,1)+z_p([sid41 sid42 sid43 sid44 sid45 sid46])...

585 *As(:,3,4,i);

586 z(w44)=4*z_p(sid45)-z(w43)-z(w42)-z(w41);

587 end

588 end

589

590 if k2<=2 && i==1

591 else

592 % old starting positions sides

593 sid21=1-k1*2^(i-1);

594 sid22=2-k1*2^(i-1);

595 sid23=k1*2^(i-1)+1-k1*2^(i-1);

596 sid24=sid23+1;

597 sid25=2*k1*2^(i-1)+1-k1*2^(i-1);

598 sid26=sid25+1;

599

600 sid31=k1*2^(i-1)-1-k1*2^(i-1);

601 sid32=sid31+1;

602 sid33=2*k1*2^(i-1)-1-k1*2^(i-1);

603 sid34=sid33+1;

604 sid35=3*k1*2^(i-1)-1-k1*2^(i-1);

605 sid36=sid35+1;

606

607 % new positions sides

608 w21=3*k1*2^i+2-2*k1*2^i;

609 w22=2*k1*2^i+2-2*k1*2^i;

610 w23=w21-1;

611 w24=w22-1;

612

613 w31=4*k1*2^i-2*k1*2^i;

614 w32=3*k1*2^i-2*k1*2^i;

615 w33=w31-1;

616 w34=w32-1;
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617

618 % Side 2

619 for j=1:k2*2^(i-1)-2

620 RV=randn(3,1);

621 sid21=sid21+k1*2^(i-1);

622 sid22=sid22+k1*2^(i-1);

623 sid23=sid23+k1*2^(i-1);

624 sid24=sid24+k1*2^(i-1);

625 sid25=sid25+k1*2^(i-1);

626 sid26=sid26+k1*2^(i-1);

627

628 w21=w21+2*k1*2^i;

629 w22=w22+2*k1*2^i;

630 w23=w23+2*k1*2^i;

631 w24=w24+2*k1*2^i;

632

633 z(w21)=Cs(1,2,i)*RV(1,1)+z_p([sid21 sid22 sid23 sid24 sid25 sid26])...

634 *As(:,1,2,i);

635 z(w22)=Cs(2:3,2,i)'*RV(1:2,1)+z_p([sid21 sid22 sid23 sid24 sid25 sid26])...

636 *As(:,2,2,i);

637 z(w23)=Cs(4:6,2,i)'*RV(1:3,1)+z_p([sid21 sid22 sid23 sid24 sid25 sid26])...

638 *As(:,3,2,i);

639 z(w24)=4*z_p(sid23)-z(w23)-z(w22)-z(w21);

640 end

641 % Side 3

642 for j=1:k2*2^(i-1)-2

643 RV=randn(3,1);

644 k=j-1;

645 sid31=sid31+k1*2^(i-1);

646 sid32=sid32+k1*2^(i-1);

647 sid33=sid33+k1*2^(i-1);

648 sid34=sid34+k1*2^(i-1);

649 sid35=sid35+k1*2^(i-1);

650 sid36=sid36+k1*2^(i-1);

651

652 w31=w31+2*k1*2^i;

653 w32=w32+2*k1*2^i;

654 w33=w33+2*k1*2^i;

655 w34=w34+2*k1*2^i;

656

657 z(w31)=Cs(1,3,i)*RV(1,1)+z_p([sid31 sid32 sid33 sid34 sid35 sid36])...

658 *As(:,1,3,i);

659 z(w32)=Cs(2:3,3,i)'*RV(1:2,1)+z_p([sid31 sid32 sid33 sid34 sid35 sid36])...

660 *As(:,2,3,i);

661 z(w33)=Cs(4:6,3,i)'*RV(1:3,1)+z_p([sid31 sid32 sid33 sid34 sid35 sid36])...

662 *As(:,3,3,i);

663 z(w34)=4*z_p(sid34)-z(w33)-z(w32)-z(w31);

664 end

665 end

666

667 % interior values

668 % old starting positions

669 int1=1-3;

670 int2=2-3;

671 int3=3-3;

672 int4=k1*2^(i-1)+1-3;

673 int5=int4+1;

674 int6=int5+1;

675 int7=2*k1*2^(i-1)+1-3;

676 int8=int7+1;

677 int9=int8+1;

678
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679 % new positions

680 u1=3*k1*2^i+4-6-k1*2^i;

681 u2=2*k1*2^i+4-6-k1*2^i;

682 u3=u1-1;

683 u4=u2-1;

684

685 for j=1:k2*2^(i-1)-2

686 int1=int1+2;

687 int2=int2+2;

688 int3=int3+2;

689 int4=int4+2;

690 int5=int5+2;

691 int6=int6+2;

692 int7=int7+2;

693 int8=int8+2;

694 int9=int9+2;

695

696 u1=u1+4+k1*2^i;

697 u2=u2+4+k1*2^i;

698 u3=u3+4+k1*2^i;

699 u4=u4+4+k1*2^i;

700 for k=1:k1*2^(i-1)-2

701 RV=randn(3,1);

702 int1=int1+1;

703 int2=int2+1;

704 int3=int3+1;

705 int4=int4+1;

706 int5=int5+1;

707 int6=int6+1;

708 int7=int7+1;

709 int8=int8+1;

710 int9=int9+1;

711

712 u1=u1+2;

713 u2=u2+2;

714 u3=u3+2;

715 u4=u4+2;

716

717 z(u1)=Ci(1,i)*RV(1,1)+z_p([int1 int2 int3 int4 int5 int6 int7 int8 int9])...

718 *Ai(:,1,i);

719 z(u2)=Ci(2:3,i)'*RV(1:2,1)+z_p([int1 int2 int3 int4 int5 int6 int7 int8 int9])...

720 *Ai(:,2,i);

721 z(u3)=Ci(4:6,i)'*RV(1:3,1)+z_p([int1 int2 int3 int4 int5 int6 int7 int8 int9])...

722 *Ai(:,3,i);

723 z(u4)=4*z_p(int5)-z(u3)-z(u2)-z(u1);

724 end

725 end

726

727 end

728 for j=1:N2

729 RF(1:N1,j,run)=z((j-1)*N1+1:j*N1);

730 end

731 end

732

733 % tranformation of standard normal gaussian field

734 if strcmp(distribution,'normal')==1

735 RF=RF*std_RF+mean_RF;

736 elseif strcmp(distribution,'lognormal')==1

737 RF=exp(std_norm*RF+mean_norm);

738 end

739

740 rt=cputime-t;
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741

742 % plot of 1st random field

743 figure()

744 Meshx=linspace(1/2*dx,Dx-1/2*dx,N1);

745 Meshy=linspace(1/2*dy,Dy-1/2*dy,N2);

746 surf(Meshx,Meshy,RF(:,:,1)')

747

748 % Determin statistical properties random field

749

750 Mesh=linspace(0,Dx-dx,N1);

751 L_c=[L_cx; L_cy];

752 [mean_m,mean_s,std_m,std_s,c_err_m,c_err_s]=stat_prop(RF,runs,dim,Mesh,CF,c1,L_c);

753 st=cputime-t;

754 table=[it rt st mean_m mean_s std_m std_s c_err_m c_err_s];
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I.7 Matlab code: Expansion Optimal Linear Estimation in
1D

1 % EOLE_1D returns correlated random variables for a homogeneous gaussain field

2 % in 1D applying the Expension Optimal Linear Estimation method

3 %

4 % Written by Robin van der Have, Delft, 25 September 2015

5 %

6 % Output:

7 % RF: Matrix containing the coordinates and correlated random variables

8 % belonging to that coordinate

9 % it: Intialization time random fields

10 % rt: Realization time random fields

11 % st: Time to determine the statistical properties of random

12 % fields

13 % mean_m: Mean of the mean values of the random fields

14 % mean_s: Standard deviation of the mean values of the random fields

15 % std_m: Mean of the standard deviations of the random fields

16 % std_s: Standard deviation of the standard deviations of the random

17 % fields

18 % c_err_m: Mean absolute error in correlation in all the random fields

19 % c_err_s: Standard deviations in the absolute errors of the the

20 % correlation in all the random fields

21 %

22 % Input:

23 % runs: Number of random fields created

24 % dim: dimension random field

25 % Mean_RF: Mean value random field

26 % std_RF: Standard deviation random field

27 % CF: Type of correlation function ('Exp', 'SExp')

28 % Exp: Exponential correlation function

29 % Exp = c1+(1-c1)*exp(-delta_x/lc)

30 % SExp: Squared exponential correlation function

31 % SExp = c1+(1-c1)*exp(-(delta_x/lc)^2)

32 % Where delta_x is the lag distance which can be detemined with

33 % the coordinates of the Mesh

34 % c1: threshold value for correlation function

35 % L_c: Correlation length/scale of fluctuation

36 % D: Size random field

37 % N: Number of nodes in random field

38

39 clc, close all, clear all

40 t=cputime;

41

42 % Input values:

43 runs=2000;

44 dim=1;

45 mean_RF=0;

46 std_RF=1;

47 CF='SExp';

48 c1=0;

49 L_c=5;

50 D=17.5;

51 N=8;

52

53 if strcmp(CF,'Exp')==1

54 M=round(D/(L_c/5)); % Mesh RF for generation

55 elseif strcmp(CF,'SExp')==1
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56 M=round(D/(L_c/2)); % Mesh RF for generation

57 else

58 disp('CF must be equal to Exp or SExp')

59 end

60

61 K=round((3/4)*M); % Truncation order for EOLE expansion

62

63 RF_Mesh=linspace(0,D,M); % Random field Mesh

64 RF=zeros(N,runs); % Allocate matrix voor values RF

65

66 %Determine Correlation matrix

67 Cor_M=zeros(length(RF_Mesh),length(RF_Mesh));

68 if strcmp(CF,'Exp')==1

69 for i=1:length(RF_Mesh)

70 for j=1:length(RF_Mesh)

71 Cor_M(i,j)=std_RF^2*(c1+(1-c1)*exp(-abs((RF_Mesh(i)-RF_Mesh(j)))/L_c));

72 end

73 end

74 elseif strcmp(CF,'SExp')==1

75 for i=1:length(RF_Mesh)

76 for j=1:length(RF_Mesh)

77 Cor_M(i,j)=std_RF^2*(c1+(1-c1)*exp(-((abs(RF_Mesh(i)-RF_Mesh(j)))/L_c)^2));

78 end

79 end

80 else

81 disp('CF must be equal to Exp or SExp')

82 end

83

84 x=sym('x');

85 [vec,lambda]=eig(Cor_M);

86 lambda=diag(lambda);

87 lambda=flipud(lambda);

88 vec=fliplr(vec);

89 RF_Mesh=fliplr(RF_Mesh);

90

91 Cor=zeros(1,M);

92 Cor=sym(Cor);

93 for i=1:M

94 if strcmp(CF,'Exp')==1

95 Cor(i)=symfun(c1+(1-c1)*exp(-abs((x-RF_Mesh(i))/L_c)),x);

96 elseif strcmp(CF,'SExp')==1

97 Cor(i)=symfun(c1+(1-c1)*exp(-((x-RF_Mesh(i))/L_c)^2),x);

98 else

99 disp('CF must be equal to Exp or SExp')

100 end

101 end

102 it=cputime-t;

103

104 Mesh=linspace(0,D,N);

105 for run=1:runs

106 CRV=mean_RF;

107 RV=randn(K,1);

108 for i=1:K

109 CRV=CRV+std_RF*RV(i)/sqrt(lambda(i))*vec(:,i)'*Cor';

110 end

111

112 j=1;

113 for i=1:N

114 RF(i,run)=subs(CRV,x,Mesh(i));

115 end

116 end

117 rt=cputime-t;
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118

119 % plot of 1st random field

120 figure()

121 plot(Mesh,RF(:,1))

122

123 % Determin statistical properties random field

124 [mean_m,mean_s,std_m,std__s,c_err_m,c_err_s]=stat_prop(RF,runs,dim,Mesh,CF,c1,L_c);

125 st=cputime-t;

126 table=[it rt st mean_m mean_s std_m std__s c_err_m c_err_s];
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I.8 Matlab code: Expansion Optimal Linear Estimation in
2D

1 % EOLE_2D returns correlated random variables for a homogeneous gaussain field

2 % in 2D applying the Expension Optimal Linear Estimation method

3 %

4 % Written by Robin van der Have, Delft, 25 September 2015

5 %

6 % Output:

7 % RF: Matrix containing the coordinates and correlated random variables

8 % belonging to that coordinate

9 % it: Intialization time random fields

10 % rt: Realization time random fields

11 % st: Time to determine the statistical properties of random

12 % fields

13 % mean_m: Mean of the mean values of the random fields

14 % mean_s: Standard deviation of the mean values of the random fields

15 % std_m: Mean of the standard deviations of the random fields

16 % std_s: Standard deviation of the standard deviations of the random

17 % fields

18 % c_err_m: Mean absolute error in correlation in all the random fields

19 % c_err_s: Standard deviations in the absolute errors of the the

20 % correlation in all the random fields

21 %

22 % Input:

23 % runs: Number of random fields created

24 % dim: dimension random field

25 % Mean_RF: Mean value random field

26 % std_RF: Standard deviation random field

27 % CF: Type of correlation function ('Exp', 'SExp')

28 % Exp: Exponential correlation function

29 % Exp = c1+(1-c1)*exp(-delta_x/lc)

30 % SExp: Squared exponential correlation function

31 % SExp = c1+(1-c1)*exp(-(delta_x/lc)^2)

32 % Where delta_x is the lag distance which can be detemined with

33 % the coordinates of the Mesh

34 % c1: threshold value for correlation function

35 % L_cx: Correlation length/scale of fluctuation in x-direcion

36 % L_cy: Correlation length/scale of fluctuation in y-direcion

37 % Dx: Size random field in x direction

38 % Dy: Size random field in y direction

39 % Nx: Number of nodes in random field in y direction

40 % Ny: Number of nodes in random field in y direction

41

42 clc, close all, clear all

43 t=cputime;

44

45 % Input values:

46 runs=1;

47 dim=2;

48 mean_RF=0;

49 std_RF=1;

50 CF='Exp';

51 c1=0.5;

52 L_cx=5;

53 L_cy=5;

54 Dx=17.5;

55 Dy=17.5;
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56 Nx=6;

57 Ny=8;

58

59 if strcmp(CF,'Exp')==1

60 Mx=round(Dx/(L_cx/5)); % Mesh RF for generation in x-direction

61 My=round(Dy/(L_cy/5)); % Mesh RF for generation in y-direction

62 elseif strcmp(CF,'SExp')==1

63 Mx=round(Dx/(L_cx/2)); % Mesh RF for generation in x-direction

64 My=round(Dy/(L_cy/2)); % Mesh RF for generation in y-direction

65 else

66 disp('CF must be equal to Exp or SExp')

67 end

68

69 Kx=round((3/4)*Mx); % Truncation order for EOLE expansion

70 Ky=round((3/4)*My);

71 K=Kx*Ky;

72 RF=zeros(Nx,Ny,runs);

73

74 RF_Mesh=zeros(Mx*My,2);

75 for i=1:Mx

76 for j=1:My

77 RF_Mesh((j-1)*Mx+i,1:2)=[(i-1)*Dx/(Mx-1) (j-1)*Dy/(My-1)];

78 end

79 end

80

81 %Determine Correlation matrix

82 Cor_M=zeros(length(RF_Mesh),length(RF_Mesh));

83 if strcmp(CF,'Exp')==1

84 for i=1:length(RF_Mesh)

85 for j=1:length(RF_Mesh)

86 Cor_M(i,j)=std_RF^2*(c1+(1-c1)*exp(-sqrt(((RF_Mesh(i,1)-RF_Mesh(j,1))/L_cx)^2 ...

87 +((RF_Mesh(i,2)-RF_Mesh(j,2))/L_cy)^2)));

88 end

89 end

90 elseif strcmp(CF,'SExp')==1

91 for i=1:length(RF_Mesh)

92 for j=1:length(RF_Mesh)

93 Cor_M(i,j)=std_RF^2*(c1+(1-c1)*exp(-(((RF_Mesh(i,1)-RF_Mesh(j,1))/L_cx)^2 ...

94 +((RF_Mesh(i,2)-RF_Mesh(j,2))/L_cy)^2)));

95 end

96 end

97 else

98 disp('CF must be equal to Exp or SExp')

99 end

100

101 x=sym('x');

102 y=sym('y');

103 [vec,lambda]=eig(Cor_M);

104 lambda=diag(lambda);

105 lambda=flipud(lambda);

106 vec=fliplr(vec);

107 RF_Mesh=flipud(RF_Mesh);

108

109 Cor=zeros(1,length(RF_Mesh));

110 Cor=sym(Cor);

111 for i=1:length(RF_Mesh)

112 if strcmp(CF,'Exp')==1

113 Cor(i)=symfun(c1+(1-c1)*exp(-(sqrt((x-RF_Mesh(i,1))^2 ...

114 +(y-RF_Mesh(i,2))^2))/L_cx),[x y]);

115 elseif strcmp(CF,'SExp')==1

116 Cor(i)=symfun(c1+(1-c1)*exp(-((sqrt((x-RF_Mesh(i,1))^2 ...

117 +(y-RF_Mesh(i,2))^2))/L_cx)^2),[x y]);
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118 else

119 disp('CorF must be equal to Exp, SExp or CSin')

120 end

121 end

122 it=cputime-t;

123

124 for run=1:runs

125 CRV=mean_RF;

126 RV=randn(K,1);

127 for i=1:K

128 CRV=CRV+std_RF*RV(i)/sqrt(lambda(i))*vec(:,i)'*Cor';

129 end

130 Meshx=linspace(0,Dx,Nx);

131 Meshy=linspace(0,Dy,Ny);

132

133 for j=1:length(Meshx)

134 for i=1:length(Meshy)

135 RF(i,j,run)=subs(CRV,[x y],[Meshx(j) Meshy(i)]);

136 end

137 end

138 end

139

140 rt=cputime-t;

141

142 % plot of 1st random field

143 figure()

144 surf(Meshx,Meshy,RF(:,:,1)')

145

146 % Determin statistical properties random field

147 Mesh=Meshx;

148 L_c=[L_cx; L_cy];

149 [mean_m,mean_s,std_m,std_s,c_err_m,c_err_s]=stat_prop(RF,runs,dim,Mesh,CF,c1,L_c);

150 st=cputime-t;

151

152 table=[std_RF it rt st mean_m mean_s std_m std_s c_err_m c_err_s];
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JMatlab code: Modified Cholesky
decomposition

1 function [A,error] = chol2(Q)

2 % Modified Cholesky decomposition where a tollerance value is set to ommit

3 % negative values in the square root of the diagonal terms.

4 %

5 % Written by Robin van der Have, Delft, 25 September 2015

6 %

7 % Based on subroutine chol2.f of RFEM software which is written by

8 % Gordon A. Fenton. Free available on http://courses.engmath.dal.ca/rfem/

9 %

10 % Output:

11 % A: Matrix containing the values of the approximated cholesky

12 % decomposition.

13 % error: Estimated error in the decomposition.

14 %

15 % Input:

16 % Q: Symmetric matrix which have to be decomposed.

17

18 %% Decomposition matrix Q

19 n=size(Q,1);

20 error=0;

21 Q1=Q(n,n);

22 if n>=3

23 Q2=Q(n-1,n-1);

24 Q3=Q(n-2,n-2);

25 end

26 if n>=128

27 tol=10^-4;

28 else

29 tol=10^-8;

30 end

31

32 A=zeros(n,n);

33 for i=1:n

34 s=0;

35 for j=1:i-1

36 s=s+Q(j,i)*Q(j,i);

37 end

38 t=Q(i,i)-s;

39 if t<=tol

40 Q(i,i)=0;

41 for j=i+1:n

42 Q(i,j)=0;

43 end

44 else

45 Q(i,i)=sqrt(t);

46 for j=i+1:n

47 s=0;

48 for k=1:i-1

49 s=s+Q(k,i)*Q(k,j);

50 end
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51 Q(i,j)=(Q(i,j)/Q(i,i))-(s/Q(i,i));

52 end

53 end

54 end

55 for i=1:n

56 for j=i:n

57 A(i,j)=Q(i,j);

58 end

59 end

60

61 %% estimation of the error

62 if n>=3

63 t1=Q(1,n)*Q(1,n)+Q(n-1,n)*Q(n-1,n)+Q(n,n)*Q(n,n);

64 t2=Q(1,n-1)*Q(1,n-1)+Q(n-1,n-1)*Q(n-1,n-1);

65 t3=Q(1,n-2)*Q(1,n-2);

66 for i=2:n-2

67 t1=t1+Q(i,n)*Q(i,n);

68 t2=t2+Q(i,n-1)*Q(i,n-1);

69 t3=t3+Q(i,n-2)*Q(i,n-2);

70 end

71 r1=abs((Q1-t1)/Q1);

72 r2=abs((Q2-t2)/Q2);

73 if r1>=r2

74 r2=r1;

75 end

76 r3=abs((Q3-t3)/Q3);

77 if r2>=r3

78 r3=r2;

79 end

80 error=r3;

81 else

82 t=Q(1,n)*Q(1,n);

83 for i=2:n

84 t=t+Q(i,n)*Q(i,n);

85 end

86 error=abs((Q1-t)/Q1);

87 end

198



KMatlab code: Inverse Fourier
Transform algorithm

1 function [Ak,Bk] = invFFT1D( Ak,Bk,m1)

2 % invFFT1D returns the inverse fourier transform applying a fast fourier

3 % algorithm

4 %

5 % Written by Robin van der Have, Delft, 25 September 2015

6 %

7 % Based on subroutine fft1d.f of RFEM software which is written by

8 % Gordon A. Fenton. It is originally written by J.W. Cooley et al.

9 % http://courses.engmath.dal.ca/rfem/

10 %

11 % Ouput:

12 % Ak: Real vector of length N=2^m1 containing the real part of the

13 % random field

14 % Bk: Real vector of length N=2^m1 containing the imaginary part of

15 % the random field

16 % Input:

17 % Ak: Real vector of length N=2^m1 containing the fourier

18 % coefficients

19 % Bk: Real vector of length N=2^m1 containing the fourier

20 % coefficients

21 % m1: The length of the fourier sequence considered is N=2^m1

22

23 j=1;

24 N=2^m1;

25 for l=1:(N-1)

26 if l<j

27 t=Ak(j);

28 Ak(j)=Ak(l);

29 Ak(l)=t;

30 t=Bk(j);

31 Bk(j)=Bk(l);

32 Bk(l)=t;

33 end

34 k=N/2;

35 while k<j

36 j=j-k;

37 k=k/2;

38 end

39 j=j+k;

40 end

41 me=1;

42 for mm=1:m1

43 k=me;

44 pibyk=pi/k;

45 me=2*me;

46 wr=cos(pibyk);

47 wi=sin(pibyk);

48 qr=1;

49 qi=0;

50 for j=1:k
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51 for l=j:me:N

52 sr=Ak(l+k)*qr-Bk(l+k)*qi;

53 si=Bk(l+k)*qr+Ak(l+k)*qi;

54 Ak(l+k)=Ak(l)-sr;

55 Bk(l+k)=Bk(l)-si;

56 Ak(l)=Ak(l)+sr;

57 Bk(l)=Bk(l)+si;

58 end

59 tr=qr*wr-qi*wi;

60 ti=qr*wi+qi*wr;

61 qr=tr;

62 qi=ti;

63 end

64 end

65

66 end
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LZ-Test random number generators

To test the random number generators, used in this research, a Z-test is performed on a sample
of 2 · 105 generated standard normal random numbers. In Matlab the randn function is used to
generate the numbers. In DIANA a generator of uniformly distributed numbers is combined with the
transformation method of Box and Muller. The generator of uniform distributed random number
generators is called the Mersenne Twister and was developed by Takuji Nishimura and Makoto
Matsumoto in 1997 [49]. This pseudorandom number generator has a period equal to 219937 − 1.

The mean value and standard deviation of both samples are given in table L.1. It can be seen that
the values are very close to the desired values.

Tab. L.1.: Mean value and standard deviation of samples.

Desired Matlab DIANA

Mean value 0 -0.00414808 0.00161677
Standard deviation 1 0.99944467 0.99978786

The graphs where the results of the Z-tests are plotted can be found in figure L.1 and L.2. The
sample data are the generated numbers sorted from small to large. The expected values are the
inverse values of a cummulative distribution with mean and standard deviation as specified in table
L.1. The z-values are the inverse values of the standard cumulative distribution. If the sample data
is close to the expected values the sample can be classified as normally distributed. For both Matlab
and DIANA this is the case as can be seen in the graphs.

Z-Values

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0

Normality test

Sample data Matlab
Expected value Matlab

Fig. L.1.: Z-test for sample generated with Matlab.
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Z-Values

Normality test

Sample data DIANA
Expected value DIANA

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0

Fig. L.2.: Z-test for sample generated with DIANA.
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MData comparison of random field
generators

In this appendix the data of the assessment, carried out in chapter 3, can be found. First, the results
for the 1D fields are given in table M.1 to M.36. Thereafter, the results for the 2D fields are given in
table M.37 to M.72
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Tab. M.1.: Initialization time of the different methods in 1D for normal distributed fields with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.0312 0.0156 0.0312 0.0000 0.0312 0.0000 0.0624 0.0468 0.0156 0.0156 - -
5 16 0.0000 0.0000 0.0000 0.0000 0.0156 0.0000 0.0468 0.0468 0.0000 0.0156 0.0156 0.0156
5 32 0.0000 - 0.0624 0.0000 0.0000 0.0000 0.1092 0.0468 0.0000 0.0156 0.0000 0.0000

2.5 16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0468 0.0468 0.0000 0.0000 0.0000 0.0156
2.5 32 0.0000 0.0000 0.0000 0.0000 0.0000 0.0156 0.0468 0.0468 0.0000 0.0156 0.0156 0.0156
2.5 64 0.0000 - 0.0000 0.0000 0.0000 0.0000 0.0468 0.0624 0.0000 0.0156 0.0000 0.0156
0.5 64 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0468 0.0624 0.0000 0.0000 0.0000 0.0156
0.5 128 0.0468 0.0000 0.0156 0.0624 0.0156 0.0156 0.0624 0.0624 0.0156 0.0156 0.0156 0.0156
0.5 256 0.0000 - 0.0780 0.0156 0.0624 0.0468 0.0312 0.0624 0.0156 0.0156 0.0156 0.0156
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Tab. M.2.: Initialization time of the different methods in 1D for normal distributed fields with a threshold value of 0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.0156 0.0000 0.0312 0.0156 0.0312 0.0000 0.0624 0.0468 0.0312 0.0156 - -
5 16 0.0000 0.0000 0.0000 0.0000 0.0156 0.0000 0.0468 0.0624 0.0156 0.0156 0.0312 0.0156
5 32 0.0000 - 0.0000 0.0000 0.0000 0.0000 0.0468 0.0468 0.0000 0.0156 0.0000 0.0156

2.5 16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0624 0.0468 0.0000 0.0000 0.0156 0.0156
2.5 32 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0624 0.0468 0.0000 0.0000 0.0000 0.0000
2.5 64 0.0000 - 0.0000 0.0156 0.0000 0.0156 0.0624 0.0468 0.0000 0.0156 0.0156 0.0156
0.5 64 0.0000 0.0000 0.0624 0.0468 0.0000 0.0000 0.0468 0.0468 0.0000 0.0000 0.0156 0.0156
0.5 128 0.0000 0.0000 0.0000 0.0156 0.0156 0.0156 0.0468 0.0468 0.0156 0.0156 0.0156 0.0156
0.5 256 0.0000 - 0.0780 0.0624 0.0624 0.0312 0.0624 0.0624 0.0156 0.0156 0.0156 0.0156

Tab. M.3.: Initialization time of the different methods in 1D for log-normal distributed fields with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.0156 0.0156 0.0156 0.0312 0.0624 0.0156 0.2028 0.0468 0.0312 0.0156 - -
5 16 0.0000 0.0000 0.0000 0.0000 0.0156 0.0000 0.0468 0.0624 0.0156 0.0156 0.0312 0.0000
5 32 0.0000 - 0.0000 0.0000 0.0000 0.0000 0.0624 0.0468 0.0156 0.0156 0.0156 0.0156

2.5 16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0468 0.0468 0.0156 0.0000 0.0000 0.0156
2.5 32 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0624 0.0468 0.0000 0.0156 0.0156 0.0156
2.5 64 0.0000 - 0.0000 0.0000 0.0000 0.0000 0.0468 0.0624 0.0000 0.0156 0.0156 0.0156
0.5 64 0.0000 0.0000 0.0000 0.0156 0.0000 0.0000 0.0468 0.0468 0.0156 0.0000 0.0156 0.0156
0.5 128 0.0000 0.0000 0.0156 0.0468 0.0156 0.0000 0.0624 0.0468 0.0156 0.0156 0.0156 0.0312
0.5 256 0.0000 - 0.0468 0.0624 0.0468 0.0624 0.0468 0.0624 0.0156 0.0156 0.0312 0.0312
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Tab. M.4.: Initialization time of the different methods in 1D for log-normal distributed fields with a threshold value of 0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.0156 0.0000 0.0312 0.0000 0.0312 0.0000 0.0624 0.0468 0.0468 0.0156 - -
5 16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0780 0.0624 0.0000 0.0000 0.0312 0.0156
5 32 0.0000 - 0.0000 0.0000 0.0000 0.0000 0.0468 0.0468 0.0000 0.0000 0.0156 0.0156

2.5 16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0468 0.0468 0.0000 0.0000 0.0156 0.0000
2.5 32 0.0000 0.0000 0.0000 0.0156 0.0000 0.0000 0.0624 0.0468 0.0000 0.0156 0.0000 0.0000
2.5 64 0.0000 - 0.0156 0.0000 0.0156 0.0156 0.0468 0.0468 0.0000 0.0156 0.0156 0.0312
0.5 64 0.0000 0.0000 0.0000 0.0000 0.0000 0.0156 0.0624 0.0468 0.0000 0.0000 0.0156 0.0312
0.5 128 0.0000 0.0156 0.0156 0.0000 0.0156 0.0000 0.0624 0.0780 0.0156 0.0156 0.0156 0.0156
0.5 256 0.0156 - 0.0156 0.0156 0.0624 0.0468 0.0624 0.0468 0.0156 0.0156 0.0156 0.0312

Tab. M.5.: Realization time of the different methods in 1D for the realization of 2000 normal distributed fields with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.0312 0.0312 0.0312 0.0156 0.0312 0.0156 0.8892 0.8892 0.1248 0.1092 - -
5 16 0.0156 0.0000 0.0156 0.0156 0.0156 0.0000 1.5132 1.5600 0.1248 0.1248 0.1560 0.1404
5 32 0.0156 - 0.0624 0.0000 0.0000 0.0156 2.8392 2.8704 0.3276 0.3120 0.3900 0.3588

2.5 16 0.0000 0.0000 0.0000 0.0000 0.0156 0.0156 1.4976 1.5444 0.1248 0.1248 0.1248 0.1404
2.5 32 0.0156 0.0000 0.0156 0.0156 0.0000 0.0156 2.8392 2.8860 0.3900 0.3432 0.3588 0.3588
2.5 64 0.0156 - 0.0624 0.0156 0.0156 0.0156 5.5848 5.5068 0.7020 0.7176 0.7488 0.7488
0.5 64 0.0000 0.0156 0.0156 0.0000 0.0156 0.0156 5.5068 5.6160 0.7332 0.6864 0.7488 0.7644
0.5 128 0.1092 0.1872 0.0936 0.1248 0.0780 0.1560 11.0449 11.1073 1.4352 1.3572 1.4508 1.4508
0.5 256 0.2028 - 0.3120 0.2184 0.2652 0.3588 21.5749 22.3393 2.9640 3.0108 3.0576 3.0576
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Tab. M.6.: Realization time of the different methods in 1D for the realization of 2000 normal distributed fields with a threshold value of 0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.0156 0.0000 0.0468 0.0312 0.0468 0.0000 0.9516 0.9516 0.2652 0.1248 - -
5 16 0.0156 0.0000 0.0156 0.0000 0.0156 0.0000 1.5444 1.5288 0.1560 0.1404 0.1716 0.1404
5 32 0.0156 - 0.0000 0.0000 0.0156 0.0000 2.8236 2.8392 0.3744 0.3744 0.3744 0.3744

2.5 16 0.0156 0.0000 0.0000 0.0000 0.0000 0.0156 1.5444 1.5132 0.1248 0.1248 0.1404 0.1404
2.5 32 0.0156 0.0000 0.0000 0.0156 0.0156 0.0156 2.8548 2.8392 0.3588 0.3744 0.3744 0.3588
2.5 64 0.0000 - 0.0312 0.0156 0.0156 0.0156 5.4288 5.5224 0.7332 0.7488 0.8268 0.7644
0.5 64 0.0156 0.0000 0.0624 0.0468 0.0156 0.0156 5.4288 5.3976 0.7644 0.7332 0.7800 0.7644
0.5 128 0.0780 0.1248 0.1092 0.0780 0.0780 0.0780 10.7173 10.7173 1.3884 1.3884 1.4508 1.4664
0.5 256 0.1872 - 0.2652 0.2496 0.2652 0.1716 20.9821 21.2161 3.1512 3.1044 3.1668 3.1044

Tab. M.7.: Realization time of the different methods in 1D for the realization of 2000 log-normal distributed fields with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.0312 0.0312 0.0156 0.0468 0.0780 0.0156 1.0452 0.8892 0.1560 0.1248 - -
5 16 0.0156 0.0156 0.0156 0.0312 0.0312 0.0156 1.5288 1.5288 0.1404 0.1404 0.3276 0.1248
5 32 0.0156 - 0.0156 0.0624 0.0156 0.0000 2.8704 2.8080 0.3432 0.3276 0.3900 0.3900

2.5 16 0.0156 0.0156 0.0156 0.0000 0.0156 0.0156 1.5444 1.5756 0.1404 0.1404 0.1404 0.1404
2.5 32 0.0156 0.0156 0.0156 0.0156 0.0156 0.0000 2.8080 2.9328 0.3744 0.3432 0.3900 0.3744
2.5 64 0.0156 - 0.0156 0.0156 0.0156 0.0156 5.3820 5.5848 0.7332 0.7020 0.7644 0.7644
0.5 64 0.0156 0.0156 0.0156 0.0312 0.0156 0.0156 5.4132 5.6160 0.7332 0.6708 0.7800 0.7644
0.5 128 0.1248 0.1404 0.1404 0.2184 0.1716 0.1560 10.5925 10.9201 1.4040 1.3572 1.4508 1.4508
0.5 256 0.2652 - 0.2964 0.2652 0.3120 0.3120 20.6857 21.4969 3.1512 3.1044 3.1356 3.2136
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Tab. M.8.: Realization time of the different methods in 1D for the realization of 2000 log-normal distributed fields with a threshold value of 0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.0312 0.0000 0.0468 0.0156 0.0312 0.0000 0.8892 0.8580 0.1560 0.1248 - -
5 16 0.0000 0.0156 0.0156 0.0156 0.0156 0.0000 1.5132 1.4820 0.1248 0.1248 0.2340 0.1404
5 32 0.0000 - 0.0156 0.0624 0.0000 0.0000 2.7144 2.7144 0.3120 0.3432 0.3900 0.3900

2.5 16 0.0000 0.0156 0.0156 0.0156 0.0312 0.0156 1.4820 1.4820 0.1248 0.1404 0.1248 0.1404
2.5 32 0.0156 0.0156 0.0000 0.0156 0.0000 0.0000 2.7300 2.6520 0.3120 0.3276 0.3588 0.3744
2.5 64 0.0156 - 0.0312 0.0156 0.0312 0.0312 5.2884 5.1480 0.7176 0.6864 0.7956 0.7800
0.5 64 0.0156 0.0156 0.0156 0.0156 0.0156 0.0312 5.1948 5.2260 0.7332 0.7332 0.7332 0.7800
0.5 128 0.0780 0.1404 0.1404 0.0780 0.1404 0.0780 10.3117 10.3585 1.3884 1.4196 1.4664 1.4820
0.5 256 0.2652 - 0.3276 0.3276 0.3120 0.2496 20.5453 20.1865 3.0732 3.1200 3.1356 3.0732

Tab. M.9.: Time to determine the statistical properties of the generated fields for the different methods in 1D. The fields are normal distributed with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.2184 0.2184 0.1872 0.1248 0.2028 0.1248 1.0140 1.0140 0.2496 0.2184 - -
5 16 0.1560 0.1872 0.1716 0.1560 0.1560 0.1404 1.6692 1.7004 0.2652 0.2652 0.2964 0.2808
5 32 0.2496 - 0.3120 0.2340 0.2652 0.2340 3.0576 3.1044 0.5460 0.5460 0.6864 0.5772

2.5 16 0.1404 0.1404 0.1404 0.1404 0.1872 0.1404 1.6380 1.7004 0.2808 0.2652 0.2652 0.2652
2.5 32 0.3120 0.2340 0.2340 0.2340 0.2340 0.2340 3.0888 3.1200 0.6084 0.0000 0.6240 0.6084
2.5 64 0.6084 - 0.6708 0.6552 0.6396 0.6084 6.2088 6.1152 1.3104 1.3260 1.3416 1.3572
0.5 64 0.6084 0.6240 0.6084 0.6084 0.6084 0.6084 6.1152 6.2244 1.3104 1.2792 1.3416 1.3416
0.5 128 2.4804 2.5116 2.4180 2.4492 2.3400 2.4492 13.4161 13.4941 3.8844 3.7284 3.7752 3.7752
0.5 256 11.6689 - 12.6673 12.1681 11.6377 11.8093 33.9458 34.8818 15.5533 14.2741 14.2897 15.3817
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Tab. M.10.: Time to determine the statistical properties of the generated fields for the different methods in 1D. The fields are normal distributed with a threshold value of 0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.2028 0.1404 0.2184 0.2184 0.2184 0.1248 1.0608 1.0608 0.3900 0.2340 - -
5 16 0.1560 0.1404 0.1560 0.1716 0.1560 0.1404 1.6848 1.6692 0.3120 0.2496 0.3432 0.2808
5 32 0.2652 - 0.2652 0.2340 0.2340 0.2184 3.0576 3.0576 0.5928 0.5772 0.6084 0.5928

2.5 16 0.1560 0.1404 0.1404 0.1404 0.1404 0.1404 1.6692 1.6536 0.2808 0.2496 0.2964 0.2808
2.5 32 0.2340 0.2340 0.2184 0.2652 0.2340 0.2340 3.0888 3.0576 0.5928 0.5928 0.6084 0.5928
2.5 64 0.5928 - 0.6552 0.6240 0.7020 0.5928 6.0372 6.1152 1.3416 1.3572 1.4196 1.3728
0.5 64 0.6552 0.5928 0.6708 0.6864 0.5928 0.5928 6.0528 6.0060 1.3416 1.3104 1.3884 1.3572
0.5 128 2.3556 2.3868 2.4804 2.5584 2.3868 2.2932 12.9637 12.9793 3.7752 3.6504 3.7752 3.7440
0.5 256 11.6689 - 12.3397 12.5737 11.1229 11.4505 32.5886 32.3234 15.0697 14.7109 15.1165 14.8825

Tab. M.11.: Time to determine the statistical properties of the generated fields for the different methods in 1D. The fields are lognormal distributed with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.1872 0.2028 0.2184 0.2652 0.2652 0.1248 1.1700 0.9984 0.2652 0.2340 - -
5 16 0.1560 0.1560 0.1716 0.1716 0.1560 0.1560 1.6692 1.6692 0.2652 0.2808 0.5616 0.2652
5 32 0.2340 - 0.2496 0.2964 0.2340 0.2184 3.1044 3.0420 0.5772 0.5616 0.6240 0.6084

2.5 16 0.2184 0.1560 0.1560 0.1404 0.1404 0.1560 1.7004 1.7160 0.2808 0.2808 0.2808 0.2652
2.5 32 0.2340 0.2808 0.2340 0.2340 0.2652 0.2340 3.0420 3.1668 0.6396 0.5772 0.6240 0.6084
2.5 64 0.6240 - 0.6084 0.6084 0.6084 0.5928 5.9592 6.1932 1.3416 1.2948 1.3572 1.3572
0.5 64 0.6240 0.6084 0.6084 0.6864 0.6240 0.6708 5.9904 6.2244 1.3416 1.2948 1.3728 1.3572
0.5 128 2.4804 2.4024 2.3556 2.5740 2.8392 2.5428 12.8077 13.2289 3.7752 3.6504 3.7284 3.6972
0.5 256 11.6377 - 11.9185 11.9653 11.8249 11.5597 32.0738 34.0394 15.0697 14.7733 14.6485 15.8185
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Tab. M.12.: Time to determine the statistical properties of the generated fields for the different methods in 1D. The fields are log-normal distributed with a threshold value of
0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.3120 0.1248 0.2184 0.1248 0.2028 0.1248 1.0296 0.9672 0.2964 0.2496 - -
5 16 0.1404 0.1404 0.1560 0.1560 0.1560 0.1404 1.6536 1.6380 0.2808 0.2808 0.4056 0.2808
5 32 0.2652 - 0.2496 0.2964 0.2184 0.2184 2.9328 2.9328 0.6396 0.5772 0.6084 0.6240

2.5 16 0.1404 0.1404 0.1560 0.1560 0.1872 0.1560 1.6224 1.6224 0.2652 0.2652 0.2808 0.2808
2.5 32 0.2340 0.2340 0.2652 0.2340 0.2184 0.2184 2.9484 2.8860 0.5460 0.5616 0.5928 0.5928
2.5 64 0.6240 - 0.6084 0.6084 0.6084 0.5928 5.8812 5.7408 1.2792 1.3104 1.3884 1.3728
0.5 64 0.6084 0.6396 0.6084 0.6084 0.5928 0.6084 5.7720 5.8188 1.3260 1.3416 1.3260 1.3728
0.5 128 2.3868 2.3868 2.4024 2.3868 2.3712 2.4024 12.5893 12.5893 3.6348 3.7752 3.7596 3.8220
0.5 256 11.8249 - 11.6221 11.5753 11.6845 11.1073 32.3078 31.3094 15.5533 15.3661 14.6797 15.5689

Tab. M.13.: Mean values of the mean values of the 2000 normal distributed fields in 1D, with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.0109 0.0024 0.0007 -0.0031 0.0110 -0.0043 0.0187 0.0096 0.0139 -0.0052 - -
5 16 -0.0088 -0.0068 -0.0032 -0.0116 -0.0014 0.0023 -0.0057 0.0242 -0.0039 -0.0095 0.0101 0.0006
5 32 -0.0100 - -0.0018 0.0154 -0.0193 0.0004 -0.0093 0.0095 -0.0037 -0.0159 -0.0103 -0.0121

2.5 16 -0.0069 -0.0087 -0.0064 -0.0020 -0.0104 0.0095 -0.0159 0.0111 0.0046 0.0035 -0.0106 -0.0042
2.5 32 -0.0133 -0.0015 -0.0162 0.0025 -0.0268 -0.0030 0.0130 0.0100 0.0038 0.0128 -0.0067 0.0091
2.5 64 -0.0143 - -0.0100 -0.0088 0.0074 0.0178 0.0143 -0.0011 -0.0023 0.0023 0.0242 0.0090
0.5 64 -0.0048 -0.0078 -0.0027 0.0030 0.0021 0.0015 0.0043 -0.0017 0.0004 0.0017 0.0126 0.0089
0.5 128 0.0015 -0.0001 -0.0019 -0.0073 -0.0010 -0.0044 0.0015 -0.0071 -0.0048 -0.0016 0.0040 -0.0011
0.5 256 -0.0027 - 0.0061 -0.0040 -0.0002 0.0002 -0.0038 -0.0057 0.0048 -0.0005 -0.0063 0.0045
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Tab. M.14.: Mean values of the mean values of the 2000 normal distributed fields in 1D, with a threshold value of 0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.0072 0.0200 -0.0007 -0.0227 0.0022 0.0289 0.0066 0.0124 -0.0066 -0.0063 - -
5 16 -0.0386 -0.0075 0.0123 -0.0050 -0.0226 -0.0179 -0.0342 -0.0242 0.0023 -0.0288 -0.0360 -0.0205
5 32 -0.0098 - -0.0052 0.0242 0.0061 -0.0065 0.0171 0.0149 -0.0026 0.0065 0.0017 0.0191

2.5 16 -0.0259 0.0016 -0.0071 -0.0038 -0.0032 0.0152 -0.0194 0.0122 -0.0125 -0.0068 0.0125 -0.0044
2.5 32 0.0030 -0.0192 0.0278 0.0034 -0.0104 -0.0147 -0.0200 0.0192 0.0081 -0.0085 0.0027 -0.0074
2.5 64 0.0062 - -0.0144 -0.0130 -0.0198 -0.0221 -0.0214 0.0146 -0.0156 -0.0351 0.0017 -0.0142
0.5 64 -0.0134 -0.0348 -0.0259 -0.0101 0.0259 0.0050 -0.0117 -0.0368 0.0101 -0.0023 0.0061 -0.0027
0.5 128 0.0245 -0.0128 -0.0188 0.0139 -0.0325 -0.0103 -0.0352 0.0154 -0.0075 0.0060 -0.0167 -0.0115
0.5 256 -0.0124 - -0.0037 -0.0335 0.0511 0.0010 -0.0137 -0.0092 -0.0183 -0.0196 -0.0405 -0.0044

Tab. M.15.: Mean values of the mean values of the 2000 log-normal distributed fields in 1D, with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 1.0106 0.9809 0.9891 1.0009 1.0017 0.9885 0.9902 1.0007 0.9200 0.9576 - -
5 16 0.9842 0.9939 1.0166 0.9838 0.9981 1.0030 0.9953 0.9826 0.9748 0.9891 1.0213 1.0225
5 32 1.0316 - 0.9841 0.9917 1.0086 1.0006 1.0026 1.0324 0.9636 1.0128 1.1468 1.1110

2.5 16 0.9988 1.0087 1.0078 1.0059 1.0116 1.0008 0.9872 0.9997 0.9510 0.9761 1.0154 1.0621
2.5 32 0.9917 1.0152 1.0041 0.9939 0.9973 1.0063 0.9921 1.0040 0.9685 0.9848 1.1374 1.2452
2.5 64 1.0093 - 1.0002 0.9958 0.9994 0.9857 1.0031 0.9979 0.9733 1.0051 1.2586 1.4531
0.5 64 0.9939 0.9934 0.9932 0.9995 0.9963 1.0030 0.9751 0.9997 0.9310 0.9803 1.1595 1.3114
0.5 128 1.0004 0.9968 0.9981 0.9990 1.0003 0.9973 0.9935 1.0066 0.9529 0.9794 1.1086 1.2428
0.5 256 0.9973 - 0.9915 0.9970 0.9975 0.9965 1.0016 1.0083 0.9842 0.9926 1.1854 1.3535
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Tab. M.16.: Mean values of the mean values of the 2000 log-normal distributed fields in 1D, with a threshold value of 0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.9811 0.9932 1.0145 0.9968 1.0358 1.0126 0.9938 1.0137 0.9537 0.9832 - -
5 16 0.9935 0.9848 0.9796 0.9915 0.9674 0.9713 1.0068 1.0013 0.9553 1.0073 0.9817 1.0481
5 32 1.0101 - 1.0050 1.0098 0.9822 1.0266 0.9845 0.9944 0.9739 0.9980 1.0341 1.0681

2.5 16 1.0005 0.9983 0.9970 0.9964 0.9934 0.9886 0.9719 1.0070 0.9972 1.0168 0.9960 1.0480
2.5 32 0.9838 0.9701 1.0013 1.0270 0.9929 0.9969 0.9853 1.0167 0.9896 0.9937 1.0804 1.1010
2.5 64 1.0004 - 1.0099 0.9648 0.9873 1.0119 0.9982 1.0126 0.9831 0.9890 1.1399 1.1421
0.5 64 0.9894 0.9925 1.0032 0.9830 0.9956 0.9994 0.9796 1.0196 0.9526 0.9725 1.0864 1.1958
0.5 128 0.9852 1.0185 0.9964 0.9883 0.9993 1.0141 0.9585 1.0128 0.9655 0.9900 1.0770 1.1108
0.5 256 0.9889 - 0.9944 1.0007 1.0136 0.9678 0.9943 0.9863 0.9970 0.9980 1.0939 1.1557

Tab. M.17.: Deviation in the mean values of the 2000 normal distributed fields in 1D, with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.6242 0.6232 0.6240 0.6067 0.6295 0.6141 0.6275 0.5963 0.6352 0.6726 - -
5 16 0.6200 0.6346 0.6479 0.6287 0.6413 0.6427 0.6414 0.6358 0.6502 0.6357 0.6553 0.6421
5 32 0.6300 - 0.6294 0.6291 0.6234 0.6698 0.6448 0.6332 0.6416 0.6390 0.6426 0.6581

2.5 16 0.4800 0.4655 0.4894 0.4718 0.4867 0.4717 0.4824 0.4705 0.5019 0.4790 0.4969 0.4813
2.5 32 0.4970 0.4797 0.4921 0.4785 0.4973 0.4721 0.4957 0.4682 0.4996 0.4698 0.4972 0.4903
2.5 64 0.4936 - 0.4787 0.4868 0.4917 0.7134 0.4889 0.4797 0.4988 0.4717 0.4878 0.4834
0.5 64 0.2376 0.2226 0.2442 0.2281 0.2391 0.2176 0.2369 0.2199 0.2320 0.2221 0.2354 0.2237
0.5 128 0.2346 0.2151 0.2345 0.2221 0.2410 0.2225 0.2380 0.2233 0.2340 0.2248 0.2337 0.2246
0.5 256 0.2384 - 0.2344 0.2258 0.2368 0.2246 0.2294 0.2240 0.2395 0.2231 0.2337 0.2197
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Tab. M.18.: Deviation in the mean values of the 2000 normal distributed fields in 1D, with a threshold value of 0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.8356 0.8253 0.8113 0.8287 0.8348 0.8253 0.8199 0.8225 0.8459 0.8511 - -
5 16 0.8067 0.8229 0.8417 0.8184 0.8496 0.8310 0.8212 0.8064 0.8453 0.8498 0.8510 0.8301
5 32 0.8434 - 0.8498 0.8295 0.8135 0.8687 0.8531 0.8466 0.8335 0.8600 0.8467 0.8511

2.5 16 0.7762 0.7740 0.8012 0.7860 0.7773 0.7609 0.7707 0.7919 0.7871 0.7884 0.7793 0.7756
2.5 32 0.7937 0.7950 0.8024 0.7901 0.7978 0.8018 0.8050 0.7650 0.7924 0.7891 0.8065 0.7813
2.5 64 0.7868 - 0.7918 0.7975 0.8046 0.9979 0.7679 0.7990 0.7748 0.7857 0.7829 0.8131
0.5 64 0.7239 0.7503 0.7306 0.7394 0.7228 0.7393 0.7394 0.7387 0.6883 0.7187 0.7297 0.7090
0.5 128 0.7399 0.7319 0.7354 0.7451 0.7191 0.7187 0.7323 0.7136 0.7388 0.7255 0.7179 0.7379
0.5 256 0.7351 - 0.7330 0.7351 0.7248 0.7068 0.7409 0.7464 0.7328 0.7239 0.7356 0.7165
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Tab. M.19.: Deviation in the mean values of the 2000 log-normal distributed fields in 1D, with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.5587 0.5434 0.5092 0.5564 0.5279 0.5302 0.5785 0.6143 0.5245 0.5449 - -
5 16 0.5349 0.5717 0.5331 0.5500 0.5297 0.5813 0.6017 0.5696 0.5446 0.6019 0.5784 0.6393
5 32 0.5966 - 0.5264 0.6114 0.5640 0.5864 0.6050 0.6538 0.5148 0.5942 0.8330 0.7309

2.5 16 0.3958 0.4487 0.4160 0.4300 0.4189 0.4361 0.4518 0.4521 0.3908 0.4056 0.4589 0.5171
2.5 32 0.3943 0.4397 0.4317 0.4205 0.4136 0.4427 0.4397 0.4512 0.3999 0.4325 0.6548 0.9132
2.5 64 0.4079 - 0.4020 0.4160 0.4123 0.4372 0.4566 0.4560 0.4101 0.4349 0.7415 2.4778
0.5 64 0.2023 0.1989 0.1976 0.1996 0.2013 0.2055 0.2019 0.2156 0.1786 0.1990 0.5006 0.9887
0.5 128 0.2029 0.1932 0.1934 0.2018 0.1977 0.1961 0.2125 0.2131 0.1865 0.1956 0.3571 0.7971
0.5 256 0.1953 - 0.1993 0.1973 0.1925 0.1960 0.2150 0.2190 0.1935 0.1973 0.4506 0.8430

Tab. M.20.: Deviation in the mean values of the 2000 log-normal distributed fields in 1D, with a threshold value of 0.5

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.7224 0.7367 0.7578 0.7334 0.7712 0.8010 0.7459 0.8184 0.6909 0.7413 - -
5 16 0.7752 0.7526 0.6831 0.7836 0.6633 0.7118 0.7874 0.7605 0.6986 0.7558 0.7321 0.8723
5 32 0.7427 - 0.7878 0.7462 0.7282 0.8134 0.7828 0.7849 0.7224 0.7576 0.7632 0.8913

2.5 16 0.6959 0.6965 0.6700 0.6848 0.7008 0.7034 0.6749 0.7232 0.6966 0.7081 0.6794 0.7817
2.5 32 0.6685 0.6628 0.6766 0.6748 0.6703 0.6951 0.7565 0.7624 0.6982 0.6699 0.8174 0.8968
2.5 64 0.7073 - 0.6663 0.6327 0.6497 0.6982 0.7500 0.7468 0.6957 0.6740 0.8250 0.8834
0.5 64 0.5981 0.5901 0.6049 0.5814 0.6025 0.6255 0.6422 0.6830 0.5894 0.5722 0.7273 0.8685
0.5 128 0.6026 0.6714 0.5940 0.6083 0.5968 0.6071 0.6230 0.6580 0.5873 0.5750 0.6496 0.7225
0.5 256 0.5745 - 0.6001 0.6195 0.6099 0.5685 0.6870 0.6243 0.5861 0.6007 0.6650 0.7843
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Tab. M.21.: Mean value of the deviation in the 2000 normal distributed fields with in 1D, a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.7278 0.7240 0.7444 0.7172 0.7481 0.7260 0.7170 0.7384 0.6134 0.6547 - -
5 16 0.7392 0.7002 0.7367 0.7143 0.7410 0.7156 0.7239 0.7221 0.6735 0.6962 0.7499 0.7360
5 32 0.7452 - 0.7447 0.6969 0.7402 0.7443 0.7330 0.6992 0.7145 0.6938 0.8414 0.7882

2.5 16 0.8454 0.8438 0.8464 0.8561 0.8476 0.8473 0.8228 0.8370 0.7565 0.8118 0.8467 0.9265
2.5 32 0.8363 0.8521 0.8432 0.8416 0.8491 0.8357 0.8406 0.8475 0.8002 0.8268 0.9824 1.0283
2.5 64 0.8455 - 0.8413 0.8333 0.8493 1.2835 0.8390 0.8278 0.8188 0.8340 1.0493 1.0773
0.5 64 0.9653 0.9697 0.9658 0.9640 0.9649 0.9667 0.9387 0.9666 0.8710 0.9382 1.1219 1.2102
0.5 128 0.9653 0.9723 0.9693 0.9643 0.9657 0.9685 0.9528 0.9638 0.9156 0.9535 1.0598 1.1372
0.5 256 0.9646 - 0.9649 0.9676 0.9688 0.9625 0.9616 0.9637 0.9386 0.9595 1.1016 1.1652

Tab. M.22.: Mean value of the deviation in the 2000 normal distributed fields with in 1D, a threshold value of 0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.5245 0.5092 0.5644 0.5108 0.5312 0.5005 0.5072 0.5123 0.4561 0.4860 - -
5 16 0.5223 0.5030 0.5390 0.5035 0.5208 0.5035 0.5174 0.5088 0.4848 0.4908 0.5354 0.5253
5 32 0.5257 - 0.5354 0.4948 0.5249 0.6658 0.5130 0.4950 0.5093 0.4987 0.6074 0.5660

2.5 16 0.5977 0.5945 0.6243 0.5954 0.5988 0.5964 0.5798 0.6049 0.5366 0.5758 0.6067 0.6532
2.5 32 0.6006 0.5971 0.6138 0.5965 0.6034 0.5915 0.5863 0.5963 0.5722 0.5873 0.7002 0.7402
2.5 64 0.5992 - 0.6016 0.5927 0.5969 1.2622 0.5908 0.5902 0.5873 0.5932 0.7500 0.7785
0.5 64 0.6796 0.6829 0.6862 0.6819 0.6792 0.6840 0.6630 0.6888 0.6196 0.6617 0.7907 0.8556
0.5 128 0.6847 0.6867 0.6838 0.6836 0.6831 0.6786 0.6710 0.6812 0.6508 0.6780 0.7499 0.8072
0.5 256 0.6831 - 0.6830 0.6849 0.6808 0.6802 0.6784 0.6839 0.6681 0.6819 0.7829 0.8242
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Tab. M.23.: Mean value of the deviation in the 2000 log-normal distributed fields in 1D, with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.6755 0.6153 0.6513 0.6382 0.6695 0.6172 0.5967 0.6026 0.4997 0.5373 - -
5 16 0.6623 0.6164 0.6776 0.6020 0.6712 0.6181 0.6150 0.5681 0.5931 0.6003 0.7585 0.7123
5 32 0.7018 - 0.6676 0.6088 0.6942 0.6122 0.6318 0.6095 0.6247 0.6228 1.1386 0.9627

2.5 16 0.7738 0.7679 0.7767 0.7562 0.7896 0.7522 0.7091 0.7264 0.6193 0.6985 0.8203 0.9753
2.5 32 0.7701 0.7602 0.7978 0.7407 0.7792 0.7571 0.7312 0.7252 0.6980 0.7142 1.2975 1.5998
2.5 64 0.7915 - 0.7830 0.7411 0.7948 0.7333 0.7434 0.7236 0.7254 0.7311 1.7334 2.4667
0.5 64 0.9104 0.9080 0.9064 0.9109 0.9177 0.9296 0.8509 0.9092 0.7276 0.8603 1.6104 2.3050
0.5 128 0.9277 0.9099 0.9225 0.9144 0.9249 0.9193 0.8918 0.9225 0.8106 0.8708 1.5257 2.2761
0.5 256 0.9301 - 0.9168 0.9137 0.9209 0.9110 0.9123 0.9150 0.8704 0.9073 1.9221 2.9385

Tab. M.24.: Mean value of the deviation in the 2000 log-normal distributed fields in 1D, with a threshold value of 0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.4849 0.4780 0.4938 0.4757 0.4965 0.4731 0.4179 0.4342 0.3928 0.4368 - -
5 16 0.4943 0.4628 0.4801 0.4614 0.4810 0.4468 0.4342 0.4094 0.4421 0.4575 0.5074 0.5272
5 32 0.4997 - 0.4964 0.4646 0.4845 0.4746 0.4335 0.4096 0.4638 0.4564 0.6620 0.6506

2.5 16 0.5637 0.5533 0.5653 0.5591 0.5553 0.5601 0.4871 0.5214 0.4961 0.5516 0.5964 0.6981
2.5 32 0.5614 0.5368 0.5734 0.5861 0.5645 0.5522 0.4960 0.5072 0.5287 0.5475 0.8415 0.9563
2.5 64 0.5699 - 0.5770 0.5327 0.5700 0.5659 0.5120 0.5112 0.5582 0.5533 0.9959 1.0698
0.5 64 0.6614 0.6663 0.6710 0.6545 0.6612 0.6604 0.5724 0.6180 0.5636 0.6209 1.0035 1.3682
0.5 128 0.6590 0.6799 0.6690 0.6587 0.6706 0.6709 0.5672 0.6145 0.6016 0.6481 0.9347 1.2360
0.5 256 0.6595 - 0.6710 0.6695 0.6839 0.6449 0.5995 0.5991 0.6488 0.6593 1.0791 1.4262
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Tab. M.25.: Standard deviation of the deviations in the 2000 normal distributed fields in 1D, with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.2421 0.2936 0.2363 0.2965 0.2401 0.2878 0.2384 0.3034 0.2308 0.2790 - -
5 16 0.2238 0.2865 0.2202 0.2957 0.2265 0.3040 0.2225 0.3115 0.2280 0.2966 0.2493 0.3124
5 32 0.2220 - 0.2180 0.2899 0.2150 0.3246 0.2214 0.2955 0.2292 0.2924 0.2549 0.3311

2.5 16 0.2105 0.2525 0.2115 0.2510 0.2099 0.2573 0.2097 0.2464 0.2164 0.2675 0.2441 0.3023
2.5 32 0.1988 0.2568 0.1999 0.2595 0.2087 0.2474 0.2013 0.2557 0.2168 0.2561 0.2729 0.3282
2.5 64 0.1949 - 0.1942 0.2578 0.1966 0.5183 0.2028 0.2475 0.2048 0.2618 0.2838 0.3385
0.5 64 0.1185 0.1265 0.1182 0.1279 0.1193 0.1314 0.1206 0.1275 0.1194 0.1269 0.2582 0.2721
0.5 128 0.1155 0.1324 0.1145 0.1327 0.1149 0.1280 0.1148 0.1296 0.1168 0.1272 0.1809 0.2079
0.5 256 0.1147 - 0.1119 0.1313 0.1126 0.1303 0.1158 0.1272 0.1154 0.1301 0.1832 0.2109

Tab. M.26.: Standard deviation of the deviations in the 2000 normal distributed fields in 1D, with a threshold value of 0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.1733 0.2045 0.1874 0.2076 0.1746 0.2040 0.1693 0.2054 0.1661 0.2088 - -
5 16 0.1603 0.2073 0.1601 0.2103 0.1563 0.2114 0.1622 0.2192 0.1584 0.2052 0.1745 0.2147
5 32 0.1516 - 0.1595 0.2064 0.1503 0.3126 0.1506 0.2081 0.1599 0.2098 0.1824 0.2276

2.5 16 0.1519 0.1791 0.1573 0.1782 0.1491 0.1752 0.1485 0.1770 0.1518 0.1760 0.1726 0.2122
2.5 32 0.1445 0.1811 0.1486 0.1801 0.1444 0.1742 0.1441 0.1765 0.1498 0.1835 0.1921 0.2430
2.5 64 0.1383 - 0.1410 0.1817 0.1459 0.6545 0.1445 0.1783 0.1487 0.1821 0.2042 0.2458
0.5 64 0.0815 0.0879 0.0824 0.0903 0.0841 0.0918 0.0821 0.0929 0.0849 0.0924 0.1760 0.1870
0.5 128 0.0843 0.0917 0.0815 0.0913 0.0790 0.0899 0.0801 0.0914 0.0825 0.0926 0.1262 0.1423
0.5 256 0.0802 - 0.0785 0.0926 0.0810 0.0913 0.0813 0.0923 0.0830 0.0894 0.1305 0.1571
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Tab. M.27.: Standard deviation of the deviations in the 2000 log-normal distributed fields in 1D, with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.5344 0.5141 0.4767 0.5390 0.5011 0.4980 0.4962 0.5398 0.2109 0.4471 - -
5 16 0.4908 0.5081 0.4706 0.4875 0.4604 0.5168 0.4992 0.4680 0.4133 0.5340 0.8044 0.7831
5 32 0.5591 - 0.4761 0.5873 0.5111 0.5323 0.4899 0.5641 0.4521 0.5387 2.7115 1.3496

2.5 16 0.4553 0.5733 0.4743 0.5385 0.4942 0.5084 0.4896 0.5094 0.4606 0.4575 0.7746 1.1755
2.5 32 0.4259 0.5209 0.4866 0.4812 0.4710 0.5159 0.4458 0.5040 0.3887 0.4871 1.9926 2.9518
2.5 64 0.4467 - 0.4452 0.4859 0.4655 0.5010 0.4659 0.5255 0.4318 0.5030 2.5511 11.4292
0.5 64 0.3227 0.3451 0.3099 0.3455 0.3349 0.3937 0.3100 0.3805 0.4667 0.3291 2.3955 6.5882
0.5 128 0.3170 0.3270 0.3084 0.3501 0.3058 0.3539 0.3210 0.3888 0.2425 0.3212 1.8660 5.7186
0.5 256 0.2985 - 0.2926 0.3555 0.3024 0.3359 0.3209 0.3737 0.2710 0.3365 2.8679 5.9602

Tab. M.28.: Standard deviation of the deviations in the 2000 log-normal distributed fields in 1D, with a threshold value of 0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.4612 0.4464 0.4556 0.4424 0.4642 0.4837 0.3637 0.4354 0.3614 0.4620 - -
5 16 0.4450 0.4603 0.3964 0.4686 0.3915 0.4013 0.3873 0.3741 0.4493 0.4347 0.4723 0.5809
5 32 0.4131 - 0.4342 0.4366 0.4163 0.4888 0.4142 0.4144 0.4382 0.4516 0.6700 0.8643

2.5 16 0.4605 0.4862 0.4518 0.4853 0.4496 0.5441 0.3914 0.4673 0.4171 0.4718 0.5930 0.8185
2.5 32 0.4525 0.4777 0.4500 0.5386 0.4591 0.4631 0.4379 0.4498 0.4541 0.4737 1.2225 2.4091
2.5 64 0.4573 - 0.4548 0.4379 0.4344 0.4782 0.4326 0.4541 0.4771 0.4629 1.2815 1.6458
0.5 64 0.4353 0.4505 0.4416 0.4185 0.4283 0.4525 0.3982 0.4475 0.3827 0.4081 1.4287 2.3377
0.5 128 0.4281 0.5016 0.4237 0.4408 0.4282 0.4370 0.3986 0.4402 0.3914 0.4178 0.8795 1.8850
0.5 256 0.4068 - 0.4385 0.4715 0.4372 0.4220 0.4375 0.4232 0.4202 0.4383 1.0946 2.7322
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Tab. M.29.: Mean error in the correlation structure, estimated over 2000 normal distributed fields in 1D, with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.0117 0.0077 0.0035 0.0065 0.0016 0.0058 0.0147 0.0280 0.0563 0.0550 - -
5 16 0.0073 0.0128 0.0186 0.0068 0.0068 0.0030 0.0169 0.0126 0.0326 0.0127 0.0138 0.0238
5 32 0.0130 - 0.0087 0.0110 0.0094 0.0136 0.0124 0.0105 0.0119 0.0059 0.0432 0.0373

2.5 16 0.0053 0.0047 0.0021 0.0048 0.0059 0.0053 0.0088 0.0093 0.0289 0.0204 0.0152 0.0297
2.5 32 0.0202 0.0102 0.0077 0.0062 0.0094 0.0062 0.0088 0.0093 0.0177 0.0157 0.0321 0.0417
2.5 64 0.0052 - 0.0103 0.0107 0.0089 0.0243 0.0061 0.0101 0.0124 0.0173 0.0455 0.0474
0.5 64 0.0047 0.0055 0.0063 0.0073 0.0053 0.0054 0.0074 0.0078 0.0127 0.0102 0.0176 0.0171
0.5 128 0.0041 0.0059 0.0044 0.0073 0.0056 0.0061 0.0057 0.0049 0.0077 0.0114 0.0119 0.0142
0.5 256 0.0030 - 0.0050 0.0052 0.0039 0.0070 0.0045 0.0074 0.0088 0.0100 0.0118 0.0149

Tab. M.30.: Mean error in the correlation structure, estimated over 2000 normal distributed fields in 1D, with a threshold value of 0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.0018 0.0063 0.0165 0.0026 0.0053 0.0075 0.0070 0.0019 0.0416 0.0465 - -
5 16 0.0154 0.0068 0.0065 0.0094 0.0098 0.0041 0.0085 0.0266 0.0245 0.0091 0.0120 0.0303
5 32 0.0033 - 0.0061 0.0087 0.0149 0.1322 0.0177 0.0099 0.0118 0.0073 0.0693 0.0504

2.5 16 0.0063 0.0034 0.0063 0.0063 0.0069 0.0090 0.0048 0.0045 0.0357 0.0158 0.0217 0.0531
2.5 32 0.0054 0.0055 0.0048 0.0066 0.0046 0.0173 0.0204 0.0098 0.0201 0.0115 0.0736 0.1152
2.5 64 0.0015 - 0.0066 0.0104 0.0131 0.2592 0.0100 0.0158 0.0190 0.0136 0.1245 0.1227
0.5 64 0.0031 0.0170 0.0038 0.0108 0.0027 0.0085 0.0223 0.0073 0.0219 0.0159 0.0970 0.1448
0.5 128 0.0065 0.0039 0.0071 0.0138 0.0047 0.0029 0.0109 0.0063 0.0322 0.0118 0.0809 0.1004
0.5 256 0.0061 - 0.0063 0.0082 0.0028 0.0111 0.0115 0.0141 0.0188 0.0115 0.0942 0.1308
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Tab. M.31.: Mean error in the correlation structure, estimated over 2000 log-normal distributed fields in 1D, with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.0779 0.0525 0.0883 0.0585 0.0891 0.0548 0.0330 0.0186 0.0370 0.0571 - -
5 16 0.0799 0.0552 0.0795 0.0475 0.0846 0.0616 0.0287 0.0245 0.0540 0.0495 0.1526 0.1033
5 32 0.0788 - 0.0889 0.0522 0.0790 0.0499 0.0319 0.0255 0.0933 0.0621 0.2336 0.1599

2.5 16 0.0552 0.0286 0.0452 0.0284 0.0523 0.0385 0.0167 0.0191 0.0248 0.0322 0.0710 0.0847
2.5 32 0.0505 0.0266 0.0458 0.0290 0.0442 0.0338 0.0237 0.0161 0.0423 0.0243 0.1085 0.0995
2.5 64 0.0519 - 0.0530 0.0355 0.0507 0.0323 0.0340 0.0191 0.0410 0.0280 0.1162 0.1043
0.5 64 0.0112 0.0079 0.0116 0.0094 0.0129 0.0092 0.0093 0.0067 0.0068 0.0098 0.0195 0.0213
0.5 128 0.0138 0.0101 0.0127 0.0094 0.0122 0.0105 0.0080 0.0081 0.0111 0.0105 0.0212 0.0191
0.5 256 0.0120 - 0.0129 0.0099 0.0111 0.0090 0.0085 0.0079 0.0110 0.0110 0.0224 0.0204

Tab. M.32.: Mean error in the correlation structure, estimated over 2000 log-normal distributed fields in 1D, with a threshold value of 0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.1554 0.1400 0.1312 0.1323 0.1307 0.1068 0.0505 0.0520 0.1191 0.1673 - -
5 16 0.1280 0.1457 0.1579 0.1284 0.1736 0.1257 0.0529 0.0503 0.1762 0.1427 0.1774 0.1529
5 32 0.1442 - 0.1186 0.1575 0.1472 0.1337 0.0865 0.0729 0.1594 0.1426 0.3000 0.2889

2.5 16 0.1414 0.1436 0.1615 0.1544 0.1282 0.1609 0.0800 0.0996 0.0980 0.1413 0.2252 0.2559
2.5 32 0.1622 0.1591 0.1604 0.2085 0.1664 0.1410 0.0598 0.0593 0.1334 0.1721 0.3621 0.4524
2.5 64 0.1417 - 0.1787 0.1712 0.1755 0.1517 0.0662 0.0780 0.1725 0.1679 0.3981 0.4230
0.5 64 0.1679 0.1740 0.1687 0.1618 0.1602 0.1468 0.0688 0.0787 0.1085 0.1613 0.3655 0.4238
0.5 128 0.1579 0.1395 0.1706 0.1551 0.1707 0.1598 0.0847 0.0953 0.1354 0.1714 0.3322 0.4283
0.5 256 0.1720 - 0.1725 0.1618 0.1674 0.1753 0.0656 0.1038 0.1713 0.1704 0.3764 0.4605
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Tab. M.33.: Standard deviation of the errors in the correlation structure, estimated over 2000 normal distributed fields in 1D, with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.0103 0.0077 0.0038 0.0056 0.0009 0.0034 0.0138 0.0171 0.0375 0.0452 - -
5 16 0.0065 0.0101 0.0083 0.0041 0.0042 0.0024 0.0104 0.0106 0.0169 0.0080 0.0232 0.0333
5 32 0.0097 - 0.0042 0.0085 0.0063 0.0084 0.0090 0.0065 0.0098 0.0045 0.0487 0.0498

2.5 16 0.0055 0.0035 0.0024 0.0055 0.0046 0.0054 0.0076 0.0122 0.0328 0.0173 0.0302 0.0631
2.5 32 0.0241 0.0068 0.0072 0.0039 0.0049 0.0067 0.0061 0.0051 0.0191 0.0122 0.0590 0.0919
2.5 64 0.0040 - 0.0078 0.0066 0.0087 0.0255 0.0032 0.0073 0.0112 0.0122 0.0710 0.1021
0.5 64 0.0037 0.0041 0.0055 0.0067 0.0055 0.0039 0.0071 0.0062 0.0161 0.0134 0.0310 0.0353
0.5 128 0.0050 0.0055 0.0035 0.0088 0.0042 0.0049 0.0062 0.0043 0.0112 0.0137 0.0222 0.0394
0.5 256 0.0022 - 0.0050 0.0043 0.0032 0.0081 0.0037 0.0068 0.0090 0.0135 0.0277 0.0415

Tab. M.34.: Standard deviation of the errors in the correlation structure, estimated over 2000 normal distributed fields in 1D, with a threshold value of 0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.0022 0.0056 0.0093 0.0027 0.0043 0.0047 0.0050 0.0016 0.0265 0.0487 - -
5 16 0.0080 0.0040 0.0036 0.0064 0.0053 0.0023 0.0055 0.0143 0.0087 0.0081 0.0149 0.0165
5 32 0.0033 - 0.0079 0.0081 0.0057 0.0736 0.0062 0.0082 0.0163 0.0041 0.0283 0.0223

2.5 16 0.0038 0.0038 0.0060 0.0042 0.0067 0.0079 0.0041 0.0049 0.0146 0.0113 0.0190 0.0357
2.5 32 0.0038 0.0049 0.0033 0.0055 0.0043 0.0086 0.0046 0.0056 0.0131 0.0167 0.0361 0.0486
2.5 64 0.0013 - 0.0075 0.0049 0.0063 0.0949 0.0081 0.0072 0.0260 0.0209 0.0453 0.0583
0.5 64 0.0050 0.0060 0.0019 0.0044 0.0032 0.0045 0.0038 0.0049 0.0222 0.0240 0.0519 0.0523
0.5 128 0.0031 0.0025 0.0030 0.0045 0.0023 0.0026 0.0039 0.0038 0.0132 0.0249 0.0605 0.0612
0.5 256 0.0031 - 0.0030 0.0057 0.0027 0.0050 0.0044 0.0047 0.0265 0.0310 0.0699 0.0708
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Tab. M.35.: Standard deviation of the errors in the correlation structure, estimated over 2000 log-normal distributed fields in 1D, with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.0576 0.0628 0.0623 0.0639 0.0567 0.0592 0.0137 0.0134 0.0212 0.0455 - -
5 16 0.0543 0.0508 0.0614 0.0538 0.0478 0.0487 0.0231 0.0254 0.0431 0.0496 0.1058 0.1230
5 32 0.0466 - 0.0552 0.0582 0.0579 0.0542 0.0199 0.0311 0.0444 0.0621 0.2076 0.1946

2.5 16 0.0509 0.0460 0.0562 0.0532 0.0487 0.0459 0.0186 0.0167 0.0192 0.0352 0.1078 0.1643
2.5 32 0.0561 0.0452 0.0493 0.0463 0.0589 0.0440 0.0202 0.0250 0.0326 0.0362 0.1530 0.1946
2.5 64 0.0529 - 0.0486 0.0497 0.0546 0.0446 0.0233 0.0224 0.0465 0.0392 0.1600 0.2168
0.5 64 0.0281 0.0241 0.0297 0.0228 0.0292 0.0233 0.0111 0.0112 0.0092 0.0218 0.0508 0.0893
0.5 128 0.0291 0.0241 0.0289 0.0226 0.0297 0.0246 0.0126 0.0132 0.0183 0.0253 0.0631 0.0908
0.5 256 0.0303 - 0.0301 0.0246 0.0301 0.0240 0.0141 0.0127 0.0235 0.0263 0.0701 0.0881
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Tab. M.36.: Standard deviation of the errors in the correlation structure, estimated over 2000 log-normal distributed fields in 1D, with a threshold value of 0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen nbh=3 nbh=5
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp Exp SExp

5 8 0.0670 0.0670 0.0545 0.0622 0.0577 0.0488 0.0241 0.0241 0.0810 0.0876 - -
5 16 0.0391 0.0571 0.0496 0.0511 0.0550 0.0495 0.0181 0.0201 0.0748 0.0566 0.0505 0.0429
5 32 0.0390 - 0.0291 0.0662 0.0365 0.0497 0.0344 0.0319 0.0496 0.0485 0.0602 0.0598

2.5 16 0.0398 0.0460 0.0457 0.0484 0.0355 0.0556 0.0263 0.0348 0.0377 0.0492 0.0651 0.0849
2.5 32 0.0366 0.0477 0.0364 0.0616 0.0426 0.0406 0.0198 0.0232 0.0397 0.0512 0.0897 0.1265
2.5 64 0.0257 - 0.0359 0.0456 0.0347 0.0376 0.0158 0.0227 0.0536 0.0466 0.0672 0.0899
0.5 64 0.0233 0.0265 0.0239 0.0261 0.0221 0.0208 0.0119 0.0128 0.0318 0.0335 0.0616 0.0616
0.5 128 0.0165 0.0184 0.0187 0.0193 0.0190 0.0209 0.0130 0.0158 0.0295 0.0306 0.0553 0.0553
0.5 256 0.0164 - 0.0175 0.0196 0.0165 0.0220 0.0091 0.0190 0.0354 0.0405 0.0490 0.0481
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Tab. M.37.: Initialization time of the different methods in 2D for normal distributed fields with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.03 0.03 0.27 0.66 0.06 0.28 1.08 0.08 0.47 0.22
5 16 0.02 - 0.06 0.11 0.06 0.05 0.06 0.05 0.33 0.33
5 32 0.20 - 1.26 1.01 3.17 0.70 0.05 0.06 0.36 0.42

2.5 16 0.02 0.06 0.06 0.06 0.06 0.05 0.06 0.05 0.30 0.34
2.5 32 0.25 - 1.34 1.09 3.14 1.79 0.05 0.06 0.34 0.41
2.5 64 5.68 - 62.18 57.10 192.02 29.84 0.06 0.08 0.42 0.48
0.5 64 5.62 114.52 68.16 62.96 193.92 371.16 0.06 0.06 0.44 0.50
0.5 128 193.52 - 3940.24 3801.39 12142.65 12091.45 0.09 0.09 1.51 1.42
0.5 256 - - - - - - 0.25 1.19 1.31 1.51

Tab. M.38.: Initialization time of the different methods in 2D for normal distributed fields with a threshold value of 0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.05 0.34 0.03 0.67 0.28 0.30 0.41 0.08 0.64 0.20
5 16 0.09 - 0.06 0.02 0.06 0.03 0.08 0.05 0.36 0.34
5 32 0.31 - 1.11 1.03 3.12 0.66 0.06 0.05 0.36 0.41

2.5 16 0.00 0.02 0.09 0.08 0.06 0.06 0.05 0.05 0.30 0.34
2.5 32 0.25 - 1.31 0.98 3.12 1.65 0.06 0.06 0.36 0.41
2.5 64 5.88 - 60.65 57.52 190.99 27.36 0.08 0.06 0.42 0.48
0.5 64 6.18 5.16 61.00 60.47 191.24 190.80 0.06 0.06 0.42 0.50
0.5 128 193.29 - 3803.49 3619.44 11974.15 7444.41 0.09 0.09 1.19 1.36
0.5 256 - - - - - - 0.27 0.20 1.29 1.42
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Tab. M.39.: Initialization time of the different methods in 2D for log-normal distributed fields with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.03 0.34 0.69 0.75 0.28 0.28 0.17 0.08 0.23 0.23
5 16 0.02 - 0.06 0.05 0.06 0.06 0.06 0.05 0.37 0.44
5 32 0.27 - 1.19 1.31 3.14 1.39 0.08 0.05 0.45 0.51

2.5 16 0.02 0.02 0.08 0.06 0.06 0.06 0.06 0.05 0.39 0.42
2.5 32 0.27 - 1.26 1.19 3.17 3.12 0.05 0.06 0.45 0.53
2.5 64 5.82 - 62.43 57.83 190.21 72.17 0.06 0.06 0.53 0.61
0.5 64 5.74 5.51 61.84 61.21 192.15 190.02 0.06 0.08 0.55 0.61
0.5 128 197.56 - 3950.44 3873.15 11962.34 11972.03 0.09 0.09 1.50 1.73
0.5 256 - - - - - - 0.23 0.22 1.61 1.79

Tab. M.40.: Initialization time of the different methods in 2D for log-normal distributed fields with a threshold value of 0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.03 0.34 0.67 0.72 0.28 0.28 0.61 0.08 0.22 0.25
5 16 0.02 - 0.06 0.12 0.06 0.08 0.06 0.06 0.36 0.42
5 32 0.31 - 1.12 1.03 3.18 1.17 0.05 0.06 0.45 0.50

2.5 16 0.05 0.02 0.02 0.02 0.06 0.08 0.06 0.05 0.37 0.42
2.5 32 0.25 - 1.12 1.03 3.21 3.18 0.05 0.06 0.45 0.50
2.5 64 6.47 - 61.34 57.30 191.44 56.14 0.06 0.06 0.53 0.59
0.5 64 5.80 5.58 61.53 61.17 190.98 190.62 0.08 0.06 0.51 0.59
0.5 128 198.89 - 3816.83 3732.29 11966.76 11963.81 0.11 0.09 1.45 1.65
0.5 256 - - - - - - 0.28 0.23 1.56 1.75
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Tab. M.41.: Realization time of the different methods in 2D for the realization of 200 normal distributed fields with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.05 0.05 0.37 0.66 0.08 0.28 2.32 1.31 1.36 0.56
5 16 0.08 - 0.12 0.16 0.08 0.08 4.45 4.62 1.15 1.15
5 32 0.53 - 1.70 1.45 3.56 1.19 17.43 17.60 4.87 4.73

2.5 16 0.08 0.08 0.11 0.12 0.08 0.11 4.51 4.66 1.11 1.17
2.5 32 0.64 - 1.67 1.51 3.46 2.22 16.89 17.57 4.48 4.66
2.5 64 12.70 - 69.30 64.33 198.99 36.40 68.22 69.50 19.08 19.27
0.5 64 12.68 124.27 74.71 70.04 200.94 379.72 66.74 69.65 19.66 19.38
0.5 128 301.43 - 4051.89 3912.19 12251.79 12197.69 261.86 277.79 80.47 80.70
0.5 256 - - - - - 1085.25 1129.18 319.33 322.19

Tab. M.42.: Realization time of the different methods in 2D for the realization of 200 normal distributed fields with a threshold value of 0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.05 0.34 0.05 0.67 0.30 0.30 1.75 1.33 1.50 0.53
5 16 0.14 - 0.08 0.03 0.12 0.05 5.04 4.65 1.17 1.17
5 32 0.75 - 1.50 1.36 3.51 1.05 18.97 17.61 4.68 4.59

2.5 16 0.05 0.06 0.16 0.97 0.08 0.12 4.88 4.60 1.09 1.17
2.5 32 0.67 - 1.64 1.36 3.51 1.98 18.83 17.75 5.12 4.59
2.5 64 13.07 - 67.64 64.51 198.04 34.43 73.91 68.66 19.13 19.23
0.5 64 13.21 11.58 67.97 67.53 198.34 197.92 73.82 70.11 19.11 19.20
0.5 128 305.11 - 3915.81 3732.68 12087.13 7554.89 297.48 280.08 80.68 80.20
0.5 256 - - - - - - 1107.01 1110.21 323.30 327.07
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Tab. M.43.: Realization time of the different methods in 2D for the realization of 200 log-normal distributed fields with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.05 0.36 0.70 0.76 0.30 0.28 1.47 1.31 0.58 0.56
5 16 0.08 - 0.12 0.14 0.08 0.11 4.71 4.56 1.22 1.26
5 32 0.66 - 1.68 1.73 3.46 1.73 17.92 17.44 4.68 4.79

2.5 16 0.08 0.06 0.14 0.19 0.09 0.08 4.70 4.51 1.22 1.25
2.5 32 0.66 - 1.76 1.62 3.57 3.51 17.89 17.33 4.74 4.79
2.5 64 13.03 - 69.70 65.33 197.33 79.28 70.17 68.98 19.19 19.50
0.5 64 12.90 12.53 68.98 68.47 199.28 197.19 69.37 68.47 19.03 19.33
0.5 128 299.48 - 4060.35 3985.58 12075.16 12084.76 276.48 270.99 79.95 80.53
0.5 256 - - - - - - 1090.82 1084.78 324.20 321.89

Tab. M.44.: Realization time of the different methods in 2D for the realization of 200 log-normal distributed fields with a threshold value of 0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.03 0.36 0.69 0.73 0.28 0.30 1.84 1.33 0.55 0.56
5 16 0.06 - 0.14 0.14 0.11 0.09 4.90 4.51 1.17 1.22
5 32 0.76 - 1.51 1.42 3.57 1.56 18.14 18.28 4.60 4.56

2.5 16 0.09 0.06 0.09 0.06 0.12 0.09 4.73 4.54 1.17 1.22
2.5 32 0.73 - 1.53 1.48 3.48 3.40 18.39 18.21 4.51 4.60
2.5 64 13.15 - 68.38 64.46 198.57 63.31 70.75 70.79 18.49 18.66
0.5 64 12.90 12.71 68.52 68.19 197.28 197.75 70.70 70.72 18.45 18.55
0.5 128 311.16 - 3928.96 3845.58 12079.31 12075.99 281.43 273.64 94.21 95.13
0.5 256 - - - - - - 1100.79 1098.04 326.46 328.12
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Tab. M.45.: Time to determine the statistical properties of the generated fields for the different methods in 2D. The fields are normal distributed with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.44 0.48 2.22 0.92 0.45 0.53 2.64 1.59 1.79 0.84
5 16 1.39 - 1.62 1.47 1.48 1.47 5.73 5.93 2.48 2.43
5 32 10.08 - 11.26 10.84 16.66 11.26 27.00 27.11 14.98 14.27

2.5 16 1.40 1.51 1.45 1.51 1.36 1.47 5.79 5.99 2.48 2.48
2.5 32 10.23 - 11.01 10.80 13.24 12.18 26.15 27.24 14.18 14.21
2.5 64 89.50 - 144.21 138.06 274.58 116.25 142.54 146.53 96.17 96.47
0.5 64 89.15 199.82 151.12 141.95 279.35 459.34 139.06 146.27 95.96 96.30
0.5 128 922.06 - 4648.56 4508.63 12880.97 12806.00 888.02 899.38 694.42 697.65
0.5 256 - - - - - - 6049.31 6129.33 5220.53 5229.26

Tab. M.46.: Time to determine the statistical properties of the generated fields for the different methods in 2D. The fields are normal distributed with a threshold value of 0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 1.76 0.62 0.45 0.97 0.56 0.58 2.07 1.61 1.89 0.80
5 16 1.48 - 1.39 1.37 1.51 1.34 6.38 5.91 2.48 2.46
5 32 10.11 - 10.90 10.83 12.87 10.37 28.67 26.77 14.20 13.88

2.5 16 1.44 1.40 1.70 14.15 1.37 1.40 6.18 5.87 2.43 2.45
2.5 32 10.00 - 10.73 10.67 12.87 11.39 28.53 26.91 14.82 13.90
2.5 64 89.37 - 141.13 138.87 272.49 107.83 151.51 140.60 95.52 93.80
0.5 64 89.62 90.59 141.54 142.23 271.85 271.85 151.02 142.04 95.32 93.60
0.5 128 926.60 - 4523.31 4336.91 12696.62 8163.81 917.54 874.73 691.80 673.60
0.5 256 - - - - - - 5852.78 5857.12 5178.67 5018.41
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Tab. M.47.: Time to determine the statistical properties of the generated fields for the different methods in 2D. The fields are lognormal distributed with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.44 0.62 0.98 1.03 0.58 0.56 1.78 1.56 0.84 0.86
5 16 1.51 - 1.44 1.48 1.40 1.40 6.80 5.83 2.54 2.57
5 32 10.31 - 11.06 11.23 12.90 11.17 27.41 26.60 14.18 14.34

2.5 16 1.39 1.37 1.54 1.51 1.37 1.34 6.01 5.77 2.53 2.57
2.5 32 10.12 - 11.09 10.98 12.96 12.78 27.30 26.49 14.23 14.38
2.5 64 88.75 - 143.38 139.12 271.16 152.55 144.99 141.12 95.22 96.58
0.5 64 88.64 88.28 140.99 140.51 273.31 270.65 144.44 140.39 95.18 95.85
0.5 128 915.12 - 4656.58 4582.36 12682.51 12692.15 884.09 865.91 692.88 695.87
0.5 256 - - - - - - 5833.55 5833.17 5236.20 5224.33

Tab. M.48.: Time to determine the statistical properties of the generated fields for the different methods in 2D. The fields are log-normal distributed with a threshold value of
0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.31 0.62 1.00 1.00 0.56 0.56 2.17 1.58 0.80 0.81
5 16 1.42 - 1.45 1.48 1.40 1.47 6.29 5.77 2.40 2.46
5 32 10.75 - 10.75 10.92 13.09 11.06 27.80 27.89 13.62 13.60

2.5 16 1.44 1.36 1.39 1.36 1.40 1.36 6.02 5.83 2.42 2.46
2.5 32 10.73 - 10.94 11.01 12.76 12.76 27.86 27.61 13.59 13.62
2.5 64 91.56 - 141.79 138.84 271.89 137.08 146.44 144.18 89.73 89.73
0.5 64 88.00 88.84 142.19 142.52 271.83 271.80 145.89 144.55 89.48 89.56
0.5 128 927.69 - 4529.89 4448.23 12687.28 12684.44 885.93 876.73 681.51 682.25
0.5 256 - - - - - - 5921.64 5908.77 5017.49 5018.05
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Tab. M.49.: Mean values of the mean values of the 200 normal distributed fields in 2D, with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.0896 -0.0171 0.0135 0.0385 0.0188 -0.0109 0.0058 -0.0355 -0.0188 0.0369
5 16 0.0074 - -0.0387 0.0378 0.0137 0.0158 -0.0043 -0.0227 -0.0104 -0.0317
5 32 -0.0238 - -0.0640 -0.0005 0.0274 0.0504 -0.0580 -0.0318 0.0090 -0.0110

2.5 16 -0.0130 0.0104 -0.0085 -0.0067 -0.0456 -0.0089 -0.0096 0.0034 0.0364 -0.0085
2.5 32 0.0113 - 0.0174 0.0135 0.0091 0.0296 -0.0292 -0.0174 0.0049 0.0278
2.5 64 0.0050 - 0.0157 -0.0020 -0.0095 -0.0043 -0.0159 0.0167 -0.0066 -0.0143
0.5 64 -0.0064 0.0033 -0.0011 -0.0030 0.0018 -0.0034 -0.0033 0.0042 0.0074 0.0041
0.5 128 -0.0109 - -0.0031 -0.0010 0.0030 -0.0057 0.0023 -0.0038 -0.0060 -0.0022
0.5 256 - - - - - - 0.0060 -0.0016 -0.0053 0.0044

Tab. M.50.: Mean values of the mean values of the 200 normal distributed fields in 2D, with a threshold value of 0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.0563 -0.0331 0.0142 -0.0003 0.0315 -0.0231 0.0872 0.0377 -0.0637 -0.1446
5 16 -0.0215 - -0.0371 -0.0306 -0.0109 0.0279 0.0881 -0.0494 0.0896 0.0781
5 32 -0.0111 - 0.0233 0.0612 0.0150 -0.1480 -0.0684 0.0524 0.0015 0.0748

2.5 16 0.0120 -0.0094 0.0784 -0.0056 -0.0555 0.1363 0.1362 -0.0336 0.0024 -0.0425
2.5 32 0.0370 - 0.0598 0.0962 -0.0475 -0.0291 -0.0338 0.0542 -0.0104 0.0420
2.5 64 -0.0389 - 0.0210 0.0443 0.0036 0.0677 0.0157 -0.0719 0.0895 0.0457
0.5 64 0.0086 -0.0792 0.0105 0.0714 -0.0403 -0.0495 -0.0441 -0.0030 -0.0569 0.0221
0.5 128 0.0049 - 0.0087 -0.0334 0.0402 -0.0302 -0.0750 -0.0532 -0.0037 0.0255
0.5 256 - - - - - - 0.0952 -0.0663 -0.0052 0.0231
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Tab. M.51.: Mean values of the mean values of the 200 log-normal distributed fields in 2D, with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.9905 0.9990 0.9868 1.0018 0.9640 0.9744 0.9669 1.0014 0.9468 0.9746
5 16 0.9928 - 0.9848 1.0199 1.0165 1.0011 0.9904 1.0331 0.9363 0.9838
5 32 1.0016 - 0.9976 1.0300 1.0105 0.9734 1.0097 0.9718 0.9451 1.0248

2.5 16 0.9755 1.0057 1.0255 0.9960 0.9733 1.0136 0.9827 0.9966 0.9358 0.9618
2.5 32 0.9865 - 1.0054 0.9841 0.9921 0.9919 1.0237 0.9829 0.9353 0.9814
2.5 64 0.9815 - 1.0078 1.0072 1.0155 1.0153 0.9860 0.9957 1.0169 0.9915
0.5 64 0.9980 0.9958 0.9977 1.0029 1.0018 1.0006 0.9749 1.0011 0.9011 0.9541
0.5 128 0.9997 - 0.9995 0.9973 0.9974 0.9973 0.9854 0.9972 0.9379 0.9896
0.5 256 - - - - - - 0.9932 0.9965 0.9629 1.0043

Tab. M.52.: Mean values of the mean values of the 200 log-normal distributed fields in 2D, with a threshold value of 0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.9602 0.9879 1.0939 0.9485 0.9441 0.9871 1.0205 0.9812 1.0287 0.9992
5 16 0.9709 - 1.0344 0.9880 1.0398 1.1046 0.9813 0.9183 0.9020 1.0758
5 32 0.9682 - 0.9961 1.0000 1.0040 0.9821 0.9685 0.9829 1.0410 1.0873

2.5 16 0.9376 1.0455 1.0307 1.0126 1.0410 0.9620 1.0179 1.0477 1.0617 0.9919
2.5 32 0.9284 - 0.9799 0.9962 0.9263 1.0194 0.9293 0.9412 1.0010 0.9376
2.5 64 0.9517 - 1.0201 1.0344 1.0187 1.0464 0.9642 1.0187 0.9740 0.9764
0.5 64 0.9262 0.9648 1.0355 0.9295 0.9921 1.0459 0.9879 1.0024 0.9164 0.9470
0.5 128 1.0502 - 1.0232 1.0350 0.9232 0.9385 1.0454 0.9965 0.9707 1.0109
0.5 256 - - - - - - 0.9904 0.9848 0.9737 1.0076
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Tab. M.53.: Deviation in the mean values of the 200 normal distributed fields in 2D, with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.4659 0.3847 0.4005 0.3878 0.4580 0.3603 0.4322 0.3713 0.4879 0.3909
5 16 0.4441 - 0.4768 0.3934 0.4784 0.4101 0.4354 0.3941 0.4406 0.3879
5 32 0.4954 - 0.4894 0.4411 0.4696 0.4377 0.5117 0.4340 0.4838 0.3863

2.5 16 0.2733 0.2184 0.2743 0.2149 0.2939 0.2558 0.2644 0.2248 0.3009 0.2245
2.5 32 0.2617 - 0.2811 0.2349 0.2835 0.2386 0.3035 0.2166 0.2930 0.2217
2.5 64 0.3144 - 0.3158 0.2469 0.2622 0.2197 0.2904 0.2215 0.2877 0.2353
0.5 64 0.0630 0.0464 0.0633 0.0468 0.0679 0.0507 0.0705 0.0454 0.0737 0.0513
0.5 128 0.0631 - 0.0633 0.0488 0.0706 0.0456 0.0673 0.0475 0.0697 0.0442
0.5 256 - - - - - - 0.0674 0.0487 0.0683 0.0523
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Tab. M.54.: Deviation in the mean values of the 200 normal distributed fields in 2D, with a threshold value of 0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.6891 0.7801 0.8651 0.7090 0.8451 0.7177 0.8845 0.7379 0.7752 0.8008
5 16 0.7300 - 0.8180 0.7564 0.7765 0.7397 0.7624 0.7835 0.7993 0.7686
5 32 0.7062 - 0.7884 0.7260 0.7973 0.8198 0.7396 0.7699 0.8082 0.7260

2.5 16 0.7831 0.7201 0.7043 0.7228 0.7353 0.6981 0.7891 0.6910 0.7157 0.7192
2.5 32 0.7378 - 0.7484 0.7706 0.7845 0.6699 0.6847 0.6799 0.7261 0.7424
2.5 64 0.7232 - 0.7131 0.7840 0.7167 0.7155 0.6784 0.7432 0.7653 0.7129
0.5 64 0.7273 0.7010 0.7308 0.6959 0.6590 0.6557 0.6500 0.7170 0.6461 0.7097
0.5 128 0.7334 - 0.7384 0.7762 0.7124 0.7330 0.6787 0.7153 0.6489 0.7395
0.5 256 - - - - - - 0.6615 0.6937 0.7192 0.7399
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Tab. M.55.: Deviation in the mean values of the 200 log-normal distributed fields in 2D, with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.4015 0.3112 0.3026 0.3310 0.3175 0.2899 0.3758 0.3330 0.3542 0.3652
5 16 0.3443 - 0.3394 0.3836 0.3768 0.3444 0.4039 0.4013 0.4147 0.3487
5 32 0.3827 - 0.3208 0.3577 0.3649 0.3863 0.4385 0.3254 0.3294 0.3547

2.5 16 0.2119 0.2037 0.2294 0.1785 0.2174 0.1956 0.2668 0.1904 0.1979 0.1871
2.5 32 0.2069 - 0.2252 0.1759 0.2055 0.1827 0.2601 0.1783 0.1981 0.2009
2.5 64 0.2332 - 0.2184 0.1793 0.2170 0.1979 0.2670 0.2123 0.2328 0.1880
0.5 64 0.0512 0.0416 0.0521 0.0379 0.0532 0.0438 0.0581 0.0438 0.0492 0.0409
0.5 128 0.0521 - 0.0501 0.0423 0.0491 0.0412 0.0611 0.0444 0.0459 0.0366
0.5 256 - - - - - - 0.0600 0.0477 0.0507 0.0421

Tab. M.56.: Deviation in the mean values of the 200 log-normal distributed fields in 2D, with a threshold value of 0.5

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.5574 0.5287 0.7185 0.4997 0.6081 0.6063 0.7170 0.7033 0.7278 0.6266
5 16 0.6176 - 0.7261 0.6266 0.6486 0.8067 0.6796 0.5053 0.5092 0.6715
5 32 0.6228 - 0.5726 0.6456 0.5540 0.7087 0.7785 0.8565 0.7107 0.7677

2.5 16 0.5063 0.5811 0.6843 0.5996 0.6687 0.5332 0.5471 0.6364 0.6768 0.5652
2.5 32 0.5397 - 0.6713 0.6423 0.5232 0.5480 0.6145 0.6939 0.5978 0.5019
2.5 64 0.5760 - 0.6354 0.7310 0.5724 0.6828 0.7087 0.5626 0.5758 0.5407
0.5 64 0.4660 0.5684 0.5636 0.5447 0.5536 0.5973 0.7063 0.6158 0.5956 0.5460
0.5 128 0.6143 - 0.5839 0.6118 0.4877 0.5971 0.7190 0.7288 0.5900 0.6244
0.5 256 - - - - - - 0.6530 0.6381 0.5484 0.5552
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Tab. M.57.: Mean value of the deviation in the 200 normal distributed fields with in 2D, a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.8766 0.9279 0.8647 0.9061 0.8721 0.8991 0.8463 0.8900 0.7493 0.8416
5 16 0.8993 - 0.8709 0.9100 0.8814 0.9012 0.8543 0.9082 0.7902 0.8634
5 32 0.8749 - 0.8770 0.8889 0.8726 0.8786 0.8591 0.8801 0.8312 0.8670

2.5 16 0.9536 0.9752 0.9397 0.9784 0.9642 0.9776 0.9281 0.9603 0.8238 0.9401
2.5 32 0.9620 - 0.9595 0.9618 0.9630 0.9678 0.9434 0.9777 0.8975 0.9554
2.5 64 0.9479 - 0.9500 0.9750 0.9483 0.9974 0.9378 0.9621 0.9168 0.9675
0.5 64 0.9959 0.9978 0.9942 0.9982 0.9974 1.0008 0.9557 0.9980 0.8675 0.9468
0.5 128 0.9954 - 0.9962 0.9981 0.9973 0.9988 0.9751 0.9970 0.9271 0.9836
0.5 256 - - - - - - 0.9877 1.0003 0.9626 0.9994

Tab. M.58.: Mean value of the deviation in the 200 normal distributed fields with in 2D, a threshold value of 0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.6143 0.6220 0.6274 0.6428 0.6141 0.6344 0.5893 0.6176 0.5235 0.5989
5 16 0.6228 - 0.6273 0.6341 0.6306 0.6335 0.6129 0.6391 0.5571 0.6250
5 32 0.6124 - 0.6154 0.6437 0.6179 0.6321 0.6028 0.6242 0.5905 0.6327

2.5 16 0.6806 0.6861 0.6702 0.6849 0.6800 0.6859 0.6465 0.6863 0.6003 0.6559
2.5 32 0.6764 - 0.6756 0.6743 0.6691 0.6876 0.6574 0.6856 0.6337 0.6771
2.5 64 0.6735 - 0.6762 0.6858 0.6721 0.6867 0.6687 0.6899 0.6416 0.6784
0.5 64 0.7059 0.7061 0.7060 0.7057 0.7062 0.7050 0.6762 0.7069 0.6129 0.6711
0.5 128 0.7080 - 0.7068 0.7069 0.7056 0.7060 0.6919 0.7047 0.6588 0.6960
0.5 256 - - - - - - 0.6973 0.7033 0.6808 0.7052
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Tab. M.59.: Mean value of the deviation in the 200 log-normal distributed fields in 2D, with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.8389 0.8378 0.8400 0.8449 0.8259 0.8137 0.7188 0.8152 0.6110 0.7415
5 16 0.8322 - 0.8221 0.8304 0.8847 0.8324 0.8024 0.8133 0.6801 0.7951
5 32 0.8518 - 0.8441 0.8655 0.8342 0.8091 0.8149 0.7739 0.7351 0.8354

2.5 16 0.9115 0.9633 0.9603 0.9468 0.9246 0.9429 0.8617 0.9122 0.7124 0.8604
2.5 32 0.9183 - 0.9542 0.9332 0.9277 0.9366 0.9218 0.9246 0.7780 0.9094
2.5 64 0.9102 - 0.9608 0.9519 0.9421 0.9488 0.9130 0.9247 0.8980 0.9319
0.5 64 0.9968 0.9895 0.9965 1.0029 0.9996 0.9988 0.9133 1.0024 0.7038 0.8681
0.5 128 0.9970 - 0.9927 0.9934 0.9914 0.9916 0.9513 0.9855 0.8210 0.9712
0.5 256 - - - - - - 0.9744 0.9894 0.9031 1.0110

Tab. M.60.: Mean value of the deviation in the 200 log-normal distributed fields in 2D, with a threshold value of 0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.5728 0.6115 0.6737 0.6058 0.5925 0.6079 0.5387 0.5454 0.5298 0.5840
5 16 0.5763 - 0.6180 0.5837 0.6308 0.6615 0.5156 0.5134 0.4787 0.6652
5 32 0.5753 - 0.5976 0.5931 0.6154 0.5905 0.5195 0.5356 0.5861 0.6566

2.5 16 0.6217 0.7059 0.6889 0.6802 0.6891 0.6517 0.6030 0.6322 0.6052 0.6191
2.5 32 0.6172 - 0.6528 0.6554 0.6212 0.6883 0.5611 0.5790 0.6058 0.6005
2.5 64 0.6324 - 0.6726 0.7013 0.6869 0.7174 0.5671 0.6212 0.6315 0.6550
0.5 64 0.6526 0.6808 0.7265 0.6581 0.7019 0.7398 0.6003 0.6473 0.5360 0.6262
0.5 128 0.7393 - 0.7209 0.7295 0.6477 0.6600 0.6512 0.6387 0.6181 0.7082
0.5 256 - - - - - - 0.6260 0.6342 0.6568 0.7148
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Tab. M.61.: Standard deviation of the deviations in the 200 normal distributed fields in 2D, with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.1315 0.1786 0.1298 0.1795 0.1337 0.1801 0.1607 0.1779 0.1556 0.1933
5 16 0.1518 - 0.1203 0.1846 0.1243 0.1971 0.1235 0.1851 0.1406 0.1866
5 32 0.1512 - 0.1286 0.1699 0.1303 0.1709 0.1313 0.1840 0.1342 0.1805

2.5 16 0.1025 0.0992 0.0953 0.1157 0.0955 0.1124 0.0982 0.1037 0.1133 0.1296
2.5 32 0.0981 - 0.0970 0.1164 0.0924 0.1075 0.0978 0.1161 0.0987 0.1144
2.5 64 0.1032 - 0.0918 0.1193 0.1006 0.1154 0.0872 0.1134 0.1040 0.1136
0.5 64 0.0250 0.0243 0.0219 0.0231 0.0235 0.0260 0.0278 0.0234 0.0273 0.0221
0.5 128 0.0248 - 0.0244 0.0253 0.0244 0.0251 0.0244 0.0246 0.0239 0.0236
0.5 256 - - - - - - 0.0249 0.0239 0.0276 0.0233

Tab. M.62.: Standard deviation of the deviations in the 200 normal distributed fields in 2D, with a threshold value of 0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.0940 0.1108 0.0974 0.1206 0.0887 0.1108 0.0970 0.1172 0.1032 0.1275
5 16 0.0946 - 0.0918 0.1294 0.0908 0.1348 0.1029 0.1414 0.0905 0.1468
5 32 0.0881 - 0.0872 0.1217 0.0909 0.1430 0.0895 0.1412 0.0938 0.1316

2.5 16 0.0687 0.0729 0.0691 0.0765 0.0702 0.0772 0.0631 0.0771 0.0771 0.0794
2.5 32 0.0700 - 0.0729 0.0734 0.0649 0.0842 0.0642 0.0796 0.0796 0.0835
2.5 64 0.0630 - 0.0639 0.0789 0.0694 0.0777 0.0679 0.0779 0.0673 0.0812
0.5 64 0.0176 0.0181 0.0167 0.0169 0.0177 0.0185 0.0184 0.0178 0.0195 0.0160
0.5 128 0.0171 - 0.0181 0.0180 0.0179 0.0190 0.0176 0.0183 0.0170 0.0163
0.5 256 - - - - - - 0.0161 0.0170 0.0176 0.0173
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Tab. M.63.: Standard deviation of the deviations in the 200 log-normal distributed fields in 2D, with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.5026 0.3724 0.3789 0.4674 0.4166 0.3882 0.3243 0.4106 0.2919 0.3981
5 16 0.3711 - 0.3476 0.4118 0.4163 0.4109 0.4798 0.4140 0.3557 0.4036
5 32 0.4050 - 0.3655 0.4277 0.3517 0.4470 0.4306 0.3863 0.2971 0.4289

2.5 16 0.2589 0.3152 0.2916 0.3365 0.3093 0.2735 0.3115 0.2964 0.2210 0.2940
2.5 32 0.2555 - 0.2860 0.2868 0.2489 0.2679 0.3200 0.2885 0.2347 0.2963
2.5 64 0.2867 - 0.3307 0.2968 0.2528 0.3205 0.3491 0.3693 0.2718 0.2955
0.5 64 0.0769 0.0762 0.0909 0.0859 0.0851 0.0792 0.0856 0.0921 0.0582 0.0648
0.5 128 0.0922 - 0.0693 0.0800 0.0745 0.0813 0.0879 0.0829 0.0597 0.0719
0.5 256 - - - - - - 0.0894 0.1058 0.0812 0.0797

Tab. M.64.: Standard deviation of the deviations in the 200 log-normal distributed fields in 2D, with a threshold value of 0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.3663 0.3618 0.4746 0.3989 0.4089 0.4275 0.4107 0.4600 0.4610 0.4089
5 16 0.4074 - 0.4511 0.4620 0.3988 0.4901 0.3825 0.3320 0.2816 0.5360
5 32 0.3782 - 0.3530 0.4203 0.3482 0.4551 0.4392 0.5427 0.4429 0.5059

2.5 16 0.3478 0.3907 0.5028 0.4347 0.4641 0.3952 0.3468 0.3992 0.4247 0.3718
2.5 32 0.3593 - 0.4782 0.4105 0.3599 0.3885 0.4033 0.4772 0.3782 0.3412
2.5 64 0.4046 - 0.4290 0.4966 0.4052 0.5017 0.4085 0.3777 0.3929 0.3849
0.5 64 0.3310 0.3987 0.3934 0.3871 0.3967 0.4289 0.4288 0.4041 0.3548 0.3658
0.5 128 0.4333 - 0.4113 0.4277 0.3401 0.4213 0.4482 0.4641 0.3744 0.4409
0.5 256 - - - - - - 0.4083 0.4108 0.3701 0.4003
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Tab. M.65.: Mean error in the correlation structure, estimated over 200 normal distributed fields in 2D, with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.0121 0.0267 0.0180 0.0157 0.0200 0.0114 0.0146 0.0067 0.0462 0.0396
5 16 0.0125 - 0.0186 0.0032 0.0103 0.0108 0.0166 0.0255 0.0181 0.0127
5 32 0.0149 - 0.0104 0.0123 0.0217 0.0072 0.0159 0.0108 0.0387 0.0316

2.5 16 0.0056 0.0106 0.0048 0.0152 0.0100 0.0119 0.0111 0.0093 0.0390 0.0121
2.5 32 0.0135 - 0.0080 0.0121 0.0125 0.0200 0.0223 0.0180 0.0193 0.0181
2.5 64 0.0141 - 0.0102 0.0055 0.0194 0.0134 0.0105 0.0091 0.0118 0.0162
0.5 64 0.0040 0.0030 0.0038 0.0037 0.0034 0.0036 0.0051 0.0028 0.0103 0.0061
0.5 128 0.0043 - 0.0026 0.0025 0.0031 0.0025 0.0033 0.0036 0.0077 0.0069
0.5 256 - - - - - - 0.0034 0.0032 0.0054 0.0067

Tab. M.66.: Mean error in the correlation structure, estimated over 200 normal distributed fields in 2D, with a threshold value of 0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.0281 0.0149 0.0398 0.0267 0.0398 0.0127 0.0651 0.0207 0.0492 0.0368
5 16 0.0355 - 0.0143 0.0026 0.0025 0.0194 0.0061 0.0174 0.0409 0.0065
5 32 0.0290 - 0.0096 0.0272 0.0125 0.0214 0.0099 0.0162 0.0353 0.0237

2.5 16 0.0269 0.0060 0.0215 0.0016 0.0046 0.0153 0.0557 0.0256 0.0396 0.0196
2.5 32 0.0077 - 0.0053 0.0262 0.0338 0.0353 0.0305 0.0209 0.0180 0.0131
2.5 64 0.0149 - 0.0262 0.0334 0.0252 0.0101 0.0347 0.0103 0.0378 0.0100
0.5 64 0.0129 0.0040 0.0151 0.0096 0.0357 0.0367 0.0199 0.0046 0.0226 0.0263
0.5 128 0.0144 - 0.0211 0.0428 0.0021 0.0171 0.0128 0.0064 0.0110 0.0268
0.5 256 - - - - - - 0.0286 0.0092 0.0239 0.0217
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Tab. M.67.: Mean error in the correlation structure, estimated over 200 log-normal distributed fields in 2D, with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.0754 0.0473 0.0979 0.0462 0.0913 0.0637 0.0335 0.0448 0.0259 0.0576
5 16 0.0857 - 0.0983 0.0578 0.1085 0.0702 0.0442 0.0307 0.0251 0.0744
5 32 0.0806 - 0.1253 0.0697 0.0832 0.0405 0.0462 0.0655 0.0712 0.0488

2.5 16 0.0461 0.0309 0.0480 0.0414 0.0433 0.0387 0.0176 0.0205 0.0352 0.0308
2.5 32 0.0503 - 0.0476 0.0288 0.0557 0.0301 0.0208 0.0231 0.0322 0.0282
2.5 64 0.0480 - 0.0486 0.0335 0.0537 0.0266 0.0238 0.0277 0.0446 0.0350
0.5 64 0.0098 0.0076 0.0099 0.0082 0.0102 0.0076 0.0046 0.0045 0.0074 0.0075
0.5 128 0.0113 - 0.0118 0.0081 0.0114 0.0077 0.0063 0.0053 0.0089 0.0092
0.5 256 - - - - - - 0.0066 0.0065 0.0118 0.0106

Tab. M.68.: Mean error in the correlation structure, estimated over 200 log-normal distributed fields in 2D, with a threshold value of 0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.1491 0.1694 0.1263 0.1929 0.1489 0.1373 0.0589 0.0632 0.0748 0.1485
5 16 0.1544 - 0.1112 0.1540 0.1700 0.0730 0.0617 0.1539 0.1124 0.1582
5 32 0.1413 - 0.1810 0.1245 0.2222 0.0950 0.0618 0.0501 0.1282 0.1393

2.5 16 0.1964 0.1650 0.1437 0.1506 0.1440 0.1710 0.1274 0.0890 0.0709 0.1405
2.5 32 0.1717 - 0.1126 0.1257 0.1736 0.1949 0.0622 0.0709 0.1174 0.1647
2.5 64 0.1568 - 0.1433 0.0984 0.1735 0.1469 0.0460 0.1252 0.1655 0.1844
0.5 64 0.2080 0.1561 0.1799 0.1636 0.1778 0.1692 0.0210 0.1048 0.0427 0.1371
0.5 128 0.1608 - 0.1683 0.1534 0.1923 0.1335 0.0504 0.0395 0.1039 0.1427
0.5 256 - - - - - - 0.0671 0.0818 0.1569 0.1844
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Tab. M.69.: Standard deviation of the errors in the correlation structure, estimated over 200 normal distributed fields in 2D, with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.0076 0.0198 0.0131 0.0128 0.0126 0.0145 0.0132 0.0042 0.0338 0.0269
5 16 0.0087 - 0.0124 0.0029 0.0075 0.0079 0.0077 0.0131 0.0227 0.0071
5 32 0.0077 - 0.0086 0.0107 0.0098 0.0070 0.0068 0.0110 0.0132 0.0217

2.5 16 0.0048 0.0147 0.0036 0.0100 0.0070 0.0074 0.0105 0.0061 0.0394 0.0117
2.5 32 0.0089 - 0.0047 0.0109 0.0101 0.0145 0.0153 0.0165 0.0187 0.0139
2.5 64 0.0102 - 0.0042 0.0041 0.0086 0.0087 0.0077 0.0054 0.0087 0.0125
0.5 64 0.0032 0.0024 0.0050 0.0041 0.0032 0.0031 0.0071 0.0022 0.0146 0.0100
0.5 128 0.0036 - 0.0027 0.0028 0.0021 0.0026 0.0046 0.0035 0.0083 0.0111
0.5 256 - - - - - - 0.0030 0.0032 0.0053 0.0125

Tab. M.70.: Standard deviation of the errors in the correlation structure, estimated over 200 normal distributed fields in 2D, with a threshold value of 0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.0146 0.0107 0.0188 0.0173 0.0212 0.0074 0.0283 0.0213 0.0229 0.0307
5 16 0.0162 - 0.0061 0.0017 0.0026 0.0121 0.0036 0.0115 0.0118 0.0047
5 32 0.0082 - 0.0153 0.0149 0.0104 0.0100 0.0044 0.0122 0.0087 0.0131

2.5 16 0.0097 0.0064 0.0092 0.0013 0.0039 0.0107 0.0189 0.0217 0.0207 0.0129
2.5 32 0.0098 - 0.0031 0.0094 0.0133 0.0130 0.0181 0.0129 0.0129 0.0085
2.5 64 0.0063 - 0.0119 0.0125 0.0199 0.0061 0.0117 0.0139 0.0093 0.0089
0.5 64 0.0030 0.0018 0.0028 0.0032 0.0058 0.0068 0.0049 0.0021 0.0079 0.0062
0.5 128 0.0026 - 0.0046 0.0081 0.0017 0.0032 0.0036 0.0016 0.0053 0.0058
0.5 256 - - - - - - 0.0054 0.0039 0.0051 0.0056
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Tab. M.71.: Standard deviation of the errors in the correlation structure, estimated over 200 log-normal distributed fields in 2D, with a threshold value of 0.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.0632 0.0476 0.0735 0.0510 0.0730 0.0505 0.0192 0.0436 0.0214 0.0505
5 16 0.0565 - 0.0535 0.0352 0.0412 0.0572 0.0242 0.0186 0.0256 0.0430
5 32 0.0583 - 0.0417 0.0590 0.0590 0.0421 0.0281 0.0304 0.0346 0.0503

2.5 16 0.0507 0.0453 0.0552 0.0467 0.0523 0.0428 0.0106 0.0231 0.0241 0.0388
2.5 32 0.0576 - 0.0512 0.0454 0.0537 0.0435 0.0246 0.0228 0.0279 0.0383
2.5 64 0.0490 - 0.0450 0.0486 0.0561 0.0418 0.0122 0.0247 0.0390 0.0503
0.5 64 0.0294 0.0240 0.0293 0.0239 0.0292 0.0238 0.0075 0.0120 0.0094 0.0273
0.5 128 0.0298 - 0.0299 0.0234 0.0298 0.0237 0.0112 0.0113 0.0192 0.0316
0.5 256 - - - - - - 0.0133 0.0127 0.0266 0.0338
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Tab. M.72.: Standard deviation of the errors in the correlation structure, estimated over 200 log-normal distributed fields in 2D, with a threshold value of 0.5.

CMD FFT LAS

Cholesky Eigen Modified Eigen Gauss
Lc N Exp SExp Exp SExp Exp SEXP Exp SEXP Exp SExp

5 8 0.0633 0.0799 0.0541 0.0913 0.0649 0.0657 0.0286 0.0347 0.0420 0.0685
5 16 0.0489 - 0.0369 0.0623 0.0538 0.0329 0.0287 0.0678 0.0444 0.0694
5 32 0.0355 - 0.0488 0.0455 0.0671 0.0383 0.0199 0.0390 0.0479 0.0689

2.5 16 0.0574 0.0523 0.0421 0.0492 0.0422 0.0550 0.0433 0.0295 0.0388 0.0487
2.5 32 0.0406 - 0.0265 0.0384 0.0468 0.0555 0.0222 0.0384 0.0340 0.0462
2.5 64 0.0316 - 0.0268 0.0247 0.0354 0.0396 0.0192 0.0413 0.0406 0.0455
0.5 64 0.0276 0.0220 0.0238 0.0236 0.0238 0.0238 0.0063 0.0160 0.0110 0.0186
0.5 128 0.0165 - 0.0173 0.0193 0.0203 0.0168 0.0116 0.0064 0.0149 0.0165
0.5 256 - - - - - - 0.0085 0.0123 0.0180 0.0198
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