<]
TUDelft

Delft University of Technology

Near-optimal control with adaptive receding horizon for discrete-time piecewise affine
systems

Xu, Jia; Busoniu, Lucian; De Schutter, Bart

DOI
10.1016/j.ifacol.2017.08.806

Publication date
2017

Document Version
Final published version

Published in
IFAC-PapersOnLine

Citation (APA)

Xu, J., Busoniu, L., & De Schutter, B. (2017). Near-optimal control with adaptive receding horizon for
discrete-time piecewise affine systems. In D. Dochain, D. Henrion, & D. Peaucelle (Eds.), IFAC-
PapersOnLine: Proceedings 20th IFAC World Congress (Vol. 50-1, pp. 4168-4173). (IFAC-PapersOnLine;
Vol. 50, No. 1). Elsevier. https://doi.org/10.1016/j.ifacol.2017.08.806

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1016/j.ifacol.2017.08.806
https://doi.org/10.1016/j.ifacol.2017.08.806

ScienceDirect

Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

IFAC PapersOnLine 50-1 (2017) 4168-4173

Near-optimal control
with adaptive receding horizon

for discrete-time piecewise affine systems

Jia Xu*

Lucian Busoniu **

*

Bart De Schutter *

* Delft University of Technology, the Netherlands
E-mail: {j.zu-3, b.deschutter} @tudelft.nl
** Technical University of Cluj-Napoca, Romania
E-mail: lucian@busoniu.net

Abstract: We consider the infinite-horizon optimal control of discrete-time, Lipschitz continu-
ous piecewise affine systems with a single input. Stage costs are discounted, bounded, and use a 1
or oo-norm. Rather than using the usual fixed-horizon approach from model-predictive control,
we tailor an adaptive-horizon method called optimistic planning for continuous actions (OPC)
to solve the piecewise affine control problem in receding horizon. The main advantage is the
ability to solve problems requiring arbitrarily long horizons. Furthermore, we introduce a novel
extension that provides guarantees on the closed-loop performance, by reusing data (“learning”)
across different steps. This extension is general and works for a large class of nonlinear dynamics.
In experiments with piecewise affine systems, OPC improves performance compared to a fixed-
horizon approach, while the data-reuse approach yields further improvements.

© 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: piecewise affine systems, nonlinear predictive control, optimistic planning,

near-optimality analysis.

1. INTRODUCTION

Piecewise affine (PWA) systems are an important class of
hybrid systems, defined by partitioning the state and input
space into polyhedral regions and associating with each
region a different affine dynamical description (Sontag,
1981). We focus here on discrete-time PWA systems that
are continuous on the boundary of any two neighbouring
polyhedral regions. These systems can approximate non-
linear smooth dynamics (Storace and De Feo, 2004).

For discrete-time PWA systems, several techniques have
been developed for different kinds of optimal control
problems. Regarding the constrained finite-time optimal
control problem based on quadratic or linear performance
criteria, a solution approach combining multiparametric
programming and dynamic programming is presented by
Borrelli et al. (2005). The optimal solution is a PWA
state-feedback control law. Bemporad and Morari (1999)
translate the aforementioned problem into a linear or
quadratic mixed-integer programming problem that can be
solved by using standard solvers. The constrained optimal
control problem with a linear performance criterion is
considered by Baoti et al. (2006).

On the other hand, optimal control problems with infinite-
horizon costs arise in many fields (Bertsekas, 2012). The
standard approach in model predictive control is to solve
a fixed, finite-horizon problem at each step, and apply the

* This work was supported by the Chinese Scholarship Council, as
well as by the Agence Universitaire de la Francophonie (AUF) and
the Romanian Institute for Atomic Physics (IFA) under the AUF-RO
project NETASSIST.

first input of each of these solutions to obtain a closed-
loop, receding horizon control (Griine and Pannek, 2011).
We followed this approach for PWA systems in Xu et al.
(2016), where we applied a near-optimal, optimistic opti-
mization algorithm (Munos, 2011). However, in problems
where long horizons are necessary, such fixed-horizon ap-
proaches quickly become unfeasible due to uncontrolled
growth of the computation with the horizon.

Here we aim to address this shortcoming, in the context
of PWA systems and optimistic approaches. We thus fo-
cus on optimistic planning (Munos, 2014), rather than
optimization — a class of adaptive-horizon approaches to
solve discounted, infinite-horizon optimal control. Opti-
mistic methods have their roots in reinforcement learn-
ing (Sutton and Barto, 1998) and bandit theory (Auer
et al., 2002). In particular, we use our continuous-action
optimistic planner (OPC) from (Busgoniu et al., 2016b),
since it is the most suitable for PWA systems. As for
the entire optimistic family, the performance guarantees
of OPC place computation in a tight relationship with
the near-optimality of the returned sequence. Unlike in Xu
et al. (2016) however, OPC automatically balances refining
the current-horizon solution, with extending this horizon;
so it finds long solutions which are provably close to the
true, infinite-horizon optimum.

Our first contribution is to adapt and evaluate OPC for
discrete-time continuous PWA systems with a single input.
The stage costs are weighted 1-norms or co-norms of the
deviation of the state and input from the equilibrium
point. This solution directly imports the near-optimality
of OPC at each call, but may not be optimal in receding

2405-8963 © 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2017.08.806

Jia Xu et al. / IFAC PapersOnLine 50-1 (2017) 4168—4173

horizon. Therefore, we introduce a novel extension of OPC
called OPC+, whose main element is remembering and
reusing solutions from previous calls — in a sense, learning
to improve the solution during the experiment, similar to
Busoniu et al. (2016a). Thanks to this, OPC+ guarantees
the near-optimality of the closed-loop solution, without
sacrificing per-call optimality. While motivated by PWA
control, OPC+ and its guarantees hold for any nonlinear
dynamics satisfying the OPC assumptions. An empirical
study is performed for two PWA examples: one where
short planning (control) horizons are sufficient for a good
solution, and another where long horizons are necessary.

This paper is organized as follows. In Section 2, the prob-
lem formulation is presented, and Section 3 introduces the
OPC method for general systems. Section 4 adapts OPC
to PWA systems, and Section 5 describes and analyzes
OPC+. In Section 6, the proposed approaches are illus-
trated in simulations. Section 7 concludes.

2. PROBLEM STATEMENT

Consider the discrete-time PWA system:

Thit = Aga + Byu + g, il ul]T € (1)
where z € X C R"= is the state, u € U C R™ the control
input, A; € R*=*" B; ¢ R"™*™ ¢; € R" are the
system matrices and vectors, and {€; }Jle is a polyhedral
partition of the state-input space. The polyhedron €; is
given as Q; = {z,u|Fjo+ Gju < h; } where F;,G;,h;
are suitable matrices and vectors. The sets X and U
contain all the feasible state and input values. Moreover,
we require that the right-hand side of (1) is continuous on
the boundary of any two neighboring regions.

Let zy be the initial state and define an infinite-length
control sequence o, = (ug,u1,...), in which uy is the
control input at time step k. Let U :=U x U x --- be
the space of infinite-length control sequences.

Given xg, consider the infinite-horizon discounted cost
function:

J(use) = 3 1 glar.) (2)
k=0

where 4% € (0, 1) is the discount factor and g : X xU — R

is the stage cost. The optimal control objective is:

J* = inf J(us)
Uoo EUX

We take the following stage cost:

g(er, ur) = [|Qur |, + [| Ruxl, (4)

where p € {1,00} and Q € R"@*"= R € R"EX"u are
full column rank matrices. So the solution to (3) regulates
the system to the zero equilibrium. Note that by a linear
substitution of the variables, any non-zero equilibrium
point can be translated to the origin, so focusing on
regulation to the origin is not restrictive.

3)

3. BACKGROUND ON OPC

Optimistic planning for continuous actions (OPC) (Bugoniu
et al., 2016b) is geared towards general nonlinear systems
and maximization of cumulative rewards, so we present
it in that setting first. Later, we explain how it can be

4169

adapted to solve the problem in Section 2. Given initial
state g € X, OPC near-optimally solves:

sup Z ’ykr(xk, ug) (5)
k=0

Uoo EUX —

¥ = sup v(Uso) =

Uoo €U
where v, U, X, U have the same meaning as before, v :
U — R is the value function to be maximized, r : X X
U — R is the reward function, f : X x U — X is the
nonlinear dynamics, and v* is the optimal value at xg.

The OPC method works under the following assumptions:

Assumption 1. (i) Rewards are bounded in [0, 1].

(ii) The action is scalar and bounded in the unit interval,
so that U = [0, 1].

(i) The dynamics and rewards are Lipschitz, i.e. 3Ly, L,
so that Va, 2’ € X,u,u’ € U:

I1f(z,u) = f(2,u)|| < Lo — 2| + |u—u])
|r(x,u) — (2’ u)| < Le(|lx — 2'|| + |u — /|)

for some norm ||-|.
(iv) The discount factor v € (1/3,1/Ly).

We describe in Section 4 the impact of these assumptions
in PWA systems, see Bugoniu et al. (2016b) for further
discussion.

OPC performs a search over the space of action sequences
U, which can be visualized as an infinite-dimensional
hypercube, with each dimension k£ the action space at
step k. This hypercube is repeatedly refined into smaller
boxes, each of which gets a unique index 4. A box
U; C U™ is the cross-product of a sequence of intervals
(Ni,O; sy U K1, Uuu,..) where Hik CUand K; — 1
is the largest discretized dimension; for all further di-
mensions p;r = U. Define d;;, to be the length of the
interval p; 3 in box ¢, and u; a sample action taken at
the center of this interval. The center sequence of box 7 is
(©i,0,- -, Ui, K,—1). For each box, the rewards r; ;, obtained
by applying w;; from xy are found by simulating the
system. A box is refined into 3 subboxes by splitting the
interval of some dimension k into 3 equal-length pieces,
see Figure 1, left. !

Uy

251 AT
I Ho

- -4 Hoyp
Uy | iU,y .

s d
,, " @ @ @
g K- k=2
Us

Fig. 1. Left: Example partition of U after 3 splits.
Dimensions 4 and higher are left out of the figure.
Right: Tree corresponding to this partition. (Figure
taken from Bugoniu et al. (2016b).)

~

k=0

The collection of boxes is organized into a tree 7 with the
root consisting of U*°, and where each node has as children
the 3 boxes resulting from its splitting, see Figure 1, right.
The depth h of a box ¢ in this tree is equal to the number

I This number of subintervals is the smallest for which the parent
center sequence can be reused for the middle child.

4170

of splits performed to obtain the box, with the root at
depth 0. At each iteration, OPC refines an optimistic leaf,
i.e. one that maximizes the b-value, defined as follows:

b(i) = v(i) + 4(7) (6)
Here, v(i) = ZkK;gl y¥r; 1. is the (horizon K;) value of the
center sequence, and §(i) = L, Y _pe 7" d; x is the diameter
of box 4, an uncertainty on the values inside that box. Also,
L, =max{L,/(1 —~Ly),1} is a Lipschitz constant of the
value function v. The b-value is upper bound on the values
of sequences inside box i.

Once a maximal b-value box has been selected, a dimension
to refine is chosen that has maximal contribution to the
diameter:

arg max Lv’ykdi’k = arg max vkdi,k (7)

k>0 k>0

In this way, the refinement will minimize the resulting un-
certainty. Although performed over infinitely many dimen-
sions, this maximization will produce at most dimension
K;, since its contribution is larger than for later ones. So,
either an already discretized dimension is refined further,
or the first undiscretized dimension is split.

OPC runs until a budget n of calls to f has been
exhausted, and then returns the center sequence u of
box @* with the largest value wv(i*). Busoniu et al.
(2016b) bound its sub-optimality as follows. The nodes
that OPC may expand at depth h are all in 7, =
{nodes i at depth h | b(i) > v* }. Let k be the asymptotic
branching factor of 7%, defined as limsup,,_, ., |’Th*|1/ m
value k characterizes the computational complexity of
OPC. Then:
Theorem 2. (i) The sub-optimality v* — v(i*) < Omin,
with 0, the smallest diameter of any box expanded.
(ii) f kK =1, Omin = 0(7"1/4“) for a constant a.?
2(r—1)logn

() 16K > 1, by = OV 75) with 7= [o83],

log 1/~

Thus the bound of Theorem 2(i) is available a posteriori,
after the algorithm has finished; while the other two
relations give a priori bounds.

Note that OPC can be empirically extended to multiple
action dimensions, e.g. by always expanding all dimensions
at the selected step k; although the analysis does not yet
cover such extensions.

4. APPLYING OPC TO PWA SYSTEMS

To apply OPC to the optimal control problem of PWA
systems from Section 2, we restrict the system to have
a single input and assume that X and U are bounded
sets. Additionally, the input is translated and rescaled to
the unit interval. This ensures Assumption 1(ii). While
boundedness reduces generality, in many practical systems
physical limitations can be modeled by bounded states

and actions. Further, define L, = max {||QHp , ||R|\p} and
A = max,cx Hx||p Then, since p € {1,00}:
9(@p, up) = |Qukll, + | Rull,

8
< 1Ql, llzxll, + IRl luxl, < LyA+1) &

2 O() means the argument is an upper bound, up to constant and
logarithmic factors.

Jia Xu et al. / IFAC PapersOnLine 50-1 (2017) 4168—4173

Note that L, is a Lipschitz constant in the p-norm for
the stage cost g. Define then the reward function to be
maximized as:

g(x, u))
Ly(A+1)
Since this function is in [0, 1], Assumption 1(i) is satisfied.

r(z,u)=1-

Furthermore, in a similar way to (8), it can be proven
that Ly = max;—1 . » max {||Aj||p7 HBj”p} is a Lipschitz

constant for f. Since r in (9) is clearly Lipschitz with

L, = %ﬂ’ Assumption 1(iii) is satisfied.

Finding a feasible, good value for the discount factor
in Assumption 1(iv) depends on Ly being not too large;
to see this, rewrite the upper bound of Assumption 1(iv)
as 7Ly < 1. This can be interpreted as a stability
requirement: the dynamics need not be strictly contractive
on their own, but must become so when combined with a
shrink rate given by ~.

Finally, solving the maximal-value problem (5) with re-
ward function (9) is equivalent to solving the minimal-
cost optimal control problem of PWA systems (3), which
enables us to directly apply the OPC machinery to this
latter problem. The guarantees from Theorem 2 hold after
appropriately enlarging the bounds by the scaling factor
of the rewards, e.g. Theorem 2(i) gives:
J(@) — J* < Ly(A +1)dmin

with J(@) the finite sum of discounted stage costs up to
the length of w. Since Theorem 2(ii)-2(iii) gives asymptotic
bounds that disregard constants, these remain the same
when applied to the costs.

OPC is usually implemented in a receding-horizon scheme.
The first component of & is applied to the system, resulting
in a new state x1. Subsequently, the procedure is repeated
using x1 as the updated initial state. This process leads
to a receding-horizon controller. However, preserving the
near-optimality guarantees for this closed-loop solution
turns out to be nontrivial, and we dedicate the next section
to this issue.

5. AN IMPROVED RECEDING-HORIZON
ALGORITHM

A desirable property of receding-horizon algorithms is
that closing the loop increases the cumulative reward.
This is difficult for the original OPC. Indeed, examples
can be constructed in which the solution constructed by
OPC when applied at step £ = 1, from z;, has worse
cumulative rewards than the tail of the initial sequence
found at k£ = 0. Here, we consider the general case when
arbitrary-length subsequences may be applied in-between
loop closures/algorithm calls. Let the index of an OPC
call be denoted by j. At call j = 0 OPC finds sequence
ug and applies an initial, head subsequence denoted w{!,
having length Ny with Ny at least 1 and at most the
largest discretized dimension in ug. Then, OPC is called
again at step Ny, where it returns w,, from which a head
subsequence ul! of length N is applied, and so on.

To avoid returning sequences with smaller values, we
propose to initialize the algorithm at call j + 1, which

occurs at step kjy1 = Z;,:O Nj;, with the entire collection

Jia Xu et al. / IFAC PapersOnLine 50-1 (2017) 4168—4173

of tails of uf available at call j. Formally, if ¢} is the
optimal box at call j, then the following memory of tail

subboxes is created:
Mj+1 :{:U'LNJ' X i, Ny X | nodeie./\/lj
s.t. K; > Nj and Uj |k = ui;’k Vk < N]}
where Mgy = 0.

Before describing how these boxes are reused at call j 41,
we ensure that they are actually valid for reuse, which is
nontrivial because OPC only examines boxes of certain
shapes, driven by the dimension selection rule (7).

(10)

Lemma 3. Assume that during box expansion, ties in
dimension selection are always broken in favor of the
smallest k. Then, for any j, boxes in the set M are
valid for OPC when called at step kj41.

Proof. Take any set i expanded at call j, and let k' be
the dimension selected for expansion. (i) If kT < N;, this
expansion has no impact on the shape of sets in M.
(ii) Otherwise:

k' € argmax ~%d;p = argmax ~
K'=Nj,....K; K'=Nj,....K;

FNid g

The first equality holds because kT maximizes the impact
y*d; ;. among all dimensions, so also along dimensions
above N;, and we know it was among these dimensions
since we are in case (ii). The second equality is obtained by
simply dividing the maximized expression by 7™V, which
does not change the result. But this latest maximization
is the one applied by OPC at j + 1, see again (7). Thus,
whenever dimensions larger than INV; are split, they are
split in the same order as they would have been at j + 1.
So the tail subboxes have correct shapes. |

Algorithm 1 OPC+ at call j

1: input: z, f, v, n, L,, memory M;

2: set M; = M; U {root node labeled by box U*>}
3: while computatlon budget n not exhausted do
4 select box if = arg max;e v, b(4)

5: select kT = arg max, ’kaif’k

6: for i’/ =1 to 3 do > expand box it along k'
7: if new box 4’ not found in M; then

8: create new box ¢’ and add it to M,

9: end if
10: end for
11: remove parent box i from M,
12: end while
13: create new memory M, ; with (10)

: output u;, sequence of box i} = argmax;c o, v(1),
and Mj+1

Algorithm 1 gives the modified OPC variant with box
reuse, which we call OPC+. A budget n is allotted per
call. At every split, the algorithm checks whether any of
the resulting boxes are already available in the memory,
and if yes, it reuses them. For simplicity, the algorithm
is stated in a way that only works on the memory,
rather than creating a tree, but it is easy to see that
when M is empty, this way of working reduces to the
original OPC (the memory is always the set of leaves
considered for expansion). For computational efficiency, it

4171

is recommended to remove duplicates from each set M,
when creating it at line 13.

The main advantage of the modified algorithm is that
the cumulative sum of rewards is improved by closing the
loop, as proven next. Let [-] denote the concatenation of
the argument sequences, and v(u) for a finite sequence
u denote the partial discounted sum of rewards of this
sequence, up to its length.

Theorem 4. Consider the closed-loop sequence obtained
up to call j by the applying OPC+ using the receding-
horizon procedure above, u§ = [uf, uf’,... ,ull | u].

Proof. Consider any call j > 1. By construction, v(u;) >
v(uJT_l), because the tail sequence u! ; is among the
sequences considered by the algorithm at line 14. This
leads to:

v([uily, ug))

Then, for any j > j', v(

=o(ull)+ 0(uy)
> U(“f—l) + “YKj_lU(U;F—l) = v(uj-1)

When j > 2, the value of the earlier sequence [uf?, . .. 7u§{_2

is fixed. Overall, we get v(u j+1) > v(uj ¢) which immedi-
ately implies the desired result. |

By taking the limit as j — oo, we obtain e.g. that the
complete, infinitely long closed-loop sequence is better
than any finite one, and in particular than the initial
sequence at the first call v(ul) > v(ug).

Note that the improvement property could have been
obtained simply by remembering the single sequence re-
turned by the algorithm, instead of the entire collection
of tails. However, doing the latter has an additional ad-
vantage: some nodes resulting from expansions may be
found in the memory instead of having to be re-simulated.
Because simulating the nonlinear system — usually by nu-
merical integration — dominates computation in practice,
this should result in computation time savings, at the
expense of some extra memory to store the sequences.

Let the sequence value function and the optimal value at
step k;, computed relative to the state zy;, be denoted
by v; and v} respectively. It is 1mportant to realize
that Proposition 4 does not imply that the sequence u;
returned by OPC+ at steps j > 1 is near-optimal at that
step, with respect to v;. Nevertheless, as shown next this
property is in fact true, so the near-optimality properties
of OPC are preserved by the modification. For the sake of
brevity we only prove the equivalent of Theorem 2(i).

Theorem 5. Let dmin be the smallest diameter of any box
expanded by OPC+, then v} — v](*) < Omin-

Proof. Take an arbitrary iteration of OPC+. Since the
root node corresponding to the entire space is included
in M at the start of the algorithm, it can be proven
by an easy induction that there exists in M some box
i containing an optimal solution. Thus, b(i) > v}, and
since the node it expanded at this iteration maximizes the
b-value, we have b(i') > vy

Furthermore, at the end of the algorithm, there will exist
a descendant node i of it in M so that v;(i) > v;(il).
This is true because the splitting rule divides intervals into
three pieces, so the middle child either inherits the value

]

4172

of the parent box (when an existing dimension is split) or
adds a positive reward to it (when the first undiscretized
dimension is split); thus each expansion creates at least
one better child. Also, the box 77 returned satisfies v;(i}) >

v;(i) and so v (%) > v, (if).

Combining the two inequalities obtained above, we get:

vr —v;(i%) < b(iT) — v(i') = o(")

Since the iteration was arbitrary, the result is proven. W

The difference from the standard proof of Theorem 2(i)
is the need to take into account the memory. Note that
if OPC+ expands a box inherited from the previous step,
that has a smaller diameter than those OPC would have
expanded, then d,;, is smaller for OPC+ than for OPC,
and the near-optimality bound is improved.

The development in this section did not rely on the PWA
structure from Section 2, so the OPC+ approach works in

general, for any nonlinear dynamics and rewards satisfying
the OPC Assumption 1.

6. EXAMPLES

Next, we apply OPC in two PWA examples: one where
short planning (control) horizons are sufficient for a good
solution, and another where long horizons are necessary.
In both examples, we compare with the optimistic op-
timization (OO) approach from Xu et al. (2016). The
OO approach is a branch-and-bound procedure similar to
OPC, but it works for fixed, finite horizons, always refining
all dimensions at the same rate. In contrast, the adaptive
dimension selection procedure of OPC allows it to explore
the space of infinite-horizon solutions, balancing the ben-
efits of refining existing dimensions versus increasing the
horizon. So we expect OPC to perform better in problems
where long horizons are needed.

6.1 Adaptive cruise control

The first example is borrowed from Xu et al. (2016) and
involves controlling the velocity x of a follower car so
as to track the reference signal imposed by a leader car.
The input w is the throttle/brake position. A scalar PWA
model with two regions results, see Xu et al. (2016) for
details. It should be noted that while the tracking cost
function here is different from the regulation cost function
in (4) that we considered above, the algorithm is easy to
empirically extend to the tracking case.?

OO and OPC are compared in receding horizon, setting
the same range of simulation budgets at each call. The
tuning parameter of OO is the horizon N, (the prediction
and control horizons are taken equal) and we try values
between 2 and 6. We aim to minimize the cumulative cost
without discounting. This matches the cost function of
0O, which is also undiscounted. For OPC, we treat the
discount factor as a tuning parameter and try values
0.5,0.6,...,0.9. The results for the best and worst values of
the tuning parameters of the two algorithms are shown in
Figure 2. Note that n values are slightly different between
the algorithms, because they are allowed to finish the last
iteration even when it exceeds the imposed budget. We

3 The theoretical analysis for the tracking case is left for future work.

Jia Xu et al. / IFAC PapersOnLine 50-1 (2017) 4168—4173

200*
\ —e—Np:ZOO
L\ — o6 — N =600
z 150 [©= %
8 \ —¥—~=0.5 opc
Q \ — % — ~=0.9 opc
I}
S 100} !
o
2%
o
© 50 w:—*e=*=:*g:ﬂ§_o

]

0 .
0 1000 2000 3000 4000 5000 6000
n

Fig. 2. Adaptive cruise control results.

report the actual budget they used rather than the initial
value set.

Clearly, short horizons are best in this problem (choosing
a smaller value for ~ is intuitively similar to picking a
shorter horizon, because the discounting gets close to zero
after a smaller number of steps). Furthermore, because of
this property, fixed-horizon OO solves the problem well.
The performance of OPC is however very close to that of
0O, so the loss incurred by applying the “inappropriate”
OPC approach in this problem is small, indicating that
OPC is a good choice for a default algorithm.

6.2 Inverted pendulum

Consider an inverted pendulum composed of a mass m
attached to the end of a rod of length [and actuated by a
DC motor, with the following dynamics:

Ty = 9,09 = J *[mglsin(z;) — bry — K%xy/R + Ku/R]

where x7 is the angle @ € [—m,) [rad] of the pendulum,
x9 is the angular velocity & € [—15m, 157 [rad/s], and
the control input v € [—1.25,1.25][V] is the voltage of
the motor. The other parameters are J = 10~* [kg-m?],
m = 0.03kg], I = 0.042[m], b = 3 - 1075 [Nms/rad],
K = 0.0536[Nm/A], R = 9.5[Q], g = 9.81[m/s?]. The
origin corresponds to the pendulum at rest, pointing up.
With these voltage limits, from certain initial states such
as pointing down, a destabilizing swing-up must first be
performed prior to stabilization, so that a nonlinear, long-
horizon solution is necessary.

The nonlinearity sin(z;) is approximated by a continuous
PWA function by partitioning the range of z; into 3
regions, with breakpoints selected to minimize the squared
difference between the sine function and its approximation.
Then, the continuous-time model is discretized with a
sampling time Ty = 0.05[s]. A discrete-time PWA system
is obtained, in the form of (1) with M = 3 subsystems.

We aim to design a feedback control that brings the
pendulum from the state 2o = [—7,0] " (pointing down) to
[0, 0]—r (pointing up), which is expressed by the stage cost
g(z,u) = ||Qx||; + ||Ru|,, with @ = diag(1,0) and R =
0.001. Figure 3 shows the results with the same algorithm
settings as in the previous example. Long horizons are
better in this problem, and the worst results with OPC
are on par with the best ones using OO, clearly showing
the benefits of OPC.

Jia Xu et al. / IFAC PapersOnLine 50-1 (2017) 4168—4173

500
_ 400 Mz o0
7]
8 -6- NP:G 00
g 300 —%— =08 opc | |
o — % — 4=0.9 opc
o
5]
[%2]
o
)

0 . H \ \ \
0 1000 2000 3000 4000 5000 6000
n

Fig. 3. Inverted pendulum results with OPC and OO for
the worst and best parameters.

2000 3000 4000

n

0 .
0 1000

5000

Fig. 4. Effects of box reuse: gray OPC, black OPC+-.

=)
£ o
3
5 ; ;
200 1 2 2 4 5
£ 1or
s
= 0
-10 ; !
20 1 2 2 4 5
£ of - .
s I
_2 i i
1 1 2 3 4 5
Los
= 0 i i
0 1 2 3 4 5

t[s]

Fig. 5. OPC+ trajectory with n = 2000.

Next, we investigate the effect of reusing tail boxes, by
comparing OPC with OPC+ in the same problem. We
fix v = 0.9 and run the algorithms for a similar range of
budgets as above. As seen in Figure 4, in this case OPC+
has more reliable performance and is better than OPC for
most budgets, except around n = 1500 where OPC finds
some lucky solutions. The smaller and larger cost plateaus
correspond, respectively, to using one or two swings to
bring the pendulum up, see Figure 5 for an example with
OPC+ where only one swing is used.

7. CONCLUSIONS

In this paper we tailored an adaptive-horizon planner
called OPC to the receding-horizon optimal control of
piecewise affine systems. We then introduced a modified
version that provides guarantees on the closed-loop per-
formance, by reusing data among different steps. This
version is general and can be applied beyond PWA systems

4173

to other nonlinear dynamics. In an experimental study,
OPC improved performance compared to the fixed-horizon
approach of Xu et al. (2016) when the problem required
long horizons; while OPC+ was even better.

The main open issue is to exploit the structure of the
PWA problem to derive tighter near-optimality guarantees
than in the general nonlinear case. In particular, we hope
to identify large classes of PWA problems where the
complexity, expressed by the branching factor k, is small.

REFERENCES

Auer, P., Cesa-Bianchi, N., Fischer, P., 2002. Finite-time
analysis of the multiarmed bandit problem. Machine
Learning 47 (2-3), 235-256.

Baoti, M., Christophersen, F. J., Morari, M., 2006. Con-
strained optimal control of hybrid systems with a linear
performance index. IEEE Transactions on Automatic
Control 51 (12), 1903-1919.

Bemporad, A., Morari, M., 1999. Control of systems in-
tegrating logic, dynamics, and constraints. Automatica
35 (3), 407-427.

Bertsekas, D. P.; 2012. Dynamic Programming and Opti-
mal Control, 4th Edition. Vol. 2. Athena Scientific.

Borrelli, F., Baotic, M., Bemporad, A., Morari, M., 2005.
Dynamic programming for constrained optimal con-
trol of discrete-time linear hybrid systems. Automatica
41 (10), 1709-1721.

Busoniu, L., Daniels, A., Babuska, R.., 2016a. Online learn-
ing for optimistic planning. Engineering Applications of
Artificial Intelligence 55, 60-72.

Busoniu, L., Pall, E., Munos, R., 6-8 July 2016b. Dis-
counted near-optimal control of general continuous-
action nonlinear systems using optimistic planning. In:
Proceedings 2016 American Control Conference (ACC-
16). Boston, US.

Griine, L., Pannek, J., 2011. Nonlinear Model Predictive
Control: Theory and Algorithms. Springer.

Munos, R., 2011. Optimistic optimization of a determinis-
tic function without the knowledge of its smoothness. In:
Shawe-Taylor, J., Zemel, R. S., Bartlett, P. L., Pereira,
F. C. N., Weinberger, K. Q. (Eds.), Advances in Neural
Information Processing Systems 24. pp. 783-791.

Munos, R., 2014. From bandits to Monte Carlo tree search:
The optimistic principle applied to optimization and
planning. Foundations and Trends in Machine Learning
7 (1), 1-130.

Sontag, E., 1981. Nonlinear regulation: The piecewise lin-
ear approach. IEEE Transactions on Automatic Control
26 (2), 346-358.

Storace, M., De Feo, O., 2004. Piecewise-linear approxima-
tion of nonlinear dynamical systems. IEEE Transactions
on Circuits and Systems I: Regular Papers 51 (4), 830
842.

Sutton, R. S., Barto, A. G., 1998. Reinforcement Learning:
An Introduction. MIT Press.

Xu, J., van den Boom, T., Busoniu, L., De Schutter, B.,
6-8 July 2016. Model predictive control for continu-
ous piecewise affine systems using optimistic optimiza-
tion. In: Proceedings 2016 American Control Conference
(ACC-16). Boston, US.

