

Delft University of Technology

Passive Screen-to-Camera Communication

Ghiasi, Seyed Keyarash; Kaldenbach, Marco ; Zuniga, Marco

DOI
10.1109/DCOSS-IoT61029.2024.00016
Publication date
2024
Document Version
Final published version
Published in
Proceedings of the 2024 20th International Conference on Distributed Computing in Smart Systems and the
Internet of Things (DCOSS-IoT)

Citation (APA)
Ghiasi, S. K., Kaldenbach, M., & Zuniga, M. (2024). Passive Screen-to-Camera Communication. In C.
Ceballos (Ed.), Proceedings of the 2024 20th International Conference on Distributed Computing in Smart
Systems and the Internet of Things (DCOSS-IoT) (pp. 35-43). IEEE. https://doi.org/10.1109/DCOSS-
IoT61029.2024.00016
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/DCOSS-IoT61029.2024.00016
https://doi.org/10.1109/DCOSS-IoT61029.2024.00016
https://doi.org/10.1109/DCOSS-IoT61029.2024.00016

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Passive Screen-to-Camera Communication
Seyed Keyarash Ghiasi, Marco Kaldenbach, and Marco Zuniga

Delft University of Technology, The Netherlands

Email: {s.k.ghiasi, m.n.j.kaldenbach, m.a.zunigazamalloa}@tudelft.nl

Abstract—A recent technology known as transparent screens
is transforming windows into displays. These smart windows
are present in buses, airports and offices. They can remain
transparent, as a normal window, or display relevant information
that overlays their panoramic views. In this paper, we propose
transforming these windows not only into screens but also into
wireless transmitters. To achieve this goal, we build upon the
research area of screen-to-camera communication. In this area,
videos are modified in a way that smartphone cameras can
decode data out of them, while this data remains invisible to
the viewers. A person sees a normal video, but the camera sees
the video plus additional information. In this communication
method, one of the biggest disadvantages is the traditional
screens’ power consumption, more than 80% of which is used
to generate light. To solve this, we employ novel transparent
screens relying on ambient light to display pictures, hence
eliminating the power source. However, this comes at the cost
of a lower image quality, since they use variable and out-of-
control environment light, instead of generating a constant and
strong light by LED panels. Our work–dubbed PassiveCam –
overcomes the challenge of creating the first screen-to-camera
communication link using passive displays. This paper presents
two main contributions. First, we analyze and modify existing
screens and encoding methods to embed information reliably in
ambient light. Second, we develop an Android App that optimizes
the decoding process obtaining a real-time performance. Our
evaluation, which considers a musical application, shows a Packet
Success Rate (PSR) of close to 90%. In addition, our real-time
application achieves response times of 530 ms and 1071 ms when
the camera is static and when it is hand-held, respectively.

I. INTRODUCTION

In today’s technology-driven world, novel communication

methods are becoming prevalent. An emerging example is

screen-to-camera communication, where data is embedded

into videos in a way that is invisible to viewers, but not to

cameras. This opens up opportunities to increase communi-

cation capacity, since these screens are pervasive and operate

on visible light, instead of the overly-congested and expensive

radio spectrum. Motivated by these advantages, there are

several studies in screen-to-camera communications [1]–[5],

whose focus is on increasing the PSR without affecting the

viewer’s experience.

The research community has achieved large feats in screen-

to-camera communication, but the main downside is the power

cost. As an example, a regular LCD monitor uses at least 26

Watts1. The culprit is its back light, which consumes more

than 80% of the total power. A new generation of transparent

screens are removing that power cost by using ambient light

instead of LEDs. The image quality is not as sharp as in

traditional screens but they consume much less energy, which

is a major advancement in designing novel screens with a low

ecological footprint.

1Based on measurements on a LG LM215WF4-TLE7

Fig. 1: An application of passive displays: a video is shown in

an airport using ambient light. The display remains transparent

and does not block the outside’s view. Image from [6].

Transparent screens are already being deployed in buses,

airports and offices despite being a novel technology. They

are transforming the facades of different environments to

transmit relevant information on demand. For example, smart

windows facing the runway of airports display advertisements

to the passengers, as shown in Fig. 1. However, displaying

plain pictures and videos on these monitors is not exploiting

their potential. In other words, what if the transparent screen

transmitted more information? For instance, while showing

an enticing holiday destination some users may want more

information on discounted hotels or restaurants in that specific

location. To achieve that, a user could point her smartphone’s

camera towards the video and obtain that embedded and
invisible information.

Inspired by advances in screen-to-camera communication,

we present PassiveCam , a system that enables the first wire-

less link between transparent screens and smartphones. While

being advantageous in terms of power consumption, designing

this new link introduces two main challenges. First, compared

to the original back light of a display, ambient light is weaker

and variable, resulting in lower image quality, which in turn

makes the communication link more error-prone. Second,

most state-of-the-art (SoA) works do not consider proper

human-computer-interaction designs. Some studies do not

evaluate the effect of a user’s camera movements, evaluating

their work only with their camera on a tripod; other studies

do not process the videos in real time; and a few systems

rely on visual markers, either static or dynamic, to delineate

the borders of their transmitting area, affecting the system’s

aesthetics.

To overcome the limitations mentioned above, in this paper,

we propose a novel communication system with a passive

screen acting as transmitter and a smartphone (App) acting

as a receiver. In general, PassiveCam provides the following

contributions:

1) A passive screen transmitter. Passive screens are not off-

the-shelf components yet, but we test two transparent screens:

one obtained from a specialized vendor [6] and the other

created by us. We describe how to remove the back-light of

normal displays so the interested researchers can create their

35

2024 20th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT)

2325-2944/24/$31.00 ©2024 IEEE
DOI 10.1109/DCOSS-IoT61029.2024.00016

20
24

 2
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
is

tri
bu

te
d

C
om

pu
tin

g
in

 S
m

ar
t S

ys
te

m
s a

nd
 th

e
In

te
rn

et
 o

f T
hi

ng
s (

D
C

O
SS

-I
oT

) |
 9

79
-8

-3
50

3-
69

44
-1

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

D
C

O
SS

-I
oT

61
02

9.
20

24
.0

00
16

Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 08:44:44 UTC from IEEE Xplore. Restrictions apply.

own passive screen. Our modified screen reduces the power

consumption by 80% . Regarding the modulation process, we

build on top of the SoA, however, we improve their encoding

with three steps: Gaussian kernels, step encoding, and an

optimization of texture analysis.

2) A reliable real-time receiver. Our receiver, running on a

custom Android App, tackles two important points to facilitate

a seamless user experience. First, unlike many prior studies

where a static phone on a tripod is used, we implement a

simple hand motion filter so that users can hold the phone.

Second, to attain a real time response, we propose a new

method to detect the Region of Interest (ROI) and discard

invalid frames.

3) A new application: As far as we know, the use of passive

screens for communication (commercial or modified) has not

been explored before. We evaluate the link’s reliability and

delay with controlled experiments, but we also propose a

novel application. Together with personnel of a company,

we target the following scenario. Considering the massive

windows (passive screens) at airports, multiple types of videos

could be displayed (music, tourism, news, etc) and users may

want to listen to one of those streams. To do so, they could

point their phone toward the desired video, and our passive

link would decode the video ID and the exact time of the

frame to provide its synchronized audio. A prototype of such

application is shown in two videos: one in black-and-white [7]

and the other in color [8]. Overall, PassiveCam has an offline

code success rate of close to 90%. Besides, our real-time

Android application acquires synchronization within 530 ms

when mounted on a tripod and 1071 ms when hand-held.

II. A PASSIVE TRANSMITTER

In order for a display to qualify as “passive”, it requires

using ambient light, in contrast to normal Liquid Crystal

Display (LCD)s emitting light by themselves. Fig. 2 shows

the difference between active and passive screens. Transparent

screens are not widely sold in the consumer market except by

few select companies. Therefore, we will first describe how

a passive screen can be obtained from a normal screen, and

then, we will explain the modulation process.

A. Passive displays

To understand how a passive screen can be made, first,

we need to explain the structure of a typical display. LCDs

are made of several components as shown in Fig. 3. 1© is

an array of Light-Emitting Diode (LED)s or a fluorescent

lamp emitting the monitor’s backlight. Layer 2© is an acrylic

layer dispersing the light uniformly across the monitor. The

dispersive layer scatters light to both the back and front,

but the light that goes into the back side of the monitor is

wasted. Therefore, a reflective layer (3©) is used to recover

this light and send it towards the viewer. At the end, layer 4©
is a transparent glass layer containing pixels and displays the

image to the user.

Based on our measurements, the screen’s backlight con-

sumes more than 80% of the total LCD’s power. Thus, to make

Fig. 2: In passive displays, the backlight is provided by sun-

light. In standard (active) displays, the backlight is provided

by LEDs. If data is embedded in the frames, a smartphone can

decode information with screen-to-camera communication.

Fig. 3: Layers and components inside an off-the-shelf monitor:

1© an LED or lamp, 2© a light dispersion layer, 3© metallic

reflective layer, 4© a transparent LCD glass containing pixels

a passive screen, we need to remove all components except

layer 4©. It is important to note that the interface that controls

the display is only connected to layer 4©, which contains the

pixels. Thus, it can still show pictures and videos. The process

required to disassemble a screen is not complex and can be

done with any LCD, however, it has to be done carefully to

avoid damaging the glass layer. An example of our passive

screen, placed over a window, is shown in the videos of [7]

and [8].

Another type of passive display we use is a “smart window”

[6]. Smart windows have similar operating principles to the

layer 4© of a monitor. Nevertheless, they are optimized to

cause less attenuation to the light, resulting in more trans-

parency and a higher contrast. This lower attenuation of light

comes at a cost: smart windows only provide black-and-white

images. To show colored pictures, normal monitors have color

filters on their pixels, which dissipate light excessively. As a

result, a smart window is made without these color filters.

On the contrary, a modified LCD looks darker than a smart

window, providing in a lower Signal-to-Noise-Ratio (SNR)

when used as a transmitter.

Overall, a smart window is optimized to operate as a black-

and-white transparent screen, however, they are not easily

accessible yet. Therefore, we evaluate both types of displays.

Besides, we develop our final application on a modified

display to show that a passive link can also be made without

a high-end smart window.

B. Data embedding

Embedding data into videos has been considered by several

works [1]–[4], all of which use active screens. In this section,

we first present the basic principles of data embedding, and

then, we describe how we build upon these SoA.

1) Basic principles: Data embedding exploits the slow

response of human eyes. If a sequence of colored pixels

are shown fast enough, the human eyes would perceive the

36

Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 08:44:44 UTC from IEEE Xplore. Restrictions apply.

average color. Based on this principle, we present a general

encoding algorithm that reduces visual effects to human eyes.

An algorithm that embeds data takes two main inputs: a

video with frames indexed by f0, ...fn, and the data that has

to be encoded in those frames. In visual communications, data

is represented by binary frames. A binary frame is similar

to a Quick Response (QR) code showing a checkerboard

pattern. To take advantage of the basic principle above, the

data encoding algorithm works as follows. First, every frame

in the original video is duplicated. Then, a modulation value

of Δ is calculated for each pixel. The pixel at location (x,y)–

denoted by fi(x, y)–in the first frame is then increased by

its respective Δ(x, y), i.e. f+
i (x, y) = fi(x, y) + Δ(x, y).

In the other frame, the modulation values are subtracted, i.e.

f−i (x, y) = fi(x, y)−Δ(x, y). The resulting f+
i and f−i are

called complementary frames, and if played fast enough, the

viewer’s eyes shall average them to see the frame fi, although

modulated frames are being displayed.

Regarding the creation of binary frames, the SoA proposes

custom procedures, however, we opt for QR codes for two

reasons: (1) They are mature and well-developed, thus can be

easily integrated into an application, and (2) The implemen-

tations are already optimized and tested, hence reducing the

overhead of designing a receiver pipeline.

2) Lightness modulation: The binary frame indicates the

location of the pixels that need to be modulated, but it does

not state how to derive Δ(x, y). For this, the SoA proposes

various modulation schemes [1]–[4]. We build upon schemes

that modulate lightness instead of color, as our smart window

only operates in black-and-white.

Several approaches use color spaces to guide the modulation

process. The CIELAB standard divides the color space into

two main dimensions: lightness (L∗) and color (a∗, b∗). In our

case, to modulate a given pixel, the lightness is changed by

ΔL∗. Following the complementary modulation above, if a

pixel falls in a white region of the QR code, we set the its

Δ(x, y) to +ΔL∗. Otherwise, it is set to −ΔL∗. Therefore,

for each frame, we two complementary modulated frames

are generated. Next, we first describe the building blocks we

borrow from the SoA, ChromaCode [2], and after that, we

describe our improvements.

Building blocks from the SoA. ChromaCode’s key con-

tribution is to show that the parameter ΔL∗ depends on the

human perception of color and the texture around a pixel. The

human perception is self explanatory. Regarding the texture,

for instance, changes in lightness are less perceptive in rough
images (like rocks) than in soft images (like clear skies). Thus,

the same modulation depth ΔL∗ would affect the flicker effect

of each pixel differently.

Step 1: Perception-based derivation of ΔL. To determine a

proper change of lightness ΔL∗1 for a pixel location (x,y),

ChromaCode employs the CIEDE2000 formula to take human

perception into account. The complete formula is explained in

[2]. Below, we present a re-arranged equation that suits our

purpose. Denoting L∗1(x, y) as the lightness of pixel (x, y), kL

as a parameter to compensate for different viewing conditions,

and ΔE00 as the perceived difference in color between two

complementary pixels; the modulation depth ΔL∗1(x, y) is

given by:

ΔL∗1(x, y) = kL[1 +
0.015(L∗(x, y)− 50)2√
20 + (L∗(x, y)− 50)2

]ΔE00 (1)

In the above equation, L∗1(x, y) is given for every pixel

and kL is set to 1. The important part is to determine ΔE00.

A large value increases the signal’s SNR but also the flicker

effect. A ΔE00 between 1 and 2 results in acceptable flicker

levels.

Step 2: Texture-based adaptation of ΔL. In the prior step,

ΔL∗ considers only the perceived difference in color ΔE00,

but not texture. This step estimates the texture of a pixel area

by measuring how abruptly the pixels change. The bigger the

changes, the rougher the texture, and the less obvious the

flicker effects.

A common approach to calculating texture is Regional Tex-

ture Analysis, which constructs a Gray Level Co-occurrence

Matrix (GLCM) for every pixel. Based on this matrix, one can

calculate the contrast C(x, y) in a pixel area. The construction

of the GLCM matrix and contrast is detailed in the appendix.

Using this method, ChromaCode [2] further proposes an

average texture metric T (x, y) around pixel p(x,y):

T (x, y) =
C(x, y)

S(x, y)
(2)

where C(x, y) is the contrast and S(x, y) is the number of

pixels in a n× n area around pixel (x, y). Based on T (x, y),
the following scaling parameter α(x, y) is derived to adjust

the modulation depth based on texture:

α(x, y) =
T (x, y)

Tmax
(1− k) + k, (3)

where Tmax is the maximum value of T (x, y) in the frame,

and k is a parameter with a default value of 0.5.

In the end, the modulation depth of a pixel ΔL∗2(x, y) is

determined by the color perception ΔL∗1 and texture α(x, y).

ΔL∗2(x, y) = ΔL∗1(x, y) · α(x, y). (4)

This value modifies the lightness of each pixel in the video.

Improvements over the SoA. The SoA provides a valuable

starting point to embed information, but there are a few

shortcomings that need to be improved for PassiveCam .

The SoA relies on better transmitters, with constant strong

light; and better receivers, with cameras having 120 or 240

Frames Per Second (FPS). Our passive transmitter has weak

variable light, and the phone we use has 60 FPS (to develop

a more inclusive system). These two differences cause more

flicker effects due to variable lighting conditions and a slower

modulation. To ameliorate these flicker effects, we propose

two improvements.

Improvement 1: Gaussian kernels. Given that the sharp bor-

ders in the binary frames cause noticeable artefacts, we

apply a Gaussian kernel over the binary frame to smooth the

37

Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 08:44:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Timeline of step encoding versus standard encoding.

sharp transitions. This process blurs the borders, making the

embedding less noticeable, as surveyed in Section IV-E.

Improvement 2: Step encoding. In screen-to-camera commu-

nication, the frame rate of the receiver (camera) must be the

same or higher than the transmitter’s (screen). There are still

many smartphones limited to capturing at 30 FPS in real-time.

In this case, the screen must also transmit at a maximum of

30 FPS. This limitation causes the capacity of most screens

with 60 or 120 FPS to be underutilized. Therefore, we propose

a method to use this extra frame rate for the sake of flicker

reduction. In the SoA, a modulated pixel changes from +ΔL∗

to −ΔL∗, making for an abrupt change of 2ΔL∗. However,

if the screen can work at a higher rates than the camera, the

encoding can be done in smaller, giving the impression of

a smoother transition. For instance, let us consider a display

with 120 FPS. If we aim for the transmission of binary frames

at 30 FPS, a trivial configuration is to have two frames with

+ΔL∗ and two frames with −ΔL∗. On the contrary, we can

have one frame with no modulation, one frame with +ΔL∗,
another frame without modulation, and the last frame with

−ΔL∗. In this way, the lightness transition between frames

is reduced by half, from 2ΔL∗ to ΔL∗, ameliorating flicker

effects. The trivial modulation and and the step encoding are

both shown in Fig. 4 for this example.

Improvement 3: Optimized texture analysis. Our third im-

provement is related to optimizing the computational per-

formance. Embedding information on videos requires several

signal-processing steps. The most demanding step is the

texture analysis done with the GLCM matrices. This high

overhead would not be a problem if data was embedded

only once. However, for applications that require periodic

encoding, potentially in real-time, it is worth using the op-

timized method presented in Section VIII, which can reduce

the encoding time by a factor of 500.

III. DECODING

To decode a video, a smartphone’s camera is used. We

consider two scenarios: offline and real-time decoding. The

offline process first records the video and then recovers data. In

contrast, the real-time process starts recovering data as soon as

the frames are captured. The real-time process targets realistic

scenarios of a user receiving data from the screen, and the

offline process aims at evaluating the encoder’s performance,

regardless of the processing power of a user’s phone.

A. Offline decoding

For the offline decoding, we mount a smartphone on a

tripod, and its camera records the encoded video, as described

in Section II-B. Next, the files are transferred to a PC for data

extraction using the following processing steps:

Step 1) Adjusting the camera’s frame rate: As stated by the

Nyquist law, the sampling rate should be at least twice the

highest frequency in the transmitted signal. With complemen-

tary modulation, the highest frequency is half the modulation’s

frame rate. Thus, if the camera captures data with at least the

same frame rate as the video, Nyquist is satisfied. Capturing

at a higher rate can be advantageous as there is less chance

of frame loss due to camera jitter. However, rolling shutter

effects might become present.

Step 2) Adjusting the camera’s ISO and shutter speed: ISO

is the sensitivity of the camera’s sensor to light, and the

shutter speed is the duration of the sensor’s exposure to light.

In CMOS image sensors, there is a chance of capturing a

rolling shutter effect, depending on the shutter speed. Usually,

increasing the shutter speed (reducing the exposure) removes

this effect. However, it darkens the pictures, resulting in

the loss of encoded data. Hence, by increasing the ISO,

brightness can be adjusted again. Based on the ambient light,

these values can differ. In Section IV, we do experiments

using different levels of ISO and shutter speed to find the

best setup.

Step 3) Data extraction: In Section II-B, we mentioned that

the encoding algorithm makes complementary frames: if

in frame i (denoted by f+
i), the pixel (x,y) has a light-

ness of Li(x, y)
∗ ± ΔLi(x, y)

∗, the lightness of the (x,y)

pixel in its complementary frame (denoted by f−i) will be

Li(x, y)
∗ ∓ ΔLi(x, y)

∗. Therefore, subtracting f+
i and f−i

yields a new frame with pixel values of ±2×ΔLi(x, y)
∗. This

last frame contains the encoded QR information. Considering

this differential process, we implement the decoder.

Following Step 1, we assume that the camera’s frame

rate is equal to the transmitter’s, thus, each frame is cap-

tured once and no frames are missed2. As a result of the

matching rate between the screen and camera3, the receiver

has all the frames and their complements in order, i.e.

{..., f+
i−1, f

−
i−1, f

+
i , f−i , ...}. Then, we subtract all captured

frames from the one before. Our goal is to keep the result

when a frame is subtracted from its complement. However, an

important point is that the receiver cannot know in advance

which frames are complementary. Therefore, in every other

subtraction, it operates on frame i (f+
i) and the complement of

the previous (non-matching) frame (f−i−1), yielding a corrupt

QR code since two different binary frames are subtracted.

As we will show in Step 5, these corrupt frames can be

detected and do not pose any problems besides consuming

the decoder’s time.

To generalize our assumption about the frame rates, if the

camera captures at a higher rate, there will be more instances

of the same frame. In that case, subtracting consecutive frames

2This assumption helps simplify the explanation. In practice, some frames
will be missed, but they can be recovered using error correction codes

3Later, we generalize the decoding procedure for higher camera frame rates

38

Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 08:44:44 UTC from IEEE Xplore. Restrictions apply.

sometimes results in a dark image, i.e. when the captured

instances of the same frame are subtracted.

Step 4) ROI detection: Since the binary codes may not cover

the entire frame, a captured video will likely contain both en-

coded pixels and other surroundings, including non-modulated

regions of the video. Before passing the pixels to a QR

decoder, the region containing valid data has to be identified.

Previous works use visual markers around a screen so that the

ROI can be easily detected, but we use a simpler technique.

Going back to Step 3, we notice that in subtracted frames,

all regions that are not encoded (shifted by ΔL∗) have a

lightness of 0, as their pixel values are the same as in their

complementary frames. Using this fact to determine our ROI,

we just need to find the smallest region inclusive of all pixels

with a non-zero lightness, which is a simple task in image

processing.

Step 5) QR decoding: This is the last step to extract binary

data from pictures. For offline decoding, we use a QR decoder

library in Python, and process the ROIs found in Step 4.

However, as mentioned in Step 3, every other subtracted frame

contains corrupt data. This does not pose any problems in

offline decoding, since QR codes have checksums and corrupt

frames can be detected and dropped. However, attempting to

decode those frames delays the processing, which becomes

problematic in a real-time system, which will be discussed

below.

B. Real-time decoding

After validating the encoding with the offline process, we

implement the receiver pipeline on a smartphone to build a

real-time link. When a person uses the phone in real-time, the

receiver faces extra challenges mentioned below.

1) Hand movement filtering: A user, unlike a tripod, cannot

hold a phone completely steady. Therefore, we have to remove

the effect of camera movements before decoding. To address

this dynamic, we implement a simple hand motion filter that

uses prominent points in consecutive frames as anchors, and

calculates a matrix to map these prominent features between

frames. By applying the inverse transform to the shifted image,

its pixels can align well with their counterpart in the other

frame, hence alleviating the hand movement effect.

2) Latency optimization: As mentioned before, subtracting

two non-complementary frames yields undecodable QR codes.

Following the method in Step 3, undecodable codes would

appear in every other subtracted frame. If the corrupt data

is speculated preemptively, it can be discarded right away,

without waiting for the QR decoder to do so. Such receiver

is called to be synchronized.

To acquire synchronization, we build upon the observation

that the correct frames are alternating, therefore, at the be-

ginning, the pipeline makes an attempt to decode all frames,

corrupt and healthy, but soon after the first successful decod-

ing, the pipeline sends every other frame to the decoder, and

discards the rest. Some factors, such as camera jitter, might

result in losing this synchronization over time. Therefore, we

(a) Active monitor (b) Smart window

Fig. 5: Setup of the experiments.

(a) Active monitor at 60 Hz (b) Passive Monitor at 30 Hz

Fig. 6: Decoding performance on active and passive monitors.

should perform periodic checks, and if the decoding error

is above a threshold, a synchronization has to be performed

again.

IV. EVALUATION
A. Core setup

In our experiments, we use three screens: The first

screen is an active (normal) LCD that we use as a base-

line to compare with passive displays (Fig. 5a), the sec-

ond one is a modified passive display obtained from an

LG LM215WF4-TLE7 monitor using the procedure of Section

II, and the third one is a smart window obtained from a

manufacturer [6]. The passive screen and the smart window

do not emit any light, therefore, we install them in front of

our office’s window, as shown in Fig. 5b. On the receiver

side, a smartphone camera is placed at various distances up

to 1.5 m from the screen. Using this setup, we carry out the

experiments described below.

B. Performance in cloudy winter days

The fundamental difference between active and passive

screens is the backlight source. During the day, sunlight

can range from one thousand Lux on a very cloudy day to

100 kLux on a clear day. With normal sunlight, our modified

passive screen and the smart window work well. However, it

is important to assess how different passive screens perform

under unfavorable lighting conditions.

To have a controlled scenario, we use offline decoding

during a cloudy winter day. In these tests, we encode a single

QR code in a video with different levels of visibility. We

sweep the ΔE00 value in Equation 1 from 1.0 to 3.0 in steps

of 0.2, yielding different ΔL∗ to embed the QR codes. This

video is displayed on the three monitors explained above, and

the results are discussed next.

1) Active display: First, we use the active monitor as a

benchmark with a frame rate of 60 FPS. A camera is installed

on a tripod at a distance of 50 cm from the monitor capturing

videos at 60 FPS. For each transmitted video, we set the

camera to work with four different combinations of ISO and

shutter speeds. Then, the decoding pipeline mentioned in Sec-

tion III-A is used to calculate the PSR. Fig. 6a shows the link’s

reliability (PSR) as a function of modulation depth (ΔE00).

39

Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 08:44:44 UTC from IEEE Xplore. Restrictions apply.

The four camera settings are denoted by the tuple (ISO, shutter

speed), with the shutter speed being in seconds. Among the

four combinations, (50,1/90) results in the best PSR, which is

about 80% for ΔE00 values above 2.0. However, if ΔE00 is

above 1.8, the encoding becomes gradually visible to people.

The problem is that if we use this lower value of ΔE00, the

PSR drops to about 50%. Hence, overall, with an active screen

at 60 FPS, we get around 80% PSR but causing some flicker.

2) Smart window: For this step, the videos are the same but

the smart window is bigger than the active display. To capture

the whole monitor, we place the camera at a distance of 1.5 m.

The smart window has a maximum frame rate of 30 FPS,

therefore, we also capture videos at 30 FPS. The results are

shown in Fig. 6b. In these experiments, only one (ISO, shutter

speed) setting worked reliably. The results are better than with

the active monitor, around a 90% PSR with a ΔE00 above

2.0. This improvement is due to the lower frame rate since

it ameliorates the rolling shutter effect. Overall, despite the

low sunlight conditions, the active screen and smart window

provide comparable performance. This is thanks to the smart

window’s emphasis on reducing attenuation but at the cost of

working only in black-and-white.

3) Modified screen: The active display and the smart

window could transmit data packets with various PSRs, as

discussed earlier. However, our modified screen could not

operate reliably because it attenuates more light than the smart

window, as mentioned in Section II. This low performance,

however, is only for very low lighting conditions, the demo

in the videos is done with our modified screen under normal

sunlight conditions. The advantage of our modified screen is

that it is obtainable from any monitor.

C. Real-time decoding

In Section I, we mentioned a sample application for passive

screens that synchronizes the audio of a smartphone to a

displayed video. In this section, we develop a real-time An-

droid application using the decoding techniques described in

Section III and benchmark its performance. Unlike the offline

decoding used in the prior evaluation, a real-time system

must have low response times to keep the user engaged.

According to studies in this area [9], the maximum allowable

response times and their interpretations are listed in Table I.

These thresholds are marked with vertical red dashed lines

on all graphs in this section. To measure the response times,

we calculate the Cumulative Distribution Function (CDF)

of successfully decoding a packet within a given time. The

response time has a positive correlation with reliability (PSR),

i.e. a link of better quality has a shorter decoding time.

However, this depends on the phone’s processing capabilities

and the parameters used in data embedding. The phone we

use is a medium-end device (Xiaomi Redmi Note 10 4G) and

the Android application is optimized with multithreading to

take advantage of the processing power.

In this section, we run the tests on our modified display

to provide an upper bound of response times, since the smart

Response time User’s perception of the system

< 300 ms Instantaneous
300 ms to 1 s Immediate

1 to 5 s Transient, not immediate, but the
user does not disengage from the activity.

TABLE I: User’s experience thresholds according to [9]

window performs even better, as described earlier. The en-

coding parameters we control and their effect on the system’s

performance are mentioned below.

1) The impact of ΔE00: This value determines how per-

ceptible the encoded data is. We sweep this parameter from

a low value of 1 to a large value (most visible) of 3 in steps

of 0.5. Then we measure the cumulative distribution of the

response times. The results are shown in Fig. 7b. Interestingly,

the CDF curves for ΔE00 ∈ {2, 2.5, 3} are similar. There is

a 95% chance of successfully decoding packets within 265

ms, 269 ms, and 267 ms, respectively. However, when ΔE00

is decreased to 1.5, the response time increases to 400 ms to

have the same 95% success. Furthermore, for ΔE00 = 1,

the response time further escalated to 1305 ms. Although

increasing the ΔE00 results in a shorter response time, it also

makes the QR codes more visible. In Section IV-E, we perform

a survey on visibility, where we show that with ΔE00 = 1.5,

the users only perceive a slight improvement compared to

ΔE00 = 2.0. Therefore, considering that the response time

is substantially better in the latter case, we opt for a ΔE00

value of 2.0 in the rest of the experiments.

2) Redundancy of embedded data: A single QR code

occupies a small space and could leave large regions of a

frame unused. By duplicating the QR code, the unused space

can be utilized in favor of redundancy. To investigate this

approach, the performance of a single QR code is compared

with that of a video containing six QR codes copied all over

the frame. As shown in Figure 7a, the CDF of a single QR

code has a probability of 95% at a response time of 805 ms,

while the link with 6 QR codes has the same reliability at

267 ms. This is a substantial improvement. As a result, we use

the version with 6 QR codes in the rest of the experiments

despite being more noticeable to a user. In our survey, we

will show that the slight increase in visibility is a valuable

trade-off to achieve a considerably lower response time.

3) Hand motion filter: To verify the effect of hand motion

on the response time, we do three experiments: (i) the phone

is placed on a tripod and the filter is not active, (ii) the phone

is held by hand and the filter is still not enabled, and (iii)

the phone is held by a user and the hand motion filter is

enabled. The results are shown in Figure 7c. In experiment

(i), the CDF reaches a probability of 95% at 267 ms. In

experiment (ii), the same success probability is achieved at

1737 ms, a substantially longer period. This can be attributed

to unaligned frames, causing the phone to struggle to decode.

Finally, in experiment (iii), a remarkable improvement is seen,

with a CDF of 95% at 372 ms. This represents a significant

enhancement compared to the configuration without the hand

motion filter and is only slightly inferior to the static setup.

40

Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 08:44:44 UTC from IEEE Xplore. Restrictions apply.

(a) Single QR vs. Multiple QR (b) ΔE00 variations (c) Static vs. handheld (d) Error correction levels

Fig. 7: Response times for different implementation methods. The thresholds of Table I are marked with red dashed lines.

(a) Original vs. Gaussian kernel (b) Original vs. step encoding

Fig. 8: Response times of different encoding methods.

Fig. 9: Response time of final system on passive display

4) QR error correction level: When investigating the effect

of ΔE00, we mentioned that a ΔE00 = 2 satisfies the real-

time requirements but it is not invisible. On the other hand, a

ΔE00 = 1 performs poorly in terms of response time while

making the codes almost invisible. To investigate this trade-off

further, we look into the inherent Reed-Solomon (RS) error

correction of QR codes. We hypothesize that by increasing the

error correction, the unrecoverable codes with a ΔE00 of 1

might become detectable, resulting in a lower response time.

In this regard, we set the ΔE00 to 1, and use four different

RS levels on the QR codes. The CDFs of these experiments are

shown in Fig. 7d. We can see that none of the curves provide

good performance according to the real-time classification of

Table I. For a CDF of 85%, the response times with different

error correction levels are: 7% RS error correction yields

a response time of 532 ms, 15% results in 545 ms, 25%

gives 528 ms, and 30% results in 530 ms. Contrary to the

hypothesis, all error correction levels demonstrate comparable

performance. Considering these results, it is better to use a QR

code with 7% RS error correction as it occupies less space

and makes room to place more data.

5) Gaussian kernel: Applying a Gaussian kernel to the

binary frames makes the encoded data less visible. To verify

its effect on response time, we compare two cases with and

without a kernel. The results are shown in Fig. 8a. Without a

Gaussian kernel, the CDF reaches 95% at 266 ms. With the

kernel, the response time does not vary and is 267 ms. Hence,

the Gaussian kernel is harmless to the response time while it

reduces the visual effects of the encoding.

6) Step encoding: The CDF of the response times for

transmitters with and without step encoding is shown in

Figure 8b. When step encoding is enabled, a CDF of 95%

is reached at 244 ms. When disabled, it gives a response time

of 267 ms. Hence, this enhanced encoding does not affect the

response time much and is safe to use.

D. Final implementation

Our final implementation uses the results from the last

sections. The video embeds 6 QR codes with an error cor-

rection of 7%, the ΔE00 is set to 2.0, and a Gaussian filter is

applied. The real-time pipeline is tested with a passive screen

and a camera in two conditions: hand-held and on a tripod.

These results are shown in Fig. 9. Based on the measured

CDF, there is a 95% chance of decoding packets successfully

within 530 ms using a tripod and 1071 ms when held by hand.

According to [9], these response times are both classified

within or very close to the immediate response category

E. Survey results

Although we propose methods to hide the encoding, vi-

sual distortions are inevitable since videos are modified. To

evaluate modifications, we perform a survey where we place

two videos side-by-side: one with and the other without the

intended modification. Then, we asked a total of 20 users to

compare the flicker of the two videos by choosing one out of

five levels. The results are shown in the box plots of Fig. 10.

In these experiments, we consider the following four cases:

a) Apply a ΔE00 of 1.5 or 2? As mentioned in Section IV-C,

there is a significant advantage in the response time when we

move from a ΔE00 of 1.5 to 2. It is important to assess the

user perception as well. As shown in Fig. 10a, the median of

users said there is “slightly less flicker” for the lower value of

ΔE00. Considering this minor effect, and the big advantage in

the response time of ΔE00 = 2, we opt for this higher value.

b) Apply Gaussian kernel or not? Following Fig. 10b,

applying a Gaussian kernel helps reduce flicker.

c) Apply step encoding or not? Following Fig. 10c, users

see a better performance when step encoding is applied.

d) Use single or multiple QR codes? Using more QR codes

occupies more space in a video, which can cause more flicker

as validated by the survey in Figure 10d. However, this flicker

is not significant. Considering its lower response time, the

redundancy of QRs is worth implementing.

F. PassiveCam in action

In Section I, we mentioned that passive screens are being

deployed more and more in public places. This opens op-

portunities for new applications. Together with members of

a company, we propose the development of a real-time link

for the following application: when a video is being publicly

displayed, it is usually difficult for a user to hear quality audio.

41

Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 08:44:44 UTC from IEEE Xplore. Restrictions apply.

(a) ΔE00 = 1.5 vs ΔE00 = 2.0 (b) Effect of Gaussian kernel (c) Effect of step encoding (d) Single QR vs. 6 QRs

Fig. 10: Survey results comparing flicker for different parameters and encoding techniques.

Therefore, we use a phone to synchronize the video so users

hear the video’s sound on their phone. To make this system,

we encode synchronization packets–i.e. frame numbers of

the video–unobtrusively using the methods discussed before.

Then, with our real-time application, the user’s phone can read

the hidden messages and play the audio accordingly. A demo

of this application for a black-and-white and a color video

has been put in the links of [7] and [8]. More details of this

implementation are described in Appendix VIII-B.

V. RELATED WORK

Unobtrusive screen-to-camera communication. Numer-

ous studies have explored imperceptible data encoding in

videos [1]–[5], [10]–[12]. The pioneering works in this area

are InFrame [3] and its subsequent improvement InFrame++

[4]. They are the first to exploit the flicker fusion property of

human eyes with complementary frames. However, Texture-

Code [5] identified that some flicker was present in those stud-

ies. The flicker appeared in smooth areas, hence, TextureCode

proposed texture analysis to selectively pick the regions where

data should be embedded. The latter improves invisibility

but it sacrifices throughput, as it only uses areas with rough

texture. To maintain invisibility while leveraging the entire

frame, ChromaCode combines luminance with texture analysis

[2]. Instead of using a uniform delta value to modulate the

entire frame, ChromaCode adjusts the delta based on the

expected human perception of color and texture. AirCode [1]

employs the same video encoding as ChromaCode with the

addition of an audio channel transmitting metadata, which

compensates for the more error-prone screen channel. Given

ChromaCode advancements and the fact that it uses lightness

modulation instead of color, we used it as the basis of our

work.

Other papers explore color domains to achieve invisibility.

Deeplight [10] applies the delta value only to the blue channel

as human eyes are less sensitive to blue light. Uber-In-Light

uses both the blue and red channels to embed data [11],

modifying the green channel just to compensate for the visual

distortions. Other studies focus on chromaticity, considering

that the maximum perceptible chromatic flicker occurs at

approximately 25 Hz [12]. These color based studies are

valuable, however, not applicable to black-and-white smart

windows. Overall, compared to all the above studies, our work

the first to design a system for passive screens. Furthermore,

our system works in real-time with low-end smartphones.

Passive communication with light. Another area that

inspired our work is one using optical devices to modulate

ambient light [13]–[18]. These platforms can work with

photodiodes and cameras but all of them focus on point-to-

point links. To our knowledge, the only paper that moves

towards passive screens is Sunbox [19]. This work employs

a tiny microdisplay (mm in size) to transmit QR codes to a

smartphone via ambient light reflections. However, there is no

video transmission, only QR codes, and the phone has to be

placed statically on a holder at a distance of three centimeters

from the microdisplay.

VI. CONCLUSION

In this paper, we explored a novel screen-to-camera commu-

nication link by using passive displays. Besides, by improving

on top of the SoA, we encoded data unobtrusively in a video,

which was then displayed by our passive and active screens.

We showed that by using a smart phone, this encoded data

could be extracted. As a proof-of-concept, we tested our

custom Android application in a real-time audio synchroniza-

tion scenario. Additionally, we assessed the performance of

this system both in real-time and offline, based on several

factors and user surveys. Overall, our work is the first to

make a step towards new opportunities in passive screen-to-

camera communication domain, paving the way for pervasive

applications such as smart surfaces and in-video advertising.

VII. ACKNOWLEDGEMENTS

This work is part of the LuxSenz project, a TOP-
Grant, Module 1, Physical Sciences with project number

612.001.854, which is financed by the Dutch Research Coun-

cil (NWO).

VIII. ADDITIONAL REMARKS

A. Optimization of texture analysis

In prior literature, regional texture analysis is implemented

by constructing a GLCM for every pixel. GLCM is a known

method that quantifies the texture inside an H ×W window

around a pixel location (x,y) of the image. H and W are

arbitrary numbers denoting the dimensions of the chosen

window. The resulting GLCM has a dimension of Ng ×Ng ,

where Ng is the number of distinct grey levels found in the

image. Therefore, it is possible to obtain large GLCM matrices

depending on the context of an image. Larger matrices have

negative effects on calculations in two directions: (1) They

consume time to calculate and access and (2) they take up

space in the memory. To optimize for these issues, we simplify

the calculations as mentioned below.

Let us denote an element of the GLCM matrix by

p(x,y)(i, j), where (x,y) is the location of the pixel in the

original image and the tuple (i,j) is the index of an element

42

Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 08:44:44 UTC from IEEE Xplore. Restrictions apply.

within the GLCM matrix of that pixel. Following the calcula-

tion procedure of GLCM [2], each p(x,y)(i, j) can be written

as follows:

p(x,y)(i, j) =
1

R(x,y)

H−1∑
r=0

W−2∑
c=0

V (c, r) (5)

where V =

{
1, if L∗(c, r) = i and L∗(c+ 1, r) = j

0, otherwise

where H and W are the respective height and width of

the arbitrary window around the pixel (x,y), and R(x,y) is the

total number of horizontal neighboring in that window. In the

summation, the index pair (c,r) sweeps over all pixels in the

arbitrary window and sets the value of V to 1 only if the pixel

at (c,r) has the lightness of i and its right neighbour has the

lightness j. In short, the element (i,j) of the GLCM matrix

counts pixel pairs in the arbitrary window such that the left

one has the lightness of i and its immediate right neighbour

has the lightness of j.

After this, the contrast equation of the pixel at (x,y) reads

as follows, assuming that H = W = n:

C(x, y) =

Ng−1∑
n=0

n2{
Ng∑
i=0

Ng∑
j=0

p(x,y)(i, j)}, s.t.|i−j| = n (6)

Substituting Equation 5 in Equation 6 gives:

C(x, y) =

Ng−1∑
n=0

n2{
Ng∑
i=0

Ng∑
j=0

1

R(x,y)

H−1∑
r=0

W−2∑
c=0

V (c, r)} (7)

Moving the 1
R(x,y)

factor out of the summation and rearranging

the terms will yield:

C(x, y) =
1

R(x,y)

Ng−1∑
n=0

n2{
H−1∑
r=0

W−2∑
c=0

Ng∑
i=0

Ng∑
j=0

V } (8)

Now the part
∑Ng

i=0

∑Ng

j=0 V will either be 1 if L∗(c, r) =
i and L∗(c+1, r) = j or 0 otherwise. Therefore the equation

in (8) can be simplified to:

C(x, y) =
1

R(x,y)

H−1∑
r=0

W−2∑
r=0

Ng−1∑
n=0

n2 (9)

s.t. |L∗(c, r)− L∗(c+ 1, r)| = n.

Substituting for the value of n in Equation 9 will result:

C(x, y) =
1

R(x,y)

H−1∑
r=0

W−2∑
r=0

(L∗(c, r)− L∗(c+ 1, r))2 (10)

Using Equation 10, we can bypass creating a GLCM for

each pixel to reduce the computational time significantly.

When benchmarked on a Graphics Processing Unit (GPU),

the computational time of the optimized method was 40 ms

for two complementary frames, whereas it was 20190 ms using

the original method of formulating a GLCM for each pixel,

yielding a speed-up of more than 500×.

B. Implementation details of the music application

In this appendix, we describe the details of our application:

a user points his smartphone camera towards the passive

screen while a video is playing. The phone is then triggered to

play the audio synchronized with the video. In our example we

use different songs including the video clip “Coldplay - The

Scientist”. The embedded QR codes contain a song identifier

and its frame’s index. This information is represented by a

JSON string in the form of {‘s’:sid,‘f’:fnum}, where the sid
is an integer representing the song, and fnum is the frame

index of the video. Each song is saved on the smartphone

prior to the experiment. With the sid, the application can select

the correct song, and with the frame number, it calculates the

current time of the video. To synchronize the audio with the

video, the decoded frame number is converted to an absolute

time value in milliseconds (tabs) using the following equation:

tabs =
2fnum
FPSTX

· 1000 (11)

where FPSTX is the screen’s frame rate. Finally, the appli-

cation must compensate for the time taken to decode, which

is measured using the internal clock of the phone, and is

then added to tabs to have an estimate of the current video

timestamp. After this, the phone starts playing the audio from

this calculated time. Thus, the synchronization is achieved.

REFERENCES

[1] K. Qian et al., “Aircode: Hidden screen-camera communication on an
invisible and inaudible dual channel,” in USENIX NSDI, 2021.

[2] K. Zhang et al., “Chromacode: A fully imperceptible screen-camera
communication system.” ACM Mobicom, 2018.

[3] A. Wang et al., “Inframe: Multiflexing full-frame visible communication
channel for humans and devices,” in ACM HotNets, 2014.

[4] A. Wang et al., “Inframe++: Achieve simultaneous screen-human view-
ing and hidden screen-camera communication,” in ACM MobiSys, 2015.

[5] V. Nguyen et al., “High-rate flicker-free screen-camera communication
with spatially adaptive embedding,” in IEEE INFOCOM, 2016.

[6] “Videowindow,” https://www.videowindow.eu/, last accessed: March 11,
2024.

[7] “Demo, black and white,” https://youtu.be/S hxk3TQCmI, 2023.
[8] “Demo, colored,” https://youtu.be/7FoaacEiG60, 2023.
[9] R. Doherty et al., “Keeping users in the flow: mapping system respon-

siveness with user experience,” Elsevier Procedia Manufacturing, 2015.
[10] V. Tran et al., “Deeplight: Robust & unobtrusive real-time screen-

camera communication for real-world displays,” in IEEE/ACM IPSN,
2021.

[11] M. Izz et al., “Uber-in-light: Unobtrusive visible light communication
leveraging complementary color channel,” in IEEE INFOCOM, 2016.

[12] S. Abe et al., “Imperceptible color vibration for screen-camera com-
munication via 2d binary pattern,” in ITE Transactions on Media
Technology and Applications, 2020.

[13] R. Bloom et al., “Luxlink: Creating a wireless link from ambient light,”
in ACM SenSys, 2019.

[14] X. Xu et al., “Enabling practical visible light backscatter communication
for battery-free iot applications,” in ACM Mobicom, 2017.

[15] S. Ammar et al., “Sun-fi: Architecting glass for sunlight data transmis-
sion,” IEEE Communications Magazine, 2023.

[16] Z. Yang et al., “Wearables can afford: Light-weight indoor positioning
with visible light,” in ACM MobiSys, 2015.

[17] J. Li, et al, “Retro-vlc: Enabling battery-free duplex visible light
communication for mobile and iot applications,” in HotMobile, 2015.

[18] S. K. Ghiasi et al., “A principled design for passive light communica-
tion,” in ACM Mobicom, 2021.

[19] M. Chávez Tapia et al., “Sunbox: Screen-to-camera communication with
ambient light,” in ACM IMWUT, 2022.

43

Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 08:44:44 UTC from IEEE Xplore. Restrictions apply.

