

Delft University of Technology

Improving Change Prediction Models with Code Smell-Related Information

Catolino, Gemma; Palomba, Fabio; Arcelli Fontana, Francesca; De Lucia, Andrea; Zaidman, Andy; Ferrucci,
Filomena
DOI
10.1007/s10664-019-09739-0
Publication date
2019
Document Version
Accepted author manuscript
Published in
Empirical Software Engineering

Citation (APA)
Catolino, G., Palomba, F., Arcelli Fontana, F., De Lucia, A., Zaidman, A., & Ferrucci, F. (2019). Improving
Change Prediction Models with Code Smell-Related Information. Empirical Software Engineering, 25
(2020), 49–95. https://doi.org/10.1007/s10664-019-09739-0

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10664-019-09739-0
https://doi.org/10.1007/s10664-019-09739-0

Noname manuscript No.
(will be inserted by the editor)

Improving Change Prediction Models with Code
Smell-Related Information

Gemma Catolino · Fabio Palomba ·
Francesca Arcelli Fontana · Andrea
De Lucia · Andy Zaidman · Filomena
Ferrucci

Received: date / Accepted: date

Abstract Code smells are sub-optimal implementation choices applied by
developers that have the effect of negatively impacting, among others, the
change-proneness of the affected classes. Based on this consideration, in this
paper we conjecture that code smell-related information can be effectively
exploited to improve the performance of change prediction models, i.e., models
having the goal of indicating which classes are more likely to change in the
future. We exploit the so-called intensity index—a previously defined metric
that captures the severity of a code smell—and evaluate its contribution when
added as additional feature in the context of three state of the art change
prediction models based on product, process, and developer-based features. We
also compare the performance achieved by the proposed model with a model
based on previously defined antipattern metrics, a set of indicators computed
considering the history of code smells in files. Our results report that (i) the
prediction performance of the intensity-including models is statistically better
than the baselines and, (ii) the intensity is a better predictor than antipattern
metrics. We observed some orthogonality between the set of change-prone
and non-change-prone classes correctly classified by the models relying on
intensity and antipattern metrics: for this reason, we also devise and evaluate

Gemma Catolino, Andrea De Lucia, Filomena Ferrucci
University of Salerno, Italy
E-mail: gcatolino@unisa.it, adelucia@unisa.it, fferrucci@unisa.it

Fabio Palomba
University of Zurich, Switzerland
E-mail: palomba@ifi.uzh.ch

Francesca Arcelli Fontana
University of Milano-Bicocca, Italy
E-mail: arcelli@disco.unimib.it

Andy Zaidman
Delft University of Technology, The Netherlands
E-mail: a.e.zaidman@tudelft.nl

2 Gemma Catolino et al.

a smell-aware combined change prediction model including product, process,
developer-based, and smell-related features. We show that the F-Measure of
this model is notably higher than other models.

Keywords Change Prediction · Code Smells · Empirical Study

1 Introduction

During maintenance and evolution, software systems are continuously modified
in order to adapt them to changing needs (e.g., new platforms), improve their
performance, or rid them from potential bugs [70]. As a consequence, they
become more complex, possibly eroding the original design with a subsequent
reduction in their overall maintainability [102]. In this context, predicting the
low-quality source code components having a higher likelihood to change in the
future represents an important activity to enable developers to plan preventive
maintenance operations such as refactoring [44, 3, 145] or peer-code reviews
[9, 103, 15, 104]. For this reason, the research community proposed several
approaches in order to enable developers to control these changes [28, 36,
37, 47, 66, 71, 72, 110, 130, 151]. Such approaches are based on machine
learning models which exploit several predictors capturing product, process,
and developer-related features of classes.

Despite the good performance that these existing models have shown, re-
cent studies [63, 96] have explored new factors contributing to the change-
proneness of classes, finding that it is strongly influenced by the presence of
so-called bad code smells [44], i.e., sub-optimal design and/or implementation
choices adopted by practitioners during software development and mainte-
nance. Specifically, such studies have shown that smelly classes are signifi-
cantly more likely to be the subject of changes than classes not affected by
any design problem. Nevertheless, most of the changes done on these smelly
classes do not pertain to code smell refactoring [13, 99, 140].

Based on these findings, we empirically investigate the extent to which
smell-related information can actually be useful when considered in the con-
text of the prediction of change-prone classes, i.e., the prediction of a binary
value indicating whether a class is likely to be frequently changed in the fu-
ture: our conjecture is that the addition of a measure of code smell severity
can improve the performance of existing change prediction models, as it may
help in the correct assessment of the change-proneness of smelly classes. For
severity, we mean a metric able to quantify how much a certain code smell in-
stance is harmful for the design of a source code class. To test our conjecture,
we (i) add the intensity index defined by Arcelli Fontana et al. [41] in three
state of the art change prediction models based on product [151], process [36],
and developer-related metrics [28] and (ii) evaluate how much the new models,
including the intensity index, overcome the prediction capabilities of the base-
line models on 43 releases of 14 large systems. We also evaluate whether the
new change prediction models including the intensity index have better change
prediction than models built with alternative smell-related information such as

Improving Change Prediction Models with Code Smell-Related Information 3

the antipattern metrics defined by Taba et al. [128]. These metrics are able to
capture historical information on code smell instances (e.g., the recurrence of a
certain instance over time). The results show that the addition of the intensity
index significantly improves the performance of the baseline change prediction
models. Moreover, models including the intensity index have a higher accuracy
than the models including the alternative antipattern metrics.

We also observe that intensity and antipattern metrics are orthogonal,
i.e., the predictions made by the two models correctly identify the change-
proneness of different smelly classes. Given such an orthogonality, we then
further explore the possibility to improve change prediction models by devis-
ing a smell-aware combined approach that mixes together the features of the
models used, i.e., structural, process, developer-, and smell-related informa-
tion, with the aim of boosting the change-proneness prediction abilities. As a
result, we discovered that such a combined model overcomes the performance
of the other experimented models. To sum up, the contributions of this paper
are the following:

1. A large-scale empirical assessment of the role of the intensity index [41]
when predicting change-prone classes;

2. An empirical comparison between the capabilities of the intensity index
and the antipattern metrics defined by Taba et al. [128] in the context of
change prediction;

3. A novel smell-aware combined change prediction model, which has better
prediction performance than the other experimented models;

4. A replication package that includes all the raw data and working data sets
of our study [27].

Structure of the paper. Section 2 discusses the related literature on change
prediction models and code smells. Section 3 describes the design of the case
study aimed at evaluating the performance of the models, while Section 4
reports the results achieved. Section 5 discusses the threats to the validity
of our empirical study. Finally, Section 6 concludes the paper and outlines
directions for future work.

2 Related Work

Change-prone classes represent source code components that, for different rea-
sons, tend to change more often than others. This phenomenon has been widely
investigated by the research community [63, 64, 34, 19, 124, 96, 123] with the
aim of studying the factors contributing to the change-proneness of classes.
Among all these studies, Khomh et al. [63] showed that the presence of code
smells makes the affected classes more change-prone than non-smelly classes.
The results were later confirmed by several studies in the field [30, 86, 96, 125],
that pointed out how code smells represent a factor making classes more
change-prone. For instance, Palomba et al. [96] showed that classes affected
by code smells have a statistically significant higher change-proneness with

4 Gemma Catolino et al.

respect to classes not affected by code smells. Our work is clearly based on
these findings, and aims at providing additional evidence of how code smells
can be adopted to classify change-prone classes.

Motoring the classes that are more prone to change might help developers
to be aware of the presence of something wrong that might require some pre-
ventive maintenance operations (e.g., code review [9] or refactoring [44]) aimed
at improving the quality of the source code. In this regard, previous researchers
have intensely investigated the feasibility of machine learning techniques for
the identification of change-prone classes [28, 36, 37, 47, 66, 71, 72, 110, 151].
In the following, we discuss the advances achieved in the context of change
prediction models. At the same time, as this paper reports on the role of code
smell intensity, we also summarize the literature related to the detection and
prioritization of code smells.

2.1 Change Prediction Approaches

The most relevant body of knowledge related to change prediction tech-
niques is represented by the use of product and process metrics as indepen-
dent variables able to characterize the change-proneness of software artifacts
[2, 7, 23, 71, 72, 73, 137, 151]. Specifically, Romano et al. [110] relied on
code metrics for predicting change-prone so-called fat interfaces (i.e., poorly-
cohesive Java interfaces), while Eski et al. [37] proposed a model based on
both CK and QMOOD metrics [11] to estimate change-prone classes and to
determine parts of the source code that should be tested first and more deeply.

Conversely, Elish et al. [36] reported the potential usefulness of process
metrics for change prediction. In particular, they defined a set of evolution
metrics that describe the historical characteristics of software classes: for in-
stance, they defined metrics like the birth date of a class or the total amount
of changes applied in the past. As a result, their findings showed that a predic-
tion model based on those evolution metrics can overcome the performance of
structural-based techniques. These results were partially confirmed by Girba
et al. [47], who defined a tool that suggests change-prone code elements by
summarizing previous changes. In a small-scale empirical study involving two
systems, they observed that previous changes can effectively predict future
modifications.

More recently, Catolino et al. [28] have empirically assessed the role of
developer-related factors in change prediction. To this aim, they have stud-
ied the performance of three developer-based prediction models relying on (i)
entropy of development process [53], (ii) number of developers working on a
certain class [14], and (iii) structural and semantic scattering of changes [32],
showing that they can be more accurate than models based on product or
process metrics. Furthermore, they have also defined a combined model which
considers a mixture of metrics and that has shown to be up to 22% more
accurate than the previously defined ones.

Improving Change Prediction Models with Code Smell-Related Information 5

Our work builds upon the findings reported above. In particular, we study
to what extent the addition of information related to the presence and severity
of code smells can contribute to the performance of change prediction models
based on product, process, and developer-based metrics.

Another consistent part of the state of the art concerns with the use of
alternative methodologies to predict change-prone classes. For instance, the
combination of (i) dependencies mined from UML diagrams and code metrics
[51, 52, 112, 117, 118], and (ii) genetic and learning algorithms [74, 77, 105]
have been proposed. Finally, some studies focus on the adoption of ensemble
techniques for change prediction [25, 58, 67, 75]. In particular, Malhotra and
Khanna [75] have proposed a search-based solution to the problem, adopting
a Particle Swarm Optimization (PSO)-based classifier [58] for predicting the
change-proneness of classes. Malhotra and Khanna have conducted their study
on five Android application packages and the results encouraged the use of the
adopted solution for developing change prediction models. Kumar et al. [67]
have studied the correlation between 62 software metrics and the likelihood
of a class to change in the future. Afterwards, they build a change prediction
model considering eight different machine learning algorithms and two ensem-
ble techniques. The results have shown that with the application of feature
selection techniques, the change prediction models relying on ensemble clas-
sifiers can obtain better results. These results were partially contradicted by
Catolino and Ferrucci [25, 26], who empirically compared the performance of
three ensemble techniques (i.e., Boosting, Random Forest, and Bagging) with
the one of standard machine learning classifiers (e.g., , Logistic Regression) on
eight open source systems. The key results of the study showed how ensem-
ble techniques in some cases perform better than standard machine learning
approaches, however the differences among them is generally small.

2.2 Code Smell Detection and Prioritization

Fowler defined “bad code smells” (abbreviated as, “code smells” or simply
“smells”) as “symptoms of the presence of poor design or implementation
choices applied during the development of a software system” [44]. Starting
from there, several researchers heavily investigated (i) how code smells evolve
over time [99, 98, 107, 138, 139, 140], (ii) the way developers perceive them
[92, 129, 148], and (iii) what is their impact on non-functional attributes of
source code [1, 46, 61, 63, 89, 96, 122, 147, 90]. All these studies came up
with a shared conclusion: code smells negatively impact program comprehen-
sion, maintainability of source code, and development costs. In the scope of
this paper, the most relevant empirical studies are those reported by Khomh
et al. [63] and Palomba et al. [96], who explicitly investigated the impact of
code smells on software change proneness. Both the studies have reported that
classes affected by design flaws tend to change more frequently than classes
that are not affected by any code smell. Moreover, refactoring practices no-
tably help in keeping under control the change-proneness of classes. These

6 Gemma Catolino et al.

studies motivate our work: indeed, following the findings on the influence of
code smells, we believe that the addition of information coming from the anal-
ysis of the severity of code smells can positively improves the performance
of change prediction models. As explained later in Section 5, we measure the
intensity rather than the simple presence/absence of smells because a severity
metric can provide us with a more fine-grained information on how much a
design problem is “dangerous” for a class.

Starting from the findings on the negative impact of code smells on source
code maintainability, the research community has heavily focused on devising
techniques able to automatically detect code smells. Most of these approaches
rely on a two-steps approach [62, 68, 78, 82, 84, 87, 136]: in the first one, a
set of structural code metrics are computed and compared against predefined
thresholds; in the second one, these metrics are combined using operators in
order to define detection rules. If the logical relationships expressed in such
detection rules are violated, a code smell is identified. While these approaches
already have good performance, Arcelli Fontana et al. [43] and Aniche et al.
[4] proposed methods to further improve it by discarding false positive code
smell instances or tailoring the thresholds of code metrics, respectively.

Besides structural analysis, the use of alternative sources of information
for smell detection has been proposed. Ratiu et al. [109] and Palomba et al.
[91, 93] showed how historical information can be exploited for detecting code
smells. These approaches are particularly useful when dealing with design is-
sues arising because of evolution problems (e.g., how a hierarchy evolves over
time). On the other hand, Palomba et al. [95, 101] have adopted Information
Retrieval (IR) methods [10] to identify code smells characterized by promis-
cuous responsibilities (Blob classes).

Furthermore, Arcelli Fontana et al. [6, 40] and Kessentini et al. [21, 59, 60,
113] have used machine learning and search-based algorithms to discover code
smells, pointing out that a training set composed of one hundred instances is
sufficient to reach very high values of accuracy. Nevertheless, recent findings
[33, 8] have shown that the performance of such techniques may vary depending
on the exploited dataset.

Finally, Morales et al. [83] proposed a developer-based approach that lever-
ages contextual information on the task a developer is currently working on to
recommend what are the smells that can be removed in the portion of source
code referring to the performed task, while Palomba et al. [100] have proposed
community smells, i.e., symptoms of the presence of social debt, as additional
predictors of the code smell severity.

In parallel with the definition of code smell detectors, several researchers
faced the problem of prioritizing code smell instances based on their harmful-
ness for the overall maintainability of a software project. Vidal et al. [144] de-
veloped a semi-automated approach that recommends a ranking of code smells
based on (i) past component modifications (e.g., number of changes during the
system history), (ii) important modifiability scenarios, and (iii) relevance of
the kind of smell as assigned by developers. In a follow-up work, the same

Improving Change Prediction Models with Code Smell-Related Information 7

authors introduced a new criteria for prioritizing groups of code anomalies as
indicators of architectural problems in evolving systems [143].

Lanza and Marinescu [68] have proposed a metric-based rules approach
in order to detect code smells, or identify code problems called disharmonies.
The classes (or methods) that contain a high number of disharmonies are
considered more critical. Marinescu [79] has also presented the Flaw Impact
Score, i.e., a measure of criticality of code smells that considers (i) negative
influence of a code smell on coupling, cohesion, complexity, and encapsulation;
(ii) granularity, namely the type of component (method or a class) that a
smell affects; and (iii) severity, measured by one or more metrics analyzing the
critical symptoms of the smell.

Murphy-Hill and Black [85] have introduced an interactive visualization
environment aimed at helping developers when assessing the harmfulness of
code smell instances. The idea behind the tool is to visualize classes like petals,
and a higher code smell severity is represented by a larger petal size. Other
studies have exploited developers’ knowledge in order to assign a level of sever-
ity with the aim to suggest relevant refactoring solutions [81], while Zhao and
Hayes [150] have proposed a hierarchical approach to identify and prioritize
refactoring operations based on predicted improvement to the maintainability
of the software.

Besides the prioritization approaches mentioned above, more recently Ar-
celli Fontana and Zanoni [39] have proposed the use of machine learning tech-
niques to predict code smell severity, reporting promising results. The same
authors have also proposed JCodeOdor [41], a code smell detector that is
able to assign a level of severity by computing the so-called intensity index,
i.e., the extent to which a set of structural metrics computed on smelly classes
exceed the predefined thresholds: the higher the distance between the actual
and the threshold values the higher the severity of a code smell instance. As
explained later (Section 3), in the context of our study we adopt JCodeOdor
since it has previously been evaluated on the dataset we exploited, reporting
a high accuracy [41]. This is therefore the best option we have to conduct our
work.

3 Research Methodology

In this section, we present the empirical study definition and design that we
follow to assess the addition of the code smell intensity index to existing change
prediction models.

3.1 Research Questions

The goal of the empirical study is to evaluate the contribution of the intensity
index in prediction models aimed at discovering change-prone classes, with the
purpose of understanding how much the allocation of resources in preventive

8 Gemma Catolino et al.

Table 1: Characteristics of the Software Projects in Our Dataset.

System Releases Classes KLOCs % Change Cl. % Smelly Cl.
Apache Ant 5 83-813 20-204 24 11-16
Apache Camel 4 315-571 70-108 25 9-14
Apache Forrest 3 112-628 18-193 64 11-13
Apache Ivy 1 349 58 65 12
Apache Log4j 3 205-281 38-51 26 15-19
Apache Lucene 3 338-2,246 103-466 26 10-22
Apache Pbeans 2 121-509 13-55 37 21-25
Apache POI 4 129-278 68-124 22 15-19
Apache Synapse 3 249-317 117-136 26 13-17
Apache Tomcat 1 858 301 76 4
Apache Velocity 3 229-341 57-73 26 7-13
Apache Xalan 4 909 428 25 12-22
Apache Xerces 3 162-736 62-201 24 5-9
JEdit 5 228-520 39-166 23 14-22
Overall 43 24,630 84,612 26 15

maintenance tasks such as code inspection [9] or refactoring [44] might be im-
proved in a real use case. The quality focus is on the prediction performance
of models that include code smell-related information when compared to state
of the art, while the perspective is that of researchers, who want to evalu-
ate the effectiveness of using information about code smells when identifying
change-prone components. More specifically, the empirical investigation aims
at answering the following research questions:

– RQ1. To what extent does the addition of the intensity index as additional
predictor improve the performance of existing change prediction models?

– RQ2. How does the model including the intensity index as predictor com-
pare to a model built using antipattern metrics?

– RQ3. What is the gain provided by the intensity index to change prediction
models when compared to other predictors?

– RQ4. What is the performance of a combined change prediction model that
includes smell-related information?

As detailed in the next sections, the first research question (RQ1) is aimed
at investigating the contribution given by the intensity index within change
prediction models built using different types of predictors, i.e., product, pro-
cess, and developer-related metrics. In RQ2 we empirically compare models
relying on two different types of smell-related information, i.e., the intensity
index [41] and the antipattern metrics proposed by Taba et al. [128]. RQ3

is concerned with a fine-grained analysis aimed at measuring the actual gain
provided by the addition of the intensity metric within different change predic-
tion models. Finally, RQ4 has the goal to assess the performance of a change
prediction model built using a combination between smell-related information
and other product, process, and developer-related features.

Improving Change Prediction Models with Code Smell-Related Information 9

3.2 Context Selection

The context of the study is represented by the set of systems reported in Table
1. Specifically, we report (i) the name of the considered projects, (ii) the num-
ber of releases for each of them, (iii) their size (min-max) in terms of minimum
and maximum number of classes and KLOCs across the considered releases,
(iv) the percentage (min-max) of change-prone classes (identified as explained
later), and (iv) the percentage (min-max) of classes affected by design prob-
lems (detected as explained later). Overall, the dataset contains 43 releases of
14 projects, accounting for a total of 24,630 source code files.

We have built this in three steps. First, we have exploited the dataset made
available by Jureczko and Madeyski [56], which contains (i) meta-information
(e.g., links to Github repositories) and (ii) the values of 20 code metrics (some
of those were later used to build the structural baseline model - see Section
3.3.2). The selection of this dataset is driven by its availability and by the
fact that some metrics are already available; moreover, the dataset contains
information related to several releases as well as meta-information that has
eased the mining process aimed at enriching the dataset with further metrics
and change-proneness information.

On top of the dataset by Jureczko and Madeyski [56], for each release we
have then computed other metrics required to answer our research questions,
as described in Section 3.3.2, i.e., (i) product metrics of the structural model
that are not available in the original dataset, (ii) process metrics of the model
by Elish et al. [36], and (iii) scattering metrics of the model by Di Nucci et
al. [32]. Furthermore, we run the identification of the change-prone classes, as
indicated by Romano et al. [110] (see Section 3.3.3).

When computing the additional metrics we used the meta-information con-
tained in the dataset by Jureczko and Madeysky [56] to make sure to use
exactly the same set of classes. This meta-information contains the full qual-
ifiers of all classes of the considered systems (for all the releases). Using such
meta-information, we could precisely retrieve the classes on which to apply our
measurements. It is important to note that the starting dataset of Jureczko
and Madeyski [56] was originally hosted on the Promise repository [80]1. As
reported by Shepperd et al. [119], such dataset may contain noise and/or erro-
neous entries that possibly negatively influence the results. To account for this
aspect, before running our experiments we have performed a data cleaning on
the basis of the algorithm proposed by Shepperd et al. [119], which consists
of 13 corrections able to remove identical features, features with conflicting
or missing values, etc. During this step, we have removed 58 entries from the
original dataset. To enable the replication of our work, we have made available
the entire enlarged dataset that we have built in the context of our study [27].

As for the code smells, our investigation copes with six types of design
problems, namely:

1 Up to date, the dataset is not available anymore on the repository.

10 Gemma Catolino et al.

– God Class (a.k.a., Blob): A poorly cohesive class that implements different
responsibilities;

– Data Class: A class whose only purpose is holding data;
– Brain Method : A large method implementing more than one function, being

therefore poorly cohesive;
– Shotgun Surgery : A class where every change triggers many little changes

to several other classes;
– Dispersed Coupling : A class having too many relationships with other

classes of the project;
– Message Chains: A method containing a long chain of method calls.

The choice of focusing on these specific smells is driven by two main
aspects: (i) on the one hand, we have taken into account code smells
characterizing different design problems (e.g., excessive coupling vs poorly
cohesive classes/methods) and having different granularities; (ii) on the other
hand, as explained in the next section, we can rely on a reliable tool to prop-
erly identify and compute their intensity in the classes of the exploited dataset.

3.3 RQ1 - The contribution of the Intensity Index

The goal of the first research question is aimed at investigating the contribu-
tion given by the intensity index within change prediction models built using
different types of predictors, i.e., product, process, and developer-related met-
rics. To answer our first research question, we need to (i) identify code smells
in the subject projects and compute their intensity, and (ii) select a set of
existing change prediction models to which to add the information on the in-
tensity of code smells. Furthermore, we proceed with the training and testing
of the built change prediction models. The following subsections detail the
process that we have conducted to perform such steps.

3.3.1 Code Smell Intensity Computation

To compute the severity of code smells in the context of our work we have
used JCodeOdor [41], a publicly available tool that is able to both identify
code smells and assign them a degree of severity by computing the so-called
intensity index. Such an index is represented by a real number contained in
the range [0, 10]. Our choice to use this tool was driven by the following
observations. JCodeOdor works with all the code smells that we consider in
our work. Moreover, it is fully automated, meaning that it does not require
any human intervention while computing the intensity of code smells. Finally,
it is highly accurate: in a previous work by Palomba et al. [97] the tool has
been empirically assessed on the same dataset adopted in our context, showing
an F-Measure of 80%. For these reasons, we believe that JCodeOdor was the
best option we had to conduct our study.

Improving Change Prediction Models with Code Smell-Related Information 11

Table 2: Code Smell Rules Strategies (the complete names of the metrics are given in Table 3
and the explanation of the rules in Table 4)

Code Smells Detection Strategies: LABEL(n)→ LABEL has value n for that smell

God Class LOCNAMM ≥ HIGH(176) ∧ WMCNAMM ≥ MEAN(22) ∧ NOM-
NAMM ≥ HIGH(18) ∧ TCC ≤ LOW(0.33) ∧ ATFD ≥ MEAN(6)

Data Class WMCNAMM ≤ LOW(14) ∧ WOC ≤ LOW(0.33) ∧ NOAM ≥
MEAN(4) ∧ NOPA ≥ MEAN(3)

Brain Method (LOC ≥ HIGH(33) ∧ CYCLO ≥ HIGH(7) ∧ MAXNESTING ≥
HIGH(6)) ∨ (NOLV ≥ MEAN(6) ∧ ATLD ≥ MEAN(5))

Shotgun Surgery CC ≥ HIGH(5) ∧ CM ≥ HIGH(6) ∧ FANOUT ≥ LOW(3)

Dispersed Coupling CINT ≥ HIGH(8) ∧ CDISP ≥ HIGH(0.66)

Message Chains MaMCL ≥ MEAN(3) ∨ (NMCS ≥ MEAN(3) ∧ MeMCL ≥ LOW(2))

From a technical point of view, given the set of classes composing a certain
software system the tool performs two basic steps to compute the intensity of
code smells:

1. Detection Phase. Given a software system as input, the tool starts by de-
tecting code smells relying on the detection rules reported in Table 2.
Basically, each rule is represented by a logical composition of predicates,
and each predicate is based on an operator that compares a metric with
a threshold [68, 94]. Such detection rules are similar to those defined by
Lanza and Marinescu [68], who have used the set of code metrics described
in Table 3 to identify the six code smell types in our study. To ease the
comprehension of the detection approach, Table 4 describes the rationale
behind these detection rules.
A class/method of a project is marked as smelly if one of the logical propo-
sitions shown in Table 2 is true, i.e., if the actual metrics computed on the
class/method exceed the threshold values defined in the detection strat-
egy. It is worth pointing out that the thresholds used by JCodeOdor
have been empirically calibrated on 74 systems belonging to the Quali-
tas Corpus dataset [134] and are derived from the statistical distribution
of the metrics contained in the dataset [41, 42].

2. Intensity Computation. If a class/method is identified by the tool as smelly,
the actual value of a given metric used for the detection will exceed the
threshold value, and it will correspond to a percentile value on the metric
distribution placed between the threshold and the maximum observed value
of the metric in the system under analysis. The placement of the actual
metric value in that range represents the “exceeding amount” of a metric
with respect to the defined threshold. Such “exceeding amounts” are then
normalized in the range [0,10] using a min-max normalization process [135]:
specifically, this is a feature scaling technique where the values of a numeric
range are reduced to a scale between 0 and 10. To compute z, i.e., the
normalized value, the following formula is applied:

12 Gemma Catolino et al.

Table 3: Metrics used for Code Smells Detection

Short Name Long Name Definition

ATFD Access To Foreign
Data

The number of attributes from unrelated classes be-
longing to the system, accessed directly or by invoking
accessor methods.

ATLD Access To Local
Data

The number of attributes declared by the current
classes accessed by the measured method directly or
by invoking accessor methods.

CC Changing Classes The number of classes in which the methods that call
the measured method are defined in.

CDISP Coupling Disper-
sion

The number of classes in which the operations called
from the measured operation are defined, divided by
CINT.

CINT Coupling Intensity The number of distinct operations called by the mea-
sured operation.

CM Changing Methods The number of distinct methods that call the mea-
sured method.

CYCLO McCabe Cyclo-
matic Complexity

The maximum number of linearly independent paths
in a method. A path is linear if there is no branch in
the execution flow of the corresponding code.

FANOUT Number of called classes.
LOC Lines Of Code The number of lines of code of an operation or of a

class, including blank lines and comments.
LOCNAMM Lines of Code

Without Acces-
sor or Mutator
Methods

The number of lines of code of a class, including blank
lines and comments and excluding accessor and muta-
tor methods and corresponding comments.

MaMCL Maximum Message
Chain Length

The maximum length of chained calls in a method.

MAXNESTING Maximum Nesting
Level

The maximum nesting level of control structures
within an operation.

MeMCL Mean Message
Chain Length

The average length of chained calls in a method.

NMCS Number of Mes-
sage Chain State-
ments

The number of different chained calls in a method.

NOAM Number Of Acces-
sor Methods

The number of accessor (getter and setter) methods of
a class.

NOLV Number Of Local
Variables

Number of local variables declared in a method. The
method’s parameters are considered local variables.

NOMNAMM Number of Not Ac-
cessor or Mutator
Methods

The number of methods defined locally in a class,
counting public as well as private methods, exclud-ing
accessor or mutator methods.

* NOMNAMM Number of Not Ac-
cessor or Mutator
Methods

The number of methods defined locally in a class,
counting public as well as private methods, excluding
accessor or mutator methods.

NOPA Number Of Public
Attributes

The number of public attributes of a class.

TCC Tight Class Cohe-
sion

The normalized ratio between the number of meth-
ods directly connected with other methods through
an instance variable and the total number of possi-
ble connections between methods. A direct connection
between two methods exists if both access the same in-
stance variable directly or indirectly through a method
call. TCC takes its value in the range [0,1].

WMCNAMM Weighted Methods
Count of Not Ac-
cessor or Mutator
Methods

The sum of complexity of the methods that are defined
in the class, and are not accessor or mutator meth-
ods. We compute the complexity with the Cyclomatic
Complexity metric (CYCLO).

WOC Weight Of Class The number of “functional” (i.e., non-abstract, non-
accessor, non-mutator) public methods divided by the
total number of public members.

Improving Change Prediction Models with Code Smell-Related Information 13

Table 4: Code Smell Detection Rationale and Details

Clause Rationale

G
o
d

C
la

ss

LOCNAMM ≥ HIGH Too much code. We use LOCNAMM instead of LOC, be-
cause getter and setter methods are often generated by the
IDE. A class that has getter and setter methods, and a class
that has not getter and setter methods, must have the same
“probability” to be detected as God Class.

WMCNAMM ≥ MEAN Too much work and complex. Each method has a minimum
cyclomatic complexity of one, hence also getter and setter
add cyclomatic complexity to the class. We decide to use a
complexity metric that excludes them from the computation.

NOMNAMM ≥ HIGH Implements a high number of functions. We exclude getter
and setter because we consider only the methods that effec-
tively implement functionality of the class.

TCC ≤ LOW Functions accomplish different tasks.
ATFD ≥ MEAN Uses many data from other classes.

D
a
ta

C
la

ss

WMCNAMM ≤ LOW Methods are not complex. Each method has a minimum cy-
clomatic complexity of one, hence also getter and setter add
cyclomatic complexity to the class. We decide to use a com-
plexity metric that exclude them from the computation.

WOC ≤ LOW The class offers few functionalities. This metrics is com-
puted as the number of functional (non-accessor) public
methods, divided by the total number of public methods.
A low value for the WOC metric means that the class offers
few functionalities.

NOAM ≥ MEAN The class has many accessor methods.
NOPA ≥ MEAN The class has many public attributes.

B
ra

in
M

et
h

o
d LOC ≥ HIGH Too much code.

CYCLO ≥ HIGH High functional complexity
MAXNESTING ≥ HIGH High functional complexity. Difficult to understand.
NOLV ≥ MEAN Difficult to understand. More the number of local variable,

more the method is difficult to understand.
ATLD ≥ MEAN Uses many of the data of the class. More the number of

attributes of the class the method uses, more the method is
difficult to understand.

S
h

o
t.

S
u

rg
. CC ≥ HIGH Many classes call the method.

CM ≥ HIGH Many methods to change.
FANOUT ≥ LOW The method is subject to being changed. If a method in-

teracts with other classes, it is not a trivial one. We use
the FANOUT metric to refer Shotgun Surgery only to those
methods that are more subject to be changed. We exclude
for example most of the getter and setter methods.

D
is

.
C

o
u

p
.

CINT ≥ HIGH The method calls too many other methods. With CINT met-
ric, we measure the number of distinct methods called from
the measured method.

CDISP ≥ HIGH Calls are dispersed in many classes. With CDISP metric,
we measure the dispersion of called methods: the number
of classes in which the methods called from the measured
method are defined in, divided by CINT.

M
es

s.
C

h
a
in

MaMCL ≥ MEAN Maximum Message Chain Length. A Message Chains has a
minimum length of two chained calls, because a single call is
trivial. We use the MaMCL metric to find out the methods
that have at least one chained call with a length greater than
the mean.

NMCS ≥ MEAN Number of Message Chain Statements. There can be more
Message Chain Statement: different chains of call. More the
number of Message Chain Statements, more the method is
interesting respect to Message Chains code smell.

MeMCL ≥ LOW Mean of Message Chain Length. We would find out non-
trivial Message Chains, so we need always to check against
the Message Chain Statement length.

14 Gemma Catolino et al.

z = [
x−min(x)

max(x)−min(x)
] · 10 (1)

where min and max are the minimum and maximum values observed in
the distribution. This step enables to have the “exceeding amount” of each
metric in the same scale. To have a unique value representing the intensity
of the code smell affecting the class, the mean of the normalized “exceeding
amounts” is computed.

3.3.2 Selection of Basic Prediction Models

Our conjecture is concerned with the gain given by the addition of information
on the intensity of code smells within existing change prediction models. To
test such a conjecture, we need to identify the state of the art techniques
to which to add the intensity index: we have selected three models based on
product, process, and developer-related metrics that have been shown to be
accurate in the context of change prediction [28, 32, 36, 151].

Product Metrics-based Model. The first baseline is represented by the
change prediction model devised by Zhou et al. [151]. It is composed of a set
of metrics computed on the basis of the structural properties of source code:
these are cohesion (i.e., the Lack of Cohesion of Method — LCOM), coupling
(i.e., the Coupling Between Objects — CBO — and the Response for a Class
— RFC), and inheritance metrics (i.e., the Depth of Inheritance Tree — DIT).
To actually compute these metrics, we rely on a publicly available and widely
used tool originally developed by Spinellis [126]. In the following, we refer to
this model as SM, i.e., Structural Model.

Process Metrics-based Model. In their study, Elish et al. [36] have reported
that process metrics can be exploited as better predictors of change-proneness
with respect to structural metrics. For this reason, our second baseline is the
Evolution Model (EM) proposed by Elish et al. [36]. More specifically, this
model relies on the metrics shown in Table 5, which capture different aspects
of the evolution of classes, e.g., the weighted frequency of changes or the first
time changes introduced. To compute these metrics, we have adopted the
publicly available tool that was previously developed by Catolino et al. [28].
In the following, we refer to this model as PM, i.e., Process Model.

Developer-Related Model. In our previous work [28], we have demon-
strated how developer-related factors can be exploited within change predic-
tion models since they provide orthogonal information with respect to product
and process metrics that takes into account how developers perform modifica-
tions and how complex the development process is. Among the developer-based
models available in the literature [14, 32, 53], in this paper we rely on the De-
veloper Changes Based Model (DCBM) devised by Di Nucci et al. [32], as it
has been shown to be the most effective one in the context of change predic-
tion. Such a model uses as predictors the so-called structural and semantic

Improving Change Prediction Models with Code Smell-Related Information 15

Table 5: Independent variables considered by Elish et al.

Acronym Metric
BOC Birth of a Class
FCH First Time Changes Introduced to a Class
FRCH Frequency of Changes
LCH Last Time Changes Introduced to a Class
WCD Weighted Change Density
WFR Weighted Frequency of Changes
TACH Total Amount of Changes
ATAF Aggregated Change Size Normalized by

Frequency of Change
CHD Change Density
LCA Last Change Amount
LCD Last Change Density
CSB Changes since the Birth
CSBS Changes since the Birth Normalized by

Size
ACDF Aggregated Change Density Normalized

by Frequency of Change
CHO Change Occurred

scattering of the developers that worked on a code component in a given time
period α. Specifically, for each class c, the two metrics are computed as follows:

StrScatPredc,α =
∑

d∈developersc,α

StrScatd,α (2)

SemScatPredc,α =
∑

d∈developersc,α

SemScatd,α (3)

where developersc,α represents the set of developers that worked on the class
c during a certain period α, and the functions StrScatd,α and SemScatd,α
return the structural and semantic scattering, respectively, of a developer d in
the time window α. Given the set CHd,α of classes changed by a developer d
during a certain period α, the formula of structural scattering of a developer
is:

StrScatd,α = |CHd,α| × average
∀ci,cj∈CHd,α

[dist(ci, cj)] (4)

where dist is the distance in number of packages from class ci to class cj . The
structural scattering is computed by applying the shortest path algorithm on
the graph representing the system’s package structure. The higher the measure,
the higher the estimated developer’s scattering, this means that if a developer
applies several changes in different packages in a certain time period, the value
of structural scattering will be high.

Regarding the semantic scattering of a developer, it is based on the textual
similarity of the classes changed by a developer in a certain period α and it is

16 Gemma Catolino et al.

computed as:

SemScatd,α = |CHd,α| ×
1

average
∀ci,cj∈CHd,α

[sim(ci, cj)]
(5)

where the sim function returns the textual similarity between classes ci and cj
according to the measurement performed using the Vector Space Model (VSM)
[10]. The metric ranges between zero (no textual similarity) and one (if the
representation of two classes using VSM is equal). Specifically, a developer can
apply several changes within the same package (obtaining a value of structural
scattering equal to 0), but could have a high value of semantic scattering since
there is a low textual similarity between the pairs of classes contained in this
package (where the developer has applied changes).

In our study, we set the parameter α of the approach as the time window
between two releases R− 1 and R, as done in previous work [97]. To compute
the metrics, we rely on the implementation provided by Di Nucci et al. [32].

It is important to note that all the baseline models, including the model
to which we have added the intensity index, might be affected by multi-
collinearity [88], which occurs when two or more independent variables are
highly correlated and can be predicted one from the other, thus possibly lead-
ing to a decrease of the prediction capabilities of the resulting model [120, 132].
For this reason, we decided to use the Vif (Variance inflation factors) function
[88] implemented in R2 to discard redundant variables. Vif is based on the
square of the multiple correlation coefficient resulting from regressing a pre-
dictor variable against all other predictor variables. If a variable has a strong
linear relationship with at least one other variable, the correlation coefficient
would be close to 10, and VIF for that variable would be large. As indicated
by previous work [35, 149], a VIF greater than 10 is a signal that the model
has a collinearity problem. The square root of the variance inflation factor
indicates how much larger the standard error is, compared with what it would
be if that variable were uncorrelated with the other predictor variables in the
model. Based on this information, we could understand which metric produced
the largest standard error, thus enabling the identification of the metric that
is better to drop from the model [88].

3.3.3 Dependent Variable

Our dependent variable is represented by the actual change-proneness of the
classes in our dataset. As done in most of the previous work in literature
[28, 36, 151], we have adopted a within-project strategy, meaning that we
compute the change-proneness of classes for each project independently. To
compute it, we have followed the guidelines provided by Romano et al. [110],
who consider a class as change-prone if, in a given time period TW, it under-
went a number of changes higher than the median of the distribution of the

2 http://cran.r-project.org/web/packages/car/index.html

Improving Change Prediction Models with Code Smell-Related Information 17

Table 6: Changes extracted by ChangeDistiller while computing the change-proneness.
‘X’ symbols indicate the types we considered in our study.

ChangeDistiller Our Study
Statement-level changes
Statement Ordering Change X
Statement Parent Change X
Statement Insert X
Statement Delete X
Statement Update X
Class-body changes
Insert attribute X
Delete attribute X
Declaration-part changes
Access modifier update X
Final modifier update X
Declaration-part changes
Increasing accessibility change X
Decreasing accessibility change X
Final Modified Insert X
Final Modified Delete X
Attribute declaration changes
Attribute type change X
Attribute renaming change X
Method declaration changes
Return type insert X
Return type delete X
Return type update X
Method renaming X
Parameter insert X
Parameter delete X
Parameter ordering change X
Parameter renaming X
Class declaration changes
Class renaming X
Parent class insert X
Parent class delete X
Parent class update X

number of changes experienced by all the classes of the system. In particular,
for each pair of commits (ci, ci+1) of TW we run ChangeDistiller [38], a
tree differencing algorithm able to extract the fine-grained code changes be-
tween ci and ci+1. Table 6 reports the entire list of change types identified
by the tool. As it is possible to observe, we have considered all of them while
computing the number of changes. It is worth mentioning that the tool ig-
nores white space-related differences and documentation-related updates: in
this way, it only considers the changes actually applied on the source code.
More importantly, ChangeDistiller is able to identify rename refactoring
operations: this means that we could handle cases where a class was modified
during the change history, thus not biasing the correct counting of the number
of changes. In our study, the time window TW represents the time between
two subsequent releases. While for most of the projects in our dataset we have
more than one release, for Apache Ivy and Apache Tomcat we only have
one release. In these cases, we computed the dependent variable looking at
the time window between the versions used in the study and the correspond-
ing subsequent versions of the systems, so that we could treat these systems
exactly in the same way as the others contained in the dataset and compute

18 Gemma Catolino et al.

the change-proneness values. Note that, as for the independent variables, we
compute them considering the release before the one where the dependent vari-
able was computed, i.e., we computed the independent variables between the
releases Ri−1 and Ri, while the change-proneness was computed between Ri
and Ri+1: in this way, we avoid biases due to the computation of the change-
proneness in the same periods as the independent ones. The dataset with the
oracle is available in the online appendix [27].

3.3.4 Experimented Machine Learning Models

To answer RQ1, we built two prediction models for each baseline: the first
does not include the intensity index as predictor, thus relying on the original
features only; the second model includes the intensity index as an additional
predictor. Using this procedure, we experiment with 6 different models, and
we can control the actual amount of improvement given by the intensity index
with respect to the baselines (if any). It is worth remarking that, for non-smelly
classes, the intensity value is set to 0.

3.3.5 Classifier Selection

Different machine learning classifiers have been proposed in the literature
to distinguish change-prone and non-change-prone classes (e.g., Romano and
Pinzger [110] have adopted Support Vector Machines [20], while Tsantalis et
al. [137] have relied on Logistic Regression [69]): based on the results of pre-
vious studies, there seems not to be a classifier that provides the best overall
solution for all situations. For this reason, in our work we experimented the
different change prediction models with different classifiers, i.e., ADTree [146],
Decision Table Majority [65], Logistic Regression [29], Multilayer Perceptron
[111], Naive Bayes [55], and Simple Logistic Regression[106]. Overall, for all
considered models the best results in terms of F-measure (see Section 3.3.7 for
the evaluation metrics) are obtained using the Simple Logistic Regression. In
the remaining of the paper, we only report the results that we have obtained
when using this classifier, while a complete report of the performance of other
classifiers is available online [27].

3.3.6 Validation Strategy

As for validation strategy we adopt 10-Fold Cross Validation [127]. Using it,
each experimented prediction model has been trained and evaluated as fol-
lows. For each project considered in our study, the validation methodology
randomly partitions the available set of data into 10 folds of equal size, apply-
ing a stratified sampling, i.e., all the folds have a similar proportion of change-
and non-change-prone classes. Then, a single fold is used as test set, while the
remaining ones are used to train the change prediction model under exami-
nation. The process is repeated 10 times, using each time a different fold as

Improving Change Prediction Models with Code Smell-Related Information 19

test set: therefore, at the end of the process the experimented model outputs
a prediction for each class of each project. Finally, the performance of the
model is reported using the mean achieved over the ten runs. It is important
to note that we have repeated the 10-fold validation 100 times (each time with
a different seed) to cope with the randomness arising from using different data
splits [50].

3.3.7 Evaluation Metrics

To measure and compare the performance of the models, we compute two well-
known metrics such as precision and recall [10], which are defined as follow:

precision =
TP

TP + FP
recall =

TP

TP + TN
(6)

where TP is the number of true positives, TN the number of true negatives,
and FP the number of false positives. To have a unique value representing the
goodness of the model, we compute the F-Measure, i.e., the harmonic mean
of precision and recall:

F -Measure = 2 ∗ precision ∗ recall
precision+ recall

(7)

Moreover, we consider another indicator: the Area Under the Receiver Op-
erating Characteristic Curve (AUC-ROC) metric [22]. A ROC curve is a graph
showing the performance of a classification model at all classification thresh-
olds. The AUC measures the entire two-dimensional area underneath the entire
ROC curve. This metrics quantifies the overall ability of a change prediction
model to discriminate between change-prone and non-change-prone classes:
the closer the AUC-ROC to 1 the higher the ability of the classifier, while the
closer the AUC-ROC to 0.5 the lower its accuracy. In other words, this met-
ric can quantify how robust the model is when discriminating the two binary
classes.

In addition, we compare the performance achieved by the experimented
prediction models from a statistical point of view. As we need to perform
multiple comparisons among the performance of the considered models over
multiple datasets, exploiting well-known and widely-adopted tests like, for
instance, the Mann-Whitney test [76] is not recommended because of two
main reasons: (i) the performance of a machine learner can vary between one
dataset and another [131, 133]; (ii) the interpretation of the results might be
biased because of overlapping problems, in other words the possibility for one
or more treatments to be classified in more than one group: this aspect might
cause serious issues for the experimenter to really distinguish the real groups to
which the means should belong [115]. To overcome these problems, we exploit
the Scott-Knott Effect Size Difference test [133].

This is an effect-size aware version of the original Scott-Knott test [115].
More specifically, this algorithm implements a two-step analysis: first, it hier-
archically clusters treatments into distinct groups, meaning that there is no

20 Gemma Catolino et al.

possibility of one or more treatments to be classified in more than one group;
secondly, the means of the clusters are compared to understand whether they
are statistically different. The major benefits provided by the application of
the effect-size aware test designed by Tantithamthavorn et al. [133] are that
the algorithm (i) hierarchically clusters the set of treatment means into sta-
tistically distinct groups, (ii) corrects the non-normal distribution of a dataset
if needed, and (iii) merges two statistically distinct groups in case their ef-
fect size—measured using Cliff’s Delta (or d) [48]—is negligible, so that the
creation of trivial groups is avoided. To perform the test, we rely on the im-
plementation3 provided by Tantithamthavorn et al. [133]. It is important to
note that recently Herbold [54] has discussed the implications as well as the
impact of the normality correction of Scott-Knott ESD test, concluding that
this correction does not necessarily lead to the fulfilment of the assumptions
of the original Scott-Knott test and may cause problems with the statistical
analysis. The author has also proposed a modification to the original imple-
mentation of the test that can overcome the identified problems. In response to
these comments, Tantithamthavorn et al. have followed the recommendations
provided and modified the implementation of the Scott-Knott ESD test: we
made sure to use the latest version of the algorithm, available in the version
v1.2.2 of the R package.

3.4 RQ2 - Comparison between Intensity Index and Antipattern Metrics

In RQ2 our goal is to compare the performance of change prediction models
relying on the intensity index against the one achieved by models exploiting
other existing smell-related metrics. In particular, the comparison is done con-
sidering the so-called antipattern metrics, which have been defined by Taba
et al. [128]: these metrics aimed at capturing different aspects related to the
maintainability of classes affected by code smells. More specifically:

– the Average Number of Antipatterns (ANA) computes how many code
smells were in the previous releases of a class over the total number of
releases. This metric is based on the assumption that classes that have
been more prone to be smelly in the past are somehow more prone to be
smelly in the future. More formally, ANA is computed as follows. For each
file f ∈ S (System):

ANA(f) =
1

n
∗

n∑
i=1

NAP (f i), (8)

where NAP (f i) represents the total number of antipatterns in past change
prone version f i (i ∈ {1...n}), and n is the total number of versions in the
history of f and f = fn.

3 https://github.com/klainfo/ScottKnottESD

Improving Change Prediction Models with Code Smell-Related Information 21

– the Antipattern Complexity Metric (ACM) computes the entropy of
changes involving smelly classes. Such entropy refers to the one originally
defined by Hassan [53] in the context of defect prediction. The conjecture
behind its use relates to the fact that a more complex development process
might lead to the introduction of code smells. The specific formula leading
to its computation is:

ACM (f) =

n∑
i=1

p(f i) ∗H i , (9)

where Hi represents the Shannon entropy as computed by Hassan [53], p is
the probability of having antipatterns in file f , and n is the total number
of versions in the history of f and f = fn.

– the Antipattern Recurrence Length (ARL) measures the total number of
subsequent releases in which a class has been affected by a smell. This
metric relies on the same underlying conjecture as ANA, i.e., the more a
class has been smelly in the past the more it will be smelly in the future.
Formally:

ARL(f) = rle(f) ∗ e
1
n ∗(c(f)+b(f)), (10)

where n is the total number of versions in the history of f , c(f) is the
number of ”changy” versions in the history of file f in which f has at least
one antipattern, b(f) < n is the ending index of the longest consecutive
stream of antipatterns in ”changy” versions of f , and rle(f) is the maxi-
mum length of the longest consecutive stream of antipatterns in the history
of f .

To compute these metrics, we have employed the tool developed and made
available by Palomba et al. [97]. Then, as done in the context of RQ1, we
plugged the antipattern metrics into the experimented baselines, applying the
Variance inflation factor (Vif) and assessing the performance of the resulting
change prediction models using the same set of evaluation metrics described in
Section 3.3.7, i.e., F-Measure and AUC-ROC. Finally, we statistically compare
the performance with the one obtained by the models including the intensity
index as predictor.

Besides the comparison in terms of evaluation metrics, we also analyze the
extent to which the two types of models are orthogonal with respect to the
classification of change-prone classes. This was done with the aim of assessing
whether the two models, relying on different smell-related information, can
correctly identify the change-proneness of different classes. More formally, let
mint be the model built plugging in the intensity index; let mant be the model
built by considering the antipattern metrics, we compute the following overlap
metrics on the set of smelly and change-prone instances of each system:

TPmint∩mant =
|TPmint ∩ TPmant |
|TPmint ∪ TPmant |

% (11)

22 Gemma Catolino et al.

TPmint\mant =
|TPmint \ TPmant |
|TPmint ∪ TPmant |

% (12)

TPmant\mint =
|TPmant \ TPmint |
|TPmant ∪ TPmint |

% (13)

where TPmint represents the set of change-prone classes correctly classified by
the prediction model mint, while TPmant is the set of change-prone classes cor-
rectly classified by the prediction model mant. The TPmint∩mant metric mea-
sures the overlap between the sets of true positives correctly identified by both
models mint and mant, TPmint\mant measures the percentage of change-prone
classes correctly classified by mint only and missed by mant, and TPmant\mint
measures the percentage of change-prone classes correctly classified by mant

only and missed by mint.

3.5 RQ3 - Gain Provided by the Intensity Index

The goal of this question is to analyze the actual gain provided by the addition
of the intensity metric within different change prediction models. To this aim,
we conduct a fine-grained investigation aimed at measuring how important
the intensity index is with respect to other features (i.e., product, process,
developer-related, and antipattern metrics) composing the considered models.
We use an information gain algorithm [108] to quantify the gain provided by
adding the intensity index in each prediction model. In our context, this al-
gorithm ranks the features of the models according to their ability to predict
the change-proneness of classes. More specifically, let M be a change predic-
tion model, let P = {p1, . . . , pn} be the set of predictors composing M , an
information gain algorithm [108] applies the following formula to compute a
measure which defines the difference in entropy from before to after the set M
is split on an attribute pi:

InfoGain(M,pi) = H(M)−H(M |pi) (14)

where the function H(M) indicates the entropy of the model that includes the
predictor pi, while the function H(M |pi) measures the entropy of the model
that does not include pi. Entropy is computed as follow:

H(M) = −
n∑
i=1

prob(pi) log2 prob(pi) (15)

From a more practical perspective, the algorithm quantifies how much un-
certainty in M is reduced after splitting M on predictor pi. In our work, we
employ the Gain Ratio Feature Evaluation algorithm [108] implemented in the
Weka toolkit [49], which ranks p1, . . . , pn in descending order based on the

Improving Change Prediction Models with Code Smell-Related Information 23

contribution provided by pi to the decisions made by M . In particular, the out-
put of the algorithm is a ranked list in which the predictors having the higher
expected reduction in entropy are placed on the top. Using this procedure,
we evaluate the relevance of the predictors in the change prediction models
experimented, possibly understanding whether the addition of the intensity
index gives a higher contribution with respect to the structural metrics from
which it is derived (i.e., metrics used for the detection of the smells) or with
respect the other metrics contained in the models.

3.6 RQ4 - Combining All Predictors and Smell-Related Information

As a final step of our study, this research question has the goal to assess the
performance of a change prediction model built using a combination between
smell-related information and other product, process, and developer-related
features. To this aim, we firstly put all the independent variables considered
in the study in a single dataset. Then, we apply the variable removal procedure
based on the vif function (see Section 3.3.2 for details on this technique): in this
way, we were able to remove the independent variables that do not significantly
influence the performance of the combined model. Finally, we test the ability
of the newly devised model using the same procedures and metrics used in the
context of RQ1, i.e., F-measure and AUC-ROC, and statistically comparing
the performance of the considered models by means of the Scott-Knott ESD
test.

4 Analysis of the Results

In this section we report and sum up the results of the presented research
questions, discussing the main findings of our study.

Fig. 1: Overview of the value of F-measure among the models. Note that the starting value
of the y-axis is different based on the performance of the models.

24 Gemma Catolino et al.

Table 7: Average number of true positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN) output by the experimented change prediction models. Standard
deviation is reported in parenthesis.

SM SM+Ant. SM+Int.
TP FP TN FN TP FP TN FN TP FP TN FN

1305 (35) 369 (21) 616 (24) 172 (28) 1404 (54) 320 (18) 567 (21) 172 (25) 1530 (16) 129 (10) 688 (14) 115 (11)

PM PM+Ant. PM+Int.
TP FP TN FN TP FP TN FN TP FP TN FN

1527 (33) 246 (31) 369 (28) 320 (26) 1576 (31) 271 (27) 320 (23) 296 (22) 1872 (24) 172 (22) 246 (21) 172 (13)

DCBM DCBM+Ant. DCBM+Int.
TP FP TN FN TP FP TN FN TP FP TN FN

1650 (27) 271 (20) 320 (12) 222 (15) 1700 (42) 246 (33) 246 (16) 271 (13) 1823 (16) 148 (7) 296 (21) 197 (9)

Fig. 2: Overview of the value of AUC-ROC among the models. Note that the starting value
of the y-axis is different based on the performance of the models.

4.1 RQ1: To what extent does the addition of the intensity index as additional
predictor improve the performance of existing change prediction models?

Before describing the results related to the contribution of the intensity index
in the three prediction models considered, we report the results of the feature
selection process aimed at avoiding multi-collinearity. According to the results
achieved using the vif function [88], we remove FCH, LCH, WFR, ATAF,
CHD, LCD, CSBS, and ACDF from the process-based model [36], while we
do not remove any variables from the other baselines.

Figures 1 and 2 show the box plots reporting the distributions of F-Measure
and AUC-ROC achieved by the (i) basic models that do not include any smell-
related information - SM, PM, and DCBM, respectively; (ii) models including
the antipattern metrics - those having “+ Ant. Metrics” as suffix; and (iii)
models including the intensity index - those reporting “+ Int.” as suffix. To ad-
dress RQ1, in this section we discuss the performance of the intensity-including
models, while the comparison with the antipattern metrics-including models
is reported and discussed in Section 4.2. Note that for the sake of readability,
we only report the distribution of F-Measure rather than the distributions of
precision and recall; moreover, in Table 7 we report the confusion matrices
for the models built using structural, process, and developer-oriented metrics
as basic predictors: since our validation strategy, i.e., 100 times 10-fold val-
idation, required the generation of 1,000 confusion matrices for each release
and for each experimented model, we report average and standard deviation

Improving Change Prediction Models with Code Smell-Related Information 25

of the overall number of true positives, true negatives, false positives, and false
negatives for each model. Note that the fine-grained results of our analyses are
available in our online appendix [27].

Looking at Figure 1, we can observe that the basic model based on scat-
tering metrics (i.e., DCBM) tends to perform better than models built using
structural and process metrics. Indeed, DCBM [32] has a median F-Measure
5% and 13% higher than structural (67% vs 54%) and process (67% vs 62%)
models, respectively. This result confirms our previous findings on the power
of the developer-related factors in change prediction [28] as well as the results
achieved by Di Nucci et al. [32] on the value of the scattering metrics for the
prediction of problematic classes. As for the role of the intensity index, we
notice that with the respect to the SM, PM and DCBM model, the intensity
of code smells provides an additional useful information able to increase the
ability of the model in discovering change-prone code components. This is ob-
servable by looking at the performance in Figures 1 and 2. In the following, we
further discuss our findings by reporting our results for each prediction model
experimented.

Contribution in Structural-based Models. The addition of the intensity
index within the SM model enables the model to reach a median F-Measure of
60% and an AUC-ROC of 61%, respectively. Looking more in depth into the
results, we observe that the shapes of the box plots for the intensity-including
model appear less dispersed than the basic one, i.e., the smaller the shape,
the smaller the variability of the results. This means that the addition of the
intensity index makes the performance of the model better and more stable.
This is also visible by looking at the confusion matrices of the two models (Ta-
ble 7): the one referring to the intensity-including model (column “SM+Int.”)
has an high average number of true positives and a lower standard deviation
with respect to the baseline model, indicating that the addition of the smell-
related information can lead to better change prediction performance. The
same observation is true when considering true negatives, false positive, and
false negatives. An an example, let us consider the Apache-ant-1.3 project,
where the basic structural model reaches 50% precision and 56% recall (F-
Measure=53%), while the model that includes the intensity index has a preci-
sion of 61% and a recall of 66% (F-Measure=63%), thus obtaining an improve-
ment of 10%. The same happens in all the considered systems: based on our
findings, we can claim that the performance of change prediction models im-
proves when considering the intensity of code smells as additional independent
variable. The observations made above were also confirmed from a statistical
point of view. Indeed, the intensity-including prediction model consistently
appeared in the top Scott-Knott ESD rank in terms of AUC-ROC: this indi-
cates that its performance was statistically higher than the baselines in most
of the cases (40 projects out of 43).

Contribution in Process-based Models. Also in this case the addition
of the intensity index in the model defined by Elish et al. [36] improved its
performance with respect to the basic model (PM). The overall median value

26 Gemma Catolino et al.

of F-Measure increased of 15%, i.e., F-Measure of PM + Int. is 77% while that
of PM is 62%. In this case, the intensity-including model can increase both
precision and recall with respect to the basic model. This is, for instance, the
case of Apache Ivy 2, where PM reaches 61% of precision and 49% of recall;
by adding the intensity index, the prediction model increases its performances
to 76% (+15%) in terms of precision and 77% (+28%) of recall, demonstrating
that a better characterization of classes having design problems can help in
obtaining more accurate predictions. The higher performance of the intensity-
including models is mainly due to the better characterization of true positive
instances (see Table 7). The statistical analyses confirm the findings: the like-
lihood to be ranked at the top by the Scott-Knott ESD test is always higher
for the model including the intensity index, thus we can claim that the per-
formance of the intensity-including model is statistically higher than the basic
model over all the considered systems.

Contribution in Developer-Related Model. Finally, the results for this
type of model are similar to those discussed above. Indeed, the addition of the
intensity in DCBM [32] enables the model to reach a median F-Measure of
75% and an AUC-ROC of 74%, respectively. Compare to the standard model,
“DCBM + Int.” performs better (i.e., +7% in terms of median F-Measure and
+6% in terms of median AUC-ROC). For instance, in the Apache Synapse

1.2 project the “DCBM + Int.” obtains values for F-Measure and AUC-
ROC 12% and 13% higher than DCBM, respectively. The result holds for all
the systems in our dataset, meaning that the addition of the intensity always
provides improvements with respect to the baseline. The Scott-Knott ESD test
confirms our observations from a statistical point of view. The likelihood of
the intensity-including model to be ranked at the top is always higher than the
other models. Thus, the intensity-including model is statistically superior with
respect to the basic model over all the considered projects. From the analysis
of Table 7 we can confirm the improved stability of the intensity-including
model, which presents a lower standard deviation as well as a higher number
of true positive instances identified.

RQ1 - To what extent does the intensity index improve the per-
formance of existing change prediction models? The addition of the
intensity index [97] as a predictor of change-prone components increases
the performance of the baseline change prediction models in terms of both
F-Measure and AUC-ROC by up to 10%, i.e., up to 87 actual change-prone
classes with respect to the baseline models. This is confirmed statistically.

4.2 RQ2: How does the model including the intensity index as predictor
compare to a model built using antipattern metrics?

From RQ1, we observe that the addition of the intensity index within state
of the art techniques can improve their performance. Nevertheless, the second

Improving Change Prediction Models with Code Smell-Related Information 27

research questions aimed at evaluating whether the smell intensity index is a
better predictor of change proneness than other smell related information, in
particular, the antipattern metrics defined by Taba et al. [128]. For this reason,
we compared the models including the intensity index with those including
the antipattern metrics. The boxplots which summarize this comparison are in
Figures 1 and 2, while average and standard deviation related to the confusion
matrices are available in Table 7.

Table 8: Overlap analysis between the model including the intensity index and the model
including the antipattern metrics.

Models
Int. ∩ Int. \ Ant. \
Ant.% Ant.% Int.%

SM [151] 43 35 22
PM [36] 47 38 15
DCBM [32] 44 31 25

Comparison in Structural-based Models. As reported in the previous
section, the intensity-including model has a median F-Measure of 60% and an
AUC-ROC of 61%. When compared against the antipattern metrics-including
model, the intensity-including one still performs better (i.e., +4% in terms
of median F-Measure and +7% in terms of median AUC-ROC). More in de-
tail, we notice that the performance of the antipattern-including model is just
slightly better than the basic model in terms of F-Measure (56% vs 54%); more
interesting, the AUC-ROC of the “SM + Ant. Metrics” model is lower than
the basic one (53% vs 55%). From a practical perspective, these results tell us
that the inclusion of the antipattern metrics only provides slight improvement
with respect to the number of actual change-prone classes identified, but at the
same time, we cannot provide benefits in the robustness of the classifications.
Moreover, the confusion matrices of “SM + Ant. Metrics” and “SM” models
shown in Table 7 are similar: this confirms that the addition of the antipattern
metrics cannot provide major benefits to the baseline.

In the comparison between the ”SM + Ant. Metrics” and the ”SM + Int.”
models, we observe that the performance of the former is always lower than
the one achieved by the latter (considering the median of the distributions,
-4% of F-Measure and -8% of AUC-ROC). This indicates that the intensity
index can provide much higher benefits in change prediction than existing
metrics that capture other smell-related information. The statistical analysis
confirmed the superiority of the intensity-including models, which are always
ranked better than the antipattern-including ones. While the models including
the antipattern metrics have worse performances than the models including
the intensity index in some cases, the antipattern metrics defined by Taba et
al. [128] can give orthogonal information with respect to the intensity index,
opening the possibility to obtain better performance still by considering both
metric types. Our claim is supported by the overlap analysis shown in Table 8

28 Gemma Catolino et al.

and computed on the set of change-prone and smelly classes correctly classified
by the two models. While 43% of the instances are correctly classified by
both the models, a consistent portion of instances are classified only by SM
+ Int. model (35%) or by the model using the antipattern metrics (22%).
Consequently, this means that the smell-related information taken into account
by the ”SM + Int.” and ”SM + Ant. Metrics” models are orthogonal.

Comparison in Process-based Models. The median F-Measure of the
intensity-including model is 77%, i.e., +15% with respect to the basic model.
As for the model that includes the antipattern metrics, we notice that it pro-
vides improvements when compared to the basic one. However, such improve-
ments are still minor in terms of F-Measure (64% vs 62%) and thus we can
confirm that the addition of the metrics proposed by Taba et al. [128] does
not provide a substantial boost in the performance of basic change prediction
models. Similarly, the model based on such metrics is never able to outperform
the performance of the intensity-including one, being its F-measure 13% lower
than the F-measure of the the model including the intensity index. The sta-
tistical analyses confirmed these findings. Indeed, the likelihood to be ranked
at the top by the Scott-Knott ESD test is always higher for the model includ-
ing the intensity index. At the same time, the model including the antipattern
metrics provides a slight statistical benefits than the basic one (they are ranked
in the same cluster in 88% of the cases). Also in this case we found an interest-
ing orthogonality between the set of change-prone and smelly classes correctly
classified by“PM + Int.” and by the “PM + Ant. Metrics” (see Table 8),
i.e., the two models correctly capture the change-proneness of different code
elements.

Comparison in Developer-Related Model. When comparing the perfor-
mance of “DCBM + Int.” with the model that includes the antipattern metrics
[128], we observe that the F-Measure of the former is on average 6% higher
than the latter; the better performance of the intensity-including model is also
confirmed when considering the AUC-ROC, which is 4% higher. The Scott-
Knott ESD test confirms our observations, as (i) the intensity-including model
has statistically higher performance than the baseline and (ii) the antipattern
metrics-including models are confirmed to provide statistically better perfor-
mance than the basic models in 67% of the considered systems. Nevertheless,
also in this case we found an orthogonality in the correct predictions done by
these two models (see Table 8): only 44% of instances are correctly caught by
both the models, while 31% of them are only captured by “DCBM + Int.”
and 25% only by “DCBM + Ant. Metrics”.

RQ2 - How does the model including the intensity index as pre-
dictor compare to a model built using antipattern metrics? The
prediction models that include the antipattern metrics [128] have lower per-
formance than the intensity-including models, while perform slightly (but
statistically) better than the basic models. We observe some orthogonal-

Improving Change Prediction Models with Code Smell-Related Information 29

ity between the set of change-prone and smelly classes correctly classified
by the models that include intensity index and the models with antipat-
tern metrics, which highlights the possibility to achieve higher performance
through a combination of smell-related information.

4.3 RQ3: What is the gain provided by the intensity index to change
prediction models when compared to other predictors?

In this section we analyze the results of Gain Ratio Feature Evaluation algo-
rithm [108] in order to understand how important the predictors composing
the different models considered in this study are, with the aim to evaluate the
predictive power of the intensity index when compared to the other predictors.

Table 9 shows the gain provided by the different predictions employed in
the structural metrics-based change prediction model, while Table 10 reports
the results for the process-based model and Table 11 those for the DCBM
model. In particular, the tables report the ranking of the predictors based on
their importance within the individual models. The value of the mean and
the standard deviation (computed by considering the results obtained on the
single systems) represent the expected reduction in entropy caused by parti-
tioning the prediction model according to a given predictor. In addition, we
also provide the likelihood of the predictor to be in the top-rank by the Scott-
Knott ESD test, i.e., the percentage of times a predictor is statistically better
than the others. The following subsections discuss our findings considering
each prediction model individually.

Table 9: Gain Provided by Each Metric To The SM Prediction Model.

Metric Mean St. Dev.
SK-ESD

Likelihood
CBO 0.66 0.09 82
RFC 0.61 0.05 77
Intensity 0.49 0.13 75
LOC 0.44 0.11 55
LCOM 3 0.43 0.12 51
Antipattern Complexity Metric 0.42 0.12 41
Antipattern Recurrence Length 0.31 0.05 32
Average Number of Antipatterns 0.22 0.10 21
DIT 0.13 0.02 3

Gain Provided to Structural-based Models (SM). The results in Ta-
ble 9 show that Coupling Between Objects (CBO) is the metric having the
highest predictive power, with an average reduction of entropy of 0.66 and
a standard deviation of 0.09. The Scott-Knott ESD test statistically confirms
the importance of the predictor, since the information gain given by the metric
is statistically higher than other metrics in 82% of the cases. It is worth noting
that this result is in line with previous findings in the field [12, 45, 97, 151]

30 Gemma Catolino et al.

which showed the relevance of coupling information for the maintainability of
software classes. Looking at the ranking, we also notice that Response For a
Class (RFC), Lines of Code (LOC), and Lack of Cohesion of Methods (LCOM
3) appear to be relevant. On the one hand, this is still in line with previous
findings [12, 97, 151]. On the other hand, it is also important to note that
our results indicate that code size is important for change prediction. In par-
ticular, unlike the findings by Zhou et al. [151] on the confounding effect of
size, we discovered that LOC can be an important predictor to discriminate
change-prone classes. This may be due to the large dataset exploited in this
study, which allows a higher level of generalizability. The Scott-Knott ESD
test confirm that these metrics are among the most powerful ones.

As for the variable of interest, i.e., the intensity index, we observe that it is
the feature providing the third highest gain in terms of reduction of entropy, as
it has a value of Mean and Standard Deviation of 0.49 and 0.13, respectively.
Looking at the results of the statistical test, we observed that the intensity
index is ranked on the top by the Scott-Knott ESD in 49% of the cases: this
indicates that the metric is statistically more relevant than the other predictors
in almost half of the projects. These findings lead to two main observations.
In the first place, the intensity index has a high predictive power and, for this
reason, can provide high benefits for the prediction of change-prone classes (as
also observed in RQ1). Secondly, and perhaps more interesting, the intensity
index can be more powerful than other structural metrics from which it is
derived: in other words, a metric mixing together different structural aspects
to measure how severe a code smell is, seems to be more meaningful than the
individual metrics used to derive the index.

As for the antipattern metrics, we observe that all of them appear to be
less relevant than the intensity index. This is in line with the results of RQ2,
where we have shown that adding them to change prediction models results
in a limited improvement with respect to the baseline. At the same time, it is
worth noting that ACM (i.e., Antipattern Complexity Metric) may sometimes
provide a notable contribution. While the average gain is 0.42, the standard
deviation is 0.12: this means that the entropy reduction can be up to 0.54, as in
the case of the Apache-synapse-2.3. This result suggests that this metric has
some potential for effectively predicting the change-proneness of classes. The
other two antipattern metrics, i.e., Average Number of Antipatterns (ANA)
and Antipattern Recurrence Length (ARL), instead, provide a mean entropy
reduction of 0.31 and 0.22, respectively, with a standard deviation that is never
above 0.1. Thus, their contribution is lower than ACM. The Scott-Knott ESD
test statistically confirms those findings: indeed, ACM was a top predictor in
41% of the datasets, as opposed to ANA and ARL metrics which appear as
statistically more powerful than other metrics in only 32% and 21% of the
cases, respectively. We conclude that ACM is statistically more valuable and
relevant than the other antipattern metrics. Finally, Depth Inheritance Tree is
the least powerful metrics in the ranking, and the Scott-Knott ESD test ranks
it at the top in only 3% of the cases.

Improving Change Prediction Models with Code Smell-Related Information 31

Table 10: Gain Provided by Each Metric To The PM Prediction Model.

Metric Mean St. Dev.
SK-ESD

Likelihood
BOC 0.56 0.05 75
FRCH 0.55 0.06 64
Intensity 0.44 0.08 61
WCD 0.42 0.11 55
Antipattern Complexity Metric 0.41 0.04 54
LCA 0.33 0.07 33
CHO 0.28 0.03 31
Antipattern Recurrence Length 0.24 0.05 25
Average Number of Antipatterns 0.09 0.03 2
CSB 0.07 0.01 1
TACH 0.02 0.01 1

Gain Provided to Process-based Models (PM). Regarding the process
metric-based model considered in this study, the results are similar to the
structural model. Indeed, from Table 10 we observe that the intensity index
has a mean entropy reduction of 0.44 and it is a top predictor in 61% of
the projects. According to the information gain algorithm, it is the third most
powerful feature of the model, ranked after the Birth of a Class and Frequency
of Changes metrics. On the one hand, this ranking is quite expected, as the top
two features are those which fundamentally characterize the notion of process-
based change prediction (PM) proposed by Elish et al. [36]. On the other hand,
our findings report that the intensity index can be orthogonal with respect to
the process metrics present in the model, i.e., a structural-based indicator
is orthogonal with respect to the other basic features. As for the antipattern
metrics, ACM was within the top predictors in 54% of the projects, while ANA
and ARL are top predictors in 25% and 2% of the dataset, respectively: this
result confirms that ACM has a statistically higher predictive power than the
other antipattern metrics. At the bottom of the ranking there are other basic
metrics like Changes since the Birth and Total Amount of Changes: this is in
line with previous findings [28] reporting that the overall number of previous
changes cannot properly model the change-proneness of classes.

Table 11: Gain Provided by Each Metric To The DCBM Prediction Model.

Metric Mean St. Dev.
SK-ESD

Likelihood
Semantic Scattering 0.76 0.07 95
Intensity 0.74 0.05 94
Structural Scattering 0.72 0.05 91
Antipattern Complexity Metric 0.66 0.04 78
Antipattern Recurrence Length 0.31 0.02 44
Average Number of Antipatterns 0.11 0.03 21

Gain Provided to Developer-related factors. Looking at the ranking of
the features of the DCBM model, we can still confirm the results discussed
so far. Indeed, the intensity index is the second most relevant factor, ranked

32 Gemma Catolino et al.

after the semantic scattering: its mean is 0.74, and the Scott-Knott ESD test
indicates the intensity index as top predictor in 94% of the considered projects.
It is interesting to note that the intensity index provides a higher contribution
than the structural scattering, indicating that the combination from which it is
derived can provide a higher entropy reduction with respect to a metric based
on the structural distance of the the classes touched by developers in a certain
time window. Regarding the antipattern metrics, the results are similar to
those of the other models considered; the ACM provided a mean information
gain of 0.66, being ranked at top predictors in 78% of the dataset. Instead, the
means for ARL and ANA are lower (0.31 and 0.11, respectively): these are the
least important features.

As a more general observation, it is worth noting that the values of mean
information gain of both the intensity index and ACM are much high (≈0.20
more) for this model when compared to the structural- and process metrics-
based models. As such, those metrics can provide a much high information
than the other models: this can be due to the limited number of features
employed by this model, which makes the additional metrics more useful to
predict the change-proneness of classes.

All in all, we confirm that the intensity index is a relevant feature for all the
change prediction models considered in the study, together with ACM from the
group of antipattern metrics. This possibly highlights how their combination
could provide further improvements in the context of change prediction.

RQ3 - What is the gain provided by the intensity index to change
prediction models when compared to other predictors? The inten-
sity index is a relevant predictor for all the considered prediction models
(0.49 for SM, 0.44 for PM, and 0.74 DCBM respectively). At the same time,
a metric of complexity of the change process involving code smells provides
further additional information, highlighting the possibility to obtain even
better change prediction performance when mixing different smell-related
information.

4.4 RQ4: What is the performance of a combined change prediction model
that includes smell-related information?

The results achieved in the previous research questions highlight the possi-
bility to build a combined change prediction model that takes into account
smell-related information besides the structural, process, and developer-related
metrics. For this reason, in the context of RQ4, we assess the feasibility of
a combined solution and evaluate its performance with respect to the results
achieved by the models experimented in RQ1 and RQ2. As explained in Sec-
tion 3, to come up with the combined model we firstly put together all the
features of the considered models and then apply a feature selection algo-
rithm to discard irrelevant features. Starting from an initial set of 18 metrics,

Improving Change Prediction Models with Code Smell-Related Information 33

this procedure discards DIT, CSB, TACH, and ANA. Thus, the combined
model comprises 14 metrics: besides most of the basic structural, process, and
developer-related predictors, the model includes three smell-related metrics,
namely (i) intensity index, (ii) ACM, and (iii) ARL.

Fig. 3: Overview of the value of F-Measure and AUC-ROC of the Combined Model. Note
that the starting value of the y-axis is different based on the performance of the models.

Table 12: Average number of true positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN) output by the devised combined model and comparison with the
best change prediction models coming from RQ1 and RQ2. Standard deviation is reported
in parenthesis.

Combined SM+Int.
TP FP TN FN TP FP TN FN

2192 (59) 74 (12) 123 (16) 74 (15) 1530 (16) 129 (10) 688 (14) 115 (11)

PM+Int. DCBM+Int.
TP FP TN FN TP FP TN FN

1872 (24) 172 (22) 246 (21) 172 (13) 1823 (16) 148 (7) 296 (21) 197 (9)

Figure 3 shows the boxplots reporting the distributions of F-Measure and
AUC-ROC related to the smell-aware combined change prediction model. To
facilitate the comparison with the models exploited in the context of RQ1

and RQ2, we also report boxplots depicting the best models coming from our
previous analyses, i.e., SM + Int., PM + Int., and DCBM + Int.. Moreover,
Table 12 reports average and standard deviation of the overall number of true
positives (TP), false positives (FP), true negatives (TN), and false negatives
(FN) given as output by the combined model as well as by the baselines.

Looking at the results, the combined model has better performance than all
the baselines. The median F-Measure reaches 88%, being 18%, 11%, and 13%
more accurate than SM + Int., PM + Int., and DCBM + Int., respectively.
This is also true for the AUC-ROC, where the combined model achieves 10%
better performances than the basic models that include the intensity. As an
example, in the Apache Xalan 2.5 project the best stand-alone model (the
“SM + Int” in this case) has an F-Measure close to 73%, while the mixture
of features provided by the combined model enables to reach an F-Measure

34 Gemma Catolino et al.

of 93%. As expected, the results are statistically significant, as the combined
smell-aware change prediction model appears in a top Scott-Knott ESD rank
in 98% of the cases.

On the one hand, these results confirm previous findings on the importance
to combine different predictors of source code maintainability [28, 31]. On the
other hand, we can claim that smell-related information [97, 128] improves
the capabilities of change prediction models, allowing them to perform better
than other existing models.

RQ4 - What is the performance of a combined change predic-
tion model that includes smell-related information? The devised
smell-aware change prediction model performs better than all the baselines
considered in the paper, with an F-Measure up to 20% and AUC ROC up
to 10%.

5 Discussion and Threats to Validity

The results of our research questions highlight some relevant findings that
need to be further discussed, especially with respect to their relevance in a
practical use case scenario. Moreover, our findings might be biased by some
aspects whose mitigation is subject of discussion in this section.

5.1 Discussion and practical usage of our change prediction model

Our results demonstrate that smell-related information can be used within
existing change prediction models to improve the accuracy with which they
identify classes more likely to be modified by developers in the future. As a
first discussion point, it is worth noting that the performance obtained by the
baseline models exploiting individual product, process, or developer-oriented
predictors are in line with those reported in recent work [28]: indeed, this
aspect indicates that our methodology led to results comparable with those
achieved in literature with respect to the performance of different types of
change prediction models, thus (i) validating the methodological choices we
adopt in this work and (ii) confirming previous findings in the field [28, 36, 151];
moreover, we notice that the improvements obtained by means of the addition
of smell-related information have led to the definition of better prediction
models, thus suggesting the importance of code smells for the problem of
interest and confirming the empirical studies previously conducted on their
role on the change-proneness of classes [63, 96].

The findings reported in our work have two main practical implications
and applications. First of all, the output of the proposed change prediction
model can be adopted by developers to keep track of change-prone classes:
this can be relevant to create awareness among developers about the classes

Improving Change Prediction Models with Code Smell-Related Information 35

that, for some reasons, tend to change frequently and that possibly hide design
issues that should be solved. We believe that the output of our technique can
provide developers with a tool able to spot problems within source code before
their actual occurrence, giving to them early indications on the classes to be
maintained and/or improved with respect to their quality.

It is important to note that change-prone classes are those source code
elements that, for some reasons, are more likely to be modified in the future
maintenance and evolution activities of a software project. As an example,
change-prone classes must not be confused with bug-prone code elements.
Indeed, these two sets might have some relationships, but they still remain
conceptually disjoint. On the one hand, bug-proneness indicates source code
that is more likely to have bugs in a close future: as such, the fact that a
class has bugs does not imply that it changes more often, moreover, there
are some defects that are fixed before they ever lead to a fault. On the other
hand, bug-prone classes might also be change-prone (i.e., changes are made to
correct faults), however bug fixing activities do not represent the only reason
for changes, as classes might change due to different software evolution tasks
(e.g., implementation of new change requests), so bugs are only one of the
many reasons for change. Thus, change- and bug-proneness of classes might
have some relation, but are not the same. To have a comprehensive overview
of the causes of change-proneness of a class, in this work we taken into account
baseline change prediction models based on different sets of basic predictors,
i.e., product, process, and developer-based metrics, that are able to capture
different state of the art evolutionary aspects of source code classes.

Besides creating awareness, the devised change prediction model can be di-
rectly integrated within developers’ software analytics dashboards (e.g., Biter-
gia4). This integration may enable a continuous feedback mechanism that al-
lows developers the immediate identification of the source code classes that are
more likely to change in the future. Such feedback can be then used by devel-
opers as input for performing preventive maintenance activities before putting
the code into production: for instance, in a continuous integration (CI) sce-
nario [17], developers might want to refactor the code before the CI pipeline
starts to avoid warnings given by static analysis tools [141, 142, 16, 18]. Sim-
ilarly, our change prediction model might be useful for project managers in
order to properly schedule maintenance operations: more specifically, they can
exploit the feedback given on the classes that are more likely to change in
the future to better plan when, where, and how to perform refactoring, code
review, or testing activities and improve the overall quality of the source code.
We believe that the proposed change prediction model can be effectively used
to continuously provide feedback and recommendations, thus allowing devel-
opers and project managers to schedule and apply modifications leading to
source code improvement.

4 https://bitergia.com

36 Gemma Catolino et al.

5.2 Threats to Validity

In this section we discuss possible threats affecting our results and how we
mitigated them.

5.2.1 Threats to Construct Validity

Threats to construct validity are related to the relationship between theory
and observation. In our study, a first threat is related to the independent
variables used and the dataset exploited: the selection of the variables to use as
basic predictors might have influenced our findings. To mitigate such a threat,
we selected state of the art change prediction models based on a different
set of basic features, i.e., structural, process, and developer-related metrics,
that capture different characteristics of source code. The selection was mainly
driven by recent results [28] that showed that the considered models are (i)
accurate in the detection of the change-proneness of classes and (ii) orthogonal
to each other, thus correctly identifying different sets of change-prone classes.
All in all, this selection process has enabled us to test the contribution of
smell-related information in different contexts.

A second threat is related to the dataset exploited, and in particular to its
reliability as source of actual change prediction components. In this regard, we
first relied on a publicly available dataset [56] and, on top of this, we computed
product, process, and developer-oriented metrics employing publicly available
tools. It is important to note that an important threat would have been related
to the alignment between the dataset already available and the classes on which
the additional metrics have been computed: to mitigate it, we have excluded
inner-classes and only took into account the meta-information available in the
original dataset provided by Jureczko and Madeyski [56], which provides the
full qualifiers of all classes of the considered systems (for all the releases).
As for the dependent variable, we have relied on ChangeDistiller [38] to
classify change-prone and non-change-prone classes: despite its accuracy, it
is worth noting that this tool does not detect changes in the documentation
(i.e., comments): while this could have under-estimated the change-proneness
of some classes, changes exclusively targeting the documentation likely do not
modify the behavior of a method/class and are not related to maintainability
reasons [57]. Thus, we are still confident to have properly estimated the change-
proneness of the classes in our dataset.

More in general, the definition of the problem is represented by a binary
classification based on ordinal rank. Such a definition assures that both depen-
dent and independent variables are project-dependent. Specifically, the defini-
tion of change-proneness is based on the number of changes that the classes
of a certain project underwent over their history. As a consequence, also the
ranking is deemed to be project-dependent since the change-proneness of the
classes depends on their individual number of changes. Similarly, most of the
independent variables are locally dependent: product metrics are computed
on single classes, while process metrics are computed on the basis of the his-

Improving Change Prediction Models with Code Smell-Related Information 37

tory of individual classes. The only exception is related to the developer-based
metrics: they are indeed computed on the basis of the activities made by a
certain developer on a certain project. We do not consider the activities of a
developer made on different projects, i.e., a developer might contribute to dif-
ferent projects, and this might bias the computation of the scattering metrics.
However, this likely represents a corner-case rather than a common one.

We adopted JCodeOdor [41] to identify code smells and assign to them
a level of intensity: the choice of the detector could have biased our observa-
tions. To mitigate this possible threat, JCodeOdor was selected based on
the results of previous experiments which obtained a high accuracy, i.e., F-
measure = 80%, on the same dataset [97]. Nevertheless, the tool still identifies
154 false positives and 94 false negatives among the 43 considered systems:
such imprecisions might have substantially biased the interpretation of the re-
ported results. To deal with it and make the set of code smells as close as
possible to the ground truth, in our study we manually analyzed the output of
JCodeOdor in order to (i) set to zero the intensity index of the false positive
instances, and (ii) discard the false negatives, i.e., the instances for which we
could not assign an intensity value. However, since this manual process is not
always feasible, we have also evaluated the effect of including false positive and
false negative instances in the construction of the change prediction models.
More specifically, we re-ran the analyses performed in Section 3 and validated
the performance of the experimented models when including the false positive
instances using the same metrics used to assess the performance of the other
prediction models (i.e., F-Measure and AUC-ROC). Our results report that
these models always perform better than other models that do not include any
smell-related information, while they are slightly less performing (-3% in terms
of median F-Measure) than those built discarding the false positive instances.
At the same time, we have evaluated the impact of including false negative in-
stances. Their intensity index is, by definition, equal to zero: as a consequence,
they are considered in the same way as non-smelly classes. The results of our
analyses show that the intensity-including models still produce better results
than the baselines, as they boosted their median F-Measure of ≈4%. At the
same time, we have observed a decrement of 2% in terms of F-Measure with
respect to the performance obtained by the prediction models built discard-
ing false negatives. As a final step, we have also considered the case where
both false positives and false negatives are incorporated in the experimented
models. Our findings report that the Basic + Intensity models have a median
F-Measure 2% lower than the models where the false positive and false nega-
tive instances were filtered out. At the same time, they were still better than
the basic models (median F-Measure=+6%). Thus, we can conclude that a
fully automatic code smell detection process still provides better performance
than existing change prediction models. In our opinion, this result is extremely
valuable as it indicates that practitioners can adopt automatic code smell de-
tectors without the need of manually investigating the candidates they give as
output.

38 Gemma Catolino et al.

The choice of considering code smell severity rather than the simple pres-
ence/absence of smells is driven by the conjecture that the severity can give
a more fine-grained information on how much a design problem is harmful for
a certain source code class: however, it would still be possible that a simpler
modeling of the problem would have led to better results. To verify whether
our conjecture is actually correct or not, we have conducted a further analy-
sis aimed at establishing the performance of the experimented models where
considering a boolean value reporting the presence of code smells rather than
their intensity. As expected, our findings are that the models relying on the
intensity are more powerful than those based on the boolean indication of the
smell presence. This further confirms the idea behind this paper, i.e., code
smell intensity can improve change-proneness prediction.

Finally, it is important to remark that our observations might still have
been threatened by the presence of code smell co-occurrences [98, 147], which
might have biased the intensity level of the smelly classes of our dataset. While
on average only 8% of the classes in our dataset contained more code smells,
the validity of our conclusions is still limited to the considered code smells,
i.e., we cannot exclude that other code smell types not considered in this study
co-occurred with those we have investigated. Therefore, further investigations
into the role of code smell co-occurrences would be desirable.

5.2.2 Threats to Conclusion Validity

Threats to conclusion validity refer to the relation between treatment and out-
come. A first threat in this category concerns the evaluation metrics adopted
to interpret the performance of the experimented change prediction models. To
mitigate the interpretation bias, we computed well-established metrics such as
F-Measure and AUC-ROC and statistically verified the differences in the per-
formance achieved by the different experimented models using the Scott-Knott
ESD statistical test [133]. In this regard, we took into account the problem of
data normality: over our dataset, the Shapiro-Wilk test of normality [116] gives
an output a ρ-value higher than the threshold of 0.05 for all the considered
independent variables, meaning that the data is not normally distributed. As
a consequence, we relied on the Scott-Knott ESD, which does not assume a
normally-distributed data. Moreover, we have also taken the comments made
by Herbold [54] into account on the original implementation of the Scott-Knott
ESD difference test with respect to the normality correction it applies; in par-
ticular, we have exploited version v1.2.2 of the algorithm, that contains the
latest implementation where the normality correction is properly applied. This
test allowed us to measure the importance of predictors into the model from
a statistical point of view; indeed, the higher the value given by the test to
a certain variable (from 1 to 100%), the higher the statistical importance of
that variable in correctly predicting the change-proneness of classes [133].

A second threat is related to the methodology adopted to measure how much
the intensity index has improved the performance of change prediction models.
Similar to previous work [97], we have analyzed to what extent the intensity

Improving Change Prediction Models with Code Smell-Related Information 39

index is important with respect to the other metrics by analyzing the gain
provided by the addition of the severity measure in the model. In this way, we
could assess the performance of the models with and without the variable of
interest, thus assessing the actual gain given by it.

Another threat to the validity that might have possibly affected our con-
clusions is related to the selection of the threshold used when discarding non-
relevant independent variables thought the Vif function [88]. Such a selection
has been under debate for a long time [114], without a clear and established
outcome [88]. In the context of our study, we employed the function imple-
mented in the R toolkit: as explained in the documentation of the package5,
the R implementation of the Vif function is based on the square of the multi-
ple correlation coefficient resulting from regressing a predictor variable against
all other predictor variables. If a variable has a strong linear relationship with
at least one other variable, the correlation coefficient would be close to 10, and
Vif for that variable would be large. The R toolkit, as well as other previous
works [35, 149], recommend to use a threshold higher than 10, as a Vif assum-
ing higher values is a signal that the model has a collinearity problem. Thus,
while some previous work in software engineering adopted different thresh-
olds [24, 121, 152], e.g., 2.5, we followed the guidelines provided by previous
literature and by the specific statistic tool exploited.

Finally, there is a threat related to the relation between cause and effects.
In particular, while we found certain relationships between independent and
dependent variables, we cannot exclude that metrics that we did not take into
account might have had an effect on our findings. For example, as reported
by Olbrich et al. [86], certain types of smelly classes are not necessarily more
change/defect prone after that size is taken into account: to mitigate such an
issue, we have taken into account a wide set of independent variables that have
been previously studied and assessed as highly effective for change prediction
purposes. However, the addition of other variables in the model might still have
an impact on our findings and, therefore, we encourage further replications
of our study to shed lights on possible additional factors influencing change
prediction. Similarly, the application of the proposed change prediction model
to other domains having substantially different characteristics with respect to
those analyzed herein may lead to different conclusions and, therefore, would
deserve further analyses.

5.2.3 Threats to External Validity

Threats in this category mainly concern the generalization of results. A first
threat is related to the heterogeneity of the dataset exploited in the study. In
this regard, we have analyzed a large set of 43 releases of 14 software systems
of an ecosystem in particular, i.e., the Apache Software Foundation. We
are aware that this can threaten the generalizability of the results; however
the considered projects are different in terms of application domain, size, and

5 https://www.rdocumentation.org/packages/usdm/versions/1.1-18/topics/vif

40 Gemma Catolino et al.

age. Of course, further analyses targeting different systems and/or ecosystems
would be beneficial to corroborate the findings observed on our dataset.

Another threat in this category regards the choice of the baseline models, as
they might not represent the state of the art in change prediction. To mitigate
this potential problem, we have evaluated the contribution of the smell-related
information in the context of change prediction models widely used in the past
[28, 36, 151] that take into account predictors of different nature, i.e., product,
process, and developer-related metrics. However, we are aware that our study
is based on systems developed in Java only, and therefore future investiga-
tions aimed at corroborating our findings on a different set of systems would
be worthwhile. At the same time, we are aware that a possible generalizability
issue is related to the transportability of the proposed model to other do-
mains, e.g., High Performance Computing or Embedded systems, which might
have different constraints on memory, cache utilization, or parallelization with
respect to the systems considered in this study. While a re-calibration of our
model in those contexts would surely be a valid option, further methodological
decisions might have to be addressed and/or reconsidered to properly adopt
the model in other contexts.

6 Conclusion

Based on previous findings [63, 96] that report the impact of code smells
on the change-proneness of classes, in this paper investigated the impact of
smell-related information for the prediction of change-prone classes. We first
conducted a large empirical study on 43 releases of 14 software systems and
evaluated the contribution of the intensity index proposed by Arcelli Fontana
et al. [5] within existing change prediction models based on product- [151],
process-[36], and developer-related [32] metrics. We also compared the gain
provided by the intensity index with the one given by the so-called antipat-
tern metrics [128], i.e., metrics capturing historical aspects of code smells.
The results indicated that the addition of the intensity index as a predictor of
change-prone components increases the performance of baseline change pre-
diction models by an average of 10% in terms of F-Measure (RQ1). Moreover,
the intensity index can boost the performance of such models more than state
of the art smell-related metrics such as those defined by Taba et al. [128], even
though we have observed an orthogonality between the models exploiting dif-
ferent information on code smells (RQ2). Based on these results, we built a
combined smell-aware change prediction model that takes into account prod-
uct, process, developer- and smell-related information (RQ4). The results show
that the combined model provides a consistent boost in terms of F-Measure,
which improve up to 20%.

Our findings represent the main input for our future research agenda: we
first aim at further testing the usefulness of the devised model in an industrial
setting. Furthermore, we plan to perform a fine-grained analysis into the role
of each smell type independently in the change prediction power. Additionally,

Improving Change Prediction Models with Code Smell-Related Information 41

we plan to investigate the feasibility of making change prediction models more
useful for developers by defining novel summarization mechanisms able to
output a summary reporting the likely reasons behind the decisions taken by
the change prediction model, thus explaining why a certain class is more likely
to be modified. Finally, we aim at studying the effect of change prediction
models in practice with respect to their usefulness in improving the allocation
of resources devoted to preventive maintenance operations.

Acknowledgment

The authors would like to thank the anonymous reviewers for the detailed
and constructive comments on the preliminary version of this paper, which
were instrumental to improving the quality of the work. Fabio Palomba was
partially supported by the Swiss National Science Foundation (SNSF) through
the Project no. PP00P2 170529.

References

1. Abbes M, Khomh F, Gueheneuc YG, Antoniol G (2011) An empiri-
cal study of the impact of two antipatterns, blob and spaghetti code,
on program comprehension. In: Software maintenance and reengineering
(CSMR), 2011 15th European conference on, IEEE, pp 181–190

2. Abdi M, Lounis H, Sahraoui H (2006) Analyzing change impact in object-
oriented systems. In: 32nd EUROMICRO Conference on Software Engi-
neering and Advanced Applications (EUROMICRO’06), IEEE, pp 310–
319

3. Ammerlaan E, Veninga W, Zaidman A (2015) Old habits die hard: Why
refactoring for understandability does not give immediate benefits. In:
Proceedings of the 22nd International Conference on Software Analysis,
Evolution and Reengineering (SANER), IEEE, pp 504–507

4. Aniche M, Treude C, Zaidman A, van Deursen A, Gerosa M (2016) Satt:
Tailoring code metric thresholds for different software architectures. In:
2016 IEEE 16th IEEE International Working Conference on Source Code
Analysis and Manipulation (SCAM), pp 41–50

5. Arcelli Fontana F, Ferme V, Zanoni M, Roveda R (2015) Towards a pri-
oritization of code debt: A code smell intensity index. In: Proceedings of
the Seventh International Workshop on Managing Technical Debt (MTD
2015), IEEE, Bremen, Germany, pp 16–24, in conjunction with ICSME
2015

6. Arcelli Fontana F, Mäntylä MV, Zanoni M, Marino A (2016)
Comparing and experimenting machine learning techniques for code
smell detection. Empirical Software Engineering 21(3):1143–1191,
DOI 10.1007/s10664-015-9378-4, URL http://dx.doi.org/10.1007/

s10664-015-9378-4

42 Gemma Catolino et al.

7. Arisholm E, Briand LC, Foyen A (2004) Dynamic coupling measurement
for object-oriented software. IEEE Transactions on Software Engineering
30(8):491–506

8. Azeem MI, Palomba F, Shi L, Wang Q (2019) Machine learning tech-
niques for code smell detection: A systematic literature review and meta-
analysis. Information and Software Technology

9. Bacchelli A, Bird C (2013) Expectations, outcomes, and challenges of
modern code review. In: Proceedings of the International Conference on
Software Engineering (ICSE), IEEE, pp 712–721

10. Baeza-Yates R, Ribeiro-Neto B (1999) Modern Information Retrieval.
Addison-Wesley

11. Bansiya J, Davis CG (2002) A hierarchical model for object-oriented
design quality assessment. IEEE Transactions on Software Engineering
28(1):4–17

12. Basili VR, Briand LC, Melo WL (1996) A validation of object-oriented
design metrics as quality indicators. IEEE Transactions on Software En-
gineering 22(10):751–761

13. Bavota G, De Lucia A, Di Penta M, Oliveto R, Palomba F (2015) An
experimental investigation on the innate relationship between quality and
refactoring. Journal of Systems and Software 107:1–14

14. Bell RM, Ostrand TJ, Weyuker EJ (2013) The limited impact of indi-
vidual developer data on software defect prediction. Empirical Software
Engineering 18(3):478–505

15. Beller M, Bacchelli A, Zaidman A, Juergens E (2014) Modern code re-
views in open-source projects: Which problems do they fix? In: Proceed-
ings of the 11th Working Conference on Mining Software Repositories
(MSR), IEEE, pp 202–211

16. Beller M, Bholanath R, McIntosh S, Zaidman A (2016) Analyzing the
state of static analysis: A large-scale evaluation in open source software.
In: Proceedings of the 23rd International Conference on Software Anal-
ysis, Evolution and Reengineering (SANER), IEEE, pp 470–481

17. Beller M, Gousios G, Zaidman A (2017) Oops, my tests broke the build:
An explorative analysis of travis ci with github. In: Proceedings of the
International Conference on Mining Software Repositories (MSR), IEEE,
pp 356–367

18. Beller M, Gousios G, Zaidman A (2017) Travistorrent: Synthesizing
Travis CI and GitHub for full-stack research on continuous integration

19. Bieman JM, Straw G, Wang H, Munger PW, Alexander RT (2003) Design
patterns and change proneness: an examination of five evolving systems.
In: Proceedings International Workshop on Enterprise Networking and
Computing in Healthcare Industry, pp 40–49, DOI 10.1109/METRIC.
2003.1232454

20. Bottou L, Vapnik V (1992) Local learning algorithms. Neural Comput
4(6):888–900

21. Boussaa M, Kessentini W, Kessentini M, Bechikh S, Ben Chikha S (2013)
Competitive coevolutionary code-smells detection. In: Search Based Soft-

Improving Change Prediction Models with Code Smell-Related Information 43

ware Engineering, Lecture Notes in Computer Science, vol 8084, Springer
Berlin Heidelberg, pp 50–65

22. Bradley AP (1997) The use of the area under the roc curve in the evalua-
tion of machine learning algorithms. Pattern recognition 30(7):1145–1159

23. Briand LC, Wust J, Lounis H (1999) Using coupling measurement for im-
pact analysis in object-oriented systems. In: Proceedings of International
Conference on Software Maintenance (ICSM), IEEE, pp 475–482

24. Cataldo M, Mockus A, Roberts JA, Herbsleb JD (2009) Software depen-
dencies, work dependencies, and their impact on failures. IEEE Transac-
tions on Software Engineering 35(6):864–878

25. Catolino G, Ferrucci F (2018) Ensemble techniques for software change
prediction: A preliminary investigation. In: Machine Learning Techniques
for Software Quality Evaluation (MaLTeSQuE), 2018 IEEE Workshop on,
IEEE, pp 25–30

26. Catolino G, Ferrucci F (2019) An extensive evaluation of ensemble tech-
niques for software change prediction. Journal of Software Evolution and
Process DOI https://doi.org/10.1002/smr.2156

27. Catolino G, Palomba F, Arcelli Fontana F, De Lucia A, Ferrucci F,
Zaidman A (2018) Improving change prediction models with code smell-
related information - replication package - https://figshare.com/s/

f536bb37f3790914a32a

28. Catolino G, Palomba F, De Lucia A, Ferrucci F, Zaidman A (2018) En-
hancing change prediction models using developer-related factors. Jour-
nal of Systems and Software 143:14–28

29. le Cessie S, van Houwelingen J (1992) Ridge estimators in logistic regres-
sion. Applied Statistics 41(1):191–201

30. D’Ambros M, Bacchelli A, Lanza M (2010) On the impact of design flaws
on software defects. In: Quality Software (QSIC), 2010 10th International
Conference on, pp 23–31, DOI 10.1109/QSIC.2010.58

31. DAmbros M, Lanza M, Robbes R (2012) Evaluating defect prediction ap-
proaches: a benchmark and an extensive comparison. Empirical Software
Engineering 17(4):531–577

32. Di Nucci D, Palomba F, De Rosa G, Bavota G, Oliveto R, De Lucia A
(2018) A developer centered bug prediction model. IEEE Transactions
on Software Engineering 44(1):5–24

33. Di Nucci D, Palomba F, Tamburri DA, Serebrenik A, De Lucia A (2018)
Detecting code smells using machine learning techniques: are we there
yet? In: 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER), IEEE, pp 612–621

34. Di Penta M, Cerulo L, Gueheneuc YG, Antoniol G (2008) An empirical
study of the relationships between design pattern roles and class change
proneness. In: Proceedings International Conference on Software Main-
tenance (ICSM), IEEE, pp 217–226, DOI 10.1109/ICSM.2008.4658070

35. Eisenlohr PV (2014) Persisting challenges in multiple models: a note on
commonly unnoticed issues regarding collinearity and spatial structure
of ecological data. Brazilian Journal of Botany 37(3):365–371

44 Gemma Catolino et al.

36. Elish MO, Al-Rahman Al-Khiaty M (2013) A suite of metrics for quanti-
fying historical changes to predict future change-prone classes in object-
oriented software. Journal of Software: Evolution and Process 25(5):407–
437

37. Eski S, Buzluca F (2011) An empirical study on object-oriented met-
rics and software evolution in order to reduce testing costs by predicting
change-prone classes. In: Proceedings International Conf Software Test-
ing, Verification and Validation Workshops (ICSTW), IEEE, pp 566–571

38. Fluri B, Wuersch M, PInzger M, Gall H (2007) Change distilling: Tree
differencing for fine-grained source code change extraction. IEEE Trans-
actions on software engineering 33(11)

39. Fontana FA, Zanoni M (2017) Code smell severity classification using
machine learning techniques. Knowledge-Based Systems 128:43–58

40. Fontana FA, Zanoni M, Marino A, Mantyla MV (2013) Code smell detec-
tion: Towards a machine learning-based approach. In: Software Mainte-
nance (ICSM), 2013 29th IEEE International Conference on, pp 396–399,
DOI 10.1109/ICSM.2013.56

41. Fontana FA, Ferme V, Zanoni M, Roveda R (2015) Towards a priori-
tization of code debt: A code smell intensity index. In: 2015 IEEE 7th
International Workshop on Managing Technical Debt (MTD), IEEE, pp
16–24

42. Fontana FA, Ferme V, Zanoni M, Yamashita A (2015) Automatic metric
thresholds derivation for code smell detection. In: Proceedings of the
Sixth international workshop on emerging trends in software metrics,
IEEE Press, pp 44–53

43. Fontana FA, Dietrich J, Walter B, Yamashita A, Zanoni M (2016) An-
tipattern and code smell false positives: Preliminary conceptualization
and classification. In: 2016 IEEE 23rd International Conference on Soft-
ware Analysis, Evolution, and Reengineering (SANER), vol 1, pp 609–
613, DOI 10.1109/SANER.2016.84

44. Fowler M, Beck K, Brant J, Opdyke W, Roberts D (1999) Refactoring:
Improving the Design of Existing Code. Addison-Wesley

45. Fregnan E, Baum T, Palomba F, Bacchelli A (2018) A survey on software
coupling relations and tools. Information and Software Technology

46. Gatrell M, Counsell S (2015) The effect of refactoring on change and
fault-proneness in commercial c# software. Science of Computer Pro-
gramming 102(0):44 – 56, DOI http://dx.doi.org/10.1016/j.scico.2014.
12.002, URL http://www.sciencedirect.com/science/article/pii/

S0167642314005711

47. Girba T, Ducasse S, Lanza M (2004) Yesterday’s weather: Guiding early
reverse engineering efforts by summarizing the evolution of changes. In:
Proceedings of the International Conference on Software Maintenance
(ICSM), IEEE, pp 40–49

48. Grissom RJ, Kim JJ (2005) Effect sizes for research: A broad practical
approach. Lawrence Erlbaum Associates Publishers

Improving Change Prediction Models with Code Smell-Related Information 45

49. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH
(2009) The weka data mining software: An update. SIGKDD Explor
Newsl 11(1):10–18, DOI 10.1145/1656274.1656278, URL http://doi.

acm.org/10.1145/1656274.1656278

50. Hall T, Beecham S, Bowes D, Gray D, Counsell S (2011) Developing fault-
prediction models: What the research can show industry. IEEE Software
28(6):96–99

51. Han AR, Jeon SU, Bae DH, Hong JE (2008) Behavioral dependency mea-
surement for change-proneness prediction in uml 2.0 design models. In:
32nd Annual IEEE International Computer Software and Applications
Conference, IEEE, pp 76–83

52. Han AR, Jeon SU, Bae DH, Hong JE (2010) Measuring behavioral de-
pendency for improving change-proneness prediction in uml-based design
models. Journal of Systems and Software 83(2):222–234

53. Hassan AE (2009) Predicting faults using the complexity of code changes.
In: International Conference Software Engineering (ICSE), IEEE, pp 78–
88

54. Herbold S (2017) Comments on scottknottesd in response to “an em-
pirical comparison of model validation techniques for defect prediction
models”. IEEE Transactions on Software Engineering 43(11):1091–1094

55. John GH, Langley P (1995) Estimating continuous distributions in
bayesian classifiers. In: Eleventh Conference on Uncertainty in Artificial
Intelligence, Morgan Kaufmann, San Mateo, pp 338–345

56. Jureczko M, Madeyski L (2010) Towards identifying software project clus-
ters with regard to defect prediction. In: Proceedings of the 6th Interna-
tional Conference on Predictive Models in Software Engineering, ACM

57. Kawrykow D, Robillard MP (2011) Non-essential changes in version his-
tories. In: Software Engineering (ICSE), 2011 33rd International Confer-
ence on, IEEE, pp 351–360

58. Kennedy J (2011) Particle swarm optimization. In: Encyclopedia of ma-
chine learning, Springer, pp 760–766

59. Kessentini M, Vaucher S, Sahraoui H (2010) Deviance from perfection is
a better criterion than closeness to evil when identifying risky code. In:
Proceedings of the IEEE/ACM International Conference on Automated
Software Engineering, ACM, ASE ’10, pp 113–122

60. Kessentini W, Kessentini M, Sahraoui H, Bechikh S, Ouni A (2014) A
cooperative parallel search-based software engineering approach for code-
smells detection. IEEE Transactions on Software Engineering 40(9):841–
861, DOI 10.1109/TSE.2014.2331057

61. Khomh F, Di Penta M, Gueheneuc YG (2009) An exploratory study of
the impact of code smells on software change-proneness. In: 2009 16th
Working Conference on Reverse Engineering, IEEE, pp 75–84

62. Khomh F, Vaucher S, Guéhéneuc YG, Sahraoui H (2009) A bayesian
approach for the detection of code and design smells. In: Proceedings of
the International Conference on Quality Software (QSIC), IEEE, Hong
Kong, China, pp 305–314

46 Gemma Catolino et al.

63. Khomh F, Di Penta M, Guéhéneuc YG, Antoniol G (2012) An ex-
ploratory study of the impact of antipatterns on class change-and fault-
proneness. Empirical Software Engineering 17(3):243–275

64. Kim M, Zimmermann T, Nagappan N (2014) An empirical study of refac-
toringchallenges and benefits at microsoft. IEEE Transactions on Soft-
ware Engineering 40(7):633–649

65. Kohavi R (1995) The power of decision tables. In: 8th European Confer-
ence on Machine Learning, Springer, pp 174–189

66. Kumar L, Behera RK, Rath S, Sureka A (2017) Transfer learning for
cross-project change-proneness prediction in object-oriented software sys-
tems: A feasibility analysis. ACM SIGSOFT Software Engineering Notes
42(3):1–11

67. Kumar L, Rath SK, Sureka A (2017) Empirical analysis on effectiveness
of source code metrics for predicting change-proneness. In: ISEC, pp 4–14

68. Lanza M, Marinescu R (2006) Object-Oriented Metrics in Practice: Using
Software Metrics to Characterize, Evaluate, and Improve the Design of
Object-Oriented Systems. Springer

69. Le Cessie S, Van Houwelingen JC (1992) Ridge estimators in logistic
regression. Applied statistics pp 191–201

70. Lehman MM, Belady LA (eds) (1985) Program Evolution: Processes of
Software Change. Academic Press Professional, Inc.

71. Lu H, Zhou Y, Xu B, Leung H, Chen L (2012) The ability of object-
oriented metrics to predict change-proneness: a meta-analysis. Empirical
software engineering 17(3):200–242

72. Malhotra R, Bansal A (2015) Predicting change using software metrics: A
review. In: International Conference on Reliability, Infocom Technologies
and Optimization (ICRITO), IEEE, pp 1–6

73. Malhotra R, Khanna M (2013) Investigation of relationship between
object-oriented metrics and change proneness. International Journal of
Machine Learning and Cybernetics 4(4):273–286

74. Malhotra R, Khanna M (2014) A new metric for predicting software
change using gene expression programming. In: Proceedings International
Workshop on Emerging Trends in Software Metrics, ACM, pp 8–14

75. Malhotra R, Khanna M (2017) Software change prediction using voting
particle swarm optimization based ensemble classifier. In: Proceedings
of the Genetic and Evolutionary Computation Conference Companion,
ACM, pp 311–312

76. Mann HB, Whitney DR (1947) On a test of whether one of two random
variables is stochastically larger than the other. The annals of mathe-
matical statistics pp 50–60

77. Marinescu C (2014) How good is genetic programming at predicting
changes and defects? In: International Symp. on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC), IEEE, pp 544–548

78. Marinescu R (2004) Detection strategies: Metrics-based rules for detect-
ing design flaws. In: Proceedings of the International Conference on Soft-
ware Maintenance (ICSM), pp 350–359

Improving Change Prediction Models with Code Smell-Related Information 47

79. Marinescu R (2012) Assessing technical debt by identifying design flaws
in software systems. IBM Journal of Research and Development 56(5):9–1

80. Menzies T, Caglayan B, Kocaguneli E, Krall J, Peters F, Turhan B (2012)
The PROMISE repository of empirical software engineering data

81. Mkaouer MW, Kessentini M, Bechikh S, Cinnéide MÓ (2014) A ro-
bust multi-objective approach for software refactoring under uncertainty.
In: International Symposium on Search Based Software Engineering,
Springer, pp 168–183

82. Moha N, Guéhéneuc YG, Duchien L, Meur AFL (2010) Decor: A method
for the specification and detection of code and design smells. IEEE Trans-
actions on Software Engineering 36(1):20–36

83. Morales R, Soh Z, Khomh F, Antoniol G, Chicano F (2016) On the use of
developers’ context for automatic refactoring of software anti-patterns.
Journal of Systems and Software (JSS)

84. Munro MJ (2005) Product metrics for automatic identification of “bad
smell” design problems in java source-code. In: Proceedings of the Inter-
national Software Metrics Symposium (METRICS), IEEE, p 15

85. Murphy-Hill E, Black AP (2010) An interactive ambient visualization
for code smells. In: Proceedings of the 5th international symposium on
Software visualization, ACM, pp 5–14

86. Olbrich SM, Cruzes DS, Sjøberg DIK (2010) Are all code smells harmful?
a study of god classes and brain classes in the evolution of three open
source systems. In: Internationl Conference on Software Maintenance, pp
1–10

87. Oliveto R, Khomh F, Antoniol G, Guéhéneuc YG (2010) Numerical sig-
natures of antipatterns: An approach based on B-splines. In: Proceedings
of the European Conference on Software Maintenance and Reengineering
(CSMR), IEEE, pp 248–251

88. O’brien RM (2007) A caution regarding rules of thumb for variance in-
flation factors. Quality & quantity 41(5):673–690

89. Palomba F, Zaidman A (2017) Does refactoring of test smells induce
fixing flaky tests? In: Software Maintenance and Evolution (ICSME),
2017 IEEE International Conference on, IEEE, pp 1–12

90. Palomba F, Zaidman A (2019) The smell of fear: On the relation between
test smells and flaky tests. Empirical Software Engineering (EMSE) To
Appear

91. Palomba F, Bavota G, Di Penta M, Oliveto R, De Lucia A, Poshyvanyk
D (2013) Detecting bad smells in source code using change history in-
formation. In: Automated software engineering (ASE), 2013 IEEE/ACM
28th international conference on, IEEE, pp 268–278

92. Palomba F, Bavota G, Di Penta M, Oliveto R, De Lucia A (2014) Do they
really smell bad? a study on developers’ perception of bad code smells. In:
Software maintenance and evolution (ICSME), 2014 IEEE international
conference on, IEEE, pp 101–110

93. Palomba F, Bavota G, Di Penta M, Oliveto R, Poshyvanyk D, De Lucia
A (2015) Mining version histories for detecting code smells. IEEE Trans-

48 Gemma Catolino et al.

actions on Software Engineering 41(5):462–489, DOI 10.1109/TSE.2014.
2372760

94. Palomba F, Lucia AD, Bavota G, Oliveto R (2015) Anti-pattern de-
tection: Methods, challenges, and open issues. Advances in Computers
95:201–238, DOI 10.1016/B978-0-12-800160-8.00004-8

95. Palomba F, Panichella A, De Lucia A, Oliveto R, Zaidman A (2016) A
textual-based technique for smell detection. In: Program Comprehension
(ICPC), 2016 IEEE 24th International Conference on, IEEE, pp 1–10

96. Palomba F, Bavota G, Di Penta M, Fasano F, Oliveto R, De Lucia A
(2017) On the diffuseness and the impact on maintainability of code
smells: a large scale empirical investigation. Empirical Software Engi-
neering pp 1–34

97. Palomba F, Zanoni M, Fontana FA, De Lucia A, Oliveto R (2017) To-
ward a smell-aware bug prediction model. IEEE Transactions on Software
Engineering

98. Palomba F, Bavota G, Di Penta M, Fasano F, Oliveto R, De Lucia A
(2018) A large-scale empirical study on the lifecycle of code smell co-
occurrences. Information and Software Technology 99:1–10

99. Palomba F, Panichella A, Zaidman A, Oliveto R, De Lucia A (2018) The
scent of a smell: An extensive comparison between textual and structural
smells. Transactions on Software Engineering 44(10):977–1000

100. Palomba F, Tamburri DAA, Fontana FA, Oliveto R, Zaidman A, Sere-
brenik A (2018) Beyond technical aspects: How do community smells
influence the intensity of code smells? IEEE Transactions on Software
Engineering

101. Palomba F, Zaidman A, De Lucia A (2018) Automatic test smell detec-
tion using information retrieval techniques. In: 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME), IEEE, pp
311–322

102. Parnas DL (1994) Software aging. In: Proceedings of the International
Conference on Software Engineering (ICSE), IEEE, pp 279–287

103. Pascarella L, Spadini D, Palomba F, Bruntink M, Bacchelli A (2018)
Information needs in contemporary code review. Proceedings of the ACM
on Human-Computer Interaction 2(CSCW):135

104. Pascarella L, Palomba F, Bacchelli A (2019) Fine-grained just-in-time
defect prediction. Journal of Systems and Software to appear

105. Peer A, Malhotra R (2013) Application of adaptive neuro-fuzzy inference
system for predicting software change proneness. In: Advances in Com-
puting, Communications and Informatics (ICACCI), 2013 International
Conference on, IEEE, pp 2026–2031

106. Peng CYJ, Lee KL, Ingersoll GM (2002) An introduction to logistic re-
gression analysis and reporting. The Journal of Educational Research
96(1):3–14

107. Peters R, Zaidman A (2012) Evaluating the lifespan of code smells using
software repository mining. In: Software Maintenance and Reengineering
(CSMR), 2012 16th European Conference on, IEEE, pp 411–416

Improving Change Prediction Models with Code Smell-Related Information 49

108. Quinlan JR (1986) Induction of decision trees. Mach Learn 1(1):81–106,
DOI 10.1023/A:1022643204877, URL http://dx.doi.org/10.1023/A:

1022643204877

109. Ratiu D, Ducasse S, Gı̂rba T, Marinescu R (2004) Using history informa-
tion to improve design flaws detection. In: Proceedings of the European
Conference on Software Maintenance and Reengineering (CSMR), IEEE,
pp 223–232

110. Romano D, Pinzger M (2011) Using source code metrics to predict
change-prone java interfaces. In: Proceedings International Conference
Software Maintenance (ICSM), IEEE, pp 303–312

111. Rosenblatt F (1961) Principles of Neurodynamics: Perceptrons and the
Theory of Brain Mechanisms. Spartan Books

112. Rumbaugh J, Jacobson I, Booch G (2004) Unified Modeling Language
Reference Manual, The (2Nd Edition). Pearson Higher Education

113. Sahin D, Kessentini M, Bechikh S, Deb K (2014) Code-smell detection as
a bilevel problem. ACM Transactions on Software Engineering Method-
ology 24(1):6:1–6:44, DOI 10.1145/2675067

114. Schwartz J, Landrigan PJ, Feldman RG, Silbergeld EK, Baker EL, von
Lindern IH (1988) Threshold effect in lead-induced peripheral neuropa-
thy. The Journal of pediatrics 112(1):12–17

115. Scott AJ, Knott M (1974) A cluster analysis method for grouping means
in the analysis of variance. Biometrics pp 507–512

116. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality
(complete samples). Biometrika 52(3/4):591–611

117. Sharafat AR, Tahvildari L (2007) A probabilistic approach to predict
changes in object-oriented software systems. In: Proceedings Conference
on Software Maintenance and Reengineering (CSMR), IEEE, pp 27–38

118. Sharafat AR, Tahvildari L (2008) Change prediction in object-oriented
software systems: A probabilistic approach. Journal of Software 3(5):26–
39

119. Shepperd M, Song Q, Sun Z, Mair C (2013) Data quality: Some comments
on the nasa software defect datasets. IEEE Transactions on Software
Engineering 39(9):1208–1215

120. Shepperd M, Bowes D, Hall T (2014) Researcher bias: The use of machine
learning in software defect prediction. IEEE Transactions on Software
Engineering 40(6):603–616, DOI 10.1109/TSE.2014.2322358

121. Shihab E, Jiang ZM, Ibrahim WM, Adams B, Hassan AE (2010) Under-
standing the impact of code and process metrics on post-release defects:
a case study on the eclipse project. In: Proceedings of the 2010 ACM-
IEEE International Symposium on Empirical Software Engineering and
Measurement, ACM, p 4

122. Sjoberg DI, Yamashita A, Anda BC, Mockus A, Dyba T (2013) Quanti-
fying the effect of code smells on maintenance effort. IEEE Transactions
on Software Engineering (8):1144–1156

123. Soetens QD, Pérez J, Demeyer S, Zaidman A (2015) Circumventing refac-
toring masking using fine-grained change recording. In: Proceedings of the

50 Gemma Catolino et al.

14th International Workshop on Principles of Software Evolution (IW-
PSE), ACM, pp 9–18

124. Soetens QD, Demeyer S, Zaidman A, Pérez J (2016) Change-based
test selection: An empirical evaluation. Empirical Software Engineering
21(5):1990–2032

125. Spadini D, Palomba F, Zaidman A, Bruntink M, Bacchelli A (2018) On
the relation of test smells to software code quality. In: 2018 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME),
IEEE, pp 1–12

126. Spinellis D (2005) Tool writing: A forgotten art? IEEE Software (4):9–11
127. Stone M (1974) Cross-validatory choice and assessment of statistical pre-

dictions. Journal of the royal statistical society Series B (Methodological)
pp 111–147

128. Taba SES, Khomh F, Zou Y, Hassan AE, Nagappan M (2013) Predicting
bugs using antipatterns. In: Proceedings of the 2013 IEEE International
Conference on Software Maintenance, IEEE Computer Society, Washing-
ton, DC, USA, ICSM ’13, pp 270–279, DOI 10.1109/ICSM.2013.38, URL
http://dx.doi.org/10.1109/ICSM.2013.38

129. Taibi D, Janes A, Lenarduzzi V (2017) How developers perceive smells
in source code: A replicated study. Information and Software Technology
92:223–235

130. Tamburri DA, Palomba F, Serebrenik A, Zaidman A (2018) Discover-
ing community patterns in open-source: a systematic approach and its
evaluation. Empirical Software Engineering pp 1–49

131. Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2016) Au-
tomated parameter optimization of classification techniques for defect
prediction models. In: Proceedings of the 38th International Confer-
ence on Software Engineering, ACM, New York, NY, USA, ICSE ’16,
pp 321–332, DOI 10.1145/2884781.2884857, URL http://doi.acm.org/

10.1145/2884781.2884857

132. Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2016)
Comments on researcher bias: The use of machine learning in software de-
fect prediction. IEEE Transactions on Software Engineering 42(11):1092–
1094, DOI 10.1109/TSE.2016.2553030

133. Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2017) An
empirical comparison of model validation techniques for defect predic-
tion models. IEEE Transactions on Software Engineering 43(1):1–18,
DOI 10.1109/TSE.2016.2584050, URL https://doi.org/10.1109/TSE.

2016.2584050

134. Tempero E, Anslow C, Dietrich J, Han T, Li J, Lumpe M, Melton
H, Noble J (2010) The qualitas corpus: A curated collection of java
code for empirical studies. In: Proceedings of 17th Asia Pacific Soft-
ware Engineering Conference, IEEE, Sydney, Australia, pp 336–345, DOI
10.1109/APSEC.2010.46

135. Theodoridis S, Koutroumbas K (2008) Pattern recognition. IEEE Trans-
actions on Neural Networks 19(2):376–376

Improving Change Prediction Models with Code Smell-Related Information 51

136. Tsantalis N, Chatzigeorgiou A (2009) Identification of move method
refactoring opportunities. IEEE Transactions on Software Engineering
35(3):347–367

137. Tsantalis N, Chatzigeorgiou A, Stephanides G (2005) Predicting the
probability of change in object-oriented systems. IEEE Transactions on
Software Engineering 31(7):601–614

138. Tufano M, Palomba F, Bavota G, Oliveto R, Di Penta M, De Lu-
cia A, Poshyvanyk D (2015) When and why your code starts to smell
bad. In: Proceedings of the 37th International Conference on Software
Engineering-Volume 1, IEEE Press, pp 403–414

139. Tufano M, Palomba F, Bavota G, Di Penta M, Oliveto R, De Lucia A,
Poshyvanyk D (2016) An empirical investigation into the nature of test
smells. In: Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, pp 4–15

140. Tufano M, Palomba F, Bavota G, Oliveto R, Di Penta M, De Lucia A,
Poshyvanyk D (2017) When and why your code starts to smell bad (and
whether the smells go away). IEEE Transactions on Software Engineering
43(11):1063–1088

141. Vassallo C, Palomba F, Gall HC (2018) Continuous refactoring in ci:
A preliminary study on the perceived advantages and barriers. In: 2018
IEEE International Conference on Software Maintenance and Evolution
(ICSME), IEEE, pp 564–568

142. Vassallo C, Panichella S, Palomba F, Proksch S, Zaidman A, Gall HC
(2018) Context is king: The developer perspective on the usage of static
analysis tools. In: 2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER), IEEE, pp 38–49

143. Vidal S, Guimaraes E, Oizumi W, Garcia A, Pace AD, Marcos C (2016)
On the criteria for prioritizing code anomalies to identify architectural
problems. In: Proceedings of the 31st Annual ACM Symposium on Ap-
plied Computing, ACM, pp 1812–1814

144. Vidal SA, Marcos C, Dı́az-Pace JA (2016) An approach to prioritize code
smells for refactoring. Automated Software Engineering 23(3):501–532

145. Vonken F, Zaidman A (2012) Refactoring with unit testing: A match
made in heaven? In: Proceeedings of the Working Conference on Reverse
Engineering (WCRE), IEEE, pp 29–38

146. Y Freund LM (1999) The alternating decision tree learning algorithm.
In: Proceeding of the Sixteenth International Conference on Machine
Learning, pp 124–133

147. Yamashita A, Moonen L (2013) Exploring the impact of inter-smell re-
lations on software maintainability: An empirical study. In: Proceedings
of the International Conference on Software Engineering (ICSE), IEEE,
pp 682–691

148. Yamashita AF, Moonen L (2012) Do code smells reflect important main-
tainability aspects? In: Proceedings of the International Conference on
Software Maintenance (ICSM), IEEE, pp 306–315

52 Gemma Catolino et al.

149. Yu CH (2000) An overview of remedial tools for collinearity in sas. In:
Proceedings of 2000 Western Users of SAS Software Conference, WUSS,
vol 1, pp 196–201

150. Zhao L, Hayes JH (2011) Rank-based refactoring decision support: two
studies. Innovations in Systems and Software Engineering 7(3):171

151. Zhou Y, Leung H, Xu B (2009) Examining the potentially confound-
ing effect of class size on the associations between object-oriented met-
rics and change-proneness. IEEE Transactions on Software Engineering
35(5):607–623

152. Zogaan W, Sharma P, Mirahkorli M, Arnaoudova V (2017) Datasets from
fifteen years of automated requirements traceability research: Current
state, characteristics, and quality. In: Requirements Engineering Confer-
ence (RE), 2017 IEEE 25th International, IEEE, pp 110–121

