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Abstract

Quantum computation is becoming an increasingly interesting field, especially
with the rise of real quantum computers. However, current quantum processors
contain a few tens of error-prone qubits and the realization of large-scale quantum
computers is still very challenging. Therefore, quantum computer simulators are
particularly suitable for testing and analysing quantum algorithms without having a
real quantum computer at one’s disposal. In this thesis, different quantum algorithms
such as Grover’s and Shor’s algorithm as well as key quantum routines such as the
Quantum Fourier Transform (QFT) and a quantum adder/subtractor are described
and analysed (optimal number of iterations, time complexity). Some of them have
been implemented for an arbitrary number of qubits and have been simulated using
two different quantum simulators, the QX simulator developed at QuTech and the
Liquid simulator from Microsoft. In addition, how errors affect the success rate of
the algorithms has been investigated.
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Introduction

With the rise of real quantum computers, quantum computing is becoming an increasingly
interesting field in both physics and mathematics. With large players like Intel, IBM and
Microsoft jumping on the hype train, the development is accelerating quickly. Quantum
computers with up to 50 qubits are already available at TU Delft and IBM has built a
machine with 50 qubits as well.

However, the realization of large-scale physical quantum computers is not only very
challenging, but also very costly. Consequently, quantum computers are still scarce
to people outside of the research groups developing them and the available quantum
computers have at most a few dozen qubits. Besides, the stability of quantum computers
and the exclusion of errors is still a real challenge.

For this reasons and because only a few quantum algorithms are available to test these
designs, quantum computer simulators are a very good tool for developing and testing
quantum algorithms. Several simulators have been developed over the last few years.
Microsoft has developed a simulator called Microsoft LIQi|〉 in 2016. QuTech, an advanced
research centre for quantum computing (a collaboration between TU Delft and TNO)
followed later with a simulator called QX Quantum Computing Simulator.

This thesis has two aims, the first one is to understand, analyse and extend two well-
known quantum algorithms: Grover’s search algorithm (1996) and Shor’s algorithm for
integer factorization (1994). To this purpose, the quantum circuit for Grover’s algorithm
and its time complexity as well as its optimal number of iterations are analysed. In
addition, the Grover’s algorithm is extended for searching multiple values instead of just
one. Furthermore, an application of this algorithm to the Boolean satisfiability problem
(SAT-problem) is described.

The quantum Fourier transform (QFT), a routine that plays a key role in many quantum
algorithms like the fast Fourier transform does in classical algorithms, is analysed in terms
of its circuit implementation and time complexity. This QFT is then used for building a
quantum adder/subtractor. These two modules, the QFT and the adder/subtractor, are
essential blocks of the period finding quantum algorithm on which Shor’s algorithm is
based. The implementation and the time complexity of Shor’s algorithm are analysed as
well.

The second aim of this thesis is the creation of a library from which quantum algorithms
and subroutines can be called. To accomplish this, Grover’s algorithm as well as
its extension to multi-search, the QFT and the quantum adder/subtractor have been
implemented and simulated (verified) using the QX quantum computer simulator and
the Microsoft Liquid simulator. In addition, an error analysis for some of the algorithms
has been performed.

Furthermore, the second aim includes gaining experience in using QX Simulator as well
as Microsoft Liquid in order to discuss these quantum programming frameworks and
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formulate requirements for making quantum programming more attractive.

Besides, the extensive introductions and the structure of this thesis make it well suited
to serve as a handbook for students and other people that try to find their way into
quantum computing and the implementation of quantum algorithms.

In this thesis, some new contributions to knowledge beyond the existing literature are
presented. First of all, the formula for determining the optimal number of iterations
in Grover’s algorithm is refined. Additionally, the extension of Grover’s algorithm to a
multi-search algorithm and its application to the SAT-problem are new contributions. To
the quantum addition subroutine, the time complexity is added and a quantum adder/-
subtractor is designed. Finally, the implementation and simulation of the algorithms in
QX Simulator and Liquid as well as the error analysis contribute to knowledge beyond
the existing literature.

This thesis is organized as follows. In section 1, the basic concepts of quantum computing
are introduced. In section 2, Grover’s search algorithm is described, analysed and
extended to a multi-search algorithm along with an application to the SAT-problem.
In section 3, the QFT is introduced. One of its applications, the addition circuit, is
described in section 4. This circuit is extended to a quantum adder/subtractor. In
section 5, Shor’s algorithm for factoring numbers is introduced and analysed. In section
6, the implementation of Grover’s algorithm, the QFT and the circuit for adding and
subtraction integer numbers in QX Quantum Simulator and Microsoft Liquid is discussed
and both simulators are compared. The results of the error analysis on these algorithms
is described in section 6 as well. Section 7 gives a summary of the main findings and
conclusions as well as some recommendations for further research.

In quantum computation, there is just a small line between physics and mathematics.
Quantum algorithms are based on physical properties of qubits, which are usually
described mathematically, but attain to solve physical problems. The introductions
(section 1) contains quite some physical topics but also introduce the mathematics
necessary to describe the physics. The (numerical) analysis of Grover’s algorithm and
the multi-search algorithm (section 2) and the derivation of the QFT (section 3) mostly
contain mathematical topics. The description of quantum addition as well as the quantum
adder/subtractor (section 4) and the description of Shor’s algorithm (section 5) contain
some physical as well as some mathematical topics. The simulations of the algorithms
(section 6) mostly contains physical topics, especially the use of an error model to simulate
physical errors in the quantum circuits.

This thesis is written in partial fulfilment of the requirements for the degree of Bachelor
of Science in Applied Physics and Applied Mathematics.
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1 Introduction to Quantum Algorithms

In this chapter, the basic concepts of quantum computing are introduced. First of all, a
short introduction into quantum mechanics is given in section 1.1. Then, in section 1.2,
quantum computation is introduced. In section 1.3, it is shown how quantum gates can
be used to build basic quantum circuits. Finally, quantum algorithms are introduced in
section 1.4.

1.1 Quantum Mechanics

The theoretical framework of the behaviour of particles and light on atomic scale is
described by the theory of quantum mechanics. In quantum mechanics, the boundary
between particles and waves fades. In some cases, atomic objects (electrons, protons,
photons etc.) behave like particles, in other cases like waves.

In particular, particles can be described by their wave function. This wave function
Ψ(x, t) satisfies the Schrödinger equation, derived by Erwin Schrödinger in 1925.

i~
∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂x2
+ VΨ (1.1)

Here, ~ = h
2π in which h is Planck’s constant, t is the time, m is the particle’s mass, x

is the particle’s position and V is some potential. This equation can be solved using
separation of variables. This results in some solution Ψ(x, t) = ψ(x)φ(t). Although the
time evolution plays a significant role in quantum computation, it is beyond the scope of
this thesis to take it into account. Therefore, only the time-independent solution ψ(x) is
of interest. These time-independent solutions satisfy the time-independent Schrödinger
equation,

− ~2

2m

∂2ψ

∂x2
+ V ψ = Eψ (1.2)

in which E is a constant that is equal to the total energy of the system.

Another result from separation of variables that is well-known is that the general solution
of the Schrödinger equation is as linear combination of separable solutions. Therefore,
the solution of the time-independent Schrödinger equation can be written in the form

ψ(x) =

∞∑
n=1

cnψn(x) (1.3)

in which ψn(x) is a solution of the time-independent Schrödinger equation with associated
energy En. Moreover, the ψn’s are orthogonal, i.e. 〈ψi|ψj〉 = δij .
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If a measurement is performed on the quantum state, only one of the En’s will be found.
Simultaneously, the quantum state will collapse to the ψn associated with this En. The
probability that a measurement yields outcome En is given by the squared amplitude of
the corresponding coefficient |cn|2. Of course, the sum of the probabilities should be 1.
Because different ψn’s are orthogonal, this translates into the following condition.

∞∑
n=1

|cn|2 = 1 (1.4)

Therefore, the coefficients cn are also known as normalization coefficients.

For quantum computation, we consider quantum particles that have two possible quantum
states:

ψ(x) = αψ1(x) + βψ2(x) (1.5)

in which α and β are the normalization constants that satisfy |α|2 + |β|2 = 1. These
particles are similar to bits that are used in classical computers. Yet, the strange
behaviour of quantum particles can be exploited to achieve some remarkable results.

1.2 Quantum Computation

1.2.1 Single Qubit States

All digital processes are governed by bits. These bits store information and can be used
to process this information. One may think of a bit as a small light bulb. It can be either
on (commonly represented by 1) or off (commonly represented by 0).

A quantum bit (qubit) is much like a classical bit. Just like a classical bit, which can be
0 or 1, a qubit is also in some state. For example, it could be |0〉 or |1〉 (the so-called
bra-ket1 notation used for quantum states was introduced by Dirac[12] in 1939). However,
quantum mechanics provides us with more than just those two states - moreover, it
provides us with an infinite number of states. To be specific, a qubit could be in any
linear combination of states,

|ψ〉 = α |0〉+ β |1〉 (1.6)

with α, β ∈ C the normalization coefficients. In quantum mechanics, a qubit which is
not in a single well-defined state but in a linear combination of states, is said to be in a
superposition of states. When a measurement is performed on a qubit in superposition, it
will collapse to one of the well-defined states (in this case |0〉 or |1〉). The probability to
find |0〉 is equal to |α|2, the probability to find |1〉 is equal to |β|2. Of course, we always

1A quantum state is generally called |ψ〉 (”ket psi”) and its hermitian conjugate |ψ〉† as 〈ψ| (”bra
psi”).
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find one of both states. The probabilities should therefore sum to one, so we must have
|α|2 + |β|2 = 1 to have a normalized quantum state.

Every quantum state can be represented in vector notation by defining |0〉 ≡
[
1
0

]
and

|1〉 ≡
[
0
1

]
. This yields

|ψ〉 = α

[
1
0

]
+ β

[
0
1

]
=

[
α
β

]
(1.7)

Normalization can now be expressed as an inner product,

〈ψ|ψ〉 =
[
α β

] [α
β

]
= α∗α+ β∗β = |α|2 + |β|2 = 1 (1.8)

Two quantum states |ψ1〉 =

[
α1

β1

]
and |ψ2〉 =

[
α2

β2

]
are mutually orthogonal if and only if

their inner product is zero,

〈ψ1|ψ2〉 =
[
α1 β1

] [α2

β2

]
= α1α2 + β1β2 = 0 (1.9)

Clearly, |0〉 and |1〉 are orthogonal states. Therefore, |0〉 , |1〉 forms a basis. This is
called the computational basis, since 0 and 1 are often used to perform computations in
computers[26].

Since |ψ〉 is normalized, we can express it as

|ψ〉 = eiδ
(

cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉
)

(1.10)

with θ ∈ [0, π], φ ∈ [0, 2π] and δ some real number. The value of δ has no physical
consequences, because its probability amplitude squared equals one and its contribution
to both |0〉 and |1〉 is equal. The second part is the reason that eiδ is referred to as the
global phase.

All single qubit states can be visualized in spherical coordinates with θ the polar angle
and ϕ the azimuthal angle (δ is not included, since it has no physical consequences).
This is the so-called Bloch sphere representation. Quantum states that lie on the axes
have their own representation and are known as Clifford states. In figure 1.1, these states
are displayed in the Bloch sphere[26].
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Figure 1.1. The Clifford states in the Bloch sphere. Reprinted from Programming for the quantum
computer (Dickel, 2016).

The Bloch sphere is a nice way to visualize quantum states and to identify orthogonal
states. Furthermore, because diametrically opposite states in the Bloch sphere are
orthogonal it also gives insight in which particular states are orthogonal. However, it is
only possible to do this for single qubit states. When multiple qubit states are considered,
it is not possible to visualize states in such a way[26].

1.2.2 Multiple Qubit States

Multiple qubits can be combined into a so-called qubit register. For example, if a pair of
qubits is taken together they could be in any linear combination of states. Two qubits
can constitute four different states,

|ψ〉 = α |00〉+ β |01〉+ γ |10〉+ δ |11〉 (1.11)

with α, β, γ, δ ∈ C the normalization coefficients: |α|2 + |β|2 + |γ|2 + |δ|2 = 1. Again, the
probability of finding one specific state if a measurement is performed is equal to the
square of the amplitude of the corresponding normalization coefficient.

There is one particular interesting example of a two qubit state.

|ψ〉 =
1√
2

(|00〉+ |11〉) (1.12)

This state is one of the four Bell states which plays a central role in the famous Einstein-
Podolsky-Rosen paper[14], because the qubits are entangled. If the first qubit is measured,
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the outcome is either |0〉 or |1〉. If the outcome is, for example, |0〉 the state collapses to
a linear combination of all quantum states in which the first qubit is |0〉. This results in
|ψ〉 = |00〉. On the other hand, if the outcome is |1〉 the quantum state will collapse to
|ψ〉 = |11〉. So if only the first qubit is measured, we know for sure that the second qubit is
in the same state. Thus, the state of the second qubit cannot be described independently
of the state of the first qubit. This interesting property has several applications, for
example in the development of a quantum internet that cannot be eavesdropped on (see
[22] for more on this subject).

Similar to single qubit states, different two qubit states can be defined as vectors to ease
up the calculations in a later stage.

|00〉 ≡


1
0
0
0

 |01〉 ≡


0
1
0
0

 |10〉 ≡


0
0
1
0

 |11〉 ≡


0
0
0
1

 (1.13)

Thus, |ψ〉 can be rewritten as

|ψ〉 = α


1
0
0
0

+ β


0
1
0
0

+ γ


0
0
1
0

+ δ


0
0
0
1

 =


α
β
γ
δ

 (1.14)

This notation can be generalized to a register containing any number of qubits. Note
that the number of states doubles with each qubit that is added. Therefore the total
number of states scales as 2n, where n is the number of qubits in the register. At any
time, the quantum register can be in a linear superposition of all of these states. On the
contrary, a register containing classical bits can only be in one particular state at a time.
This is one of the two main advantages that qubits have over classical bits.

Because the quantum register can be in a linear combination of all possible qubit states,
multiple states can be evaluated and modified simultaneously. Therefore, computations
can be run in parallel without any extra cost. Matching the performance of a quantum
computer containing n qubits with a classical computer requires exponentially more bits.

Because of these advantages that quantum computers have over classical devices, quantum
computers are being developed. With a quantum computer, these advantages can be
exploited in a to speed up several classical algorithms. This results in some very interesting
quantum algorithms. A quantum algorithm takes a qubit register and modifies the qubit
values and coefficients of the qubit states in a clever way using several quantum operators.

There is one property of qubits that can be a drawback if it is not dealt well with. This
is the fact that quantum computation is often non-deterministic. There is a certain
probability of finding the qubits in some state. Therefore, it can occur that a wrong
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outcome is obtained after performing a measurement. For that reason, one should design
a quantum algorithm in such a way that this probability is minimized.

1.2.3 Single Qubit Operations

In short, there are two types of operations that can be carried out on a single qubit. The
first one is measurement. A measurement on a qubit can be performed in any orthogonal
basis (diametrically opposite states on the Bloch sphere). After measuring a qubit,
superposition is destroyed. Its wave function will collapse to one of the states in the
orthogonal measuring basis. The outcome of the measurement is the eigenvalue belonging
to the state it collapsed to. If we measure |ψ〉 = α |0〉+ β |1〉 in the computational basis,
{|0〉 , |1〉}, the qubit will either collapse to |0〉 (with probability |α|2) or to |1〉 (with
probability |β|2).

In addition, a basis transformation can be carried out. For example, the state can be
expressed in the Hadamard basis, {|+〉 , |−〉}, instead of the computational basis. It can
be easily verified that |ψ〉 = α |0〉 + β |1〉 = α+β√

2
|+〉 + α−β√

2
|−〉. After measuring, the

wave function either collapses to |+〉 (with probability |α+β|
2

2 ) or to |−〉 with probability
|α−β|2

2 . However, throughout this thesis, measurements are usually performed in the
computational basis, unless specified otherwise.

The second type of operations are linear operators. In computer science, these linear
operators are referred to as logic gates. Logic gates are also used in classical computing.
For example, there is the NOT gate. The NOT gate flips the bit it is applied to, so 0
becomes 1 and 1 becomes 0. The quantum analogue of the NOT gate should take |0〉
to |1〉 and |1〉 to |0〉, so if the qubit is in a superposition state, the quantum NOT gate
transforms the input state α |0〉+ β |1〉 to α |1〉+ β |0〉. Since all qubit gates are linear
operators, they can be denoted as a transition matrix. The quantum analogue of the
NOT gate is for historical reasons referred to as the Pauli-X gate, after the Austrian
physicist Wolfgang Pauli who was one of the pioneers in quantum physics,

X ≡
[
0 1
1 0

]
(1.15)

It is not hard to see that this operator serves its purpose, indeed if |ψ〉 = α |0〉+ β |1〉
then

X |ψ〉 ≡
[
0 1
1 0

] [
α
β

]
=

[
β
α

]
≡ β |0〉+ α |1〉 (1.16)

Qubit gates should maintain the normalization of the wave function, else the operator
maps the input quantum state to an invalid quantum state. Therefore, the operators
should be unitary. Consequently, all quantum gates are reversible as well so they obey
time reversal symmetry[7]. The transition matrices that represent a quantum gate should
therefore be unitary as well.
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Definition 1.1. Let U be some invertible matrix and denote its conjugate transpose by
U †. Then U is a unitary matrix if and only if UU † = U †U = I.

From this, it also follows that U−1 = U †. So if an operator U is applied to some state
|ψ〉 and afterwards U † is applied, the output state is again |ψ〉.

To show that unitary matrices indeed preserve normalization, let |ψ〉 be some state that
is normalized (i.e. 〈ψ|ψ〉 = 1). Then

〈Uψ|Uψ〉 = 〈ψ|U †U |ψ〉 = 〈ψ|ψ〉 = 1 (1.17)

It is easily verified that the Pauli-X gate is indeed unitary.

Moreover, if a unitary operator is real and symmetric (as is the case for X), U † = U .
Thus if we apply U twice to |ψ〉, we end up with UU |ψ〉 = UU † |ψ〉 = I |ψ〉 = |ψ〉.

Besides the Pauli-X gate, there are the Pauli-Y gate and Pauli-Z gate. The Pauli-Y
gate is not used often, but it is included for completeness. The Pauli-Y gate is given by

Y ≡
[
0 −i
i 0

]
(1.18)

And the Pauli-Z gate is given by

Z ≡
[
1 0
0 −1

]
(1.19)

This gate takes the input state α |0〉+ β |1〉 to α |0〉 − β |1〉. Note that it can be verified
that both of these gates are unitary. Also, it turns out that Y = XZ = ZX.

One may wonder why these gates are called X, Y and Z you need to go back to the
Bloch sphere from figure 1.1. The Pauli gates rotate a single qubit state by 180◦ around
the x-, y- and z-axis of the Bloch sphere respectively.

The Hadamard gate, which is named after the French mathematician Jacques Hadamard,
is used in virtually any quantum algorithm. The Hadamard gate (H) is given by

H ≡ 1√
2

[
1 1
1 −1

]
(1.20)

This gate is important because it takes |0〉 or |1〉 to an equal superposition of both. To

be precise, it takes |0〉 to |0〉+|1〉√
2

and |1〉 to |0〉−|1〉√
2

. You may recognize these states, these

are exactly the |+〉 and |−〉 states we encountered while discussing the Bloch sphere.
Thus it turns out that the Hadamard gate can also be described by a rotation on the
Bloch sphere. In particular, it is a 180° rotation around the line x = z. Note that this is
more obvious than it seems, because H = X+Z√

2
.
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Finally, there are two gates that are closely related to the Pauli-Z gate. The S gate is
defined as

S ≡
[
1 0
0 i

]
(1.21)

and the T gate as

T ≡
[
1 0

0 eiπ/4

]
(1.22)

Similar to the Pauli-Z gate, the S gate and T gate rotate a single qubit state around
the z-axis. Whereas the Pauli-Z gate rotates the state by 180◦, the S gate rotates the
state by 90◦ and the T gate by 45◦. Clearly, applying the S gate twice results in a 180◦

rotation. This implies that S2 = Z. Similarly, T 2 = S (so T 4 = Z).

Of course, there are many more single qubit gates, in fact there is an infinite number
of them. The only requirement is that the operator is unitary. However, these are the
single qubit gates that are of most interest in most quantum algorithms.

1.2.4 Multiple Qubit Operations

A single qubit gate can also be applied to an arbitrary register of qubits. First, some
notation is introduced. If A and B are n× n matrices, the Kronecker product A⊗B is
defined as

A⊗B =

a11B · · · a1nB
...

. . .
...

an1B · · · annB

 (1.23)

For example, consider the X gate that is applied the two qubit register |01〉.

(X ⊗X) |01〉 ≡
([

0 1
1 0

]
⊗
[
0 1
1 0

])
0
1
0
0

 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0




0
1
0
0

 =


0
0
1
0

 ≡ |10〉 (1.24)

Similarly, if it is desirable to only apply the X gate to the second qubit and leave the
first qubit unchanged,

(I ⊗X) |01〉 ≡
([

1 0
0 1

]
⊗
[
0 1
1 0

])
0
1
0
0

 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




0
1
0
0

 =


1
0
0
0

 ≡ |00〉 (1.25)
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Besides single qubit gates, there are also a number of qubit gates that require at least
two qubits. These gates are controlled by one or multiple qubits, and executed on only
a single qubit. The easiest multiple qubit gate is the controlled not gate (CNOT, also
referred to as CX). There is one control qubit and one qubit on which the gate may be
executed depending on the value of the first qubit. If qubit one is |0〉, nothing happens.
However, when qubit one is |1〉 the Pauli-X gate (see equation (1.15)) is executed on the
second qubit. The control qubit always goes through unchanged. So, if the input state
is α |00〉+ β |01〉+ γ |10〉+ δ |11〉 in which the first qubit is the control and the second
qubit is the target, the output is α |00〉+ β |01〉+ γ |11〉+ δ |10〉. Therefore, the CNOT
gate is given by

CNOT ≡


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (1.26)

In fact, a control qubit can be added to any single qubit gate. If the control qubit is |0〉,
the gate is not executed. On the other hand, if it is |1〉 the single qubit gate is executed
on the target qubit. As an example, consider the controlled Z gate. If the input state is
α |00〉+β |01〉+ γ |10〉+ δ |11〉 in which the first qubit is the control and the second qubit
is the target, the output is α |00〉+ β |01〉+ γ |10〉 − δ |11〉. The matrix of the controlled
Z gate is given by

C(Z) ≡


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (1.27)

In general, if A is any unitary operator a control qubit can be added. Let C(A) denote
the operator that results from this addition. If C(A) is controlled by the first qubit and
targeted at the second qubit, its matrix is given by

C(A) =

[
1 0
0 0

]
⊗ I +

[
0 0
0 1

]
⊗A =

 I
0 0
0 0

0 0
0 0

A

 (1.28)

Remember if A and B are 2× 2 matrices then A⊗B ≡
[
a11B a12B
a21B a22B

]
.

There are two qubit gates other than controlled single qubit gates. An example is the
SWAP gate that switches the position of two qubits. |00〉 and |11〉 are thus unchanged
under the swap operation. |01〉 and |10〉, on the other hand, are mapped to |10〉 and |01〉
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respectively. Its matrix representation is therefore given as

SWAP ≡


1 0 0 0
0 0 1 0
0 1 0 1
0 0 0 0

 (1.29)

The swap gate does not really change the state of a quantum register. It merely changes
the order of the qubits in the register.

Another gate that is almost analogous to the CNOT gate is the Toffoli gate, also known
as CCNOT. This is a three qubit gate that applies the Pauli-X gate to a qubit only if
two control qubits are both |1〉.

In table 1.1 on page 14, an overview of all gates discussed in this section is given. Along
with the matrix representation that can be used to calculate the output state from
a given input, the representation of each gate in a circuit is included. These circuit
representations will be used throughout this thesis in a multitude of quantum circuits.

It turns out that all qubit gates can be described by only four different gates. This is a
so-called universal set of quantum gates. One such set consists of the Hadamard gate,
the S gate, the CNOT gate and the Toffoli gate[30].

1.3 Quantum Circuits

Quantum gates on their own are not of much use. But by coupling quantum gates
together, a more complex quantum circuit can be build. Quantum circuits are composed
by qubits and gates operating on them. These gates can manipulate the value of the
qubit (e.g. the X gate) or the phase of a qubit (e.g. the Z gate), or both (e.g. the Y
gate). The most basic quantum circuit, which can be used as random number generator,
is the quantum equivalent of flipping a coin. Initially, we have one qubit that is |0〉.
Then, the Hadamard gate is applied. Using equation (1.20), we find that the final state is
|ψ〉 = 1√

2
(|0〉+ |1〉). When |ψ〉 is measured, both |0〉 and |1〉 can be obtained with equal

probability of 1
2 . This is a truly random coin flip, something that cannot be accomplished

classically.

A very basic circuit can be used to entangle two qubits in a Bell state as described by
equation (1.12). A schematic of the circuit is given in figure 1.2. We start out with
two qubits in |0〉. Then, the Hadamard gate is applied to the first qubit followed by
the CNOT on the second qubit controlled by the first qubit. The result of this small
circuit can be found by sequentially looking at the quantum gates. The initial state
is given by |ψ〉 = |0〉 ⊗ |0〉, or |ψ〉 = |00〉 for short. Using equation (1.20), the state
after the Hadamard gate is given by 1√

2
(|00〉+ |10〉). Then, according to equation (1.26)
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the CNOT gate leaves |00〉 unchanged and changes |10〉 to |11〉, so the final state is
|ψ〉 = 1√

2
|00〉+ |11〉.

Figure 1.2. The quantum circuit to entangle two qubits.

Finally, a note on the description of quantum circuits is in place. Quantum circuits
described as gates and schematics are merely some kind of model to describe quantum
algorithms. In practice, chips are of course not ’wired’ together in order to perform
instructions. One way to execute a quantum circuit is translating these instructions
into microwave pulses with which the physical state of some particle acting as a qubit is
manipulated.

1.3.1 Perfect Qubits and Perfect Operations

Throughout most of the calculations in this thesis, the qubits are assumed to be perfect.
In that case, once a quantum register is in a certain quantum state, it will stay in that
state forever. In addition the operations that are performed on the qubit register yield
the correct and predicted outcome consistently. It is important to note, however, that
in reality this is not the case. There is a certain level of noise on the qubits and on the
operations. The main source of errors is decoherence: interactions with an uncontrolled
environment. This stems from the fact that no quantum system can be perfectly isolated
from its surroundings. Similar to a cup of coffee that loses its heat to the environment if
left alone for a while, a quantum system loses its relevant quantum behaviour due to
interactions with the outside world.

In order to run quantum algorithms reliably, quantum error correction has to be applied.
Since quantum error correction is not a concern throughout this thesis, the reader is
refered to [11] for a guide on quantum error correction.

1.4 Quantum Algorithms

A larger number of quantum gates can be combined to build more complex quantum
circuits. By combining these gates in a clever way, calculations can be performed. Such
a clever combination of quantum gates is described by a quantum algorithm. A quantum
algorithm modifies the probability amplitudes of the qubit states.

As described in section 1.2, due to the nature of qubits a wide variety of processes for
which classical algorithms are used can be speeded up by exploiting some advantages
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that qubits have over classical bits. In many cases, exponential speedup can be accom-
plished. Exponential speedup is a term from computer architecture, which describes the
replacement of an exponential time algorithm (e.g. O(2n), in which n is a measure for
the ’size’ of the input) by a polynomial time algorithm (e.g. O(n2)). This is an important
development, because exponential time algorithms are virtually useless for large inputs.

The main concern on the other hand, is also caused by the nature of quantum mechanics.
Measurements performed on quantum registers are non-deterministic and can yield
unwanted outputs. Good quantum algorithms have a way of dealing with this ambiguity,
diminishing the impact of this possibility.

There are two algorithms that are key in this thesis. The first one is an algorithm devised
by Lov Grover[18] in 1996. This is a very illustrative quantum algorithm. The algorithm
starts with an equal superposition of all quantum states and attempts to find a certain
qubit state. This state is found by some oracle that picks out the state that is searched
for. Then, some operation is performed to increase the amplitude of this state. Therefore,
the probability of finding this state in a measurement is increased. Grover’s algorithm
tends to optimize this procedure to maximize the probability of finding the state by
bringing its amplitude as close as possible to 1.

This procedure is described in great detail in section 2.1. Grover’s algorithm is so
illustrative because the amplitude of the different qubit states can be kept track of
throughtout the algorithm. This is done in figure 2.2 through figure 2.6.

The second quantum algorithm described in this thesis is a more abstract algorithm
proposed by Peter Shor[31] in 1994. Prime factorization is very tedious if done by classical
algorithms. The RSA cryptosystem[24] is based on the fact that it takes thousands of
years to factor the multiple of two large (in general 1024 bits or larger) primes. However,
Shor’s algorithm can be used on a quantum computer to factorize numbers in polynomial
time (see section 5). As a result, RSA encryption will no longer be safe. However, all is
not lost because quantum mechanics also brings new, much better cryptography methods.
For more on quantum cryptography, the reader is referred to Richard Hughes[21] and
similar articles.

Shor’s algorithm does not make use of a linear superposition of qubit states, but instead
uses the quantum analagon of the Fourier transform (see section 3). The quantum Fourier
transform is, together with the oracle function, widely used in quantum computation.
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Table 1.1. An overview of the single- and multiple qubit gates described in this section. Along
with the matrix representation, also the circuit representation of each gate is given.

Name Circuit Representation Matrix Representation

Pauli-X

[
0 1

1 0

]

Pauli-Y

[
0 −i
i 0

]

Pauli-Z

[
1 0

0 −1

]

Hadamard 1√
2

[
1 1

1 −1

]

S

[
1 0

0 i

]

T

[
1 0

0 eiπ/4

]

CNOT


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


C(Z)


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1



SWAP


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



Toffoli



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


14



2 Grover’s Algorithm

Searching through an unordered list with N entries in a classical way can take up
to N evaluations, because in the worst case all elements of the list must be checked.
The algorithm thus uses O(N) operations. On a quantum computer, this problem can

be solved significantly more efficient. Grover’s algorithm[18] requires only O
(√

N
)

operations to search through an unordered list with high probability of success. Although
the speedup is not exponential, it can reduce computation time significantly if N is very
large. Moreover, it was proven by Bennett, Berstein, Brassard and Vazirani that Grover’s
algorithm is the optimal (quantum) algorithm for searching through unordered lists[3].

Grover’s algorithm is not only an efficient algorithm for searching through unordered
databases, it could also used to break certain cryptography methods. Advanced Encryption
Standard (AES) is a cipher that is used by WinRaR and several other companies. This
encryption method uses keys with a length of 128, 192 and 256 bits. With Grover’s
algorithm, a 256 bit key can be found in ’only’ 2128 iterations. That is still an enormous
number, however it is almost 1040 times faster compared to brute forcing! If large
quantum computers become available, AES users would most likely be forced to use keys
with significantly more than 256 bits[5].

In section 2.1, the steps of Grover’s algorithm are described. Then, the circuit implemen-
tation for two qubits and for an arbitrary number of qubits is outlined in section 2.2. In
section 2.3, the optimal number of iterations for Grover’s algorithm and its consequences
for the time complexity are analysed. Thereafter, in section 2.4, Grover’s algorithm is
extended to a multi-search algorithm and analysis on the optimal number of iterations is
performed. Finally, in section 2.5 an application of this multi-search algorithm to the
SAT-problem is described.

2.1 Steps in Grover’s Algorithm

Figure 2.1. A schematic overview of the circuit for Grover’s Algorithm.
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In figure 2.1, a schematic overview of the circuit for Grover’s algorithm is given. Grover’s
algorithm relies on an oracle. An oracle can be viewed as a black box that performs an
operation on a quantum state that is not readily specified by universal quantum gates.
In Grover’s algorithm, an oracle is implemented such that it flips the sign of |x〉 iff x is a
state we are looking for (the ’correct’ quantum state). This can be expressed as

|x〉 O7−→ (−1)f(x) |x〉 (2.1)

with f(x) = 1 if x is the correct state and f(x) = 0 otherwise. For now, this oracle is
treated as a black box. The implementation of the oracle is described in section 2.2.

Grover’s algorithm for searching through n-qubit states starts with a register of n+ 1
qubits initialized to |ψ〉 = |0〉⊗n ⊗ |1〉. The n+ 1th qubit a so-called ancillary qubit, that
is used in performing the oracle. The ancillary qubit is not of interested for now and will
be ignored for now. The number of possible quantum states is thus N = 2n. Then, the
Hadamard gate is applied to all qubits, resulting in an equal superposition of all possible
states,

|ψ〉 = H⊗n |0〉⊗n =
1√
N

∑
x∈{0,1}n

|x〉 (2.2)

Since the coefficients of the states are real throughout the whole algorithm, the state can
also be visualized in a diagram representing the amplitudes of the states. Recall that the
modulus squared of the amplitude is the measurement probability of that quantum state.
After applying the Hadamard gate, the quantum state is visually given in figure 2.2.

Figure 2.2. The amplitudes of the quantum states after applying the set of Hadamards. Reprinted
from Grover’s Algorithm (Wright & Tseng, 2015)

Now, the so-called Grover iteration is applied to the quantum state. Grover iteration
starts with applying the oracle described in equation (2.1). This results in the correct
state having its sign flipped while all other states are untouched. Let x* denote the
correct state. The resulting state is

|ψ〉 = − 1√
N
|x*〉+

1√
N

∑
x∈{0,1}n
x 6=x*

|x〉 (2.3)
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This is represented graphically in figure 2.3.

Figure 2.3. The amplitudes of the quantum states after applying the oracle. Reprinted from
Grover’s Algorithm (Wright & Tseng, 2015)

In order to find the correct state in a measurement with some probability of success, the
probability amplitude of the correct state must be increased. This is done by applying the
Grover diffusion operator. For now, this is defined as a black box. The implementation
in a quantum circuit is given in section 2.2. Define µ as the average of the coefficients αx
in front of |x〉 (this is a real number, since all coefficients are real),

µ =
1

N

∑
x∈{0,1}n

αx =
(N − 1)αx − αx*

N
(2.4)

The Grover diffusion operator then flips the coefficients around the average of the
coefficients by the mapping

αx |x〉 7→ (2µ− αx) |x〉 (2.5)

If N is large (this is not a requirement, but merely an assumption for the sake of
illustration), µ is very close to αx. Therefore, using αx* = −αx we find that the mapping
takes the correct state αx* |x*〉 to (2αx − αx*) |x*〉 = 3αx |x*〉 and takes the other states
to (2αx − αx) |x〉 = αx |x〉. The amplitude of the correct state is thus amplified to 3√

N
.

Graphically, the quantum state is given in figure 2.4.

17



Figure 2.4. The amplitudes of the quantum states after applying the Grover diffusion gate.
Reprinted from Grover’s Algorithm (Wright & Tseng, 2015)

Since the mean amplitude was approximately equal to 1√
N

, the amplitude of all states but

x* stays roughly the same. The amplitude of x* however is amplified to about 3√
N

[34].

This iteration can be applied multiple times to further increase the amplitude of x*.
After applying the oracle once more, we have the quantum state in figure 2.5.

Figure 2.5. The amplitudes of the quantum states after applying the oracle once more. Reprinted
from Grover’s Algorithm (Wright & Tseng, 2015)

And after applying Grover’s diffusion gate one more time the amplitude of the correct
state increases to approximately 5√

N
, see figure 2.6.

18



Figure 2.6. The amplitudes of the quantum states after applying the Grover diffusion gate once
more. Reprinted from Grover’s Algorithm (Wright & Tseng, 2015)

The amount by which the amplitude increases in each iteration is determined by the
difference between the (negative) amplitude of x* and the mean of all amplitudes. As the
amplitude of x* grows, the amplitudes of the other states decrease. The mean therefore
also decreases resulting in diminishing growth of the amplitude of x*. The amplitude
can at some point even decrease because the mean of the amplitudes after the sign
flip becomes negative. This occurs when the (negative) amplitude of x* is much larger
than the amplitudes of the other states. In the illustration given above, however, the
amplitude will only keep increasing if we assume N →∞[32]. This is in line with the
general formula for the optimal number of iterations. In section2.3, it will be shown that

the optimal number of iterations is given by R∗ =
⌊
π
4

√
N
⌋
.

2.1.1 The Oracle Function

At first sight, you may think that Grover’s algorithm does not seem too useful. You can
find a certain quantum state, but only after you know some oracle function. But if you
have the oracle function, is it not already clear what the outcome of the algorithm will
be? In the case of searching through a database, you are absolutely right. However, there
are some cases in which it is not readily clear from the oracle function what the outcome
will be.

Consider for example the SHA256 algorithm[28], which is used for example as the proof
of work algorithm in several cryptocurrencies. SHA256 is a one-way function that hashes
the input that is given. As a result, the output looks completely random. The objective
in proof of work is to find some input that results in a given output. Since it is a one-way
function, the desired input cannot directly be deduced from the output. Using Grover’s
algorithm, the outcome of all possible input states can be checked simultaneously. The
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algorithm then increases the amplitude of the input states that give the desired output.
That way, an appropriate input state can be found way quicker than by classical brute
forcing.

Another application of Grover’s algorithm to a mathematical problem is given in section 2.5

2.2 Implementation of Grover’s Algorithm

In order to implement Grover’s algorithm in the QX Quantum Computer Simulator[29],
the algorithm (including black boxes) must be decomposed to quantum gates, as intro-
duced in section 1.2.3. Also, one or more ancillary qubits are needed in the implementation
of the oracle as stated before.

2.2.1 Implementation for 2-Qubit States

Figure 2.7. The full quantum circuit that is used in Grover’s algorithm for searching through
two-qubit states. In particular, this circuit searches for |10〉.

In figure 2.7, the full quantum circuit for searching through two qubit states is given.
This circuit will be broken down into the parts outlined in the schematic overview from
section 2.1. The implementation of every part is discussed in this section.

In order to search through two qubit states, one ancillary qubit is needed, initialized to
|1〉. The two qubits that store the two-qubit quantum states are both initialized to |0〉.
The initial quantum state is therefore given by |ψ〉 = |001〉. Then, the Hadamard gate is
applied to all three qubits (figure 2.8).
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Figure 2.8. A series of Hadamard gates is applied to the initial quantum state.

We then obtain

|ψ〉 = H⊗3 |001〉 =
1√
8

(|00〉+ |01〉+ |10〉+ |11〉)⊗ (|0〉 − |1〉) (2.6)

in which the ancillary qubit is separated from the other two qubits. This will make
it easier to track the following calculation. H⊗3 is common notation for applying the
Hadamard gate to three qubits.

Afterwards, Grover iteration is applied. In the two qubit case N = 2n = 4. Using the
analysis that will be done in section 2.3, it is determined that the optimal number of

iterations is R∗ =
⌊
π
4

√
N
⌋

=
⌊
π
2

⌋
= 1.

In order to achieve the sign flip of the correct state, the oracle black box is used (see
figure 2.9.

Figure 2.9. The gates inside the dashed rectangle constitute the oracle.

First, the X gate is applied to the qubits that are desired to be |0〉. We choose to search
for |10〉. Thus, the X gate is applied to the second qubit only. Then, the Toffoli gate is
applied to the ancillary qubit, controlled by the other two qubits. This results in the
sign change of the states |110〉 and |111〉,
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|ψ〉 =
1√
8

(|11〉 ⊗ (|1〉 − |0〉) + (|00〉+ |01〉+ |10〉)⊗ (|0〉 − |1〉)) (2.7)

=
1√
8

(|00〉+ |01〉+ |10〉 − |11〉)⊗ (|0〉 − |1〉) (2.8)

Finally, the X gate is applied to the same qubits as before to rotate the qubits desired to
be in |0〉 to that from |1〉. So, since we are looking for |10〉, the X gate is applied only to
q1, which results in

|ψ〉 =
1√
8

(|00〉+ |01〉 − |10〉+ |11〉)⊗ (|0〉 − |1〉) (2.9)

Now that the sign of |01〉 has been flipped, the ancillary qubit has done its job.

The next part of the circuit magnifies the amplitude of the correct state. This is conducted
by the Grover diffusion gate (see figure 2.10.

Figure 2.10. The gates inside the dashed rectangle constitute the Grover diffusion gate.

First, the Hadamard gate is applied to the first and second qubit, followed by the X
gate on both qubits. Then, the Z gate, controlled by the first qubit, is applied to the
second qubit. Afterwards, the X gate is applied to both qubits again, followed by the
Hadamard gate.

This results in the mapping

|q1q2〉 7→
1

2
(|q1q2〉 − |q1 ⊕ 1 q2〉 − |q1 q2 ⊕ 1〉 − |q1 ⊕ 1 q2 ⊕ 1〉) (2.10)

in which ⊕ denotes binary addition: b1 ⊕ b2 ≡ b1 + b2 mod 2. In this particular case,
the mapping of the four different two qubit states is given by
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|00〉 7→ 1
2( |00〉 − |10〉 − |01〉 − |11〉)

|01〉 7→ 1
2( |01〉 − |11〉 − |00〉 − |10〉)

- |10〉 7→ 1
2(- |10〉+ |00〉+ |11〉+ |01〉)

|11〉 7→ 1
2( |11〉 − |01〉 − |10〉 − |00〉) +

|00〉+ |01〉 − |10〉+ |11〉 7→ - |10〉

Since the correct state has a minus sign, whereas the other states have a plus sign, this
operation results in each non-correct state being present two times with a plus sign and
two times with a minus sign and the correct state being present four times with a minus
sign.

Including the ancillary qubit, the final quantum state is

|ψ〉 =
1√
2

(- |10〉)⊗ (|0〉 − |1〉) (2.11)

Recall that |10·〉 is the correct state. Since the state of the ancillary qubit is irrelevant, it
is denoted with a dot. If we now measure the first and second qubit (figure 2.11), we
obtain |10〉 with 100% certainty[17].

Figure 2.11. A measurement is performed on the first and second qubit.

To understand why this happens, we must go back to the ’flip around the mean’. In the
two qubit case, the mean of the amplitudes is 1/2+1/2+1/2−1/2

4 = 1
4 , which is exactly half

of the amplitude of the non-correct states. Therefore the Grover diffusion gate, which
flips the amplitudes around the mean, maps the amplitude of the non-correct states to
2µ−αx = 2 · 14 −

1
2 = 0 and the amplitude of the correct state to 2µ−αx* = 2 · 14 − -12 = 1.

It may seem like this is an exception, and it is indeed. However, it will be shown in
section 2.4.2 that for each number of qubits, one such case exists if multiple correct states
are considered.
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2.2.2 Implementation for n-Qubit States

The two qubits Grover’s algorithm can be generalized to a search through a list with entries
of length n. In addition, as will follow from the upcoming notes on the implementation,
two ancillary qubits will be needed. In this section, a general single qubit operator A,
controlled by n qubits, is denoted as Cn(A).

The first series of Hadamard gates will be extended to all qubits. Also, the X gates
enclosing the Toffoli gate are still applied to each qubit that is |0〉 in the correct state,
just like in the two qubit case. The Toffoli gate is replaced by the Cn(X) gate which
is controlled by all other qubits and is applied to the ancillary qubit. The same goes
for the controlled Z gate, which is changed into the Cn−1(Z) gate that is controlled by
the first through the n − 1th qubit and is applied to the nth qubit. These two gates,
however, cannot be implemented in QX Simulator. Luckily, it can be shown that both
the multi-control Toffoli gate as well as the multi-control Z gate can be decomposed into
a series of Toffoli- and Hadamard gates. For this, the other ancillary qubit that is unused
so far is needed.

For the C3(X) gate and the C2(Z) gate, this decomposition is quite straightforward.
The result is shown in figure 2.12, which shows Grover’s algorithm that searches for |010〉.
The optimal number of iterations is (see section 2.3) R∗ =

⌊
π
4

√
23
⌋

= 2, so two Grover

iterations are performed.

Figure 2.12. The quantum circuit used in Grover’s Algorithm for searching through three-qubit
states. Note that both the oracle black box and Grover diffusion gate are repeated twice. In
particular, this circuit searches for |010〉.

As the number of qubits increases, however, the decomposition becomes more complicated.
Nevertheless, it can be done for any multi-controlled single qubit gate.

2.2.3 Implementation of the Cn(X) gate and the Cn(Z) gate

A multi-control X gate can be decomposed into Toffoli gates using three equivalent circuit
parts[9]. The proofs follow from matrix multiplication but will be omitted, since it is a
tedious calculation.

Lemma 2.1. There holds X = HZH. Therefore, the Cn(X) gate is equivalent to a
Cn(Z) gate squeezed by two Hadamard gates.
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For example, the C3(X) gate can be decomposed into the C3(Z) gate and two Hadamard
gates. This is shown in figure 2.13.

⇐⇒

Figure 2.13. The C3(X) gate is equivalent to the C3(Z) gate enclosed by two Hadamard gates.

The Hadamard gate is, like all quantum gates, unitary. Consequently, there holds that
H−1 = H†. Moreover, for the Hadamard gate, there even holds that H† = H. Therefore
another conclusion can be drawn from lemma 2.1.

Corollary 2.1.1. There holds X = HZH. Since H is unitary and H† = H, it follows
that Z = H−1XH−1 = H†XH† = HXH. Therefore, lemma 2.1 can also be applied
in reverse to obtain that the Cn(Z) gate is equivalent to a Cn(X) gate squeezed by two
Hadamard gates.

The multi-controlled Z gate that is then obtained can be broken up into multi-controlled
X gates and (multi)-controlled Z gates with fewer control qubits.

Lemma 2.2. Let the total number of qubits n∗ ≥ n+ 2 and 0 ≤ w < n, w ∈ N. Then,
the Cn(Z) gate can be decomposed into two Cn−w(X) gates and two Cw+1(Z) gates. The
order of these gates is key to get the right decomposition. They have to be alternated
(i.e. first the Cn−w(X) gate, then the Cw+1(Z) gate, then the second Cn−w(X) gate and
finally the second Cw+1(Z) gate or vice versa). n− w of the initial control qubits can be
chosen randomly as control qubits for the Cn−w(X) gate. The target qubit has to be an
ancillary qubit in whichever qubit state. The w remaining qubits and the target of the
Cn−w(X) are the controls for the Cw+1(Z) gate and its target qubit is the same as the
original target qubit.

Since two Ck(X) gates are applied with the same control qubits and the same target
qubit, it will always be reset to its original value. By also applying Cm(Z) gate twice, the
result is the same for whatever qubit state the ancillary qubit is in. Thus the ancillary
qubit in this decomposition does not necessarily have to be a qubit that is not used at
all throughout the circuit. In order to save qubits, a qubit that is not used in the Cn(Z)
gate can be chosen to serve as ancillary qubit.
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An example to clarify the previous lemma may be in place. The C3(Z) gate can be
decomposed into two C2(X) (Toffoli) gates and two C2(Z) gates. This corresponds to
n* = 5, n = 3 and w = 1. The second-last qubit is not used in the C3(Z) gate, so it can
serve as ancillary qubit. The result is given in figure 2.14.

⇐⇒

Figure 2.14. The C3(Z) can be rewritten as two Toffoli gates and two C2(Z) gates.

Using these two lemmas, each Cn(X) and Cn(Z) gate can be decomposed into Toffoli
gates in two ways. The first way is straightforward and optimizes the number of gates,
but the number of ancillary qubits required scales with n. To be exact, n− 2 ancillary
qubits are required. The decomposition starts by applying the Toffoli gate controlled by
the first and second qubit to the first ancillary qubit. Then, the Toffoli gate controlled
by the third qubit and first ancillary qubit is applied to the second ancillary qubit, after
which the Toffoli gate controlled by the fourth qubit and second ancillary qubit is applied
to the third ancillary qubit. This is repeated up to the application of the Toffoli gate
controlled by the n − 1th qubit and the n − 3th ancillary qubit to the n − 2nd qubit.
Then, the n−2nd qubit is |1〉 if and only if the first through n−1th qubit are |1〉. Finally,
by applying the Toffoli gate controlled by the nth qubit and the n− 2nd qubit to the
target qubit the Cn(X) gate is completed. In order to reset the ancillary qubits to |0〉,
the Toffoli gates on the ancillary qubits are repeated in reverse order.

As an example, consider the C5(X) gate. The result of the decomposition is shown
in figure 2.15. Here, the first through fifth qubit are the controls. The sixth qubit is
the target qubit and the seventh through ninth qubit are the ancillary qubits for the
decomposition.
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Figure 2.15. The decomposition of the C5(X) gate.

In order to decompose a Cn(Z) gate, the same procedure can be applied. The one
difference is that a Hadamard gate is added to the target qubit before and after the
Toffoli gates, in accordance with corollary 2.1.1.

The second way of decomposing the Cn(X) and Cn(Z) gate into Toffoli gates uses both
lemmas. It requires only one ancillary qubit, but the number of gates scales exponentially
with n. Each Cn(X) gate can be substituted by a Cn(Z) gate enclosed by two Hadamard
gates using lemma 2.1. Then, by choosing w = n− 1 in lemma 2.2 the Cn(Z) gate can be
replaced by two C2(X) gates and two Cn−1(Z) gates. The former is the Toffoli gate. To
the latter, lemma 2.2 can be applied over and over, until only C2(X) (Toffoli) gates and
C2(Z) gates are left. These C2(Z) gates can be substituted by a Toffoli gate squeezed
between two Hadamard gates according to corollary 2.1.1[9].

Furthermore, if we are dealing with a Cn(Z) gate, the first application of lemma 2.1 can
be dropped. The result will be the same, except for one Hadamard gate on the target
qubit right at the beginning and one right at the end.

From this procedure, it can be deduced that both the decomposition of the Cn(X)
gate as well as the Cn(Z) gate require n− 2 rounds of applying lemma 2.2 along with
one application corollary 2.1.1. The decomposition of Cn(X) requires an additional
application of lemma 2.1.

The number of Toffoli gates resulting from the decomposition is, for n ≥ 2 (for n = 1,
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obviously it is 1),

2n−2 +
n−2∑
j=1

2j = 2n−2 − 1 +
n−2∑
j=0

2j (2.12)

= 2n−2 − 1 +
1− 2n−1

1− 2
(2.13)

= 2n−2 + 2n−1 − 2 (2.14)

= 3 · 2n−2 − 2 (2.15)

By cancelling as much of the resulting Hadamard gates as possible using HH = I, the
Cn(X) gate only decomposes into Toffoli gates. In the decomposition of the Cn(Z) gate,
additionally two Hadamard gates are left resulting in a total of 3 · 2n−2 gates.

2.2.4 Example: The Decomposition of the C4(X) Gate

In order to illustrate the iteration to decompose the Cn(X) gate, this section features
the decomposition of the C4(X) gate, see figure 2.16.

Figure 2.16. The C4(X) gate.

Lemma 2.1 is used to substitute the C4(X) gate by the C4(Z) gate enclosed by two
Hadamard gates. The result is given in figure 2.17. If one is interested in the decomposition
of the C4(Z) gate, the two outermost Hadamard gates (one at the left and one at the
right) can be omitted from this point onwards (see figure 2.23 for the result of the
decomposition of the C4(Z) gate).
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Figure 2.17. The C4(Z) gate, enclosed by two Hadamard gates.

The total number of available qubits is n∗ = 6 = 4 + 2, so lemma 2.2 can be applied to
reduce the number of control qubits. Since n = 4, we take w = 4− 2 = 2. The C4(Z)
gate is then decomposed into two C2(X) gates and two C3(Z) gates, see figure 2.18.

Figure 2.18. The part within the dashed rectangle is equivalent to the C4(Z) gate.

Once again, lemma 2.2 is applied. Because the ancillary qubit for the previous step is
now a control qubit for the C3(Z) gate, it cannot be used as ancillary qubit in this step.
However, the first and second qubit could be chosen as ’ancillary’ qubit for this step,
since these are not involved in the gate that still needs to be decomposed. Since n = 3,
now we take w = 3 − 2 = 1. Then, the C3(Z) gates are decomposed into two C2(X)
gates and two C2(Z) gates, see figure 2.19.
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Figure 2.19. The parts within the dashed rectangles are equivalent to the C3(Z) gates from
figure 2.18.

Now, the controlled X gates are all Toffoli gates. However, there are still some C2(Z)
gates that have to be decomposed into Toffoli gates. This is where corollary 2.1.1 comes
into play. According to this corollary, each of the C2(Z) gates can be replaced by a
Toffoli gate enclosed by two Hadamard gates. The result is given in figure 2.20.

Figure 2.20. The parts within the dashed rectangles is equivalent to the C2(Z) gates from
figure 2.19.

Finally, we can use the fact that HH = I to cancel all Hadamard gates. In figure 2.21, it
is shown which Hadamard gates cancel each other.
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Figure 2.21. The Hadamard gates within the dashed rectangles cancel each other.

The final decomposition of the C4(X) gate into Toffoli gates is thus given in figure 2.22.

Figure 2.22. The decomposition of the C4(X) gate into Toffoli gates.

If one were to decompose the C4(Z) gate, two additional Hadamard gates have to be
added to the result as stated before. These Hadamard gates have to be added to the
original target qubit, which is the lowermost qubit in this case. One Hadamard gate
has to be added to this qubit in front of the first Toffoli gate that targets the lowermost
qubit and one Hadamard gate has to be added after the final Toffoli gate that targets the
lowermost qubit. These two Hadamards do not cancel and are therefore still present in
the decomposition. The result of the decomposition of the C4(Z) gate into Toffoli gates
and Hadamard gates is given in figure 2.23.
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Figure 2.23. The decomposition of the C4(Z) gate into Toffoli gates and Hadamard gates.

2.3 Analysis of the Optimal Number of Iterations

It was stated earlier without proof that the optimal number of Grover iterations is given
by

R =
π

4

√
N (2.16)

An elegant way to derive this formula is by considering the result of one Grover iteration
as a rotation along the unit circle. We first write the initial superposition of all states in
a slightly different manner, namely

|ψ〉 = αn

 1√
N − 1

∑
x∈{0,1}n
x 6=x*

|x〉

+ βn |x*〉 (2.17)

Where αn and βn are arbitrary ’normalization’ constants. This is possible since the states
x 6= x* all have the same amplitude. Initially, equation (2.2) must be satisfied. Therefore,

α0 =
√
N−1√
N

and β0 = 1√
N

so that the amplitudes of all |x〉 and |x*〉 are equal to 1√
N

.

Flipping the amplitude of the correct states results in

|ψ〉 = αn

 1√
N − 1

∑
x∈{0,1}n
x 6=x*

|x〉

− βn |x*〉 (2.18)

Now we want to find out what happens if the amplitudes are flipped around the mean
by the Grover diffusion gate. Since the sum over the non-correct states runs over N − 1
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elements, the average amplitude is given by

µ =
1

N

(
(N − 1)

(
αn

1√
N − 1

)
− βn

)
=
αn
√
N − 1− βn
N

(2.19)

Then, we apply the grover diffusion gate which maps αx 7→ 2µ− αx. We obtain for the
amplitude of the states x 6= x*

αn√
N − 1

7→ 2αn
√
N − 1− 2βn
N

− αn√
N − 1

(2.20)

=
2αn(N − 1)− 2βn

√
N − 1− αnN

N
√
N − 1

(2.21)

=
(N − 2)αn − 2βn

√
N − 1

N
√
N − 1

(2.22)

Or, equivalently after multiplying by
√
N − 1,

αn 7→
(

1− 2

N

)
αn −

2
√
N − 1

N
βn (2.23)

And for βn we find

βn 7→
2αn
√
N − 1− 2βn
N

+ βn (2.24)

=
2
√
N − 1

N
αn +

(
1− 2

N

)
βn (2.25)

We can write this mapping in matrix form in the following way

[
αn+1

βn+1

]
=

[
1− 2

N
−2
√
N−1
N

2
√
N−1
N 1− 2

N

] [
αn
βn

]
(2.26)

Since
(
1− 2

N

)2
+
(
2
√
N−1
N

)2
= 1, this matrix can be interpreted as the rotation matrix,

so we set

[
1− 2

N
−2
√
N−1
N

2
√
N−1
N 1− 2

N

]
=

[
cosϕ − sinϕ
sinϕ cosϕ

]
(2.27)

Where cosϕ = 1− 2
N and sinϕ = 2

√
N−1
N .
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When applying Grover iteration, we are actually rotating a vector in the α-β plane. If

N is large, initially (in an equal superposition between all states) α0 =
√
N−1√
N
≈ 1 and

β0 = 1√
N
≈ 0. The correct state |x*〉 is most likely to be found when βR is as close to

one as possible. This is the case when the rotation angle is π
2 . Since it is assumed that

β0 ≈ 0, the initial angle ϕ0 = 0 and the number of iterations can be found by solving
Rϕ ≈ π

2 . When the rotation angle ϕ is small (which is the case if N is large), sinϕ ≈ ϕ.

Therefore, ϕ ≈ 2
√
N−1
N . See figure 2.24 for a graphical representation. If we solve for R,

we obtain for large N

R ≈ π

2

N

2
√
N − 1

≈ π

4

√
N =

π

4
2n/2 (2.28)

α

β

ϕ0

ϕ

ϕ
ϕ

ϕR

Figure 2.24. With each Grover iteration, the vector representing the probability is rotated over φ
radians. The probability of finding the correct state (|β|2) is highest if the total rotation angle
φR is π

2 .

This approximation becomes more accurate with larger N . However, most existing
quantum computers have few bits. Therefore, it is important to look at the exact values.
These have been calculated numerically using MATLAB.

We stick with the description using rotation around the unit circle. However, since the
assumption that N is large and therefore ϕ is small has been dropped, the rotation angle
per iteration ϕ is no longer approximated using sinϕ = ϕ. Instead, the rotation angle is
given by

ϕ = asin
2
√
N − 1

N
(2.29)

Also, the initial angle ϕ0 is no longer assumed to be zero. Instead, the initial angle is
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given by

ϕ0 = atan
β0
α0

= atan
1√
N − 1

(2.30)

The chance to find the correct state is obviously still the largest if βm = 1 and αm = 0,
or ϕR = π

2 . The exact number of iterations can then be found by solving ϕ0 +Rϕ = π
2 .

In figure 2.25a, the optimal number of iterations obtained by exact (numerical) calculation
is compared to the approximation of equation (2.28). Since the above approximation has
been derived for large N , one would expect this approximation to converge to the real
optimal number of iterations. Looking at figure 2.25a, this seems to be the case indeed.
However, if we zoom in on the difference between the exact value and the approximate
value in figure 2.25b, it turns out that the approximation actually converges to the
optimal number of iterations plus one half.

2 4 6 8 10 12 14 16 18 20
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103

(a)

2 4 6 8 10 12 14 16 18 20
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0.56

0.57

0.58

(b)

Figure 2.25. Left: The optimal number of iterations and the approximation as a function of the
number of qubits.
Right: The overestimation of the approximation for optimal number of iterations needed.

There is an obvious reason for this. Not only is sinx approximated by x, ϕ0 is neglected
as well. Moreover, we can find an interesting relation between ϕ0 and ϕ.

ϕ

ϕ0
=

asin 2
√
N−1
N

atan 1√
N−1

(2.31)

For N = 2, this results in ϕ
ϕ0

= asin 1
atan 1 = π/2

π/4 = 2. If we consider N to be a continuous
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variable, after a lengthy calculation involving the complex identities of the asin and atan
that is omitted here, it can also be found that for N ≥ 1

dϕ
dN
dϕ0

dN

d
dN arcsin 2

√
N−1
N

d
dN atan 1√

N−1

=
2sgn(x− 2)

sgn(x)
(2.32)

where sgn(x) =


−1 if x < 0

0 if x = 0

1 if x > 0

.

In particular, this fraction is equal to 2 for N > 2.

From the above two results, we find that for any number of qubits (n ≥ 2) there holds

ϕ

ϕ0
= 2 (2.33)

Thus, using the approximation to find the optimal number of iterations R, the final
rotation angle is

ϕR = ϕ0 +Rϕ =
ϕ

2
+Rϕ =

(
R+

1

2

)
ϕ (2.34)

which is ’half an iteration’ too much.

Nevertheless, this is a problem that can be avoided. Since the approximation is an
irrational number, it always has to be rounded to a natural number. A better performance
of Grover’s algorithm can be obtained by not just naively rounding to the closest natural
number. Knowing that the approximation systematically overestimates the optimal
number of iterations, it makes sense to take the floor of the approximation, i.e.

R∗ = bRc =
⌊π

4
2n/2

⌋
(2.35)

This is supported by the numerical calculations, as shown in figure 2.26. Using the
approximation R∗ yields the best result for any number of qubits, compared to rounding
(which yields an equal or worse result) or taking the ceil of R (which always yields a
worse result).

Alternatively, one can take an equivalent approach by using

R∗∗ = R− 1

2
=
π

4
2n/2 − 1

2

and then round to the nearest integer.

In literature though, there is barely any note on how to round the approximate optimal
number of iterations. Probably this is because the way it is rounded does not have a
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Figure 2.26. The overestimation of the approximation for the optimal number of iterations as a
function of the number of qubits. Clearly, taking the floor yields the best result.

significant result on the success rate of Grover’s algorithm. From figure 2.27a it can be
seen that if the number of qubits is larger than six, the probability of success is over 98%.
If we zoom in even further (see figure 2.27b), it is clear that for more than fifteen qubits,
the probability of success is virtually 100%, independent of the choice of the rounding
method.

Nevertheless, this analysis provides good insight in why one should take the floor of the
generally accepted approximation R = π

4 2n/2, especially when a small number of qubits
is involved.

2.3.1 Time Complexity

In the previous section, it is confirmed that Grover’s algorithm is most probable to yield

the correct output state if Grover iteration is applied R∗ =
⌊
π
4

√
N
⌋

times. Thus, the

time complexity of Grover’s algorithm is O(
√
N). More commonly, the time complexity is

expressed as a function of the input size, i.e. the number of (qu)bits to store the quantum
state. Therefore the time complexity of Grover’s algorithm is O(

√
2n) = O(2n/2), whereas

the time complexity of classical algorithms is O(2n). Both of them are exponential time
algorithms. We see that Grover’s algorithm does not yield exponential speedup, which a
fair number of quantum algorithms do. Nevertheless, the speedup is very significant.
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Figure 2.27. The probability of finding the correct state as a function of the number of qubits.
Clearly, taking the floor of the approximation yields the best result.

2.4 Searching for multiple states

Suppose that one does not want to search for one particular entry of an unordered list,
but instead wants to find one out of multiple states. For example, given a database
containing postal codes, find one postal code from a certain province. One could of
course apply Grover’s algorithm to one of these possibilities, but it can be done in a more
efficient manner.

The procedure is much like the usual procedure described by Grover’s algorithm, with
one modification. The part that flips the sign of the amplitude of the correct state is
now applied multiple times in a row.

2.4.1 Grover’s Quantum Circuit for Searching Multiple States

Instead of flipping the sign of just one particular state, this part of the algorithm is
applied each of the correct states. Recall that this is accomplished by applying the X
gate to the qubits that are |0〉 in the correct state. So if |010〉 and |011〉 are the two
correct three qubit states, the quantum circuit is given by
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Figure 2.28. The quantum circuit that is used to find |010〉 and |011〉 using Grover’s algorithm.

This looks familiar to figure 2.12. After the superposition is initiated, the usual procedure
is applied to flip the sign of |010〉. But then, instead of applying the Grover diffusion gate,
first the sign flip is repeated for |110〉. Afterwards, Grover’s algorithm is continued in the
normal way. Note that the C3(X) gate and the C2(Z) gate are decomposed according to
the method outlined in section 2.2.3. Two ancillary qubits are added to the quantum
register for this reason.

The attentive reader will notice another difference between figure 2.28 and the usual three
qubit circuit from figure 2.12. We found that for n = 3, R = bπ4

√
23c = 2 so the Grover

iteration was applied two times. However, in figure 2.28 it is only applied once. From
further analysis (see section 2.4.2) it turns out that the optimal number of iterations
does also depend on the number of correct states. In this case, one iteration happens to
be optimal number.

Let’s track the quantum state throughout the circuit to see what it results in. In this
calculation, the second ancillary qubit (which is the bottommost qubit in the figure) is
omitted, because it is reset after each circuit part. For a more detailed breakdown of the
working of the different circuit parts, the reader is referred to section 2.2

After applying the set Hadamard gates, the quantum state is

|ψ〉 =
1

4
(|000〉+ |001〉+ |010〉+ |011〉+ |100〉+ |101〉+ |110〉+ |111〉)⊗ (|0〉− |1〉) (2.36)

Then, the sign of |010〉 and |011〉 is flipped. No problems occur with this back-to-back
sign flip. Afterwards, the state is given by

|ψ〉 =
1

4
(|000〉+ |001〉− |010〉− |011〉+ |100〉+ |101〉+ |110〉+ |111〉)⊗ (|0〉− |1〉) (2.37)

The average amplitude is µ = 1
8
1+1−1−1+1+1+1+1

4 = 1
8 . This is, as in the two qubit

example, exactly half of the amplitude of the non-correct states. As a result, the
amplitude of the non-correct state reduces to zero after applying the Grover diffusion
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gate. The amplitudes of the two correct states on the other hand grow to 1
2 . It will be

shown in section 2.4.2 that this is again a special case. The final state is

1

2
(|010〉+ |011〉)⊗ (|0〉 − |1〉) (2.38)

Performing a measurement on the relevant qubits yields either |011〉 or |011〉, both with
a probability of 50% (so a 100% probability of obtaining one of both).

Note that if both correct states need to be found instead of just one of them, this adapted
algorithm is not efficient. Grover’s algorithm approximately has a 0.9453 chance to find
the correct state. If it is first used to find |010〉 and consecutively to find |110〉, the
success rate is 0.94532 ≈ 0.8936. The multiple state algorithm on the other hand has
a 0.5 probability to find one of these states. After two executions, the probability of
finding both states (first |0101〉 and then |110〉 or vice versa) is only 0.52 + 0.52 = 0.5.

2.4.2 Analysis of the Optimal Number of Iterations

The analysis in section 2.3 can also be extended to the multi-state search. It will be
shown that there is a limit on the amount of correct states for which the algorithm
functions well. If the number of correct states becomes too large, it becomes impossible
to obtain one of them with reasonable chance.

The analysis of the multi-search Grover’s algorithm can be done in a similar way to the
calculation of the optimal number of iterations in the original Grover’s algorithm.

As usual, the total number of states is denoted by N . Let M be the number of correct
states. Since it is possible to have M > 1, we now write

|ψ〉 = αn

 1√
N −M

∑
x 6=x*

|x〉

+ βn

(
1√
M

∑
x=x*

|x〉

)
(2.39)

Initially, α0 =
√
N−M√
N

and β0 =
√
M√
N

so that initially the amplitude of all qubit states is

equal to 1√
N

.

Then, we can repeat the calculation we did before. First, the average amplitude after n
iterations is calculated.

µ =
1

N

(
αn

N −M√
N −M

− βn
M√
M

)
=
αn
√
N −M − βn

√
M

N
(2.40)

Then, we apply the Grover diffusion gate which maps αn 7→ 2µ− αn. We obtain for the
amplitude of the states x 6= x∗
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αn√
N −M

7→ 2αn
√
N −M − 2βn

√
M

N
− αn√

N −M

=
2αn(N −M)− 2βn

√
M(N −M)− αnN

N
√
N −M

(2.41)

=
(N − 2M)αn − 2βn

√
M(N −M)

N
√
N −M

Or, equivalently after multiplying by
√
N −M ,

αn 7→
(

1− 2M

N

)
αn −

2
√
M(N −M)

N
βn (2.42)

And for the amplitude of x∗

βn√
M
7→ 2αn

√
N −M − 2βn

√
M

N
+

βn√
M

(2.43)

=
2αn

√
M(N −M)− 2βnM + βnN

N
√
M

Or, equivalently after multiplying by
√
M ,

βn 7→
2
√
M(N −M)

N
αn +

(
1− 2M

N

)
βn (2.44)

Again, we can write this mapping as a matrix multiplication in the following way

[
αn+1

βn+1

]
=

 1− 2M
N

−2
√
M(N−M)

N
2
√
M(N−M)

N 1− 2M
N

[αn
βn

]
(2.45)

Since
(
1− 2M

N

)2
+

(
2
√
M(N−M)

N

)2

= 1, this matrix can again be interpreted as a rotation

matrix, so

 1− 2M
N

−2
√
M(N−M)

N
2
√
M(N−M)

N 1− 2M
N

 =

[
cosϕ − sinϕ
sinϕ cosϕ

]
(2.46)

Where cosϕ = 1− 2M
N and sinϕ =

2
√
M(N−M)

N .
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Now, we cannot use the same approximation (sinϕ ≈ ϕ) as before. Therefore, R∗ =
bπ4
√
Nc is no longer valid. Also note that Grover’s algorithm does not work for M ≥ N

2 .
In that case, 1− 2M

N ≤ 0. As a result, cosϕ ≤ 0, or ϕ ≥ π
2 .

Using the initial values α0 and β0, the initial angle can be obtained.

ϕ0 = arctan
β0
α0

= atan

√
M

N

√
N

N −M
= atan

√
M

N −M
(2.47)

Because atanx is a strictly increasing function, for M ≥ N
2 we also have ϕ0 ≥ atan 1 = π

4 .
So already after one iteration, the rotation angle is 3π

4 which overshoots the target of π
2

radians.

In order to obtain one of the correct states with maximum probability, we must apply
grover iteration until β0 ≈ 1, which corresponds to an angle of π

2 . The number of
iterations R′ can be found by solving

R′ϕ =
π

2
− ϕ0 (2.48)

Using ϕ = asin
2
√
M(N−M)

N and ϕ0 = arctan
√

M
N−M , we find

R′ =

(
asin

2
√
M(N −M)

N

)−1(
π

2
− atan

√
M

N −M

)
(2.49)

This formula yields some interesting results. When we obtained the correct state with
certainty in the two qubit case, it seemed like it maybe was an exception. However, in
general for M = N

4 we have

asin
2
√
M(N −M)

N
= asin

2
√

N
4

3N
4

N
= asin

2N4
√

3

N
= asin

√
3

2
=
π

3
(2.50)

and also

π

2
− atan

√
M

N −M
=
π

2
− atan

√
N/4

3N/4
=
π

2
− atan

√
3

3
=
π

2
− π

6
=
π

3
(2.51)

So equation (2.49) is solved exactly by R′ = 1 in this respect.

Another interesting fact is that the number of iterations needed decreases with the
number of correct states. Both asinx and atanx are strictly increasing functions. The
arguments of these functions in this context are also strictly increasing, since the initial
chance of finding one of the correct states grows.

The rotation angle ϕ grows too . However, if the number of correct states exceeds N
4 , the

maximum probability of finding a correct state decreases significantly. The reason for this
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is that the rotation angle ϕ grows with the number of correct states. If M approaches
N
2 , ϕ approaches π

2 . Since β0
α0
≥
√
3
3 for M ≥ N

4 , ϕ0 ≥ π
6 . Therefore, the rotation angle

overshoots π
2 by a larger amount if M grows larger than N

4 .

Finally, the properties described in this section can be found in the following example, in
which N = 23 = 8. The optimal number of iterations as well as the maximum probability
of finding one of the correct states is given in table 2.1. If M = 16

4 = 4, one of the correct
states is found with certainty after one iteration. If M is bigger than 6, the probability
of obtaining a correct state reduces significantly. Grover’s algorithm becomes far less
efficient in that case.

Table 2.1. N = 16, ϕ0 is the initial angle, ϕ is the rotation angle, m is the optimal number of
iterations and P (x*) is the measurement probability of the correct state after m iterations.

M ϕ0 (rad) ϕ (rad) m P (x*)

1 0.2527 0.5054 3 0.9613
2 0.3614 0.7227 2 0.9453
3 0.4478 0.8957 1 0.9492
4 0.5236 1.0472 1 1.0000
5 0.5932 1.1864 1 0.9570
6 0.6591 1.3181 1 0.8438
7 0.7227 1.4455 1 0.6836
8 0.7854 1.5708 1 0.5000

2.5 Application of Multi-Search to the SAT-Problem

A real application of Grover’s algorithm is the SAT-problem, or satisfiability problem.
Let x1, x2, . . . be variables that are either TRUE (1) or FALSE (0). First, some notation
is introduced.

x1 is TRUE ⇔ x1 is FALSE

x1 ∨ x2 is TRUE ⇔ at least one of x1 and x2 is TRUE

x1 ∧ x2 is TRUE ⇔ both x1 and x2 are TRUE

A literal is a boolean variable (xi) or the negation of a boolean variable (xi). A clause is a
disjunction of literals, e.g. (x1 ∨ x2 ∨ x4 ∨ x9). A clause is TRUE if and only if all literals
are TRUE (in this case, (x1 ∨ x2 ∨ x4 ∨ x9) = (1, 0, 0, 1), the other boolean assignments
can be chosen randomly). A conjunction of clauses C1, C2, . . . , Ck is C1 ∧ C2 ∧ · · · ∧ Ck
is TRUE if and only if all clauses are TRUE.
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The SAT-problem is whether, given a set of boolean variables and a conjunction C,
there exists a boolean assignment that the evaluates to TRUE. An example of a SAT-
problem is C = C1 ∧ C2 ∧ C3 = (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x1 ∨ x3). A small SAT-problem
can easily solved by observation. Suppose x1 is TRUE. Then in order to satisfy C3,
x3 should be FALSE. Knowing this, in order to satisfy C2, x2 should be FALSE. So
a solution of this problem is (x1, x2, x3) = (1, 0, 0). Similarly, it can be found that
C = (x1) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x2 ∨ x3) cannot be satisfied.

A well-known case of the SAT-problem is 3-SAT. Here, each clause contains at most three
literals. 3-SAT is known to be an NP-hard problem. This means that no polynomial time
algorithm for solving 3-SAT is known and ‘probably’ does not exist. Most algorithms
for solving NP-hard problems are based on a smart, semi-random way to find a solution.
The fastest known algorithms for 3-SAT are about O(1.3n), for example an algorithm
developed by Hertli, Moser & Schneder runs in O(1.321n)[20]. Grover’s algorithm runs,
depending on the number of solutions, in maximum O(2n/2) ≈ O(1.414n) which is close
to the best known classical algorithms. If the number of solutions is larger, this runtime
decreases and eventually, in the best-case scenario, when there are N

4 solutions, a solution
can be obtained with certainty in only one run.

The multi-search Grover’s algorithm fits this problem very well because all possible
boolean assignments can be checked in parallel. In this case, the oracle function is used
to flip the sign of the states that satisfy the given conjunction of clauses. To accomplish
this, a new quantum gate is introduced: the OR-Cn(X) gate that flips the sign of the
target qubit if and only if at least one of the controls is |1〉. For example, the OR-C2(X)
gate is given by



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


(2.52)

The OR-Cn(X) gate can be decomposed into 2n − 1 Cn(X) gates. It is accomplished
by applying

(
n
k

)
Ck(X) gates with all possible combinations of control qubits for each

k ∈ {1, 2, . . . , n} to the target qubit. For example, the OR-C3(X) gate is equivalent to
the circuit in figure 2.29.

The Cn(X) gates on their end can be decomposed into Toffoli gates and Hadamard gates
as outlined in section 2.2.3.

In this section, the OR control qubits will be indicated by an open circle: ◦. Note that
this is commonly used to indicate ’anti-control’ (execute a gate if and only if the control
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Figure 2.29. The decomposition of the OR-C3(X) gate.

is |0〉), but in this section that is not the case.

The qubit states that give a solution to the SAT-problem are the states which satisfy all
clauses. Consider the example given earlier in this section:

C = C1 ∧ C2 ∧ C3 = (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x1 ∨ x3)

To find a solution to this problem using Grover’s algorithm, the amplitude of any qubit
state that satisfy this problem should be amplified. In particular, these qubit states
satisfy (|q1〉 = |1〉 or |q2〉 = |1〉) and (|q2〉 = |0〉 or |q3〉 = |1〉) and (|q1〉 = |0〉 and
|q3〉 = |0〉). This is exactly what happens in the circuit given in figure 2.30. First, the
quantum register is initialized to |ψ〉 = |0000001〉 and the Hadamard gate is applied to
the qubits that are involved in Grover’s algorithm. Then, a series of OR-C2(X) gates is
applied so that the fourth through sixth qubit are all |1〉 if and only if the first through
third qubit satisfy the values outlined above. If a literal is the negation of a boolean
variable, the X gate is applied before and after the application of the OR-C2(X) gate.
Consequently, the control is true if the qubit was originally |0〉. As a result, the sign of
the qubit states that satisfy the conjunction of clauses is flipped (which are in this case
|100〉 and |011〉). Thereafter, the first part is repeated in reverse order to reset the values
to |0〉 which is necessary if more than one iteration is done. In this case, it turns out that
there are two solutions so one iteration yields one of the possible boolean assignments
after measurement. Either |100〉 or |011〉 is obtained, both with 50% probability.

Figure 2.30. The quantum circuit implementation for this instance of SAT.

With this, the analysis on Grover’s algorithm and the extension to the multi-search
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algorithm is finished. Before returning to these algorithms in the results of the simulations
in section 6.3, the Quantum Fourier transform and its applications, including Shor’s
algorithm, will be presented in the upcoming chapters.
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3 Quantum Fourier Transform

The Fourier transform is a widely used technique in solving mathematical and physical
problems. However, computing the Fourier transform on a classical computer requires
exponential time. As a result, complex algorithms in which the Fourier transform is
applied can take very long to execute. On a quantum computer, however, the time
complexity of the Fourier transform can be reduced to polynomial time. The quantum
equivalent of the discrete Fourier transform is one of the greatest discoveries in the history
of quantum computing. It is used in a wide variety of quantum algorithms, the most
famous one probably being Shor’s algorithm for factoring large numbers.

First, the discrete Fourier transform is described in section 3.1. In section 3.2, the
quantum Fourier transform is introduced. The implementation of the quantum Fourier
transform is described in section 3.3. Afterwards, in section 3.4 the implementation of
the inverse quantum Fourier transform is described. Finally, the time complexity of the
(inverse) Fourier transform is analysed in section 3.4.1.

3.1 Discrete Fourier Transform

The discrete Fourier transform that is used in classical computing and signal processing
is defined as follows[33].

Definition 3.1. The (classical) discrete Fourier transform (DFT) (y0, . . . , yN−1) of a
sequence (x0, . . . , xN−1) ∈ CN is given by

yj =
1√
N

N−1∑
k=0

ωjkN xk (3.1)

in which ωjkN = e2πijk/N .

Computing one entry of the DFT of a vector with length N = 2n would require O(N) =
O(2n) operations. Thus, to compute the whole vector (y0, . . . , yN−1) it would take
O(N2) = O(22n) operations. The so-called Fast Fourier Transform (FFT) is a technique
to speed-up the classical Fourier Transform. This technique relies on the fact that an
N -dimensional DFT can be split up into two N/2-dimensional Fourier transforms (see
[33] for further details on the FFT). By applying this trick recursively, the FFT calculates
the DFT in O(N logN) = O(n2n) steps, which is a significant speedup compared to the
standard algorithm, but it is still exponential time.

3.2 The Quantum Fourier Transform

Not only is the Fourier transform very useful in solving classical problems, it is very useful
in quantum mechanics as well. In section 4 the use of the quantum Fourier transform
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(QFT) will be illustrated by means of quantum addition. But first, the quantum Fourier
transform is introduced[26].

Definition 3.2. Let |x〉 be some quantum register and let the QFT of |x〉 be denoted as
the quantum register |y〉. The quantum Fourier transform (QFT) for |x〉 and |y〉 in the
orthonormal basis {|0〉 , |1〉 , . . . , |N − 1〉} is a linear transformation defined similarly to
the DFT by the mapping

|x〉 7→ 1√
N

N−1∑
y=0

ωyxN |y〉 (3.2)

in which ωyxN = e2πiyx/N is the N th root of unity.

Accordingly, the QFT of a superposition state is obtained by summing the QFTs of the
separate states with their corresponding weights.

The QFT is a linear operator. Therefore, it can be expressed in a more convenient way
by the matrix[26]

FN ≡
1√
N

 ω00
N . . . ω

0(N−1)
N

...
...

ω
(N−1)0
N . . . ω

(N−1)(N−1)
N

 (3.3)

It can be checked that this is a unitary matrix by carrying out the matrix multiplication
FNF

†
N [23] and thus it defines a valid quantum gate. As an example, consider N = 4.

Then, F4 is given by

F4 ≡
1√
4


ω00
4 ω01

4 ω02
4 ω03

4

ω10
4 ω11

4 ω12
4 ω13

4

ω20
4 ω21

4 ω22
4 ω23

4

ω30
4 ω31

4 ω32
4 ω33

4

 =
1

2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 (3.4)

If F4 is applied to |01〉, we obtain

F4 |01〉 ≡ 1

2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i




0
1
0
0

 =


1
i
−1
−i

 ≡ 1

2
(|00〉+ i |01〉 − |10〉 − i |11〉) (3.5)

In order to find the quantum circuit that defines the QFT on an n qubit quantum register,
definition 3.2 must be rewritten in terms of the {|0〉 , |1〉}n state.
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3.2.1 Quantum Fourier Transform in the Computational Basis

Using binary notation, |y〉 can be rewritten in the computational basis as |y1y2 . . . yn〉
with |yi〉 ∈ {|0〉 , |1〉}.

The QFT mapping can then be written as,

|x〉 7→ 1√
N

N−1∑
y=0

e2πixy/2
n |y〉 (3.6)

=
1√
N

1∑
y1=0

. . .
1∑

yn=0

e2πix(
∑n

k=1 yk2
n−k)/2n |y1 . . . yn〉 (3.7)

=
1√
N

1∑
y1=0

. . .
1∑

yn=0

e2πix(
∑n

k=1 yk2
−k) |y1 . . . yn〉 (3.8)

=
1√
N

1∑
y1=0

. . .

1∑
yn=0

n⊗
k=1

e2πixyk2
−k |yk〉 (3.9)

=
1√
N

n⊗
k=1

 1∑
yk=0

e2πixyk2
−k |yk〉

 (3.10)

=
1√
N

n⊗
k=1

(
|0〉+ e2πix2

−k |1〉
)

(3.11)

(3.12)

where
⊗n

i=1 |Ai〉 = |A1〉 ⊗ |A2〉 ⊗ · · · ⊗ |An〉[26].

But of course, |x〉 must be expressed in the computational basis, |x1x2 . . . x`〉 with
|xi〉 ∈ {|0〉 , |1〉}n as well. Using binary notation, it is found that

e2πix2
−k

= e2πi(
∑n

`=1 x`2
n−`)2−k

(3.13)

= e2πi(
∑n

`=1 x`2
(n−k)−`) (3.14)

= e2πi(
∑n−k

`=1 x`2
(n−k)−`)e2πi(

∑n
`=n−k+1 x`2

(n−k)−`) (3.15)

= e2πi(
∑n

`=n−k+1 x`2
(n−k)−`) (3.16)

= e2πi[0.xn−k+1xn−k+2...xn] (3.17)

In the second-last step, the terms of the sum with 1 ≤ ` ≤ n− k drop out since these
result in integer multiples of 2πi. The final result uses binary fractional notation,

[0.x1 . . . xm] =
n∑

m=1

xm2−m (3.18)
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So finally, an expression for the QFT in the computational basis is obtained[26].

FN |x1 . . . xn〉 =
1√
N

n⊗
k=1

(
|0〉+ e2πix2

−k |1〉
)

(3.19)

=
1√
N

n⊗
k=1

(
|0〉+ e2πi[0.xn−k+1...xn] |1〉

)
(3.20)

=
1√
N

(
|0〉+ e2πi[0.xn] |1〉

)(
|0〉+ e2πi[0.xn−1xn] |1〉

)
. . .
(
|0〉+ e2πi[0.x1...xn] |1〉

)
(3.21)

Again, let us take N = 4 (n = 2) as an example. The result of applying the QFT to |01〉
is indeed the same as in equation (3.5).

F4 |01〉 =
1

2

(
|0〉+ e2πi[0.x2] |1〉

)(
|0〉+ e2πi[0.x1x2] |1〉

)
(3.22)

=
1

2

(
|0〉+ e2πi[0.1] |1〉

)(
|0〉+ e2πi[0.01] |1〉

)
(3.23)

=
1

2

(
|0〉+ e2πi/2 |1〉

)(
|0〉+ e2πi/4 |1〉

)
(3.24)

=
1

2
(|0〉 − |1〉) (|0〉+ i |1〉) (3.25)

=
1

2
(|00〉+ i |01〉 − |10〉 − i |11〉) (3.26)

(3.27)

In order to find the QFT of a superposition state, e.g.
√
3
2 |10〉+ 1

2 |11〉 the QFT of |01〉
and |10〉 are summed with their corresponding weights.

√
3

2
F4 |01〉+

1

2
F4 |10〉 =

√
3

4

(
|0〉+ e2πi[0.1] |1〉

)(
|0〉+ e2πi[0.01] |1〉

)
(3.28)

+
1

4

(
|0〉+ e2πi[0.0] |1〉

)(
|0〉+ e2πi[0.10] |1〉

)
(3.29)

=

√
3

4
(|0〉 − |1〉) (|0〉+ i |1〉) +

1

4
(|0〉+ |1〉) (|0〉 − |1〉) (3.30)

=
1 +
√

3

4
|00〉 − 1− i

√
3

4
|01〉+

1−
√

3

4
|10〉 − i+

√
3

4
|11〉

(3.31)

There is one severe disadvantage that the QFT has compared to the classical Fourier
transform: the transformed sequence is hidden in the coefficients of the quantum state.
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There is no way to find these coefficients since only the amplitude squared influences
a measurement outcome. This amplitude squared is equal to 1√

N
for all coefficients.

Therefore, it is not possible to determine the Fourier transform in explicit form. In spite
of this, it is perfectly fine to use the QFT to make certain manipulations on qubits easier.
First, the quantum register is Fourier transformed. Then, some gates are executed on
the register. Afterwards, the state is back transformed using the inverse QFT. Finally, a
measurement can be performed to find the desired result.

3.3 Implementation of the QFT

The key to a quantum circuit that performs the QFT is the controlled phase shift gate.
The phase shift gate itself is given by

Rϕ ≡
[
1 0

0 e2πi/2
ϕ

]
(3.32)

For ϕ = 1, 2, 3 you might recognize this gate as the Pauli-Z gate, the S gate and the T
gate respectively.

R1 =

[
1 0
0 −1

]
= Z R2 =

[
1 0
0 i

]
= S R3 =

[
1 0

0 eiπ/4

]
= T (3.33)

The generalized phase shift gate Rϕ rotates the phase of |1〉 over an angle 2πi/2ϕ around
the unit circle and leaves |0〉 unchanged. The full quantum circuit for the QFT using
Hadamard gates, controlled phase shift gates and SWAP gates is given in figure 3.1. The
initial quantum register is the arbitrary state |ψ〉 = |q1 · · · qn〉.

Figure 3.1. The quantum circuit that applies the quantum Fourier transform to an arbitrary n
qubit register.

At the start, the first qubit is manipulated (see figure 3.2).
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Figure 3.2. The gates inside the dashed rectangle cast the first qubit in the desired form.

First, the Hadamard gate is applied to the first qubit. This yields the state

|ψ〉 =
1√
2

(|0〉 ± |1〉) |q1 · · · qn〉 (3.34)

with the plus sign if |q1〉 = |0〉 and the minus sign if |q1〉 = |1〉. The sign can be replaced
by a factor e2πi[0.q1] in front of |1〉, since e2πi[0.0] = e0 = 1 and e2πi[0.1] = eπi = −1.

|ψ〉 =
1√
2

(
|0〉+ e2πi[0.q1] |1〉

)
|q2 · · · qn〉 (3.35)

If now the controlled R2 gate is applied to |q1〉 with |q2〉 as control qubit, this yields an
extra factor e2πi/4 in front of |1〉 if |q2〉 = 1 and a factor 1 if |q2〉 = |0〉. Using fractional
binary notation, this can be written as e2πi[0.0q2]. Thus the state can be expressed as

|ψ〉 =
1√
2

(
|0〉+ e2πi[0.q1q2] |1〉

)
|q2 · · · qn〉 (3.36)

After applying the R3 gate to |q1〉 controlled by |q3〉, the R4 gate controlled by |q4〉, up
to Rn controlled by |qn〉, the first qubit is in the desired state,

|ψ〉 =
1√
2

(
|0〉+ e2πi[0.q1q2···qn] |1〉

)
|q2 · · · qn〉 (3.37)

In a similar way, |q2〉 can be manipulated using the circuit part inside the dashed rectangle
in figure 3.3.

Figure 3.3. The gates inside the dashed rectangle cast the second qubit in the desired form.
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The Hadamard gate applied to |q2〉 yields

|ψ〉 =
1

4

(
|0〉+ e2πi[0.q1q2···qn] |1〉

)(
|0〉+ e2πi[0.q2] |1〉

)
|q3 · · · qn〉 (3.38)

After applying the R2 gate to |q2〉 controlled by |q3〉 through the Rn gate controlled by
|qn〉, the second qubit is in the desired state as well,

|ψ〉 =
1

4

(
|0〉+ e2πi[0.q1q2···qn] |1〉

)(
|0〉+ e2πi[0.q2q3···qn] |1〉

)
|q3 · · · qn〉 (3.39)

The same procedure is used to manipulate |q3〉 through |qn−1〉, see figure 3.4.

Figure 3.4. The gates inside the dashed rectangle cast the third through nth qubit in the desired
form.

First, the Hadamard gate is applied to some qubit |qi〉. Then the R2 gate controlled by
|qi+1〉 through the Rn+1−i gate controlled by the |qn〉 qubit are applied to the ith qubit.
To |qn〉 only the Hadamard gate is applied. The resulting quantum state is

|ψ〉 =
1√
N

(
|0〉+ e2πi[0.q1q2···qn] |1〉

)(
|0〉+ e2πi[0.q2q3···qn] |1〉

)
· · ·
(
|0〉+ e2πi[0.qn] |1〉

)
(3.40)

Note that compared to equation (3.21) this it is not quite the right output state. The
qubits are in reverse order. In order to obtain the QFT of the quantum register |q1q2 · · · qn〉,
the SWAP gate must be applied to switch the position of |q1〉 and |qn〉, of |q2〉 and |qn−1〉
and so on (see figure 3.5).

Figure 3.5. The SWAP gates inside the dashed rectangle reverse the order of the qubits.
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Finally, equation (3.41) is the result of the QFT.

|ψ〉 =
1√
N

(
|0〉+ e2πi[0.qn] |1〉

)(
|0〉+ e2πi[0.qn−1qn] |1〉

)
· · ·
(
|0〉+ e2πi[0.q1q2···qn] |1〉

)
(3.41)

Using this general circuit, the circuit that applies the QFT to some quantum register
can be obtained. For example, the QFT on three qubit is performed by the circuit in
figure 3.6.

Figure 3.6. The quantum circuit that performs the QFT on three qubits.

If the QFT is used in a more extensive circuit, not all gates will be included in the
schematic circuit. Else, the schematic will quickly become cluttered. Because the QFT is
such a general routine, it will be represented in a circuit as in figure 3.7.

Figure 3.7. The representation for the QFT performed on all six qubits.

3.4 Implementation of the Inverse Quantum Fourier Transform

Similarly to the classical case, in order to transform a specific quantum register back
from the Fourier domain an inverse QFT is needed. Because the QFT is (as all quantum
gates) a unitary gate, the inverse QFT is obtained by reversing the order of all gates that
constitute the QFT and taking their hermitian conjugate. It is easily seen that H† = H
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and SWAP† = SWAP. On the other hand,

R†ϕ =

[
1 0

0 e2πi/2
ϕ

]†
=

[
1 0

0 e−2πi/2
ϕ

]
:= R−ϕ (3.42)

The inverse QFT circuit is thus obtained by reversing the order of the gates and replacing
Rϕ by R−ϕ. For example, the inverse circuit for the three qubit QFT from figure 3.6 is
given in figure 3.8.

Figure 3.8. The quantum circuit that performs the inverse QFT on three qubits.

Just like the QFT, in a more extensive circuit the inverse QFT is represented as shown
in figure 3.9.

Figure 3.9. The representation for the inverse QFT on all six qubits.

3.4.1 Time Complexity

The quantum circuit to Fourier transform or inverse Fourier transform a register of n
qubits uses a Hadamard gate and n− 1 controlled phase shift gates on the first qubit, a
Hadamard and n − 2 controlled phase shift gates on the second qubit and so on, and
only a Hadamard gate on the last qubit. The swaps in the end require a maximum of n

2
SWAP gates (if n is odd, the precise number is n−1

2 ). Therefore, the total number of
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gates used in the n qubit QFT is

n+ (n− 1) + · · ·+ 1 +
n

2
=
n(n+ 1) + n

2
=
n2

2
+ n = O(n2) (3.43)

It was shown that one of the most efficient classical algorithm, the Fast Fourier Transform,
on the contrary, require O(n2n) operations, which is exponentially more. The quan-
tum Fourier transform thus accomplishes exponential speedup over the known classical
algorithms, but with the shortcoming that it does not provide access to the Fourier
coefficients as discussed before.
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4 Quantum Addition

An application of the QFT is the addition of two numbers. The quantum circuit was
first described by Draper (1998)[13]. In his paper, the quantum circuit as well as its
action on the qubits are described briefly. In this section, the addition circuit and its
action on the qubits are outlined in more detail. In addition, details on the allocation
of the qubits are added supported by some examples. The addition circuit is based on
the fact that the QFT of a quantum state can be described using complex exponentials
(see equation (3.41)). In the quantum addition routine, the phase associated with these
complex exponentials is increased depending on the number that is added. For the sake
of clarity, only positive real numbers are considered to introduce the circuit. However,
the representation of the numbers can be modified so that also negative numbers can be
used and the inverse addition circuit (as one might expect) can be used to subtract one
number from the other. This is a key part of Shor’s algorithm (which is described in the
next chapter).

First, the implementation of the quantum addition circuit is outlined in section 4.1. In
section 4.2, the inverse of quantum addition, quantum subtraction, is described. These
two quantum subroutines are combined to form a quantum adder/subtractor in section 4.3.
Finally, the time complexity is broken down in section 4.4.

4.1 Implementation of Quantum Addition

Let a, b ∈ N. The quantum register |a〉 = |a1a2 · · · an〉 can be obtained by choosing the
values of the qubits so that the register contains a in binary notation. Here, |an〉 and
|bn〉 are the least significant qubits of |a〉 and |b〉 respectively. If these would be the
most significant qubits, the gates and controls in the circuit outlined below should be
changed accordingly so that the circuit starts with applying controlled phase shifts to the
least significant qubit. To accomplish this, the required number of qubits is n = dlog2 ae.
|b〉 = |b1b2 · · · bm〉 can be obtained in a similar way. This requires m = dlog2 be qubits.
For convenience, it is now assumed that n = m. Putting both quantum registers together,
the total quantum register is

|ψ〉 = |ba〉 = |b1b2 · · · bna1a2 · · · an〉 (4.1)

The full quantum circuit for the addition circuit is given in figure 4.1[13].
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Figure 4.1. The quantum circuit that adds |b1b2 · · · bn〉 to |a1a2 · · · an〉.

The addition circuit starts by applying the QFT to |a〉, see figure 4.2.

Figure 4.2. First, the QFT is applied to |a〉.

The QFT of |a〉 = |a1a2 · · · an〉 is indicated by |ϕ(a)〉 = |ϕ1(a)ϕ2(a) · · ·ϕn(a)〉. Thus,
after the QFT the quantum state is

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 = |b1b2 · · · bn〉 ⊗ |ϕ1(a)ϕ2(a) · · ·ϕn(a)〉 (4.2)

Because |b〉 is not affected at all throughout the quantum circuit, |ψ1〉 will be omitted in
the calculation. Using the notation from equation (3.41), the quantum state can then be
denoted as

|ψ2〉 =
1√
N

(
|0〉+ e2πi[0.an] |1〉

)
· · ·
(
|0〉+ e2πi[0.a2a3···an] |1〉

)(
|0〉+ e2πi[0.a1a2···an] |1〉

)
(4.3)

In order to add a phase to the complex exponentials in |ϕ(a)〉 depending on |b〉, a quantum
circuit similar to the QFT is used. But the circuit involves only a number of controlled
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phase shifts gates, and no Hadamard gates. The circuit begins by manipulating the last
qubit of |a〉, see figure 4.3.

Figure 4.3. The gates inside the dashed rectangle add |b〉 to |ϕn(a)〉.

First, the R1 gate controlled by |b1〉 is applied to |ϕn(a)〉. So if |b1〉 = |0〉, nothing
happens. If |b1〉 = |1〉, on the other hand, a rotation is added to |ϕn(a)〉. Continuing this
way, the R2 gate controlled by |b2〉 up till the Rn gate controlled by |bn〉 are applied to
|ϕn(a)〉, resulting in

|ψ2〉 =
1√
N

(
|0〉+ e2πi[0.an] |1〉

)
· · ·
(
|0〉+ e2πi[0.a2a3···an] |1〉

)(
|0〉+ e2πi[0.a1a2...an+0.b1b2...bn] |1〉

)
(4.4)

So |ϕn(a)〉 is transformed into |ϕn(a+ b)〉. Then, the R1 gate (more commonly known
as the Z gate) up to the Rn−1 gate, controlled by |b2〉 through |bn〉, respectively) are
applied to |ϕn−1(a)〉, see figure 4.4.

Figure 4.4. The gates inside the dashed rectangle add |b〉 to |ϕn−1(a)〉.
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This results in

|ψ2〉 =
1√
N

(
|0〉+ e2πi[0.an] |1〉

)
· · ·
(
|0〉+ e2πi[0.a2a3···an+0.b2b3···bn] |1〉

)
(
|0〉+ e2πi[0.a1a2···an+0.b1b2···bn] |1〉

) (4.5)

So |ϕn−1(a)〉 is transformed to |ϕn−1(a+ b)〉 similarly to |ϕn(a)〉. Consecutively, to the
ith qubit, the R1 gate up to the Ri gate, controlled by |b1−i〉 through |bn〉 respectively,
are applied to |ϕi(a)〉 transforming it to |ϕi(a+ b)〉. This procedure is repeated up to
|ϕ1(a)〉, to which only the R1 gate (Z gate) controlled by |bn〉 is applied, see figure 4.5.

Figure 4.5. The gates inside the dashed rectangle add |b〉 to |ϕn−2(a)〉 through |ϕ1(a)〉.

The result is

|ψ2〉 =
1√
N

(
|0〉+ e2πi[0.an+0.bn] |1〉

)
· · ·
(
|0〉+ e2πi[0.a2a3···an+0.b2b3···bn] |1〉

)
(
|0〉+ e2πi[0.a1a2···an+0.b1b2···bn] |1〉

) (4.6)

or, equivalently, |ψ2〉 = |ϕ(a+ b)〉. Finally, the inverse QFT is applied to |ϕ(a+ b)〉, see
figure 4.6.
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Figure 4.6. Finally, the inverse QFT is applied to |ϕ(a+ b)〉.

By applying the inverse QFT to this register, the binary representation of |a+ b〉 is
obtained from which the outcome of the sum can be determined[13].

There is one thing that one should pay attention to when adding two numbers on a
quantum computer. If the result of the addition is larger than 2n − 1, there are not
enough bits to store the outcome. Consequently, the register will overflow and the result
obtained is a + b − 2n because the ’actual’ most significant qubit is forgotten. The
action on the qubits that are in the register will thus not be influenced. For example,
if |b〉 = |101〉 is added to |a〉 = |110〉, the actual result is |1011〉. But since only three
qubits were used to store |a〉, the final quantum register is |a〉 = |011〉. As a result, the
outcome is 3 instead of a+ b = 6 + 5 = 11. In order to prevent this from occurring, one
should make sure that the most significant qubit of both registers |a〉 and |b〉 is always
|0〉, so a and b must be smaller than 2n−1.

If less qubits are required to store |b〉 than |a〉, the most significant qubit(s) of |b〉 are
|0〉. Since |b〉 does nothing else than controlling the rotation gates that are applied to |a〉,
nothing happens when |bi〉 = |0〉. Since qubits |bi〉 with i > dlog2 be are always |0〉, these
qubits as well as the gates that are controlled by them can just as well be left out to
minimize the number of qubits and to optimize the number of operations.

In addition, there is one more way to minimize the number of qubits that is necessary
for quantum addition. Because the qubits in |b〉 are in the same deterministic state
throughout the whole circuit and since they are only used to control rotation gates, the
register to store b could just as well be a classical bit register.

Finally, some of the operations can be run in parallel[13]. In contrast to the QFT, the
gates in quantum addition do not need to be in a particular order. The reason for this is
that unlike the QFT, in which the Hadamard gate and rotation gates do not commute
(see equation (4.7)), rotation gates do commute with each other (see equation (4.8)).
Besides, the (qu)bits in |b〉 do not change in the process, so the order of the controls can
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as well be interchanged according to the changes in the order of the rotation gates.

[H,Rx] = HRx −RxH
1√
2

(
1 e2πi/2x

1 −e2πi/2x

)
− 1√

2

(
1 1

e2πi/2x −e2πi/2x
)
6= 02,2 (4.7)

[Rx, Ry] = RxRy −RyRx
(

1 0

0 e2πi/2(x+y)

)
−
(

1 0

0 e2πi/2(x+y)

)
= 02,2 (4.8)

With this in mind, the quantum circuit from figure 4.1 could be tidied up. This results
in the quantum circuit in figure 4.7 that adds two arbitrary n-qubit registers.

Figure 4.7. The tidied up quantum circuit that adds |b1b2 · · · bn〉 to |a1a2 · · · an〉.

The short-hand notation for quantum addition is given in figure 4.8.

Figure 4.8. The addition gate that adds b to a.

To illustrate the quantum addition routine outlined in this section, consider a = 6 and
b = 3. Then n = 4 in order to satisfy a, b < 2n−1, so no overflow can occur. a = 6
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gives |a〉 = |a1a2a3a4〉 = |0110〉 and b = 3 gives |b〉 = |b1b2b3b4〉 = |0011〉. Because
|b1〉 = |b2〉 = 0, |b〉 can just as well be represented using only two qubits. Therefore, the
Z gate on |a3〉 and |a4〉 as well as the R2 gate on |a4〉 could be left out. These are the
gates inside the dashed rectangle in the quantum circuit given in figure 4.9.

Figure 4.9. The quantum circuit that adds two 4-qubit registers. The gates inside the dashed
rectangle could be left out since |b〉 requires only two qubits.

The most significant qubit in both registers is |0〉, so no overflow will occur. The circuit
leaves |b〉 unchanged. On the other hand, |b〉 is added to |a〉 resulting in |1001〉. Indeed,
this is the correct result: 9.

4.2 Quantum Subtraction

Furthermore, the quantum addition circuit can also be used to subtract two numbers.
The implementation is actually quite straightforward. Namely, the circuit that does
this is the inverse of the quantum addition circuit (also referred to as the subtraction
circuit). This is mentioned briefly by Beauregard (2003)[2], without further elaboration.
In the addition circuit, first the QFT is applied to |a〉. Then, the rotation gates are
applied to |ϕ(a)〉 controlled by |b〉 and finally the inverse QFT is applied to |ϕ(a+ b)〉.
By reversing the order of the gates and taking their Hermitian conjugate, the subtraction
circuit can be obtained. Hence, the subtraction circuit also starts with the application
of the QFT to |a〉. From equation (3.42), it follows that the Hermitian conjugate of a
rotation gate Rk is the R−k gate. It was also shown in section 1.2 that Z† = Z. Because
all rotation gates commute, the order of these gates is not of interest, so the order of
the controlled rotation gate does not need to be changed. Finally, the inverse QFT is
applied to |ϕ(a− b)〉. See figure 4.10 for a schematic of the subtraction quantum circuit.
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Figure 4.10. The quantum circuit that subtracts |b〉 from |a〉.

Similarly to the addition gate, the subtraction gate from figure 4.11 is used in more
extensive circuits.

Figure 4.11. The subtraction gate that subtracts b from a.

Again, let |a〉 be the quantum register of interest and let |b〉 (which could also be a classical
register) be the number we wish to subtract from |a〉. The result of the subtraction
circuit can be derived from our previous calculations on the addition circuit.

Interchanging the controlled Rk gates by R−k gates indeed yields the desired result,
because the plus signs in equation (4.6) are replaced by minus signs. The quantum state
just before the inverse QFT is given in the equation below.

|ψ2〉 =
1√
N

(
|0〉+ e2πi[0.an−0.bn] |1〉

)
· · ·
(
|0〉+ e2πi[0.a2a3···an−b2b3···bn] |1〉

)
(
|0〉+ e2πi[0.a1a2···an−0.b1b2···bn] |1〉

) (4.9)

This is equivalent to |ψ2〉 = |ϕ(a− b)〉. It is easily seen that everything works out as
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expected as long as a ≥ b, because a− b ≥ 0 in that case. However, if a < b the result is
not a− b. This case is very similar to the overflow that can occur in quantum addition.
Because a ’negative’ binary number does not exist in this context (later it will be shown
that it is possible to work with this), the quantum register will cycle as if |111〉 is below
|000〉. The result from quantum subtraction can thus be summarized as follows[2].

‘a− b’ =

{
a− b if a ≥ b
2n − (b− a) if a < b

(4.10)

4.3 Quantum Adder/Subtractor

By adding a convention to the binary notation, both positive and negative numbers can
be added and subtracted. If the most significant qubit of some binary state is |0〉, the
number is positive. On the other hand, if the most significant qubit is |1〉, the number is
negative. The conversion is given by the following equation.

x1x2 · · ·xn =

{∑n
k=2 xk2

n−k if x1 = 0

−2n−1 +
∑n

k=2 xk2
n−k if x1 = 1

(4.11)

So both |a1〉 and |b1〉 are used to store the sign of |a〉 and |b〉 respectively. In table 4.1,
the meaning of all three bit states is outlined.

Table 4.1. The conversion of all three bit states.

000 0 100 -4
001 1 101 -3
010 2 110 -2
011 3 111 -1

As stated earlier, the qubit state ’cycles’ through the binary states. Hence after |111〉
comes |000〉, so if |001〉 is added to |111〉, this results in |000〉 (−1 + 1 = 0) as expected.
Similarly, if |001〉 is subtracted from |000〉 using the subtraction circuit the result is |111〉
(0− 1 = −1) as expected. So the transition from positive numbers to negative numbers
works out well. Also, when some number is added to a negative number the number
always increases as it should.

When the circuit is implemented, similar to the addition circuit, the second (now most
significant) qubit of both registers should be |0〉 to rule out the possibility of overflow.
The number b that is added to some number a can be positive or negative. If |b1〉 = |0〉,
b is positive, the addition circuit can be applied to obtain the result. |b1〉 need not be
included because it is |0〉 anyway, so if |b1〉 = |0〉 the addition circuit should be applied
to add |b2 · · · bn〉 to |a1 · · · an〉.
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If |b1〉 = |1〉, b is negative. Adding a negative number is equivalent to subtracting the
absolute value. Therefore, the subtraction circuit can be used to subtract −b from a.
Since the first qubit of |−b〉 is |0〉, it need not be included in the subtraction, so if
|b1〉 = |1〉 the subtraction circuit should be applied to subtract |b2 · · · bn〉 from |a1 · · · an〉.

In order to design a quantum circuit that can add any two integers smaller than 2n−2,
|b1〉 (the qubit that represents the sign of |b〉) can be used as a control qubit for the
subtraction circuit or as anti -control qubit for the addition circuit. Anti-control means
that a gate is executed if and only if the control qubit is |0〉. In line with this analysis,
the circuit of the quantum adder/subtractor is given by figure 4.12. This circuits adds
|b〉 to |a〉 if |b1〉 = |0〉 and subtracts |−b〉 from |a〉 if |b1〉 = |1〉.

Figure 4.12. The quantum adder/subtractor

In a similar way, fractional numbers can be added or subtracted. By defining

x1x2 · · ·xn =

{∑n
k=2 xk2

−k+1 if x1 = 0

−1 +
∑n

k=2 xk2
−k+1 if x1 = 1

(4.12)

any fractional number x with |x| < 1 can be approximated. The maximum error in
the approximation is 2−n+1, which decreases with the number of qubits. Because the
errors are additive, the error in the result can reach 2 · 2−n+1 = 2−n+2. Thus, the error
decreases exponentially with the number of qubits.

In order to add numbers that are larger than one but also have a fractional part, a certain
number of qubits can be used to store the decimal part and the remaining qubits to store
the fractional part. Say the decimal part of some number is stored by i− 1 bits (the first
qubit is used to store the sign). The remaining n− i bits are used to store the fractional
part. The conversion between the binary number and the real number is then given by

x1x2 · · ·xn =

{∑i
k=2 xk2

i−k +
∑n

k=i+1 xk2
−k+i if x1 = 0

−2i−1 +
∑i

k=2 xk2
i−k − 1 +

∑n
k=i+1 xk2

−k+i if x1 = 1
(4.13)
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The maximum error in the result is then given by 2 · 2i−n+1 = 2i−n+2. However, the
error relative to the maximum number that can be stored is only 2i−n+2

2i
= 2−n+2, which

equals the maximum error for adding only fractional parts using n qubits. Using this
approximation, two real numbers can be added or subtracted on a quantum computer
with reasonable accuracy using the quantum circuit outlined in figure 4.12.

4.4 Time Complexity

Both the quantum addition and the quantum subtraction circuit use the QFT and the
inverse QFT as well as 1+2+· · ·+n = n(n+1)

2 controlled phase shift gates. In section 3.4.1,
it was shown that the QFT (and thus the inverse QFT as well) requires O(n2) operations.
The controlled phase shift gates also constitute O(n2) operations. However, the latter
can be parallelized, hence their time complexity reduces to only O(n). Consequently, the
overall time complexity of the addition circuit is O(n2).
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5 Shor’s Algorithm

More than 30,000 customers worldwide use RSA encryption to protect their most valuable
assets from cyber threats. Among these customers are many financial institutions and
listed multinationals[24]. RSA encryption is public key cryptosystem based on multiplying
large prime numbers. Classical computers are really inefficient reversing this process,
namely in factoring large prime multiples: breaking a 2048-bit key would take a classical
computer longer than the age of the universe.

However, the rise of quantum computing may threaten the safety of RSA encryption.
Using the quantum algorithm designed by Peter Shor in 1996, breaking RSA encryption
comes within reach. Shor reduced the problem of factoring large numbers to period
finding by applying some smart tricks. Period finding can be done in an efficient way
with a quantum computer, resulting in an exponential speedup compared to the best
classical algorithm for factoring large numbers.

In short, Shor’s algorithm goes through the following steps to factorize a (large) integer
N [27].

1. If N is even, the number 2 is a factor of N . Done.

2. First, a classical algorithm is used to check if N is a prime multiple;

3. If N = pk with p prime, p is a factor of N . Done.

4. Choose a ∈ {2, . . . , N − 1} randomly;

5. If the greatest common divisor of a and N , gcd(a,N) 6= 1, a is a factor of N . Done.

6. The quantum routine for period finding is used to find the period r of ax mod N ;

7. If r is odd or ar/2 + 1 = 0 mod N , go to 5;

8. Compute gcd(ar/2 + 1, N) and gcd(ar/2 − 1, N). These are two factors of N . Done.

These steps are described in more detail in section 5.1 and an example for factoring the
number 35 is shown in section 5.3. The quantum routine for period finding described
by Shor (1996)[31] is explained in section 5.2. Finally, the time complexity of Shor’s
algorithm is analysed in section 5.4.

5.1 Integer Factorization

Period finding is based on modular arithmetic.
Definition 5.1. Let x, y ∈ N. Let n ∈ N be the largest multiple of x such that nx ≤ y
and let z = y − nx. Then y ≡ z mod x and 0 ≤ z < x.

The set of all remainders from division by N is called a multiplicative ring in algebra.
The problem of period finding is to find the smallest integer r with ar = 1 mod N .
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This r is called the period of ax mod N , because the outcomes of ax mod N repeat
themselves with this period.

For example, consider a = 3 and N = 5. The values of 3x and 3x mod 5 are shown in
table 5.1.

Table 5.1. Values of ax and ax mod N with a = 3 and N = 5.

x 3x 3x mod 5

0 1 1
1 3 3
2 9 4
3 27 2
4 81 1
5 243 3
6 729 4
7 2187 2
8 6561 1

In order to calculate the last column, it is not necessary to calculate 3x. Because the
set of remainders from division by 5 is multiplicative ring, if 33 ≡ 2 mod 5 is known,
34 ≡ 3 · 33 mod 5 can be found as 3 · 2 ≡ 6 ≡ 1 mod 5. The smallest integer r for which
3x = 1 mod 5 is 4, so 3x mod 5 has period 4.

Let a and x be natural numbers, and let N = pq in which p and q are prime numbers.
Because the remainder of division by N is a positive number smaller than N , ax mod N
only has N different outcomes. Therefore, there exists a natural number y > x, such
that ay ≡ ax mod N .

If gcd(a,N) = 1, then also gcd(ax, N) = 1. Therefore the inverse of ax, denoted a−x, is
a member of the multiplicative ring. Consequently, both sides can be multiplied by a−x

resulting in ay−x ≡ 1 mod N . But then, ay−x − 1 ≡ 0 mod N , so ay−x − 1 := ar − 1 is
a multiple of N .

Assume r is even and ar/2+1 6= 0 mod N . ar−1 can be factored as
(
ar/2 − 1

) (
ar/2 + 1

)
.

Since this is a multiple ofN , there exists a natural number k such that
(
ar/2 − 1

) (
ar/2 + 1

)
=

kN . Besides, ar/2−1 6= 0 mod N , otherwise the period would not be r but r
2 . Therefore,

both ar/2 + 1 and ar/2 − 1 are not a multiple of N , so both ar/2 + 1 and ar/2 − 1 must
have non-trivial common divisors. The factors of N can thus be found by calculating
gcd(ar/2 + 1, N) and gcd(ar/2 − 1, N)[27].

5.2 Quantum Routine for Period Finding

Peter Shor (1997)[31] has described the following quantum routine for period finding. Let
a and N be natural numbers. The goal is to find the smallest integer r such that ar = 1
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mod N . Let w = 2` such that N2 ≤ w < 2N2. Two registers of ` qubits, |q1 · · · q`〉 and
|q`+1 · · · q2`〉, are initialized to |0〉⊗`.

The full quantum circuit for period finding is shown in figure 5.1. Note that this is a
high-level circuit. In particular, the ax mod N gate can be implemented in a quantum
circuit using modular exponentiation. The addition circuit described in section 4 is at the
core of modular exponentiation (see [2]). The vertical wire connected to the ax mod N
gate is used to indicate the dependence of this gate on the first register |q1 · · · q`〉.

Figure 5.1. The quantum circuit for period finding.

Then, the Hadamard gate is applied to the first register of qubits, resulting in

|ψ〉 =

(
1√
2

(|0〉+ |1〉)
)⊗`
⊗ |0〉⊗` (5.1)

The first register now is in a superposition of all `-qubit states. This can be interpreted
as all integer numbers x between 0 and w − 1 in binary notation,

|ψ〉 =
1√
w

w−1∑
x=0

|x〉 |0〉⊗` (5.2)

The next step is to apply some unitary operator that implements the function we want
to find the period of. Thus, in this case the unitary operator that manipulates the
qubits in the second register to ax mod N . This can be done using quantum modular
exponentiation, for example as described in Van Meter (2005)[25]. After applying this
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unitary circuit, the quantum state is

|ψ〉 =
1√
w

w−1∑
x=0

|x〉 |ax mod N〉 (5.3)

Afterwards, the QFT (see section 3) is applied to the first register, resulting in

Fw |x〉 =
1√
w

w−1∑
y=0

e2πixy/w |y〉 (5.4)

The resulting quantum state is

|ψ〉 =
1

w

w−1∑
x=0

w−1∑
y=0

e2πixy/w |y〉 |ax mod N〉 (5.5)

in which y is, like x, an integer number that is represented in binary notation.

A measurement is performed on the qubits in the second quantum register. Consequently
the state collapses to the states in which ax mod N = z holds for some fixed value of z.

|ψ〉 =
1

w

w−1∑
x=0

w−1∑
y=0

|y〉 |z〉
∑

x:f(x)=z

e2πixy/w (5.6)

Let x0 be the smallest x such that f(x) = z and let k be the index of the x such that
ax = z mod N (ordered from small to large). Then the possible values for x are (since
ax mod N is periodic with period r) x0 + rk, k = 0, . . . , bw−x0−1r c. Therefore,

∑
x:f(x)=z

e2πixy/w =
∑
k

e2πi(x0+rk)y/w (5.7)

Using this notation, the final quantum state can be written as

|ψ〉 =
1

w

w−1∑
x=0

w−1∑
y=0

|y〉 |z〉 e2πi(x0+rk)y/w (5.8)

It remains to perform a measurement on the first register. Since ax mod N is a periodic
function, the probability of obtaining some outcome |y〉 |z〉 is given by

P (y|z) =

∣∣∣∣∣ 1

w

∑
k

e2πi(x0+rk)y/w

∣∣∣∣∣
2

(5.9)
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This probability is highest if yr
w is close to an integer number. Intuitively, this is because

the values almost have the same direction in the complex plane. If this is not the
case, some factors will cancel against others resulting in a lower probability amplitude.
Moreover, if r is not a power of two, yr

w is not a factor of w. Suppose yr
w is close to an

integer c. Then, y
w is close to c

r . Continued fraction expansion (using a classical algorithm)

on y
q leads to an approximation for c

r , denoted as d
s . If s < N and

∣∣ y
w −

d
s

∣∣ < 1
2w , then s

is a very good approximation for the period r[31].

5.3 Factoring Numbers: worked example

Let’s say we have some natural number N that we want to factor. If N is even, we have
found a factor of N (namely 2) and we are done. Also, there are good classical algorithms
to check whether N is a prime or prime power. So in that case, a factor of N can be
easily obtained.

However, if N is not even nor a prime power, classical algorithms are very inefficient in
finding a factor. In that case, the quantum algorithm for factorization offers a solution.
Choose some a ∈ {2, . . . , N − 1} and determine gcd(a,N). This can also be done using a
classical algorithm. If gcd(a,N) 6= 1, we have found a factor of N and we are done. The
chance of obtaining a factor in this way is astronomically low if N is some large prime
multiple, so in general gcd(a,N) = 1.

The procedure described in the previous section is applied to obtain the period r of ax

mod N . If a period r is found that is even and such that ar/2 + 1 6= 0 mod N , the factor
of N is given by gcd(ar/2 + 1, N) as prove there. If r does not satisfy the requirements,
some other a should be chosen. This is repeated until some r is found that does satisfy
the requirements. Since it is known that r is not a prime number (this was checked in
the beginning of the algorithm), it is guaranteed that there exists some a such that the
period satisfies the requirements and a factor of N will always be found.

As an example, consider N = 35 = 7 · 5. Choosing a = 9. gcd 9, 35 = 1, so the period
algorithm can be applied to find a factor of N . Then, w = 2` is chosen such that
1225 ≤ q < 2450, or w = 211 = 2048.

The values of 9x mod N have been calculated for the purpose of the algorithm. In
table 5.2, the values are set out for 0 ≤ x ≤ 8.

Table 5.2. The values of 9x mod N for 0 ≤ x ≤ 8.

x 0 1 2 3 4 5 6 7 8 . . .

9x mod N 1 9 11 29 16 4 1 9 11 . . .

Therefore, the quantum state after applying the Hadamards to the first part of the
register and manipulating the second register to 9x mod N is
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|ψ〉 =
1√

2048

2047∑
x=0

|x〉 |9x mod 35〉 (5.10)

=
1√

2048
(|0〉 |1〉+ |1〉 |9〉+ |2〉 |11〉+ |3〉 |29〉+ |4〉 |16〉+ |5〉 |4〉+ |6〉 |1〉 (5.11)

+ |7〉 |9〉+ |8〉 |11〉+ . . .+ |2047〉 |9〉)

And after applying the QFT,

|ψ〉 =
1

2048

2047∑
x=0

2047∑
y=0

e2πixy/2048 |y〉 |9x mod 35〉 (5.12)

After measuring the second quantum register, some state |y〉 |z〉 is obtained, say z ≡ 93

mod 35 = 29. In order to find out if the algorithm worked well, the values for x0 and r
are needed. From table 5.2 we find x0 = 6 and r = 6 (which is obviously not known in
practice, since it is hidden in the quantum state). The probability of finding some state
|y〉 |29〉 is

P (y|z = 29) =

∣∣∣∣∣ 1

2048

∑
k

e2πi(3+6ky)/2048

∣∣∣∣∣
2

(5.13)

in which k runs from 0 up to
⌊
2048−6−1

6

⌋
= 340.

This probability distribution is plotted in figure 5.2.

Figure 5.2
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It is clearly visible that the probability peaks at multiples of 2048
6 = 4331

3 and is almost
zero anywhere else. Say the measurement outcome is y = 1707. Using continued fraction

expansion on 1707
2048 until

∣∣ y
w −

d
s

∣∣ < 1
4096 yields d

s = 0 +
1

1 + 1/5
= 5

6 . So indeed, the period

of 9x mod 35 is found to be r = 6. r is even and 96/2 + 1 = 30 mod 35, so r satisfies the
requirements. Then, gcd(30, 35) = 5 is a factor of 35 which is indeed right. 96/2 − 1 = 28
mod 35, so the second factor of 35 is given by gcd(28, 35) = 7. 35 = 7 · 5, so all factors of
N have been found.

Let p1p2 . . . pn be the prime factorization ofN1. All prime factors can be found using Shor’s
algorithm. However, only two factors can be found at a time. Suppose prime factors pi
and pj are found in one run of Shor’s algorithm. After dividing through by these numbers,
a new number N2 is obtained with prime factorization p1 . . . pi−1pi+1 . . . pj−1pj+1 . . . pn.
Shor’s algorithm can be applied once more and M can be divided by the two new factors
obtained. Continuing this until Nk = 1 thus yields all prime factors of N1.

5.4 Time Complexity

The most efficient classical algorithm for factoring large integers is the general number
field sieve (see Briggs (1998)[6] for an extensive explanation). This algorithm has
superpolynomial scaling,

O
(

exp
{[
c(log n)

1
3 (log log n)

2
3

]})
(5.14)

The classical parts of Shor’s algorithm can all be performed in polynomial time. Checking
whether N is prime or not can be performed in polynomial time by the Agrawal-Kayal-
Saxena primality test[1] and even so it can be checked if N is a prime power using
Bernstein’s algorithm (1997)[4]. Also, the greatest common divisor can be found in
polynomial time using Xi (2000)[35]. Performing the continued fractional expansion can
be done in polynomial time using the technique developed by Hardy and Write (1979)[19].

The quantum part of Shor’s algorithm, including modular exponentiation and the QFT
run in polynomial time too. Therefore, it can be concluded that Shor’s algorithm can
factor integers in polynomial time. To be precise, the scaling is[31]

O((log n)2(log logN)(log log logN) (5.15)
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6 Algorithms Implementation and Discussion

The algorithms described in this thesis have been implemented and tested in two different
quantum computer simulators. The first one is QX Quantum Computer Simulator[29],
developed by QuTech. Static quantum circuits can be designed directly in QX Simulator.
In order to add complexities such as loops or variables, C++ and Python can be used
to generate and populate quantum gates. The second one is LIQUi |〉[8], a quantum
programming framework integrated in F#, which was developed by the Quantum Archi-
tectures and Computation Group at Microsoft Research. The subroutine-algorithms that
have been implemented in QX Simulator and Liquid can be used as quantum libraries.

In section 6.1, the features of both QX Simulator and Liquid are outlined. The error model
that is available in QX Simulator and Liquid is explained in more detail in section 6.1.1.
The limitations of quantum computer simulators are discussed in section 6.2. In section 6.3,
the implementation of both Grover’s algorithm and the multi-search is described. In
addition, the results from simulations as well as the error analysis is described in this
section. In section 6.4, the implementation of the quantum Fourier transform is discussed.
Because the QFT is merely used as a building block of other circuits, no error analysis is
performed on this algorithm. The implementation and error analysis of the quantum
adder/subtractor are described in section 6.5.

The error analysis is done only with the QX Simulator. The error model in Liquid is
not used, because in Liquid the error model can only be used in combination with a
quantum error correction circuit that brings along a lot of complications. Finally, the
implementation of Shor’s algorithm is left for future work.

6.1 Features of QX Simulator and Liquid

In this section, the main features of QX Simulator and Liquid are discussed. In table 6.1,
these features are summarized.

Table 6.1. The main features of QX Simulator and Liquid.

Feature QX Simulator Liquid

Developed by QuTech Microsoft

Open / Closed source Open Closed

Programming language C++, Python, QASM F#

Number of qubits available
Non-entangled 29 23

Maximally entangled 28 23

Custom gates available? No Yes

Error model Depolarization channel Depolarization channel
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First of all, QX Simulator is open source. It is possible to modify anything in QX
Simulator, because all files are stored locally and are editable. The platform can be
pulled from GitHub. Microsoft Liquid on the other hand is closed source.

Besides, QX Simulator accepts files in which circuits are described using QASM (quantum
assembly language). This is a low-level quantum language that is useful for simulating
circuits with just a few qubits. However, more advanced circuits can be described by
using a high-level programming language such as C++ or Python in order to generate the
quantum circuit. The library that is used to implement the quantum circuit consists of not
too many different commands, making it easy to understand. Liquid is programmed in F#,
which is less common. Consequently, there is not a lot of documentation, especially not
on Q&A communities. Moreover, the quantum part of F# has even less documentation
available on the web making it sometimes hard to find the right information.

As outlined in the next section, a lot of memory is required to simulate quantum
computation on a classical computer. As a result, the QX Simulator can handle up to 29
non-entangled qubits. A maximally entangled state can consist of up to 28 qubits. In
Liquid, on the other hand, the number of qubits is capped at 23 for both entangled and
non-entangled states.

An advantage of Microsoft’s simulator is that custom gates can easily be implemented.
This makes building quantum circuits very convenient. Additionally, it is very easy
to add control qubits to a gate. For Grover’s algorithm, it is possible to add as many
control qubits as necessary for the Cn(X) gate involved in the sign flip as well as the
Cn(Z) gate in the diffusion part. In QX Simulator, it is possible to add a binary control
to an arbitrary gate. Consequently, the control qubit must be measured at first. This
measurement destroys the superposition the qubit was in, so in some cases this is not
useful.

Besides, custom gates cannot be designed in QX Simulator. However, there is a good
reason why custom gates are not supported by QX Simulator. The QX simulator can be
used as a back-end of the OpenQL compiler developed by QuTech[15]. This compiler takes
as an input a quantum algorithm described in a high-level quantum programming (C++,
Python) and compiles it into QASM instructions, which are technology independent and
can be executed on the QX Simulator. The compiler will take care of the decomposition
of the gates. In other words, it is responsible, among other things, for decomposing
any arbitrary gate into the gates that the QX simulator supports. Note that this
decomposition is not available yet.

Additionally, the OpenQL compiler allows for further compilation of this QASM to
eQASM (executable QASM). This eQASM is suited for execution on a real quantum
processor using superconducting qubits or spin qubits.

The error models in both QX Simulator and Liquid are very similar. Both do the same:
they inject bit flips and phase flips. Of course, this does not cover the complete story of
errors in physical quantum computers. The implementation is very binary since an error

76



just will or will not occur. There is no in-between in the model, whereas in a physical
quantum computer small errors will occur all the time. For QX Simulator, an alternative
error model is being developed: the Pauli Twirling Approximation (see [16] for more
information).

In Liquid, however, the error model can only be implemented in combination with a
quantum error correction circuit. Because of this, the gate set that can be used is limited
to only some basic gates.

6.1.1 Error Model

An error model that is commonly used in quantum computer simulators is the depolarizing
channel. This error model inserts errors into the quantum circuit between each gate
that is executed with a certain probability. This error can be a bit flip (i.e. α |0〉 +
β |1〉 → α |1〉 + β |0〉), a phase flip (i.e. α |0〉 + β |1〉 → −α |0〉 − β |1〉) or both (i.e.
α |0〉 + β |1〉 → −α |1〉 − β |0〉). These errors can be simulated by applying an X gate,
Y gate or Z gate to the targeted qubit respectively. The effect of the error injection is
shown in figure 6.1.

Figure 6.1. The result of error injection using the depolarisation channel. Reprinted from QX
Quantum Code User Manual[29].

This error model is included in both QX Simulator and Liquid. Here, the error probability
p is a user input variable and there holds px = py = pz.

However, it is only possible to use the error model in Liquid in an quantum error correction
environment. In this environment, each logical qubits are used instead of physical qubits
if quantum error correction is used. Each logical qubit consists of 7 physical qubits
(Steane code, see [10]). In addition, it is not possible to use customized quantum gates in
the quantum error correction environment. Therefore, it is not possible to use the error
model in Liquid if there are custom gates used in the quantum circuit.
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6.2 Limitations of Quantum Computer Simulators

Quantum computer simulators like QX Simulator and Liquid are very useful for the time
being, since the development of the first large-scale physical quantum computers still has
a long way to go. However, simulating quantum computers on a classical computer also
has its limitations.

An n qubit register has 2n possible different qubit states. Therefore, 2n complex coeffi-
cients must be stored. As a result, Liquid can only handle up to 23 qubits. With this,
over 8 million states can be constituted. In QX Simulator on the other hand, a quantum
state that is not entangled can consist of up to 29 qubits. The maximum number of states
therefore is significantly higher: over 500 million. A maximally entangled state can be
handled up to 28 qubits. One can imagine that it would take some serious supercomputers
to simulate only a hundred qubits (which can constitute over 1030 different states!).

Besides, quantum acceleration can obviously not be achieved on a classical computer. As
a result, running quantum algorithms can take a lot of time, especially when the number
of qubits gets quite large. The predicted speedup of quantum algorithms compared
to classical algorithms cannot be simulated and can only be tested on real quantum
computers.

6.3 Grover’s Algorithm

Grover’s algorithm is implemented in QX Simulator for searching for single values as
well as multiple values (the multi-search algorithm). The Cn(X) gates and the Cn(Z)
gates have been decomposed using n− 2 ancillary qubits as described in the first part
of section 2.2.3. The code has been included in appendix A.1. The implementation of
Grover’s algorithm using only one ancillary qubit, using the decomposition described
in the second part of that section is left for future work. In section 6.3.1, both the
single-search and multi-search algorithm have been subjected to the error model in QX
Simulator.

In Liquid, it is possible to add an arbitrary number of control qubits to a gate. Therefore,
it is possible to write one piece of code to search for any states with different numbers of
qubits without using the decomposition of the Cn(X) gate and Cn(Z) gate. The Cn(X)
gate implemented in Liquid is given by the following 2n+1 × 2n+1 matrix.

Cn(X) ≡



1

1 0
. . .

1

0 0 1
1 0


(6.1)
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In Liquid, Grover’s algorithm has been run for two to nine qubit states one thousand
times. The code, including the description of the gate defined above is included in
appendix B.1. The success rate is plotted against the probability of success that was
determined numerically in section 2.3 in figure 6.2. The experimental results are very
similar to the values that were calculated numerically.
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Figure 6.2. The probability of finding the correct state with Grover’s algorithm in Liquid compared
to the numerical calculations done earlier.

6.3.1 Single-Search Error Analysis

Grover’s algorithm (single-search) has been subjected to the error model and the results
have been analysed. The algorithm has been run with four different error probabilities
(p = 0.0005, p = 0.0010, p = 0.0020 and p = 0.0050). For each of these probabilities, the
algorithm has been run to search for the |11 · · · 1〉 and |00 · · · 0〉 qubit state consisting of
two through six qubits. For each of these situations, Grover’s algorithm has been run
one thousand times and the statistics have been collected.

In figure 6.3, the success rate is plotted. The circle markers are used for the success
rate searching the |11 · · · 1〉 state and the square markers for the |00 · · · 0〉 state. Also,
the numerical values calculated in section 2.3 are plotted. Without errors, the results
confirm this numerical analysis. The first thing that stands out in the error analysis is
that the success rate is lower for the |00 · · · 0〉 state. The cause of this phenomenon lies
in the implementation of the sign flip in Grover’s algorithm. Here, an X gate is applied
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to the qubits that are |0〉 in the correct state. If a qubit is |1〉 in the correct state, no
gate needs to be applied. As a result, the more qubits are |0〉, the more X gates need to
be applied. Naturally, a larger number of gates results in a larger amount of errors.
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Figure 6.3. The success rate of Grover’s algorithm as a function of the number of qubits for
different error probabilities. The circle markers are used for success rate searching |11 · · · 1〉, the
square markers for |00 · · · 0〉.

The success rate decreases quickly as both the error probability and the number of qubits
is increased. With an error probability of 0.0050, the success rate of finding a state with
more than three qubits drops below 21%. However, if the right state is not obtained,
this does not mean that the measurement outcome of all qubits is affected by errors.
By looking at the average measurement outcome of each qubit, conclusions can still be
drawn about the correct state. Consider the four, five and six qubit searches with an
error probability of 0.0050. In table 6.2, the measurement rate of |0〉 for each individual
qubit can be found for these cases. The correct states are |1010〉, |10101〉 and |101010〉
respectively. If a qubit is |0〉, the measurement rate of |0〉 is expected to be significantly
larger than 0.5. If a qubit is |1〉, on the other hand, it is expected that the measurement
rate of |0〉 is significantly lower than 0.5. Clearly, the 4 qubit state can be found from
these statistics. For the 5 qubit search, 4 qubit values can be obtained: |10 · 01〉. The
third qubit is measured as |0〉 and |1〉 almost an equal amount of times, so no conclusions
can be drawn for this qubit. Finding the value of four out of five is a reasonable result,
considering that the correct state is found in only 6% of the time. For the 6 qubit search,
this method starts to fail as well. Because of the large amount of errors, all measurement

80



rates are close to 50:50. No real conclusions can be drawn about the values of specific
qubits, except for the fifth qubit.

Table 6.2. Measurement rate of |0〉 in the measurement statistics of individual qubits while
searching for |1010 · · · 10〉.

Qubit 4 qubits 5 qubits 6 qubits

q1 0.406 0.450 0.519
q2 0.576 0.544 0.511
q3 0.394 0.506 0.476
q4 0.608 0.534 0.499
q5 0.467 0.471
q6 0.519

6.3.2 Multi-Search Error Analysis

The multi-search algorithm, an extension of Grover’s algorithm, has been subjected to
the error model as well. The algorithm has been run with four different error probabilities
(p = 0.0005, p = 0.0010, p = 0.0020 and p = 0.0050). For each of these probabilities, the
algorithm has been run to search for one through eight correct 4 qubit states (so the
total number of states is 16). For each of these situations, the multi-search algorithm has
been run one thousand times and the statistics have been collected.

The results are shown in figure 6.4. In this figure, the success rate as well as the results
of the numerical calculation done in section 2.4.2 have been plotted. The numerical
calculation is clearly confirmed by the error-free simulations. As expected, the success
rate quickly decreases if the number of correct states exceeds 4, a quarter of the total
number of states. Besides, if the number of correct states is equal to a quarter of the
total number of states, the success rate is indeed 100%.
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Figure 6.4. The success rate of the multi-search algorithm in QX Simulator for different error
probabilities as well as the result from the numerical calculations done earlier..

As the error probability increases, the success rate levels off more and more. In particular,
when the error probability is 0.0050 the success rate the success rate stabilises and even
increases as the number of correct states is increased. But actually, the performance is still
getting worse. If the number of correct states is larger, the probability to ‘accidentally’
find a correct state is larger as well. If an error occurs, there is a reasonable probability
that still one of the correct states is found ‘by accident’. Eventually, the success rate for
any error approaches 0.5, just because half of the states is a correct state. In that case,
even a measurement that returns a random state has a 50% chance of returning a correct
state.

This gives a distorted view of the actual performance of the algorithm. Therefore, a
better insight into the performance is given by subtracting the probability of ‘accidentally’
finding a correct state from the success rate. This way, the performance of the algorithm
can be analysed more objectively. The difference between the success rate and the
probability of ‘accidentally’ finding a correct state is shown in figure 6.5. From this figure,
it is much more clear that the performance of the multi-search algorithm quickly declines
when the number of correct states exceeds 4.Eventually, the performance of the quantum
algorithm is no better than classical search.
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Figure 6.5. The success rate minus the probability of ‘accidentally’ finding a correct state for the
multi-search algorithm in QX Simulator for different error probabilities.

Besides, it is no use looking at the measurement statistics of individual qubits. In each
run, only one of the correct states is found, and each of the correct states has the same
probability of being found. The different correct states will interfere the measurement
statistics of individual qubits. For example, consider the case in which there are three
correct states: |1011〉, |1110〉 and |0101〉. Each qubit is |1〉 in two thirds of the correct
states. Therefore, looking at the measurement statistics of individual qubits with errors
are injected into the circuit, all qubits will most likely be found in |1〉. From this, the
only conclusion that could be drawn is that |1111〉 is a correct state. But |1111〉 is not
one of the correct states. Consequently, it is impossible to find out which of the qubit(s)
is |0〉 by measuring the individual qubits.

6.4 Quantum Fourier Transform

In QX Simulator, the quantum Fourier transform as well as the inverse Fourier transform
have been implemented for an arbitrary number of qubits, see appendix A.2. The
same has been done using Liquid, see appendix B.2 for the code. No error analysis is
performed on the QFT, because it is merely used as a building block of the quantum
adder/subtractor

In QX Simulator, there are very convenient gates available to build the QFT, because
the phase shift applied by the controlled phase shift gate is automatically set to the
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right value based on the index of the control qubit and the index of the target qubit.
Therefore, it is not necessary to think about which controlled phase shift gate should be
applied. However, this also has some drawbacks if controlled phase shift gates are used
in some circuit other than the QFT. In order to apply a controlled phase shift gate that
does not match the indices of the control and target qubit, swaps have to be performed.
As an example, consider the R2 gate controlled by the third qubit that is applied to
the first qubit. This gate is shown in figure 6.6a. If the CR gate from QX Simulator
is applied to the first qubit controlled by the third qubit, however, this automatically
generates the R3 gate controlled by the third qubit based on the index of both qubits.
The implementation of the desired gate is shown in figure 6.6b. In order to force an R2

gate, the control qubit has to be swapped with the second qubit in order to change the
index of the control qubit. After applying the CR gate, that now generates the R2 gate
controlled by the second qubit, the qubits must be swapped back.

(a) (b)

Figure 6.6. Left: the controlled R2 gate applied to the first qubit controlled by the third qubit.
Right: the implementation of this gate in QX Simulator.

In Liquid, on the other hand, the phase shift can be given as a parameter in the (R k)
gate. A control can be added by calling Cgate (R k). This is more convenient when the
qubits are not in the perfect order.

The QFT has been applied to |01〉 in both QX Simulator and Liquid to compare the
outcome with equation (3.5). Indeed, both simulators give the same output as the theory
prescribes:

QFT (|01〉) =
1

2
(|00〉+ i |01〉 − |10〉 − i |11〉) (6.2)

The output of QX Simulator is shown in figure 6.7. At the top, the executed gates are
shown. This is optional and can also be disabled. Then, the output quantum state is
given. The format of the coefficients is (real,imaginary). Finally, three measurement
statistics are presented. First, the measurement averaging gives the average outcome of
all measurements that have been performed on that qubit. The measurement prediction
gives the result of a measurement when a qubit is not in a superposition. Finally, the
most recent measurement outcome is shown.
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Figure 6.7. The output of the QFT in QX Simulator.

In Liquid, the output is briefer as shown in figure 6.8. In front of each line, the expired
time is shown. The only relevant part is the display of the final quantum register. The
different kets are shown as hexadecimal numbers, which is quite inconvenient compared
to QX Simulator. For example, 0x00000003 ≡ 4 ≡ |11〉 and 0x0000001f ≡ 31 ≡ |11111〉.

Figure 6.8. The output of the QFT in Microsoft Liquid

6.5 Quantum Adder/Subtractor

The final circuit that has been implemented is the quantum adder/subtractor. Here, the
circuit from figure 4.12 has been implemented. This circuit is used to add or subtract
two integer numbers. The maximum size of the numbers depends on the number of
qubits. Because both |a〉 and |b〉 require one qubit to represent the sign and one qubit to

prevent overflow, the numbers should satisfy |a|, |b| < 2
1
2
n−2 where n is the total number

of qubits. For example, a twelve-qubit circuit can handle all integers that have absolute
value smaller than 16. The code implemented in QX Simulator and Liquid is included in
appendix A.3 and appendix B.3 respectively.
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6.5.1 Error Analysis

The circuit has been subjected to the error model and the results have been analysed.
The algorithm has been run with four different error probabilities (p = 0.0005, p = 0.0010,
p = 0.0020 and p = 0.0050). For each of these probabilities, the algorithm has been run
with 6, 8 and 10 qubits, or −1 ≤ a, b ≤ 1, −3 ≤ a, b ≤ 3 and −7 ≤ a, b ≤ 7 respectively.
For each combination of a and b, the algorithm has been run a thousand times.

The average success rate is set out in figure 6.9. In contrast to Grover’s algorithm, this
quantum subroutine is not probabilistic. Consequently, if the error probability is set
to zero the right outcome is always obtained. With an error probability of 0.0005, the
algorithm yields a quite reliable result with each number of qubits that has been tested.
In particular, because the wrong outcomes are most often not the same, just a few runs
are necessary to confirm the outcome by looking at which result is obtained the most.
If the error probability is increased to 0.0010, the reliability decreases for ten qubits
but is still reasonable for 6 and 8 qubits. After doubling that probability to 0.0020, the
algorithm is still quite reliable for 6 and 8 qubits. However, the reliability of the 10-qubit
algorithm quickly decreases. Finally, an error probability of 0.0050 yields the correct
outcome on average only once every six runs for 8 qubits and once every twenty runs for
10 qubits. Considering that there is are 29 possible outcomes (−14 . . . 14), the algorithm
has to be executed many times in order to obtain the outcome with confidence.
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Figure 6.9. Success rate of the quantum adder/subtractor for different error probabilities.

The drop in reliability as the number of qubits increases has two obvious causes. First of
all, the number of steps increases with the number of qubits, because the QFT as well
as the quantum adder/subtractor and the inverse QFT require more controlled rotation
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gates. As a result, there are more points in the circuit where an error can occur. More
specific, the number of circuit steps in which an error can occur is 68 for 6 qubits, 132 for
8 qubits and 225 for 10 qubits. Consequently, in the 10 qubit algorithm occur on average
more than six times as many errors than in the 6 qubit circuit.

Looking at the success rate as a function of the input numbers a and b, an interesting
trend occurs. In figure 6.10, the success rate of the 10 qubit algorithm as a function of a
and b with an error probability of 0.0010 is shown. The error seems quite uniform as a
function of a. However, in the b direction it does not. For negative b, the overall success
rate is 0.42, whereas it is 0.37 for b > 0. A possible explanation for this can be found in
the circuit schematic shown in figure 6.11. In this figure, we see that the subtraction
subroutine is implemented in front of the addition subroutine. After the subtraction
subroutine, an error on |b2〉 through |bn〉 does not affect the outcome any more. However,
the number of steps before the addition subroutine is larger and therefore the probability
of an error occurring in |b〉 that affects the outcome is much larger.

Figure 6.10. Success rate of the 10 qubit algorithm with an error probability of 0.0010 as a
function of a and b.
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Figure 6.11. The quantum adder/subtractor.

In order to confirm this presumption, the subtraction subroutine and addition subroutine
in the above figure have been interchanged, the addition subroutine has been implemented
in front of the subtraction subroutine. This circuit has been run with 10 qubits and
an error probability of 0.0010 as well. In figure 6.12, the success rate is shown as a
function of a and b. Now, success rate is larger for negative b which indeed supports the
presumption.

Figure 6.12. Success rate of the 10 qubit algorithm with an error probability of 0.0010 as a
function of a and b when the addition subroutine is implemented in front of the subtraction
subroutine.
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What stands out as well is that the overall success rate is higher than when the subtraction
subroutine is implemented in front of the addition subroutine. There is a reasonable
explanation for this as well. The subtraction circuit consists of more quantum gates
than the addition circuit. The reason for this is that only counter-clockwise rotations
of the probability amplitude phase over 2π

2k
radians (k = 0, 1, 2, . . .) are possible in QX

Simulator. This is sufficient for the implementation of the addition circuit. However,
the subtraction circuit requires clockwise rotations. As an example, the implementation
of the R−3 gate, which rotates the probability amplitude phase over −π

4 radians in QX
simulator is shown in figure 6.13. The Z gate, the R2 gate and R3 gate have to be
implemented successively. This combination of gates rotates the probability amplitude
phase over an angle of π + π

2 + π
4 = 7π

4 radians, which is equivalent to a rotation over
−π

4 radians. Because this implementation is necessary for all clockwise rotations, the
number of gates involved in the subtraction circuit is significantly larger than the number
of gates involved in the addition circuit.

Figure 6.13. The implementation of the R−3 phase shift gate in QX Simulator.

For Grover’s algorithm, the right outcome could be obtained with a higher success rate
by looking at the statistics of measurements on individual qubits. However, because the
quantum adder/subtractor is merely used as a building block of other algorithms, this
does not offer a solution because the input may be in a superposition state.

In spite of this, the circuit can still be useful even with a low success rate. Take the 10
qubit circuit with an error probability of 0.0020. The average outcomes as a function of
a and b over a thousand runs are shown in figure 6.14. Most of the outcomes are not
even close to the right outcome, but the outcomes are still ordered quite well. A clear
distinction can be made between the average outcome of −1 + 2 (0.78) and the average
outcome of 4 + 2 (2.14). So as long as only the exact outcome is not of importance, the
quantum adder/subtractor is well suited for distinguishing between higher and lower
outcomes, even under the influence of errors. If an exact outcome is required, however,
the only solution is decreasing the amount and influence of errors in the circuit.
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Figure 6.14. Average outcome of the 10 qubit algorithm with an error probability of 0.0020 as a
function of a and b.
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7 Conclusions

A multitude of quantum algorithms has been analysed and implemented in QX Simulator
and Microsoft Liquid, including Grover’s algorithm and the multi-search algorithm based
thereon as well as the QFT and the quantum adder/subtractor. The last two form the
first steps towards the implementation of the period finding quantum algorithm on which
Shor’s algorithm is based. In this section, the main conclusions from both the numerical
calculations and the simulations are presented.

The formula for obtaining the optimal number of Grover iterations, to reach the maximum
probability of finding the correct state, has been found to consistently overestimate the
real value by half an iteration. Therefore, the result from the original formula should
always be rounded down towards the greatest integer smaller than the result from the
original formula. The resulting time complexity of Grover’s algorithm is O(2n/2), which is
better than the classical O(2n), but is still exponential time. Additionally, the numerical
calculations of the success probability are supported by the simulations of Grover’s
algorithm for two through nine qubit states.

If errors are injected in Grover’s circuit, the probability of finding the correct state quickly
decreases – especially for a larger number of qubits, because more iterations have to be
performed. However, information on the correct state can still be obtained by looking
at the measurement statistics of individual qubits even if the probability of finding the
correct state is only a few percent.

Grover’s algorithm has been extended to a multi-search algorithm. This algorithm
searches for multiple states, instead of just one. The number of iterations decreases as
the number of correct states increases. This reaches its optimum if the number of correct
states is equal to a quarter of the total number of states. Then, only one iteration is
required and a correct state is found with probability one. However, if the number of
correct states is increased even more, the probability of finding a correct state rapidly
decreases and approaches only 50% if the number of correct states is half of the total
number of states. In that case, Grover’s multi-search algorithm performs no better than
classical search. These facts from the numerical calculations have been confirmed by the
simulation of the multi-search algorithm.

Besides, the quantum Fourier transform has been analysed. This is a key part in many
quantum algorithms. Based on the circuit, the time complexity of the quantum Fourier
transform is O(n2). This is an exponential speedup over the Fast Fourier Transform
which requires O(n2n) operations. One application of the quantum Fourier transform is
found in the the quantum addition circuit. Because operations can be done in parallel,
the addition subroutine only requires O(n) operations. But since the quantum Fourier
transform is part of quantum addition as well, the overall time complexity is yet O(n2).

Based on quantum addition and its inverse, quantum subtraction, a quantum adder/sub-
tractor has been implemented in the quantum computer simulators. The error-free circuit
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always yields the correct outcome, because the routine is not probabilistic. Error analysis
shows that the implementation of the circuit influences the success rate of different
numbers. If the addition subroutine is implemented in front of the subtraction subroutine,
more errors likely occur if a number is subtracted rather than if a number is added. If
the addition subroutine and subtraction subroutine are interchanged, more errors likely
occur if a number is added. Therefore, this can be taken into consideration for the exact
implementation of the circuit.

If the error probability is increased, the exact outcome of the circuit becomes less reliable.
However, even with a low success rate the average outcomes are still ordered quite well.
Therefore, if one correct outcome is larger than another the average outcome of the first
is very likely to be larger than the second. That way, the outcomes can be compared.

Further research can be done into the multi-search Grover’s algorithm. A general formula
for the optimal number of iterations depending on the number of correct states and the
total number of states would provide useful insight. Additionally, more applications
of this algorithm to mathematical problems could be found. Besides, the quantum
adder/subtractor can be extended to the full period finding quantum algorithm on which
Shor’s algorithm is based. Numerical analysis can be performed on the period finding
algorithm and its behaviour if errors are injected can be examined. Furthermore, the
error analysis performed in this thesis could be elaborated, especially when more realistic
error models become available. With that, quantum error correction could be applied
to make the algorithms more reliable and ready for application on physical quantum
computers.
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A QX Quantum Computer Simulator Code

A.1 Grover’s algorithm

Grover’s algorithm for searching an arbitrary state.

1 #include <iostream>

2

3 #include <xpu.h>

4 #include <xpu/runtime>

5

6 #include <core/circuit.h>

7 #include <qcode/quantum_code_loader.h>

8 #include <core/error_model.h>

9

10 #include <math.h>

11

12 #include <string>

13

14 using namespace std;

15

16 int main(int argc, char ** argv)

17 {

18 string state;

19 cout << "Fill in state\n";

20 getline(cin, state);

21 cout << "Searching for " << state << "\n\n";

22 int num_state = state.length(); // n

23 int num_ancillas = state.length()-2+1; // ancilla and n-2 for decomposition

24 int num_qubits = num_state + num_ancillas;

25 qx::qu_register reg(num_qubits); // register of n qubits

26 qx::circuit c(num_qubits);

27

28 c.add(new qx::pauli_x(num_state)); // X on ancillary

29 for(int i=0; i<=num_state; i=i+1) {

30 c.add(new qx::hadamard(i)); // Hadamard to all qubits

31 }

32

33

34

35 int R = floor(M_PI/4*pow(2,num_state/2));

36 cout << "Performing " << R << " Grover iterations\n";

37 // end of preprocessing

38

39 int iter = 0;

40 while(iter < R) {

41 int i=1;

42 for(char& q : state) {
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43 if (q == ’0’) {

44 c.add(new qx::pauli_x(num_state-i)); // X on qubits in |0>

45 }

46 ++i;

47 }

48 if(num_state == 2) {

49 c.add(new qx::toffoli(0,1,2)); // Toffoli on ancillary

50 }

51 else {

52 c.add(new qx::toffoli(0,1,num_state+1));

53 for(int i=num_state+2; i<num_qubits; ++i) {

54 c.add(new qx::toffoli(i-num_state,i-1,i));

55 }

56 c.add(new qx::toffoli(num_qubits-1,num_state-1,num_state));

57 for(int i=num_qubits-1; i>=num_state+2; --i) {

58 c.add(new qx::toffoli(i-num_state,i-1,i));

59 }

60 c.add(new qx::toffoli(0,1,num_state+1));

61 }

62 i=1;

63 for(char& q : state) {

64 if (q == ’0’) {

65 c.add(new qx::pauli_x(num_state-i)); // X on qubits in |0>

66 }

67 ++i;

68 }

69

70 for(int i=0; i<num_state; ++i) {

71 c.add(new qx::hadamard(i)); // Hadamard to register

72 }

73

74 for(int i=0; i<num_state; ++i) {

75 c.add(new qx::pauli_x(i)); // X to register

76 }

77

78 if(num_state == 2) {

79 c.add(new qx::cphase(0,1)); // Controlled Z

80 }

81 else {

82 c.add(new qx::hadamard(num_state-1));

83 if (num_state == 3) {

84 c.add(new qx::toffoli(0,1,2));

85 }

86 else {

87 c.add(new qx::toffoli(0,1,num_state+1));

88 for(int i=num_state+2; i<num_qubits-1; ++i) {

89 c.add(new qx::toffoli(i-num_state,i-1,i));

90 }

91 c.add(new qx::toffoli(num_qubits-2,num_state-2,num_state-1));
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92 for(int i=num_qubits-2; i>=num_state+2; --i) {

93 c.add(new qx::toffoli(i-num_state,i-1,i));

94 }

95 c.add(new qx::toffoli(0,1,num_state+1));

96 }

97 c.add(new qx::hadamard(num_state-1));

98 }

99

100 for(int i=0; i<num_state; ++i) {

101 c.add(new qx::pauli_x(i)); // X to register

102 }

103

104 for(int i=0; i<num_state; ++i) {

105 c.add(new qx::hadamard(i)); // Hadamard to register

106 }

107 ++iter

108 }

109

110

111 for(int i=0; i<num_qubits; ++i) {

112 c.add(new qx::measure(i));

113 }

114

115 c.execute(reg);

116 reg.dump();

117 c.dump();

118

119 }
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Multi-search algorithm for an arbitrary number of states with an arbitrary number of
qubits

1 #include <iostream>

2 #include <iterator>

3

4 #include <xpu.h>

5 #include <xpu/runtime>

6

7 #include <core/circuit.h>

8 #include <qcode/quantum_code_loader.h>

9 #include <core/error_model.h>

10

11 #include <math.h>

12

13 #include <string>

14

15 #include <vector>

16

17 using namespace std;

18

19 int main(int argc, char ** argv)

20 {

21 std::string states;

22 cout << "Fill in state(s), separated by spaces\n";

23 getline(cin, states);

24 std::stringstream ss(states);

25 std::istream_iterator<std::string> begin(ss);

26 std::istream_iterator<std::string> end;

27 std::vector<std::string> state_vec(begin, end);

28 cout << "Searching for \n";

29 for(int i=0; i<state_vec.size(); ++i) {

30 cout << state_vec.at(i) << "\n";

31 }

32

33 int num_state = state_vec.at(0).length(); // n

34 std::vector<int> results_vec(num_state,0);

35 int R;

36 cout << "How many iterations?\n";

37 cin >> R;

38

39 cout << "\nPerforming " << R << " Grover iterations\n";

40 int num_ancillas = state_vec.at(0).length()-2+1; // ancilla and n-2 for

decomposition

41 int num_qubits = num_state + num_ancillas;

42 qx::qu_register reg(num_qubits); // register of n qubits

43 qx::circuit c(num_qubits);

44 // end of preprocessing

45
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46 c.add(new qx::pauli_x(num_state)); // X on ancillary

47 for(int i=0; i<=num_state; i=i+1) {

48 c.add(new qx::hadamard(i)); // Hadamard to all qubits

49 }

50

51 int iter = 0;

52 while(iter < R) {

53 for(int s=0; s<state_vec.size(); ++s) {

54 int i=1;

55 for(char& q : state_vec.at(s)) {

56 if (q == ’0’) {

57 cout << "X to " << i << "\n";

58 c.add(new qx::pauli_x(num_state-i)); // X on qubits in |0>

59 }

60 ++i;

61 }

62 if(num_state == 2) {

63 c.add(new qx::toffoli(0,1,2)); // Toffoli on ancillary

64 }

65 else {

66 c.add(new qx::toffoli(0,1,num_state+1));

67 for(int i=num_state+2; i<num_qubits; ++i) {

68 c.add(new qx::toffoli(i-num_state,i-1,i));

69 }

70 c.add(new qx::toffoli(num_qubits-1,num_state-1,num_state));

71 for(int i=num_qubits-1; i>=num_state+2; --i) {

72 c.add(new qx::toffoli(i-num_state,i-1,i));

73 }

74 c.add(new qx::toffoli(0,1,num_state+1));

75 }

76 i=1;

77 for(char& q : state_vec.at(s)) {

78 if (q == ’0’) {

79 c.add(new qx::pauli_x(num_state-i)); // X on qubits in |0>

80 }

81 ++i;

82 }

83 }

84

85 for(int i=0; i<num_state; ++i) {

86 c.add(new qx::hadamard(i)); // Hadamard to register

87 }

88

89

90 for(int i=0; i<num_state; ++i) {

91 c.add(new qx::pauli_x(i)); // X to register

92 }

93

94 if(num_state == 2) {
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95 c.add(new qx::cphase(0,1)); // Controlled Z

96 }

97 else {

98 c.add(new qx::hadamard(num_state-1));

99 if (num_state == 3) {

100 c.add(new qx::toffoli(0,1,2));

101 }

102 else {

103 c.add(new qx::toffoli(0,1,num_state+1));

104 for(int i=num_state+2; i<num_qubits-1; ++i) {

105 c.add(new qx::toffoli(i-num_state,i-1,i));

106 }

107 c.add(new qx::toffoli(num_qubits-2,num_state-2,num_state-1));

108 for(int i=num_qubits-2; i>=num_state+2; --i) {

109 c.add(new qx::toffoli(i-num_state,i-1,i));

110 }

111 c.add(new qx::toffoli(0,1,num_state+1));

112 }

113 c.add(new qx::hadamard(num_state-1));

114 }

115

116 for(int i=0; i<num_state; ++i) {

117 c.add(new qx::pauli_x(i)); // Hadamard to register

118 }

119

120 for(int i=0; i<num_state; ++i) {

121 c.add(new qx::hadamard(i)); // Hadamard to register

122 }

123 ++iter;

124 }

125

126 for(int i=0; i<num_qubits; ++i) {

127 c.add(new qx::measure(i));

128 }

129

130 c.execute(reg);

131 reg.dump();

132 c.dump();

133

134 }
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A.2 QFT and inverse QFT

The QFT for an arbitrary quantum register.

1 #include <iostream>

2

3 #include <xpu.h>

4 #include <xpu/runtime>

5

6 #include <core/circuit.h>

7 #include <qcode/quantum_code_loader.h>

8 #include <core/error_model.h>

9

10 #include <string>

11

12 using namespace std;

13

14 int main(int argc, char ** argv)

15 {

16 string qstate;

17 cout << "Fill in the initial quantum state\n";

18 getline(cin, qstate);

19 int num_qubits = qstate.length();

20 qx::qu_register reg(num_qubits);

21 qx::circuit c(num_qubits);

22

23 // initialize quantum state

24 int i=1;

25 for(char& q: qstate) {

26 if (q == ’1’) {

27 c.add(new qx::pauli_x(num_qubits-i));

28 }

29 ++i;

30 }

31

32 // QFT

33 for(int i=0; i<num_qubits; ++i) {

34 c.add(new qx::hadamard(i)); // Hadamard first

35 for(int j=i+1; j<num_qubits; ++j) {

36 c.add(new qx::ctrl_phase_shift(j,i)); // Controlled phase shift gates

37 }

38 }

39

40 for(int i=0; i<floor(num_qubits/2); ++i) {

41 c.add(new qx::swap(i,num_qubits-1-i)); // Swap

42 }

43

44 // execute

45 c.execute(reg);
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46 c.dump();

47 reg.dump();

48

49 }
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The inverse QFT for an arbitrary quantum register.

1 #include <iostream>

2

3 #include <xpu.h>

4 #include <xpu/runtime>

5

6 #include <core/circuit.h>

7 #include <qcode/quantum_code_loader.h>

8 #include <core/error_model.h>

9

10 #include <string>

11

12 using namespace std;

13

14 int main(int argc, char ** argv)

15 {

16 string qstate;

17 cout << "Fill in the initial quantum state\n";

18 getline(cin, qstate);

19 int num_qubits = qstate.length();

20 qx::qu_register reg(num_qubits);

21 qx::circuit c(num_qubits);

22

23 // initialize quantum state

24 int i=1;

25 for(char& q: qstate) {

26 if (q == ’1’) {

27 c.add(new qx::pauli_x(num_qubits-i));

28 }

29 ++i;

30 }

31

32 // inverse QFT

33 for(int i=0; i<floor(num_qubits/2); ++i) {

34 c.add(new qx::swap(i,num_qubits-1-i)); // Swap

35 }

36

37 for(int i=num_qubits-1; i>=0; --i) {

38 for(int j=num_qubits-1; j>i; --j) {

39 c.add(new qx::cphase(j,i));

40 for(int k=1; k<=j-i; ++k) {

41 c.add(new qx::swap(j,i+k)); // Swap qubit to position

42 c.add(new qx::ctrl_phase_shift(i+k,i)); // Controlled phase shift

gates

43 c.add(new qx::swap(j,i+k)); // Swap back

44 }

45 }

46 c.add(new qx::hadamard(i)); // Hadamard
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47 }

48

49

50 // execute

51 c.execute(reg);

52 c.dump();

53 reg.dump();

54

55 }
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A.3 Addition

The addition / subtraction algorithm that can add and subtract integer numbers.

1 #include <iostream>

2

3 #include <xpu.h>

4 #include <xpu/runtime>

5

6 #include <core/circuit.h>

7 #include <qcode/quantum_code_loader.h>

8 #include <core/error_model.h>

9

10 #include <string>

11

12 using namespace std;

13

14 int main(int argc, char ** argv)

15 {

16 string operation;

17 string inputtype = "int"; // int or real

18

19 int num_bits = 5; // one bit is used to store the sign. one bit is added to

prevent overflow

20 int binar = 0; // 0: integer input, 1: binary input

21 int signbit = num_bits+1; // index of the bit that indicates the sign of b

22

23 string a;

24 string b;

25

26 if(inputtype == "int") { // integer input

27 cout << "a + b\n";

28 cout << num_bits << " bits (signed): " << -pow(2,num_bits-1) << " < a,b <

" << pow(2,num_bits-1) << "\n";

29 if(binar == 0) {

30 int a_int;

31 int b_int;

32 cout << "\na = ";

33 cin >> a_int;

34 cout << "b = ";

35 cin >> b_int;

36

37 if(a_int<0) {

38 a += "1"; // to represent the minus sign

39 a_int = pow(2,num_bits)+a_int; // a is made positive for

calculation of binary represetation

40 } else {

41 a += "0"; // to represent plus sign

42 }
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43 for(int i=num_bits-1; i>=0; --i) { // convert decimal to binary

44 if(pow(2,i)<=a_int) {

45 a += "1";

46 a_int -= pow(2,i);

47 } else {

48 a += "0";

49 }

50 }

51 cout << "\na=" << a << "\n";

52 if(b_int<0) {

53 b += "1"; // to represent minus sign

54 b_int = -b_int; // b is made positive for calculation of binary

representation

55 } else {

56 b += "0"; // to represent plus sign

57 }

58 for(int i=num_bits-1; i>=0; --i) { // convert decimal to binary

59 if(pow(2,i)<=b_int) {

60 b += "1";

61 b_int -= pow(2,i);

62 } else {

63 b += "0";

64 }

65 }

66 cout << "b=" << b << "\n";

67 }

68 }

69

70 if(inputtype == "frac") { // for adding positive fractions, approximation

71 cout << num_bits << " bits: max error = " << 2*pow(2,-num_bits+1) << "\n";

72 if(binar == 0) {

73 float a_float;

74 float b_float;

75 cout << "Fill in state a\n"; // a

76 cin >> a_float;

77 cout << "Fill in state b\n"; // b

78 cin >> b_float;

79

80 for(int i=0; i<num_bits; ++i) {

81 if(pow(2,-i)<=a_float) {

82 a += "1";

83 a_float -= pow(2,-i);

84 } else {

85 a += "0";

86 }

87 }

88 cout << a << "\n";

89

90 for(int i=0; i<num_bits; ++i) {
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91 if(pow(2,-i)<=b_float) {

92 b += "1";

93 b_float -= pow(2,-i);

94 } else {

95 b += "0";

96 }

97 }

98 cout << b;

99 }

100 }

101

102 int num_qubits_a = a.length();

103 int num_qubits_b = b.length();

104 int num_qubits = num_qubits_a+num_qubits_b;

105 qx::qu_register reg(num_qubits); // initialize qubit register

106 qx::circuit c(num_qubits); // initialize circuit

107

108 // Initialize qubit state a

109 int i=0;

110 for(char& q: a) {

111 if (q == ’1’) {

112 c.add(new qx::pauli_x(i));

113 }

114 ++i;

115 }

116 // Initialze qubit state b

117 i=num_qubits_a;

118 for(char& q: b) {

119 if (q == ’1’) {

120 c.add(new qx::pauli_x(i));

121 }

122 ++i;

123 }

124 // end of preprocessing

125

126 // apply QFT to a

127 for(int i=0; i<num_qubits_a; ++i) {

128 c.add(new qx::hadamard(i)); // Hadamard first

129 for(int j=i+1; j<num_qubits_a; ++j) {

130 c.add(new qx::ctrl_phase_shift(j,i)); // series of CR

131 }

132 }

133

134 for(int i=0; i<floor(num_qubits_a/2); ++i) {

135 c.add(new qx::swap(i,num_qubits_a-1-i));

136 }

137 // end of QFT

138

139
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140 c.add(new qx::measure(signbit)); // measure to obtain sign of b (0: +, 1: -)

141

142 // Inverse Addition: gates applied if sign of b is -

143 for(int i=0; i<num_qubits_a; ++i) { //

144 if(num_qubits-i-1 != signbit) { // sign bit is not included in calculation

145 c.add(new qx::bin_ctrl(signbit,new qx::cphase(num_qubits-i-1,i))); //

CZ first

146 }

147 for(int j=1; j<=i; ++j) {

148 c.add(new qx::bin_ctrl(signbit,new qx::cphase(num_qubits-i-1+j,i)));

// rotation of pi

149 for(int k=1; k<=j; ++k) {

150 c.add(new qx::bin_ctrl(signbit,new

qx::swap(i+k,num_qubits-i-1+j))); // swap to prepare for CR

151 c.add(new qx::bin_ctrl(signbit,new qx::ctrl_phase_shift(i+k,i)));

// stack rotations to get to -phi

152 c.add(new qx::bin_ctrl(signbit,new

qx::swap(i+k,num_qubits-i-1+j))); // swap qubits back to their

original position

153 }

154 }

155 }

156 // end of Inverse Addition

157

158 c.add(new qx::pauli_x(signbit)); // apply X gate to the sign of b

159 c.add(new qx::measure(signbit)); // measure to obtain sign of b (now

because of X gate 0: -, 1: +)

160

161 // Addition: gates applied if sign of b is +

162 for(int i=0; i<num_qubits_a; ++i) {

163 if(num_qubits-i-1 != signbit) { // sign bit is not included in calculation

164 c.add(new qx::bin_ctrl(signbit,new qx::cphase(num_qubits-i-1,i))); //

CZ first

165 }

166 for(int j=1; j<=i; ++j) {

167 c.add(new qx::bin_ctrl(signbit,new qx::swap(i+j,num_qubits-i-1+j)));

// swap to prepare for CR

168 c.add(new qx::bin_ctrl(signbit,new qx::ctrl_phase_shift(i+j,i))); //

CR for addition

169 c.add(new qx::bin_ctrl(signbit,new qx::swap(i+j,num_qubits-i-1+j)));

// swap qubits back to their original position

170 }

171 }

172 // end of Addition

173

174 // apply Inverse QFT to a

175 for(int i=0; i<floor(num_qubits_a/2); ++i) {

176 c.add(new qx::swap(i,num_qubits_a-1-i)); // swap qubits to prepare for CR

177 }
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178 // Start of inverse QFT

179 for(int i=num_qubits_a-1; i>=0; --i) {

180 for(int j=num_qubits_a-1; j>i; --j) {

181 c.add(new qx::cphase(j,i));

182 for(int k=1; k<= j-i; ++k) {

183 c.add(new qx::swap(j,i+k)); // Swap qubit to position

184 c.add(new qx::ctrl_phase_shift(i+k,i)); // Conrolled phase shift

gate

185 c.add(new qx::swap(j,i+k)); // Swap back

186 }

187 }

188 c.add(new qx::hadamard(i)); // Hadamard

189 }

190

191 // Postprocessing

192 for(int i=0; i<floor(num_qubits/2); ++i) {

193 c.add(new qx::swap(i,num_qubits-1-i));

194 }

195

196 for(int i=0; i<(num_bits+1)*2; ++i) {

197 c.add(new qx::measure(i)); // measure all qubits

198 }

199 c.execute(reg); // execute QX

200

201 // calculate decimal value from binary representation

202 int result = 0;

203 for(int i=num_qubits-2; i>=num_qubits_b; --i) {

204 int qvalue = reg.get_measurement(i);

205 result += qvalue*pow(2,i-num_qubits_b);

206 }

207 if(reg.get_measurement(num_qubits-1) == 1) { // sign of a

208 result -= pow(2,num_qubits_a-1); // determine sign

209 }

210

211 cout << "\na + b = " << result << "\n";

212

213

214 c.dump();

215 reg.dump();

216 }
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B Microsoft LIQUi |〉 Code

B.1 Grover’s Algorithm

Grover’s algorithm for searching through an arbitrary quantum register.

1 let grover (qs:Qubits,correct_state:string,k:Ket) =

2 let n = qs.Length // Length of qubit string (this is not the same n as in

grovern)

3 let R = floor(Math.PI/4.*sqrt(2.**(float(n)-1.))) // Optimal number of runs

of Grover’s iteration

4 // Initialize q{n-1} (ancillary qubit) in |1>

5 X [qs.[n-1]]

6 // Hadamard gate on all qubits

7 H >< qs

8 // Grover’s iteration (R times)

9 for j in 1..int(R) do

10 // X gates to qubits that are |0> in correct state

11 let mutable i = 0

12 for q in correct_state do

13 let k = q |> int

14 if k = 48 then X [qs.[i]] // q{i} |> int yields 48 if q{i} = |0> and 49

if q{i} = |1>

15 i <- i+1

16 Cngate(X,qs,n-1) // Multi-controlled Toffoli on ancillary qubit

17 // X gates to qubits that are |0> in correct state

18 let mutable i = 0

19 for q in correct_state do

20 let k = q |> int

21 if k = 48 then X [qs.[i]] // q{i} |> int yields 48 if q{i} = |0> and

49 if q{i} = |1>

22 i <- i+1

23 H >< List.rev((List.rev(qs)).Tail) // Hadamard on all qubits except

ancillary qubit

24 X >< List.rev((List.rev(qs)).Tail) // X on all qubits except ancillary

qubit

25 Cngate(Z,List.rev((List.rev(qs)).Tail),n-2) // Multi-controlled Z gate on

last state qubit q{n-2}

26 X >< List.rev((List.rev(qs)).Tail) // Hadamard on all qubits except

ancillary qubit

27 H >< List.rev((List.rev(qs)).Tail) // X on all qubits except ancillary

qubit

28 M >< qs
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B.2 QFT

The QFT for an arbitrary quantum register.

1 let QFT(qs:Qubits) =

2 let n = qs.Length

3 for i in 1..n-1 do

4 let q = n-i

5 H [qs.[q]]

6 for k in 2..(q+1) do

7 Cgate (R k) [qs.[q+1-k];qs.[q]]

8 H [qs.[0]]

9 let nswaps = int(floor (float(n-2)/float(2)))

10 for q in 0..nswaps do

11 SWAP !!(qs,q,n-1-q)
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The inverse QFT for an arbitrary quantum register.

1 let invQFT(qs:Qubits) = // This is not really optimal

2 let n = qs.Length

3 for i in 1..n-1 do

4 let q = n-i

5 H [qs.[q]]

6 for k in 2..(q+1) do

7 for j in 1..k do

8 Cgate (R j) [qs.[q+1-k];qs.[q]] // This is not efficient, it should

be a clockwise rotation

9 H [qs.[0]]

10 let nswaps = int(floor (float(n-2)/float(2)))

11 for q in 0..nswaps do

12 SWAP !!(qs,q,n-1-q)
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B.3 Addition

1 let ADDSUB(qs:Qubits,n:int,k:Ket) =

2 let n_a = int(float(n)/float(2))

3 let mutable i = 0

4 let mutable j = i+1

5 // QFT

6 for i in 0..n_a-1 do

7 H [qs.[i]]

8 for j in i+1..n_a-1 do

9 Cgate (R (j-i+1)) [qs.[j];qs.[i]]

10 let nswaps = int(floor(float(n_a)/float(2)))

11 for i in 0..nswaps-1 do

12 SWAP !!(qs,i,n_a-1-i)

13 M [qs.[n_a]]

14 if qs.[n_a].Bit.v = 1 then // subtraction

15 for i in 0..n_a-1 do

16 if n-i-1 <> n_a then

17 CZ [qs.[n-i-1];qs.[i]]

18 for j in 1..i do

19 CZ [qs.[n-i-1+j];qs.[i]]

20 for k in 1..j do

21 Cgate (R (k+1)) [qs.[n-i-1+j];qs.[i]]

22 else // addition

23 for i in 0..n_a-1 do

24 if n-i-1 <> n_a then

25 CZ [qs.[n-i-1];qs.[i]]

26 for j in 1..i do

27 Cgate (R (j+1)) [qs.[n-i-1+j];qs.[i]]

28 // Inverse QFT

29 for i in 0..nswaps-1 do

30 SWAP !!(qs,i,n_a-1-i)

31 for i in n_a-1..0 do

32 for j in n_a-1..i+1 do

33 CZ [qs.[j];qs.[i]]

34 for k in 1..j-i do

35 Cgate (R (k+1)) [qs.[j];qs.[i]]

36 H [qs.[i]]
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