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Abstract
Unsteady numerical simulation has been proven to be an essential tool for research. The quality of the re-
sultscanbe improvedbyusingmeshadaptation. Meshadaptationuseserror indicators to refine themesh
in regionswith high errors. The error indicators used are output errorswith themost accurate output error
estimation method being adjoint-based error estimation. However, for this method, the primal solution
needs tobestored,which is storage intensive, especially for largeunsteady simulations. Themethodpro-
posed in this thesis uses a neural network autoencoder to compress and reconstruct the primal solution.
This solution is compared to a reconstructed solution using Proper Orthogonal Decomposition (POD).

The one-dimensional unsteady Burgers equation is used as validation for the methods using a man-
ufactured solution while the lid-driven cavity flow is investigated using the proposed method. The man-
ufactured solution of the one-dimensional burgers case could be exactly reconstructed using two POD
modes. For the autoencoder a small latent space was used. For low resolutions, the small latent space
did not prove to be a problem as the primal and residual could be captured accurately. However, for
higher resolutions, the reconstruction error of the autoencoder became dominant for the residuals and
resulted in erroneous adjoint-based error estimates while the primal remained qualitatively similar.

For the lid-driven cavity flow, the POD was still able to capture the solution using a low number of
modes due to the smoothness of the solution. This resulted in an unfair comparison between the POD
and autoencoder reconstructed solutions. The reconstructed autoencoder error estimates for lower res-
olutions were more accurate due to the latent space being large enough to capture the residual of the
discrete primal accurately enough. When moving to higher resolutions, the autoencoder was not able
to reconstruct the residual accurately enough leading to erroneous error estimates. Therefore, the la-
tent space of autoencoders should be sufficiently large in order to gain an accurate reconstruction of the
residual. If the latent space is large enough, the error estimate is accurate and the local error estimates
can be used as a first iteration error indicator for mesh refinement.
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1
Introduction

1.1. Background andmotivation
Computational Fluid Dynamics (CFD) has become an essential tool in the investigation of fluid flows [1].
The increase in computational availability of numerical simulations in recent decades has permittedmore
complex fluid flow models to be simulated [2]. This would produce large amounts of computational data
especially if the flow problem is of unsteady nature. As the improvement in computational capacity has
been remarkable, the storage capacity has not been able to keep up. This leads to a performance gap
between CPU and storage which is getting wider [3]. Multiple parties such as NASA [4], research agen-
cies [5, 6] and corporations, have indicated the need for more precise and complicated fluid dynamic
simulations. This need is satisfied by constructing effective and accurate meshes. However, creating
such meshes necessitates careful surveillance and heavily relies on the user’s expertise. Besides this,
the use of CFD is computationally expensive and storage intensive. These disadvantages limit the broad
usage of CFD.

A way to alleviate the computational and storage burden while increasing the precision of the ob-
tained solution is to make use of adjoint-basedmesh adaptation [7]. Adjoint-basedmesh adaptation is a
procedure in which local error estimation is used to identify cells that need refinement to achieve a more
accurate solution. This means that adjoint-based mesh adaptation can initially start by computing the
solution on a very coarsemesh and then iterating themesh so that refinement is added in the parts where
it is needed. Especially for unsteady problems, where the computational costs and storage burden are
excessively high, adjoint-based mesh adaptation offers a viable alternative.

Mesh adaptation uses an indicator to identify cells within themesh that need refinement. A commonly
used indicator is the output error. The output error is the error of aQuantity of Interest (QoI) which is used
to identify the local contributions of each cell. The output error is more viable to be used as an error
indicator compared to discretisation error and residual error estimates [8]. Determining what parts of the
primal can be compressed andhowmuch the primal solution can be compressedwithout losing accuracy
can be interpreted as an optimisation problem.

The most accurate way to identify these cells is by making use of adjoint-based error estimation [9].
This method computes local error estimates based on the residual and the adjoint solution [10]. This
method has two problems. The adjoint solution is obtained by solving an adjoint equation that uses the
primal solution as input. Solving the adjoint equation imposes an additional computational burden. Next
to this, the residual also needs the primal solution as an input. For unsteady problems, this means that
the primal solution needs to be stored at every timestep, which is very storage intensive. One option
would be to store the primal solution on disk. However, this makes the computation of the adjoint-based
error estimates very slow.

Numerous methods may be used to get over a numerical method’s limitations in terms of computa-
tional cost and storage needs. One of these methods is to use compression techniques to reduce the
storage footprint. Techniques such as Proper Orthogonal Decomposition (POD) [11], machine learning
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techniques [2, 12] or a combination of both [13–15] have been used to compress primal data of fluid flow
solutions to lessen the storage burden imposed by CFD simulations.

By applying these compression techniques to the primal solution, the resulting compressed flow will
be different from the inputted primal flow. To compare both primal solutions, the compressed primal
needs to be decompressed or reconstructed. The error introduced by the reconstruction can then be
studied using error estimation techniques. The goal is to obtain the most accurate compression and
reconstruction without the loss of useful information. This will result in efficient storage of the primal.

1.2. Output error estimation
Several approaches have been developed to determine the output error. The most accurate means of
determining the output error is adjoint-based error estimation [16]. This thesis focuses on this method to
gain insight into the output errors. This method depends on the solution of the adjoint problem, which de-
scribes a sensitivity problem related to the fluid equations. In literature, the adjoint problem is sometimes
referred to as the dual problem while the fluid problem is referred to as the primal problem. Even though
adjoint-based error estimates have excellent accuracy and a solid mathematical foundation combined
with the linear nature of the adjoint problem, the associated computing and storage costs are still too high
for broad application.

The computational and storage capacity needed for using the adjoint-based error estimation method
subsides from the cost of solving the adjoint problem bymaking use of the primal solution which is stored
at each time step.

To come upwith an error estimate, the adjoint needs to be solved on a finer discretisation than the pri-
mal problem. The primal solution will be interpolated onto this fine space to compute the error estimates.
While this method lessens the computational burden of the fine primal, it also adds inaccuracies to the
error estimates.

Similar to how the primal solution depends on its preceding time step, the adjoint problem needs to
be solved backwards in time as it represents a sensitivity problem. Since the adjoint solutions use the
primal solutions to come up with an adjoint solution, the primal solutions at all time steps must be stored
and callable. Therefore, not only do the adjoint solutions need to be stored during the backwards loop,
but also the primal solution during the forward loop needs to be stored, which results in the large storage
capacity needed for applying adjoint-based error estimation.

1.3. Storage optimisation of output error estimation methods
The impact of the twomain issues, identified in Section 1.1, can be reduced by improving the output error
estimation process for optimal usage of computational and storage overhead. Several methods have
been proposed to achieve this optimisation. One of these methods is to make use of Artificial Neural
Networks (ANN) to compress and reconstruct the primal solution [2, 12, 13]. This enables the primal to
be stored while taking up less storage overhead. Additionally, when the stored primal is called, it needs
to be reconstructed to a solution resembling the original state. This means that perfect reconstruction is
not likely and will introduce errors in the reconstructed solution.

Another method to lessen the storage needs of the adjoint-based error estimation method is to use
Reduced Order Models (ROM) and in particular POD [17, 18]. PODs represent the primal solution as a
simplified mathematical representation that captures its essential dynamics while significantly reducing
the computational complexity. This will reduce the computational and storage overhead needed for the
primal. However, the primal still needs to be reconstructed from this simplified representation, which
introduces errors in the reconstructed primal solution.

1.4. Thesis need, scope and outline
The need for cheap and accurate compression and reconstruction algorithms has been identified above.
In combination with the trend to apply machine learning, compression and reconstruction to gain accu-
rate adjoint-based error estimates can be achieved such that the storage intensity is lessened. Many
of the proposed approaches only compressed and reconstructed the primal solution but did not study
the impact on the adjoint-based error estimates and did not map out the inaccuracy introduced by the
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compression and reconstruction.
Considering the identified need, the trends seen, and the broad application ofmachine learning in var-

ious sectors, it was decided that the influence of compression and reconstruction on the adjoint-based
error estimate should be mapped out. Therefore, the following main research question and research
objective were established.

Research Question

What is the effect of compression
and reconstruction of unsteady CFD data on adjoint-based output error estimation?

Research Objective

Compress and reconstruct unsteadyCFDdata for accurate adjoint-based output error estimation.

Secondary research questions can be established using the research question mentioned above.
These secondary questions, as stated below, aid in hypothesis testing and create the basis for the work
done in this thesis.

1. What are the state-of-the-art PODandneural network applications for compressionand reconstruc-
tion in a CFD context?

2. What is the state-of-the-art adjoint-based error estimation methods in a CFD context?

3. How can a primal compression and reconstruction neural network and POD be developed and
evaluated in a CFD context?

4. How much error is introduced by POD and neural network compression and reconstruction?

The first question ensures the current neural network application for compression and reconstruction
within a CFD context is investigated. This can be done through the examples given in literature [2, 13,
17, 19–21]. The first question enables a comparison between the different methods used and the im-
plications they would have on compression and reconstruction of the primal solution. Based on this, a
decision ismade about how to develop a specific compression and reconstruction algorithm for accurate
error estimation.

The second question establishes a reference for the current error estimation methods such as [10,
17] but also [22–26]. These papers will provide a framework for the error estimation method that will
be used to map out the errors introduced by compression and reconstruction. Additionally, insights for
adjoint-based error estimation within the CFD context have been documented as well in these papers.

The compression and reconstruction neural network’s capability is then evaluated in the third ques-
tion. Gaining a better grasp of the neural network’s design and training process allows one tomakemore
educated decisions to maximize the neural network’s potential to fulfil the primary research aim.

Finally, the last question discusses how the suggested technique is integrated into the output error
estimation method. The integration must be examined in order to present a framework that is practical
and has the ability to solve the thesis need from which the research objective arises.

The goal of this thesis is to provide meaningful examples of the capacity of the suggested method.
Consequently, one-dimensional and two-dimensional test cases were solved during this research. The
hypothesis tests will revolve around the output error introduced by ANNs.

This thesis will explore the ability of neural networks to compress and reconstruct data. The compres-
sion and reconstruction will be done on unsteady CFD data. Using an adjoint-based error estimation
method, error estimates will be generated to map out the effect of the autoencoder neural network and
POD on the error estimates.

The thesis is structured in the followingway. Chapter 2 presents a short review of the concept needed
to answer themain research question and corresponding sub-questions. Chapter 3 explains themethod
proposed to achieve compression and reconstruction of the primal. In this chapter, the error estimation
framework is also explained. After this, in Chapter 4, the proposed method is applied to the unsteady
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one-dimensional Burgers equation, which serves as a validation case. Next, the proposed method is
applied to the lid-driven cavity flow problem in Chapter 5 which serves as themain test case of this thesis.
Finally, closing off the thesis, the conclusion and future recommendation are given in Chapter 6.



2
Thesis Background

With the evolution of multi-core processing units intomany-core units and the rapid growth in the number
of cores in supercomputers [27], the solution of more complex flow cases could be studied. These ad-
vances in computational processing power in combination with the lower computing cost led to a larger
gap between processing power and storage due to bandwidth constraints and storage-access times
given by high latency input/output operations [12]. In a CFD context, when performing a large CFD sim-
ulation where every time step is several gigabytes in storage, this gap results in a storage bottleneck
where high-performance computing (HPC) machines are constrained by the need to save, visualize or
analyze data [12, 20, 27].

To achieve high-fidelity solutions, flow cases are simulated by solving the Navier Stokes equations
directly, also known as Direct Numerical Simulation (DNS). The computational cost of DNS scales with
Re3. Large Eddy Simulation (LES), which simulates large scales and models the small scales, is less
costly but sacrifices accuracy and access to small-scale flow data. Both DNS and LES have high com-
puting and storage needs.

Additionally, it is important to take into account the curse of dimensionality, particularly in two- and
three-dimensional contexts. The difficulties and complications that develop when dealing with high-
dimensional problems are referred to as the ”curse of dimensionality,” which are particularly relevant in
CFD when trying to address issues involving an extensive number of variables or dimensions. The com-
puting cost and complexity of addressing the problem rise exponentially as the number of variables rises.

In CFD, a number of techniques are used to relieve the storage issue and the curse of dimensionality.
Dimensionality reduction, adaptivemeshing, and parallel computing are some of these techniques. Like-
wise, with the development of accurate and effective data compression, the aforementioned problems
can be resolved as well.

2.1. CFD compression and reconstruction using Neural Networks
Machine learning with an emphasis on Neural Networks NNs, was used in several different ways to
compress the primal solution. This was done to alleviate the storage burden CFD has, especially for
problems of unsteady nature. The NNwill compress the primal solution such that a low-resolution primal
is achieved. During the compression, the NN should be able to distinguish which regions of the solu-
tion can be compressed and which regions cannot. This should enable the NN to maintain important
characteristics of the high-resolution primal while constructing the low-resolution primal.

Once the low-resolution primal is constructed, another NN is used to reconstruct a high-resolution
primal for the adjoint problem. This reconstructed high-resolution primal should be accurate enough to
solve the adjoint problem backwards in time. This will yield the adjoints which is used together with the
primal residual to estimate the local error of each element. The adjoint problem is storage intensive as it
requires the primal solution to be available at every time step. This means that the primal solution needs
to be saved on hard drives. By converting the primal to a lower resolution, storage can be saved and the

5



6 Chapter 2. Thesis Background

computation can be sped up.

Amethod for AdaptiveMeshRefinement (AMR) for LES using reduced-order primal solutions can be
seen in [17]. Themethod uses POD to create a Reduced-Order Representation (ROR) of the primal flow
solutions, which reduces the storage requirements for LES.Theproper orthogonal decomposition-based
ROR and the Enhanced Online Algorithm (EOA) based on incremental Singular Value Decomposition
(SVD) are successful in building the ROR online, making adjoint-based AMR feasible for practical ap-
plications. The adjoint-based error estimation procedure introduced is verified using the method of a
manufactured solution. The ROR-driven AMR strategy is studied using a 1D unsteady Burgers prob-
lem with a multi-frequency forcing term, and the numerical results demonstrate the effectiveness of the
proposed method. This provides a promising approach for reducing the computational cost of LES sim-
ulations while maintaining accuracy.

Adeep learningapproach to in-situdatacompressionof large turbulent flowsimulations isproposed in
[19]. Theproposed fully convolutional autoencoder architecture compresses turbulent flow snapshots by
a factor of 64 with a single pass and allows for arbitrarily sized input fields. The autoencoder outperforms
a randomized single-pass SVD with a similar compression ratio and yields comparable performance to
a higher-rank decomposition. This is achieved with an order of magnitude less compression in terms
of preserving important statistical quantities such as turbulent kinetic energy, enstrophy, and Reynolds
stresses.

Another deep learning approach for compression and deconstruction is using a physics-informed
deep learning technique based on vector quantization to generate a discrete, low-dimensional represen-
tation of data from simulations of three-dimensional turbulent flows [20]. The accuracy of the model is
assessed using statistical, comparison-based similarity and physics-based metrics. The training data
set is produced from DNS of an incompressible, statistically stationary, isotropic turbulent flow. The per-
formance of the data compression scheme is evaluated not only with unseen data from the stationary,
isotropic turbulent flow, but also with data from decaying isotropic turbulence, a Taylor-Green vortex flow,
and a turbulent channel flow. The results show that the model based on vector quantization can offer a
high compression ratio of 85 with a Mean Squared Error (MSE) of O(10−3). This achieves predictions
that faithfully reproduce the statistics of the flow, except at the very smallest scales where there is some
loss. Compared to the recent study of [19], which was based on a conventional autoencoder, this model
improves the compression ratio by more than 30% and reduces the MSE by an order of magnitude of 1.
The compressionmodel is an attractive solution for situations where fast, high-quality, and low-overhead
encoding and decoding of large data are required.

A new in situ compression method for CFD data using deep learning is presented in [2]. The pro-
posed method uses a generative adversarial network (GAN) to compress and reconstruct CFD data.
The method samples small patches from the CFD data and trains the GAN, which includes two convo-
lutional neural networks: the discriminative network and the generative network. The proposed method
has advantages in compression time and can adjust the compression ratio according to acceptable re-
construction effect. Experimental results demonstrate the good generalization of the proposed method
on many datasets.

In [21], a method for reducing both the computation cost and storage for Lattice Boltzmann flow sim-
ulations is presented. The method employs convolutional autoencoders and residual connections to
reduce the dimensionality of the data while compressing the solution and learning the dynamics based
on this compressed representation.

An innovative way in which data compression is used is seen in [13]. In this paper, the computed
results of high-order discontinuous Galerkin computations are compressed using a NN-based autoen-
coder in combination with POD. This resulted in a compressed state of the solutions. Using a vectorial
kernel orthogonal greedy algorithm which uses radial basis functions, the dynamics are learned. After
that, the solutions could be recovered at any instance of time from the compressed state.

2.2. Proper Orthogonal Decomposition
Simulating complex physical systems can be computationally straining and storage intensive. To allevi-
ate these constraints, ReducedOrder Models (ROMs) can be applied to these systems. The application
of ROMs, first introduced for fluid flows in [28], will reduce the computational cost and storage needed



2.3. Neural Network Compression and Reconstruction techniques 7

for high-fidelity solvers.
There are two types of reduced-order modelling approaches: intrusive and non-intrusive. The differ-

ence between these two approaches is that for the intrusive reduced-order modelling approach, access
is needed to the completemodel and solvers, which are generally unavailable when dealing with govern-
ing equations of fluid flows. The non-intrusive reduced-ordermodelling technique is based on snapshots
from high-fidelity tools, such as numerical approximations produced from CFD or wind tunnel observa-
tions. The non-intrusiveROMsdo not require any knowledge of the underlying equationswhile still being
able to approximate the flow field’s leading characteristics. Therefore, the focus will be on non-intrusive
ROMs

The non-intrusive ROM approach approximates the full solution is only using a small subset of the
data using dimensionality reduction techniques. There are several techniques to reduce dimensions,
however, themodal decompositionmethod is themost usedmethod. Modal decomposition can be used
to project the full solution on a reduced-order basis in order to approximate the full solution. The Proper
Orthogonal Decomposition (POD) method and the Dynamic Mode Decomposition (DMD) method are
the two main modal decomposition techniques. Although each method has advantages of its own, the
PODmethod is seen to be the most prominent [29] and has the greatest potential for the thesis goal.

The fundamental idea behind the POD approach is to decompose a given vector field into orthogonal
bases, sometimes referred to as spatial functions, which each capture a component of the flow’s total
mode energy. It should be emphasized that the spatial functions identified with POD are sorted by to-
tal mode energy with the first spatial mode having a higher total mode energy than the second spatial
mode. Based on the spatial modes which retain a given threshold of total mode energy (usually 99%
[30]), the number of dimensions of a flow field can be reduced. This method will be elaborated on in
chapter 3.

2.3. Neural Network Compression and Reconstruction techniques
In Section 2.1, examples are discussed on how to compress and reconstruct CFD data using neural
networks. In this section, data compression is discussed as well as data compression using machine
learning.

2.3.1. Data compression
In aCFDsetting, data compressionmay be used for data checkpointing aswell as post-processing. Data
checkpointing means saving compressed data and utilizing it to continue the simulation [19]. However,
the data cannot simply be compressed randomly. The compression needs to be done accurately enough
such that the simulation is able to restart using the compressed data inmemory. The compression needs
to ensure thedata doesnot havea significant impact on the simulated flow’s long-termbehaviour and that
the compressed data retains the essential statistical properties of the flowwith reasonable accuracy [20].

Depending on howmuch information is lost during the data compression process, compression tech-
niques can be classified as lossless or lossy. Lossless compression is when data is compressed in such
a way that the reconstructed data contains no or machine precision errors. Lossy compression can be
characterized by the controllable level of error that is introduced in the data while reconstructing. While
lossless compression is able to maintain the accuracy of the data, its compression capabilities are lim-
ited and it can be storage intensive [20]. Since the main problem of the proposed thesis will consist of
large unsteady simulations that are storage and computationally intensive, lossless compression is less
attractive.

Two lossy data compression methods are truncation-based approaches and transformation-based
approaches [20]. The floating point accuracy of the data is reduced through truncation-based meth-
ods which are comparable to interpolation methods such as nearest neighbor, linear and polynomial
splines. Transformation-based approaches encrypt data into a certain representation from which it can
be retrieved. The representation usually arranges the data according to some concept of priority. This or-
dering facilitates lossy data reduction by keeping the relevant components and eliminating the irrelevant
ones. This can be seen in POD as well by ordering the modes by total mode energy.

Within lossy classification, there are two techniques that can be interesting to look at which are mesh
reduction and derived representation [31]. Mesh reduction techniques reduce the mesh’s size, or its
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number of vertices and cells, which lowers its storage requirements. Mesh reduction differs from lossy
compression in that it affects the underlying mesh. By making coarser meshes that mimic the original
ones is one approach, a smaller mesh is obtained which has the advantage of requiring less storage to
process, improving interactivity [31]. This is not done for lossy compression.

Extreme data reduction is possible with derived representation approaches since they completely
discard the source data. Alternative representations are created and kept as an alternative, allowing
analysis algorithms to return results that are comparable to those obtained when using the original data.

2.3.2. Machine Learning Data Compression
To achieve lossy data reduction in storage, machine learning techniques could be applied to data. There
are two architectures that seem very promising to satisfy the research objective. These two architec-
tures are autoencoders and variational autoencoders. Autoencoders are a special class within encoder-
decoder models in which the input and output are the same [32]. The encoder and decoder components
of an autoencoder employ multi-layered deep neural networks to reduce the dimensionality of data [13].
The encoder stores the representational information needed to convert the data from its original high-
dimensional state to a latent space. The decoder learns how to rebuild from the latent space to the
original state. Both the encoder and decoder are tensors that are trained using typical backpropagation
and optimization approaches in neural networks [33].

Variational autoencoders build upon the concept of autoencoders. Besides compressing and recon-
structing data, variational autoencoders also learn a structured latent space representation [34] from
which new samples can be generated. Variational autoencoders are therefore generative models. Vari-
ational autoencoders use probabilistic encoders and decoders, enabling them to learn the underlying
probability distribution of the data [35]. The encoding network of variational autoencoders will output two
vectors instead of one like autoencoders. The latent representation of the input is then drawn from the
normal distribution defined by these two vectors. The difference between an autoencoder and a varia-
tional autoencoder is seen in Figure 2.1. For the purpose of this research, the probabilistic approach of
generating new samples is not needed. Therefore, the use of a variational autoencoder is redundant for
the purpose of this thesis.

Figure 2.1: Difference between an autoencoder and a variational autoencoder [36]

2.4. Error estimation
There are several approaches that try to estimate the error. The approaches can be categorized into
two categories, a priori and a posteriori error estimations. The first approach attempts to anticipate the
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error before anymesh-based solutions havebeen identified, depending purely onprior knowledge,mesh
topology, andmesh location. This has significant drawbacks and has not been shown to function reliably
and robustly across a variety of challenges. However, a priori error estimations have been useful for
grid studies. The second approach attempts to estimate the error after a solution has been computed
[37]. It considers particular data about the calculated solution, including residuals, gradients, or local
error indications [38, 39]. A posteriori estimates offer a more precise evaluation of the inaccuracy in the
calculated solution and can direct the optimisation of the numerical solution or AMR. A posteriori error
estimates are especially helpful when the exact solution is unknown or difficult to determine. A posteriori
estimates are frequently calculated using error indicators, which describe the local error at various points
across the computational domain.

The difference between a priori and a posteriori error estimations highlights a clear advantage of us-
ing a posteriori error estimates for the purpose of this thesis. The two main approaches to evaluating a
posteriori error estimates are metric-based and adjoint-based error estimation.

The first approach, known as metric-based error estimation, drives the error estimation procedure
with characteristics from the flow solution. These characteristics are described using measurements
that are relevant to the problem. Metric-based error estimation is computationally inexpensive, but it can
be inefficient in lowering the output error in terms of a specific QoI, such as lift. The QoI does not always
have to be connected with the resolution of local flow characteristics [40, 41].

Furthermore, in order to be successful, the chosen metrics must relate to the problem and the cho-
sen QoI. This necessitates a thorough previous understanding of the problem under consideration. This
indicates a lack of generality, which is often solved by using more complicated metrics [42, 43]. These
techniques can be effective for highly specific issues, but they are less efficient than goal-oriented mesh
adaptation and do not generalize well [44].

Output-based error estimate, on the other hand, is specially designed to decrease the errors in QoI
prediction. Output-based error estimates can be accomplished by estimating numerical errors or by solv-
ing the variational problem. They were found to be equal to approaches such as the adjoint-weighted
residual, but less precise and less computationally costly. If the cost of the adjoint solution is too expen-
sive, these methods are still in use [45, 46].

The second approach, known as adjoint-based error estimation, drives the error estimation proce-
dure by solving the adjoint problem. The adjoint problem is the related variational problem, that may
be obtained from the continuous equations or discretised versions of the considered problem. Initially,
the adjoint problem is more difficult to set up since it necessitates the formulation of related variational
problems, and it is alsomore computationally costly [40]. However, it is more accurate, requiring coarser
meshes and, as a result, a lower computing cost since it can converge to a QoI value more quickly. This
approach, which will be a major emphasis of this thesis, allows for effective prediction of output error
and localization of error sources. Chapter 3 delves deeper into output error prediction approaches, high-
lighting their fundamental limitations and arguing the need to design tools that decrease computational
overhead and associated storage needs.





3
Methodology

This chapter explains the approach that was taken to achieve the thesis objective and answer the main
research question. Both compression methods discussed in Chapter 2, as well as the output error esti-
mation method, are explained. First, POD compression and reconstruction is explained in Section 3.1.
After this, neural network compression and reconstruction will be discussed in Section 3.2. Next, output-
based error estimation is elaborated upon in Section 3.3. Finally, the output-based error estimation
framework is combined with the results from the compression techniques yielding the proposed method
in Section 3.4.

To obtain primal data, the finite element method is used for solving the Partial Differential Equations
(PDEs) numerically. To evaluate the error estimation ability, this thesis focused on two sets of PDEs:
the 1D Burgers equation and the Navier Stokes equations for the lid-driven cavity flow. The 1D Burgers
equation will be used as validation for the proposed method while the lid-driven cavity flow is used as
the main test case. These PDEs will be investigated using different spatial resolutions and will employ
Crank-Nicolson time stepping schemes for additional stability. For the remainder of the chapter, the
primal solution can be assumed to be given.

3.1. POD Compression and Reconstruction
PODwas used to compress and reconstruct the discrete primal solution. For the POD, data that is a func-
tion of both space and time y(x,t) is inputted. y could represent the total flow solution or the fluctuations
of the flow solutions from the decomposition usol=usol+u′

sol, depending on the problem. If separation
of variables is applied, the function y(x,t) transforms to:

y(x,t)=
m∑
j=1

uj(x)aj(t) (3.1)

where uj denotes the spatial functions and aj denote the coefficients. The goal is to identify orthogonal
bases that are used to approximate most of the data using the smallest number of terms. The POD finds
this decomposition of bases. In Equation 3.1 the orthogonal bases are represented by spatial modes
uj(x). If the data at spatial locations x= x1,x2,...,xn and times t= t1,t2,...,tm of y(x,t) are calculated,
these can be represented in anm×nmatrix Y as:

Y=

 y(x1,t1) ... y(xn,t1)
...

. . .
...

y(x1,tm) ... y(xn,tm)

≈ U
m×m

Σ
m×n

VT

n×n
(3.2)

In Equation 3.2, U is of size m×m and contains all the spatial functions. Σ is a matrix of size m× n
containing the non-negative singular values ordered by size on its main diagonal and VT is a matrix of
size n×n containing the time-dependent coefficients. Note thatΣVT is equal to aj(t) and U is equal to
uj(x) seen in Equation 3.1.

SinceΣ is ordered such that the largest singular value is located first on the main diagonal, small val-
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ues can be omitted, introducing a truncation to thematrices. This truncation can be seen in Equation 3.3.

Y=

 y(x1,t1) ... y(xn,t1)
...

. . .
...

y(x1,tm) ... y(xn,tm)

≈ Ur
m×r

Σr
r×r

VT
r

r×n
=Yr (3.3)

The number of modes r is determined according to a total mode energy criterion which is dependent on
the data. The criterion can be calculated as follows:

Total mode energy=
∑

Σ2
r∑

Σ2

Starting from the lowest number of modes of r = 1, the number of modes needed to satisfy the crite-
rion is determined iteratively by increasing the number of modes and recalculating the total mode en-
ergy.

When applying this technique to a velocity vector, the velocity data first needs to be converted from
finite elements to points. The data in points can then be inputted into the POD as Y to obtain Yr which is
equal to uPOD. When the POD is applied on the fluctuations of the flow, the mean flow should be added
to obtain uPOD. This yields the compressed and reconstructed primal based on the POD truncation and
will be used in the continuation of the thesis.

3.2. Autoencoder - Neural Network Compression and Reconstruc-
tion

Primal data is also compressed and reconstructed using an autoencoder neural network. This autoen-
coder consists of two networks, an encoder and a decoder. The input of the encoder is nodal values.
The encoder compresses the data and outputs the compressed data to the decoder. The decoder re-
constructs the original primal data and outputs the reconstructed values. The input and output of the
autoencoder are the same size.

The encoder neural network was constructed using a combination of both convolutional and linear
layers. The convolutional layers are used in the initial layers of the encoder neural network. This is due
to the size of the input being large. After some compression is done by the convolutional layers, linear
layers are used to fully connect the last few layers such that the final compressed state of the primal is
obtained. Fully connected layers are used here such that less information is lost during the final stages
of the compression and to control the latent space size.

Similar to the encoder neural network, the decoder neural network consists of fully connected linear
layers followed by convolutional layers. The amount of linear and convolutional layers is the same for
the encoder and decoder.

Note that due to the fully connected linear layers, a different autoencoder is needed for each reso-
lution. The architectures for the autoencoders can be found in Appendix A. The input of the encoder
has a batch size of 32 time steps, a channel size that is equal to the number of variables, and the primal
data in spatial points. The autoencoder compresses the primal input data to the size of latent space and
reconstructs the primal data back to its original size.

The autoencoder neural network is trained using 10 batches of a batch size of 32. The batch size
indicates that after 32 random time steps have been inputted, the autoencoder adapts its weights and
biases. The number of batches indicates how many times the autoencoder will learn during one epoch.
The training is continued for 1000epochsand themodel is savedevery50epochs. The learning rateused
for training is 1e−4 or 5e−4 depending on the PDE and uses the ADAM optimiser for training. The loss
functionused to train theautoencoderneural network is theMSEbetween the inputteddataand the recon-
structed data as can be seen in Equation 3.4. In Equation 3.4, n denotes the number of spatial samples.

MSE=

∑
(uReconstructed−uInputted)2

n
(3.4)

To ensure that the training and testing data is statistically representative, the data is transformed to
acquire more training data. The transformations that were applied are rotation and mirroring of data
or a combination of both. By creating more training and testing data, the autoencoder can be trained
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and tested using more statistically representative data. This also helps against overfitting the autoen-
coder.

The hardware used to solve the PDEs, determine the POD and train the autoencoder, is a four-core,
eight-thread Intel i7-7700HQCPUwith 8 GB of RAM and an Nvidia Quadro M1200 with 4 GB of GDDR5
VRAM. All training and testing of the neural network is done locally.

When the training and testingwere done for the autoencoder, the savedmodelswere called and used
to obtain the compressed and reconstructed primal solution uAE.

3.3. Output-based Error Estimation
In this section, output-based error estimation will be elaborated upon. Output-based error estimation
and in particular, adjoint-based error estimation is the primary way of determining local error estimates
in this thesis. It can be used to compare the different compression and reconstruction methods. First,
this section describes the derivation and implementation of the error estimation based on the adjoint
solution. After this, the implementation of the previous sections is given in the error estimation frame-
work.

Output-based error estimation uses the sensitivity of the output based on the numerical solution of
the problem in order to obtain error estimates. The sensitivity of the output is investigated through the
use of the adjoint solution of the CFD problem. The adjoint solution is obtained by solving the adjoint
problem. The adjoint method and problem have been demonstrated and are explained in more detail in
[5, 10, 40, 47].

This section focuses on the method to obtain the continuous adjoint problem for output-based error
estimation based on the framework provided in [10].

The adjoint method considers a PDE of the form:
Lu= f with R(u)=Lu−f (3.5)

In Equation 3.5, L is the linear operator corresponding to an arbitrary PDE, f is a known forcing and u is
the unknown solution. The residual is represented by R(u).

The adjoint operator L∗ is defined as the relation between the primal operator and an adjoint set of
solutionsΨ through the equation:

(Lu,Ψ)=(L∗Ψ,u)

Here, the brackets represent the integrated inner product. To find the adjoint operator L∗, the left-hand
side of the equation is filled in and rewritten such that the operators apply only onΨ. The adjoint solution
Ψ is used to find the sensitivity of a selected output J(u)with regard to an incredibly small disturbance in
the primal residual. This is seen in Equation 3.6. Based on this equation, it can be seen that the adjoint
dictates howa change in the residual leads to a change in the output [10]. Equation 3.6 is the generalized
form of the continuous adjoint equation.

J ′(δu)=
∫
Ω

ΨTR′(δu)dΩ ∀ δu (3.6)

The adjoint operator L∗ can also be derived by disturbing the PDE by an arbitrary fluctuation δu as
seen in Equation 3.6. By completing the integration by parts for each term of Equation 3.6 and rewriting
the terms such that the operators only work on the adjoint Ψ, the adjoint operator L∗ is derived. The
boundary conditions are then found by linking the different known boundary conditions from the primal
problem to the adjoint boundary condition terms acquired through integration by parts. For non-linear
problems, Equation 3.6 must be adapted such that the primal residual sensitivity is linearised about a
given state u0. This leads to Equation 3.7.

J ′[u0](δu)=
∫
Ω

ΨTR′[u0](δu)dΩ ∀ δu (3.7)

For unsteady problems, the time variation of the change in output and the change of the residual
should be taken into account. Because of the discrete time stepping and finite element techniques used
in this approach, the time integrals will be approximated using the discrete sum.
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The derivation for error estimation is given in [10], and yields Equation 3.8, which is roughly approxi-
mated byEquation 3.9. In Equation 3.9,uH

h denotes the coarse solution injected into the fine space using
interpolation in space. The interpolation is done to achieve cheap fine residuals of the primal solution.

δJest=Jh(uh)−JH(uH) (3.8)

δJ≈δJest=−
∫
Ω

ΨT
hRh(uH

h )dΩ (3.9)

Equation 3.9 is called the adjoint-weighted residual approach since the non-zero residual induced by
the truncation error isweighted by the adjoint solution. Note that a linearization errorO(δu2) is introduced
in the estimate in Equation 3.7, due to the negligence of terms higher order δu terms. Additionally, be-
cause this linearization error might predominate when δu2 is large, non-linear problemsmay be far more
vulnerable to under-resolved primal solutions. This means that the error estimates may be inexact [10].

The error can be localised by using Equation 3.9 to determine the adjoint weighted residual over a
cell. Taking the absolute value of Equation 3.9, yields Equation 3.10 which gives the absolute local error
estimate field on the fine space.

εest=
∣∣ΨT

hRh

(
uH
h

)∣∣ (3.10)

3.4. Proposed Method
Now that all compression and reconstruction techniques are discussed and the error estimation frame-
work has been given, the final step is to combine the error estimation framework with the POD recon-
structed solution uPOD and the autoencoder reconstruction uAE. This can be seen in Figure 3.1. In
Figure 3.1, the error types introduced during the proposed method have been indicated by color. The

Figure 3.1: Schematic view of the proposed method with all errors introduced

compression and reconstruction techniques introduce a reconstruction error due to lossy compression.
The adjoint solver uses the linearized versions of PDEs which results in a linearization error. Finally, the
adjoint-based error estimation method uses the coarse solution injected into the fine space using inter-
polation in space uH

h . This introduces an interpolation error.
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Based on this approach, the influence of both compression and reconstruction techniques on the
adjoint-based error estimation can be compared with the original, non-reconstructed, adjoint-based er-
ror estimates. This is done for two sets of PDEs. The first PDE is the 1D unsteady viscous Burgers
equation in Chapter 4. The second set of PDEs is the Navier-Stokes equations for the lid-driven cavity
flow in Chapter 5.





4
Validation: 1D Unsteady Viscous Burgers
In this chapter, the 1D unsteady viscous Burgers equation will be used as validation for the primal solver
and error estimation framework using themethod ofmanufactured solutions found in [17]. The validation
for the adjoint solver is done by comparing the adjoint to solutions presented in [1]. First, the governing
equations are presented in Section 4.1 as well as the solutions obtained from the finite element method
and themanufacturedsolution. After this, thePODmethod is validatedbyapplying it to thediscreteprimal
solution in Section 4.2. Next, the autoencoderwill be applied to the discrete primal solution in Section 4.3.
After this, the adjoint equations will be presented and solved in Section 4.4. Lastly, the error estimates
are shown in Section 4.5. The results presented in this chapter are for the spatial resolution of 32 points.
The solutions of the 1DBurgers equation for different spatial resolutions can be found in Appendix B. The
solutions have been generated for the spatial resolutions 8,16,32,48,64,96, and 128 points.

4.1. Primal Equations and Solution for 1D Burgers equation
Consider the one-dimensional Burgers equation over a space-time domain Ω : [0,1]× I : [0,20]. Many
applications that require shock wave propagation in viscous flows or idealized turbulence employ the
Burgers equation as a mathematical model [48]. The Burgers equation can be seen in Equation 4.1.

PDE: ∂u
∂t

+u∂u
∂x

−ν
∂2u
∂x2

=f,

BC: u(x,t)=0 on ∂Ω,

IC: u(x,0)=0 on Ω

(4.1)

In Equation 4.1, u is the solution with homogeneous Boundary Conditions (BCs) u(0,t) = u(1,t) = 0
on the boundary ∂Ω. The initial condition (IC) is u(x,0) = 0. ν = 1

Re = 1
100 is the viscosity coefficient

and f ∈ R is a known forcing term or source function. Note that the Burgers problem in this thesis
is used to investigate the proposed method in one dimension. However, the considered approaches
can also be applied to multi-dimensional problems. A manufactured solution corresponding to f is
uMMS(x,t)=sin2(πt)sin(πx).

TheQoI for this case is J̄= 1
T (sin(πx),u)Ω×I , where the brackets denote the integrated inner product.

To get the exact value of the QoI, the QoI is calculated using the manufactured solution which results in
J̄=0.25.

The solution for the 1DBurgers equation canbe seen in Figure 4.1. Figure 4.1 shows the solution for a
spatial resolution of 32 points. Themanufactured solutionwith the same spatial resolution can be seen in
Figure 4.2. For all the numerical results a time step∆t of 0.001 is used to prevent temporal discretization
errors influencing the solution [17].

By looking at the discrete primal solutions from low to high spatial resolution in Section B.1.1, the ab-
solute error between the manufactured and discrete primal solution decreases. This is seen by plotting
the absolute error between the discrete primal and the manufacture solution as is shown in Figure 4.3
andSectionB.2.1. Figure 4.3 shows that the absolute error has periodic behaviour and is centred around

17
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the middle of the domain for the later time steps. For the lower spatial resolutions of the discrete primal
shown in Section B.2.1, the top left corner of the absolute error plots shows a discretisation error which
fades as the spatial resolution goes up. This could be due to some high-wave number flow components
that could not be captured by coarse spatial resolutions. This resulted in the high absolute error located
in the top left corner for lower spatial resolutions.

Figure 4.1: The solution of the 1D burgers equation ofNH =32

Figure 4.2: The reference solution of the 1D burgers equation ofNH =32

From Figure 4.1, Figure 4.2, Figure 4.3, and the figures in Appendix B, it can be seen that a more
accurate solution is achieved when increasing the spatial resolution. This is also indicated by the Mean
Squared Error (MSE) which is defined by Equation 4.2 and can be seen in Figure 4.4. The MSE error
decreases and stabilises as the spatial resolution increases.

MSE(u,uMMS)=
1

N

∑
(u−uMMS)2 (4.2)

4.2. Compression and reconstruction using POD for 1D Burgers
equation

Now that the primal solution is known, the primal solution is compressed using the POD approach, ex-
plained in Section 3.1. The POD compression respects the total mode energy level of retaining 99%and
is applied to the fluctuations of the discrete primal solution. When looking at the chosen manufactured
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Figure 4.3: The solution error of the 1D burgers equation ofNH =32

Figure 4.4: 1D Burgers MSE of the discrete primal for different spatial resolutions

solution, it can be seen that this solution can be reconstructed with just two modes. The mode energy
per POD mode can be seen in Figure 4.5. It can be seen that most of the energy is retained in the first
PODmode for all spatial resolutions.

For the different spatial resolutions, the number of modes r and the achieved compression ratio CR
canbe seen inTable 4.1. TheMSE is definedbyEquation 4.3 and canbe seen inFigure 4.6. In Figure 4.6,
theMSE decreases as the spatial resolution goes up. Due to increasing spatial resolution the POD uses
more values to reconstruct the discrete primal. This behavior is expected since the POD is able to recon-
struct the discrete primal solution exactly using only two modes as can be seen from Table 4.1. The rate
of convergence can be seen to be between 4 and 5 for the MSE of the POD.

MSE(uPOD,u)=
1

n

∑
(uPOD−u)2 (4.3)

The compression ratio for POD for the one-dimensional Burgers equationCRPOD is defined by Equa-
tion 4.4 where nvar is the number of variables, which is equal to 1 in this case.
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Figure 4.5: Mode energy for each PODmode

Figure 4.6: 1D Burgers MSE of the POD primal for different spatial resolutions on the coarse space

CRPOD=
Input data size

POD output data size
=
Time resolution×Spatial resolution of input
Size(Ur)+Size(Σr)+Size(VT

r )+nvar
(4.4)

The compressed and reconstructed fields based on the POD can be seen in Figure 4.7. The recon-
structed fields for the other spatial resolutions can be found in Section B.1.2. The reconstructed solution
looks qualitatively the same as the discrete primal solution.

The absolute error between the POD reconstructed solution and the discrete primal solution can be
seen in Figure 4.8. Again in the top left corner of the figure, the same discretisation error is seen as was
seen previously in the discrete primal solution. The absolute error fields for the other spatial resolutions
can be seen in Section B.2.2. When comparing the absolute error fields from low to high spatial resolu-
tion, it can be seen that for a spatial resolution of 96 and upwards, the reconstructed solution is equal to
the discrete primal solution. This was achieved using twoPODmodes as can be seen in Table 4.1, which
indicates that the POD approach is validated.
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Figure 4.7: POD reconstructed 1D Burgers solution with a spatial resolution ofNH =32

Figure 4.8: Difference between exact and POD reconstructed 1D Burgers solution with a spatial resolution ofNH =32

Spatial resolution Optimal rank r Compression Ratio CRPOD
8 2 3.999100247
16 2 7.996601614
32 2 15.98681154
48 2 23.97063744
64 2 31.94808695
96 2 47.88388738
128 2 63.79427375

Table 4.1: POD Compression information for different spatial resolutions for the 1D Burgers equation

4.3. CompressionandreconstructionusingNNfor1DBurgersequa-
tion

Now, the primal is compressed using an autoencoder as well. The autoencoder is constructed using
the method given in Section 3.2. As was noted before, due to the fully connected linear layers, the au-
toencoder has a different architecture which can be found in Appendix A. The compression ratio of the
autoencoder can be calculated using Equation 4.5.
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CRAE=
Input data size

Encoder output data size+Model size

=
Time resolution×Spatial resolution of input

Time resolution×Spatial resolution of encoder output+Number of Model parameters

(4.5)

The autoencoder is designed to have a latent space size of one. This means that the autoencoder
compresses the discrete primal solution at a single time step to just one value and reconstructs it back to
its original size to obtain the autoencoder reconstructed solution uAE.

The train and test losses for the autoencoder for the spatial resolution of 32 can be seen in Figure 4.9.
In Figure 4.9, it can be seen that an accuracy of 10−6 is reached with this autoencoder. For the last 300
epochs, oscillations can be seen in the test and train losses. This is due to the learning rate being too high
at this stage of training. A high learning rate will result in the local minimum being overshot which results
in the oscillations seen in Figure 4.9. Despite the oscillations, the autoencoder model is still applicable
to the problem. It should be noted that more model parameters will increase the computational cost of
training and running the autoencoder. Even though the computational cost is beyond the scope of this
thesis, it should not be overlooked.

MSE(uAE,u)=
1

n

∑
(uAE−u)2 (4.6)

Figure 4.9: Train and test losses of the autoencoder for a spatial resolution ofNH =32 for the 1D Burgers equation

The velocity field for a spatial resolution of 32 can be seen in Figure 4.11 and looks qualitatively the
same as the discrete primal solution. More velocity fields of each autoencoder can be found in Sec-
tion B.1.3. When looking at the absolute error of the autoencoder reconstructed solution and the discrete
primal in Figure 4.12, it can be seen that the errors introduced return periodically. These errors stem
from the latent space being too small. The latent space, which is the encoder output, consists of too few
variables for the decoder to reconstruct the solution accurately. This can be solved by increasing the
latent space however, this will also increase the compression ratio.

For the different spatial resolutions the achieved compression ratioCRAE and totalmodal parameters
can be seen in Table 4.2. It should be noted that the compression ratios for a spatial resolution of 48, 96
and 128 are significantly lower. When training for these particular spatial resolutions, the loss function
would not decrease to an acceptably low value. Therefore, the latent space of these spatial resolutions
has been increased with one variable. This resulted in the lower compression ratios.

TheMSE is defined by Equation 4.6 and is visualized in Figure 4.10. It can be seen that the MSE first
decreases and then stabilizes whereafter the MSE actually increases for the higher spatial resolutions.
For higher spatial resolutions, the autoencoder needs to reconstruct more values from the same latent
space. This results in the errors increasing for higher spatial resolutions which are also seen in the trend
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of the MSE error. Naturally, the MSE will decrease for higher spatial resolutions due to the solution of
the discrete primal being more accurate. Therefore, the MSE first decreases as the refinement of the
solution is still dominant. However, for a spatial resolution of 16 to 64, the MSE is balanced out by the
error introduced by the reconstruction of the autoencoder, and the error decreases due to refinement.
This is seen by the plateau of this region. After that, for spatial resolutions of 96 and above, the MSE
error is dominated by the reconstruction error introduced by the autoencoder.

Figure 4.10: 1D Burgers MSE of the autoencoder primal for different spatial resolutions on the coarse space

Spatial resolution Model Parameters Compression Ratio CRAE
8 20018 3.998300807
16 20090 7.982240403
32 20318 15.87420323
48 21078 15.71787819
64 19790 32.16968661
96 29507 27.62370341
128 26941 38.2434011

Table 4.2: Autoencoder compression information for different spatial resolutions for the 1D Burgers equation

4.4. Adjoint Equations and Solution for 1D Burgers equation
Now that u, and uAE are known, the adjoint can be calculated based on these solutions. To do so, the
adjoint equation first needs to be derived. FromEquation 4.1, the adjoint equation can be derived. This is
done using the framework provided by [10]. Since the one-dimensional burgers equation is a non-linear
equation, the adjoint equation will be derived around a linearized state u0. From Equation 3.7, it can be
seen that the derivative of the residual with respect to δu, which is an infinitesimally small perturbance
applied to u, is needed. This is seen in Equation 4.7.

r′[u0](δu)=
∂(δu)
∂t

+u0
∂(δu)
∂x

+δu∂u0

∂x
−ν

∂2(δu)
∂x2

(4.7)

Now to get the sensitivity of output J , Equation 4.7 is multiplied with the adjoint Ψ as can be seen in
Equation 4.8 and can be partially integrated.
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Figure 4.11: Autoencoder reconstructed 1D Burgers solution for a spatial resolution ofNH =32

Figure 4.12: Difference between exact and Autoencoder reconstructed 1D Burgers solution with a spatial resolution ofNH =32

J ′[u0](δu)=
∫
Ω×I

ΨT r′(δu)dΩ ∀ δu

=

∫
I

Ψ
∂(δu)
∂t

dT+

∫
Ω

Ψ(u0
∂(δu)
∂x

+δu∂u0

∂x
−ν

∂2(δu)
∂x2

)dΩ

=[uΨ]I−
∫
I

u
∂Ψ

∂t
dT+([u0δuΨ]Ω−

∫
Ω

u0δu
∂Ψ

∂x
dΩ)+

∫
Ω

δu∂u
∂x

ΨdΩ

−([ν
∂(δu)
∂x

Ψ]Ω−([νδu∂Ψ
∂x

]Ω−
∫
Ω

νδu∂
2Ψ

∂x2
dΩ))

(4.8)

TheBCsand IC forucanbeapplied for δusince fixedvalueswill not varywhenaperturbance is introduced.
If δu is then replaced by u, Equation 4.8 can be simplified to Equation 4.9.

J ′[u0](u)=−
∫
I

u∂Ψ
∂t

dT−
∫
Ω

u0u
∂Ψ

∂x
dΩ+

∫
Ω

uΨ∂u0

∂x
dΩ−

∫
Ω

νu∂
2Ψ

∂x2
dΩ+[uΨ]I+[ν

∂u
∂x

Ψ]Ω (4.9)
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Based on the last two terms of Equation 4.9, the BCs and IC can be derived for the adjoint. By omitting
the integrals and u, the adjoint equation as seen in Equation 4.10, is derived.

Adjoint: dJ

du =−∂Ψ

∂t
+Ψ

∂u0

∂x
−u0

∂Ψ

∂x
−ν

∂2Ψ

∂x2
=sin(πx)=g(x)

BC: Ψ(x,t)=Ψ(x,t)=0 on ∂Ω,

IC: Ψ(x,20)=0 on Ω

(4.10)

Note that theminus signbefore thepartial timederivative inEquation4.10 indicates that the timestepping
will go backward and that the initial condition is set at time T =20. The right-hand side of the equation is
obtained by omitting the time averaging, the integral, and u from the definition of J= 1

T

∫
Ω
sin(πx)udΩ.

To calculate the adjoint solution based on uAE, u is simply replaced in Equation 4.10 as the adjoint
equation does not change.

All adjoint solutions are solved on a twice as refined spatial resolution as the primal solution. The
solution can be seen in Figure 4.13. The solution of the adjoint is only calculated up to T/2 = 10. The
adjoint solutions for the fine spatial resolutions of 16,32,64,96 and 128 can be seen in Section B.3. The
adjoint solutions are calculated for the discrete primal solution and the compressed and reconstructed
primal solution using the autoencoder. The results for the adjoint for all spatial resolutions can be seen
in the subsections of Section B.3. The adjoint solutions for a spatial resolution of 32 can be seen in Fig-
ure 4.13 and Figure 4.14 for the discrete primal and the compressed and reconstructed primal solution
using the autoencoder respectively. The adjoint solutions for all primal solutions look qualitatively similar
and behave similarly. This is consistent with the results presented in [1].

The absolute error between the adjoint solution and the autoencoder reconstructed primal adjoint is
seen in Figure 4.15. It can be seen that the error grows as the solutionmoves back in time. This is a result
of the error being added by the autoencoder. Due to the increasingmaximum value of the adjoint, the ab-
solute error of theadjoint increasesaswell. Additionally, ona local level, therearealsoerrors present that
behave like noise. This is seen by the absolute error regions fluctuating when going backwards in time.

Figure 4.13: Adjoint forNh=32 for the 1D Burgers equation

The MSE between the autoencoder adjoint and the discrete primal adjoint is calculated using the
Equation 4.11. TheMSE is displayed in Figure 4.16. It can be seen that the error increases when spatial
resolution increases. This is because of the reconstruction error introduced by the autoencoder. Since
the autoencoder primal solution is inserted into the adjoint equation as the linearised state and the gradi-
ent of the linearized state, the error introduced by the autoencoder will contribute twice to the calculation
of the adjoint solution. While the discrete primal gets more accurate for higher spatial resolutions and is
better linearised because of this, the autoencoder gets less accurate for higher spatial resolutions, and
linearisation is worsened.

MSE(ΨAE,Ψ)=
1

n

∑
(ΨAE−Ψ)2 (4.11)
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Figure 4.14: Autoencoder adjoint forNh=32 for the 1D Burgers equation

Figure 4.15:
Difference between adjoint based on the discrete primal and the autoencoder adjoint forNh=32 for the 1D Burgers equation

4.5. Adjoint-based Error Estimates for 1D Burgers equation
To find the error estimate δJest from Equation 3.9, the adjoint weighted residual needs to be integrated
over the spatial and temporal domain Ω× I. This can be seen in Equation 4.12. Note that since the
chosen QoI is an integral in both time and space, the error estimation also needs to be done in time and
space. This is done by integrating over time in Equation 4.12.

δJest=−
∫
I

∫
Ω

ΨT
hRh(uH

h )dΩdT (4.12)

In Equation 4.12 the adjoint, residual and the primal solution are defined on the fine space h. The
fine space h is taken to be twice as refined as the coarse spaceH. The adjoint solutions obtained from
Section 4.4 have been calculated for the fine space h using uh, however, all primal solutions obtained
thus far, are still defined on the coarse spaceH. The solution for the primaluH aswell as the compressed
and reconstructed primal obtained from the autoencoder uAE,H , will be interpolated to obtain the coarse
solution injected into the fine space. This yields uH

h and uH
AE,h which will be used in the error estimation

method.

The residual of the primal on the fine space is given by Equation 4.13 which is derived from Equa-
tion 4.1. Note that the forcing f also needs to be defined on the fine space h.
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Figure 4.16: 1D Burgers MSE of the autoencoder adjoint for different spatial resolutions on the fine space

Rh(uH
h )=

∂uH
h

∂t
+uH

h

∂uH
h

∂x
−ν

∂2uH
h

∂x2
−fh (4.13)

The solution for the residual of the primal using the coarse solution and coarse autoencoder solution
injected into the fine space can be seen in Figure 4.17 and Figure 4.18, respectively. The solution for
the other spatial resolutions can be found in Appendix B. In Figure 4.17, it can be seen that there are
some small differences in the field. These are due to the introduced interpolation errors added during
the injection of the coarse solution into the fine space. In Figure 4.18, besides the interpolation error, the
reconstruction error from the autoencoder can be seen as well. The reconstruction errors make up the
highest error values which return periodically as was the case for the autoencoder primal.

Finally, the absolute error between the residual and the autoencoder residual can be seen in Fig-
ure 4.19 and in Appendix B for the other spatial resolutions. This shows the periodic behaviour as well
which is expected due to the errorsmade during autoencoder reconstruction of the primal. TheMSE has
been plotted as well in Figure 4.20. It can be seen that the error decreases with a rate of convergence
between 1 and 2. Since the residual is calculated using the coarse solution injected into the fine space,
and the reconstructed coarse solutions of the autoencoder have relatively fewer reconstruction errors,
the value of the MSE residual error is seen to decrease when spatial resolution is increased.

The obtained residual on the fine space, together with the fine adjoint can then be filled in into Equa-
tion 4.12 to obtain the error estimates.

Since J̄=0.25, the value of J̄H can be computed and compared as well. This can be done using the
definition of theQoI. Based onEquation 3.8, the true error estimate can be computed. This error estimate
can be compared with the adjoint-based error estimate from Equation 4.12.

The localised error estimate on the fine space for each element is retrieved from Equation 4.14 and
can be seen in Figure 4.21 and Figure 4.22 using the discrete primal and the autoencoder primal, re-
spectively a log scale is used to better see the differences. All other spatial resolutions can be found in
Appendix B. It can be seen that the local error estimates using the autoencoder have higher local error
estimates compared to the error estimates based on the discrete primal. The same periodic pattern that
the residual displayed can be seen for the local error estimates aswell. This similarity in behaviour is due
to the autoencoder reconstruction error. The absolute error between the local error estimates is seen
in Figure 4.23 and in Appendix B for all other spatial resolutions. In Figure 4.23, similar behaviour as in
Figure 4.22 is seen due to the difference in local error estimate values being orders of magnitudes larger
for the autoencoder primal. This results in the absolute error plot being dominated by the autoencoder
residual solution. Additionally, the MSE of the local error estimates has been plotted in Figure 4.24. This
is seen to resemble the behaviour seen in Figure 4.20 rather than the behaviour in Figure 4.16. This is
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Figure 4.17: 1D Burgers residual using the coarse solution injected into the fine space forNh=32

Figure 4.18: 1D Burgers autoencoder residual using the coarse solution injected into the fine space forNh=32

Figure 4.19:
Difference between residual based on the discrete primal and the autoencoder adjoint forNh=32 for the 1D Burgers equation

explained by the residual being relatively low where the adjoint solution is high. As the highest adjoint
values are located near x=0.1 and the highest residual values centered around the middle of the spatial
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Figure 4.20: 1D Burgers MSE of the residual for different spatial resolutions on the fine space

domain, the contribution of the adjoint seems to be dampened due to the residual values being low in the
regions where the adjoint is high. This results in the MSE of the local error estimates behaving similarly
to the residual MSE. It can be seen, however, that the rate of convergence is closer to 1, which is lower
than the convergence rate of the residual.

εest=
∣∣ΨT

hRh

(
uH
h

)∣∣ (4.14)

Figure 4.21: Local error estimates forNH =32 for the 1D Burgers equation

The QoI based on the coarse primal J̄H , the estimated values of J , the adjoint-based error estimate
δJest and the deficiency in the error estimate dδJest compared to the true error can be seen in Figure 4.25,
Figure4.26, Figure4.27andFigure4.28 respectively. Thedefinitionof thedeficiency in theerror estimate
is defined in Equation 4.15.

dδJ=δJ true−δJest with δJ true=J−JH (4.15)

From Figure 4.25, it can be seen that as the spatial resolution increases, the QoI approaches the
exact value of 0.25. In Figure 4.26, it can be seen that the estimatedQoI tends towards the exact value of
0.25 as the spatial resolution gets refined. It is first overestimated however, corrects itself as the spatial
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Figure 4.22: Local error estimates based on autoencoder reconstructed primal forNH =32 for the 1D Burgers equation

Figure 4.23: Difference
in local error estimates between discrete primal and autoencoder reconstructed primal forNH =32 for the 1D Burgers equation

resolution increases. It can be seen from Figure 4.27 that the autoencoder error estimate is accurate for
the lower spatial resolutions and deviates more for the higher spatial resolutions due to reconstruction
being more accurate for lower spatial resolutions. This is also seen in Figure 4.29 where the discrete
primal and autoencoder error estimates are normalised with the true error estimates. From Figure 4.29,
the similarity between the true error and the error estimates can be seen. It should be noted that in
Figure 4.29, the relative distance fromavalue of 1measures howsimilar the values are. Therefore, when
a value of 2 is seen for the spatial resolution of 32, it would be relatively as bad as the value 0.5 in the plot.

The deficiency of the error estimate canbe seenFigure 4.28. It can be seen that the deficiency in error
estimates follows a similar trend for both the reconstructed autoencoder primal and the discrete primal.
However, when looking at how similar the autoencoder deficiency is compared to the autoencoder in
Figure 4.30, it can be seen that for higher spatial resolution, the autoencoder is not similar at all. Note
that in Figure 4.30, the relative distance fromavalue of 1measures howsimilar the values are. Therefore,
when a value of 2 is seen for the spatial resolution of 32, it would be relatively as bad as the value 0.5 in
this plot as well. This indicates that only the deficiency of the error estimates based on the autoencoder
for the lowest spatial resolution is similar to the primal deficiency of the error estimates.
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Figure 4.24: 1D Burgers MSE of the local error estimates for different spatial resolutions on the fine space

Figure 4.25: QoI values for different coarse solutions for the 1D Burgers equation
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Figure 4.26: Estimated QoI on the refined space for different coarse solutions for the 1D Burgers equation

Figure 4.27: Error estimate on the refined space for different coarse solutions for the 1D Burgers equation
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Figure 4.28: Deficiency of the error estimate on the refined space for different coarse solutions for the 1D Burgers equation

Figure 4.29:
Normalised error estimate of the autoencoder on the refined space for different coarse solutions for the 1D Burgers equation
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Figure 4.30: Normalised
deficiency of the autoencoder error estimate on the refined space for different coarse solutions for the 1D Burgers equation



5
Lid-Driven Cavity Flow

In this chapter, theNavier-Stokes equations for the lid-driven cavity flow problemwill be compressed and
reconstructed. This will be done using the POD and an autoencoder neural network. The adjoint-based
error estimation method will be applied to both reconstructed solutions and will be compared for similar
compression ratios. The results presented in this chapter are for the resolution of 8×8, 16×16, 32×32
and 64×64 points and for the Reynolds number of 500. To start this chapter, the governing equations are
presented in Section 5.1 as well as the solution obtained from these equations. Since no exact solution
exists for the Navier-Stokes equations, a reference solution is generated for the primal in Section 5.2. Af-
ter this POD is applied to the solution in Section 5.3. Next, the autoencoder will be applied to the solution
in Section 5.4. After this, the adjoint equations will be presented and solved in Section 5.5. Lastly, the
error estimates are shown in Section 5.6.

5.1. Primal Fluid Equations and Solution for lid-driven cavity flow
The lid-driven cavity flow problem is a well-known incompressible flow problem frequently used to verify
andvalidatenovelCFDmethods [49, 50]. Theproblem in itself is a flowconfined ina two-dimensional unit
square region with three stationary borders and one moving top barrier (a lid). The governing equations
for the lid-driven cavity flow can be seen in Equation 5.1. The unit square domain is indicatedwithΩ. The
moving top boundary is denoted by ∂Ωlid and the three remaining stationary boundaries are denoted by
∂Ωwall.

PDEs:
Momentum: ∂u

∂t
+(u·∇)u=−∇p+

1

Re
∇2u in Ω,

Mass: ∇·u=0 in Ω,

BCs:

u(x,y,t)=
[
uwall
vwall

]
=

[
0
0

]
on ∂Ωwall,

u(x,y,t)=
[
ulid
vlid

]
=

[
1
0

]
on ∂Ωlid,

p(0,0,t)=0

ICs: u(x,y,0)=p(x,y,t)=0 in Ω

(5.1)

The QoI for this case is J̄ = 1
T

∫
Ω×I

udΩdT . This results in the source terms for the adjoint equations
being dJ

dp = 0 and dJ
du = [1,1]T . Since the main region of interest is the transient phase of the flow solu-

tion, the equations will be solved for the time domain I : [0,10] with a timestep of 0.01. As there is no
exact solution for this QoI, a reference solution will be calculated for a more refined spatial resolution
and deemed to be the most accurate representation of the solution of the Navier Stokes equation. The
reference solution can be found in Section 5.2.

The primal fields for the resolutionN of 8×8, 16×16, 32×32 and 64× points for the Reynolds number
500 can be seen in Figure 5.2, Figure 5.2, Figure 5.3, Figure 5.4, Figure 5.5, Figure 5.6, Figure 5.7 and
Figure 5.8. The figures are shown for the last time step. The primal solutions for all other time steps can
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be found in Appendix C.

Figure 5.1: Velocity
field forRe=500 andNH =8×8 for the lid-driven cavity flow

Figure 5.2: Pressure
field forRe=500 andNH =8×8 for the lid-driven cavity flow

Figure 5.3: Velocity
field forRe=500 andNH =16×16 for the lid-driven cavity flow

Figure 5.4: Pressure
field forRe=500 andNH =16×16 for the lid-driven cavity flow

5.2. Reference Solution for lid-driven cavity flow
Since no exact solution is known for the Navier-Stokes equations shown in Equation 5.1, a reference
solution will be generated on a finer discretised domain. The solutions obtained are assumed to contain
the least error and are closest to the true solutions of the primal solution. The reference solutions have
a spatial resolution of 96×96 can be seen in Figure 5.9 and Figure 5.10. When comparing to the velocity
fields results shown in [49], the results are consistent. The other time steps of the reference solution can
be found in Appendix C.



5.3. Compression and reconstruction using POD for lid-driven cavity flow 37

Figure 5.5: Velocity
field forRe=500 andNH =32×32 for the lid-driven cavity flow

Figure 5.6: Pressure
field forRe=500 andNH =32×32 for the lid-driven cavity flow

Figure 5.7: Velocity
field forRe=500 andNH =64×64 for the lid-driven cavity flow

Figure 5.8: Pressure
field forRe=500 andNH =64×64 for the lid-driven cavity flow

5.3. Compression and reconstruction using POD for lid-driven cav-
ity flow

Since the primal solution is known, the primal solution can be compressed using the POD approach,
explained in Section 3.1. Since the lid-driven cavity flow problem has three variables namely, u, v, and p,
the POD approach will be applied such that 99.99% of the total mode energy is retained for all variables
compressed. The POD is applied to the flow field solution. For the different resolutions, the number of
modes r and the achieved compression ratio CRPOD can be seen in Table 5.1. The compression ratio
for POD for the lid-driven cavity flow problem CRPOD is defined by Equation 5.2.

The mode energy ratio for all resolutions for u, v and p can be seen in Figure 5.11, Figure 5.12, Fig-
ure 5.13 and Figure 5.14. From these figures can be seen thatmost of the energy is contained for the first
6 modes. After this, the mode energy retained by the POD is very low. This indicates that the discrete
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Figure 5.9: Reference velocity
field forRe=500 andNH =96×96 for the lid-driven cavity flow

Figure 5.10: Reference pressure
field forRe=500 andNH =96×96 for the lid-driven cavity flow

primal solution is smooth.

CRPOD=
Input data size

POD output data size
=
Time resolution·(Spatial resolution of input)

Size(Ur)+Size(Σr)+Size(VT
r )

(5.2)

Spatial resolution Number of modes
r

Compression
Ratio
CRPOD

8×8 8 7.512195122
16×16 8 25.46263911
32×32 8 63.24185587
64×64 9 89.36175406

Table 5.1: POD compression information for different resolutions for a Reynolds number of 500 for the lid-driven cavity flow

Figure 5.11: Mode energy ratio for each POD
mode forRe=500 andNH =8×8 for the lid-driven cavity flow

Figure 5.12: Mode energy ratio for each PODmode
forRe=500 andNH =16×16 for the lid-driven cavity flow

The POD reconstructed velocity and pressure fields for the final time step and all resolutions can be
seen in Figure 5.15, Figure 5.16, Figure 5.18, Figure 5.19, Figure 5.21, Figure 5.22, Figure 5.24 and Fig-
ure5.25. ThePODreconstruction for all other timestepscanbe found inAppendixC. When lookingat the
number of PODmodes needed to retain 99.99% of the total modal energy, it can be seen that only a few
modes are needed. Due to the smoothness of the discrete primal solutions, which is seen from the quick
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Figure 5.13: Mode energy ratio for each PODmode
forRe=500 andNH =32×32 for the lid-driven cavity flow

Figure 5.14: Mode energy ratio for each PODmode
forRe=500 andNH =64×64 for the lid-driven cavity flow

convergenceof themodeenergy inFigure5.11, Figure5.12, Figure5.13andFigure5.14, thePOD isable
to capture the solution using a low number ofmodes. This is also be seen in Figure 5.17, Figure 5.20, Fig-
ure 5.23 andFigure 5.26. From these figures, it canalso be seen that thePODmakes fewer errors as spa-
tial resolution increases. This is due to the increase of the size of theUr matrix with the spatial resolution.

Figure 5.15: POD reconstructed
velocity field forRe=500 and

NH =8×8 for the lid-driven cavity flow

Figure 5.16: POD reconstructed
pressure field forRe=500 and

NH =8×8 for the lid-driven cavity flow

Figure 5.17: Absolute error between POD
reconstructed velocity field and discrete
primal velocity field forRe=500 and

NH =8×8 for the lid-driven cavity flow

Figure 5.18: POD reconstructed
velocity field forRe=500 and

NH =16×16 for the lid-driven cavity flow

Figure 5.19: POD reconstructed
pressure field forRe=500 and

NH =16×16 for the lid-driven cavity flow

Figure 5.20: Absolute error between POD
reconstructed velocity field and discrete
primal velocity field forRe=500 and

NH =16×16 for the lid-driven cavity flow
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Figure 5.21: POD reconstructed
velocity field forRe=500 and

NH =32×32 for the lid-driven cavity flow

Figure 5.22: POD reconstructed
pressure field forRe=500 and

NH =32×32 for the lid-driven cavity flow

Figure 5.23: Absolute error between POD
reconstructed velocity field and discrete
primal velocity field forRe=500 and

NH =32×32 for the lid-driven cavity flow

Figure 5.24: POD reconstructed
velocity field forRe=500 and

NH =64×64 for the lid-driven cavity flow

Figure 5.25: POD reconstructed
pressure field forRe=500 and

NH =64×64 for the lid-driven cavity flow

Figure 5.26: Absolute error between POD
reconstructed velocity field and discrete
primal velocity field forRe=500 and

NH =64×64 for the lid-driven cavity flow

In Figure 5.27, the MSE of the reconstructed POD primal is shown. It can be seen that as the resolu-
tion is increased, the MSE gets higher until it stabilizes to a value of 1e−6. This is due to the criterion the
PODuses. As resolution is increased, the criteriondoesnot change. When retaining99.99%of themode
energy, the cells are allowed to have a reconstruction error. If the number of cells increases, the error
increases as well. Additionally, the MSE can be seen compared to the compression ratio in Figure 5.28.
The behaviour seen in Figure 5.27 is also displayed in Figure 5.28.

Figure 5.27: Lid-driven cavity flow
MSE of the reconstructed POD primal for different resolutions

Figure 5.28: Lid-driven cavity flow MSE of
the reconstructed POD primal for different compression ratios
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The cost of the POD cannot be neglected when reconstructing the discrete primal solution. For this
case, the POD can simply be done using a SVD. However, whenmoving to three-dimensional cases, the
cost of solving such eigenvalue problems will become a bottleneck to the method. The only alternative
to be used in practice is the EOA based on incremental SVD proposed in [17].

5.4. Compression and reconstructionusingNN for lid-driven cavity
flow

Now, the primal is also compressed using an autoencoder. The autoencoder is constructed using the
method given in Section 3.2. As noted before, the autoencoder has a different architecture due to the
fully connected linear layers. The autoencoder architecture can be seen in Appendix A. To achieve a
similar compression ratio with the autoencoder as the POD, some space needs to be reserved for the
autoencoder model. To do so, the size of the compressed state will be r, such that the remaining values
can be used to save the model.

For the different resolutions the number of model parameters and the achieved compression ratio
CRAE can be seen in Table 5.2. CRAE is defined by Equation 5.3. It should be noted that more model
parameters will increase the computational cost of training and running the autoencoder. Even though
the computational cost is not the scope of this thesis, it should not be overlooked.

CRAE=
Input data size

Encoder output data size+Model size

=
Number of variables×Time resolution×Spatial resolution of input

Time resolution×Spatial resolution of encoder output+Number of Model parameters

(5.3)

Resolution Model parameters
Compression

Ratio
CRAE

8×8 17430 7.555310952
16×16 22239 25.41633881
32×32 40720 63.106879
64×64 128675 89.33709073

Table 5.2: Autoencoder compression information for different resolutions for aReynolds number of 500 for the lid-driven cavity flow

The train and test losses for the different resolutions can be seen in Figure 5.29, Figure 5.30, Fig-
ure 5.31 and Figure 5.32. The training is done using a learning rate of 5e−4. The train and test losses
show that an MSE of 10−4 is achieved for a spatial resolution of 8×8 points. For the other spatial resolu-
tions, a slightly higher MSE is achieved as can be seen in the figures.

Figure 5.29: Train and test losses of the autoencoder
forRe=500 andNH =8×8 for the lid-driven cavity flow

Figure 5.30: Train and test losses of the autoencoder
forRe=500 andNH =16×16 for the lid-driven cavity flow

The autoencoder reconstructed primal fields can be seen in Figure 5.33, Figure 5.34, Figure 5.36,
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Figure 5.31: Train and test losses of the autoencoder
forRe=500 andNH =48×48 for the lid-driven cavity flow

Figure 5.32: Train and test losses of the autoencoder
forRe=500 andNH =64×64 for the lid-driven cavity flow

Figure 5.37, Figure 5.39, Figure 5.40, Figure 5.42 and Figure 5.43. It can be seen that the main features
of the flow have been captured using the autoencoder neural network, however, when looking at the in-
stantaneous solutions of the reconstructed primal for the higher resolutions, these do not look as smooth
as the inputted primal solution. This indicates that the latent space for the higher resolutions is too small
which results in the discrepancies seen in the autoencoder reconstructed primal solutions. For the lower
resolutions, it can be seen that the autoencoder reconstruction is more accurate when compared to the
discrete primal solution. In Figure 5.35, Figure 5.38, Figure 5.41 andFigure 5.44, the absolute error fields
between the autoencoder reconstructed velocity and the discrete primal velocity has been shown. It can
be seen that the lowest error is made for the lowest resolution and the highest errors are found for the
resolution of 32×32 points. The resolution of 64×64 has a lower error due to the latent space being one
size larger, therefore the absolute errors are lower.

Figure 5.33: Autoencoder reconstructed
velocity field forRe=500 and

NH =8×8 for the lid-driven cavity flow

Figure 5.34: Autoencoder reconstructed
pressure field forRe=500 and

NH =8×8 for the lid-driven cavity flow

Figure 5.35: Absolute error between au-
toencoder reconstructed velocity field and
discrete primal velocity field forRe=500
andNH =8×8 for the lid-driven cavity flow

In Figure 5.45, theMSE for the reconstructed autoencoder primal for different resolutions is shown. It
can be seen that the MSE value for the autoencoder is two orders higher than the MSE of the POD. The
reconstruction for the lower resolutions can be seen to be more accurate due to the small latent space
size. The resolution of 64 shows a lower MSE due to the increase of the latent space. The MSE has
also been plotted against the compression ratio in Figure 5.46, providing a mapping of the error made
for each compression ratio investigated in this thesis. Note that the MSE depends on the autoencoder
architecture used as well.
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Figure 5.36: Autoencoder reconstructed
velocity field forRe=500 and

NH =16×16 for the lid-driven cavity flow

Figure 5.37: Autoencoder reconstructed
pressure field forRe=500 and

NH =16×16 for the lid-driven cavity flow

Figure 5.38:
Absolute error between autoencoder

reconstructed velocity field and discrete
primal velocity field forRe=500 and

NH =16×16 for the lid-driven cavity flow

Figure 5.39: Autoencoder reconstructed
velocity field forRe=500 and

NH =32×32 for the lid-driven cavity flow

Figure 5.40: Autoencoder reconstructed
pressure field forRe=500 and

NH =32×32 for the lid-driven cavity flow

Figure 5.41:
Absolute error between autoencoder

reconstructed velocity field and discrete
primal velocity field forRe=500 and

NH =32×32 for the lid-driven cavity flow

Figure 5.42: Autoencoder reconstructed
velocity field forRe=500 and

NH =64×64 for the lid-driven cavity flow

Figure 5.43: Autoencoder reconstructed
pressure field forRe=500 and

NH =64×64 for the lid-driven cavity flow

Figure 5.44:
Absolute error between autoencoder

reconstructed velocity field and discrete
primal velocity field forRe=500 and

NH =64×64 for the lid-driven cavity flow
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Figure 5.45: Lid-driven cavity flow MSE of
the reconstructed autoencoder primal for different resolutions

Figure 5.46: Lid-driven cavity flow MSE of the reconstructed
autoencoder primal for different compression ratios

5.5. Adjoint Equations and Solution for lid-driven cavity flow
Now that u,p,uPOD,pPOD,uAE and pAE are known, the adjoint can be calculated based on these solutions.
Todoso, theadjoint equation first needs tobederived. Theadjoint for the linearized steadyNavierStokes
equations is derived in [51]. This case is adapted for the unsteady case and can be seen in Equation 5.4.
In Equation 5.4, the adjoint solutionΨ consists of the velocity adjointΨu and the pressure adjointΨp.

Adjoint:
Momentum: dJ

du =−∂Ψu
∂t

−(u0 ·∇)Ψu+(Ψu ·∇)u0−ν∇2Ψu−∇Ψp=

[
1
1

]
,

Mass: dJ

dp
=−∇·Ψu=0

BC:
Ψu(x,y,t)=

[
−1
0

]
on ∂Ωwall

ν∇Ψu ·n+Ψpn+(u0 ·n)Ψu=0 on ∂Ωlid,

Ψu×n=1 on ∂Ωlid

IC:
Ψu(x,y,10)=

[
0
0

]
on Ω

Ψp(x,y,10)=0 on Ω

(5.4)

The weak form can be derived from Equation 5.4 as well and the Crank Nicolson time scheme can be
implemented for the terms containing only velocity adjointsΨu and velocity test function v. The pressure
adjoint Ψp and the pressure test function q will remain outside of this scheme as can be seen in Equa-
tion 5.5. The linearized velocities are indicated by ui and ui−1. Note that the time step∆t in Equation 5.5
is a negative number as the problem flows backward in time. This also means that the problem is solved
backwards in time for the velocity adjointΨi−1

u and the pressure adjointΨp. The brackets in Equation 5.5
represent the integrated inner product over the domain given in the subscript and the Crank-Nicolson
constant θ has a value of 0.5.(

Ψi
u−Ψi−1

u
∆t

,v

)
Ω

+(Ψp∇,v)Ω−(∇·Ψu,q)Ω+(Ψp ·n,v)∂Ω+

θ((∇Ψi
u ·ui,v)Ω+((∇ui)

TΨi
u,v)+ν(∇Ψi

u,∇v)Ω−(g,v)Ω+

ν(∇Ψi
u ·n,v)∂Ω+((ui ·n)Ψi

u,v)∂Ω)+

(1−θ)((∇Ψi−1
u ·ui−1,v)Ω+((∇ui−1)

TΨi−1
u ,v)+ν(∇Ψi−1

u ,∇v)Ω−(g,v)Ω+

ν(∇Ψi−1
u ·n,v)∂Ω+((ui−1 ·n)Ψi−1

u ,v)∂Ω)

=0 (5.5)

The adjoint solution can be seen for a resolution of 16×16, 32×32, and 64×64 for t=4. All other time
steps can be seen in Appendix C. For a resolution of 16×16, the adjoint solution based on the discrete
primal, the reconstructedPODprimal, and the autoencoder reconstructed primal is shown in Figure 5.47,
Figure 5.48 and Figure 5.49, respectively. It can be seen that all three solutions qualitatively look similar.
The same similarties are seen for a resolution of 32×32 in Figure 5.52, Figure 5.53 and Figure 5.54, and
for a resolution of 64×64 in Figure 5.57, Figure 5.58 and Figure 5.59.
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When lookingat theabsoluteerrorplots fora resolutionof16×16shown inFigure5.50andFigure5.51,
it can be seen that the adjoint based on the POD reconstructed primal almost has no error compared to
the adjoint based on the discrete primal. This is also seen for the other two resolution in Figure 5.55 and
Figure 5.60. For the autoencoder adjoint in Figure 5.51, the maximum error is seen in the top left corner,
while lower errors are present around the forming cavity. The error of the top left corner is also present
in the absolute error plots for a resolution of 32× 32 and 64× 64 in Figure 5.56 and Figure 5.61. For
the resolution of 64×64, it can be seen that a large error is made using the autoencoder near the right
boundary of the domain which is a result of the autoencoder reconstructed primal being less accurate for
higher resolutions due to small latent space size.

Figure 5.47: Velocity adjoint based
on the original primal forRe=500 and

Nh=16×16 for the lid-driven cavity flow

Figure 5.48: Velocity adjoint based on the
PODreconstructedprimal forRe=500and
Nh=16×16 for the lid-driven cavity flow

Figure 5.49:
Velocity adjoint based on the autoencoder
reconstructed primal forRe=500 and

Nh=16×16 for the lid-driven cavity flow

Figure 5.50: Velocity adjoint error between
the discrete primal adjoint and POD-based primal adjoint
forRe=500 andNh=16×16 for the lid-driven cavity flow

Figure 5.51: Velocity adjoint error between the
discrete primal adjoint and autoencoder based primal adjoint
forRe=500 andNh=16×16 for the lid-driven cavity flow

Finally, the MSE of the adjoint using the POD and autoencoder reconstructed primal is shown in Fig-
ure 5.62. The mapping of the compression ratio with the MSE can be seen in Figure 5.63 for the POD
and the autoencoder adjoints. For higher resolutions, higher errors are seen. For the POD, this is due to
the increase in resolution retaining the same level of error for all the elements. For the autoencoder, this
is due to the fixed latent space size which is seen to be too small. This results in the lowest MSE being
made for the lowest spatial resolution. The error increases as resolution increaseswhile the latent space
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Figure 5.52: Velocity adjoint based
on the original primal forRe=500 and

Nh=32×32 for the lid-driven cavity flow

Figure 5.53: Velocity adjoint based on the
PODreconstructedprimal forRe=500and
Nh=32×32 for the lid-driven cavity flow

Figure 5.54:
Velocity adjoint based on the autoencoder
reconstructed primal forRe=500 and

Nh=32×32 for the lid-driven cavity flow

Figure 5.55: Velocity adjoint error between
the discrete primal adjoint and POD-based primal adjoint
forRe=500 andNh=32×32 for the lid-driven cavity flow

Figure 5.56: Velocity adjoint error between the
discrete primal adjoint and autoencoder based primal adjoint
forRe=500 andNh=32×32 for the lid-driven cavity flow

and number of modes remain constant. The error is seen to reduce when the latent space and number
of modes is increased, as can be seen in the case for a spatial resolution of 64×64.

5.6. Adjoint-based Error Estimates for lid-driven cavity flow
To find the error estimate δ ¯Jest, Equation 3.9 needs to be adapted since the adjoint equation has two
adjoint solutions, namely one for the velocity and one for the pressure. To find δ ¯Jest for the Navier Stokes
equations, Equation 5.6 is used. The adjoint weighted residual needs to be integrated over the spatial
domain Ω and time domain I as can be seen in Equation 5.6.

δ ¯Jest=−
∫
I

(∫
Ω

Ψh,u ·Rh,Mom(uH
h )dΩ+

∫
Ω

Ψh,pRh,Mass(uH
h )dΩ

)
dT (5.6)

To get the error estimates, all variables given in Equation 5.6 should be defined on the fine space h
which is two times as refined as the coarse space H. Since all primal solutions obtained thus far are
defined on the coarse space H, the primal solutions need to be projected in the fine space h which is
done using interpolation in space. This yields uH

h , uH
POD,h and uH

AE,h for the velocity and pHh , pHPOD,h and
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Figure 5.57: Velocity adjoint based
on the original primal forRe=500 and

Nh=64×64 for the lid-driven cavity flow

Figure 5.58: Velocity adjoint based on the
PODreconstructedprimal forRe=500and
Nh=64×64 for the lid-driven cavity flow

Figure 5.59:
Velocity adjoint based on the autoencoder
reconstructed primal forRe=500 and

Nh=64×64 for the lid-driven cavity flow

Figure 5.60: Velocity adjoint error between
the discrete primal adjoint and POD-based primal adjoint
forRe=500 andNh=64×64 for the lid-driven cavity flow

Figure 5.61: Velocity adjoint error between the
discrete primal adjoint and autoencoder based primal adjoint
forRe=500 andNh=64×64 for the lid-driven cavity flow

Figure 5.62: Adjoint MSE of the POD reconstructed
primal for different resolutions for the lid-driven cavity flow

Figure 5.63: Adjoint MSE of the POD reconstructed primal
for different compression ratios for the lid-driven cavity flow
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pHAE,h which will be used in the error estimation method.
The residual of the primal for both the mass and momentum equation on the fine space is given by

Equation 5.7 which is derived from Equation 5.1.

Momentum: Rh,Mom(uH
h )=

∂uH
h

∂t
+(uH

h ·∇)uH
h +∇pHh − 1

Re
∇2uH

h

Mass: Rh,Mass(uH
h )=∇·uH

h

(5.7)

The adjoint solutions Ψu and Ψp which are obtained from Section 5.5 have been calculated on the
fine space h.

The values of J̄H can be computed as well using the definition of the QoI. Note that ¯Jest can also be
calculated using the adjoint-based error estimates adapting Equation 3.8 to ¯Jest= J̄H+δ ¯Jest.

The localized error estimate on the fine space is retrieved from Equation 5.8. This can be seen in
Figure 5.64, Figure 5.65, and Figure 5.66 for a resolution of 16×16. For these figures, a log scale is used
to emphasize the differences between the small values. When comparing the local estimate plots shown
in Figure 5.64, Figure 5.65, and Figure 5.66, little difference is seen. When looking at the absolute error
plots shown in Figure 5.67 and Figure 5.68, it can be seen that the POD adjoint weighted residual is very
accurate. The autoencoder does show higher errors in the absolute value however, despite these errors,
the adjoint weighted residual shown in Figure 5.66 is still accurate and has all the dominant features
shown in Figure 5.64.

For the resolution 32×32 and 64×64 the local error estimates can be seen in Figure 5.69, Figure 5.70,
and Figure 5.71 and Figure 5.74, Figure 5.75, and Figure 5.76 for the discrete primal, the reconstructed
PODprimal and the autoencoder reconstructed primal, respectively. Looking at the three figures for each
resolution it canalreadybeseen in the 32×32 resolution case that theautoencoder adjointweighted resid-
ual is off. For the resolution of 64×64, the adjoint weighted residual is even more off. This is due to the
reconstruction of the autoencoder being less accurate for higher resolution. Since the residual is used
to compute the local error estimates, the autoencoder also needs to be able to reconstruct a primal that
accurately captures the residual. This is more demanding for the autoencoder to do due to the residual
beingmore complex for higher resolutions. This is why larger differences are seen for higher resolutions
as is displayed in the absolute error plots shown in Figure 5.73 and Figure 5.78. The adjoint weighted
residual based on the POD reconstructed primal can be seen to be accurate not only qualitatively, but
also by the absolute error plots shown in Figure 5.72 and Figure 5.77.

When the residual is captured accurately enough, meaning that a large enough latent space should
be used for the autoencoder, the adjoint weighted residual based on the autoencoder could be used as
an error indicator for mesh refinement. It should be noted that after the refinement has been done, an
even larger latent space for the autoencoder should be usedwhich results in constructing an entirely new
autoencoder after each iteration.

εest=
∣∣(ΨT

h,u)Rh,Mom
(
uH
h

)
+(Ψh,p)Rh,Mass(uH

h )
∣∣ (5.8)

The QoI based on the coarse solution J̄H can be seen in Figure 5.79. It can be seen that the QoI
tends towards zero as the resolution increases.

The adjoint-based error estimate using the discrete primal, the POD reconstructed primal and the
autoencoder reconstructed primal is shown in Figure 5.80. It can be seen that the POD reconstructed
and the discrete primal solution have the same error estimate values for all resolutions. This is due to
the POD being able to capture the solution easily due to the smoothness of the discrete primal. The au-
toencoder shows for the resolution of 16×16 that the error estimate is similar to the error estimate based
on the discrete primal. As the resolution increases, the residual is being reconstructed less accurately
resulting in amore erroneous adjoint-based error estimate. For the resolution of 32×32, it can already be
seen to affect the error estimates. This effect is seen to be not large, even though the adjoint weighted
residual was erroneous for this spatial resolution. The accuracy of the error estimate could be due to
cancellation happening when computing the integral over space and time for the QoI. But when looking
at the error estimate for a resolution of 64×64, it can be seen that the estimation of the error completely
crumbles due to high reconstruction error in the residual. As a result of this behavior, the QoI estimates
shown in Figure 5.81, are seen to be reasonably accurate for the resolutions of 16×16 and 32×32 but
not accurate for the resolution of 64×64. This is shown more clearly in Figure 5.83, where the similarity
is quantified between the true error and the error estimates. The definition of the true error is seen in
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Figure 5.64:
Local Error estimate field based

on the original primal forRe=500 and
Nh=16×16 for the lid-driven cavity flow

Figure 5.65:
Local Error estimate field based

on the original primal forRe=500 and
Nh=16×16 for the lid-driven cavity flow

Figure 5.66:
Local Error estimate field based

on the original primal forRe=500 and
Nh=16×16 for the lid-driven cavity flow

Figure 5.67: Absolute error between the discrete primal local
error estimates and the POD-based primal local error estimates

forRe=500 andNh=16×16 for the lid-driven cavity flow

Figure 5.68: Absolute error between the discrete primal local er-
ror estimates and the autoencoder-based primal local error esti-
mates forRe=500andNh=16×16 for the lid-driven cavity flow

Equation 5.9. Next to this, the deficiency in the error has been plotted as well in Figure 5.82. The defi-
nition of the deficiency of the error estimates can be seen in Equation 5.9. From Figure 5.82, it can be
seen that the error estimates for the autoencoder and the discrete primal lie close to each other for low
resolutions and start showing differences whenmoving to higher resolutions. This is highlighted more in
Figure 5.84, where the similarity of the deficiency of the reconstructed error estimates is normalized with
the deficiency of the discrete primal error estimates. It should be noted that in Figure 5.84, the relative
distance from a value of 1 measures how similar the values are. Therefore, when a value of 2 is seen for
the resolution of 64×64, it would be as badly similar to the value 0.5 in the plot.

dδJ=δJ true−δJest with δJ true=J ref−JH (5.9)
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Figure 5.69:
Local Error estimate field based

on the original primal forRe=500 and
Nh=32×32 for the lid-driven cavity flow

Figure 5.70:
Local Error estimate field based

on the original primal forRe=500 and
Nh=32×32 for the lid-driven cavity flow

Figure 5.71:
Local Error estimate field based

on the original primal forRe=500 and
Nh=32×32 for the lid-driven cavity flow

Figure 5.72: Absolute error between the discrete primal local
error estimates and the POD-based primal local error estimates

forRe=500 andNh=32×32 for the lid-driven cavity flow

Figure 5.73: Absolute error between the discrete primal local er-
ror estimates and the autoencoder-based primal local error esti-
mates forRe=500andNh=32×32 for the lid-driven cavity flow

Figure 5.74:
Local Error estimate field based

on the original primal forRe=500 and
Nh=64×64 for the lid-driven cavity flow

Figure 5.75:
Local Error estimate field based

on the original primal forRe=500 and
Nh=64×64 for the lid-driven cavity flow

Figure 5.76:
Local Error estimate field based

on the original primal forRe=500 and
Nh=64×64 for the lid-driven cavity flow
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Figure 5.77: Absolute error between the discrete primal local
error estimates and the POD-based primal local error estimates

forRe=500 andNh=64×64 for the lid-driven cavity flow

Figure 5.78: Absolute error between the discrete primal local er-
ror estimates and the autoencoder-based primal local error esti-
mates forRe=500andNh=64×64 for the lid-driven cavity flow

Figure 5.79: QoI value based
on the coarse primal forRe=500 for the lid-driven cavity flow

Figure 5.80: Adjoint-based
error estimate forRe=500 for the lid-driven cavity flow

Figure 5.81:
Estimated QoI on the refined space for Lid-driven cavity flow

Figure 5.82: Deficiency of the adjoint-based
error estimate forRe=500 for the lid-driven cavity flow
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Figure 5.83:
Reconstructed Adjoint-based error estimate normalized
with the true error forRe=500 for the lid-driven cavity flow

Figure 5.84: Reconstructed deficiency of the adjoint-based
error estimate normalized with the deficiency of the

primal error estimates forRe=500 for the lid-driven cavity flow



6
Conclusion

As the final chapter of this thesis, this chapter concludes the results found and aims to provide an answer
to themain research questions and secondary research objectives outlined in the report’s opening chap-
ters. The future work and recommendation section emphasizes the further actions that can be taken to
improve and build upon this thesis work.

6.1. Conclusion
The thesis emphasized several restrictions on output-basedmesh adaptation, particularly those relating
to techniques for adjoint-based output error estimation. Two main restrictions have been accentuated,
which are the high computational cost and the large storage footprint these techniques have. The focus
of this thesis has been the latter point. To overcome the storage issue, a neural network autoencoder
has been proposed to accurately reconstruct the primal solution. Besides this, proper orthogonal decom-
position (POD) was also applied to reconstruct the primal solutions. The use of the autoencoder and
POD is evaluated using the accuracy obtained for adjoint-based error estimates based on reconstructed
solutions.

First, a 1D unsteady viscous Burgers problem was investigated to validate the proposed method
using the method of manufactured solutions. The POD was able to reconstruct the chosen manufac-
tured solution using only two modes. The autoencoder showed that it was able to reconstruct the pri-
mal solution to qualitatively look the same using a small latent space. However, due to the small la-
tent space size, the reconstruction became worse as the spatial resolution increased, especially for the
residual. As the adjoint-based error estimation framework uses the reconstructed primal for the adjoint
calculation, and the calculation of the residual by injecting the reconstructed primal into the fine space,
the error estimation was only accurate for the lower resolutions where the autoencoder was accurate
for the residual as well. For the higher spatial resolutions, the reconstruction error introduced by the
autoencoder starts to dominate the solution which results in more erroneous adjoint-based error esti-
mates.

Secondly, the Navier-Stokes problem for the lid-driven cavity flow was investigated as a test case of
the proposed thesis. The test case has been solved for three resolutions, namely 8, 16, and 32. The
proposed method showed that reconstruction of the primal using the POD was achieved using a low
number of modes due to the smoothness of the discrete primal. This resulted in a small latent space for
the autoencoder. As the POD is able to capture the solution using a low number of modes, the POD has
an unfair advantage when comparing the performance of the autoencoder and the POD reconstructed
solutions. This resulted in thePOD reconstructed primal being as accurate as the discrete primal solution
when used for adjoint-based error estimation. The autoencoder for a resolution of 8 showed that it is able
to estimate the adjoint-based errors but as reconstruction errors start to dominate for higher resolutions
in the residual, the error estimation gets less accurate. This is because the residual is more difficult to
reconstruct for higher resolution than the primal solution. The difficulties arise due to the complexity of
the residual increasing as the resolution goes up, demanding a larger latent space. When the latent
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space is large enough to capture the residual of the primal accurately, the local error estimates based
on the autoencoder reconstructed primal can be used as a first iteration error indicator for mesh refine-
ment.

To conclude, the test cases presented in this thesis were too easy for the POD resulting in an unfair
comparison between thePODand the autoencoder reconstructionmethods. The framework to compare
these two reconstruction methods has been established using a practical and fair compression metric
which includes the model size, and an accuracy measure for the adjoint-based error estimation method.
The results show that the latent space should be sufficiently large in order to gain accurate reconstruction.
If the metric did not include the model size, the achieved autoencoder accuracy for the residual could be
much higher.

6.2. Future work and recommendations
This thesis tested the usageof primal reconstruction using a neural network autoencoder in the context of
adjoint-based error estimation. The following steps could be taken to improve and build upon this thesis
work.

In this thesis, two test caseswere usedwhichwere relatively easy for thePOD to reconstruct. To actu-
ally compare the performance of POD reconstruction with an autoencoder reconstruction, the proposed
method needs to be applied to a test case that cannot be exactly reconstructed by the POD.

Next to this, the computational capacity of the hardware used in this thesis limited the investiga-
tion. During the thesis, multiple workarounds have been used to not exceed the computational capacity.
Therefore, a more powerful machine with more computational memory is highly advised for more com-
plex cases and higher-resolution cases.

Additionally, the calculation of the fine adjoint still required the fine primal solution using the proposed
method. To completely omit the need for the fine primal, a super-resolution autoencoder could be made
which uses as input the coarse primal solution, compresses the solution of the primal, and uses the
compressed primal to output the fine adjoint. This would completely bypass the adjoint calculation while
gaining the fine adjoint cheaply.

Finally, the autoencoder in this thesis displays results that can be interpreted as nonphysical. This
problem could be alleviated with the use of a physic-informed loss function instead of the Mean Squared
Error used here. Note that, in order to still remain computationally cheap, this loss function cannot be
expensive. This is mainly for training the neural network which evaluates this loss function often. As the
function is evaluated many times, the computational cost will result in a bottleneck for training the neural
network. Subsequently, the neural network training time is lower as well using a cheaply evaluated loss
function.
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A
Appendix A: Autoencoder Architectures

A.1. 1D Burgers Equation
n_points lin_comp Total variables

8 28 20018
16 14 20090
32 7 20318
48 5 21078
64 3 19790
96 2 29507
128 1 26941

Table A.1: Autoencoder variables and total parameters for the 1D burgers equation

Type Details Output shape

Encoder

Input Input of the data in batches [32, 1, n_points]
Layer 1 Conv1d(1, 32, kernel_size=3, stride=2, padding=1) [32, 32, n_points/2]
Activation
Function 1 ReLU()

Layer 2 Conv1d(32, 64, kernel_size=3, stride=2, padding=1) [32, 64, n_points/4]
Activation
Function 2 ReLU()

Flatten Reshape array for Linear compression [32, 64*n_points/4]
Layer 3 Linear(in_features=64*n_points/4, out_features=lin_comp) [32, lin_comp]
Activation
Function 3 ReLU()

Layer 4+ Linear(in_features= lin_comp, out_features=1) [32,1]

Decoder

Layer 5 Linear(in_features= 1, out_features=lin_comp) [32, lin_comp]
Activation
Function 4 ReLU()

Layer 6 Linear(in_features=lin_comp, out_features=64*n_points/4) [32, 64*n_points/4]
Activation
Function 5 ReLU()

Reshape Reshape array for Convolutional reconstruction [32, 64, n_points/4]

Layer 7 ConvTranspose1d(64, 32, kernel_size=3, stride=2,
padding=1, output_padding=1) [32, 32, n_points/2]

Activation
Function 6 ReLU()

Layer 8 ConvTranspose1d(32, 1, kernel_size=3, stride=2,
padding=1, output_padding=1) [32, 1, n_points]

Output Output of original shape as input

Table A.2: Autoencoder architecture for
the 1D Burgers equation. +Note for the resolutions 48,96 and 128, out_features of Layer 4 and in_features of Layer 5 is set to 2
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A.2. Lid-driven cavity flow
Reynolds Number Resolution Kernel_1_out Kernel_2_out lin_comp r

100

8×8 13 24 22 5
16×16 7 16 16 4
32×32 9 14 12 5
48×48 10 15 9 5
64×64 10 14 9 5
96×96 14 19 6 5

500

8×8 17 33 22 8
16×16 14 26 17 8
32×32 13 19 14 8
48×48 12 20 11 8
64×64 11 21 11 9
96×96 4 20 11 9

900

8×8 18 36 22 9
16×16 12 28 22 10
32×32 12 24 14 10
48×48 13 20 14 10
64×64 15 19 15 11
96×96 20 22 12 11

Table A.3: Autoencoder variables and total parameters for the lid-driven cavity flow

Type Details Output

Encoder

Input Input of the data in batches [32, 3, n_points, n_points]

Layer 1 Conv2d(1, Kernel_1_out, kernel_size=3,
stride=2, padding=1) [32, Kernel_1_out, n_points/2, n_points/2]

Activation
Function 1 ReLU()

Layer 2 Conv2d(Kernel_1_out, Kernel_2_out, kernel_size=3,
stride=2, padding=1) [32, Kernel_2_out, n_points/4, n_points/4]

Activation
Function 2 ReLU()

Flatten Reshape array for Linear compression [32, Kernel_2_out * n_points/4 * n_points/4]

Layer 3 Linear(in_features=Kernel_2_out * n_points/4 * n_points/4,
out_features=lin_comp) [32, lin_comp]

Activation
Function 3 ReLU()

Layer 4 Linear(in_features= lin_comp, out_features=r) [32, r]

Decoder

Layer 5 Linear(in_features= r, out_features=lin_comp) [32, lin_comp]
Activation
Function 4 ReLU()

Layer 6 Linear(in_features=lin_comp,
out_features=Kernel_2_out * n_points/4 * n_points/4) [32, Kernel_2_out * n_points/4 * n_points/4]

Activation
Function 5 ReLU()

Reshape Reshape array for Convolutional reconstruction [32, Kernel_2_out, n_points/4, n_points/4]

Layer 7 Conv2d(Kernel_2_out, Kernel_1_out, kernel_size=3,
stride=2, padding=1, output_padding=1) [32, Kernel_1_out, n_points/2, n_points/2]

Activation
Function 6 ReLU()

Layer 8 Conv2d(Kernel_1_out, 3, kernel_size=3, stride=2,
padding=1, output_padding=1) [32, 3, n_points, n_points]

Output Output of original shape as input

Table A.4: Autoencoder architecture for the lid-driven cavity flow
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Appendix B: 1D Burgers Solutions

B.1. 1D Burgers Primal
B.1.1. Solution

Figure B.1: 1D Burgers solution forNH = 8 Figure B.2: 1D Burgers solution forNH = 16

Figure B.3: 1D Burgers solution forNH = 32 Figure B.4: 1D Burgers solution forNH = 48

Figure B.5: 1D Burgers solution forNH = 64 Figure B.6: 1D Burgers solution forNH = 96
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Figure B.7: 1D Burgers solution forNH = 128

B.1.2. POD

Figure B.8: 1D Burgers POD solution forNH = 8 Figure B.9: 1D Burgers POD solution forNH = 16

Figure B.10: 1D Burgers POD solution forNH = 32 Figure B.11: 1D Burgers POD solution forNH = 48

Figure B.12: 1D Burgers POD solution forNH = 64 Figure B.13: 1D Burgers POD solution forNH = 96

Figure B.14: 1D Burgers POD solution forNH = 128
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B.1.3. Autoencoder

Figure B.15: 1D Burgers Autoencoder solution forNH = 8 Figure B.16: 1D Burgers Autoencoder solution forNH = 16

Figure B.17: 1D Burgers Autoencoder solution forNH = 32 Figure B.18: 1D Burgers Autoencoder solution forNH = 48

Figure B.19: 1D Burgers Autoencoder solution forNH = 64 Figure B.20: 1D Burgers Autoencoder solution forNH = 96

Figure B.21: 1D Burgers Autoencoder solution forNH = 128

B.1.4. Exact Solution

Figure B.22: 1D Burgers reference solution forNH = 8 Figure B.23: 1D Burgers reference solution forNH = 16
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Figure B.24: 1D Burgers reference solution forNH = 32 Figure B.25: 1D Burgers reference solution forNH = 48

Figure B.26: 1D Burgers reference solution forNH = 64 Figure B.27: 1D Burgers reference solution forNH = 96

Figure B.28: 1D Burgers reference solution forNH = 128

B.2. 1D Burgers Primal Error
B.2.1. Solution

Figure B.29: 1D Burgers solution error forNH = 8 Figure B.30: 1D Burgers solution error forNH = 16

Figure B.31: 1D Burgers solution error forNH = 32 Figure B.32: 1D Burgers solution error forNH = 48
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Figure B.33: 1D Burgers solution error forNH = 64 Figure B.34: 1D Burgers solution error forNH = 96

Figure B.35: 1D Burgers solution error forNH = 128

B.2.2. POD

Figure B.36: 1D Burgers POD solution error forNH = 8 Figure B.37: 1D Burgers POD solution error forNH = 16

Figure B.38: 1D Burgers POD solution error forNH = 32 Figure B.39: 1D Burgers POD solution error forNH = 48

Figure B.40: 1D Burgers POD solution error forNH = 64 Figure B.41: 1D Burgers POD solution error forNH = 96
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Figure B.42: 1D Burgers POD solution error forNH = 128

B.2.3. Autoencoder

FigureB.43: 1DBurgers Autoencoder solution error forNH = 8 Figure B.44:
1D Burgers Autoencoder solution error forNH = 16

Figure B.45:
1D Burgers Autoencoder solution error forNH = 32

Figure B.46:
1D Burgers Autoencoder solution error forNH = 48

Figure B.47:
1D Burgers Autoencoder solution error forNH = 64

Figure B.48:
1D Burgers Autoencoder solution error forNH = 96

Figure B.49: 1D Burgers Autoencoder solution error forNH = 128
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B.3. 1D Burgers Adjoint Solutions
B.3.1. Primal

Figure B.50: 1D Burgers adjoint forNh = 16 Figure B.51: 1D Burgers adjoint forNh = 32

Figure B.52: 1D Burgers adjoint forNh = 64 Figure B.53: 1D Burgers adjoint forNh = 96

Figure B.54: 1D Burgers adjoint forNh = 128

B.3.2. Autoencoder

Figure B.55: 1D Burgers Autoencoder adjoint forNh = 16 Figure B.56: 1D Burgers Autoencoder adjoint forNh = 32
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Figure B.57: 1D Burgers Autoencoder adjoint forNh = 64 Figure B.58: 1D Burgers Autoencoder adjoint forNh = 96

Figure B.59: 1D Burgers Autoencoder adjoint forNh = 128

B.4. Adjoint Error

Figure B.60: 1D Burgers Autoencoder adjoint error forNh = 16 Figure B.61: 1D Burgers Autoencoder adjoint error forNh = 32

Figure B.62: 1D Burgers Autoencoder adjoint error forNh = 64 Figure B.63: 1D Burgers Autoencoder adjoint error forNh = 96

Figure B.64: 1D Burgers Autoencoder adjoint error forNh = 128
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B.5. 1D Burgers Residual
B.5.1. Primal

Figure B.65: 1D Burgers Residual forNh = 16 Figure B.66: 1D Burgers Residual forNh = 32

Figure B.67: 1D Burgers Residual forNh = 64 Figure B.68: 1D Burgers Residual forNh = 96

Figure B.69: 1D Burgers Residual forNh = 128

B.5.2. Autoencoder

Figure B.70: 1D Burgers Autoencoder residual forNh = 16 Figure B.71: 1D Burgers Autoencoder residual forNh = 32
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Figure B.72: 1D Burgers Autoencoder residual forNh = 64 Figure B.73: 1D Burgers Autoencoder residual forNh = 96

Figure B.74: 1D Burgers Autoencoder residual forNh = 128

B.6. 1D Burgers Residual Error

FigureB.75: 1DBurgersAutoencoder residual error forNh =16 FigureB.76: 1DBurgersAutoencoder residual error forNh =32

FigureB.77: 1DBurgersAutoencoder residual error forNh =64 FigureB.78: 1DBurgersAutoencoder residual error forNh =96

Figure B.79: 1D Burgers Autoencoder residual error forNh = 128
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B.7. 1D Burgers Adjoint weighted residual fields
B.7.1. Primal

Figure B.80:
1D Burgers adjoint weighted residual field forNh = 16

Figure B.81:
1D Burgers adjoint weighted residual field forNh = 32

Figure B.82:
1D Burgers adjoint weighted residual field forNh = 64

Figure B.83:
1D Burgers adjoint weighted residual field forNh = 96

Figure B.84: 1D Burgers adjoint weighted residual field forNh = 128

B.7.2. Autoencoder

Figure B.85: 1D Burgers
Autoencoder adjoint weighted residual field forNh = 16

Figure B.86: 1D Burgers
Autoencoder adjoint weighted residual field forNh = 32
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Figure B.87: 1D Burgers
Autoencoder adjoint weighted residual field forNh = 64

Figure B.88: 1D Burgers
Autoencoder adjoint weighted residual field forNh = 96

Figure B.89: 1D Burgers Autoencoder adjoint weighted residual field forNh = 128

B.8. 1D Burgers Adjoint weighted residual error

Figure B.90: 1D Burgers
Autoencoder adjoint weighted residual error forNh = 16

Figure B.91: 1D Burgers
Autoencoder adjoint weighted residual error forNh = 32

Figure B.92: 1D Burgers
Autoencoder adjoint weighted residual error forNh = 64

Figure B.93: 1D Burgers
Autoencoder adjoint weighted residual error forNh = 96
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Figure B.94: 1D Burgers Autoencoder adjoint weighted residual error forNh = 128

B.9. Train and test losses for 1D Burgers Autoencoders

Figure B.95: 1D Burgers train and test losses forNH = 8 Figure B.96: 1D Burgers train and test losses forNH = 16

Figure B.97: 1D Burgers train and test losses forNH = 32 Figure B.98: 1D Burgers train and test losses forNH = 48

Figure B.99: 1D Burgers train and test losses forNH = 64 Figure B.100: 1D Burgers train and test losses forNH = 96
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Figure B.101: 1D Burgers train and test losses forNH = 96



C
Appendix C: Lid-driven Cavity Flow

Solutions

C.1. Lid-driven Cavity Flow Primal
C.1.1. Solution

Figure C.1: Velocity field forNH =8×8 and Re = 500 for t = 0 Figure C.2: Pressure field forNH =8×8 and Re = 500 for t = 0

75
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Figure C.3: Velocity field forNH =8×8 and Re = 500 for t = 2 Figure C.4: Pressure field forNH =8×8 and Re = 500 for t = 2

Figure C.5: Velocity field forNH =8×8 and Re = 500 for t = 4 Figure C.6: Pressure field forNH =8×8 and Re = 500 for t = 4
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Figure C.7: Velocity field forNH =8×8 and Re = 500 for t = 6 Figure C.8: Pressure field forNH =8×8 and Re = 500 for t = 6

Figure C.9: Velocity field forNH =8×8 and Re = 500 for t = 8 FigureC.10: Pressure field forNH =8×8 andRe= 500 for t = 8
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FigureC.11: Velocity field forNH =8×8 andRe = 500 for t = 10 Figure C.12:
Pressure field forNH =8×8 and Re = 500 for t = 10

FigureC.13: Velocity field forNH =16×16andRe=500 for t=0 Figure C.14:
Pressure field forNH =16×16 and Re = 500 for t = 0
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FigureC.15: Velocity field forNH =16×16andRe=500 for t=2 Figure C.16:
Pressure field forNH =16×16 and Re = 500 for t = 2

FigureC.17: Velocity field forNH =16×16andRe=500 for t=4 Figure C.18:
Pressure field forNH =16×16 and Re = 500 for t = 4
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FigureC.19: Velocity field forNH =16×16andRe=500 for t=6 Figure C.20:
Pressure field forNH =16×16 and Re = 500 for t = 6

FigureC.21: Velocity field forNH =16×16andRe=500 for t=8 Figure C.22:
Pressure field forNH =16×16 and Re = 500 for t = 8
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Figure C.23:
Velocity field forNH =16×16 and Re = 500 for t = 10

Figure C.24:
Pressure field forNH =16×16 and Re = 500 for t = 10

FigureC.25: Velocity field forNH =32×32andRe=500 for t=0 Figure C.26:
Pressure field forNH =32×32 and Re = 500 for t = 0
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FigureC.27: Velocity field forNH =32×32andRe=500 for t=2 Figure C.28:
Pressure field forNH =32×32 and Re = 500 for t = 2

FigureC.29: Velocity field forNH =32×32andRe=500 for t=4 Figure C.30:
Pressure field forNH =32×32 and Re = 500 for t = 4
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FigureC.31: Velocity field forNH =32×32andRe=500 for t=6 Figure C.32:
Pressure field forNH =32×32 and Re = 500 for t = 6

FigureC.33: Velocity field forNH =32×32andRe=500 for t=8 Figure C.34:
Pressure field forNH =32×32 and Re = 500 for t = 8
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Figure C.35:
Velocity field forNH =32×32 and Re = 500 for t = 10

Figure C.36:
Pressure field forNH =32×32 and Re = 500 for t = 10

FigureC.37: Velocity field forNH =64×64andRe=500 for t=0 Figure C.38:
Pressure field forNH =64×64 and Re = 500 for t = 0
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FigureC.39: Velocity field forNH =64×64andRe=500 for t=2 Figure C.40:
Pressure field forNH =64×64 and Re = 500 for t = 2

FigureC.41: Velocity field forNH =64×64andRe=500 for t=4 Figure C.42:
Pressure field forNH =64×64 and Re = 500 for t = 4



86 Appendix C. Appendix C: Lid-driven Cavity Flow Solutions

FigureC.43: Velocity field forNH =64×64andRe=500 for t=6 Figure C.44:
Pressure field forNH =64×64 and Re = 500 for t = 6

FigureC.45: Velocity field forNH =64×64andRe=500 for t=8 Figure C.46:
Pressure field forNH =64×64 and Re = 500 for t = 8
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Figure C.47:
Velocity field forNH =64×64 and Re = 500 for t = 10

Figure C.48:
Pressure field forNH =64×64 and Re = 500 for t = 10

C.1.2. POD

Figure C.49:
POD velocity field forNH =8×8 and Re = 500 for t = 0

Figure C.50:
POD pressure field forNH =8×8 and Re = 500 for t = 0
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Figure C.51:
POD velocity field forNH =8×8 and Re = 500 for t = 2

Figure C.52:
POD pressure field forNH =8×8 and Re = 500 for t = 2

Figure C.53:
POD velocity field forNH =8×8 and Re = 500 for t = 4

Figure C.54:
POD pressure field forNH =8×8 and Re = 500 for t = 4
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Figure C.55:
POD velocity field forNH =8×8 and Re = 500 for t = 6

Figure C.56:
POD pressure field forNH =8×8 and Re = 500 for t = 6

Figure C.57:
POD velocity field forNH =8×8 and Re = 500 for t = 8

Figure C.58:
POD pressure field forNH =8×8 and Re = 500 for t = 8
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Figure C.59:
POD velocity field forNH =8×8 and Re = 500 for t = 10

Figure C.60:
POD pressure field forNH =8×8 and Re = 500 for t = 10

Figure C.61:
POD velocity field forNH =16×16 and Re = 500 for t = 0

Figure C.62:
POD pressure field forNH =16×16 and Re = 500 for t = 0
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Figure C.63:
POD velocity field forNH =16×16 and Re = 500 for t = 2

Figure C.64:
POD pressure field forNH =16×16 and Re = 500 for t = 2

Figure C.65:
POD velocity field forNH =16×16 and Re = 500 for t = 4

Figure C.66:
POD pressure field forNH =16×16 and Re = 500 for t = 4
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Figure C.67:
POD velocity field forNH =16×16 and Re = 500 for t = 6

Figure C.68:
POD pressure field forNH =16×16 and Re = 500 for t = 6

Figure C.69:
POD velocity field forNH =16×16 and Re = 500 for t = 8

Figure C.70:
POD pressure field forNH =16×16 and Re = 500 for t = 8
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Figure C.71:
POD velocity field forNH =16×16 and Re = 500 for t = 10

Figure C.72:
POD pressure field forNH =16×16 and Re = 500 for t = 10

Figure C.73:
POD velocity field forNH =32×32 and Re = 500 for t = 0

Figure C.74:
POD pressure field forNH =32×32 and Re = 500 for t = 0
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Figure C.75:
POD velocity field forNH =32×32 and Re = 500 for t = 2

Figure C.76:
POD pressure field forNH =32×32 and Re = 500 for t = 2

Figure C.77:
POD velocity field forNH =32×32 and Re = 500 for t = 4

Figure C.78:
POD pressure field forNH =32×32 and Re = 500 for t = 4
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Figure C.79:
POD velocity field forNH =32×32 and Re = 500 for t = 6

Figure C.80:
POD pressure field forNH =32×32 and Re = 500 for t = 6

Figure C.81:
POD velocity field forNH =32×32 and Re = 500 for t = 8

Figure C.82:
POD pressure field forNH =32×32 and Re = 500 for t = 8



96 Appendix C. Appendix C: Lid-driven Cavity Flow Solutions

Figure C.83:
POD velocity field forNH =32×32 and Re = 500 for t = 10

Figure C.84:
POD pressure field forNH =32×32 and Re = 500 for t = 10

Figure C.85:
POD velocity field forNH =64×64 and Re = 500 for t = 0

Figure C.86:
POD pressure field forNH =64×64 and Re = 500 for t = 0
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Figure C.87:
POD velocity field forNH =64×64 and Re = 500 for t = 2

Figure C.88:
POD pressure field forNH =64×64 and Re = 500 for t = 2

Figure C.89:
POD velocity field forNH =64×64 and Re = 500 for t = 4

Figure C.90:
POD pressure field forNH =64×64 and Re = 500 for t = 4
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Figure C.91:
POD velocity field forNH =64×64 and Re = 500 for t = 6

Figure C.92:
POD pressure field forNH =64×64 and Re = 500 for t = 6

Figure C.93:
POD velocity field forNH =64×64 and Re = 500 for t = 8

Figure C.94:
POD pressure field forNH =64×64 and Re = 500 for t = 8
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Figure C.95:
POD velocity field forNH =64×64 and Re = 500 for t = 10

Figure C.96:
POD pressure field forNH =64×64 and Re = 500 for t = 10

C.1.3. Autoencoder

Figure C.97:
Autoencoder velocity field forNH =8×8 and Re = 500 for t = 0

Figure C.98: Autoencoder
pressure field forNH =8×8 and Re = 500 for t = 0
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Figure C.99:
Autoencoder velocity field forNH =8×8 and Re = 500 for t = 2

Figure C.100: Autoencoder
pressure field forNH =8×8 and Re = 500 for t = 2

Figure C.101:
Autoencoder velocity field forNH =8×8 and Re = 500 for t = 4

Figure C.102: Autoencoder
pressure field forNH =8×8 and Re = 500 for t = 4
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Figure C.103:
Autoencoder velocity field forNH =8×8 and Re = 500 for t = 6

Figure C.104: Autoencoder
pressure field forNH =8×8 and Re = 500 for t = 6

Figure C.105:
Autoencoder velocity field forNH =8×8 and Re = 500 for t = 8

Figure C.106: Autoencoder
pressure field forNH =8×8 and Re = 500 for t = 8
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Figure C.107: Autoencoder
velocity field forNH =8×8 and Re = 500 for t = 10

Figure C.108: Autoencoder
pressure field forNH =8×8 and Re = 500 for t = 10

Figure C.109: Autoencoder
velocity field forNH =16×16 and Re = 500 for t = 0

Figure C.110: Autoencoder
pressure field forNH =16×16 and Re = 500 for t = 0
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Figure C.111: Autoencoder
velocity field forNH =16×16 and Re = 500 for t = 2

Figure C.112: Autoencoder
pressure field forNH =16×16 and Re = 500 for t = 2

Figure C.113: Autoencoder
velocity field forNH =16×16 and Re = 500 for t = 4

Figure C.114: Autoencoder
pressure field forNH =16×16 and Re = 500 for t = 4
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Figure C.115: Autoencoder
velocity field forNH =16×16 and Re = 500 for t = 6

Figure C.116: Autoencoder
pressure field forNH =16×16 and Re = 500 for t = 6

Figure C.117: Autoencoder
velocity field forNH =16×16 and Re = 500 for t = 8

Figure C.118: Autoencoder
pressure field forNH =16×16 and Re = 500 for t = 8
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Figure C.119: Autoencoder
velocity field forNH =16×16 and Re = 500 for t = 10

Figure C.120: Autoencoder
pressure field forNH =16×16 and Re = 500 for t = 10

Figure C.121: Autoencoder
velocity field forNH =32×32 and Re = 500 for t = 0

Figure C.122: Autoencoder
pressure field forNH =32×32 and Re = 500 for t = 0
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Figure C.123: Autoencoder
velocity field forNH =32×32 and Re = 500 for t = 2

Figure C.124: Autoencoder
pressure field forNH =32×32 and Re = 500 for t = 2

Figure C.125: Autoencoder
velocity field forNH =32×32 and Re = 500 for t = 4

Figure C.126: Autoencoder
pressure field forNH =32×32 and Re = 500 for t = 4
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Figure C.127: Autoencoder
velocity field forNH =32×32 and Re = 500 for t = 6

Figure C.128: Autoencoder
pressure field forNH =32×32 and Re = 500 for t = 6

Figure C.129: Autoencoder
velocity field forNH =32×32 and Re = 500 for t = 8

Figure C.130: Autoencoder
pressure field forNH =32×32 and Re = 500 for t = 8
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Figure C.131: Autoencoder
velocity field forNH =32×32 and Re = 500 for t = 10

Figure C.132: Autoencoder
pressure field forNH =32×32 and Re = 500 for t = 10

Figure C.133: Autoencoder
velocity field forNH =64×64 and Re = 500 for t = 0

Figure C.134: Autoencoder
pressure field forNH =64×64 and Re = 500 for t = 0
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Figure C.135: Autoencoder
velocity field forNH =64×64 and Re = 500 for t = 2

Figure C.136: Autoencoder
pressure field forNH =64×64 and Re = 500 for t = 2

Figure C.137: Autoencoder
velocity field forNH =64×64 and Re = 500 for t = 4

Figure C.138: Autoencoder
pressure field forNH =64×64 and Re = 500 for t = 4
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Figure C.139: Autoencoder
velocity field forNH =64×64 and Re = 500 for t = 6

Figure C.140: Autoencoder
pressure field forNH =64×64 and Re = 500 for t = 6

Figure C.141: Autoencoder
velocity field forNH =64×64 and Re = 500 for t = 8

Figure C.142: Autoencoder
pressure field forNH =64×64 and Re = 500 for t = 8



C.2. Lid-driven Cavity Flow Primal Error 111

Figure C.143: Autoencoder
velocity field forNH =64×64 and Re = 500 for t = 10

Figure C.144: Autoencoder
pressure field forNH =64×64 and Re = 500 for t = 10

C.2. Lid-driven Cavity Flow Primal Error
C.2.1. POD

Figure C.145:
POD velocity error field forNH =8×8 and Re = 500 for t = 0

Figure C.146:
POD pressure error field forNH =8×8 and Re = 500 for t = 0
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Figure C.147:
POD velocity error field forNH =8×8 and Re = 500 for t = 2

Figure C.148:
POD pressure error field forNH =8×8 and Re = 500 for t = 2

Figure C.149:
POD velocity error field forNH =8×8 and Re = 500 for t = 4

Figure C.150:
POD pressure error field forNH =8×8 and Re = 500 for t = 4
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Figure C.151:
POD velocity error field forNH =8×8 and Re = 500 for t = 6

Figure C.152:
POD pressure error field forNH =8×8 and Re = 500 for t = 6

Figure C.153:
POD velocity error field forNH =8×8 and Re = 500 for t = 8

Figure C.154:
POD pressure error field forNH =8×8 and Re = 500 for t = 8
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Figure C.155:
POD velocity error field forNH =8×8 and Re = 500 for t = 10

Figure C.156:
POD pressure error field forNH =8×8 and Re = 500 for t = 10

Figure C.157:
POD velocity error field forNH =16×16 and Re = 500 for t = 0

Figure C.158: POD
pressure error field forNH =16×16 and Re = 500 for t = 0
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Figure C.159:
POD velocity error field forNH =16×16 and Re = 500 for t = 2

Figure C.160: POD
pressure error field forNH =16×16 and Re = 500 for t = 2

Figure C.161:
POD velocity error field forNH =16×16 and Re = 500 for t = 4

Figure C.162: POD
pressure error field forNH =16×16 and Re = 500 for t = 4
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Figure C.163:
POD velocity error field forNH =16×16 and Re = 500 for t = 6

Figure C.164: POD
pressure error field forNH =16×16 and Re = 500 for t = 6

Figure C.165:
POD velocity error field forNH =16×16 and Re = 500 for t = 8

Figure C.166: POD
pressure error field forNH =16×16 and Re = 500 for t = 8
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Figure C.167: POD
velocity error field forNH =16×16 and Re = 500 for t = 10

Figure C.168: POD
pressure error field forNH =16×16 and Re = 500 for t = 10

Figure C.169:
POD velocity error field forNH =32×32 and Re = 500 for t = 0

Figure C.170: POD
pressure error field forNH =32×32 and Re = 500 for t = 0
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Figure C.171:
POD velocity error field forNH =32×32 and Re = 500 for t = 2

Figure C.172: POD
pressure error field forNH =32×32 and Re = 500 for t = 2

Figure C.173:
POD velocity error field forNH =32×32 and Re = 500 for t = 4

Figure C.174: POD
pressure error field forNH =32×32 and Re = 500 for t = 4
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Figure C.175:
POD velocity error field forNH =32×32 and Re = 500 for t = 6

Figure C.176: POD
pressure error field forNH =32×32 and Re = 500 for t = 6

Figure C.177:
POD velocity error field forNH =32×32 and Re = 500 for t = 8

Figure C.178: POD
pressure error field forNH =32×32 and Re = 500 for t = 8
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Figure C.179: POD
velocity error field forNH =32×32 and Re = 500 for t = 10

Figure C.180: POD
pressure error field forNH =32×32 and Re = 500 for t = 10

Figure C.181:
POD velocity error field forNH =64×64 and Re = 500 for t = 0

Figure C.182: POD
pressure error field forNH =64×64 and Re = 500 for t = 0
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Figure C.183:
POD velocity error field forNH =64×64 and Re = 500 for t = 2

Figure C.184: POD
pressure error field forNH =64×64 and Re = 500 for t = 2

Figure C.185:
POD velocity error field forNH =64×64 and Re = 500 for t = 4

Figure C.186: POD
pressure error field forNH =64×64 and Re = 500 for t = 4
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Figure C.187:
POD velocity error field forNH =64×64 and Re = 500 for t = 6

Figure C.188: POD
pressure error field forNH =64×64 and Re = 500 for t = 6

Figure C.189:
POD velocity error field forNH =64×64 and Re = 500 for t = 8

Figure C.190: POD
pressure error field forNH =64×64 and Re = 500 for t = 8
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Figure C.191: POD
velocity error field forNH =64×64 and Re = 500 for t = 10

Figure C.192: POD
pressure error field forNH =64×64 and Re = 500 for t = 10

C.2.2. Autoencoder

Figure C.193: Autoencoder
velocity error field forNH =8×8 and Re = 500 for t = 0

Figure C.194: Autoencoder
pressure error field forNH =8×8 and Re = 500 for t = 0
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Figure C.195: Autoencoder
velocity error field forNH =8×8 and Re = 500 for t = 2

Figure C.196: Autoencoder
pressure error field forNH =8×8 and Re = 500 for t = 2

Figure C.197: Autoencoder
velocity error field forNH =8×8 and Re = 500 for t = 4

Figure C.198: Autoencoder
pressure error field forNH =8×8 and Re = 500 for t = 4
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Figure C.199: Autoencoder
velocity error field forNH =8×8 and Re = 500 for t = 6

Figure C.200: Autoencoder
pressure error field forNH =8×8 and Re = 500 for t = 6

Figure C.201: Autoencoder
velocity error field forNH =8×8 and Re = 500 for t = 8

Figure C.202: Autoencoder
pressure error field forNH =8×8 and Re = 500 for t = 8
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Figure C.203: Autoencoder
velocity error field forNH =8×8 and Re = 500 for t = 10

Figure C.204: Autoencoder
pressure error field forNH =8×8 and Re = 500 for t = 10

Figure C.205: Autoencoder
velocity error field forNH =16×16 and Re = 500 for t = 0

Figure C.206: Autoencoder
pressure error field forNH =16×16 and Re = 500 for t = 0
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Figure C.207: Autoencoder
velocity error field forNH =16×16 and Re = 500 for t = 2

Figure C.208: Autoencoder
pressure error field forNH =16×16 and Re = 500 for t = 2

Figure C.209: Autoencoder
velocity error field forNH =16×16 and Re = 500 for t = 4

Figure C.210: Autoencoder
pressure error field forNH =16×16 and Re = 500 for t = 4
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Figure C.211: Autoencoder
velocity error field forNH =16×16 and Re = 500 for t = 6

Figure C.212: Autoencoder
pressure error field forNH =16×16 and Re = 500 for t = 6

Figure C.213: Autoencoder
velocity error field forNH =16×16 and Re = 500 for t = 8

Figure C.214: Autoencoder
pressure error field forNH =16×16 and Re = 500 for t = 8
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Figure C.215: Autoencoder
velocity error field forNH =16×16 and Re = 500 for t = 10

Figure C.216: Autoencoder
pressure error field forNH =16×16 and Re = 500 for t = 10

Figure C.217: Autoencoder
velocity error field forNH =32×32 and Re = 500 for t = 0

Figure C.218: Autoencoder
pressure error field forNH =32×32 and Re = 500 for t = 0
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Figure C.219: Autoencoder
velocity error field forNH =32×32 and Re = 500 for t = 2

Figure C.220: Autoencoder
pressure error field forNH =32×32 and Re = 500 for t = 2

Figure C.221: Autoencoder
velocity error field forNH =32×32 and Re = 500 for t = 4

Figure C.222: Autoencoder
pressure error field forNH =32×32 and Re = 500 for t = 4
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Figure C.223: Autoencoder
velocity error field forNH =32×32 and Re = 500 for t = 6

Figure C.224: Autoencoder
pressure error field forNH =32×32 and Re = 500 for t = 6

Figure C.225: Autoencoder
velocity error field forNH =32×32 and Re = 500 for t = 8

Figure C.226: Autoencoder
pressure error field forNH =32×32 and Re = 500 for t = 8
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Figure C.227: Autoencoder
velocity error field forNH =32×32 and Re = 500 for t = 10

Figure C.228: Autoencoder
pressure error field forNH =32×32 and Re = 500 for t = 10

Figure C.229: Autoencoder
velocity error field forNH =64×64 and Re = 500 for t = 0

Figure C.230: Autoencoder
pressure error field forNH =64×64 and Re = 500 for t = 0
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Figure C.231: Autoencoder
velocity error field forNH =64×64 and Re = 500 for t = 2

Figure C.232: Autoencoder
pressure error field forNH =64×64 and Re = 500 for t = 2

Figure C.233: Autoencoder
velocity error field forNH =64×64 and Re = 500 for t = 4

Figure C.234: Autoencoder
pressure error field forNH =64×64 and Re = 500 for t = 4
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Figure C.235: Autoencoder
velocity error field forNH =64×64 and Re = 500 for t = 6

Figure C.236: Autoencoder
pressure error field forNH =64×64 and Re = 500 for t = 6

Figure C.237: Autoencoder
velocity error field forNH =64×64 and Re = 500 for t = 8

Figure C.238: Autoencoder
pressure error field forNH =64×64 and Re = 500 for t = 8
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Figure C.239: Autoencoder
velocity error field forNH =64×64 and Re = 500 for t = 10

Figure C.240: Autoencoder
pressure error field forNH =64×64 and Re = 500 for t = 10

C.3. Lid-driven Cavity Flow Velocity Adjoint
C.3.1. Solution

Figure C.241:
Velocity adjoint forNh=16×16 and Re = 500 for t = 8

Figure C.242:
Velocity adjoint forNh=16×16 and Re = 500 for t = 6
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Figure C.243:
Velocity adjoint forNh=16×16 and Re = 500 for t = 4

Figure C.244:
Velocity adjoint forNh=16×16 and Re = 500 for t = 2

Figure C.245: Velocity adjoint forNh=16×16 and Re = 500 for t = 0
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Figure C.246:
Velocity adjoint forNh=32×32 and Re = 500 for t = 8

Figure C.247:
Velocity adjoint forNh=32×32 and Re = 500 for t = 6

Figure C.248:
Velocity adjoint forNh=32×32 and Re = 500 for t = 4

Figure C.249:
Velocity adjoint forNh=32×32 and Re = 500 for t = 2
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Figure C.250: Velocity adjoint forNh=32×32 and Re = 500 for t = 0

Figure C.251:
Velocity adjoint forNh=64×64 and Re = 500 for t = 8

Figure C.252:
Velocity adjoint forNh=64×64 and Re = 500 for t = 6
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Figure C.253:
Velocity adjoint forNh=64×64 and Re = 500 for t = 4

Figure C.254:
Velocity adjoint forNh=64×64 and Re = 500 for t = 2

Figure C.255: Velocity adjoint forNh=64×64 and Re = 500 for t = 0
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C.3.2. POD

Figure C.256:
POD velocity adjoint forNh=16×16 and Re = 500 for t = 8

Figure C.257:
POD velocity adjoint forNh=16×16 and Re = 500 for t = 6

Figure C.258:
POD velocity adjoint forNh=16×16 and Re = 500 for t = 4

Figure C.259:
POD velocity adjoint forNh=16×16 and Re = 500 for t = 2
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Figure C.260: POD velocity adjoint forNh=16×16 and Re = 500 for t = 0

Figure C.261:
POD velocity adjoint forNh=32×32 and Re = 500 for t = 8

Figure C.262:
POD velocity adjoint forNh=32×32 and Re = 500 for t = 6
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Figure C.263:
POD velocity adjoint forNh=32×32 and Re = 500 for t = 4

Figure C.264:
POD velocity adjoint forNh=32×32 and Re = 500 for t = 2

Figure C.265: POD velocity adjoint forNh=32×32 and Re = 500 for t = 0



C.3. Lid-driven Cavity Flow Velocity Adjoint 143

Figure C.266:
POD velocity adjoint forNh=64×64 and Re = 500 for t = 8

Figure C.267:
POD velocity adjoint forNh=64×64 and Re = 500 for t = 6

Figure C.268:
POD velocity adjoint forNh=64×64 and Re = 500 for t = 4

Figure C.269:
POD velocity adjoint forNh=64×64 and Re = 500 for t = 2
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Figure C.270: POD velocity adjoint forNh=64×64 and Re = 500 for t = 0

C.3.3. Autoencoder

Figure C.271: Autoencoder
velocity adjoint forNh=16×16 and Re = 500 for t = 8

Figure C.272: Autoencoder
velocity adjoint forNh=16×16 and Re = 500 for t = 6
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Figure C.273: Autoencoder
velocity adjoint forNh=16×16 and Re = 500 for t = 4

Figure C.274: Autoencoder
velocity adjoint forNh=16×16 and Re = 500 for t = 2

Figure C.275: Autoencoder velocity adjoint forNh=16×16 and Re = 500 for t = 0
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Figure C.276: Autoencoder
velocity adjoint forNh=32×32 and Re = 500 for t = 8

Figure C.277: Autoencoder
velocity adjoint forNh=32×32 and Re = 500 for t = 6

Figure C.278: Autoencoder
velocity adjoint forNh=32×32 and Re = 500 for t = 4

Figure C.279: Autoencoder
velocity adjoint forNh=32×32 and Re = 500 for t = 2
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Figure C.280: Autoencoder velocity adjoint forNh=32×32 and Re = 500 for t = 0

Figure C.281: Autoencoder
velocity adjoint forNh=64×64 and Re = 500 for t = 8

Figure C.282: Autoencoder
velocity adjoint forNh=64×64 and Re = 500 for t = 6
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Figure C.283: Autoencoder
velocity adjoint forNh=64×64 and Re = 500 for t = 4

Figure C.284: Autoencoder
velocity adjoint forNh=64×64 and Re = 500 for t = 2

Figure C.285: Autoencoder velocity adjoint forNh=64×64 and Re = 500 for t = 0
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C.4. Lid-driven Cavity Flow Velocity Adjoint Error
C.4.1. POD

Figure C.286: POD
velocity adjoint error forNh=16×16 and Re = 500 for t = 8

Figure C.287: POD
velocity adjoint error forNh=16×16 and Re = 500 for t = 6

Figure C.288: POD
velocity adjoint error forNh=16×16 and Re = 500 for t = 4

Figure C.289: POD
velocity adjoint error forNh=16×16 and Re = 500 for t = 2
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Figure C.290: POD velocity adjoint error forNh=16×16 and Re = 500 for t = 0

Figure C.291: POD
velocity adjoint error forNh=32×32 and Re = 500 for t = 8

Figure C.292: POD
velocity adjoint error forNh=32×32 and Re = 500 for t = 6



C.4. Lid-driven Cavity Flow Velocity Adjoint Error 151

Figure C.293: POD
velocity adjoint error forNh=32×32 and Re = 500 for t = 4

Figure C.294: POD
velocity adjoint error forNh=32×32 and Re = 500 for t = 2

Figure C.295: POD velocity adjoint error forNh=32×32 and Re = 500 for t = 0
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Figure C.296: POD
velocity adjoint error forNh=64×64 and Re = 500 for t = 8

Figure C.297: POD
velocity adjoint error forNh=64×64 and Re = 500 for t = 6

Figure C.298: POD
velocity adjoint error forNh=64×64 and Re = 500 for t = 4

Figure C.299: POD
velocity adjoint error forNh=64×64 and Re = 500 for t = 2
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Figure C.300: POD velocity adjoint error forNh=64×64 and Re = 500 for t = 0

C.4.2. Autoencoder

Figure C.301: Autoencoder
velocity adjoint error forNh=16×16 and Re = 500 for t = 8

Figure C.302: Autoencoder
velocity adjoint error forNh=16×16 and Re = 500 for t = 6
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Figure C.303: Autoencoder
velocity adjoint error forNh=16×16 and Re = 500 for t = 4

Figure C.304: Autoencoder
velocity adjoint error forNh=16×16 and Re = 500 for t = 2

Figure C.305: Autoencoder velocity adjoint error forNh=16×16 and Re = 500 for t = 0
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Figure C.306: Autoencoder
velocity adjoint error forNh=32×32 and Re = 500 for t = 8

Figure C.307: Autoencoder
velocity adjoint error forNh=32×32 and Re = 500 for t = 6

Figure C.308: Autoencoder
velocity adjoint error forNh=32×32 and Re = 500 for t = 4

Figure C.309: Autoencoder
velocity adjoint error forNh=32×32 and Re = 500 for t = 2
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Figure C.310: Autoencoder velocity adjoint error forNh=32×32 and Re = 500 for t = 0

Figure C.311: Autoencoder
velocity adjoint error forNh=64×64 and Re = 500 for t = 8

Figure C.312: Autoencoder
velocity adjoint error forNh=64×64 and Re = 500 for t = 6
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Figure C.313: Autoencoder
velocity adjoint error forNh=64×64 and Re = 500 for t = 4

Figure C.314: Autoencoder
velocity adjoint error forNh=64×64 and Re = 500 for t = 2

Figure C.315: Autoencoder velocity adjoint error forNh=64×64 and Re = 500 for t = 0
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C.5. Lid-driven Cavity Flow Adjoint Weighted Residual Solution
C.5.1. Solution

Figure C.316: Adjoint
weighted residual field forNh=16×16 and Re = 500 for t = 8

Figure C.317: Adjoint
weighted residual field forNh=16×16 and Re = 500 for t = 6

Figure C.318: Adjoint
weighted residual field forNh=16×16 and Re = 500 for t = 4

Figure C.319: Adjoint
weighted residual field forNh=16×16 and Re = 500 for t = 2
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Figure C.320: Adjoint weighted residual field forNh=16×16 and Re = 500 for t = 0

Figure C.321: Adjoint
weighted residual field forNh=16×16 and Re = 500 for t = 8

Figure C.322: Adjoint
weighted residual field forNh=32×32 and Re = 500 for t = 6
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Figure C.323: Adjoint
weighted residual field forNh=32×32 and Re = 500 for t = 4

Figure C.324: Adjoint
weighted residual field forNh=32×32 and Re = 500 for t = 2

Figure C.325: Adjoint weighted residual field forNh=32×32 and Re = 500 for t = 0
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Figure C.326: Adjoint
weighted residual field forNh=64×64 and Re = 500 for t = 8

Figure C.327: Adjoint
weighted residual field forNh=64×64 and Re = 500 for t = 6

Figure C.328: Adjoint
weighted residual field forNh=64×64 and Re = 500 for t = 4

Figure C.329: Adjoint
weighted residual field forNh=64×64 and Re = 500 for t = 2
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Figure C.330: Adjoint weighted residual field forNh=64×64 and Re = 500 for t = 0

C.5.2. POD

Figure C.331: POD adjoint
weighted residual field forNh=16×16 and Re = 500 for t = 8

Figure C.332: POD adjoint
weighted residual field forNh=16×16 and Re = 500 for t = 6
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Figure C.333: POD adjoint
weighted residual field forNh=16×16 and Re = 500 for t = 4

Figure C.334: POD adjoint
weighted residual field forNh=16×16 and Re = 500 for t = 2

Figure C.335: POD adjoint weighted residual field forNh=16×16 and Re = 500 for t = 0
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Figure C.336: POD adjoint
weighted residual field forNh=32×32 and Re = 500 for t = 8

Figure C.337: POD adjoint
weighted residual field forNh=32×32 and Re = 500 for t = 6

Figure C.338: POD adjoint
weighted residual field forNh=32×32 and Re = 500 for t = 4

Figure C.339: POD adjoint
weighted residual field forNh=32×32 and Re = 500 for t = 2
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Figure C.340: POD adjoint weighted residual field forNh=32×32 and Re = 500 for t = 0

Figure C.341: POD adjoint
weighted residual field forNh=64×64 and Re = 500 for t = 8

Figure C.342: POD adjoint
weighted residual field forNh=64×64 and Re = 500 for t = 6
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Figure C.343: POD adjoint
weighted residual field forNh=64×64 and Re = 500 for t = 4

Figure C.344: POD adjoint
weighted residual field forNh=64×64 and Re = 500 for t = 2

Figure C.345: POD adjoint weighted residual field forNh=64×64 and Re = 500 for t = 0



C.5. Lid-driven Cavity Flow Adjoint Weighted Residual Solution 167

C.5.3. Autoencoder

Figure C.346: Autoencoder adjoint
weighted residual field forNh=16×16 and Re = 500 for t = 8

Figure C.347: Autoencoder adjoint
weighted residual field forNh=16×16 and Re = 500 for t = 6

Figure C.348: Autoencoder adjoint
weighted residual field forNh=16×16 and Re = 500 for t = 4

Figure C.349: Autoencoder adjoint
weighted residual field forNh=16×16 and Re = 500 for t = 2
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Figure C.350: Autoencoder adjoint weighted residual field forNh=16×16 and Re = 500 for t = 0

Figure C.351: Autoencoder adjoint
weighted residual field forNh=32×32 and Re = 500 for t = 8

Figure C.352: Autoencoder adjoint
weighted residual field forNh=32×32 and Re = 500 for t = 6
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Figure C.353: Autoencoder adjoint
weighted residual field forNh=32×32 and Re = 500 for t = 4

Figure C.354: Autoencoder adjoint
weighted residual field forNh=32×32 and Re = 500 for t = 2

Figure C.355: Autoencoder adjoint weighted residual field forNh=32×32 and Re = 500 for t = 0
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Figure C.356: Autoencoder adjoint
weighted residual field forNh=64×64 and Re = 500 for t = 8

Figure C.357: Autoencoder adjoint
weighted residual field forNh=64×64 and Re = 500 for t = 6

Figure C.358: Autoencoder adjoint
weighted residual field forNh=64×64 and Re = 500 for t = 4

Figure C.359: Autoencoder adjoint
weighted residual field forNh=64×64 and Re = 500 for t = 2
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Figure C.360: Autoencoder adjoint weighted residual field forNh=64×64 and Re = 500 for t = 0

C.6. Lid-driven Cavity Flow Adjoint Weighted Residual Error
C.6.1. POD

Figure C.361: POD adjoint weighted
residual error field forNh=16×16 and Re = 500 for t = 8

Figure C.362: POD adjoint weighted
residual error field forNh=16×16 and Re = 500 for t = 6
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Figure C.363: POD adjoint weighted
residual error field forNh=16×16 and Re = 500 for t = 4

Figure C.364: POD adjoint weighted
residual error field forNh=16×16 and Re = 500 for t = 2

Figure C.365: POD adjoint weighted residual error field forNh=16×16 and Re = 500 for t = 0
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Figure C.366: POD adjoint weighted
residual error field forNh=32×32 and Re = 500 for t = 8

Figure C.367: POD adjoint weighted
residual error field forNh=32×32 and Re = 500 for t = 6

Figure C.368: POD adjoint weighted
residual error field forNh=32×32 and Re = 500 for t = 4

Figure C.369: POD adjoint weighted
residual error field forNh=32×32 and Re = 500 for t = 2
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Figure C.370: POD adjoint weighted residual error field forNh=32×32 and Re = 500 for t = 0

Figure C.371: POD adjoint weighted
residual error field forNh=64×64 and Re = 500 for t = 8

Figure C.372: POD adjoint weighted
residual error field forNh=64×64 and Re = 500 for t = 6
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Figure C.373: POD adjoint weighted
residual error field forNh=64×64 and Re = 500 for t = 4

Figure C.374: POD adjoint weighted
residual error field forNh=64×64 and Re = 500 for t = 2

Figure C.375: POD adjoint weighted residual error field forNh=64×64 and Re = 500 for t = 0
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C.6.2. Autoencoder

Figure C.376: Autoencoder adjoint weighted
residual error field forNh=16×16 and Re = 500 for t = 8

Figure C.377: Autoencoder adjoint weighted
residual error field forNh=16×16 and Re = 500 for t = 6

Figure C.378: Autoencoder adjoint weighted
residual error field forNh=16×16 and Re = 500 for t = 4

Figure C.379: Autoencoder adjoint weighted
residual error field forNh=16×16 and Re = 500 for t = 2
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Figure C.380: Autoencoder adjoint weighted residual error field forNh=16×16 and Re = 500 for t = 0

Figure C.381: Autoencoder adjoint weighted
residual error field forNh=32×32 and Re = 500 for t = 8

Figure C.382: Autoencoder adjoint weighted
residual error field forNh=32×32 and Re = 500 for t = 6
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Figure C.383: Autoencoder adjoint weighted
residual error field forNh=32×32 and Re = 500 for t = 4

Figure C.384: Autoencoder adjoint weighted
residual error field forNh=32×32 and Re = 500 for t = 2

Figure C.385: Autoencoder adjoint weighted residual error field forNh=32×32 and Re = 500 for t = 0
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Figure C.386: Autoencoder adjoint weighted
residual error field forNh=64×64 and Re = 500 for t = 8

Figure C.387: Autoencoder adjoint weighted
residual error field forNh=64×64 and Re = 500 for t = 6

Figure C.388: Autoencoder adjoint weighted
residual error field forNh=64×64 and Re = 500 for t = 4

Figure C.389: Autoencoder adjoint weighted
residual error field forNh=64×64 and Re = 500 for t = 2
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Figure C.390: Autoencoder adjoint weighted residual error field forNh=64×64 and Re = 500 for t = 0
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