

DE ROTTERDAM

CREATING A SMARTPHONE APPLICATION TO LOCATE

COLLEAGUES

Matilde Oliveti - 4323564 | Godelief Abhilakh Missier - 1541412 | Damien Mulder - 1503154
Dimitris Zervakis - 4312775 | Haoxiang Wu - 4325591

 Project coaches: Edward Verbree, Sisi Zlatanova & Rob Poll- van Dasselaar
TU Delft, Geomatics Synthesis Project 2014

31-10-2014

2
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Preface

This document constitutes the Final Report of the Synthesis Project of the 2nd year in MSc
Geomatics, TU Delft [GEO 2001]. This Synthesis Project is done in cooperation with the
director, project coach and the client: the Municipality of Rotterdam. The aim of the project is
to develop a working prototype application to find and display the location of a colleague in a
high-rise building (‘De Rotterdam’). All acquired knowledge from the first year in Geomatics
is used, as well as new learning experiences and discoveries within the context of working in
a team.
This report consists of the requirements, concept, analysis, literature research and the
implementation performed by the team in the eight weeks set for the project.

The Final Report starts with the Executive Summary, which explains in more detail
the scope of the project. Then the document structure logically follows the actions taken to
form the prototype application.

The Director
Edward Verbree

The team
Matilde Oliveti

Godelief Abhilakh Missier
Damien Mulder

Dimitris Zervakis
Haoxiang Wu

The team coach
Sisi Zlatanova

3
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Contents

Preface .. 2
List of Figures .. 5
List of Tables .. 9
List of Acronyms .. 10
1. Executive Summary ... 11

1.1 System architecture ... 11

1.2. The Libelium Meshlium Xtreme Scanners ... 12

1.3 Space subdivision .. 12

1.4 Localization ... 14

1.5 Navigation ... 15

1.6 Visualization .. 16

1.7 Conclusions ... 17

2. Introduction .. 18

2.1 Introduction to the topic .. 18

2.2 Research area ... 18

2.3 Structure of the report .. 19

3. Indoor navigation applications ... 20

3.1. Introduction .. 20

3.2. Examples of an indoor navigation applications .. 20

4. Requirements .. 23

4.1 Users .. 23

4.2 Requirements tree .. 23

4.3 Constraints ... 24

4.4 Budget ... 25

4.5 Technical risk assessment .. 25

5. Conceptual design .. 27

5.1. Concept application .. 27

5.2. Concept system architecture ... 29

6. Literature research and theory .. 32

6.1. Privacy .. 32

6.2. Space subdivision ... 33

6.3. Localization .. 35

6.4. Navigation .. 48

7. The Libelium Meshlium Xtreme Scanners .. 53

4
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

7.1. Information about the Scanners .. 53

7.2. Testing with the scanners in the faculty of Architecture .. 55

7.3. Testing in ‘de Rotterdam’ ... 62

8. System Engineering .. 71

8.1. Software used ... 71

9. Space subdivision ... 72

9. 1. Implementation .. 72

10. Localization .. 83

10.1 Chosen Localization Methods ... 83

10.2 MULTILATERATION .. 83

10.3. FINGERPRINTING ... 96

11. Navigation .. 106

11.1 Implementation .. 106

12. Visualization ... 117

12.1. Application functionality .. 117

12.2. Database connection ... 118

12.3. Python localization ... 119

12.4. Route description .. 120

12.5. Unity visualization.. 120

12.6. Considerations .. 125

Conclusions .. 127
Recommendations .. 129
References .. 130
Appendix .. 133

Appendix 1. Analysis of the tests in the Faculty of Architecture .. 133

Appendix 2. Tests ‘De Rotterdam’ Results ... 137

Appendix 3. Space subdivision ... 146

Appendix 3: Network .. 152

Appendix 4. Python 2.7 code: Multilateration scripts ... 157

Appendix 5. Python 2.7 code: WIFI FINGERPRINTING SCRIPTS ... 171

Appendix 6. Code for the Android applicaton .. 175

5
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

List of Figures

Fig. 1: Schema of Pazl (Source: Radu et al., 2013)... 21
Fig. 2: System architecture (Source: Quintas et al., 2013). ... 21
Fig. 3: System architecture. (Ching et al., 2010) .. 21
Fig. 4: Different display options (Source: http://www.navizon.com/its/whitepaper.pdf). . 22

Fig. 5. Requirements tree ... 23
Fig. 6. Risk map assessment (Source: Holland & Holland Enterprises Ltd, n.d.) 25

Fig. 7. Example of the functions of a colleague finding application.................................. 27

Fig. 8. Visualization of the system concept.. 28
Fig. 9. Direct connection or connection through a middle layer .. 30

Fig. 10. Concept System Architecture.. 31
Fig.11. Indoor Spatial Models. ... 33
Fig.12. Geometric representation of indoor space. (Source: OGC IndoorGML, 2014)..... 34

Fig.13. Adjacency and connectivity graph. (Source: OGC IndoorGML, 2014) 34

Fig.14. Multi-Layered Space Model (left) and an example of a Multi-Layered space
representation (right). (Source: OGC IndoorGML, 2014) ... 35

Fig.15. Different empirical models for signal coverage within a building. 36

Fig.16. Electromagnetic intensity map making use of the Helmholtz equations. 37

Fig.17. Scanner placement: (a) Max Distance, (b) Concrete Square, (c) Elevator &
pathways, (d) Half-building, no thick wall interference .. 38
Fig.18. Concept of area rings of signal intensity per scanner – no degradation. 40

Fig.19. Trilateration (2D). .. 41
Fig. 20. Trilateration with error in radii included for each scanner (S1,S2,S3). The blue
area is the most probable location of the device. ... 41
Fig. 21. Multilateration ... 42
Fig.22. Triangle ABP ... 42
Fig. 23. Triangle ABP .. 43
Fig. 24. Triangulation with 3 known points ... 44
Fig. 25. Example error calculation ... 45
Fig. 26. Example of fingerprints. ... 46
Fig. 28. Square and hexagon subdivision (Afyouni et al 2012). .. 48

Fig.29. Regular grid space subdivision of ‘De Rotterdam’ building (2x2m on the left and
1x1m on the right). ... 48

Fig. 31. Example for the partitioning of building interior into rooms and its representation
in dual space. .. 49

Fig.32. Example graph ... 50
Fig. 33. Adjacency matrix ... 50
Fig. 34. Adjacency list ... 50
Fig. 35. Set of labelled edges ... 50
Fig. 36. Visualization of Dijkstra and A* algorithm pathfinding on grid 51

Fig. 37. Example of Topographic SpaceLayer. (Source: OGC IndoorGML, 2014) 51

Fig. 38. Indoor space mapped to IndoorGML Navigation module classes. (Source: OGC
IndoorGML, 2014) ... 52
Fig. 39. The Libelium Meshlium Xtreme Scanner (Source：Libelium) 53

Fig. 40. Conceptual schema of the working of a scanner (Source：Libelium) 54
Fig. 41. Ways to store the gathered data (Source：Libelium) ... 54

6
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig. 42. Manager System (source：Libelium) ... 55
Fig. 43. Testing area in red ... 55
Fig. 44. Testing environment ... 55
Fig. 45. Materials used during the tests .. 56
Fig. 46. Test set- up .. 57

Fig. 47. Scanner set- up test 1 .. 57
Fig. 48. Scanner set- up test 2 .. 57
Fig. 49. Scanner set- up test 3 .. 58
Graph 1. Result test 1 ... 59
Graph 2. Result test 1 ... 59
Graph 3. Result test 2 ... 60
Graph 4. Result test 3 ... 61
Graph 5. Result test 3 ... 61
Fig. 50. Space subdivision .. 62
Fig.51. Interior of the 16th floor of ‘De Rotterdam’ building ... 63

Fig.52. Scanner placement test 1 .. 63
Fig.53. Set- up test 1 ... 64

Graph 6. Results test 1 ... 64
Graph 7. AVG RSSI values for scanner 678 .. 65
Fig.54. Scanner placement test 2 .. 66
Fig.55. Set-up test 2 .. 66

Graph 8. Results test 2 .. 67
Graph 9. The number of times a scanner has seen the three phones during test 2 67

Fig.56. Scanner placement test 3 .. 68
Fig.57. Set-up test 3 .. 68

Graph 10. Results test 3 .. 69
Fig.58. Scanner placement test 4 .. 69
Fig.59. Set-up test 4 .. 70

Graph 11. Results test 4 .. 70
Fig.60. Attribute table `De Rotterdam` floor plan with semantics information. 73

Fig. 61. Floor plan simplification. .. 73
Fig. 62. Several workspaces on the 16th floor .. 74
Fig. 63. Intuitive space subdivision. ... 74
Fig. 64. Constrained Delaunay Triangulation. ... 75
Fig. 65. Combination of the triangulation with the heat maps for scanner layout 1. 76

Fig. 66. Irregular buffers according to RSSI values for scanner layout 1. 77

Fig. 67. Space subdivision combining triangulation with heat maps for scanner layout 1. 77

Fig. 68. Combination of the triangulation with the heat maps for scanner layout 2. 78

Fig. 69. Irregular buffers according to RSSI values for scanner layout 2. 78

Fig. 70. Space subdivision combining triangulation with heat maps for scanner layout 2.
 .. 79

Fig. 71. Range of the scanners 10 meters (left) and 4 subspaces (right). 79

Fig. 72. Range of scanner 20 meters (left) and different subspaces (right). 80

Fig. 73. Automatic space subdivision with eight different subspaces................................ 80

Fig. 74. Testing the automatic method for layout 2 ... 81
Fig. 75. Two different triangulations of the space ... 81
Fig. 76. Using bigger triangles, results in an even coarser subdivision 82

Fig. 77. Example of logs by scanner named “mesh121”. ... 83

Fig. 78. Theoretical distinction between real world positions using RSSI values. 84

7
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig. 79. Real RSSI values over time. Normally, 6 ‘distinct’ areas/plateaus should be
visible, one every 5 minutes (300sec). ... 84
Fig. 80. The weights applied to RSSI values change depending on the chosen timespan –
the older the values are the less credible they are. ... 85
Fig. 81. Distance d from scanner and added error result in a ‘ring’ area. 86

Fig. 82. Relation between RSSI and distance, together with the vague error areas. 87

Fig. 83. Calculating the most probable localization area. .. 88
Fig. 84. Example of localization achieved. .. 89
Fig. 85. Example of combined localization .. 90
Fig. 86. Successful localization per intersections: 0,2,3 and 4 rings intersecting. 93

Fig. 87. Failed localization: treatable cases. First solution (yellow) is wrong, but second
suggestion (magenta) succeeds. ... 94
Fig. 88. Failed localization: non-treated cases. Both first and second solutions fail. 94

Fig. 89. Successful localizations for different scanner layouts. ... 95
Fig. 90. Fingerprints: (a) layout 1; (b) layout 2 .. 97
Fig. 91. Sampling points in different grids: (a) 4 by 4； (b) 2 by 2 98

Fig. 92. Heatmaps: (a) layout 1; (b) layout 2 ... 100
Fig. 93. Examples of localization result of layout 1 with 2 by 2 grid in subdivision (a)
Successful localization; (b) Failed localization .. 103
Fig. 94. Functional layer (left) and Navigational layer (right) ... 107
Fig. 95. Range of the scanner of 20 meters for layout 1 and 2. .. 107

Fig. 96. Implementation of the manual derivation of the network on the intuitive
subdivision.. 108

Fig. 97. Subdivision based on the range of the scanners, after removing the functional
layer. ... 108

Fig. 98. Concept for the semi- automatic derivation of the network 109

Fig. 99. Implementation of the semi- automatic method on the subdivision based on the
range ... 109

Fig. 100. Implementation of the semi- automatic method on the subdivision based on the
range ... 110

Fig. 101. The final network .. 110
Fig. 102. Implementation of the automatic method on the subdivision based on the range

 .. 111

Fig. 103. The final network .. 111
Fig. 104. Implementation of an automatic method on the triangulated floorspace 112

Fig. 105. The network used for the application .. 112
Fig. 106. Generated network with nodes .. 113
Fig. 107. Example adjacency list.. 113
Fig. 108. Possible route description statements based on present landmarks 115

Fig. 109. Photos ‘de Rotterdam’, arrows indicate route description statements “left, right,
right” ... 115

Fig. 110. Navigation based on cardinal direction ... 116
Fig. 111. Main screen, department selection and colleague selection in mobile application

 .. 117

Fig. 112. Selection overview and route description screen in mobile application. 118

Fig. 113. 2D, 2.5D and 3D visualisation of routing within ‘de Rotterdam’..................... 121

Fig. 114. Overview of the unity scene.. 122
Fig. 115. Table of node positions on floor 14 .. 124
Fig. 116. Set- up Test 1 .. 133

8
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig. 117. Set- up test ... 134

Fig. 118. Set- up test 3 .. 134

9
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

List of Tables

Table 1. Point position accuracy resulted from different error of measured distance……......46
Table 2. Pros and cons of localization methodologies………..48
Table 3. Pros and cons of grid and network space subdivision models……………………...50
Table 4: Compenents and tools used to create the prototype ………………………………...72
Table 5. Pros and cons of the intuitive and automatic space subdivision…………………….83
Table 6. Localization success rate (%) on same room as ground-truth point. If the point lies in
the same room as the room returned by the algorithm, it is a success hit……………………92
Table 7. Localization success rate (%) on same room OR neighboring rooms. If the point lies
in the same room as the room returned by the algorithm OR any of its adjacent rooms, it is a
success hit…………………………………………………………………………………….93
Table 8. Localization success rate (%) on same room as ground-truth point. (automatic
subdivision, only layout 1 tested)…………………………………………………………….93
Table 9. Localization success rate (%) through combined subdivisions. (intuitive and
automatic, only layout 1 tested)………………………………………………………………93
Table 10. Heat maps testing results…………………………………………………………102
Table 11. Localization result in space subdivision………………………………………….103
Table 12. Improved localization result in space subdivision………………………………..105
Table 13. Changes of successful rate for different set-ups………………………………….106
Table 14. Departments table in MySQL database…………………………………………..119
Table 15. Phones table in MySQL database………………………………………………...119
Table 16. Route description based on node-pairs…………………………………………...121
Table 17. Route description based on node-triples………………………………………….121
Table 18. Implementations of the components in the prototype…………………………….128

10
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

List of Acronyms

AoA Angle of Arrival
AP Access Point
CAD Computer-Aided Drafting
DBMS Database Management System
FDTD Finite Difference Time Domain
GIS Geographic Information System
GML Geographic Markup Language
GPS Global Positioning System
IPS Indoor Positioning Systems
ISO International Organization for Standardization
LBS Location Based Service
MAC Media Access Control
MLSM Multi-Layered Space Model
NRG Node Relation Graph
OGC Open Geospatial Consortium
OS Operating System
PHP Hypertext Preprocessor
RSSI Received Signal Strength Indicator
SQL Structured Query Language
SPKF Sigma-point Kalman filters

11
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

1. Executive Summary

The project ‘De Rotterdam’ aims to provide the Municipality of Rotterdam with a solution to
the problem its employees face, when needing to contact and meet fellow team members in
the vast new environment of ‘De Rotterdam’ building. In fact, in this building, employees do
not all have a fixed workplace to work at, but can choose to work at flexible workplaces. This
makes it hard for employees to find their colleagues, especially since the building has 44
floors. In addition, another challenge is addressed, which stems from the unawareness of
employees about the availability of free workspaces in ‘De Rotterdam’, which will cost them
time and can cause frustration.

The team comprised for this project has been asked to develop a smartphone application
with an easy to use interface that can locate its user, as well as the colleague the user wants to
find, in a reasonable time frame with the help of Wi-Fi monitoring. Additionally, dependable
navigation should be provided with a route description. As an agreed limitation, given that
most of the employees use Samsung smartphones, the application will be aimed for Android
software devices.

The requirements in this project are decided by three parties: the client, the coaches and the
team itself. For the client, a working prototype is expected that fulfils the functions described
above. For the coaches, it is important that the students work as a team, where every
individual has a distinct technical role. For the team, the foremost purpose is to create an end-
product that they can be proud of. To achieve this, everyone in the team has to be active and
creative. Besides the result, a relaxed and non-stressful way of working is desired, while the
educational learning factor remains high.

The scientific research for this project focuses on the extent to which it is possible to localize
a detected device through Wi-Fi monitoring. For this purpose Wi-Fi scanners are used and
data needs to be consistently collected. A number of localization methods can be applied and
the final result is displayed to the client's mobile device.

1.1 SYSTEM ARCHITECTURE
In our design, its major components include the programming language, the operating system
(OS), a Database Management System (DBMS) and a Web Service. The OS for this
smartphone application will be Android, as requested by the Municipality of Rotterdam. Next,
the programming language will be Android Java with JavaScript and PHP connections and
Python, which the group members are more familiar with. For this application that requires a
lot of data, a DBMS is also necessary, to keep the data organized in one place and to be able
to query fast. Although the database can be stored on either an external server or locally
stored on the smartphones, an external server will be a better choice in this case, considering
the application’s performance on the smartphones, since the data storage requires a lot of
memory. Besides, in order to further make the app lighter on the smartphones, a web service,
acting as a middle layer between the client and the database, can also be considered, by which
all the calculations including localization and path-finding algorithms on the database can be
called from the external server.

For desirable functions, foremost the application should localize an employee. This
localizing is done using Wi-Fi monitoring. A localization algorithm determines the
localization of the user and the employee that he/she wants to be found. When the employee is
found, the user wants to be navigated to the colleague. A shortest path algorithm takes the

12
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

positions of the user and the target employee and calculates the shortest route to take. This
route will be visualized by a rendering program and sent to the smartphone.

1.2. THE LIBELIUM MESHLIUM XTREME SCANNERS
The hardware used in this project consists of 4 Libelium Meshlium Xtreme Scanners, which
are used to scan for Wi-Fi-probes of the smartphones. The data received by the scanners
always contains the MAC address of the scanned device, which allows to identify it uniquely,
the strength of the signal (RSSI), which gives the average distance of the device from the
scanning point, the vendor of the smartphone (Apple, Nokia, etc.) and the TimeStamp, which
indicates the date and time the data was collected.
The collected data can be either stored locally on the Meshlium scanner or stored in an
external database.

Three tests with the 4 Libelium Meshlium Xtreme Scanners were performed in the faculty of
Architecture in order to find out the range of scanning of a Wi-Fi monitor, the influence of
obstacles on the signal strength and in order to distinguish areas based on signal strengths.
This environment was chosen because the space is similar to the environment of ’De
Rotterdam’. In order to keep all tests consistent, a few things were taken into consideration: 4
Meshlium Xtreme and 3 Samsung Smartphones were utilized for the all four tests, the
scanners and the phones were time synchronized, the scanners were all set on a scanning time
interval of 30 seconds and the data was collected in each point for a time interval of 5
minutes.

Then six tests were performed in ‘De Rotterdam’ building were carried out to collect the data
for the implementation of the so-called 'Catch-a-colleague' application. The tests were held in
the 16th floor of the building, where the environment consists mainly of open spaces with free
workspaces and small rooms made of glass and thin walls.
Four different scanner layouts were tested. In the first scanner layout the scanners are placed
at the four corners of the building. In the second scanner layout the scanners are placed close
to the corners of the central empty-space rectangle which includes the elevator area, stairs and
non-working areas. In the third layout the scanners are placed around the concrete block near
the elevator and pathways, which are better covered in this case. In the fourth scanner layout,
the four scanners are placed only in half of the floorplan to explore the impact of having a
denser scanner population per floor.

The application developed in this project consists of several components: space subdivision,
localization, navigation and visualization. All of them will be addressed in detail in the next
paragraphs.

1.3 SPACE SUBDIVISION
An important component of the ‘Catch-a-Colleague’ application is the space subdivision of
indoor space, which is fundamental for correctly guiding an employee to the location of
another colleague but also for testing the localization algorithm. Since the indoor environment
is much more complex than the outdoor environment, different aspects have to be taken into
account while modelling and subdividing indoor space, such as obstacles like furniture,
columns and walls. Different spatial models can be chosen to model indoor environment:
geometric models for representing the shape and the metric properties of spatial objects,

13
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

topological models to highlight the relation between spatial objects, whereas semantic models
to focus on the meaning of spatial features.

First of all, for subdividing the space in 'De Rotterdam' building a few requirements are set-up
by the team: the subdivisions should all have the same size, should consist of around eight
subdivisions (based on the localization accuracy), should not distinguish between rooms/ open
space and should not be too detailed. In the end, two different implementations are carried out
by the team: the intuitive space subdivision and the automatic space subdivision, which is
based on the Multi- Layered Space Model from IndoorGML.

The intuitive space subdivision is based on subdividing the space in a human-understandable
way, considering the characteristics of the building (obstacles, rooms, etc.), visibility criteria
(e.g. line of sight) and the usage of space (workspaces). Despite this solution might lead to a
better human-understandable result, it is quite hard to be implemented in an automatic way,
since the environment must be modelled accurately. Furthermore, it can be time consuming,
because it requires manual editing of the subdivisions. The subdivision is made in CAD
software and then the different regions are converted into Shapefile format using GIS
software. In the end eight different subspaces are created, based on the different workspaces
that can be distinguished in the floorplan.

The automatic space subdivision is carried out performing a triangulation of the indoor space,
since the team has experience with this method. The Constrained Delaunay Triangulation has
been chosen to decompose the polygon of the floor plan into non-overlapping triangles. The
Triangle software package with Pyshape and Shapely Python libraries are used to script the
algorithm. Later, the triangles created by the triangulation are then combined with the range
of the wifi scanners, in order to create a space subdivision that fit well with the accuracy of
the localization method. Buffers with a radius of 10 and 20 meters, taken from the heatmaps
of the fingerprinting localization method, are built around each scanner. All the triangles that
fall into the circle were considered being part of one subspace. In the end all the triangles
belonging to each subspace are merged together and the overlapping polygons are manually
deleted, so that in the end each subspace have about the same size. The automatic method can
thus better be referred to as semi-automatic. With this method eight different subspaces were
created in the end.

The triangulation was also combined with the heat maps, but with this approach just four
or five subspaces are created. Since it leads to a rather too coarse subdivision, which is not
suitable for the localization, this approach has not been tested and automatically implemented
in code.

Both the space subdivision has been tested in the localization algorithm. A slightly better
result in the localization has been registered with the semi- automatic space subdivision
because it takes into account the range of the scanners, which are not considered by the
intuitive one. However, the intuitive space subdivision seems in the end to be the most
suitable for being used in the navigation, because it is based on the usage of space. By
dividing the space into different workspace, is an more understandable way for a human to
navigate in an office space.

14
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

1.4 LOCALIZATION
Among the functions, the localization algorithm is the core and also the most difficult part in
the whole project. Thus, an extended research on localization techniques was performed,
based on literature and case studies. In the end, two localization methods are explored and
implemented by the team: the multilateration method and Wi-Fi fingerprinting method.

In the multilateration approach, a multi-metric function that mainly takes into account RSSI
values and roughly translates them into distances of the devices from scanners is constructed.
It is the process of determining a relative unknown position of the device at question, using
the geometry of spheres or circles, whose radius is described by the above function. At first
the trustability of the RSSI values perceived by the scanners needs to be assessed. For this
reason, a logarithmic function is derived. The function applies a weight to each RSSI value,
based on how recent it is to the time of request. After the weights are calculated for each RSSI
value available, the weighted average of them is computed that yields one RSSI value for
each scanner. The next step consists in translating those RSSI values into distance, even if this
translation is not easy to handle and in many cases it has been proven that exact positioning
through this method is impossible. Nevertheless, a function was constructed to make the
multilateration method feasible to an area/room extent. Normally, in this method, at least 3
circles need to intersect in order to achieve localization. In indoor environments with a small
number of scanners this level of availability is quite difficult to achieve. In order to overcome
this, an indicator is applied on each ring that defines its priority in choosing it as a best option,
even when tri-/multi-lateration is not achieved. The outcome of the algorithm is an area that
localizes the device in question within it. The subdivision that matches best the resulting area
is the one returned as the final solution of localization. As an added feature, it is possible that
after the algorithm returns the first solution, it can also return a second option of an adjacent
room that possibly the device lies.

The fingerprinting approach consists of mainly two phases: the training phase and the
matching phase. In the training phase, the given area is divided into many small cells, and for
each of them an RSSI value is rather directly measured or computed by interpolation. Then
heatmaps with these values are created. In the matching phase, live RSSI values can be
compared, using a matching algorithm to find the best match with the training database
(fingerprints), created in the previous phase.

For the implementation of this method, before the raw data collected in 'De Rotterdam'
building can be used, some processing is carried out and a local coordinate system is defined
using two different grids (2x2m and 4x4m). Since not for every cell of the grid an RSSI value
has been measured, interpolation is performed, using the Scipy Python library. Not all the
sampling points are used in the interpolation, since some of them (testing points) are used to
test the accuracy of the heatmaps. Then, the Nearest Neighbor matching method is used to
match between the recorded fingerprints (sampling points) in the heat maps and the testing
live fingerprints (testing points). Location with the least sum of squared differences is
assumed to be the best match. As for the multilateration method, the localization can be
improved when given a second choice or even a third choice.

The multilateration method relies heavily on the chosen function which models the translation
of RSSI values into distance. The function itself is dependent on the scanner placement and
mostly on the surrounding physical environment. Furthermore, the solution can have varying
success rate depending on the space subdivision and/or combined solution. Therefore, indoors
localization through this process is a multi-layered problem which takes into account a

15
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

number of factors that are difficult to model, but can achieve a good outcome with a high
level of automation and environment modeling.

On the other hand, fingerprinting method is a precise method and close to the real
distribution of values. It can be updated by user input. However, it is quite time-consuming to
collect the data and it strictly depends on the scanner layout.

1.5 NAVIGATION
In order to enable the user to find their colleague, navigation is needed to communicate the
route to the user. For accomplishing this task, a description of how the subdivided spaces are
connected is needed. After having analyzed the main approaches for generating the navigation
system, the network approach was selected for ‘De Rotterdam’ building since it fits better
with the characteristics of the building, it is easy to design (few nodes and edges needed) and
not high localization accuracy is needed.

In total, three different networks have been implemented by the team: the manual network,
the semi-automatic network and the automatic network.

Since the manual network is manually drawn using a CAD software, it can be easily
adapted to the characteristics of the building (obstacles, rooms, etc.).

The semi-automatic method considers the building geometry. Certain nodes are necessary
for an efficient routing for any floorplan in the MidTower of ‘De Rotterdam’ building,
regardless of the space subdivision. For this reason, a `basic routing` is created as a part of the
network. It consists of nodes in and around the buildings core, enabling navigation from and
to the elevators and staircases. Additional nodes for the routing around the core of the
building are added to enable an effective routing. After this basic routing is in place, the
subspaces resulting from the space subdivision can be taken into account. For each subspace
the centroid is computed using the Python library Shapely. The script thus then searches for
the center points of the subdivisions and connect these points with the route around the core.

The automatic network does not consider the building geometry. It uses the center points
of the subdivisions as a starting point. After computing the centroid, each centroid is
connected with the centroids of the neighbouring subspaces and in this way the network has
been generated. In many cases the network crosses holes which represent the rooms left out
the subdivision, since they are seen as obstacles, where people cannot walk through.

Once the network is generated, a route computation is needed from the user`s position
towards the target position. When both positions have been appointed to a certain node, a
computation of the shortest path between these nodes can be performed. The user`s position
will then be defined as a start node and the target`s position will be defined as the end node. A
path finding algorithm will search for adjacent nodes around the start node, until the end node
has been found.

Different path finding algorithms exist, varying on complexity and computational
efficiency, each more suitable for a certain application. Since a starting point is already
known, single source shortest paths algorithms are considered for a weighted and undirected
graph. In our case the graph is undirected because any movement through the network can be
done in both directions. In our implementation, the Dijkstra path finding algorithm has been
used, since it is easy to implement and the team has experience it. A prewritten Dijkstra
algorithm scripted in Python has been used, which takes as input an adjacency list with the
nodes and the edge lengths. The Dijkstra algorithm searches through adjacent nodes, based on
a priority queue which extracts the nodes with a minimum weight (distance) from the source.
This means that equal amounts of nodes are visited in all directions, until the end node has
been found.

16
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

1.6 VISUALIZATION
In order to navigate an employee towards a colleague, a visualisation might be the most direct
way of achieving this. The route the colleague has to follow will be displayed in the
application, in which all the loose components are combined. The application is developed for
Android, as the employees of the Rotterdam municipality are granted mobile phones which
run on that platform. Since, there are around 3000 employees working for the municipality of
Rotterdam, all of whom can be present in the office, it should be easy to select the colleague
one is looking for.

The first step is to acquire the mac-addresses of the searching and the searched colleague,
which are stored in a database. In this case MySQL workbench is used and two tables are
created: one table storing data about departments and another table for individual phones. To
select the searched colleague, the relevant department can be chosen out of a list of
departments. Then following step is to select a colleague that belongs to the selected
department. Then, a connection to the database has to be made in order to retrieve the mac-
address of the searched colleague. Frequently updating and validating the database with the
correct mac-addresses for each colleague is crucial for the functionality of the system. Since
the users’ location is also required, its mac-address should also be retrieve. Once these values
are found, the localization script can be requested to run with the two mac-addresses as input
nodes to retrieve the shortest route. In order to query these tables from the application, PHP is
used. The PHP-file is stored on an external server.

Similarly, another PHP file is called, in order to call the python script containing the
localization algorithm on a remote server, to run with two mac-adresses as input. Once a
location is returned, the Dijkstra's shortest-path algorithm is run on these two nodes and in the
end a route given as a sequence of node numbers is returned.

When the route is known, a visualisation which can aid the user with its navigation can be
created. To do so, the route should be rendered and accompanied by an illustration of relevant
building parts.

The visualisation can be done rather in 2D, 2.5D or 3D, depending on the demands and the
complexity of the building geometry. Since a 3D visualisation can show more information
about the building geometry, which may help the user, it is chosen to be implemented in the
project. With a 3D visualization, (parts of) a 3D-model can be depicted on the mobile phone,
while nodes and lines can be rendered on top of this. Showing or switching between different
floor levels (visible buildings parts) and levels of detail (layers) belongs to the possibilities.
However, it could be heavy to run as mobile application.

In order to render the geometry and routing the team has decided to use the 3D engine
Unity3D. Unity3D is known to be capable of visualizing the geometry and routing and, more
importantly, it is compatible with Android applications. Within Unity3D a scene is created,
consisting of a 3Dmodel, lighting and textures. On top of this the route will be renderer. Since
the model created for the three floor plans is not very rich in semantics nor is it geometrically
detailed, the geometry is directly stored on the phone rather than on the server. To visualize
the route clearly, only the floor plan, on which the searched colleague is present, is used.

The camera is used to determine which part of the geometry is visible and in what way.
The team has decided to use a bird’s eye view perspective as it created the most oversight of
the building. Although the entire floor plan is visible from the initial view, users may wish to
change the camera position in order to get more information of the building geometry.

17
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

1.7 CONCLUSIONS
To conclude, the project aims to help employees in ‘De Rotterdam’ building to find their
colleagues and free workspaces. The objective is to develop a working application prototype
for Android smartphones with an easy to use interface in 3D-view that can locate its user and
colleagues and provide a dependable navigation with route description with the help of Wi-Fi
monitoring. There are requirements from the client, the coaches and the team, that have to be
fulfilled in order for this project to be a success. Foremost, the team has tried to achieve a
working prototype for the application Catch-a-Colleague that complies with all the
requirements mentioned above.

In the development of the application, privacy issues may arise since some issues related to
the use of the user's location information may occur. However, smartphones have been
provided to the employees by the Municipality of Rotterdam, thus many privacy issues may
be avoided in this case. The employee's permission should still be asked in advance, as well as
the purpose of collecting the MAC address of the devices should be clearly stated and
personal data should be sufficiently protected from unauthorized use.

Making a conclusive remark for each of the loose components, it can be said that the
multilateration method relies on the scanner placement and on the scanner layout, which may
affect each other. RSSI has been discovered to be just an indicator which is not directly
translatable into distance. In the end with multilateration it is possible to achieve a good
outcome if the environment is modelled.
For the fingerprinting localization method the placement of the scanners define the result of
the heatmaps and therefore it is a deciding factor for this approach.
Regarding the space subdivision, the intuitive space subdivision seems in the end to be the
most suitable for being used in the navigation, because it is based on the usage of space and it
is more human-understandable.
For the navigation component, by comparing all the different networks with each other, the
manual network seems to be the most effective since it can be easily adapted to the
characteristics of the building (obstacles, rooms, etc.). Further investigation needs to be
performed in order to achieve a network that can represent a manual one in terns of efficiency
for the scope of the application.
Finally, for the visualization component, a 3D model on the mobile phone may help the user
as it shows additional information about the building geometry. For indoor environments with
complex spaces, route descriptions may be of benefit to the user.

In general it can be concluded that the challenges of creating an indoor navigation application
do not only lie in the loose components. The integration of the system requires both some
technical knowledge and resources. Considering the time frame allowed for the project and
the research scope, a satisfactory result is achieved.

18
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

2. Introduction

2.1 INTRODUCTION TO THE TOPIC
The Municipality of Rotterdam is moving to their new workspace: the new office building
‘De Rotterdam’ in Rotterdam. This building consists of three towers, of which the
municipality will be using the so called MidTower, partially. An important part of moving to
the new offices involves making use of flexible workspaces as approximately 3200 colleagues
will be working on 2500 workspaces. This means that employees will not have their own
workspace, but will work on any available workspace on a given day. A consequence of this
is that finding your colleagues within the building is a difficult issue, as they may be working
in different areas on different floors of the building. Employees are supplied with mobile
phones by the Municipality, which could be used in a solution which aids the user to find
his/her colleague. Therefore, the main objective of this project is to develop a mobile
application which enables the user to find a colleague within ‘De Rotterdam’ building.

2.2 RESEARCH AREA
2.2.1. Objective

The main objective of the project is to:
“Create an Android smartphone application for the Municipality of Rotterdam to locate their
colleagues in ‘De Rotterdam’ building with the help of Wi-Fi monitoring”.

2.2.2 Research area
Research question

The research question corresponding to the main objective is:
“To which extent is it possible to localize a colleague using Wi-Fi Monitoring
on a single floor level in ‘De Rotterdam’ building?”
The research of the team will be focused on the localization part of the application, since a
precise localization is required for the goal of the application.

In order to give an answer to this question, research and testing needs to be done. Since the
endproduct is one application, where all the components such as navigation, space subdivision
and visualization are integrated, the research question can only be answered by having also
subqestions/ research areas concerning these other components.
These subquestions/ research areas are:

1. An investigation of the positional accuracy of Wi-Fi monitoring techniques.
2. How can you model the relationship between signal strength (RSSI) and distance?
3. What is the best space-subdivision method for ‘De Rotterdam’ building?
4. How can you visualize the route to take?
5. How to integrate the different components (localization, navigation and visualization?

2.2.3. Research approach
In order to create the end result, a working prototype, several steps are done by the team.
After stating the research question, literature research was done. That included reading
scientific papers, as well as meetings with the project coaches and client. During the research,
several tests were performed with the hardware provided, in different testing environments.
Concepts were thought of and implemented. Results were gathered to test the implementation
and to be able to answer the research question. Furthermore external help was sought in the

19
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

form of a meeting with the project manager of the Libelium Company about the Meshlium
scanners and a (possible) meeting with the E-Semble company for helping with the
application.

2.3 STRUCTURE OF THE REPORT
This report is structured as follows. First, an introduction to indoor navigation applications is
given. Then the guidelines for this project are provided, such as the requirements, the users,
the constraints and the budget. Then the concept will be explained into more detail. After that,
a lot of literature research done by the team is summarized. In the next chapter more can be
read about the scanners and the performed test. The chapter that follows explains in a
technical way, the implementation of the components to make the application and the results
of the process are displayed. The last part of the report contains the conclusion with the
answer to the research question, as well as recommendations for further research.

20
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

3. Indoor navigation applications

3.1. INTRODUCTION
The ‘Catch-a-Colleague’ application which is developed for this project falls into the category
of Location-Based Services (LBS), which can be defined as services that integrate a mobile
device’s location or position with other information so as to provide added value to a user
(Schiller et al., 2004). LBS are extensively used in outdoor applications. But estimating the
location of people and tracking them in an indoor environment is still a challenge, since the
accuracy of explicit positioning sensors such as GPS is often limited for indoor environments
(Paul and Wan, 2008).

Nowadays, the ability to navigate people in indoor environments has become increasingly
important for a large number of applications, since the average person spends approximately
90% of his/her time inside buildings, indoor environments play a particularly central role in
human activities (Jenkins et al. 1992).

Several different approaches for indoor localization exist, using a variety of technologies
such as ultrasonic sound, UWB radio, Wi-Fi, RFID, Bluetooth, Infrared, etc. (Quintas et al.,
2013). In particular, Wi-Fi is an attractive positioning technology due to the widely deployed
Wi- Fi access points (APs) and the growing number of Wi- Fi-enabled mobile devices on the
market. Wi- Fi APs can be found almost in every public building, such as in offices, hotels
and shopping centres, etc. (Ching et al., 2010).

Using smartphones for accurate indoor localization opens a new frontier of mobile
services, offering enormous opportunities to enhance users’ experiences in indoor
environments. Despite significant efforts on indoor localization from universities and
industries in the past two decades, highly accurate and practical smartphone-based indoor
localization remains an open problem (Liu et al., 2013).

From literature review emerged that so far, not so many indoor navigation system based
on Wi-Fi technology have been developed, especially in office environments. Some
commercial companies (e.g. Insoft) provides solutions for indoor office environment
positioning and navigation but most of them combines different sensors (e.g. accelerometer,
gyro, camera, Wi- Fi, bluetooth, etc.) in order to achieve better accuracy. In addition, the
number of system for indoor navigation using robots in office environments have also been
recently implemented (Marder-Epstein et al., 2010; Biswas and Veloso, 2010), but an overall
solution based on a single technology has not yet been determined.
Considering the localization component, most of the case studies found in the literature
review apply Wi-Fi fingerprinting technique since it can reach a relatively high accuracy in
the order of magnitude of meters, whereas Wi-Fi monitoring is not much implemented, due to
the accuracy.

3.2. EXAMPLES OF AN INDOOR NAVIGATION APPLICATIONS
Radu et al. (Radu et al., 2013) developed Pazl, a mobile crowdsensing-based indoor Wi- Fi
monitoring system that is enabled by a hybrid localization mechanism, which integrates the
best aspects of pedestrian dead reckoning and WiFi fingerprinting (see Figure 1). Their focus
is on indoor environments with multitude of access points (APs), such as shopping malls and
hospitals. Pazl relies on crowdsourcing for constructing the Wi-Fi fingerprint database and it
has been implemented through a combination of an Android mobile application and cloud
backend application on Google App Engine.

21
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig. 1: Schema of Pazl
(Source: Radu et al., 2013).

Fig. 2: System architecture
(Source: Quintas et al., 2013).

Another indoor application for mobile phones was developed by Quintas et al. (Quintas et al.,
2013) in 2013, using Android OS, localization techniques and server side logic to do the
localization inside buildings. A general overview of the system’s architecture can be seen in
Fig. 2.

At the University of New South Wales in 2010 developments were made on an
application to provide students with location based services, such as finding a lecture room,
finding for example the nearest vending machine using Wi-Fi positioning technology (see
Figure 3).

Fig. 3: System architecture. (Ching et al., 2010)

22
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Concerning the visualization component, most of the navigation programs use primarily 2D
plans for displaying the route, but in recent year some 3D interfaces have been developed for
several applications e.g. for emergency response, hospitals, shopping malls, airports, etc.
(Meijers, Zlatanova & Preifer 2005). For instance, an app developed by Navizon provides
different display options: Buddy Radar which gives users a real-time display of where the
friendly devices are located in reference to the phone’s position. An overhead view is
displayed, showing the location of devices on a 2D floor plan. Or Google Map’s View, which
shows device locations overlaid on a map of the area (see Figure 4).

Fig. 4: Different display options (Source: http://www.navizon.com/its/whitepaper.pdf).

For the current project the focus lies on creating an Android application for localizing by Wi-
Fi monitoring and visualization of the navigation in 3D. The next chapters will provide more
details about the concept.

23
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

4. Requirements

This chapter describes the guidelines that were taken into account for the application into
more detail. These guidelines helped structure the project.

4.1 USERS
An important aspect for creating an application is to define who its users are. In the current
project users are the employees of the Municipality of Rotterdam the main users. They will
work in the MidTower of ‘De Rotterdam’ building. Phones are provided by the Municipality,
so they do not use their own phones. Basically, they want to be able to find a colleague during
their working day, through an application on their mobile phone.

Another user type could be visitors who have a meeting with an employee. They might
probably not know the building and for them it will be even harder to find someone in the
MidTower. If they install the application at arrival in ‘De Rotterdam’, it can help them guide
them through to the building to the right floor for their meeting.

4.2 REQUIREMENTS TREE
The requirements of this project, as previously mentioned in the project plan, are decided by
three parties: the team, the coaches and the client. A tree version of them is shown in Figure 5.

Fig.5. Requirements tree

Requirements

Team

Teamwork

High
educational

factor

Smooth
process

Coach

Good end
result

Distinct role
team

members

Feedback

Client

Low costs

Application/

prototype

24
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

For the team, value is placed on the final outcome and grade, that much can be learned as
well as to have a good team spirit and acquire a lot of new knowledge during this project. In
fact, the main requirements for the team concern creating an end-product to be proud of,
working in a relaxed and non-stressful way, remaining creative and learning a lot during the
project.

The coaches mostly want the team to work in a team and where every individual has their
distinct technical role. In addition, they also require that the team keeps them updated of the
achievements, delivers a good end-product and applies the knowledge acquired during the 1st
year.

The client, the Municipality of Rotterdam in this case, wants to have a light application to
locate its colleagues, with a clear and an easy-to-use interface. According to the client, the
application should run on Android devices.

4.3 CONSTRAINTS
Constraints are unavoidable factors that must be taken into consideration by the team and the
client to form a circle of agreement of what can be achieved. Some of them may be
unchangeable, whilst others might be managed so that they can be erased or replaced for the
team to be able to explore different paths.
The constraints perceived by the team are presented below grouped by user acceptability and
technology used.

User acceptability:
- The employees might leave their smartphones on the desk while they are away

(resulting in wrong assumptions by the application)
- Not every employee will turn on the Wi- Fi which will make them impossible

to be found
Technology used:

- The number of the scanners provided for this project might not be enough to
cover the whole building/ floor

- The structure of the building or the layout of the floors might somehow affect
the accuracy of the Wi-Fi scanners (in some areas the Wi- Fi signal might be
blocked out)

- The accessibility of the building for the team to test the prototype
- The hardware (scanners/ smartphones) might be of poor condition or their

accuracy and thus not good enough to perform a perfect positioning
- The possible layout of the Wi-Fi access points might not guarantee a satisfying

result

Assumptions

Considering the constraints, some assumptions have been made by the team:
- For the Wi-Fi Monitoring only 4 Meshlium scanners are utilized
- Every employee has a Samsung smartphone, provided by the Municipality.

The app will thus be coded in Android.
- Every employee carries their smartphone with them in active mode.
- Tests will only be carried out on one or max three floors, namely the 14th, 15th

and the 16th floor.

25
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

4.4 BUDGET
The resources for the project can be summed up in the following groups:

• Hardware Resources: 4 Libelium Meshlium Xtreme scanners and three Samsung
Smartphones provided by the TU Delft University.

• Human Resources: the team (5 MSc students with different backgrounds), the coaches
and the client (the Municipality of Rotterdam).

• Software Resources: the Android application, database (MySQL, Postgres), server
(provided by Wilko Quack), Unity 3D game engine.

Apart from the hire of 4 Meshlium scanners from the company Libelium, no extra budget is
expected for the project.
The performance predicted by the team is mainly related to being able to locate a person with
the hardware provided, with a certain accuracy to make the ‘Catch-a-Colleague’ application
working. The result to achieve is a working prototype.

4.5 TECHNICAL RISK ASSESSMENT

Fig. 6. Risk map assessment
(Source: Holland & Holland Enterprises Ltd, n.d.)

A risk map assessment is basically an iterative cyclical process containing the objectives and
the process as planned at the start (see Figure 6). The further the project develops, the more
risks can arise. It is important to think about the potential risks in an early stage, to prevent
them or to take actions against them. The monitoring and keeping control are part of the
quality management and are connected to the former stated objectives.
Risks in this project plan are/could be:
- to not have a 3D- model in time.

For the 3D-model the team is dependent on the client. If the client is not able to deliver
the model in time, the visualization will be in 2D or in a simplified 3D- model, made
by the team itself. The application could be less clear in 2D. A solution would be to
start early with making a 3D-model by ourselves and to keep contact with the client
about the status of the 3D-model.

26
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

- to not have access to the ‘De Rotterdam’ building.
If the team is not able to test in ‘De Rotterdam’ building, because the access to the
building is difficult because of the fact that the building is partially under construction,
the team has to find another location similar to this high- rise building. An example of
that could be the Faculty of Electrical Engineering, Mathematics and Computer
Science or the testing can be done in the old building of the Municipality of
Rotterdam.

- to not be able to develop an accurate enough localization algorithm.
If the localizaton algorithm is not accurate enough, the positioning would not be right
because the positions can be far off. Then the application would not work properly.
Under the circumstances (the assigned time for this project, the knowledge of the
team) the team tries to develop a localization algorithm as best as the team can.

27
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

5. Conceptual design

5.1. CONCEPT APPLICATION
An example of how this kind of application could work is illustrated in Figure 7 below.

Fig. 7. Example of the functions of a colleague finding application

To achieve this functionality, a system will be developed which consists of the different
components needed to localize and navigate employees throughout the building. The system
can be divided in three different components.
Firstly, the Localization component is introduced, which determines the location of a mobile
phone. In the project Meshlium Wi- Fi scanners will be used to scan for Wi- Fi-probes of the
smartphones.
Secondly, a Navigation component will determine how a user can reach the position of its
target. To do so, a floor plan subdivision, a network generation and a route calculation have to
be performed.
Finally, a Visualisation component will illustrate the building and the calculated route on the
mobile device, in order to guide the user to its destination.
These components can be further divided in steps that need to be taken during the process, in
order to develop the working application. In the listing below, an overview is given of how
these steps together can form the system.

The steps in the system concept are as following (see Figure 8):
1. Multiple Meshlium scanners are continuously monitoring mobile phones
2. An external database connection enables the combining of scanner data
3. A user searches a target, the mobile application requests a position
4. A localization algorithm is run on the data to find the targets phone
5. Localization algorithm appoints the target to a subdivided part of the building
6. Localization algorithm appoints the user to a subdivided part of the building
7. A shortest path algorithm is run on the external server
8. The resulting route is the input for the 3D engine
9. The relevant building geometry is loaded in the 3D engine
10. 3D engine renders route and geometry and sends the scene data to the smartphone

28
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig. 8. Visualization of the system concept

29
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

5.2. CONCEPT SYSTEM ARCHITECTURE
The application ‘Catch-a-Colleague’ consists of several components and should provide
various functions. First and foremost, the application should localize an employee. This
localizing is done using Wi-Fi monitoring. A localization algorithm determines the position of
the user and the employee that he/she wants to find. When the employee is found, the user
wants to be navigated to the colleague. A path finding algorithm takes the positions of the
user and the employee and calculates the best route to take. The best route depends on the
shortest path, or for example minimum costs. This route will be visualized by a rendering
program and made visible on the smartphone. The three main functions of the system are
thus:

- Localization: determines the location of the user and the colleague they want to find
- Navigation: determines the best route to take from the location of the user to the

employee
- Visualization: shows the bestroute in 2D, 2.5D or 3D

An app by itself consists of the following:

- System language or the programming language
- Operating System (OS)
- If necessary: Database Management System (DBMS)
- If necessary: a Web Service

The Operating system for the smartphone application will be Android, as requested by the
Municipality of Rotterdam. The programming language will be Java/JavaScript and Python.
For this application that requires a lot of data, a DBMS is necessary, to keep the data
organized in one place and to be able to query fast.

The database can consist of the following data:

- Data about the 3D- model (floors/walls/doors/vertical elements, such as stairs and
elevators

- Data for connectivity (the chosen network or grid, with coordinates related to a space
subdivion)

- Data from the scanners (at least ID, timestamp, MAC, Access Point, RSSI, Vendor)
- Data about the employees (name, MAC-address, department)

The team prefers, if the team has a 3D- model in time, to store the geometry in the database.
This is aiming to have all the data in the database and to easily request the right parts of the
geometry for the visualization. This will lead to an application that is light.
The tables stored in the database contain an employees table, which links each employee to
the relevant MAC- address. When an employee’s location is requested, the corresponding
MAC-address can be selected. The entries for this MAC-address of the latest 5 minutes will
be selected by the localization algorithm. The localization algorithm will appoint the
employee to one subspace or cell, linked to a floor level. The same process will be repeated
for the user employee’s location. The locations can then be linked to a network, consisting of
nodes and edges for each floor. Then a path finding algorithm can be run to find the best route
to take from the user to the searched employee. Based on the data from this route calculation,
navigation can be given to the user and the right parts of the 3D geometry can be selected for
the visualization.

30
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

If the 3D model was provided, the team would have liked to use the PostGres/PostGIS
database, because spatial objects could then be stored. Instead, the team has used the MySQL
database, which suits better for the simpler relational purposes of the project and efficient
querrying.
The database can be stored on an external server or locally stored on the smartphone. If the
large amounts of data would be stored locally, the application would be slow and heavy to
run, because the storage of data will require a lot of memory. Therefore the data will be stored
in an external DBMS, which also has the advantage that updating needs to be done on only
one place, instead of updating the locally stored data on each phone. Also ensures the external
DBMS a more safe application, since you need to log in to have access to the data, in
comparison to the fact that everyone can access the locally stored data on the phone.
In Figure 9 the general difference is represented.

Fig.9. Direct connection or connection through a middle layer

A web service, also stored externally on a server, can act as a middle layer between the client
and the database. The calculations on the database can be done by the web service, which
calls the files that contain the algorithms and gets the results back. This service is not
necessary, since this calling of files can be done on the phone too, but this will cost more
memory which can result in the app to run slowly. This lead to the constrained options the
team can explore to try to implement a web service.
The concept System Architecture for the Rotterdam Synthesis project looks as follows (Figure
10):

31
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig. 10. Concept System Architecture

To be able to create an application that is light and runs smoothly as was one of the
requirements, it would be the best if the phone itself will be seen as a thin client, thus only
display of the route in a model will be done on the phone and that a web service, which
consists of the calling of the algorithms written in Python code, would be used. The actual
implementation of the components in the application is further described in chapter 11.

32
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

6. Literature research and theory

This chapter describes the literature study the team has done to create the several components
and the prototype. First the report describes an important aspect of the application, namely
privacy. Then the separate components are described from literature.

6.1. PRIVACY
In the process of the development of the ‘Catch-a-Colleague’ application, privacy is

important since some issues related to the use of the users location information may arise. The
‘Catch-a-Colleague’ application can be considered as part of the category of Location-Based
Services (LBS), namely services delivered according to the location of the user. The problem
of protecting user’s privacy in Location-Based Services has been extensively studied, since
the quick development of the latter in recent years and since privacy issues may affect the
success of the services themselves (Bettini et al., 2009).

In The Netherlands the right to privacy is based on the Dutch constitution in article 10, but
also European legislation provides an additional basis in the protection of privacy in The
Netherlands (van Loenen et al., 2008). According to the Data Protection Act (WBP, 2000),
which implements the Directive 46/95/EC into Dutch legislation, personal data (data on
individual person) may only be processed for specified and legitimate purposes and no longer
stored than strictly necessary (van Loenen et al., 2008).

In addition to the general privacy legislation, privacy and processing of personal data in an
employment relationship have to be considered in the case of the ‘Catch-a-Colleague’
application. In fact, some questions need to be investigated: How do the privacy legislations
apply in a working sphere? Can an employee trust on privacy during working time, when
using devices from his employer?
In an employee-employer relationship it can be justifiable for an employer to check the e-mail
and internet use of his employees. The Dutch Data Protection Authority has published a
report, “Working well in networks”, in which guidelines are provided on how to check he e-
mail of individual employees. In the Netherlands there are a lot of cases concerning Internet
and e-mail monitoring and camera surveillance in the workplace, but so far there are only few
cases concerning localisation of employees. However, from the few cases, it can be concluded
that the same reasoning will apply as is the case with regard to internet, email and camera
surveillance. At least there has to be knowledge by the employee that he can be monitored or
watched (FIDIS, 2009).

Furthermore, according to the Telecommunications Act (Telecommunicatiewet, 2012)
necessity of the processing of location data requires to provide a value added service. In the
occasion of mere monitoring of employees, there is in fact no value added service, so in
general this way of monitoring is prohibited, unless there is a prior informed consent of the
individual data subjects (FIDIS, 2009).

In the case of the ‘Catch-a-Colleague’ application, smartphones have been provided to the
employees by the Municipality of Rotterdam, thus many privacy issues are not occurring in
this case. In fact, if it were personal phones of the employees, many privacy concerns would
take place and therefore the data would fall under the data protection regulation. However, the
application should still have a ‘switch off’ button, which allows the employee to disable the
localization service when he/she doesn’t want to be located, when for instance the employee
is not sitting at the desk and he/she is somewhere else (e.g. in the toilet). In addition, another
option to avoid privacy concerns should be the creation of ‘groups of employees’, in such a

33
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

way that personal data is accessible only to certain colleagues, for instance to the ones of the
same department.

The processing of personal data requires to provide value added service according to the
Telecommunications Act, as previously mentioned, and in the case of the ‘Catch-a-Colleague’
application employee personal data is used to allow the localization of a colleague in a
dynamic working space environment.

In developing the application, as the Dutch Data Protection Act states, personal data
related to the employees (name, surname, department, MAC address etc.) should be stored in
the database no longer than strictly necessary and processed only for the localization purpose
of the application, in order to guarantee the privacy of the employees.

Summing up, the employee's permission should be asked in advance, the purpose of
collecting the MAC address of the devices should be clearly stated and personal data should
be sufficiently protected from unauthorized use.

6.2. SPACE SUBDIVISION
Different spatial models can be chosen to model the indoor environment: geometric models
for representing the shape and the metric properties of spatial objects, topological models to
highlight the relation between spatial objects, whereas semantic models to focus on the
meaning of spatial features. Depending on the application, all of these models can be
combined and hybrid models may be developed. The following scheme (Figure 11)
summarizes the main indoor spatial models.

Fig.11. Indoor Spatial Models.

6.2.1 Standard IndoorGML
For the implementation of the space subdivision, standards for indoor navigation have been
taken into account since they are crucial to ensure the compatibility and interoperability of
indoor spatial information. Several standards such as CityGML, KML, and IFC have been
published to describe 3D geometry and semantics of buildings, but they lack important
features that are required by indoor navigation applications.
In this project, Indoor GML, a candidate OGC standard, has been considered since it provides
a common framework of representation and exchange of indoor spatial information,
especially for indoor LBS and routing services.

34
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

In IndoorGML, an indoor space is defined as a set of cells (cellular space) with an
identifier (ID) and a certain location (x,y,z coordinates). Indoor space may also contain
additional information: semantics, geometry and topology.

Semantics is used to classify and identify a cell and to determine the connectivity between
cells. For instance, one of the most commonly used classification of cells is into navigable
(rooms, corridors, doors) and non-navigable (walls, obstacles) cells. This classification is
useful to navigate through cells (connectivity), since to be able to go from one room to
another, the knowledge that at least one common opening (door, window) cell exists (OGC
IndoorGML, 2014).

The geometric representation of indoor space is not a major focus of IndoorGML, since
they are clearly defined by other standards like ISO 19107, CityGML, and IFC. However, it is
still possible to represent geometry in IndoorGML (see Figure 12):

• using external links to objects defined in other datasets (e.g. CityGML)
• including geometry within a IndoorGML document
• including no geometry within a IndoorGML document

Fig.12. Geometric representation of indoor space. (Source: OGC IndoorGML, 2014).

Topology is an essential component of IndoorGML and topological relationships among
indoor objects (e.g. adjacency and connectivity) are explicitly described with the Node-
Relation Graph (NRG). Once adjacency relationships between cells are determined by
Poincaré duality, other topological relationships can be defined from adjacency-relationships-
based semantic information (OGC IndoorGML, 2014) (see Figure 13).

Fig.13. Adjacency and connectivity graph. (Source: OGC IndoorGML, 2014)

35
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

In IndoorGML, besides the geometric, semantics and topological models, another way of
representing the space is defined: the Multi-Layered Space Model (MLSM), which supports
multiple representation layers with different cellular spaces. According to this model, the
same indoor space can be represented for instance as a topographic space, composed of
rooms, corridors, and stairs, but also as different spaces with WiFi coverage cells and RFID
sensor coverage cells (OGC IndoorGML, 2014) (see Figure 14).

Fig.14. Multi-Layered Space Model (left) and an example of a Multi-Layered space
representation (right). (Source: OGC IndoorGML, 2014)

6.3. LOCALIZATION
For the purpose of the designed application, the localization part is the most important and
therefore part of the research question. Extended research on localization techniques was
performed, based on literature and case studies. The general view is that most studies are
focused on their specific case uses or empirical models and scientific formulas which when
applied to the research environment have varying results. Promising new methodologies seem
to make use of models which could better generalize and make a base abstraction of the
problem, but at the same time remaining dependent on the real world environment and
surroundings in every case.

6.3.1 Scanner Placement
Scanner placement is a problem to be solved on its own, assuming all hardware is of identical
absolute capabilities. The local environment of walls, material, noise sources and human
intervention plays an important role which has great impact on signal strength, RSSI values,
multipath, the Fresnel zone effect (Zomax Wireless, White Paper, 2010) and Wi-Fi coverage.

6.3.2 Research
Some research has been performed on this area, which still remains a questionable problem
for wireless network vendors and systems engineers. Below a number of considerations are
shortly presented, but due to the extent of this project, both in time and applicability, they are
not assessed nor further researched.

- In (J.Mulligan, 1997) various attenuation factors are considered and translated into
scientific formulas before tested out for performance. The research case is based on a

36
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

generalized view of the problem and it is considered not to apply firmly on every case,
thus the present one. The author concludes: “Thus far, researchers have not found a
large scale path loss model which closely matches measurements within homes. This
may be an indication that new parameters need to be introduced into the path loss
model, such as construction materials and layout of the home.”

- Specifically for triangulation-based localization, an automated way of defining the
placement of sensors into a known environment is researched in (O.Tekdas, 2010). A
number of algorithms are presented but in the end, the problem is NP-complete, which
is a hindering factor in applicability.

- Empirical models based on ray tracing are taken into consideration in the creation of
(Winprop, 2010). The models are deterministic and therefore require specifications on
path loss exponents and attenuation factors of underlying building materials. 3 models
are considered (see Figure 15):

 i. One Slope Model (only path loss exponent)
 ii. Motely Keenan Model (adding the intersection with walls)
 iii. COST 231 Multi-Wall Model (individual material properties per wall)

In addition, multiple floor coverage is taken into account in the overall solution.

Fig.15. Different empirical models for signal coverage within a building.

37
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

- Promising recent research was performed by (J.Cole, 2014) making use of the
Helmholtz equations, which assume a solution independent of time. When the latter
factor is considered and a Finite Difference Time Domain (FDTD) technique is carried
out, the resulting outcome is an oscillating field view of the coverage area (view here).
In Figure 16, a static view of the field created justifies the positioning of the device in
the middle of the environment, which was the purpose of the author’s research.

Fig.16. Electromagnetic intensity map making use of the Helmholtz equations.

All of the above could have had a positive influence in achieving the best possible outcome
for the current project. Unfortunately, the scope of the research, time restrictions, background
knowledge of the team but also the uncertainty of translating obstruction materials into
coefficient factors does not allow for making use of such models.

6.3.3 Case Study Scanner Placement
Although the previous part constitutes an area of scientific research by itself, a more intuitive
approach was performed in the current case study. Considering the number of devices at hand
(4 Meshlium scanners) and the case environment (‘De Rotterdam’ building), a number of
possible layouts was designed, for which the application could be tested. In the end four were
chosen which were considered the most useful ones to test the capabilities of the scanners and
use in the final testing of the application.
Therefore, in Figure 17 the following layouts are presented:

- Max distance: For this layout the four corners of the building were chosen. The
reasoning behind it was that each scanner can selectively cover about ¼ of the floor
area with “good” signal strength. Thus it would be easier to detect the user in the
working areas, whereas the central area (which is mostly for walking, moving around)
are still covered but with medium signal strength. By combining readings from
multiple scanners these areas could also be distinguished.

- Concrete Square: Scanners are placed close to the corners of the central empty-space
rectangle which includes the elevator area, stairs and non-working areas. This
placement brings scanners closer to allow for maximum coverage, while at the same
time keeps a high possibility for distinctions in the signal strength due to the thick
walls in each corner.

38
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

- Elevator & pathways: Similar to the above, this placement would normally allow for
maximum coverage, but this time the pathways and the elevator area are better
covered, possibly allowing for a distinction by similar signal values per scanner
couple.

- Half-building: In this final case, the desired option to check is what the outcome
would be if using a denser population of scanners per floor. That is to search how the
algorithms perform in a smaller area of the building, and whether it is better to have
more than 4 scanners per floor.

Each of these layouts has its own purpose as far as floor coverage is concerned. Taking into
consideration the physical environment and the scanner range, the two first methods seemed
to be the most appropriate. Thus, the testing was focused on them as it will be described later.

Fig.17. Scanner placement: (a) Max Distance, (b) Concrete Square, (c) Elevator & pathways,

(d) Half-building, no thick wall interference

39
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

6.3.4 Localization Methodologies
Indoors positioning systems (IPS) are systems which utilize sensors (in our case, meshlium
scanners) in order to locate the position of a specific electronic device like smartphones. A
regularly visited option is Wi-Fi fingerprinting [(Wikipedia: Wi-Fi Positioning System,2014),
(M.Quan,2010), (V.Moghtadaiee,2014), (W.Ching,2010)]. The research value in the current
project’s case is that it tries not to follow the norm and explore other areas as well.

6.3.5 Theoretical Background
Given the current project’s context and the hardware provided, the main measurements that
can be utilized for localization are the RSSI values received by the scanners. RSSI stands for
Received Signal Strength Indicator and can be a rough decision factor of proximity for a
scanned device to a transmitter antenna. On this topic, research has been performed on the
actual relation between these values and their possible translation to distance from transmitter
antennas.

In (K. Benkič, 2008), given certain hardware support and 3 different models (free space,
two-ray, log-distance) RSSI values together with a Link Quality Indicator (LQI) were utilized
to find the proximity and accuracy of readings. The results according to the authors depend on
the hardware functionality, environment and actual goals of the application of how accurate
one achieves to be.

A multimodal approach is followed in (E.Martin, 2010) where Wi-Fi, cellular
communications radio and accelerometer of smartphones are integrated to provide an
“accurate” localization measurement in room-resolution (up to 87% rate of success).

An interesting model is built in (A.S.Paul, 2008) where RSSI calibration data assume an
observation function by fitting nonlinear maps between known calibration locations and RSSI
mean values. A Bayesian framework of sigma-point Kalman filters (SPKF) incorporates the
RSSI maps that fuse all sensor measurements with a simple dynamic model of walking. The
dynamic model consists of a random walk model augmented with repulsive forces to account
for room-wall reflections and attenuations.

6.3.6 Localization Concepts
From the above research, it is understood that the underlying problem is dependent on various
factors impeding its generalization. Furthermore, most applications aim to an empirical and
“trial and error” solution that best fits each test case, therefore there is no general guideline to
follow for the current project.
As such, in this case study four approaches were considered:

a. an Area Rings Approach
b. Multi-/Tri-lateration
c. Triangulation
d. WiFi Fingerprinting

For simplicity in the above cases, and without the degradation of generalization, a 2D
environment of point-like devices and positions can be safely assumed.

a) Area Rings Approach

This approach provides a generic deterministic model of signal disintegration as distance
increases between tracked device and scanner. It assumes an open field view of the scanners’
radio signal intensity with no modeled interruptions (walls, multipath, noise etc). Each
scanner defines a number of “rings” which each take up a range of RSSI values related to the

40
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

ones received from tests. The boundaries between the rings are considered to be fuzzy and
each ring’s thickness is assumed to increase the further away from the transmitter (Figure 18).

Fig.18. Concept of area rings of signal intensity per scanner – no degradation.

The rings of different scanners interleaving is not seen as an impeding factor but as a way to
better define the area of localization. If multiple areas are perceived as feasible locations, the
ones with the closest rings to scanners’ radii are considered to be the most probable and
chosen as correct.

This model is deterministic in its approach but requires a testing phase in order to set the
values for each ring. A further step would be to try to model the field based on the
environment interruptions the scanners face due to their placement and by that create not
circular areas, but areas of varying shape.

b) Tri-/Multi-Lateration

By constructing a multi-metric function that mainly takes into account RSSI values and
roughly translates them into distances of the devices from scanners, a trilateration method can
be conceived. Trilateration is the process of determining a relative unknown position of the
device at question, using the geometry of spheres or circles, whose radii are described by the
above function (see Figure 19). It is a well-known method and has been used in surveying,
navigation and the Global Positioning System (GPS). In the current case the main issue would
be finding a suitable function for the translation of RSSI into distance.

41
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig.19. Trilateration (2D).

The problem of defining such a well-structured function is a matter of further research, but
some considerations can be taken at hand. Considering a finite amount of time passed (enough
to achieve a considerable accuracy), the function depends on the RSSI values collected and
averaged (by a certain weight), a model of the surrounding environment (env) and a scanning
factor which relates to the number of times a particular device was scanned (s). The model for
the environment, env is a complex notion, since it involves attenuation factors, multipath and
wall surface materials that relate to the physical world. The s factor can be a metric of
“trustability”, given the max number of scans that can be performed in a certain time frame
and the actual scans perceived.

Thus, the radius r outputted from that function, comes with an added error re which
increases as r increases as well (the further away the device is considered to be from the
scanner, the lowest the credibility of the reading). The above function can be formulated as:

f(RSSI, env, s) = r ± r e

If the device is detected by 3 scanners, a position of the device can be estimated. Each scanner
forms a “ring” of possible location area of the device. The intersection of 3 of those rings is
enough to define an area that is accurate enough for the current project to localize a person in
a sub-division of a room (see Figure 20).

Fig. 20. Trilateration with error in radii included for each scanner (S1,S2,S3).

The blue area is the most probable location of the device.

42
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Multilateration is similar to trilateration but it uses more than 3 fixed points (see Figure 21).
The multiple areas that are formed in this case may be assessed by a factor of “potentiality”
that takes into account the s factor from previously and the number of scanners in the area, in
relation to how many of them actually detected the device. By calculating this, a most
probable area can be found to localize the device.

Fig. 21. Multilateration

c) Triangulation (forward intersection)

Triangulation is a well-known method using fixed points of known positions to calculate a
third point’s position. In forward intersection, instead of using angles which is the usual
method for triangulation, a calculated distance is used. Therefore, for this method, a function
similar to the one described for trilateration above can be used, that accurately describes a
triangle for every pair of scanners and unknown device location. Making this assumption of
calculating distance, the position can be determined by the procedure that follows.

In more detail, for a triangle ABP (see Figure 22) point A and point B are fixed points
with known coordinates. The lengths of its three sides are respectively a, b and c. α and β are
respectively the angle between sides b and c and the angle between side a and c. Point P is the
unknown point whose location we would like to know.

Fig.22. Triangle ABP

Then the coordinates of point P can be calculated according to the equations below.

43
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

�� = �� ��� ∠	 + �� ��� ∠� − ��� − ������ ∠� + ��� ∠	 																																			①

�� = �� cot ∠	 + �� cot ∠� − ��� − ���cot ∠� + cot ∠	 																																				②

If we draw a perpendicular line h through point p to side c, side c would be divided into ��
and �� (see Figure 23).

Fig. 23. Triangle ABP

Then cot ∠� = ��ℎ 																									cot ∠	 = ��ℎ 						
Take them back into equations ① and ②, following equations then are obtained: �� = ���� + ���� − ℎ��� − ����� + �� 	

�� = ���� + ���� + ℎ��� − ����� + ��

Where �� = ������ �!� , 	�� = ��� ����!� , ℎ = #�! − ��! = #�! − ��!

For 2 known points and distances, 2 possible positions may exist for the unknown point.
If more than 2 known positions exist, triangulation for each pair of points can be

performed, thus a number of calculated points for the unknown are found. If n is the number
of known points, the number of possible positions for the unknown complies with the
formula:

N = n (n-1)

In example (Figure 24), if 3 points (scanners in our case) are known and distances from

each of them have been calculated, 6 possible positions exist for the unknown point given a
margin of error. In order to find the position that best fits, all possible combinations of those
positions are considered (2N/2 = 26/2 = 23 = 8). By calculating the standard deviations, a best
possible answer can be chosen.

44
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig. 24. Triangulation with 3 known points

- Accuracy Analysis
According to error propagation, the error of the outcome of a function can be estimated by the
error of its inputs. In this case, the lengths of a and b are the inputs that are going to be
measured by us based on the received RSSIs and the coordinates of point P is the final
outcome. Therefore, $%&! = '(��(�)! $! + '(��(�)! $�!

$*&! = '(��(�)! $! + '(��(�)! $�! 	$+ = ,$%&! + $*&! 	
Where $ and $ 	 denote respectively the error of input a and b, $%&denotes the error of x

coordinate of point P, $*&denotes the error of y coordinate of point P, $+ denotes P’s overall
point position error.
If $ and $ are assumed to be equal, i.e. $ = $ = $, then

 $%&! = -'(��(�)! + '(��(�)!. $	
$*&! = -'(��(�)! + '(��(�)!. $

Where
 '(��(�)! + '(��(�)! = �! + �!�/ ��� − ���! + ��� − ���!�/ ∆!∆� + ��� − ������ − ���∆12�/#∆�

'(��(�)! + '(��(�)! = �! + �!�/ ��� − ���! + ��� − ���!�/ ∆!∆� + ��� − ������ − ���∆/2�/#∆�

45
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

And ∆�= −�/ − �/ − �/ + 2�!�! + 2�!�! + 2�!�! ∆!= 116 56(∆�(� 7! + 6(∆�(� 7!8 = �9 + �9 + 4�!�!�! + ��/ − �!�!���! + �!� − 2�!��/ + �/�
∆1= −� (∆�(� + � (∆�(� = 4��! + �! − �!���! − �!�
∆/= � (∆�(� + � (∆�(� = −4��/ + �/ − 2�!�! − �!�! − �!�!�

A simple example is shown in Figure 25. Just
for the convenience of calculation, the triangle
is assumed to be equilateral and its known
side c on the bisector of the angle between x
and y axes.
Thus �� − �� = �� − �� = �√2

Besides, the error of the measured distance is
assumed to be constant and not to change
with the distance. Then, the table below is

derived showing in this case how the error of
the measured distance affects the final point

position accuracy.

 Fig. 25. Example error calculation

 $�<� $%&! �<� $*&! �<� 	$+�<!�

0.1 0.115470053838 0.157735026919 0.195483175876
0.5 0.57735026919 0.788675134595 0.977415879379
1 1.15470053838 1.57735026919 1.954831758762
2 2.30940107676 3.15470053838 3.90966351751
3 3.46410161514 4.73205080757 5.86449527627
4 4.61880215352 6.30940107676 7.81932703503
6 6.92820323028 9.46410161514 11.7289905525
8 9.23760430703 12.6188021535 15.6386540701
10 11.5470053838 15.7735026919 19.5483175876
15 17.3205080757 23.6602540378 29.3224763814
20 23.0940107676 31.5470053838 39.0966351751
30 34.6410161514 47.3205080757 58.6449527627

Table 1. Point position accuracy resulted from different error of measured distance

46
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

d) Wi-Fi Fingerprinting

The process of Wi-Fi fingerprinting consists of two phases: the training phase and the
matching phase. On the training phase, the given area is divided by a grid into many small
cells, the size of which is decided by how big the area is and how accurate the localization is
required for certain application. Each cell in theory has a unique profile of Received Signal
Strength Indicator (RSSI) of the Wi-Fi access points (APs) (see Figure 26), which depends
very much on the specific placement of the APs as well as the in-situ environment. Thus, a
training database of these profiles at every cell needs to be established in advance to create
heatmaps for each APs. However, collecting data at every cell is excessively time-consuming
and this is where the interpolation of a few sampling points reasonably selected from the grid
shall be introduced.

Fig. 26. Example of fingerprints: the blue, orange and green columns respectively indicate
the fingerprints at three different locations. There are five RSSI values received from five

access points in the fingerprint of each location. Each of these fingerprints presents a unique
characteristic different from that of the others.

Then, live RSSIs can be compared with the fingerprints in the heatmaps using certain
matching algorithm to find the best match with its coordinates (x, y) in a pre-set reference
system. There are two matching methods used most commonly.
One is the least sum of squares, which is also called Nearest Neighbor. This method sums all
squared differences between live signal strength with recorded signal strength per location
and location with the least sum of squared differences then is assumed to be the actual
location.

=>?@AB�CD − EFD�!G
DH� I

The other, counting within a search space, defines a matching range for each AP using a pre-
set deviation δ allowed for the signal strength. If recorded signal strength is EFD, a match is

47
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

achieved when the live signal strength CD is within KEFD − δ, EFD + δL. Location with the most
matches is assumed to be the most likely location (see Figure 27).

Fig.27. Example counting within a search space: each of the RSSI values received from the
five different access points in this recorded fingerprint defiens a green bucket indicating the
range, within which a live RSSI value will be considered a match. In this case, T1 has two

matches, while T2 has three matches.

6.3.7 Pros and Cons of Localization Methodologies
In the previous section 4 different localization methods was described that can be assumed for
the study case. These methods are considerably different in approach especially for the
application that is the goal of this project and the accuracy of positioning that the system
would try to achieve. To make a choice of one or two of these methods a number of
advantages and disadvantages can be listed down, which are summarized in the table below.

Methodology Advantages Disadvantages
Area Rings +

+
+
+

simplicity
assumes an easy to use model
deterministic
can be applied in different
environments

–
–
–
–

great errors
requires a testing phase
needs a geometry database
error calculation is dubious

Tri-/Multi-
Lateration

+
+
+

can be the most precise
best-described model
takes into account factors that
diminish the accuracy

–
–
–

difficult to formulate
requires geometry intersections
dependent on a good space
subdivision

Triangulation
(FI)

+
+
+

easy to script
mathematical solution
no need for extra information
storage on the database

–

–

assumes a perfect-case scenario of
known distances
computationally costly

Wi-Fi
Fingerprinting

+

+
+

Precise and close to real
distribution of values
Can be updated by user input
Field-values: grid granularity
is defined by the application’s
purpose

–
–

–

Time-consuming to collect data
Non-flexible: Changes depending
on scanner layout
Input data quality needs to be
guaranteed

Table 2. Pros and cons of localization methodologies

48
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

6.4. NAVIGATION

6.4.1 Grid and network approach
All applications need space subdivisions to be able to address the destination point in the best
possible way (Zlatanova et al., 2014). Many different approaches to subdivide the space exist
and below the two main groups of approaches are discusses in detail: the grid and the
network.

- In grid approaches the environment is subdivided into cells that can have the same
shape and size (regular) (see Figure 28) or that can differ in shape and size (irregular).

Fig. 28. Square and hexagon subdivision (Afyouni et al 2012).

In this approach a partition that covers the entire space is created, allowing very precise
movement in the space. However, the accuracy of this method strictly depends on the cell
size: in fact, if the grid is too coarse, important information might be lost, while if it is too fine
it consumes a large amount of memory and processor time (Zlatanova et al., 2014) (examples
shown in Figure 29).

Fig.29. Regular grid space subdivision of ‘De Rotterdam’ building (2x2m on the left and
1x1m on the right).

- In network approaches topological-based structures are used to describe the
connectivity and the adjacency of the different spatial units. In graph-based models the
indoor space is represented as a graph where nodes model predefined locations and
edges stand for the connectors (Afyouni et al., 2012).

49
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig. 30. 3D Geometric Network from 3D Topological Data Structure (Meijers, Zlatanova

and Pfeifer).

The network can be designed manually or using a Voronoi diagram, Medial Axis
Transformation, Poincaré Duality and visibility graph or a combination of them (Zlatanova et
al., 2014). Poincaré Duality is often used to simplify the complex spatial relationships,
mapping 3D solid objects in primal space, e.g. rooms within a building, to vertices in dual
space. As it is shown in Figure 31, the common 2D face shared by two solid objects is
transformed into an edge (1D) linking two vertices in dual space. Thus, edges of the dual
graph represent adjacency and connectivity relationships which may correspond to doors,
windows, or hatches between rooms in primal space.

Fig. 31. Example for the partitioning of building interior into rooms and its representation in
dual space.

The table below summarizes the pros and cons of grid and network approaches.
Grid model Network model

PROS:
• Easy to build, represent and maintain
• Accurate location description
• High flexibility on granularity
• Mainly used to represent continue

phenomena
• Used for robot navigation and games
• Suitable for computation and for

tracking

PROS:
• Used for path finding applications
• Based on Poincare duality

(volume->node, surface->edge)
• Information about obstacles
• Mainly used for human navigation
• Efficient because it is more compact
• Good representation of connectivity

CONS:
• Excessive amount of memory and

processor time in large spaces
• The size of the grid is critical: a too

fine grid is computational expensive,
a too coarse grid causes loss of
information

CONS:
• The location description can be

inaccurate, if the network is very
simple or course

Table 3. Pros and cons of grid and network space subdivision models.

50
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

6.4.2 The network
According to Worboys and Duckham (2004), “A graph G is defined as a finite non-empty set
of nodes, together with a set of unordered pairs of distinct nodes (called edges)”. In other
words, a graph describes the locations of nodes and their interconnectivity. Different ways of
storing a network graph are available, namely an Adjacency matrix, a set of labelled edges or
an adjacency list. An example is shown below.

Fig.32. Example graph

The Adjacency matrix (see Figure 33) makes all data easily accessible for computational
efficiency but is verbose. The adjacency list (see Figure 34) is more compact, but also enables
easy computation for specific nodes. Finally the set of labelled edges (see Figure 35) uses the
minimum amount of storage, but it is not as efficient to compute with.

Fig. 33. Adjacency matrix Fig. 34. Adjacency list Fig.35. Set of labelled edges

6.4.3 Path finding
Once the network is generated, a route computation is needed from the user`s position towards the
target position. When both positions have been appointed to a certain node, a computation of the
shortest path between these nodes can be performed. The user`s position will then be defined as a
start node and the target`s position will be defined as the end node. A path finding algorithm will
search for adjacent nodes around the start node, until the end node has been found. The outcome
of the path finding algorithm is a series of nodes, which connect the start node to the end node,
with the shortest weight (in our case distance) possible.
Different path finding algorithms exist, varying on complexity and computational efficiency, each
more suitable for a certain application. Since a starting point is already known, single source
shortest paths algorithms are considered for a weighted and undirected graph. In our case the
graph is undirected because any movement through the network can be done in both directions.
The two most common path finding algorithm for this case are Dijkstra and A*. These algorithms
will be described below.

- The Dijkstra algorithm searches through adjacent nodes, based on a priority queue which
extracts the nodes with a minimum weight (distance) from the source. This means that
equal amounts of nodes are visited in all directions, until the end node has been found.

51
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

- The A* algorithm is based on a goal directed graph-traversal strategy. This means it is
searching in the direction of the target node. This is achieved by visiting nodes with the
minimal sum of distance to the source node and the estimated distance to the target node
(see Figure 36).

Fig. 36. Visualization of Dijkstra and A* algorithm pathfinding on grid

6.4.4 IndoorGML data model

As for the Space Subdivision component, the standard IndoorGML has been taken as a
reference for implementing the navigation component. In this case, the IndoorGML data
model has been considered, with its core module and thematic extension modules.
A SpaceLayer is an important component of the core module that represents each space layer,
such as topography, sensor, security space, etc. In IndoorGML SpaceLayer aggregates State
and Transition (example in Figure 37):

- State represents a node in dual space, which can be associated with a room, corridor,
door, etc. within a building of the primal space. It is represented geometrically as Point
in IndoorGML.

- Transition is an edge that represents the adjacency or connectivity relationships among
nodes. Transition always connects two States.

Fig.37. Example of Topographic SpaceLayer. (Source: OGC IndoorGML, 2014)

An important thematic module considered in modelling the space of `De Rotterdam` building
is the IndoorGML Navigation Module, which specifies in detail the generic concepts of the
core module, in the context of indoor navigation. According to this module, indoor space is
represented by two classes:

52
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

- The NavigableSpace class, which denotes a space users can move freely in (e.g.
compartmentalized spaces such as corridor, lobby, hallway, big room). The class has
two subclasses GeneralSpace and TransferSpace (such as rooms, terraces, lobbies).

- The NonNavigableSpace class, which represents the space that is occupied by
obstacles.

Fig. 38. Indoor space mapped to IndoorGML Navigation module classes.
(Source: OGC IndoorGML, 2014)

53
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

7. The Libelium Meshlium Xtreme Scanners

7.1. INFORMATION ABOUT THE SCANNERS
The hardware used in this project consists of 4 Libelium Meshlium Xtreme Scanners, which
are multiprotocol router for wireless sensor networks. The Meshlium Xtreme Scanner is
designed by Libelium to connect ZigBee, Wifi and Bluetooth sensors to the Internet through
3G connectivity (Meshlium Xtreme datasheet v. 4.3, 2014).

Fig.39. The Libelium Meshlium Xtreme Scanner (Source：Libelium)

The Meshlium Xtreme can function as:

• a ZigBee to Ethernet router for Waspmote nodes
• a ZigBee to 3G/GPRS router for Waspmote nodes
• a Wi-Fi Access Point
• a Wi-Fi Mesh node (dual band 2.4GHz-5GHz)
• a Wi-Fi to 3G/GPRS router
• a Bluetooth scanner and analyzer
• a GPS-3G/GPRS realtime tracker
• a Smartphone scanner (detects iPhone and Android devices)

In this project Meshlium Xtreme has been used as WiFi scanner in order to detect
smarthphone devices. Each scanner has four antenn’s. Only one antenna is needed for
monitoring the Wi-Fi signal. Another antenna can be used for Bluetooth and the other two
antenna’s are for setting up the scanner as an access point, so the scanner can be used as a
router. For this project just one antenna is needed, but actually three of them are used instead.

54
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig.40. Conceptual schema of the working of a scanner (Source：Libelium)

 The data received by the Meshlium always contains:
- The MAC address of the wireless interface, which allows unique identification
- The strength of the signal (RSSI), which may give an indication of distance to the

scanning point.
- The vendor of the smartphone (Apple, Nokia, etc.)
- The TimeStamp, which indicates the date and time the data was collected

The collected data can be either stored locally on the Meshlium or stored in an external
database.

Fig.41. Ways to store the gathered data (Source：Libelium)

55
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

A Meshlium comes with the Manager System, an open source web application which allows
to control quickly and easily the WiFi, ZigBee, Bluetooth and GPRS configurations along
with the database storage options of the sensor data received (Meshlium Xtreme datasheet v.
4.3, 2014).

Fig.42. Manager System (source：Libelium)

7.2. TESTING WITH THE SCANNERS IN THE FACULTY OF ARCHITECTURE
The team performed several tests with the four Libelium Meshlium Xtreme scanners in the
faculty of Architecture. The tests were held in a part of the West wing on the second floor
(Figure 43).

Fig. 43. Testing area in red

This environment was chosen because the space is similar to the environment of ’De
Rotterdam’. The space consists of open spaces with free workspaces and small rooms made of
glass and thin walls as seen in the figures below. This can be compared to the environment of
‘De Rotterdam’.

56
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig. 44. Testing environment

In this section of the second floor, the testing of different parameters on the Wi-Fi monitoring
could be done, which resulted in 3 tests. The different parameters to find out by testing were:

- The range of scanning of a Wi-Fi monitor
- The influence of obstacles on the signal strength
- To distinguish areas based on signal strengths

For the testing procedure all available hardware was put into use. 4 Meshlium Xtreme
(libelium©) devices were used and 2 Samsung Smartphones (see Figure 45).

Fig.45. Materials used during the tests

To keep all tests consistent, a few things were taken into consideration:
- The scanners and the phones were time synchronized
- The scanners were all set on a scanning time interval of 30 seconds
- The scanners were set to connect to an external database where all data was sent to
- The phones were in active mode during testing
- The phones were not connected to a network
- At least 2 phones were of the same brand and the same type
- Measuring was done in a straight line, at different points on the same distance

from each other
- The team performed logged tests which provide the “ground truth” for the data. By

analyzing this data in comparison to the logs of the tests, the localization precision
and applicability can be tested.

57
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig. 46. Test set- up

For the first two tests, only one scanner was used. For test one the scanner was placed in open
space, for test two the scanner was placed in a glass room (see Figure 47 and 48).

Fig. 47. Scanner set- up test 1

Fig. 48. Scanner set- up test 2

58
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

For the third test, all the scanners were used and placed only in the orange and green parts.
Three of the scanner far away and at great angles from each other and one scanner was placed
close to another, so as to explore the scanner interaction (see Figure 49).

Fig. 49. Scanner set- up test 3

7.2.1. THE INFLUENCE OF DIFFERENT BRANDS OF PHONES
First it was tested if all brands and types of phones were scanned by the scanner, by checking
in the database how many times the team’s own phones were scanned. What was observed
was that iPhones were much less scanned than Android phones. A conclusion was made that
iPhones were not suitable for testing (at least not the ones in this disposal), thus only Android
phones were used. Since the client requested an Android application, this was not considered
as a problem.

7.2.2. TEST 1: RANGE OF SCANNING OF ONE WI-FI MONITOR
The first test was done to check the range of a scanner to see how the signal strength
attenuates over distance in an open space. Although the received signal strength (RSSI) is
dependent on many user-side factors such as if the phone is in stand-by mode, if the phone is
in a pocket or held in hand etc., these factors were not taken into account as they lie with the
user’s usability on which the team cannot intervene. Thus, the tests performed assumed that
the phone is placed on a table free of the human factor, in order to test how the RSSI
decreased in the set environment. The scanner was placed in open space, the test was done in
two different directions (blue and purple), faced away from the scanner (see the Appendix).

59
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Graph 1. Result test 1

In the graph for the blue direction (Graph 1) can be seen that in open space (point 1 till 3), the
RSSI decreases significantly, but when obstacles are present, such as rooms/ glass walls the
decreasing of the signal gets less (see point 3 till 6). This can be due to multipath.

Graph 2. Result test 1

The purple path went mostly through open space. In Graph 2 it can be seen that the signal
strength gets stable around point 6. Expected is that the signal strength get stable around a
certain distance. To answer the test question, what is the range of the scanner, can be seen
from the graphs that the range depends on the environment. To give some sort of indication
from the test, the range is around 20 m, since every point is 5 m from each other and after 4
points the signal gets stable.

33.3

27.7

19.8 20.6 20.5
18.7

21.0

0.0

5.0

10.0

15.0

20.0

25.0

30.0

0 1 2 3 4 5 6 7

Test 1- Phone 1
5 min. time interval

5 m distance between points

Phone 1

Measured

Points

AVG

RSSI

46.89

39.67

29.00
26.56

24.00
21.60 21.89

0.0

10.0

20.0

30.0

40.0

50.0

0 1 2 3 4 5 6 7

Test 1- Phone 2
5. min time interval-

5 m distance between points

Phone 2

Measured

Points

AVG

RSSI

60
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

7.2.3. TEST 2: THE INFLUENCE OF OBJECTS
The second test was made with the purpose to empirically notice the influence of (thin) walls/
brick/ glass/ open or closed doors on the signal strength. This time a scanner was placed in a
glass room.

Graph 3. Result test 2

In the graph (Graph 3) it can be seen that, while using the same type and brand of smartphone,
the RSSI values still fluctuate significantly. At some points the RSSI varies at most 7 dBm.
This means that the signal strength as measured by the scanner for a smartphone is different,
even though the measurements were at the same points. To answer the question, in
comparison to the first test, can be seen that the influence of a material has a significant effect
on the (fluctuation of) the signal strength. When there are a lot of obstacles around, the
scanner detects a lot of variation between the signal strengths. When there is open space,
phones fluctuate much less as visible in the next test.

7.2.4. TEST 3: CAN AREAS BE DISTINGUISHED BASED ON SIGNAL STRENGTH?
For the third test, all the four scanners were placed in the testing environment, to see how well
the phones were measured by each scanner and how the signals were interfering with each
other. This to see if RSSI can be a viable measure in order to distinguish in which subdivision
the scanned device belongs to. This test is of higher importance, because the results could be
checked and an approximation of the accuracy of the localization can be conceived. The same
test was done three times (three cycles).

29.40
27.20

24.60

21.40

18.00

19.00

35.5 34.9

28.1

20.1

17.9

13.7 7.0

0.0

10.0

20.0

30.0

40.0

0 1 2 3 4 5 6 7

Test 2- Phone 1 & Phone 2
varying time interval

5 m distance between points

Phone 1

Phone 2

Measured

Points

AVG RSSI

61
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Graph 4. Result test 3

For each scanner, the AVG RSSI over all 3 cycles at all points is depicted in a result graph.
The signal strength is decreasing, the further away from the scanner the points lie, as was
expected. The graphs for the other three scanners portray the same results. In Graph 4 it
appears that the fluctuation of the signals is not much, but that can be explained because the
fluctuation is averaged out.

Graph 5. Result test 3

The graph above (Graph 6) gives an indication of how one phone is perceived by all the
scanners (averaged over the three cycles) at every point. This graph compared to the floorplan
gives an indication of the signal strength per subdivision (see Figure 50) and can be used for a
very simple deterministic approach for determining in which subdivision a person could be.

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Test 3- Phone 1 & Phone 2
5 min. time interval

5 m distance between points

Phone 1

Phone 2

AVG RSSI for 3

cycles

Measured

Points

Scanner 553

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Test 3- Phone 1, Measured by 4 scanners

5 min. time interval

5 m distance between points

Mesh 121

Mesh 553

Mesh 309

Mesh 678

Measured

Points

AVG RSSI for 3 cycles

62
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

The distance between scanner309 and scanner 678 is probably a bit too small, that is why the
lines in the graph are so close to each other. Placing the scanners further apart, will probably
result in a more clear idea where a person could be located.

Fig. 50. Space subdivision

7.3. TESTING IN ‘DE ROTTERDAM’
After having tested the scanners in the faculty of Architecture, several tests were performed in
‘De Rotterdam’ building, in order to collect the data that will be used in the implementation of
the’Catch-a-colleague’application. The tests were held in the 16th floor of the building, where
the environment consists mainly of open spaces with free workspaces and small rooms made
of glass and thin walls (see pictures in Figure 51).

63
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig.51. Interior of the 16th floor of ‘De Rotterdam’ building

In total 4 different tests were carried out with different scanner set-up.
In order to keep all tests consistent, a few things were taken into consideration:

- 4 Meshlium Xtreme and 3 Samsung Smartphones were utilized for the all four
tests

- The scanners and the phones were time synchronized
- The scanners were all set on a scanning time interval of 30 seconds
- The data was collected in each point for a time interval of 5 minutes
- The data was stored locally on the Meshlium
- The phones were in active mode during testing

For the first 3 tests 22 testing points were measured, while for test 4 only 12 points were
tested. The choice of the testing points was based on the environment, in order to test in areas
with different characteristics: in the corridors (point 3 till point 14), in the open spaces (point
1, 15 and 16) and in the rooms (from point 17 till 22). The testing points were equally
distributed among the whole floorplan and placed at a distance fairly constant from each
other, especially for the points along the corridors. Each test will be described in detail in the
following paragraphs.

7.3.1 TEST 1

In the first test the scanners were placed in open space at the corners of the building, as far
away as possible and at great angles from each other in order to explore the scanners
interaction (see Figure 52 and 53).

Fig.52. Scanner placement test 1

64
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig.53. Set- up test 1

This test was performed twice and in the end all the data collected was combined and the
average RSSI was computed. The results are shown in the graph below.

Graph 6. Results test 1

65
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

The graph gives an indication on how the three phones are perceived by all the scanners
(averaged over the two cycles) at every point. In general, the values measured with this
scanner set-up may give an indication of the signal strength per subdivision, in which a person
could be located. However, in some points (1, 4, 7, 10, 12, 14, 15, 16, 21 and 22) only two
scanners were visible and for this reason some localization methods like trilateration can
hardly be implemented with this scanner layout, since at least three scanner needs to be
visible. For some points, the phones were scanned only few times within the time interval and
therefore the AVG RSSI measured should not be considered as reliable. For this reason, the
AVG RSSI values of the points that were scanned less than 10 times in the 5 minutes interval
were considered to be zero.

Moreover, it may also be interesting to see the fluctuation between the values according to the
different three phones, which are of the same type and brand. In the graph below the AVG
RSSI values for scanner 678 for each phone are represented.

Graph 7. AVG RSSI values for scanner 678

7.3.2. TEST 2

For the second test the scanners were placed much closer to each other, at the corners of the
central concrete block. The same 22 points that were used in test 1 were measured here (see
Figure 54 and 55).

66
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig.54. Scanner placement test 2

Fig.55. Set-up test 2

Also for this test, two cycles were performed. The average result of the two cycles can be seen
in the following graph which shows the AVG RSSI measured at each point for the four
different scanners. It is important to notice that in this case for each point at least three
scanners were always visible and this means that this scanner layout may be more suitable for
localization methods like trilateration.

67
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Graph 8. Results test 2

Another aspect to take into consideration is the number of times the phones are scanned at
each point. Since the scanning rate is 30 seconds and the data is collected in each point for a
time interval of 5 minutes, in total for all the three phones there should be 30 scans (10 for
each phones). However, from the graph below it can be seen that not for all the 22 points the
scanning count is 30; for some points the number of scans is rather low for a specific scanner.

Graph 9. The number of times a scanner has seen the three phones during test 2

7.3.3 TEST 3

In test 3 each of the scanners was placed on one side of the central concrete block and two of
the scanners were placed inside two rooms (scanner 121 and scanner 553) in order to

68
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

empirically notice the influence of walls on the signal strength. Also in this case the same 22
points were measured but the test was only preformed once (see Figure 56 and 57).

Fig.56. Scanner placement test 3

Fig.57. Set-up test 3

The result of the test are summarized in the graph below, which shows the influence of walls
in attenuating the signal strength. For instance, point 21 and 22 are at the same distance from
the scanner 553, but point 21 has a lower AVG RSSI value than point 22 probably because of
the presence of a wall between it and the scanner. Moreover, it is important to notice that
scanner 121 and 553 that were placed in the rooms are not visible from a lot of points and this
may be related to the signal attenuation due to the presence of walls and obstacles.

69
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Graph 10. Results test 3

7.3.4 TEST 4

In test 4 only half of the floor plan was considered and the four scanners were placed and
closer to each other. This set up was used to test if with more scanners could possible result in
a higher accuracy. For the project only four scanners were used, but potentially more scanners
could be placed in one floor. In this case the RSSI was measured only in 12 points, which
were also used in the previous tests (see Figure 58 and 59).

Fig.58. Scanner placement test 4

70
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig.59. Set-up test 4

The following graph shows the result of the test. In general, it can be seen that for almost all
the points all the four scanners are visible. However, for some points pretty similar values
were measured and this may be a problem for the correct localization of a person in an area
rather than another.

Graph 11. Results test 4

71
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

8. System Engineering

This chapter describes all the used software and tools.

8.1. SOFTWARE USED
For all the components whereof the prototype exists, different software and tools have been
utilized. However, almost for all components, the Python programming language has been
utilized, as well as a GIS software and the database MySQL workbench. In the table below,
all the tools that have been used for each component are summarized.

Components Tools

Space

Subdivision

Intuitive Subdivision
• AutoCAD software
• GIS software
Automatic Subdivision
• GIS software
• Triangle Shewchuk software (Constrained

Delaunay Triangulation)
• Python libraries PyShape and Shapely

Localization

Multi-lateration
• GIS software
• Python libraries MySQLdb, Fiona,

Shapely
• MySQL workbench
Fingerprinting
• GIS software
• Python library Scipy (scipy.interpolate.Rbf

method)
• MySQL workbench

Navigation

Manual Network
• GIS software
Semi-Automatic & Automatic Network
• GIS software
• Python library Pyshape and Shapely
Path-finding
• Python libraries (Dijkstra algorithm)

Visualization

Application
• Eclipse
• MySQL workbench
• PHP
• Unity3D

Table 4: Compenents and tools used to create the prototype

The following chapters describe the implementation of the different components and the
integration in a technical manner. The decision making and analysis are described as well as
the end results.

72
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

9. Space subdivision

An important component of the ‘Catch-a-Colleague’ application is the space subdivision of
indoor space, which is fundamental for correctly guiding an employee to the location of
another colleague but also for testing the localization algorithm. Since the indoor environment
can be very complex, different aspects have to be taken into account while modelling and
subdividing indoor space, such as obstacles like furniture, columns and walls.

9. 1. IMPLEMENTATION

In order to subdivide the space in `De Rotterdam` building, two different implementations
were carried out by the team: the intuitive space subdivision and the automatic space
subdivision, which is based on the Multi- Layered Space Model from IndoorGML. Each of
them will be explained in detail in the next paragraphs.
For the distribution of the space a few requirements were set-up by the team:
The subdivisions should:

- all have the same size
- consists of around eight subdivisions (based on the localization accuracy)
- Not distinguish between rooms/ open space. A subdivision can consists of either open

space, rooms or both
- The same subidivion for each floor (the floors all have approximately the same layout,

thus the same subdivision can be used for all floors)

9.1.1 Intuitive space subdivision
The intuitive space subdivision is based on subdividing the space in a human-understandable
way, considering the characteristics of the building (obstacles, rooms, etc.), visibility criteria
(e.g. line of sight) and the usage of space (workspaces). Altough this solution might lead to a
better human-understandable result, it is quite hard to be implemented in an automatic way,
since the environment must be modelled accurately as well, which is time-consuming.
The subdivision was made from different regions in CAD software and then converting them
into the Shapefile format using GIS software. Before performing this operation, the original
floor plan provided by the Municipality of Rotterdam has been changed: the geometry was
simplified and semantics information was attached to the geometric components. Each entity
has an ID and information about the geometric data type (e.g. polyline), the type of object
(e.g. inner_walls, interior, inner_facade, concrete_walls) and the color (see figure 60).

The two holes that can be seen in figure 61, consists of the concrete core where the
elevators and stairs are. Since the localization is not that accurate too be localized in the
concrete core, holes are made of these two subspaces.

73
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig.60. Attribute table `De Rotterdam` floor plan with semantics information.

Fig. 61. Floor plan simplification.

The intuitive space subdivision is based on the different workspaces that can be distinguished
in the floor plan. If you look at the floor plan, the space per floor seems to be very big and
maybe confusing. But when walking there, the space seems smaller and it already seems to be
very logically divided into several workspaces (see pictures in Figure 62).

74
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig. 62. Several workspaces on the 16th floor

These workspaces were the input for the intuitive space subdivision. In the end eight different
subspaces were created (see Figure 63 below).

Fig. 63. Intuitive space subdivision.

An advantage of the intuitive space subdivision is that it is easy to understand and looks very
logical. However, the operation of drawing a space subdivision manually might be time
consuming, especially if the space has to be manually subdivided for all the floors (which is
not the case for ‘De Rotterdam’ building, since the floors are about the same). Another
disadvantage is that by manually dividing the space, there lies a possibility that invalid
polygons are made. This can give difficulties in the next steps for deriving the network. An
automatic way of subdividing the space has therefore also been tested and will be described in
the next paragraph.

75
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

9.1.2 Automatic space subdivision
In order to automatically subdivide the floor plan of `De Rotterdam` building, the open space
needs to be divided. This can be done by performing a triangulation on the open space, or
dividing the space in a grid ir a grid or using the Voronoi Diagram for example. Triangulation
was chosen, because the team has experience with performing a triangulation.
The Constrained Delaunay Triangulation has been carried out to decompose the polygon of
the floor plan into triangles forming a planar partition. The Constrained Delaunay
Triangulation is one of the most suitable methods for surface approximation because it has
several advantages over other triangulation methods:

- The triangles are as equi-angular as possible and skinny triangles are avoided

- Ensures that any point on the surface is as close as possible to a node

- The triangulation is independent of the order the points are processed

To perform the Constrained Delaunay Triangulation, the Triangle software package, which
computes high-quality unstructured triangular meshes, was utilized. In addition, Pyshape and
Shapely, Python libraries were used to script the algoritm. The figure below shows the result
of the Constrained Delaunay Triangulation on the floorspace.

Fig.64. Constrained Delaunay Triangulation.

The triangles created by the triangulation were then combined with the range of the
Meshliums, derived by the heat maps generated with the fingerprinting localization method
(more in chapter 8). The reason to combine the triangles with the range of the scanners would
result in subdivisions that fit the accuracy of the localization method and could create the
‘best’subdivion to create the hightest accuracy of the localization method.

76
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

9.1.3 Combination of the triangulation with the heat maps
The triangulation was combined with the heat maps, generated by interpolation in the
fingerprinting localization method (more in section 8.3) (see Figure 65).

Fig.65. Combination of the triangulation with the heat maps for scanner layout 1.

In this case RSSI values not smaller than 30 db were considered and an irregular area was
created around each scanner with the cells (from red to yellow) that fell into this range. RSSI
values smaller than 30 db were not taken into account since they were not considered as
reliable. As it is shown in the figure below, some areas overlap and especially for scanner 678
an anomalous fact has occurred since high values are perceived near scanner 121.

77
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig.66. Irregular buffers according to RSSI values for scanner layout 1.

These areas were combined with the triangles generated by the Constrained Delaunay
Triangulation. In this way all the triangles that fell into one of scanner areas were considered
to be part of the same subspace and they were colored accordingly. For the case in which a
triangle fell into more than one area, the heat maps were consulted and the triangle was
assigned to the scanner that had the highest RSSI value for that triangle. In the end four
different subspaces were obtained, plus one big white subspace in the middle (see Figure 67
below).

Fig. 67. Space subdivision combining triangulation with heat maps for scanner layout 1.

The same procedure has been carried out for scanner layout 2, in which the scanners are
placed closer to each other (see Figure 68).

78
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig. 68. Combination of the triangulation with the heat maps for scanner layout 2.

In this case the range of the scanners overlaps more often (see Figure 69 below).

Fig. 69. Irregular buffers according to RSSI values for scanner layout 2.

79
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

The end result looks like the Figure 70 below, the floor plan is split into just four subspaces,
except for two triangles that didn't fall into any buffer.

Fig. 70. Space subdivision combining triangulation with heat maps for scanner layout 2.

The combination between the triangulation and the heat maps has been done using GIS
software. Moreover, since with this approach just four or five subspaces are created, it leads
to a rather too coarse subdivision that it is not suitable for the localization. For this reason, this
approach has not been tested and automatically implemented in code. A similar approach has
been implemented and will be described in the next section.

9.1.4 Combination of the triangles with a radial buffer concerning the range
This method was implemented first for scanner layout 1. Buffers with a radius of 10 meters
were built around each scanner and all the triangles that fell into the circle were considered as
part of one subspace. In this way four different subspaces were created around the scanners
(see Figure 71 below).

Fig.71. Range of the scanners 10 meters (left) and 4 subspaces (right).

80
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

The white space in the middle of the floor plan (Figure right) was not covered by the 10-
meters range of the scanner and therefore it still needed to be subdivided. For this reason,
another buffer of 20 meters radius was carried out around the Meshliums and 4 other
subspaces were generated (see Figure 72 below).

Fig.72. Range of scanner 20 meters (left) and different subspaces (right).

The size of the buffers (10m and 20 m) were averages from the range of the scanners
according to the heat maps. In the end all the triangles belonging to each subspace were
merged together and a new shapefile with the resulting eight polygons was created (Figure
73). This method did also result in many overlapping polygons that belonged to different
buffers. Manually, these overlapping polygons were deleted, so that in the end each subspace
had about the same size. The automatic method can thus better be referred to as semi-
automatic.

Fig.73. Automatic space subdivision with eight different subspaces.

81
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig.74. Testing the automatic method for layout 2

For layout 2 the buffers of 10 m around the scanners cover almost the whole space. Basically
we end up with just four subdivisions (see Figure 74). As stated in the guidelines for the
subdivision, this is just too coarse for a subdivision. The semi-automatic method only
“works” for the first layout, where the scanners are placed far apart. One solution to solve the
problem of the coarse subdivision would be to triangulate the space into much smaller
triangles (Figure 75).

Fig.75. Two different triangulations of the space

In the figure above it can be seen that the size of the triangles is almost doubled. When using
the bigger triangles, the subdivision will become even coarser and has much more overlap, as
can be seen in the figure below. Thus an obtained subdivision, can be improved, by using
more nodes for the triangulation. By using smaller triangles, the subdivision will become
smoother and there will be less overlaps in the subspaces.

82
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig.76. Using bigger triangles, results in an even coarser subdivision

Many different space subdivisions can be developed, but for this project only the intuitive and
the semi- automatic space subdivision have been implemented and used in the localization
component. The research done by the team, has shown that factors that have an effect on the
subdivision are the size of the triangles, the scanner placement or the distance between the
scanners and the accuracy of the localization. An automatic subdivision should take these
factors into account.

 A slightly better result in the localization has been registered with the semi- automatic
space subdivision because it takes into account the range of the scanners, which are not
considered by the intuitive one. However, the intuitive space subdivision seems in the end to
be the most suitable for being used in the navigation, because it is based on the usage of
space. By dividing the space into different workspace, is a more understandable way for
humans to navigate in an office space. Pros and cons of the two different space subdivisions
are summarized in the table below.

Intuitive Space Subdivision Semi- automatic Space Subdivision

PROS:
- Human understandable
- Considers the characteristics of the

building
- Easy to be manually implemented
- More suitable for the navigation and

visualization

PROS:
- Considers scanner layout and range
- Easy to be implemented to multiple

floor plans
- More precise localization output

CONS:
- Time consuming
- Environment must be modelled
- Hard to be automatic
- More possibility to have invalid

polygons

CONS:
- Requires scripting and coding
- Not human intuitive subspaces

Table 5. Pros and cons of the intuitive and automatic space subdivision.

83
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

10. Localization

10.1 CHOSEN LOCALIZATION METHODS
For all methodologies presented in chapter 6.3, a number of assumptions need to be made in
general. If the assumptions are correct, then the feasibility of each method becomes higher
and they can be compared for performance.
In our case study, the purpose is to explore how many times a person is localized correctly
within a room area defined by the provided subdivision. The area rings approach is over
generalizing data and would yield questionable results. The triangulation method would be
more applicable if the Angle of Arrival (AoA) was known or if the distances from each
scanner would be precisely defined using a function that translates RSSI values into distance.
Considering the above, the most suitable methods for furher exploration are the
multilateration method and Wi-Fi fingerprinting. Below these two methods are described in
detail, together with the procedure followed and their formulation of a solution.

10.2 MULTILATERATION

The only source of information received by the provided scanners is the RSSI values
perceived by each of them. Depending on the scanning interval, each scanner logs each device
it detects together with the respective RSSI value in a timely fashion (see Figure 77).

Fig. 77. Example of logs by scanner named “mesh121”.

�”Trustability” of values based on time:
In theory, the RSSI values perceived by a scanner of a scanned device in a specific position
should not vary much over time. Considering this, one could detect definite changes in these
values whenever a device changes position (see Figure 78).
In more detail, when trying to detect a user’s position, a number of RSSI values need to be
taken into account. If the request is performed at time = NOW (t0=0), then the algorithm

84
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

should “look back” in time at a considerable timebox and see which values are suitable for the
averaging. As such, in theory, these are the values that don’t deviate much. If a huge deviation
is found, then the algorithm should cut off any values “older” than the last suitable one. By
fitting a line curve and specifying a predefined threshold, one could find these RSSI values so
as to use for averaging.

Fig.78. Theoretical distinction between real world positions using RSSI values.

Fig.79. Real RSSI values over time. Normally, 6 ‘distinct’ areas/plateaus should be visible,

one every 5 minutes (300sec).

85
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

In reality, this type of distinction is difficult, since RSSI values deviate a lot even if the
closeness of the real location of the device and the scanner is fixed (Figure 79).
In order to quantify a measure of “trust” for these past values, a logarithmic function was
derived that applies a weight to each value, based on how recent it is to the time of request. In
particular it is described as such:
 MNOPQRSTUTQV = 	W −	�UXYSQZP[\�]
where
 tdsec: time difference in seconds from t0 which is ‘now’ (=time of request) and
 database time logged
 b = tintervalsec+1: time interval in seconds, from the oldest suitable value for
 averaging until now, plus one

 p =
�^�_` aDGabcd efgh����, with tintervalmin the time interval in minutes, from the oldest

 suitable value for averaging until now

The above function creates weights (values between 0 and 1) that increase logarithmically the
‘closer’ the value is to current time of request (Figure 80). It is dependent on the timespan that
the values cover, thus both the above analysis about choosing suitable values for averaging
may apply, but also a set time frame can be used.

Fig.80. The weights applied to RSSI values change depending on the chosen timespan –the
older the values are the less credible they are.

86
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

After these weights (wi) are calculated for each RSSI value available (RSSIi), the weighted
average of them is computed that yields one RSSI value for each scanner:
 Cii>j dk =	∑ Cii>D ∙ nDoDH�∑ nDoDH�

This is the value for which the algorithm proceeds to translate into distance.

10.2.1 RSSI into distance:
RSSI translation to distance is not easy to handle and in many cases it has been proven that
exact positioning through this method is impossible (A.T. Parameswaran et al, 2009).
Nevertheless, in this project a function was constructed to make the multilateration method
feasible to an area/room extent. The basis of this function is the log-distance path loss model
(Wikipedia: “Log-distance path loss model”, 2014), though a few changes were made.
In particular, considering that the RSSI value is 60dBm at 1 meter distance from the scanner,
the function is as follows: Z = Wpqp�qWp	r

Where

R0 = 60 : The RSSI value at 1 meter distance from scanner
R : The retrieved RSSI value

n = 2.8 + s�tuv/! uvu : Path-loss coefficient

Normally, the n coefficient changes depending on the surrounding physical world
environment and its value is retrieved empirically or through trial and error. In the current
situation, it is developed to be dependent on the RSSI values and logarithmically varies in
between values [2.8, 4.0].

Considering the fact that a distance function
cannot be perfectly modeled, an added error derr
is taken into account. This error is added and
subtracted from computed d to define the extent
to which the the calculated distance is incorrect.
In the end, d is the value that describes the radius
of the circle that encompasses the ring, whose
thickness is defined by the derr calculated and
extended to both sides of the periphery of the
circle (see Figure 81). This ring substitutes an
area of possible positions for the user to be
detected and better localized through the
multilateration method.
The error values are also logarithmic and they are
larger the smaller the RSSI value is (Figure 82).
Thus, the further away from a scanner a device is
localized, the greater the possible error, because
of the vagueness of the metric.

Fig.81. Distance d from scanner and
added error result in a ‘ring’ area.

87
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig.82. Relation between RSSI and distance, together with the vague error areas.

10.2.2 Ring “Importance” Indicator:

Normally, in trilateration/multilateration methods, at least 3 circles need to intersect in order
to achieve localization (see Figure L6). In indoor environments with a small number of
scanners this level of availability is quite difficult to achieve. Moreover, in cases where
scanner rings intersections describe more than one possible areas, complications arise on
which is the most appropriate one to choose. In order to remedy this conundrum an indicator
is applied on each ring that defines its priority in choosing it as a best option, even when tri-
/multi-lateration is not achieved.
More specifically, this indicator can be a number (ki) that varies depending on the ring’s
“importance”, which can be for example its thickness, trustability of RSSIwavg value or
another parameterized value. In this project, an indicator is considered that is defined as: xT 	= 	 6 WZ[NN ∙ y7z

where derr is the error of the circle distance as described earlier and N the number of scanners.
As such, the indicator represents higher values when the error is small, that is when the
“thickness” of the ring is small (consequently its distance, thus a high RSSI). The number
should vary considerably in order to be distinguishing different rings, therefore the above
formula is used.
Each area of a ring is defined by a number ki, but when intersections happen between rings,
these areas intersections acquire a new ki number which is the sum of the indicators involved
(example in Figure 83). In this way, the algorithm chooses the area which has the highest
indicator to localize the device as the most probable area.

88
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig.83. Calculating the most probable localization area: If the respective indicators for each
of the S1,S2,S3 scanners are k1=0.32, k2=0.65, k3=0.14, then the colored intersection areas

have summed values of k12(orange)=0.97, k13(brown)=0.46, k23(green)=0.79 and
k123(blue)=1.11. Therefore, the combined blue area is the one chosen as the most possible

location of the device.

10.2.3. Implementation:

When all of the above is performed, the outcome of the algorithm is an area that localizes the
device in question within it. In order to make use of this area, the algorithm runs within the
boundaries defined by the location of the scanners, the indoors environment and the space
subdivision. Rings exceeding the boundary of the building polygon are logically considered
unreachable areas by humans, thus they are excluded from the search of solution.
Furthermore, areas like stairs and elevators are also considered “holes” for each floor of the
building and they are also not taken into account.
Depending on the space subdivision (see chaper 8), the area may lie within multiple
subdivisions of the floor polygon. Then, the subdivision which covers most of this area is the
one chosen to be the location of the device and returned as final solution to the user (see
Figure 84).

89
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig. 84. Example of localization achieved: three of the scanners (triangle-shaped points)
localize the device at different distance. The parts of the rings intersections are evaluated and
the most probable location is returned as the area depicted in red. The subdivision polygon
(yellow) that intersects the most with this area is returned; in this case 100% of the area lies
within one polygon, so this polygon is returned as the device location. The star-shaped point

is the ground-truth of the real location of the device, at a distance of about 1.7m from the
localized area by the algorithm.

Another option is to combine different subdivisions in order to achieve localization in at most
two adjacent rooms. In more detail, if the intuitive subdivision is the chosen depiction of
localization, the algorithm can run delivering a first solution as described above. Afterwards,
the algorithm also runs similarly for the automatic subdivision, which takes into account the
scanner’s positions and range. The subdivision that covers the best the localized area is
chosen. This subdivision from the automatic method is imposed on the subdivisions of the
intuitive method. The intersections yield a number of areas which relate to a number of
subdivisions from the intuitive method. These subdivisions are ordered by maximum area
coverage of the automatic subdivision and kept in a list.
After the algorithm returns the first solution (the result taking into account only the intuitive
subdivisions) it can also return a second option of an adjacent room that possibly the device
lies. This option is the first in order of the computed list that does not match the first solution.
As an outcome, the user is given a first solution, but also a suggestion to “search” in the
second adjacent room for their target-colleague. The above procedure is explained with the
use of an example in Figure 85.

90
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig.85. Example of combined localization: The star-shaped point is the ground-truth position
of the device and the red area defines the ring intersections and most probable location area
derived by the multilateration algorithm. (a) The largest part of the localized area lies within
the central yellow polygon, therefore the algorithm chooses this to be its first solution. (b) The
algorithm runs again, but this time for the automatic subdivision. Again the subdivision that

intersects the most with the localized area is chosen. (c) This automatic subdivision is
intersected with the intuitive subdivisions. The ones that do intersect are kept in a list ordered
by area covered (thus most probable locations). (d) Normally, the central polygon would be
chosen as a second solution, but since it has already been presented as first in (a), the next

polygon on the list is the one lying on the right, thus succeeding in localization. By using this
method, the user is given an indication of where to search and then the next most probable

area, should the first solution fail.

(a) (b)

(c) (d)

91
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

10.2.4. Remarks:
The method that describes the underlying algorithm relies heavily on the chosen function
which models the translation of RSSI values into distance. The function itself is dependent on
the scanner placement and mostly on the surrounding physical environment. Furthermore, the
solution can have varying success rate depending on the space subdivision and/or combined
solution. Therefore, indoors localization through this process is a multi-layered problem
which takes into account a number of factors that are difficult to model, but can achieve a
good outcome with a high level of automation and environment modeling.
In the next part the results of using this method for the trial at the ‘De Rotterdam’ building are
being presented and analyzed.

10.2.5. Results & Analysis:
The algorithm’s efficiency was tested on the collected data. To describe a performance metric,
the first consideration is to check how many of the times the algorithm achieves correct
localization within the room the device actually was. In particular, if the ground-truth point of
the device lies in a specific subdivision and the algorithm localizes the device in that specific
subdivision, this is considered a success.
Furthermore, another case is investigated where localization is achieved on the correct or the
neighboring subdivisions to the one localized of a building floor. Each subdivision has
adjacent ones, therefore if localization is achieved in any one of them, it can still be viewed as
a success, considering that two adjacent subdivisions are very close to each other and within a
small walkable distance.
Finally, the option of combining subdivisions is explored to make the best use of intuitive and
automatic approaches. The first solution is derived using the intuitive subdivision and a
second option is provided of the next most possible adjacent room using the automatic
subdivision.
In each point the mobile phone devices where placed stable for 5 minutes, therefore the time
interval in which the RSSI values are averaged is a priori known and the trustability factor is
almost linear (Figure 80). This does not detract from the final results, since the timeframe can
be chosen. Furthermore, RSSI values smaller than 5dBm were not taken into account, since
they are too small to be considered and their representative distance translation exceeds the
scanner’s trustable range.
Layouts 1 and 2 were considered to be the best placements for the scanners; therefore two
tests were performed for them.
Each mobile phone device was thus tested on its position and compared to the algorithm
position solution. A percentage is given based on how many of the times it is correctly
localized in the correct room and/or including neighbours. The tables below summarize this
notion:

Layouts
Devices

Layout 1:
Max Distance

Layout 2:
Concrete
Square

Layout 3:
Elevator &
pathways

Layout 4:
Half-building

 Test1 Test2 Test1 Test2 Test Test
f8:e0:79:2f:02:45 63.64 72.73 68.18 63.64 59.09 50.00
f8:e0:79:c1:9f:da 63.64 68.18 54.55 50.00 54.55 50.00
f8:e0:79:30:1b:87 54.55 50.00 63.64 54.55 63.64 58.33
OVERALL 62.12 59.09 59.09 52.78
Table 6. Localization success rate (%) on same room as ground-truth point. If the point lies in

the same room as the room returned by the algorithm, it is a success hit.

92
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Layouts
Devices

Layout 1:
Max Distance

Layout 2:
Concrete
Square

Layout 3:
Elevator &
pathways

Layout 4:
Half-building

 Test1 Test2 Test1 Test2 Test Test
f8:e0:79:2f:02:45 95.45 90.91 95.45 95.45 90.91 83.33
f8:e0:79:c1:9f:da 95.45 100.0 86.36 95.45 90.91 91.67
f8:e0:79:30:1b:87 90.91 95.45 90.91 90.91 90.91 83.33
OVERALL 94.70 92.42 90.91 86.11
Table 7. Localization success rate (%) on same room OR neighboring rooms. If the point lies
in the same room as the room returned by the algorithm OR any of its adjacent rooms, it is a

success hit.

Layouts
Devices

Layout 1:
Max Distance

 Test1 Test2
f8:e0:79:2f:02:45 63.64 72.73
f8:e0:79:c1:9f:da 63.64 59.09
f8:e0:79:30:1b:87 59.09 63.64
OVERALL 63.64

Table 8. Localization success rate (%) on same room as ground-truth point. (automatic
subdivision, only layout 1 tested)

Layouts

Devices
Layout 1:
Max Distance

 Test1 Test2
f8:e0:79:2f:02:45 90.91 90.91
f8:e0:79:c1:9f:da 95.45 86.36
f8:e0:79:30:1b:87 86.36 86.36
OVERALL 89.39

Table 9. Localization success rate (%) through combined subdivisions. (intuitive and
automatic, only layout 1 tested)

From Table 6 it can be seen that the localization success lies between 59-62% in the case
where the algorithm is required to return exactly 1 answer for localization. When the scanners
are placed on half the building the success rate drops to about 53%. This result implies that
having a denser placement of scanners does not necessarily yield better results. Therefore,
some research should be performed beforehand in order to take a good decision of where the
scanners can be placed. This choice should be made taking into consideration that a high level
of discrete separation between readings of the scanners must be achieved.
In Table 7, the neighboring subdivisions are perceived as successes. Of course the result is
much higher (~91-95%) which shows that the algorithm achieves localization in a close area
and not randomly selecting a subdivision. Albeit at the same time, this high rate is a result of
the small number of subdivisions in general. If the building floor was subdivided in finer
subdivisions, this percentage would hold a higher importance. Again, a lower rate (86%) is
portrayed for the half-building scanner layout.
In Table 8, the automatic subdivision is chosen for layout 1 (max-distance scanner placement)
to be the layer for localization. In comparison to its intuitive counterpart from Table 5, the

93
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

resulting success rate is similar (almost 64%, compared to 62%). This displays an interesting
fact about the algorithm. The successfulness in localizing a device is not as highly dependent
on the scanner’s range coverage, as long as the whole base area is covered by at least 1
scanner and the subdivision is coarse enough.
On the other hand, if the two perceptions in subdivision are combined, a high success rate can
be achieved, up to 89%, as per Table 9. In this last table, the success is drawn on whether the
solution is given on the first option or the second best, which derives from the combination of
the intuitive and automatic subdivisions. What needs to be made note of is that this kind of
solution is highly understandable for humans and easily followed. If the user that tries to
localize their colleague cannot find them on the first solution, the second solution which is
simply an adjacent room, is highly possible to result in a success.
From the devices responses a definite result cannot be drawn, yet a slight mention can be
made that although all of them where of the same hardware and positioned at the same points
during readings, different RSSI values were detected, resulting in differences in distances and
localization.

10.2.6 Example Solutions:

Fig.86. Successful localization per intersections: 0,2,3 and 4 rings intersecting.

94
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Above (Figure 86) are presented in visual form some solutions for the trial performed at the
‘De Rotterdam’ building, in order to provide a better understanding behind the running
algorithm. Different profiles of localization outcomes are depicted. Normally tri-/multi-
lateration would require at least 3 rings intersecting, but that would result in a very low
success rate and would impede the capabilities of the algorithm, which can localize correctly a
device within a room with only data from 1 scanner (1 ring). Nevertheless, because of the
“importance” indicator any excessive intersections are discarded and the most suitable one is
chosen in every case.
There are though cases where localization is not achieved as a first solution (Figures 87 and
88). Yet, if a combined solution of different subdivisions is used, as described in the
implementation part, most of these cases can be treated (Figure 87). The ones that escape
treatment (Figure 88) are only about 11%, as shown in the above results.

Fig.87. Failed localization: treatable cases. First solution (yellow) is wrong, but second

suggestion (magenta) succeeds.

Fig.88. Failed localization: non-treated cases. Both first and second solutions fail.

95
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

As a final image, some successful localization results are presented for different layouts of
scanners in Figure 89:

Fig.89. Successful localizations for different scanner layouts.

10.2.7 Conclusions:

The multilateration method as described in the previous sections relies on RSSI values
perceived by each scanner for each measured device. RSSI is a vague indicator for distance,
therefore a perfect function for translating RSSI values into distance does not exist.
Nevertheless, estimations can be made. For this purpose the algorithm constructed can have
varying results.

96
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

The most important and impeding factor for this translation is the real world physical
environment. Walls, materials, noise, multipath, signal propagation and other effects can have
a large impact on the results. If this environment can be modeled, a much better result is
expected.
Furthermore, the method described is dependent on the space subdivision. If the subdivisions
are too small, a lower success rate is expected, but when the localization is achieved, the
solution is more precise to the target’s real location. If the subdivisions are too large, there
will only be a few that cover the whole area of interest. As such, the localization success rate
would rise, but the localization area might be too big for a human to perceive it as helpful for
navigation.
Finally, results are always dependent on the hardware used. Different devices can yield a
different outcome. What could be improved on this behalf is the scanning rate by which the
scanners scan their cover area. With more values a better average can be achieved.

For the purposes of the current application, a “middle”-ground solution is given. Localization
is achieved within subdivisions that can be described as intuitive and navigable for humans.
These subdivisions vary in size (85m2 to 212m2) but span across only a few meters and given
the structure of ‘De Rotterdam’ building, they are both suitable for the algorithm and a human
to follow. The physical environment could not be modeled, but the results are interesting for a
deterministic model. 6 out of 10 times a device is correctly localized within a subdivision and
that result rises to 9 out of 10 times success, when the next possible subdivision is included in
the solution.
These results can be deemed both satisfactory and expected. Indoors localization is achieved
usually correctly and a second suggestion allows for verification for success. As such, the
application can display to the user the most probable area the target lies and then give a
suggestion in case the target is not immediately found by the user. The high level of
intuitiveness that such result displays is what makes this method successful.

10.3. FINGERPRINTING

10.3.1 Data preprocessing

As is stated previously, in the tests made in “De Rotterdam” building, four layouts of the four
Meshlium scanners were designed for testing focusing on different aspects: max distance,
concrete square, elevator and pathways, and half-building. Raw data were collected for each
layout with three Samsung smartphones at 22 locations spreading over the floor for five
minutes each location. From the fingerprints got from these four tests, the team found layout 3
leaves large vacuums over the whole area where the phone cannot be detected by two or more
scanners at the same time, which is not optimistic for Wi-Fi fingerprinting since these vacuum
areas cannot be effectively discriminated. On the contrary, layout 4 proved itself incompetent
by covering the half building so well that fingerprints at many locations are too similar to be
accurately distinguished. As for layout 1 and layout 2, both of them present nice coverage
with adequate variations between locations. Thus, the team took same test again for both
layout 1 and layout 2 to be more accurate to further research which layout of the scanners is
better for Wi-Fi fingerprinting.

Before the raw data can be actually used in the Wi-Fi Fingerprinting, some preprocessing
need to be carried out. First, for each scanner, the RSSI values of these three phones at each
locations are all together averaged and the total times they were detected by the scanner are

97
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

calculated (see Appendix I). Data collected at locations where the three phones were scanned
less than ten times in total in the five minutes (i.e. each phone was scanned three times or less)
are considered unreliable and marked yellow. This happens when the phones are too far and
almost beyond the reach of the scanner or there are a lot of obstructions between them. From
Appendix II, it can also be seen that data marked yellow from the first and the second test
always vary a lot, which with each other except for those zero values with zero scan which
indicates the phones were not detected by the scanners at all. Then, to derive the final RSSI
values to be used, the averaged data from the two tests for each layout are averaged again and
values are set to be zero wherever either of the data from the two tests is marked yellow (see
Appendix II). Hereby, the fingerprints of the four scanners at each location are obtained,
which is shown in the charts below.

(a)

(b)
Fig.90. Fingerprints: (a) layout 1; (b) layout 2

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Layout 1

Mesh121 Mesh309 Mesh553 Mesh678

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Layout 2

Mesh121 Mesh309 Mesh553 Mesh678

98
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

The last step before interpolation is to define a local coordinate system for these sampling
points, which is usually realized by overlapping a regular grid onto the area. The team chose a
grid of 2 by 2 squares and a grid of 4 by 4 squares to research what would be the best size of
the cells. These two grids are shown in Figure 91.

(a) (b)
Fig.91. Sampling points in different grids: (a) 4 by 4； (b) 2 by 2

Then, the coordinates of these 22 points in the two different grids are obtained, which are
shown in Appendix III together with the according average RSSI values as the final input
data.

10.3.2. Interpolation
Out of the 22 points, 15 points are taken out to do the interpolation to create the heat maps of
each scanner for each layout, while the other 7 points are testing points to check the accuracy
of these heat maps.
The interpolation is calculated in Python using ‘scipy.interpolate.Rbf’, a function for
interpolation of n-dimensional scattered data of radial basis function, since the signal of a
scanner goes out radially in open area in theory. The heat maps are shown in Figure 92 (a&b).

99
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

(a)

100
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

(b)

Fig.92. Heatmaps: (a) layout 1; (b) layout 2

10.3.3 Matching
As is stated before, there are two matching algorithms. For this project, the Nearest Neighbor
method is chosen to match between the recorded fingerprints in the heatmaps and the seven
live fingerprints. Location with the least sum of squared differences is assumed to be the best
match.

CoDG = =>?@AB�CD − EFD�!G
DH� I

Table 10 shows the result of each layout with each grid. (x|, y|) are the coordinates of the
square which the ground truth lies in, while (x, y) is the calculated coordinates of the best
match point. dx and dy are the difference between these two sets of coordinated. CoDG is the
minimal sum of squared differences between the recorded and live fingerprints that comes
along with the best match. Dist is the overall distance error between the ground truth and the
best match point, which is calculated by these functions below:
 ~��� = � ×	#��! + ��!

L=2m when using 2 by 2 grid, L=4m when using 4 by 4 grid

101
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Table 10. Heat maps testing results

No. x| y| x y dx dy Dist (m) CoDG (dBm)
3 15 3 14 1 1 2 4.47213595499958 5.239318735613585
6 8 6 7 7 1 -1 2.8284271247461903 4.526167534693688
10 15 13 14 8 1 5 10.198039027185569 8.399138514819178
15 4 17 0 17 4 0 8.0 0.550764724593878
18 18 2 16 2 2 0 4.0 2.3427934329267632
20 6 7 7 7 -1 0 2.0 3.618259832854877
21 11 19 12 19 -1 0 2.0 0.6403581380151838
 AVG Dist (m) 4.785515

(a) Layout 1 with 2 by 2 grid

No. x0 y0 x y dx dy Dist (m) CoDG (dBm)
3 8 1 7 0 1 1 5.656854249 5.239318736
6 4 3 4 3 0 0 0 5.252243749
10 8 6 7 4 1 2 8.94427191 8.618502638
15 2 8 0 8 2 0 8 0.550764725
18 9 1 8 0 1 1 5.656854249 4.131643285
20 3 3 4 3 -1 0 4 4.534343626
21 6 9 6 9 0 0 0 0.669422414
 AVG Dist (m) 4.60828292

(b) layout 1 with 4 by 4 grid

No. x0 y0 x y dx dy Dist (m) CoDG (dBm)
3 15 3 14 2 1 1 2.8284271247461903 2.550717802348352
6 8 6 5 8 3 -2 7.211102550927978 8.7278583641188
10 15 13 16 19 -1 -6 12.165525060596439 5.10795213494923
15 4 17 1 17 3 0 6.0 2.537312856679257
18 18 2 16 0 2 2 5.656854249492381 1.593611087663197
20 6 7 5 7 1 0 2.0 7.060631555670865
21 11 19 14 11 -3 8 17.08800749063506 10.483064541304355
 AVG Dist (m) 7.564274

(c) layout 2 with 2 by 2 grid

No. x0 y0 x y dx dy Dist (m) CoDG (dBm)
3 8 1 7 1 1 0 4 2.2026924

6 4 3 3 3 1 0 4 11.113585

10 8 6 9 9 -1 -3 12.649111 6.0042854

15 2 8 1 8 1 0 4 4.1278081

18 9 1 9 0 0 1 4 1.9830051

20 3 3 3 3 0 0 0 10.211058

21 6 9 7 5 -1 4 16.492423 10.57897

 AVG Dist (m) 6.44879
(d) layout 2 with 4 by 4 grid

102
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

From the results, it can be seen that layout 1 with 4 by 4 grid provides the best accuracy. To
be more specific, layout 1 outperforms layout 2 with either 2 by 2 or 4 by 4 grid and 4 by 4
grid is better than 2 by 2 gird in either layout 1 or layout 2. The reason behind this might be
that the fingerprints generated in layout 1 are better detected since there is more vacuum area
in layout 1 than that in layout 2. Besides, the granularity of 2 by 2 grid might be too small for
either the interpolation to accurately simulate the fingerprints in real environment or the
matching algorithm to effectively distinguish the differences between the squares.

10.3.4 Result with space subdivision
Table 11 shows the localization result of these 4 different set-ups, namely layout 1 with 2 by 2
grid, layout 1 with 4 by 4 grid, layout 2 with 2 by 2 grid and layout 2 with 4 by 4 grid, when
fingerprinting is combined with space subdivision. ID�| is the index in the grid of the square
which the ground truth lies in, while ID� is the index of the outcome square. ID���| indicates
the subdivision which the ground truth lies in, while ID��� indicates the subdivision the point
is actually assigned to.

Table 11. Localization result in space subdivision

No. ID�| ID� ID���| ID��� Final result
3 150 169 2 2 'localized successfully'
6 300 322 3 3 'localized successfully'
10 160 176 4 0 'localization failed'
15 395 479 7 7 'localized successfully'
18 86 128 1 2 'localization failed'
20 343 322 3 3 'localized successfully'
21 250 229 5 5 'localized successfully'

(a) layout 1 with 2 by 2 grid

No. ID�| ID� ID���| ID��� Final result
3 34 44 4 0 'localization failed'
6 80 80 3 3 'localized successfully'
10 39 48 5 5 'localized successfully'
15 107 129 7 7 'localized successfully'
18 23 33 1 1 'localized successfully'
20 91 80 3 3 'localized successfully'
21 64 64 0 0 'localized successfully'

(b) layout 1 with 4 by 4 grid

No. ID�| ID� ID���| ID��� Final result
3 150 170 2 2 'localized successfully'
6 300 365 3 6 'localization failed'
10 160 145 4 4 'localized successfully'
15 395 458 7 7 'localized successfully'
18 86 126 1 2 'localization failed'
20 343 364 3 3 'localized successfully'
21 250 179 5 0 'localization failed'

(c) layout 2 with 2 by 2 grid

103
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

No. ID�| ID� ID���| ID��� Final result
3 34 45 4 0 'localization failed'
6 80 91 3 3 'localized successfully'
10 39 31 5 2 'localization failed'
15 107 118 7 7 'localized successfully'
18 23 22 1 1 'localized successfully'
20 91 91 3 3 'localized successfully'
21 64 49 0 5 'localization failed'

(d) layout 2 with 4 by 4 grid

From the table it can be noticed that layout 1 with 4 by 4 grid has the best successful rate (6/7)
of localization in subdivision among these 4 set-ups, while those for layout 2 with either 2 by
2 or 4 by 4 grid are both 4/7. Between them is layout 1 with 2 by 2 grid with a successful rate
of 5/7. This also complies with the outcome in Table 9.

Examples of the localization result are shown in Figure 93, in which the red square is the
location of the ground truth while the blue square is the localized squared. Figure 93 (a)
shows the point is successfully localized in the same subdivision which the ground truth lies
in; Figure 93 (b) shows another case where the point is wrongly localized in an adjacent
subdivision of the one in which it actually should be.

(a) (b)

Fig. 93. Examples of localization result of layout 1 with 2 by 2 grid in subdivision (a)
Successful localization; (b) Failed localization

10.3.5 Improved result

Here, similarly, the final localization result can be also improved with the algorithm
introduced above, which utilizes another possible space subdivision that is based on the
coverage area of the signal of each scanner to give other possible options to the user. Table 12
shows how the localization can be improved when given a second or even a third option for
the 4 different set-ups.

104
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Table 12. Improved localization result in space subdivision

No. ID�| ID� ID���| ID���� ID���! ID���1 Final result
3 34 44 4 0 1 4 'localized successfully'
6 80 80 3 3 None None 'localized successfully'
10 39 48 5 5 None None 'localized successfully'
15 107 129 7 7 None None 'localized successfully'
18 23 33 1 1 None None 'localized successfully'
20 91 80 3 3 None None 'localized successfully'
21 64 64 0 0 None None 'localized successfully'

(a) layout 1 with 4 by 4 grid

No. ID�| ID� ID���| ID���� ID���! ID���1 Final result
3 150 169 2 2 None None 'localized successfully'
6 300 322 3 3 None None 'localized successfully'
10 160 176 4 0 1 4 'localized successfully'
15 395 479 7 7 None None 'localized successfully'
18 86 128 1 2 1 None 'localized successfully'
20 343 322 3 3 None None 'localized successfully'
21 250 229 5 5 None None 'localized successfully'

(b) layout 1 with 2 by 2 grid

No. ID�| ID� ID���| ID���� ID���! ID���1 Final result
3 34 45 4 0 6 3 '3 chances at most, localization failed'
6 80 91 3 3 None None 'localized successfully'
10 39 31 5 2 1 None 'no other choice, localization failed'
15 107 118 7 7 None None 'localized successfully'
18 23 22 1 1 None None 'localized successfully'
20 91 91 3 3 None None 'localized successfully'
21 64 49 0 5 4 None 'no other choice, localization failed'

(c) layout 2 with 4 by 4 grid

No. ID�| ID� ID���| ID���� ID���! ID���1 Final result
3 150 170 2 2 None None 'localized successfully'
6 300 365 3 6 0 3 'localized successfully'
10 160 145 4 4 None None 'localized successfully'
15 395 458 7 7 None None 'localized successfully'
18 86 126 1 2 3 6 '3 chances at most, localization failed'
20 343 364 3 3 None None 'localized successfully'
21 250 179 5 0 6 3 '3 chances at most, localization failed'

(d) layout 2 with 2 by 2 grid

From the following table (Table 13), it can be seen that when given a second option, one more
point is localized successful in layout 1 with 2 by 2 grid, while rates for the other set-ups stay
the same. When given a third option, the successful rate of both set-ups of layout 1 with either

105
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

2 by 2 or 4 by 4 grid increases to 7/7, while that of layout 2 with each kind of grid has also
improved in different degree, going up to 5/7 and 6/7 respectively.

Successful rate Layout 1 Layout 2
Options 2 by 2 4 by 4 2 by 2 4 by 4

1st 5/7 6/7 4/7 4/7
1st+2nd 6/7 6/7 4/7 4/7

1st+2nd +3rd 7/7 7/7 5/7 6/7
Table 13. Changes of successful rate for different set-ups

10.3.6 Conclusion

The Wi-Fi fingerprinting method uses the unique profile of RSSI values in each square to
search for the best match between the recorded fingerprints from the heat maps of each
scanner created by interpolating the sampling points and the live fingerprints provides by the
application. It is more deterministic and also more accurate than other existing indoor
localization methods, while it requires heavy labor and large amount of time for collecting the
training data. This method relies heavily on its surrounding environment since every heatmap
it uses is created under a specific environment. Every time the environment changes, the
training data must be recollected to update the heat maps, which in turn greatens the burden in
the training phase.

Furthermore, the accuracy of this method also depends on the granularity of the grid it uses to
define the coordinate system and the space subdivision applied after a certain square of the
grid that a target is localized in is returned. If the granularity of the grid is too coarse, the
localization will be meaningless since the given area will never be accurate enough for either
finding people or for navigation. However, the results shown above also prove that too small
granularity of the grid can endanger the overall localization successful rate, either with or
without a space subdivision applied, maybe because it is not suitable for either the
interpolation to accurately simulate the fingerprints in real environment or the matching
algorithm to effectively distinguish the differences between the squares.
Two kinds of space subdivision are used in this project: one with higher intuitiveness and one
that is closer to a theoretical space subdivision since it is based on the coverage area of the
signal of each scanner. An algorithm is applied that uses the intuitive subdivision as a front
interface to interact with the user and the theoretical one as a background layer to perfect the
localization.
For a more precise localization, enough sampling points must be guaranteed either for
interpolation or testing. In the tests taken in ‘De Rotterdam’ building for this project, the team
only collected data at 22 points. 15 of them are used in the interpolation, while the other 7 are
used to test the localization. On one hand, 15 points are far from enough for accurate
interpolation to create heatmaps that can perfectly simulate the real environment; on the other
hand, 7 testing points are also nowhere near persuasive and convincing to draw any solid
conclusions from the result. Besides, the time period for collecting data at each location needs
to be controlled precisely. If during the timespan when a phone should be collecting data at
certain location the phone is actually still moving, there will be some deviations in the raw
data that might possibly compromise the accuracy of the final result.

106
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

11. Navigation

In order to enable the user to find their colleague, navigation is needed to communicate the
route to the user. For accomplishing to this task, a description of how the subdivided spaces
are connected is needed.

11.1 IMPLEMENTATION

11.1.1 Deriving the network

After having analysed the main approaches for generating the navigation system, the network
approach was selected for ‘De Rotterdam’ building. The reasons why this method was
preferred are the following:

- It fits better with the characteristics of ‘De Rotterdam’ building: corridor around the
concrete block where the facilities are located (elevators, stairs, toilets, etc.) and open
spaces around it.

- High positional accuracy is not needed since employees can easily find the colleagues
in open spaces and through glass walls.

- Easy to design since just few nodes and edges are needed for navigating through the
building.

The simplest way of designing a network is to do so manually for each floor plan or building
part. The drawbacks of this method are that it is time consuming and it has to be repeated for
changes in the space subdivision. A generalized method of generating a network will not only
save time, but may also be practical in other buildings than `De Rotterdam`.

For subdividing the space in `De Rotterdam`, the Multi-Layered Space Model of IndoorGML
is taken into consideration. Indoor space is represented by three different space layers which
correspond to different space subdivisions:

• Functional layer, which mainly consists of meeting rooms, obstacles such as walls,
and clearly defined spaces where the copy machines are for example. As well as the
central blocks with the stairs, the elevator and the toilets in the middle (Figure 94 left).

• Navigational layer, which is composed by the corridor and the spaces where people
use to walk through. The tables were not taken into consideration as obstacles, because
of the accuracy of the localization methods (Figure 94 right).

• Range of the scanner layer, which is derived by the heat maps (Figure 95).

In IndoorGML, different decompositions result in different Node-Relation Graph (NRG), but
in this case the team has decided to combine all this different layers and to extract only one
network in the end.

107
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig.94. Functional layer (left) and Navigational layer (right)

Fig.95. Range of the scanner of 20 meters for layout 1 and 2.

11.1.2 The manual network
If the network is drawn manually, for instance using a CAD software, it can be easily adapted
to the characteristics of the building (obstacles, rooms, etc.), as in the case of the space
subdivision. In order to automatically extract the network, the subspaces obtained with the
space subdivision were utilized, except for the rooms (functional layer), which at first for the
subdivision for the localization methods, were not considered. The functional layer is
removed from the subdivisions, because it is considered to be an obstacle where you cannot
walk through.
In the figure below (Figure 96) the manual network overlayed on the intuive space
subdivision can be seen. Basically each center of a workspace is connected to each other. The
functional layer (the rooms etc.) describes a subspace. Since the localization is not accurate
enough to localize inside a room, a connection to these rooms is not made. This is not
necessary, because the localization methods give back one subspace, which can include just
open space or a room and open space.

108
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig.96. Implementation of the manual derivation of the network on the intuitive subdivision

11.1.3 Semi- automatic network
The subdivision used for testing an (semi-)automatic derivation of the network is the
subdivision based on the range of the scanners, after removing the functional layer (Figure
97).

Fig.97. Subdivision based on the range of the scanners, after removing the functional layer.

The semi- automatic method considers the building geometry. Certain nodes are necessary for
an efficient routing for any floorplan in the MidTower of ‘De Rotterdam’building, regardless
of the space subdivision. For this reason, a `basic routing` is created as a part of the network.
It consists of nodes in and around the buildings core, enabling navigation from and to the
elevators. Additional nodes for the routing around the core of the building are added to enable
an effective routing. As this core is present throughout the entire tower, the `basic routing`
network is present at every floor. After this basic routing is in place, the subspaces resulting
from the space subdivision can be taken into account. For each subspace the centroid was

109
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

computed using the Python library Shapely. The script then searches for the center points of
the neighbouring subdivisions and connect these points with the route around the core (see
Figure 98).

Fig. 98. Concept for the semi- automatic derivation of the network

The steps of the method can be seen in the figure below (Figure 99). The routing around the
core can be seen on the left. In the middle are the center points of the subdivisions connected.
The routing around the core is layered over the routing between the center points on the right.

Fig.99. Implementation of the semi- automatic method on the subdivision based on the range

In the next steps the two routes are combined by choosing the shortest distance between the
points. The crossing lines are removed on the left, in the figure below. For a future
application, a connection to the rooms/obstacles is added. When then having a more accurate
localization method, localizing inside a room will be possible. For the application, nodes need
to be in the rooms, for the path finding algoritm to find a route to them. When the application
will look for available workspaces, all the available workspaces need to be connected to each
other. The connection to the holes can be seen in the figure below on the right. They are made
manually, because the doors/openings need to be taken into consideration for the connection
to the already there network. It could be possible to create a node for each door, and then
automatically make the network, but that is not done for this project.

110
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig.100. Implementation of the semi- automatic method on the subdivision based on the range

Fig.101. The final network

Looking at the figure above, it can be seen that the route is not perfect, because at certain
places the route is cut short and crosses an obstacle, where you cannot walk through. The only
connections allowed trough the holes are the ones that are combine with the center of the
holes and are going through a door or opening. Also there is a lot of manual editing needed,
for example when the route around the core is combined with the route through the center
points.

11.1.4 Automatic network
The automatic network does not consider the building geometry. It uses the centerpoints of
the subdivisions as a starting point. After computing the centroid, each centroid is connected
with the centroids of the neighbouring subspaces and in this way the network has been
generated.

111
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig.102. Implementation of the automatic method on the subdivision based on the range

As seen in the left figure above, the network crosses many holes. This is tried to solve by
‘guiding’ the lines through the middle points of the intersecting lines between the
neighbouring subdivisions, as can be seen in the middle. Especially in the right upper corner,
the route becomes a lot better. The connection to the rooms is made manually. Lines are
made, considering the doors/openings of the rooms, to the closest point, as can be seen on the
right. The final route can be seen in the figure below.

Fig.103. The final network

The final result seem better, in comparison to the semi- automatic method, better, because the
network crosses fewer holes. Still it is not suitable for use, because there are still obstacles
crossed. To solve this problem, another automatic derivation of the network could be drawn
by using the centroids of the triangulated space and connecting them with each other. Now the
network will not cross a hole. Access to the holes needs to be made manually, as done for the
other networks. But it is not performed in the figure below, since the connection to the holes
is not necessary, as explained before.

112
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig.104. Implementation of an automatic method on the triangulated floorspace

A result can be seen above. The network contains a lot of nodes, which is not needed for the
navigation, since the accuracy of the localization is not that precise. A solution to this problem
could be to simplify the network. For example, every node that has three branches, should be
kept, and the nodes in between removed. This will cause lines to cross the holes, so exception
to this rule should be made. This method was not further investigated. By comparing all the
different networks with each other, the manual network seems, for now, to be the most
effective and will be used later on for the application.

Fig.105. The network used for the application

11.1.5 Storing the network

Once the network is derived, the positions of the network nodes can be stored in a local
coordinate system (x,y,z). Based on these positions, the lengths of edges can be calculated and
the final network can be created. For the manual network in `De Rotterdam`, nodes are
described as 4 digit integers, since the alphabet is not sufficient to describe all nodes. By
using 4 digits the floor level can be indicated with the first 2 digits. The network is depicted in

113
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

the figure on the left below. The localization method gives back a nodenumber. This node is
the representative node for that subspace, which can be seen in the figure on the right.

Fig. 106. Generated network with nodes

After retrieving all node positions and calculating the edge lengths, the generated network
stored as an adjacency list looks as in Figure 107. In the following steps this network will be
used in the path finding algorithm and in the visualization of the route navigation.

Fig.107. Example adjacency list

11.1.6 Path finding

By using the A* algorithm in complicated graphs, a lot of node visits can be avoided as the
search is directed at the target node. However, in the current example network for de
Rotterdam only few nodes are available.
If the searched colleague is located at node 1413, the users can be instructed to go to the 14th
floor. It can be assumed that an employee knows where the elevators are, meaning that this
part of the path finding is not necessary. Therefore, the path finding may start from the

1

2 3

4

5

6

7

0

1403

1404

1405

1406

1407

1408 1409

1410 1411

1412

1413

1414

1415

1402

1401

1

2
3

4

5

6

7

0

1403

1405

1407

1401

1409

1411

1415

1413

114
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

`elevator-node` 1408 and create a route towards node 1413, regardless of the user`s position.
Instead of creating one large network for the whole tower or building, different network for
different floor levels may be used. Target node 1413 is at the 14th floor, meaning that graph
14 can be searched through. Since there is only a small amount of nodes per floor level, the
choice of a path finding algorithm will not have a significant effect on the computation times.
Therefore the Dijkstra algorithm will be used, since it is the easiest algorithm to implement.
If it is assumed that employees can use staircases to visit colleagues who are 1-2 floors away
from them, the need of a network connecting all floor levels becomes greater. For these
searches, a staircase routing may be computed. However, after visiting the building, the stairs
are emergency exists and will not be taken into consideration as a route.

As the scanner data and thus localization will be processed on the database, the path
finding algorithm will also run on the server side. This means that the algorithm can be run on
most of the languages, and scripting this within the mobile phone application in Android is
not needed. As most of the team is familiar with Python, for now a Python script will be used.
A prewritten Dijkstra algorithm scripted in Python by David Eppstein (UC Irvine) was used.

Input is in the Adjacency list form, as described in the chapter Network. Where the
network was previously described as:

the syntax needs to be adjusted to:

Running the algorithm with:
ShortestPath(G,1411,1405) with G = the name of the graph,
startnode = 1411 and endnode = 1405
results in ['1411', '1412', '1413', '1414', '1409', '1404', '1405']

This is to be expected, as it is the shortest path, computed by choosing the shortest edges (for
example from node 1412 to node 1413 [weight 9.0] instead of node 1407 [weight=15.6]. The
series of nodes, resulting from the Dijkstra algorithm, can now be used to navigate the user to
the colleague.

11.1.7 ROUTE DESCRIPTION

Once the path from the user towards the colleague has been determined, the next step is to
guide the user to the colleague. This can be done by a route description or a visualization of
the route. In this section the possibilities of a route description in ‘De Rotterdam’ will be
described.
One way to describe the route of a user is by explaining its path in text, relative to the
observed environment. Examples of this are “go left when leaving the elevator” or “at the
main entrance, walk straight ahead”. As visible from the above statements, so called
landmarks are needed to clearly describe a route. Directions are only meaningful when they
can be related to distinguishable objects which the user can understand. Examples of
landmarks could be stairs, elevators, corridors and junctions or other objects which can be
identified in an unambiguous way.

115
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Within ‘De Rotterdam’ some clear landmarks can be found. For example the elevator, doors
and some corridors can be used. Possible route description statements and the related
landmarks are shown in the figure below.

Fig. 108. Possible route description statements based on present landmarks

Once the correct floor plan is reached, one can leave the core of the building either through
the left or the right. A statement could be “leave the elevator and go left”. Since the user
needs to go through a door in order to exit the core, a second statement might be “go through
the door and go right”. From this point onwards there do not seem to be any distinct
landmarks available. Within the work floor, different workspaces are mixed thus no clear
differences in furniture are present. A statement as “go right at the meeting room” may be
interpreted wrongly if several meeting rooms are present. On one side of the building the
staircases may be used as a landmark, although these are not clearly visible. On the other side,
this is not the case, so describing the route relative to the corridor may be used, although this
is not very clear. A statement could be “go right at the end of the hallway”. Some photos
inside the building indicating the given statements are shown below.

Fig. 109. Photos ‘de Rotterdam’, arrows indicate route description statements “left, right,
right”

Other options are using room numbers or metric directions such as “go straight ahead for 10
meters and go left”, however these are difficult for the user to follow accurately. It can be
concluded that a text based route description may be helpful to the users, but for certain areas
there might be misunderstanding of the statements. To enhance the possibilities of navigating
via these statements specific landmarks could be added or certain areas could be indicated

116
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

with materials/colours. However, assuming the building interior stays as it is, additional
visualization of the route seems to be helpful to the user.

Another option is to use a route description combined with space subdivision. Subspaces
may be defined as “north, east, south & west” where each cardinal direction describes a
certain corner of the building. The mobile application may accompany the user with a
compass, showing the orientation of the area where the target is situated. However, this option
limits the space subdivision to 4 (n,w,s,e) or 8 (n,nw,w,sw,s,se,e,ne) areas. Also, this way of
navigating may not function very intuitively as the direction of the arrow may point at a
certain direction while the user is supposed to move towards somewhere else. As visible in
figure 40 a user being navigated from the elevator can be guided based on the orientation.
However, if the user is not positioned in the middle of the floorplan, the cardinal direction
might be confusing or hard to use.

 Fig. 110. Navigation based on cardinal direction

117
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

12. Visualization

In order to navigate an employee towards a colleague, visualization might be the most direct
way of achieving this. Also, selecting the colleague that is being searched should be as easy as
possible. As the employees of the Rotterdam municipality are granted mobile phones which
run on Android, the application has to be developed for this platform. There is no need to
consider iPhones or other mobile platforms. During this project, Eclipse was used for the
android application development. This chapter will start with a description of the general
functionality of the application. This will be followed by a more detailed description of the
separate components. Pieces of code will be given to illustrate the most important parts of the
process. Larger parts of the code can be found in the appendix.

12.1. APPLICATION FUNCTIONALITY

As mentioned previously, the main aim of the application is to navigate a user to another
colleague. Since, there are around 3000 employees working for the municipality of
Rotterdam, all of whom can be present in the office, it should be easy to select the colleague
one is looking for. The first step is to acquire the mac-addresses of the searching and the
searched colleague. To select the searched colleague, the relevant department can be chosen
out of a list of departments. The following step is to select a colleague that belongs to the
selected department (see Figure 111).

Fig. 111. Main screen, department selection and colleague selection in mobile application

A connection to the database has to be made in order to retrieve the mac-address of the
searched colleague. Frequently updating and validating this database with the correct mac-
addresses for each colleague is crucial for the functionality of the system. Since the users’
location is also required, its mac-address should also be retrieved. This can be done within the
mobile device itself. Once these values are found the localization script can be requested to
run with the two mac-addresses as input nodes to retrieve the shortest route (see Figure 112).

118
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig.112. Selection overview and route description screen in mobile application.

These scripts are working on the server side. Another table can be queried for all node pairs of
the route, in order to retrieve the route description. While launching the map view the route is
sent to the Unity application, so it can be rendered on the screen.

12.2. DATABASE CONNECTION

To be able to store mac-adresses of all colleagues, a database is needed. Two tables are
created, one table storing data about departments and another table for individual phones.
The following tables have been created via the MySQL workbench.

depid department Created_at Updated_at

1 department of Geo Information 2014-10-21 13:25:55 0000-00-00 00:00:00
2 department of Geomatics 2014-10-21 13:25:55 0000-00-00 00:00:00
3 department of Civil Affairs 2014-10-21 13:25:55 0000-00-00 00:00:00

Table 14. Departments table in MySQL database

phone
id

name

macaddress department depid Created_at Updated_at

1 Rob Poll d3:5b:32:d2:xx:xx department of
Geo Information

1 2014-10-21
13:29:51

0000-00-00
00:00:00

2

GeoInfo
Colleague 1

d3:5b:32:2a:xx:xx department of
Geo Information

1 2014-10-21
13:29:51

0000-00-00
00:00:00

..
5 Damien

0c:14:20:6e:xx:xx

department of
Geomatics

2

2014-10-21
13:29:51

0000-00-00
00:00:00

6 Dimitris

d4:32:a2:41:xx:xx department of
Geomatics

2 2014-10-21
13:29:51

0000-00-00
00:00:00

..
10 Civil Affairs

Colleague 1
f8:e0:79:2f:xx:xx

department of
Civil Affairs

3

2014-10-21
13:29:51

0000-00-00
00:00:00

11 Civil Affairs
Colleague 2

f8:e0:79:c1:xx:xx department of
Civil Affairs

3 2014-10-21
13:29:51

0000-00-00
00:00:00

..
Table 15. Phones table in MySQL database

119
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

In order to query these tables from the application PHP is used. The PHP-file is stored on an
external server. The URL to this PHP-file is stored and a GET-request is performed on this
URL. A list of JSON strings is returned and then read by a JSONParser. This is exemplified
in the following code lines (AllPhonesActivity.java).

private static String url_all_phones = "http://server.kirupa.nl/damien/get_department_details.php";

JSONObject json = jParser.makeHttpRequest(url_all_phones, "GET", params);

The php-file queries the database and reads the values into a list. This list is then returned to
the GET request. (get_department_details.php, code snippet)

$result = mysql_query("SELECT * FROM catchphones WHERE depid = $depid");

In the above example, the query for colleague selection is given. In a similar way but with a
different query, all departments are shown. After the colleague selection, its phoneid, name
and mac-address are passed on to the next activity (AllPhonesActivity.java).
Bundle extras = new Bundle();

extras.putString("TAG_PHONEID",phoneid);

extras.putString("TAG_NAME",name);

extras.putString("TAG_MACADDRESS",macaddress);

Intent in = new Intent(getApplicationContext(),SelectPhoneActivity.class);

in.putExtras(extras);

Retrieving the mac-address of the phone of the users of course doesn’t need a database
connection. It can be acquired with the following code (SelectPhoneActivity.java).
Bundle extras = getIntent().getExtras();

String macaddress = extras.getString("TAG_MACADDRESS");

WifiManager manager = (WifiManager) getSystemService(Context.WIFI_SERVICE);

WifiInfo info = manager.getConnectionInfo();

String address = info.getMacAddress();

This results in the colleague selection screen, displaying the mac-adresses of both the user and
searched colleague.

12.3. PYTHON LOCALIZATION

Since the localization algorithm was written in Python, a way has to be found to run the code
with the input from the application. One way of doing so is using a Scripting Layer for
Android (LS4A). However, a web service is the preferred option as described previously in
the system architecture. In a similar fashion as the previous step, a PHP file is called which
calls a python script on a remote server, to run with two mac-adresses as input.
(java) private static String url_run_python =
 "http://server.kirupa.nl/damien/get_python_route.php";

(PHP) $myroute = system('python myscript.py mac1 mac2', $retval);

The python code consists of the localization algorithm which returns a location as a network
node. Running a shortest-path algorithm on these two nodes will result in a route given as a
sequence of node numbers. When the searching user is localized on a different floor level than
the searched colleague, the shortest path start node may be assigned to the ‘elevator-node’. At
this point the user will be instructed to go to the right floor and a route description in language
can be given.

120
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

12.4. ROUTE DESCRIPTION

In the application a sample route description is shown. By creating a database with route
description for each node pair, this description could be automatically gathered from just the
node sequence. This method is easy to set up but does not take into account the direction in
which a user is walking. The following table shows the idea.

Routeid Startnode Endnode Route description

1 1408 1409 Leave the elevator and go right
2 1408 1407 Leave the elevator and go left
3 1409 1404 Go through the door and go left
4 1409 1414 Go through the door and go right
5 1407 1402 Go through the door and go right
6 1407 1412 Go through the door and go left
7 1404 1405 Go straight ahead until the lockers and go right
8 1404 1403 Go straight ahead until the lockers and go left
..

Table 16. Route description based on node-pairs

This method based on node-pairs is only valid when the start node is at the elevator node.
When the searching colleague is at the same floor level a node sequence of 1414 � 1409 �
1404 might be possible. In this case the statement “Go through the door and go left” is not
correct. Taking searching within the same floor level into account for the route description
means that node-triples can be used to create statements which are correct in any case. This
idea is shown in the following table.

Table 17. Route description based on node-triples

This method is always correct because it takes into account the direction of the user, also in
the case of same floor level searches. However, more statements need to be stored and
retrieving the right statements takes some more computation. This part is not implemented in
the application as it is considered of less importance and outside the scope of the project.

12.5. UNITY VISUALIZATION

Once the route is known a visualisation which can aid the user with its navigation can be
created. To do so, the route should be rendered and accompanied by an illustration of relevant
building parts. This visualisation can be done in 2D, 2.5D or 3D, depending on the demands
and the complexity of the building geometry.

Routeid Startnode Middlenode Endnode Route description
1 1408 1409 1404 Leave the elevator and go right

Go through the door and go left
2 1408 1409 1414 Leave the elevator and go right

Go through the door and go right
3 1414 1409 1404 Go straight ahead until the lockers
4 1414 1409 1410 Go straight ahead and go right and the doors
5 1409 1404 1405 Go straight ahead until the lockers and go right
6 1409 1404 1403 Go straight ahead until the lockers and go left
..

121
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig.113. 2D, 2.5D and 3D visualisation of routing within ‘de Rotterdam’

In the examples above (Figure 113), it is visible that routes can be displayed in each of these
options. For a visualisation in 2D, only parts of one floor plan can be shown at a time. This
means that complicated geometry such as height differences or split levels cannot be
displayed. However, it does depict a clear route and it is easy to run on a mobile application.
The 2.5D visualization can show more complex routes, also in between levels. Height
differences can be shown and several floors can be visualized simultaneously in a clear way.
However, it is quite abstract and not a lot of information about the building geometry is
shown. Therefore the user might have a hard time, understanding the showed route.
The most extensive option is to make a 3D visualization, depicting (parts of) a 3D-model on
the mobile phone, while rendering nodes and lines on top of this. Showing or switching
between different floor levels (visible buildings parts) and levels of detail (layers) belongs to
the possibilities. More information about the building geometry can be shown, which may
help the user. However, it could be heavy to run as mobile application.
Some of the floor plans of ‘de Rotterdam’ are complicated; there is for instance a split level
with double height. Because of this reason, and along with the educational aspect, a 3D
visualization will be made.
To render the geometry and routing, a 3D engine needs to be used. Based on last year’s
synthesis project, Unity3D is known to be capable of visualizing the geometry and routing.
More importantly, it is compatible with Android applications and plenty of documentation is
present. Within Unity3D a scene is to be created, consisting of a 3Dmodel, lighting, textures,
camera control and a rendered route. The implementation of these aspects will be explained
below.

12.5.1 Geometry

The municipality of Rotterdam provided the floor plans of the middle tower in PDF format.
Out of these files the geometry of the facade, walls, columns, doors and furniture could be
extracted. This 2D information was saved as .dxf and imported in Rhino. The 3D-model was
manually created from this point on by turning the polylines into planar surfaces, which can
then be extruded into solids. Some simple shaders were used to enhance the model. Geometry
was created for the 14th, 15th and 16th floor or de Rotterdam.
There are several options for storing the geometry, but 2 were mostly considered. These are:

122
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

• Store all geometry on the server, where the required parts can be queried by the
application on run time.
The advantage of this is that the application will have a much smaller file size.
However, more data transfer will be needed between server and application. In
case of a full building model, this would lead to excessive file sizes. However,
the model created for the three floor plans is not very rich in semantics nor is it
geometrically detailed.

• A second option is local storing of the geometry on the phone. To visualize the
route clearly, only the floor plan, on which the searched colleague is present is
needed. Simple shaders are used to show the difference between solid walls
and glass panels and furniture and floor. A point light above the geometry is
used for illumination. This was finally the preferred method.

Fig.114. Overview of the unity scene

The geometry is loaded based on the final node, nodeIDs are given based on the floor level.
Therefore first node of the 14th floor is node 1401 (routeRenderer.js code snippets).
var finalFloor : int = (finalNode/100);

 for (var geomIndex : int = 14; geomIndex < 17; geomIndex++)

 {if (finalFloor != geomIndex)

 {var tempGeom : GameObject = GameObject.Find("RdamFloor"

 + geomIndex); tempGeom.SetActive (false);}

If the final node is 1405, the node is present on the 14th floor (final floor). All geometry is
looped to check if the name matches RdamFloor14. If this is not true, the geometry is set to
not active.

12.5.2 Camera control

The camera determines which part of the geometry is visible and in what way. In our case a
bird’s eye view perspective is chosen as it created the most oversight of the building.
Although the entire floor plan is visible from the initial view, users may wish to change the

123
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

camera position in order to get more information of the building geometry. This camera
control can be implemented in different ways:

• A good solution could have been touch-screen swiping and zooming.
However, when this was implemented it resulted in unexpected behaviour as
the camera was often shaking for a non-moving touch.

• Another option is using buttons as joysticks, panning and rotating the model by
pressing a certain part of the joystick. Although this may be a functional option
it doesn’t seem very intuitive to use and requires some explanation for the user.

• Finally it was decided to use simple zooming and panning buttons, on each
click the camera’s x, y or z position is altered by a single step size. The step
size was made dependant on the camera height, meaning that a zoomed out
camera will be moving more distance with each click. This way, not many
clicks are needed to get back to a more detailed view.

This last option can be understood by the following code (rightButtonScript.js)
var currentX : float = Camera.main.transform.position.x;

var currentY :float = Camera.main.transform.position.y;

var currentZ :float = Camera.main.transform.position.z;

var stepSize : float = 30/currentY;

Camera.main.transform.position = Vector3(currentX+stepSize, currentY, currentZ);

Similar code is used in all zoom and pan buttons to create a simple way to navigate through
the geometry. A better implementation might be to zoom the camera to a certain node, and
using the left/right/up/down buttons to move along edges to other nodes. This method,
however, only makes sense in an orthogonal network.

12.5.3 Route renderer

The aim of the route renderer is to display the route on the
screen. A route array may look like [1408, 1409, 1405, 1404]
meaning the starting node is 1408 and colleague is located at
node 1404. The first step is to loop through the array and to
retrieve the node positions from a text-file. This file may be
stored on a database, to enable updates on the network. In this
version, however, the node positions are stored locally on the
phone. Relative to the geometry the file-size of a text-file is
not significant. The node positions table is shown on the right.
Horizontal positions are indicated by the x- and z values,
vertical positions are set above the floor plan with y-values of
4 (see table 18).

 Table 18. Node positions floor

Looping through all route nodes returns a route position array, in this case:
[[18.5,4.0,21.0],[18.5,4.0,31.0],[07.6,4.0,29.0],[07.6,4.0,31.0]]

Then this array is split up into pairs, resulting in the start- and end node of individual line
segments.

NodeID x y z
1401 08.3 4.0 04.0
1402 07.6 4.0 13.0
1403 07.6 4.0 21.0
1404 07.6 4.0 29.0
1405 07.6 4.0 31.0
1406 18.5 4.0 11.0
1407 18.5 4.0 13.0
1408 18.5 4.0 21.0
1409 18.5 4.0 29.0
1410 18.5 4.0 31.0
1411 34.0 4.0 11.0
1412 34.0 4.0 13.0
1413 34.0 4.0 21.0
1414 34.0 4.0 9.0
1415 34.0 4.0 36.0

124
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Pair1 = [18.5,4.0,21.0] � [18.5,4.0,31.0]

Pair2 = [18.5,4.0,31.0] � [07.6,4.0,29.0]

Pair3 = [07.6,4.0,29.0] � [07.6,4.0,31.0]

For each of the line segments a new GameObject is made to which a line renderer is added.
Then the start and end node are set for each line segment (routeRenderer.js).

var pairStart : Vector3 = routeVectorArray[index];

var pairEnd : Vector3 = routeVectorArray[index+1];

var tempObject : GameObject = new GameObject();

var renderer : LineRenderer = tempObject.AddComponent(LineRenderer);

renderer.SetVertexCount(2);

renderer.SetPosition(0, pairStart);

renderer.SetPosition(1, pairEnd);

In a similar way all nodes are also looped through and spheres are placed on their positions.
The starting node is set to blue, the middle nodes are white and the final node is green.
Further guidance could be given as text statements in the screen or highlighting of the
subdivision of the colleague’s location. However, since employees will be familiar with the
indoor environment this simple route is considered to be sufficient for navigation purposes.

Fig.115. Table of node positions on floor 14

12.5.4 Integration of Unity within Android

In order to launch Unity from within the android application, some integration is necessary.
The Unity project can be exported as an android project is several ways. This project can then
be used as a library for the application. The android application activity may then extend on
the UnityPlayerNativeActivity library as shown below. The route array which is received in
the Android application can be communicated through to Unity. To achieve this, the name of
the game object, the variable name and the actual array are given (MapViewActivity.java).

public class MapViewActivity extends UnityPlayerNativeActivity {

 ...

 UnityPlayer.UnitySendMessage("Point light", "routeArray", "[1408,
 1409, 1405, 1404]");

 }

125
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Currently the Unity application is functioning on its own within Eclipse. However, when
activity extends on the UnityPlayerNativeActivity, this results in a OpenGL called out of
context error. Until the final version of the report, efforts will be made to solve this problem.

12.6. CONSIDERATIONS

Simple solutions were developed in order to show the route and move through the geometry.
Since the floor plan fits on a phone screen in a large enough scale, these solutions were
adequate to communicate the route to the user relative to the building geometry. In larger or
more complicated building parts however, more sophisticated control for the camera may be
required for an user friendly application.
Based on the accuracy of the localization method, showing a single node as final destination
might be misleading. As the localization method points towards a certain subdivision of the
building, a good option may be to integrate the subdivisions into the building geometry. This
way, parts of the floor could be highlighted by colouring or illumination, illustrating the
expected presence of the searched colleague. Since the localization methods have an
acceptable accuracy when the first and second subdivision estimates are combined, showing
both of these areas in the application makes sense. However, as the research on the
subdivision was performed simultaneously with the visualisation development there was no
time to further research this option during this project.
Options for a route description based on node-pairs or triples have been discussed. Since most
users will be familiar with the building, fast route visualization will be most effective in
showing the colleagues location. For indoor environments with complex spaces route
descriptions may be of benefit to the user.

Considering the concept system architecture, as seen in figure 10, a few changes have
been made for the real implementation. In the database, the scanner data is not real time
dynamic data, but data gathered after two days of testing in ‘De Rotterdam’ building. The
connectivity data, which contains the network, is not stored as a table in the database. The
geometry, which contains the manual made 3D model, is stored locally on the smartphone.

Component Implementation
STORAGE: external server
SQL Database MySQL Workbench stored on external server
Scanner data Not real-time data
Employee data Department & colleague table,

MAC-addresses linked to colleagues
MIDDLE WARE: Web service on external server
Location algorithm Fingerprinting & Multi-lateration calling the database
Path finding algorithm Dijkstra
THIN CLIENT: Locally stored
3D rendering Unity3D
Smartphone application Android application running PHP-files
Geometry Geometry stored on smartphone

Table 18. Implementations of the components in the prototype

126
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

In general it can be concluded that the challenges of creating an indoor navigation application
do not lie in the loose components. The integration of the system requires both some technical
knowledge and resources. Communicating between different parts of the system is crucial to
create an user friendly application. However, developing the layout and visualization should
not solely focus on user friendliness but also represent the underlying process so that the
outcome is not misleading to the user.

127
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Conclusions

The project at hand tries to achieve a complete solution to the problem faced by the
Municipality of Rotterdam. The motivation for the created application was for an employee to
be able to find the colleagues in the massive building of ‘De Rotterdam’. The application
consists of a localization, a navigation and a visualization component. The research question
focuses mainly on the localization component, but all these components are connected to each
other and influence the question.

The research question was: To which extent is it possible to localize a colleague using Wi-
Fi Monitoring on a single floor level in ‘De Rotterdam’ building?

This relates to the space subdivision, scanner placement, localization and the extraction of
a navigable network. They interact with each other and one general solution cannot be drawn.
The way each of them is defined determines the direction the other one should follow in the
search for a best outcome.

The greatest impeding factor in achieving a better to perfect result for the localization,
is that the physical world environment interacts with the signals received by the scanners. The
physical environment, or building geometry, has influence on the scanner range. For example,
the concrete building core blocks the signal, multipath and noise can arise due to the materials
of furniture, walls and other attenuation factors. This leads to the decision: you either need to
model the environment, or neglect it. This also relates to the scanner placement and the
number of scanners used. If you choose to not model the environment, the scanner placement
becomes much more important. The scanners’ coverage area but also the discreteness of the
areas they each cover may dictate the outcome of the data collection.

The space subdivision is dependent on the accuracy of the localization method that the
application tries to achieve. At the same time, the number of subspaces and the way the space
is divided has an effect on the localization methods.

The data collected for the localization methods consisted only of the RSSI values
received by the scanners. These values can be ambiguous as far as relating them to distance,
but can be still used as indicators. The multilateration method described tries to exploit this
fact and to some extent it succeeds. For the multilaterion the results are that 6 out of 10 times
a device is correctly localized within a subdivision and that result rises to 9 out of 10 times
success, when the next possible subdivision is included in the solution.

Wi-Fi fingerprinting has a better performance in indoor localization since it does not
use any mathematical method to model the physical environment. Instead, it collects samples
and uses them as a-priori knowledge to derive a solution. However, the heat maps it creates
highly rely on the specific set-up, from the placement of the scanners to the interiors indoor.
Every time an element of the set-up changes, the data need to be recollected to update the heat
maps, which can be very labor-intensive and time-consuming. The results of the
fingerprinting are that 6 out of 7 times a colleague is localized correctly.
Related the results to the research question, the extent to which localization can be achieved
varies depending on the localization method chosen but also the subdivision precision to be
expressed to the user. Given a subdivision that logically segments the physical environment
into neither too many nor too few subdivisions, is displayed as a second option. Wi-Fi
fingerprinting is more promising because it can reach up to 100% success rate, given a better
testing phase is performed beforehand.

With respect to the space subdivision, two different space subdivisions have been
implemented: the intuitive space subdivision and the automatic space subdivision. In the end,
the intuitive space subdivision seems to be the most suitable for being used to navigate the

128
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

user in the building, since it is based on the usage of space. Therefore, the intuitive space
subdivision has proven to be more human-understandable because the different subspaces are
created in a way that is comprehensible and logical for humans to understand. In fact, once
the user is navigated to a certain node in the building, he/she can easily look around in the
subspace, where the node is located, to try to find his/her colleague.
Within this project, eight different subspaces were considered to be a fair compromise,
considering the localization which is not accurate enough to localize a person inside a room.
With a much more accurate localization, the subdivision could be more detailed.

For the navigation component, in total three networks have been implemented: the manual
network, the semi-automatic network and the automatic network. By comparing all the
different networks with each other, in the end the manual network seems to be the most
effective since it can be easily adapted to the characteristics of the building. In fact, the
manual network has been drawn manually considering the navigable spaces, where people can
walk through, the rooms and the obstacles. In the end, the network is rather coarse, which
relates to the localization accuracy. Since the building mainly consist of open spaces and glass
walls, the user, once navigated to a certain node, can easily look for his/her colleague. Further
investigation might be performed in order to automatically achieve a network that does not
cross obstacles and does not contain too many nodes which are not needed for the navigation.

With respect to the application, it can be concluded that for creating an user friendly and
reliable indoor navigation application, the integration between the different components is
crucial.

129
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Recommendations

For further research, a few considerations can be taken into account. For example the indoor
localization, by using four Meshlium scanners, may be improved by:

• In depth research on scanner hardware
With more knowledge about the hardware used, different scanner layouts can
be taken into consideration

• Gathering more testing data
By doing more tests, more data can be gathered which can be used for the Wi-
Fi fingerprinting. With more data, better heatmaps can be created and the
localization will be more reliable.

• Adjusting scanner layout for a specific localization method
The scanner layout relates to a localization method.

• Adjusting space subdivision based on method, layout and application
The space subdivision can increase the localization accuracy.

• Testing floor level separation
Especially for ‘De Rotterdam’building with its many floors, testing floor level
separation is important, since colleagues can work on different floors. It is
important to know if the floors will block the signal of the Meshlium scanners.

130
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

References

• Afyouni, I., Ray, C. and Claramunt, C., 2012. Spatial models for context-aware indoor
navigation systems: A survey. Journal of Spatial Information Science, 4, pp. 85–123.

• Bettini, C., Jajodia, S., Samarati, P., Wang, S.X. (2009) Privacy in location-based
applications: research issues and emerging trends (Lecture Notes in Computer Science
/ Information Systems and Applications, incl. Internet/Web, and HCI), Springer, 2009
edition (September 10, 2009) ISBN 978-3-642-03511-1

• Biswas, J. and Veloso, M., (2010). WiFi Localization and Navigation for Autonomous
Indoor Mobile Robots, Carnegie Mellon University, Pittsburgh, 2010

• Ching, W., Teh, R.J., Li, B., and Rizos, C., (2010). Uniwide WiFi Based Positioning
system, University of New South Wales, 2010

• FIDIS (Future of Identity in the Information Society), 2009.The legal framework for
location-based services in Europe.
http://www.fidis.net/resources/fidis-deliverables/mobility-and-identity/d115-the-legal-
framework-for-location-based-services-in-europe/doc/42/

• Jenkins P, Phillips T, Mulberg E and Hui S, 1992, Activity patterns of Californians:
Use of and proximity to indoor pollutant sources. Atmospheric Environment - Part A
General Topics, 26A(12): 2141-2148, 1992

• Liu, K., Liu, X., and Li, X., (2013). Guoguo: Enabling Fine-grained Indoor
Localization via Smartphone. Proceeding of the 11th annual international conference
on Mobile systems, applications, and services, pp. 235-248, New York, 2013

• Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, and B., Konolige, K., (2010) The
Office Marathon:Robust Navigation in an Indoor Office Environment, Willow Garage
Inc., USA, 2010

• Meijers, M. Zlatanova, S., and Preifer, N. (2005), 3d
geoinformationindoors:structuring for evacuation, in Proceeding of Next generation
3D city models, 21-22 June, Bonn, Germany, 2005

• Navizon: http://www.navizon.com/its/whitepaper.pdf

• Paul, A.S., and Wan, E.A. (2008). Wi-Fi based indoor localization and tracking using
sigma-point kalman filtering methods. OGI school of Science and Engineering, 2008

• Quintas, J., Cunha, A., Serra, P., Pereira, A., Marques, B., and Dias, J. (2013). Indoor
Localization and Tracking Using 802.11 Networks and Smartphones. In Evaluating
AAL Systems Through Competitive Benchmarking Communications in Computer and
Information Science, Volume 386, pp 117-127, 2013

• Radu, V., Kriara, L., and Marina, M.K., (2013). Pazl: A Mobile Crowdsensing based
Indoor WiFi Monitoring System, University of Edimburgh, 2013

• Schiller, J., and Voiserd, A., (2004). Location-Based Services. Elservier, San
Francisco, 2004

• Telecommunicatiewet.
http://www.government.nl/documents andpublications/notes /2012/06/07/dutch-
telecommunications-act.html

131
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

• van Loenen, B., Zevenbergen,J., De Jong, J. (2008) Geo-information: what is it and
what is the legal context? L van Wees & S Nouwt (Eds.)

• van Ooijen, C., Nouwt, S. (2009) Power and Privacy: the Use of LBS in Dutch Public
Administration. Nederlandse Commissie voor Geodesie Netherlands Geodetic
Commission 48, 2009.

• Wet bescherming persoonsgegevens. http://www.ivir.nl/wetten/nl/wbp.pdf
• Wet bescherming persoonsgegevens. http://www.cbpweb.nl/Pages/home.aspx

• Worboys and Duckham, GIS: A Computing Perspective, Second Edition, 2004, CRC
Press

• Zlatanova, S., Liu, L., Sithole, G., Zhao, J. and Mortari, F., 2014. Space subdivision
for indoor application. GISt Report No. 66, ISBN: 978-90-77029-37-4

• Zomax Wireless, “RCP Installation Considerations and Principles”, Zomax
Technologies Inc, 2010
http://www.zcomax.com/rcp/Rural_Connectivity_Platform-
Installation_Considerations.pdf

• J.Mulligan, “A Performance Analysis of a CSMA Multihop Packet Radio Network”,
Chapter 7: “Indoor Radio Propagation“, Faculty of Virginia Polytechnic Institute and
State University, 1997.
http://scholar.lib.vt.edu/theses/available/etd-51997-22830/unrestricted/Ch7.pdf

• O.Tekdas, V.Isler, “Sensor Placement for Triangulation Based Localization”, IEEE
Tran. Automation Science and Engineering, 7(3): 681--685, 2010.

• Winprop: Indoor Propagation, AWE Communications GmbH
http://www.awe-communications.de/Brochures/BrochureIndoor.pdf
http://www.awe-communications.com/Propagation/Indoor/Empirical/index.htm

• Wikipedia: http://en.wikipedia.org/wiki/Wi-Fi_positioning_system
• [xx] M. Worboys, M. Duckham “GIS: a computing perspective” (2004), CRC Press,

Florida, USA
• [xx] D. Eppstein Dijkstra Recipe, retrievable:

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/117228.
• [xx] J. Lerner, D. Wagner, K. Zweig “Algorithms of Large and Complex networks”

(2009), Springer, Berlin, Germany
• [xx] A. Patel “Introduction to A*” (2014) retrievable:

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
• J.Mulligan, “A Performance Analysis of a CSMA Multihop Packet Radio Network”,

Chapter 7: “Indoor Radio Propagation“, Faculty of Virginia Polytechnic Institute and
State University, 1997.
http://scholar.lib.vt.edu/theses/available/etd-51997-22830/unrestricted/Ch7.pdf

• Winprop: Indoor Propagation, AWE Communications GmbH
http://www.awe-communications.de/Brochures/BrochureIndoor.pdf
http://www.awe-communications.com/Propagation/Indoor/Empirical/index.htm

• J.Cole[blog]: http://jasmcole.com/2014/08/25/helmhurts/
• Wikipedia: http://en.wikipedia.org/wiki/Wi-Fi_positioning_system
• Michael Quan, Eduardo Navarro, and Benjamin Peuker, “Wi-Fi Localization Using

RSSI Fingerprinting,” California Polytechnic State University 1 Grand Avenue, San
Luis Obispo, CA, 2010.

132
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

• Vahideh Moghtadaiee, Andrew G. Dempster, “Design protocol and performance
analysis of indoor fingerprinting positioning systems”, School of Electrical
Engineering and Telecommunications, University of New South Wales, Sydney,
Australia, Physical Communication, 2014.

• William Ching, Rue Jing The, Binghao Li, Chris Rizos, “Uniwide WiFi Based
Positioning System”, Technology and Society (ISTAS), 2010 IEEE International
Symposium, 2010.

• K. Benkič, M. Malajner, P. Planinšič, Ž. Čučej, “Using RSSI value for distance
estimation in Wireless sensor networks based on ZigBee”, SPaRC Laboratory UM-
FERI Maribor, 2008.

• Eladio Martin, Oriol Vinyals, Gerald Friedland, Ruzena Bajcsy, “Precise Indoor
Localization Using Smart Phones”, International Computer Science Institute &
University of California, 2010.

• Anindya S. Paul and Eric A. Wan, “Wi-Fi Based Indoor Localization and Tracking
Using Sigma-Point Kalman Filtering Methods”, Position, Location and Navigation
Symposium, IEEE/ION, 2008.

• A.T. Parameswaran, M.I.Husain, S. Upadhyaya, "Is RSSI a Reliable Parameter in
Sensor Localization Algorithms – An Experimental Study". 28th International
Symposium On Reliable Distributed Systems, New York. September 2009.

• Holland & Holland Enterprises Ltd, n.d., http://www.successful-project-
management.com/project-risk-management.html)

• Wikipedia: http://en.wikipedia.org/wiki/Log-distance_path_loss_model

133
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Appendix

APPENDIX 1. ANALYSIS OF THE TESTS IN THE FACULTY OF ARCHITECTURE
The set- up of the test was as follows: one scanner was placed in an open space, while two
team members walked with two smartphones, in two different directions away from the
scanner to the fixed points (see the blue and purple paths). At every point stayed the team
members there for 5 minutes, while placing the phone on the table.

Fig. 116. Set- up Test 1

For test two four phones were used and the same route was traversed three times. After the
first cycle was noticed that the two other Android smartphones were detected less, so for the
second and the third cycle only the two smartphones of the same brand and type were used,
that were also used for test 1 and 2.

134
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Fig. 117. Set- up test

Fig. 118. Set- up test 3

135
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Test 3, all cycles- total AVG RSSI

Mesh 121:

Mesh309:

136
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Mesh 553:

Mesh678:

APPENDIX 2. TESTS ‘DE ROTTERDAM’ RESULTS
Appendix I
Average RSSI values and their counts of layout 1’s first test

No. AVG COUNT No. AVG COUNT No. AVG COUNT No. AVG COUNT
1 35.8667 30 1 10.6111 9 1 0 0 1 26.7048 26

2 24.5556 27 2 24.3296 29 2 0 0 2 23.3333 3

3 27.3981 26 3 22.9101 25 3 0 0 3 26.7667 28

4 27.6778 29 4 15.8571 16 4 6 2 4 30 27

5 18.6667 27 5 0 0 5 5.0298 22 5 34.963 27

6 3.5333 15 6 0 0 6 9.9714 27 6 27.0148 26

7 6 2 7 19.6667 7 7 15.3796 26 7 18.3667 15

8 4.7976 24 8 22.037 26 8 8.7926 25 8 2.3333 1

9 11.7074 26 9 33.4667 30 9 10.6296 27 9 0 0

10 6.9716 24 10 33.2222 27 10 5.3241 19 10 0 0

11 4.3333 24 11 36.2222 27 11 19.1074 29 11 0 0

12 0 0 12 30.8 30 12 19.7361 26 12 0 0

13 0 0 13 25.3333 24 13 22.8 30 13 18.8889 7

14 0 0 14 2 1 14 19.6944 26 14 19.33 24

15 0 0 15 20.3333 24 15 30.2 30 15 11.6667 2

16 0 0 16 21.3095 27 16 33.8889 27 16 0 0

17 33 30 17 24.8565 26 17 0.5556 3 17 23.7407 29

18 34.5556 27 18 17.9348 476 18 0.3333 1 18 21.6435 23

19 15.3386 25 19 0 0 19 7.2269 26 19 34.4 30

20 4.619 22 20 29.1667 5 20 12.4028 26 20 27.8333 24

21 0.3333 2 21 32.1481 26 21 20.9954 26 21 0 0

22 0 1 22 32 27 22 18.4333 30 22 0 0

* Yellow rows indicate locations where the three phones were scanned less than ten times in total in the five minutes

 (a) Mesh121 (b) Mesh309 (c) Mesh553 (d) Mesh678

138
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Appendix I
Average RSSI values and their counts of layout 1’s second test

No. AVG COUNT No. AVG COUNT No. AVG COUNT No. AVG COUNT
1 37.4074 27 1 19.0167 10 1 3 1 1 25.0741 27

2 22.1667 30 2 28.2333 30 2 1.1667 2 2 25.6667 3

3 27.4815 27 3 27.5873 25 3 0 0 3 23.662 26

4 22.7111 29 4 11.6667 2 4 7.5 4 4 30.1 30

5 15.7407 26 5 0 0 5 8.2222 22 5 33.4815 27

6 3.0893 23 6 13 2 6 12.2667 30 6 27.1889 29

7 3 2 7 18.0926 17 7 16.7989 25 7 19.2286 19

8 2.4444 10 8 17.9306 21 8 6.8333 15 8 0 0

9 12.8426 26 9 29.3704 25 9 5.7111 15 9 0 0

10 9.0985 24 10 32.0667 30 10 2 5 10 0 0

11 3.1429 17 11 35.3704 27 11 18.4444 27 11 0 0

12 0 0 12 25.6667 27 12 22.7667 30 12 0 0

13 0 0 13 24.1549 31 13 22.4333 32 13 15.8611 9

14 0 0 14 22.6667 3 14 20.5159 20 14 19.9762 19

15 0 0 15 20.463 24 15 33.1667 30 15 0 0

16 22.6667 6 16 19.2593 23 16 30.5556 27 16 26.1667 4

17 31.1231 22 17 23.506 17 17 0 0 17 22.2381 17

18 33.6667 27 18 18.3995 22 18 3 3 18 21.5417 22

19 16.9 30 19 0 0 19 10.2917 26 19 34.4 30

20 3.5635 24 20 0 0 20 10.8333 28 20 25.6667 27

21 0 0 21 30.9593 23 21 18.6444 23 21 0 0

22 0 0 22 31.5648 26 22 18.1852 27 22 0 0

* Yellow rows indicate locations where the three phones were scanned less than ten times in total in the five minutes

 (a) Mesh121 (b) Mesh309 (c) Mesh553 (d) Mesh678

139
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Appendix I
Average RSSI values and their counts of layout 2’s first test

No. AVG COUNT No. AVG COUNT No. AVG COUNT No. AVG COUNT
1 37.962963 27 1 18.64881 23 1 0 0 1 29.115741 26

2 40.9 30 2 33.266667 30 2 13 6 2 19.444444 27

3 39.037037 27 3 29.259259 27 3 6 1 3 30.244444 29

4 35.7 30 4 11.808333 13 4 19.333333 2 4 32.703704 27

5 33.953704 26 5 4 2 5 24.202778 27 5 37.266667 30

6 19.875 23 6 0 0 6 30.259259 27 6 32.814815 27

7 16.155556 29 7 19.285714 21 7 31.194444 26 7 28.518519 27

8 17.24537 25 8 21.511905 23 8 21.736111 22 8 17.314815 28

9 25.333333 30 9 32.333333 29 9 17.111111 13 9 12.226852 25

10 29.398148 26 10 42 27 10 21.126984 25 10 4.4074074 25

11 27.37037 27 11 45.259259 27 11 31.111111 27 11 2.2888889 23

12 10.783333 28 12 29.966667 28 12 35.703704 27 12 6.662037 24

13 6.3657407 25 13 28.693122 25 13 43.033333 30 13 20.433333 29

14 2.662037 26 14 22 4 14 35.259259 27 14 18.777778 27

15 2.5666667 13 15 21.802249 24 15 36 30 15 13.866667 29

16 3.2916667 14 16 23.986111 26 16 33.740741 27 16 13.203704 24

17 43.666667 30 17 23.941667 28 17 0 0 17 27.819444 26

18 39.074074 27 18 20.825397 25 18 0 0 18 29.2 30

19 26.366667 30 19 0 0 19 19.285714 19 19 38.074074 27

20 14.592593 27 20 29.5 4 20 24.481481 27 20 33.666667 27

21 17.595238 84 21 31.833333 30 21 26.159188 76 21 26.144349 81

22 14.9 30 22 34.688889 29 22 29.833333 26 22 5.212963 25

* Yellow rows indicate locations where the three phones were scanned less than ten times in total in the five minutes

 (a) Mesh121 (b) Mesh309 (c) Mesh553 (d) Mesh678

140
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Appendix I
Average RSSI values and their counts of layout 2’s second test

No. AVG COUNT No. AVG COUNT No. AVG COUNT No. AVG COUNT
1 35.592593 27 1 22.655556 16 1 1 1 1 30 30

2 37.62963 27 2 33.9 30 2 9.8333333 3 2 18.097222 26

3 40.966667 30 3 24.629108 426 3 2 1 3 29.851852 27

4 35.333333 27 4 24.208333 140 4 7.3333333 1 4 33.466667 30

5 32.8 30 5 0 0 5 24.740741 27 5 44.592593 27

6 16.888889 27 6 12.333333 3 6 32.733333 30 6 36.9 30

7 13.875 26 7 18.75 20 7 32.460317 25 7 25.703704 27

8 12.533333 30 8 21.222222 25 8 22.416667 22 8 16.648148 26

9 34.148148 27 9 34.281481 28 9 18.761905 20 9 11.903704 28

10 24.933333 30 10 46.925926 27 10 26.648148 23 10 3.5119048 22

11 23.851852 27 11 46.592593 27 11 36.555556 27 11 3.6686508 24

12 11.777778 27 12 36.533333 30 12 41.466667 29 12 7.125 26

13 3.8490741 27 13 29.189815 26 13 55 27 13 22.097222 26

14 3.2 19 14 21.025 27 14 39.9 30 14 19.840741 29

15 4.5846561 22 15 27.152778 26 15 41.518519 27 15 16.884259 26

16 4.8118687 28 16 29.236364 31 16 38.515152 33 16 12.787879 33

17 38.37037 27 17 25.511111 29 17 3 1 17 28.066667 30

18 41.466667 29 18 22.62963 26 18 0 0 18 26.018519 26

19 26.222222 27 19 20.333333 3 19 21.422619 23 19 35.666667 30

20 16.282407 26 20 0 0 20 22.435185 24 20 36.444444 27

21 13.114815 29 21 34.800926 25 21 31.522222 29 21 10.050926 25

22 13.62963 27 22 34.592593 27 22 30.069444 26 22 4.9603175 23

* Yellow rows indicate locations where the three phones were scanned less than ten times in total in the five minutes

 (a) Mesh121 (b) Mesh309 (c) Mesh553 (d) Mesh678

141
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Appendix II�
Average RSSI values and their counts of layout 2’s second test

Test 1 Test 2 AVG Test 1 Test 2 AVG Test 1 Test 2 AVG Test 1 Test 2 AVG

35.8667 37.4074 36.637 10.6111 19.0167 0 0 3 0 26.7048 25.0741 25.8894
24.5556 22.1667 23.3611 24.3296 28.2333 26.2815 0 1.1667 0 23.3333 25.6667 0
27.3981 27.4815 27.4398 22.9101 27.5873 25.2487 0 0 0 26.7667 23.662 25.2144
27.6778 22.7111 25.1944 15.8571 11.6667 0 6 7.5 0 30 30.1 30.05
18.6667 15.7407 17.2037 0 0 0 5.0298 8.2222 6.626 34.963 33.4815 34.2222
3.5333 3.0893 3.3113 0 13 0 9.9714 12.2667 11.119 27.0148 27.1889 27.1019

6 3 0 19.6667 18.0926 0 15.3796 16.7989 16.0893 18.3667 19.2286 18.7976
4.7976 2.4444 3.621 22.037 17.9306 19.9838 8.7926 6.8333 7.813 2.3333 0 0
11.7074 12.8426 12.275 33.4667 29.3704 31.4185 10.6296 5.7111 8.1704 0 0 0
6.9716 9.0985 8.0351 33.2222 32.0667 32.6444 5.3241 2 0 0 0 0

4.3333 3.1429 3.7381 36.2222 35.3704 35.7963 19.1074 18.4444 18.7759 0 0 0

0 0 0 30.8 25.6667 28.2333 19.7361 22.7667 21.2514 0 0 0

0 0 0 25.3333 24.1549 24.7441 22.8 22.4333 22.6167 18.8889 15.8611 0
0 0 0 2 22.6667 0 19.6944 20.5159 20.1052 19.33 19.9762 19.6531
0 0 0 20.3333 20.463 20.3981 30.2 33.1667 31.6833 11.6667 0 0
0 22.6667 0 21.3095 19.2593 20.2844 33.8889 30.5556 32.2222 0 26.1667 0
33 31.1231 32.0616 24.8565 23.506 24.1812 0.5556 0 0 23.7407 22.2381 22.9894

34.5556 33.6667 34.1111 17.9348 18.3995 18.1671 0.3333 3 0 21.6435 21.5417 21.5926
15.3386 16.9 16.1193 0 0 0 7.2269 10.2917 8.7593 34.4 34.4 34.4
4.619 3.5635 4.0913 29.1667 0 0 12.4028 10.8333 11.6181 27.8333 25.6667 26.75
0.3333 0 0 32.1481 30.9593 31.5537 20.9954 18.6444 19.8199 0 0 0

0 0 0 32 31.5648 31.7824 18.4333 18.1852 18.3093 0 0 0
* Yellow cells indicate locations where the three phones were scanned less than ten times in total in the five minutes

 (a) Mesh121 (b) Mesh309 (c) Mesh553 (d) Mesh678

142
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Appendix III
Final input data of layout1 in 4 by 4 grid

No. x y AVG
No. x y AVG

 No. x y AVG No. x y AVG

1 2 2 36.637
1 2 2 0

 1 2 2 0 1 2 2 25.8894

2 4 4 23.3611
2 4 4 26.2815

 2 4 4 0 2 4 4 0

3 2 4 27.4398
3 2 4 25.2487

 3 2 4 0 3 2 4 25.2144

4 2 6 25.1944
4 2 6 0

 4 2 6 0 4 2 6 30.05

5 2 8 17.2037
5 2 8 0

 5 2 8 6.626 5 2 8 34.2222

6 4 8 3.3113
6 4 8 0

 6 4 8 11.119 6 4 8 27.1019

7 5 8 0
7 5 8 0

 7 5 8 16.0893 7 5 8 18.7976

8 5 6 3.621
8 5 6 19.9838

 8 5 6 7.813 8 5 6 0

9 5 4 12.275
9 5 4 31.4185

 9 5 4 8.1704 9 5 4 0

10 7 4 8.0351
10 7 4 32.6444

 10 7 4 0 10 7 4 0

11 9 4 3.7381
11 9 4 35.7963

 11 9 4 18.7759 11 9 4 0

12 9 6 0
12 9 6 28.2333

 12 9 6 21.2514 12 9 6 0

13 9 8 0
13 9 8 24.7441

 13 9 8 22.6167 13 9 8 0

14 7 8 0
14 7 8 0

 14 7 8 20.1052 14 7 8 19.6531

15 9 10 0
15 9 10 20.3981

 15 9 10 31.6833 15 9 10 0

16 9 12 0
16 9 12 20.2844

 16 9 12 32.2222 16 9 12 0

17 1 5 32.0616
17 1 5 24.1812

 17 1 5 0 17 1 5 22.9894

18 2 3 34.1111
18 2 3 18.1672

 18 2 3 0 18 2 3 21.5926

19 3 9 16.1193
19 3 9 0

 19 3 9 8.7593 19 3 9 34.4

20 4 9 4.0913
20 4 9 0

 20 4 9 11.6181 20 4 9 26.75

21 10 6 0
21 10 6 31.5537

 21 10 6 19.8199 21 10 6 0

22 10 5 0 22 10 5 31.7824 22 10 5 18.3093 22 10 5 0

 (a) Mesh121 (b) Mesh309 (c) Mesh553 (d) Mesh678

143
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Appendix III
Final input data of layout1 in 2 by 2 grid

No. x y AVG
No. x y AVG

 No. x y AVG No. x y AVG

1 4 4 36.637
1 4 4 0

 1 4 4 0 1 4 4 25.8894

2 7 8 23.3611
2 7 8 26.2815

 2 7 8 0 2 7 8 0

3 4 8 27.4398
3 4 8 25.2487

 3 4 8 0 3 4 8 25.2144

4 4 11 25.1944
4 4 11 0

 4 4 11 0 4 4 11 30.05

5 4 15 17.2037
5 4 15 0

 5 4 15 6.626 5 4 15 34.2222

6 7 15 3.3113
6 7 15 0

 6 7 15 11.119 6 7 15 27.1019

7 10 15 0
7 10 15 0

 7 10 15 16.0893 7 10 15 18.7976

8 10 11 3.621
8 10 11 19.9838

 8 10 11 7.813 8 10 11 0

9 10 8 12.275
9 10 8 31.4185

 9 10 8 8.1704 9 10 8 0

10 14 8 8.0351
10 14 8 32.6444

 10 14 8 0 10 14 8 0

11 18 8 3.7381
11 18 8 35.7963

 11 18 8 18.7759 11 18 8 0

12 18 11 0
12 18 11 28.2333

 12 18 11 21.2514 12 18 11 0

13 18 15 0
13 18 15 24.7441

 13 18 15 22.6167 13 18 15 0

14 14 15 0
14 14 15 0

 14 14 15 20.1052 14 14 15 19.6531

15 18 19 0
15 18 19 20.3981

 15 18 19 31.6833 15 18 19 0

16 18 23 0
16 18 23 20.2844

 16 18 23 32.2222 16 18 23 0

17 2 9 32.0616
17 2 9 24.1812

 17 2 9 0 17 2 9 22.9894

18 3 5 34.1111
18 3 5 18.1672

 18 3 5 0 18 3 5 21.5926

19 6 17 16.1193
19 6 17 0

 19 6 17 8.7593 19 6 17 34.4

20 8 17 4.0913
20 8 17 0

 20 8 17 11.6181 20 8 17 26.75

21 20 12 0
21 20 12 31.5537

 21 20 12 19.8199 21 20 12 0

22 20 10 0 22 20 10 31.7824 22 20 10 18.3093 22 20 10 0

 (a) Mesh121 (b) Mesh309 (c) Mesh553 (d) Mesh678

144
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Appendix III
Final input data of layout2 in 4 by 4 grid

No. x y AVG
No. x y AVG

 No. x y AVG No. x y AVG

1 2 2 36.7778
1 2 2 20.6522 1 2 2 0 1 2 2 29.5579

2 4 4 39.2648
2 4 4 33.5833 2 4 4 0 2 4 4 18.7708

3 2 4 40.0019
3 2 4 26.9442 3 2 4 0 3 2 4 30.0481

4 2 6 35.5167
4 2 6 18.0083 4 2 6 0 4 2 6 33.0852

5 2 8 33.3769
5 2 8 0 5 2 8 24.4718 5 2 8 40.9296

6 4 8 18.3819
6 4 8 0 6 4 8 31.4963 6 4 8 34.8574

7 5 8 15.0153
7 5 8 19.0179 7 5 8 31.8274 7 5 8 27.1111

8 5 6 14.8894
8 5 6 21.3671 8 5 6 22.0764 8 5 6 16.9815

9 5 4 29.7407
9 5 4 33.3074 9 5 4 17.9365 9 5 4 12.0653

10 7 4 27.1657
10 7 4 44.463 10 7 4 23.8876 10 7 4 3.9597

11 9 4 25.6111
11 9 4 45.9259 11 9 4 33.8333 11 9 4 2.9788

12 9 6 11.2806
12 9 6 33.25 12 9 6 38.5852 12 9 6 6.8935

13 9 8 5.1074
13 9 8 28.9415 13 9 8 49.0167 13 9 8 21.2653

14 7 8 2.931
14 7 8 0 14 7 8 37.5796 14 7 8 19.3093

15 9 10 3.5757
15 9 10 24.4775 15 9 10 38.7593 15 9 10 15.3755

16 9 12 4.0518
16 9 12 26.6112 16 9 12 36.1279 16 9 12 12.9958

17 1 5 41.0185
17 1 5 24.7264 17 1 5 0 17 1 5 27.9431

18 2 3 40.2704
18 2 3 21.7275 18 2 3 0 18 2 3 27.6093

19 3 9 26.2944
19 3 9 0 19 3 9 20.3542 19 3 9 36.8704

20 4 9 15.4375
20 4 9 0 20 4 9 23.4583 20 4 9 35.0556

21 10 6 15.355
21 10 6 33.3171 21 10 6 28.8407 21 10 6 18.0976

22 10 5 14.2648 22 10 5 34.6407 22 10 5 29.9514 22 10 5 5.0866

 (a) Mesh121 (b) Mesh309 (c) Mesh553 (d) Mesh678

145
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Appendix III
Final input data of layout2 in 2 by 2 grid

No. x y AVG
No. x y AVG

 No. x y AVG No. x y AVG

1 4 4 36.7778
1 4 4 20.6522 1 4 4 0 1 4 4 29.5579

2 7 8 39.2648
2 7 8 33.5833 2 7 8 0 2 7 8 18.7708

3 4 8 40.0019
3 4 8 26.9442 3 4 8 0 3 4 8 30.0481

4 4 11 35.5167
4 4 11 18.0083 4 4 11 0 4 4 11 33.0852

5 4 15 33.3769
5 4 15 0 5 4 15 24.4718 5 4 15 40.9296

6 7 15 18.3819
6 7 15 0 6 7 15 31.4963 6 7 15 34.8574

7 10 15 15.0153
7 10 15 19.0179 7 10 15 31.8274 7 10 15 27.1111

8 10 11 14.8894
8 10 11 21.3671 8 10 11 22.0764 8 10 11 16.9815

9 10 8 29.7407
9 10 8 33.3074 9 10 8 17.9365 9 10 8 12.0653

10 14 8 27.1657
10 14 8 44.463 10 14 8 23.8876 10 14 8 3.9597

11 18 8 25.6111
11 18 8 45.9259 11 18 8 33.8333 11 18 8 2.9788

12 18 11 11.2806
12 18 11 33.25 12 18 11 38.5852 12 18 11 6.8935

13 18 15 5.1074
13 18 15 28.9415 13 18 15 49.0167 13 18 15 21.2653

14 14 15 2.931
14 14 15 0 14 14 15 37.5796 14 14 15 19.3093

15 18 19 3.5757
15 18 19 24.4775 15 18 19 38.7593 15 18 19 15.3755

16 18 23 4.0518
16 18 23 26.6112 16 18 23 36.1279 16 18 23 12.9958

17 2 9 41.0185
17 2 9 24.7264 17 2 9 0 17 2 9 27.9431

18 3 5 40.2704
18 3 5 21.7275 18 3 5 0 18 3 5 27.6093

19 6 17 26.2944
19 6 17 0 19 6 17 20.3542 19 6 17 36.8704

20 8 17 15.4375
20 8 17 0 20 8 17 23.4583 20 8 17 35.0556

21 20 12 15.355
21 20 12 33.3171 21 20 12 28.8407 21 20 12 18.0976

22 20 10 14.2648 22 20 10 34.6407 22 20 10 29.9514 22 20 10 5.0866

 (a) Mesh121 (b) Mesh309 (c) Mesh553 (d) Mesh678

APPENDIX 3. SPACE SUBDIVISION

Python 2.7 code for the Semi- automatic space subdivision

import shapefile
import shapely

def subdivision():
 from shapely.geometry import Point,LineString,Polygon

 fh = open ("newtriangulation2.1.node")
 contentsnode = fh.readlines()[1:]
 fh.close()
 index_list = []
 for line in contentsnode:
 if line.startswith("#"):
 continue
 else:
 linesplit = line[8:].split(" ")
 x = (linesplit[0])
 y = (linesplit[1])
 coordinates = (x,y)
 index_list.append(coordinates)

 trianglelist = []
 fh = open ("newtriangulation2.1.ele")
 contentsele = fh.readlines()[1:]
 fh.close()
 for line in contentsele:
 if line.startswith("#"):
 continue
 else:
 linestrip = line.strip()
 linesplit = linestrip.split(" ")
 line = []
 for item in linesplit:
 if item == '':
 continue
 else: line.append(item)

 index1 = int(line[1]) -1
 index2 = int(line[2]) -1
 index3 = int(line[3]) -1

 pt1 = (index_list[index1])
 f1= float(pt1[0])
 f2 = float(pt1[1])
 pt2 = (index_list[index2])
 f3 = float(pt2[0])
 f4 = float(pt2[1])

147
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

 pt3 = (index_list[index3])
 f5 = float(pt3[0])
 f6 = float(pt3[1])

 npt1 = (f1,f2)
 npt2 = (f3,f4)
 npt3 = (f5,f6)
 points = [npt1,npt2, npt3]
 triangle = Polygon(points)
 trianglelist.append(triangle)
 l1 = [npt1,npt2]
 l2 = [npt2,npt3]
 l3 = [npt3,npt1]
 line1 = LineString(l1)
 line2 = LineString(l2)
 line3 = LineString(l3)

 """point of the scanners for layout 1:"""
 scanner121 = Point(2.736317, 2.296404)
 scanner678 = Point(2.736317, 33.771274)
 scanner553 = Point(40.260276, 43.821449)
 scanner309 = Point(40.260276, 9.820339)

 """check wich triangles are in a range of 10m of the four scanners"""
 list121 = []
 q = 0
 while q <len(trianglelist):
 if trianglelist[q].intersects(scanner121.buffer(10)):
 list121.append(trianglelist[q])
 q = q+1
 else:
 q = q+1

 list678 = []
 r = 0
 while r <len(trianglelist):
 if trianglelist[r].intersects(scanner678.buffer(10)):
 list678.append(trianglelist[r])
 r = r+1
 else:
 r = r+1

 """" remove double triangles"""
 g = 0
 while g <len(list678):
 h = 0
 while h < len(list121):
 if list121[h]==list678[g]:
 list121.remove(list678[g])

148
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

 h = h+1
 else:
 h = h+1
 g = g+1

 # merge triangles
 from shapely.ops import cascaded_union
 sub121 = cascaded_union(list121)

 # merge triangles
 from shapely.ops import cascaded_union
 sub678 = cascaded_union(list678)

 list553= []
 s = 0
 while s <len(trianglelist):
 if trianglelist[s].intersects(scanner553.buffer(10)):
 list553.append(trianglelist[s])
 s = s+1
 else:
 s = s+1
 # merge triangles
 from shapely.ops import cascaded_union
 sub553 = cascaded_union(list553)

 list309= []
 t = 0
 while t <len(trianglelist):

 if trianglelist[t].intersects(scanner309.buffer(10)):
 list309.append(trianglelist[t])
 t = t+1
 else:
 t = t+1
 # merge triangles
 from shapely.ops import cascaded_union
 sub309 = cascaded_union(list309)

 """remove triangles that fall in range of the scanners from the trianglelist"""
 u = 0
 while u <len(list121):
 v = 0
 while v < len(trianglelist):
 if trianglelist[v]==list121[u]:
 trianglelist.remove(trianglelist[v])
 v = v+1
 else:
 v = v+1

149
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

 u = u+1

 w = 0
 while w <len(list678):
 x = 0
 while x < len(trianglelist):
 if trianglelist[x]==list678[w]:
 trianglelist.remove(trianglelist[x])
 x = x+1
 else:
 x = x+1
 w = w+1

 y = 0
 while y <len(list553):
 z = 0
 while z < len(trianglelist):
 if trianglelist[z]==list553[y]:
 trianglelist.remove(trianglelist[z])
 z = z+1
 else:
 z = z+1
 y = y+1

 a = 0
 while a <len(list309):
 b = 0
 while b < len(trianglelist):
 if trianglelist[b]==list309[a]:
 trianglelist.remove(trianglelist[b])
 b = b+1
 else:
 b = b+1
 a = a+1

 """make subdivisions between the scanner subdivisions"""
 buffer121 = []
 c = 0
 while c <len(trianglelist):
 if trianglelist[c].intersects(scanner121.buffer(20)):
 buffer121.append(trianglelist[c])
 c = c+1
 else:
 c = c+1

 buffer309 = []
 d = 0
 while d <len(trianglelist):
 if trianglelist[d].intersects(scanner309.buffer(19)):

150
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

 buffer309.append(trianglelist[d])
 d = d+1
 else:
 d = d+1

 buffer678 = []
 e = 0
 while e <len(trianglelist):
 if trianglelist[e].intersects(scanner678.buffer(19)):
 buffer678.append(trianglelist[e])
 e = e+1
 else:
 e = e+1

 buffer553 = []
 f = 0
 while f <len(trianglelist):
 if trianglelist[f].intersects(scanner553.buffer(20)):
 buffer553.append(trianglelist[f])
 f = f+1
 else:
 f = f+1

 """Remove double triangles from the subdivisions, so they all be around the same size"""
 g = 0
 while g <len(buffer309):
 h = 0
 while h < len(buffer553):
 if buffer309[g]==buffer553[h]:
 buffer553.remove(buffer309[g])
 h = h+1
 else:
 h = h+1
 g = g+1

 g = 0
 while g <len(buffer309):
 h = 0
 while h < len(buffer121):
 if buffer309[g]==buffer121[h]:
 buffer309.remove(buffer121[h])
 h = h+1
 else:
 h = h+1
 g = g+1

 g = 0
 while g <len(buffer678):
 h = 0

151
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

 while h < len(buffer121):
 if buffer678[g]==buffer121[h]:
 buffer678.remove(buffer121[h])
 h = h+1
 else:
 h = h+1
 g = g+1

 g = 0
 while g <len(buffer553):
 h = 0
 while h < len(buffer678):
 if buffer553[g]==buffer678[h]:
 buffer553.remove(buffer678[h])
 h = h+1
 else:
 h = h+1
 g = g+1

 g = 0
 while g <len(buffer678):
 h = 0
 while h < len(buffer309):
 if buffer678[g]==buffer309[h]:
 buffer309.remove(buffer678[g])
 h = h+1
 else:
 h = h+1
 g = g+1

 """make one polygon of the triangles"""
 from shapely.ops import cascaded_union
 sub309_553 = cascaded_union(buffer309)

 from shapely.ops import cascaded_union
 sub678_553 = cascaded_union(buffer553)

 from shapely.ops import cascaded_union
 sub121_678 = cascaded_union(buffer678)

 from shapely.ops import cascaded_union
 sub121_309 = cascaded_union(buffer121)

152
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

APPENDIX 3: NETWORK

Python 2 7 code for the Network semi- automatic (with basepoints) for the range subdivision

import shapefile
import shapely

def test_network(filename):
 from shapely.geometry import Point,LineString,Polygon
 sf = shapefile.Reader(filename)
 spaces = sf.shapes()
 sublist = []
 for s in spaces:
 spoly = Polygon(s.points)
 sublist.append(spoly)

 """get centroids of subdivisions"""
 clist = []
 i = 0
 while i < len(sublist):
 div = sublist[i].centroid
 clist.append(div)
 i = i+1

 """Make Point objects from the points around the core(basepoints) and make lines between
them"""
 blist=[]
 sf = shapefile.Reader("newestbasepoints.shp")
 bpoints = sf.records()
 for b in bpoints:
 ptx = b[1]
 pty = b[2]
 newpoint = Point(ptx,pty)
 blist.append(newpoint) # list with basepoints around core

 baselinelist = []
 n = 0
 while n< len(blist):
 if n+1 < len (blist):
 baseedge = blist[n], blist[n+1]
 n = n+1
 else:
 baseedge = blist[n-1], blist[0]
 n = n+1
 line = LineString(baseedge)
 baselinelist.append(line) # list with linestrings around core

 lastedge = blist[2], blist[6], blist[5]
 lastline = LineString(lastedge)

153
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

 baselinelist.append(lastline)

 bpoly = [(7.557902, 14.571654), (7.603434, 29.528758),(34.808517, 29.540141),
(35.036175, 14.844843)]
 basepoly = Polygon(bpoly)

 """remove centerpoints inside basepolygon"""
 newclist=[]
 for c in clist:
 if basepoly.buffer(0.5).contains(c):
 continue
 else:
 newclist.append(c)

 """connect centerpoints with the closest basepoint"""
 minlist = []
 j = 0
 while j< len(newclist):
 partlist3 = []
 k = 0
 while k< len(blist):
 dis = newclist[j].distance(blist[k]), newclist[j], blist[k]
 partlist3.append(dis)
 k = k+1
 mind = min(partlist3)
 minlist.append(mind)
 j = j+1

 newlinelist = []
 for m in minlist:
 if m[0]> 10:
 continue
 else:
 newedge = m[1],m[2]
 newline = LineString(newedge)
 newlinelist.append(newline)

 """find neighbouring polygons"""
 nlist = []
 a = 0
 while a < len(sublist):
 partlist = []
 partlist.append(a)
 b = 0
 while b< len(sublist):
 if not sublist[a].intersection(sublist[b]).is_empty and not a==b and not
sublist[a].intersection(sublist[b]).type == 'Point':
 partlist.append(b)
 b = b+1

154
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

 else:
 b = b+1
 nlist.append(partlist)
 a = a+1

 """make lines between neigbouring polygons"""
 networklist = []
 linelist = []
 d = 0
 while d < len(nlist):
 part2list = []
 part2list.append(d)
 e = 0
 while e< len(nlist[d]):
 edge = [clist[nlist[d][0]], clist[nlist[d][e]]]
 part2list.append(edge)
 line = LineString(edge)
 linelist.append(line)
 e = e+1
 networklist.append(part2list)
 d = d+1

 """remove the lines that are intersecting with the lines around the core"""
 removelist = []
 g = 0
 while g< len(baselinelist):
 h= 0
 while h< len(linelist):
 if baselinelist[g].intersects(linelist[h]):
 removelist.append(linelist[h])
 h =h +1
 else:
 h = h+1
 g = g+1

 u = 0
 while u <len(removelist):
 v = 0
 while v < len(linelist):
 if linelist[v]==removelist[u]:
 linelist.remove(linelist[v])
 v = v+1
 else:
 v = v+1
 u = u+1

155
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Python 2.7 code for Automatic network for the range subdivision

import shapefile
import shapely

def test_network(filename):
 from shapely.geometry import Point,LineString,Polygon

 sf = shapefile.Reader(filename)
 polygons = sf.records()
 spaces = sf.shapes()

 sublist = []
 for s in spaces:
 spoly = Polygon(s.points)
 sublist.append(spoly)

 """get centroids of subdivisions"""
 clist = []
 i = 0
 while i < len(sublist):
 div = i, sublist[i].centroid
 clist.append(div)
 i = i+1

 """find neighbours of the polygons and the middle of their intersecting lines,
 make the network"""
 nlist = []
 interlist = []
 linelist = []
 a = 0
 while a < len(sublist):
 partlist = []
 partlist.append(a)
 ilist = []
 ilist.append(a)
 b = 0
 while b< len(sublist):
 if not sublist[a].intersection(sublist[b]).is_empty and not a==b and not
sublist[a].intersection(sublist[b]).type == 'Point':
 partlist.append(b)
 intersection = sublist[a].intersection(sublist[b])
 midpoint = intersection.interpolate(intersection.length/2)
 ilist.append(midpoint)
 edge = clist[a][1], midpoint

 line = LineString(edge)
 print line

156
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

 linelist.append(line)# list with the lines between the center points and the midpoints
of the intersecting lines
 b = b+1
 else:
 b = b+1
 nlist.append(partlist) # list with the polygons and their neighbours
 interlist.append(ilist) # list with the midpoints of the intersecting lines
 a = a+1

 """remove point linestrings”””
 doublelist = []
 f = 0
 while f< len(linelist):
 if linelist[f].length < 1:
 doublelist.append(linelist[f])
 f = f+1
 else:
 f = f+1

 u = 0
 while u <len(doublelist):
 v = 0
 while v < len(linelist):
 if linelist[v]==doublelist[u]:
 linelist.remove(linelist[v])
 v = v+1
 else:
 v = v+1
 u = u+1

157
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

APPENDIX 4. PYTHON 2.7 CODE: MULTILATERATION SCRIPTS

Multilateration.py [main script for finding a solution given scanner positions and a mac
address]
import MySQLdb #download @ http://www.codegood.com/ archives/129
from math import log, e
import sys
import shapely.geometry as g
import fiona
import intersections

#Weighted average based on time:
def wavgrssi(lstdata):
 return sum([v[0]*v[1] for v in lstdata]) / sum([v[1] for v in lstdata])

#Trustability based on how "old" the results are:
def trust(tdSEC,tinterMIN):
 if tinterMIN > 30:
 p = 1
 else:
 p = 15.0 / pow(log(tinterMIN+1,e),2)
 trustability = 1.0 - pow(log(tdSEC+1,tinterMIN* 60+1),p) #+1 to avoid log(0)
 return trustability

#Localization radius based on translating RSSI valu es into distance
def localize(rssi, distFromCentr):
 Ro = 60.0 #RSSI at 1m distance
 R = float(rssi)
 #note: the thought was to parametrize the no va lue, based on the distance
 # of the scanner to the center of the buil ding. Outcome were values
 # that didn't vary much from a static 'no' value.
 #no = 3.62 - log(distFromCentr,Ro)
 no = 2.8
 n = no + log(Ro/R,Ro/2) #path-loss exponent
 x = (Ro-R) / (10*n)
 d = pow(10,x)
 return d

#Error function - defines thickness of distance loc alization rings
def calcerr(rssi):
 #Ro = 60.0 #dBm at 1m distance
 #err = log(Ro/float(rssi),2)
 #Error could be the above - instead, consider 2 .0dBm differences
 err = abs(localize(rssi,0) - localize(rssi+2.0, 0))
 return err

#Not really necessary, but printable info per singl e run
def printformat(fin):
 fin = int(fin)
 if fin < 10:
 fout = '0{0}'.format(fin)
 else:
 fout = '{0}'.format(fin)
 return fout

#Needed only in single run - for representation pur poses
def represent(building,MeshPositions,leftoverings):
 #REPRESENTATION: (.shp)
 # Define a polygon feature geometry - general s chema
 polyschema = {
 'geometry': 'Polygon',
 'properties': {'id': 'int'},
 }
 pointschema = {
 'geometry': 'Point',
 'properties': {'id': 'int'},
 }
 #REPRESENT BUILDING:
 with fiona.open('derot.shp', 'w', 'ESRI Shapefi le', polyschema) as c:
 c.write({
 'geometry': g.mapping(building),
 'properties': {'id': 0},

158
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

 })
 c.close()
 #REPRESENT MESHLIUM SCANNER POSITIONS:
 with fiona.open('MeshPositions.shp', 'w', 'ESRI Shapefile', pointschema) as c:
 for i in range(len(MeshPositions)):
 c.write({
 'geometry': g.mapping(g.Point(MeshP ositions[i])),
 'properties': {'id': i},
 })
 c.close()
 #REPRESENT RINGS:
 with fiona.open('timeboxZ.shp', 'w', 'ESRI Shap efile', polyschema) as c:
 for i in range(len(leftoverings)):
 if leftoverings[i]:
 c.write({
 'geometry': g.mapping(leftoveri ngs[i][0]),
 'properties': {'id': i},
 })
 c.close()
 return True

MAIN FUNCTION
def main(meshnames,MeshPositions,cellMAC,timeNOW,TI MEinterval_min,saveshp,printinfo):

 if TIMEinterval_min <= 0:
 print "Time interval cannot be 0 or less"
 sys.exit()

 # Open EXTERNAL database connection
 db = MySQLdb.connect(host="libelium.tudelft.nl" ,user="meshlium",
 passwd="liuliu",db="meshli umdb")
 # prepare a cursor object
 cursor = db.cursor()

 if printinfo:
 print "\n\n*** CELLPHONE MAC: ",cellMAC,"\n TIME NOW: ", timeNOW, "\nTIME TO SEARCH:
{0} MINUTES AGO".format(TIMEinterval_min)
 wRSSIs = [] # will contain weighted RSSI values per scanner
 for mesh in meshnames:
 RSSIs_n_TIMEtrust = []
 if printinfo:
 print "\n",mesh
#TODO:time "now" in datetime format (POSSIBLY DELET E NEXT 3 LINES LATER)
 tsql = "SELECT timestamp('{0}')".format(tim eNOW)
 cursor.execute(tsql)
 tnow = cursor.fetchone()[0]

 #SQL query to get the RSSI values and datet imes
 sql = """SELECT RSSI, timestamp
 FROM test.{0}
 WHERE MAC='{1}' AND RSSI > 4
 AND (timestamp between '{2}' - int erval {3} second and '{2}')
 ORDER BY timestamp DESC""".format(mesh, cellMAC, timeNOW,
TIMEinterval_min*60-1)
 # execute SQL query using execute() method.
 cursor.execute(sql)
 # Fetch a single row using fetchone() metho d.
 data = cursor.fetchone()
 while data is not None:
 if printinfo:
 #format time and rssi for print exi t:
 hour = printformat(data[1].hour)
 minute = printformat(data[1].minute)
 second = printformat(data[1].second)
 rssi = printformat(data[0])

 tdiff = tnow - data[1] #find time diff erence in seconds
 TIMEtrustability = trust(tdiff.seconds, TIMEinterval_min)

 if printinfo:
 print rssi,"---
",hour+":"+minute+"."+second,"\t",tdiff.seconds,"\t ",TIMEtrustability

 RSSIs_n_TIMEtrust.append((float(data[0]),TIMEtrustability))

159
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

 data = cursor.fetchone()

 if RSSIs_n_TIMEtrust:
 wRSSIs.append(wavgrssi(RSSIs_n_TIMEtrus t)) #weighted average
 else:
 wRSSIs.append(-1.0) #NO DATA

 if printinfo:
 print "\nAverage RSSIs: "
 for i in range(len(meshnames)):
 print meshnames[i]+":",wRSSIs[i]

 # disconnect from server
 db.close()

 ############################ MULTILATERATION ## ##############################

 #De Rotterdam building geometry:
 with fiona.open('./shp/base_polygon.shp', 'r') as c:
 building = c.next()['geometry']['coordinate s']
 c.close()
 b = g.Polygon(building[0],building[1:])
 Cpoint = g.Point(b.centroid)

 #calculate rings:
 rings = []
 for i in range(len(wRSSIs)): #for each timefram e that we have 4(?) readings
 if wRSSIs[i] > 0:
 Spoint = g.Point(MeshPositions[i])
 dist = Spoint.distance(Cpoint)
 R = localize(wRSSIs[i],dist) #find ra dius
 Rerr = calcerr(wRSSIs[i]) #find error
 Couter = Spoint.buffer(R+Rerr)
 #!!!
 if R-Rerr > 0:
 Cinner = Spoint.buffer(R-Rerr)
 else:
 Cinner = Spoint.buffer(0.01)
 ring = Couter.difference(Cinner)
 #TODO: Indicator value could be anythin g as long as it is higher
 # when error is lower - but withou t having great differences!
 indicator = pow(1.0/(Rerr*len(meshnames)),2)
 rings.append([ring, indicator])
 else:
 rings.append(None)

 #"cut out" the parts of the rings outside of th e building:
 leftoverings = []
 for i in range(len(rings)):
 if rings[i]:
 inter = rings[i][0].intersection(b)
 if not inter.is_empty:
 if inter.type == "MultiPolygon":
 for interpoly in inter:
 leftoverings.append([interp oly,rings[i][1]])
 else:
 leftoverings.append([inter,ring s[i][1]])

 #If shapefile representation is needed:
 if saveshp:
 representation = represent(b,MeshPositions, leftoverings)
 if not representation:
 print "Unable to represent geometries. System Exit..."
 sys.exit()

 #final intersection and area a person is locali zed
 position = intersections.main(leftoverings,save shp)
 if position:
 return position[0]
 else:
 return None

160
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

if __name__ == "__main__":
 print "\nExample\n\n"
 #meshlium table names from database
 meshnames = ['mesh121','mesh309','mesh553','mes h678']
 #Layout 2 meshlium scanner positions:
 MeshPositions = [(8.4573611030943816, 15.378901 29341085732),
 (32.19934627506354019, 14.5327 8265246893142),
 (34.25747742550623798, 31.8416 9907549004463),
 (8.56883399923329137, 28.68614 385891768848)]
 #cellphone MAC addresses to search
 #TODO: This will change in app to either the us er's MAC or the MAC the user is trying to
find
 cellMAC = 'f8:e0:79:2f:02:45'
 #macs to test: 'f8:e0:79:2f:02:45','f8:e0:79:c 1:9f:da','f8:e0:79:30:1b:87'
 TIMEinterval_min = 5.0 #in minutes
 #TODO: THIS WILL CHANGE IN THE SCRIPT to "now() " time in DB.
 timeNOW = '2014-10-01 17:25:00'
 main(meshnames,MeshPositions,cellMAC,timeNOW,TI MEinterval_min,True,True)

Multilateration_goback.py [similar to previous; cuts past data if differences above threshold]
import MySQLdb #download @ http://www.codegood.com/ archives/129
from math import log, e
import sys
import shapely.geometry as g
import fiona
import intersections

#Weighted average based on time:
def wavgrssi(lstdata):
 return sum([v[0]*v[1] for v in lstdata]) / sum([v[1] for v in lstdata])

#Trustability based on how "old" the results are:
def trust(tdSEC,tinterMIN):
 if tinterMIN > 30:
 p = 1
 else:
 p = 15.0 / pow(log(tinterMIN+1,e),2)
 trustability = 1.0 - pow(log(tdSEC+1,tinterMIN* 60+1),p) #+1 to avoid log(0)
 return trustability

#Localization radius based on translating RSSI valu es into distance
def localize(rssi, distFromCentr):
 Ro = 60.0 #RSSI at 1m distance
 R = float(rssi)
 #note: the thought was to parametrize the no va lue, based on the distance
 # of the scanner to the center of the buil ding. Outcome were values
 # that didn't vary much from a static no v alue.
 #no = 3.62 - log(distFromCentr,Ro)
 no = 2.8
 n = no + log(Ro/R,Ro/2) #path-loss exponent
 x = (Ro-R) / (10*n)
 d = pow(10,x)
 return d

#Error function - defines thickness of distance loc alization rings
def calcerr(rssi):
 #Ro = 60.0 #dBm at 1m distance
 #err = log(Ro/float(rssi),2)
 #Error could be the above - instead, consider 2 .0dBm differences
 err = abs(localize(rssi,0) - localize(rssi+2.0, 0))
 return err

#Not really necessary, but printable info per singl e run
def printformat(fin):
 fin = int(fin)
 if fin < 10:
 fout = '0{0}'.format(fin)
 else:
 fout = '{0}'.format(fin)
 return fout

161
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

#Needed only in single run
def represent(building,MeshPositions,leftoverings):
 #REPRESENTATION: (.shp)
 # Define a polygon feature geometry - general s chema
 polyschema = {
 'geometry': 'Polygon',
 'properties': {'id': 'int'},
 }
 pointschema = {
 'geometry': 'Point',
 'properties': {'id': 'int'},
 }
 #REPRESENT BUILDING:
 with fiona.open('derot.shp', 'w', 'ESRI Shapefi le', polyschema) as c:
 c.write({
 'geometry': g.mapping(building),
 'properties': {'id': 0},
 })
 c.close()
 #REPRESENT MESHLIUM SCANNER POSITIONS:
 with fiona.open('MeshPositions.shp', 'w', 'ESRI Shapefile', pointschema) as c:
 for i in range(len(MeshPositions)):
 c.write({
 'geometry': g.mapping(g.Point(MeshP ositions[i])),
 'properties': {'id': i},
 })
 c.close()
 #REPRESENT RINGS:
 with fiona.open('timeboxZ.shp', 'w', 'ESRI Shap efile', polyschema) as c:
 for i in range(len(leftoverings)):
 if leftoverings[i]:
 c.write({
 'geometry': g.mapping(leftoveri ngs[i][0]),
 'properties': {'id': i},
 })
 c.close()
 return True

MAIN FUNCTION
def main(meshnames,MeshPositions,cellMAC,timeNOW,TI MEinterval_min,saveshp,printinfo):

 if TIMEinterval_min <= 0:
 print "Time interval cannot be 0 or less"
 sys.exit()

 thres = 8.0 #threshold of variability in RSSI v alues

 # Open EXTERNAL database connection
 db = MySQLdb.connect(host="libelium.tudelft.nl" ,user="meshlium",
 passwd="liuliu",db="meshli umdb")
 # prepare a cursor object
 cursor = db.cursor()

 if printinfo:
 print "\n\n*** CELLPHONE MAC: ",cellMAC,"\n TIME NOW: ", timeNOW, "\nTIME TO SEARCH:
{0} MINUTES AGO".format(TIMEinterval_min)
 wRSSIs = [] # will contain weighted RSSI values per scanner
 for mesh in meshnames:
 RSSIs_n_TIMEtrust = []
 if printinfo:
 print "\n",mesh
#TODO:time "now" in datetime format (POSSIBLY DELET E NEXT 3 LINES LATER)
 tsql = "SELECT timestamp('{0}')".format(tim eNOW)
 cursor.execute(tsql)
 tnow = cursor.fetchone()[0]

 #SQL query to get the RSSI values and datet imes
 sql = """SELECT RSSI, timestamp
 FROM test.{0}
 WHERE MAC='{1}' AND RSSI > 4
 AND (timestamp between '{2}' - int erval {3} second and '{2}')
 ORDER BY timestamp DESC""".format(mesh, cellMAC, timeNOW,
TIMEinterval_min*60-1)

162
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

 # execute SQL query using execute() method.
 cursor.execute(sql)
 # Fetch a single row using fetchone() metho d.
 data = cursor.fetchone()
 if data is not None:
 Ttemp = data[1]
 Rtemp = int(data[0])
 if (tnow - data[1]).seconds > 300:
 data = None
 mdata = []
 while data is not None:
 tdiff = tnow - data[1] #find time diff erence in seconds
 mdata.append([float(data[0]), data[1], tdiff.seconds])
 data = cursor.fetchone()
 if data is not None:
 if (abs(Rtemp - int(data[0])) > thr es) or (Ttemp - data[1]).seconds > 300:
 data = None
 else:
 Ttemp = data[1]
 Rtemp = int(data[0])

 for i in range(len(mdata)):
 TIMEtrustability = trust(mdata[i][2],fl oat(mdata[-1][2]) / 60.0 + 1)
 if printinfo:
 #format time and rssi for print exi t:
 hour = printformat(mdata[i][1].hour)
 minute = printformat(mdata[i][1].mi nute)
 second = printformat(mdata[i][1].se cond)
 rssi = printformat(mdata[i][0])
 print rssi,"---
",hour+":"+minute+"."+second,"\t",mdata[i][2],"\t", TIMEtrustability
 RSSIs_n_TIMEtrust.append((float(mdata[i][0]),TIMEtrustability))

 if RSSIs_n_TIMEtrust:
 wRSSIs.append(wavgrssi(RSSIs_n_TIMEtrus t)) #weighted average
 else:
 wRSSIs.append(-1.0) #NO DATA

 if printinfo:
 print "\nAverage RSSIs: "
 for i in range(len(meshnames)):
 print meshnames[i]+":",wRSSIs[i]

 # disconnect from server
 db.close()

 ############################ MULTILATERATION ## ##############################

 #De Rotterdam building geometry:
 with fiona.open('./shp/base_polygon.shp', 'r') as c:
 building = c.next()['geometry']['coordinate s']
 c.close()
 b = g.Polygon(building[0],building[1:])
 Cpoint = g.Point(b.centroid)

 #calculate rings:
 rings = []
 for i in range(len(wRSSIs)): #for each timefram e that we have 4(?) readings
 if wRSSIs[i] > 0:
 Spoint = g.Point(MeshPositions[i])
 dist = Spoint.distance(Cpoint)
 R = localize(wRSSIs[i],dist) #find ra dius
 Rerr = calcerr(wRSSIs[i]) #find error
 Couter = Spoint.buffer(R+Rerr)
 #!!!
 if R-Rerr > 0:
 Cinner = Spoint.buffer(R-Rerr)
 else:
 Cinner = Spoint.buffer(0.01)
 ring = Couter.difference(Cinner)
 #TODO: Indicator value could be anythin g as long as it is higher
 # when error is lower - but withou t having great differences!

163
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

 indicator = pow(1.0/(Rerr*len(meshnames)),2)
 rings.append([ring, indicator])
 else:
 rings.append(None)

 #"cut out" the parts of the rings outside of th e building:
 leftoverings = []
 for i in range(len(rings)):
 if rings[i]:
 inter = rings[i][0].intersection(b)
 if not inter.is_empty:
 if inter.type == "MultiPolygon":
 for interpoly in inter:
 leftoverings.append([interp oly,rings[i][1]])
 else:
 leftoverings.append([inter,ring s[i][1]])

 #If shapefile representation is needed:
 if saveshp:
 representation = represent(b,MeshPositions, leftoverings)
 if not representation:
 print "Unable to represent geometries. System Exit..."
 sys.exit()

 #final intersection and area a person is locali zed
 position = intersections.main(leftoverings,save shp)
 if position:
 return position[0]
 else:
 return None

if __name__ == "__main__":
 print "\nExample\n\n"
 #meshlium table names from database
 meshnames = ['mesh121','mesh309','mesh553','mes h678']
 #TEST 2 meshlium scanner positions:
 MeshPositions = [(8.4573611030943816, 15.378901 29341085732),
 (32.19934627506354019, 14.5327 8265246893142),
 (34.25747742550623798, 31.8416 9907549004463),
 (8.56883399923329137, 28.68614 385891768848)]
 #cellphone MAC addresses to search
 #TODO: This will change in app to either the us er's MAC or the MAC the user is trying to
find
 cellMAC = 'f8:e0:79:c1:9f:da'
 TIMEinterval_min = 60.0 #in minutes
 #TODO: THIS WILL CHANGE IN THE SCRIPT to "now() " time in DB.
 timeNOW = '2014-09-30 15:40:00'
 main(meshnames,MeshPositions,cellMAC,timeNOW,TI MEinterval_min,True,True)

intersections.py [finds all possible areas for rings and intersections, and returns best solution]
from shapely import geometry as g
import fiona

def findintersections(polylst):
 if not polylst:
 return [[],[]]
 out = []
 full =[]
 for j in range(len(polylst)-1):
 intersected = False #a flag to check if pol ygon previously intersected
 #check if previously intersected:
 for i in range(j):
 if polylst[j][0].intersects(polylst[i][0]):
 intersected = True
 break
 #find intersections
 for i in range(j+1,len(polylst)):
 if polylst[j][0].intersects(polylst[i][0]):
 intersected = True
 inter = polylst[j][0].intersection(polylst[i][0])
 diff = polylst[j][0].difference(pol ylst[i][0])

164
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

 val = polylst[j][1] + polylst[i][1]
 #If difference area too small, the polygons are about the same
 if diff.area > 1.0:
 if inter.type == "MultiPolygon" :
 for poly in inter:
 out.append([poly,val])
 else:
 out.append([inter,val])
 else:
 intersected = False
 if intersected is False:
 full.append(polylst[j])
 #check for last one if already intersected, oth erwise add it:
 intersected = False
 for i in range(len(polylst)-1):
 if polylst[len(polylst)-1][0].intersects(po lylst[i][0]):
 intersected = True
 break
 if intersected is False:
 full.append(polylst[len(polylst)-1])
 return [out,full]

def main(rings, representmax):
 if not rings:
 return None

 ringoutcome = []

 temp = findintersections(rings)
 ringoutcome.extend(temp[1]) #add the outcome un intersected polygons

 while temp[0]:
 temp = findintersections(temp[0])
 ringoutcome.extend(temp[1])

 #SCHEMA
 polyschema = {
 'geometry': 'Polygon',
 'properties': {'id': 'int'},
 }

 #Find best polygon, based on metric
 indx = -1
 maxvalue = -1
 for i in range(len(ringoutcome)):
 if ringoutcome[i][1] >= maxvalue:
 indx = i
 maxvalue = ringoutcome[i][1]

 #Depended on if representation is needed:
 if representmax:
 with fiona.open('foundmax.shp', 'w', 'ESRI Shapefile', polyschema) as c:
 c.write({
 'geometry': g.mapping(ringoutco me[indx][0]),
 'properties': {'id': int(maxval ue*1000)}#just to have an id
 })
 c.close()

 return ringoutcome[indx]

if __name__ == "__main__":
 #READ/test/random metric
 from random import randint
 c = fiona.open('timeboxZ.shp','r')
 rings = []
 for i in range(c.__len__()):
 pol = c.next()
 rings.append([g.shape(pol['geometry']), ra ndint(1,100)])
 c.close()
 geom = main(rings,True)

165
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

findroom.py [finds the best room-fit for solution area, based on subdivisions]
from shapely import geometry as g

#Finds the room identifier of localization
def main(locPOLY,roomlst):

 intersectionROOMS = []
 for room in roomlst:
 roomshape = g.Polygon(room[0][:-1])
 inter = locPOLY.intersection(roomshape)
 if not inter.is_empty:
 intersectionROOMS.append((inter.area,ro om[1]))

 maxarea = -1
 roomID = -1
 for inter in intersectionROOMS:
 if inter[0] > maxarea:
 maxarea = inter[0]
 roomID = inter[1]

 return roomID

if __name__ == "__main__":
 print "Utility function for runner.py"

priority.py [helpful function for ‘complex’ runner that returns an ordered list of rooms]
from shapely import geometry as g

#Returns a list of ids of the intuitive subdivision rooms which intersect
#better per each automatic subdivision area:
def main(rooms, extrarooms):
 lst = []
 for extra in extrarooms:
 templst = []
 for room in rooms:
 if g.Polygon(extra[0]).intersects(g.Pol ygon(room[0])) and \
 not (g.Polygon(extra[0]).touches(g.Poly gon(room[0]))):
 templst.append((g.Polygon(extra[0]).intersection(g.Polygon(room[0])).area,
room[1]))
 templst.sort() #sort by area (ASC)
 templst.reverse() #reverse to have sorted l ist DESC
 lst.append(zip(*templst)[1]) #only store id s
 return lst

if __name__ == "__main__":
 print "Utility function for runner_complex"

runner_SUBDIVISION_intuitive.py [tester for intuitive subdivision]
script to run for all points - INTUITIVE SUBDIVIS ION
#import multilateration_goback
import multilateration
import findroom
import fiona
import sys

#meshlium table names from database #SPECIFIC ORDER
meshnames = ['mesh121','mesh309','mesh553','mesh678 ']

#cellphones MAC addresses to search
#TODO: This will change in app to either the user's MAC or the MAC the user is trying to find
cellMACs = ['f8:e0:79:2f:02:45','f8:e0:79:c1:9f:da' ,'f8:e0:79:30:1b:87']

#TODO: Need to find a way to choose which interval is trustable enough?
TIMEinterval_min = 5.0 #in minutes (for testing)
#TIMEinterval_min = 60.0 #in minutes (for goback)

166
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

#Space subdivision- get from shapefile:
rooms = []
with fiona.open('./shp/intuitive_subdivision.shp', 'r') as c:
 for poly in c:
 coords =[]
 for xy in poly['geometry']['coordinates'][0]:
 coords.append((round(xy[0],6),round(xy [1],6)))
 rooms.append((coords,int(poly['properties']['FID_'])))
c.close()

#SUBDIVISION 1 (logical/human areas)
#Dependent on space subdivision:
neighs = [[1,6], [0,2], [1,3], [2,4,5,7], [3], [3, 6], [0,5,7], [3,6]]
lay = raw_input("Choose Layout [1,2,3 or 4]:\n")
if lay == '1' or lay == '2' or lay == '3':
 #true point tested (id of room for each point)
 truePOS = [0, 0, 1, 1, 2, 2, 3, 7, 6, 6, 6, 5, 5, 3, 4, 4, 1, 1, 2, 2, 5, 5]

################################## LAYOUT 1 ####### ############################
if lay == '1':
 tes = raw_input("Choose Test [1 for 30/09, 2 fo r 01/10]:\n")
 #Point-like positions of meshliums scanners #SP ECIFIC ORDER
 MeshPositions = [(2.73631731473008211, 2.296404 46220620564),
 (40.26027550729227045, 9.82033 913232249134),
 (40.26027550729227755, 43.8214 4896367393017),
 (2.73631731473008566, 33.77127 430523957941)]
 if tes =='1':
 #30/09
 timesNOW = ['2014-09-30 12:45:00','2014-09- 30 12:50:00','2014-09-30 12:55:00',
 '2014-09-30 13:00:00','2014-09- 30 13:05:00','2014-09-30 13:10:00',
 '2014-09-30 13:15:00','2014-09- 30 13:20:00','2014-09-30 13:25:00',
 '2014-09-30 13:30:00','2014-09- 30 13:35:00','2014-09-30 13:40:00',
 '2014-09-30 13:45:00','2014-09- 30 13:50:00','2014-09-30 14:00:00',
 '2014-09-30 14:05:00','2014-09- 30 14:15:00','2014-09-30 14:20:00',
 '2014-09-30 14:25:00','2014-09- 30 14:30:00','2014-09-30 14:35:00',
 '2014-09-30 14:40:00']
 elif tes == '2':
 #01/10
 timesNOW = ['2014-10-01 14:25:00','2014-10- 01 14:30:00','2014-10-01 14:35:00',
 '2014-10-01 14:40:00','2014-10- 01 14:45:00','2014-10-01 14:50:00',
 '2014-10-01 14:55:00','2014-10- 01 15:00:00','2014-10-01 15:05:00',
 '2014-10-01 15:10:00','2014-10- 01 15:15:00','2014-10-01 15:20:00',
 '2014-10-01 15:25:00','2014-10- 01 15:30:00','2014-10-01 15:35:00',
 '2014-10-01 15:40:00','2014-10- 01 15:45:00','2014-10-01 15:50:00',
 '2014-10-01 15:55:00','2014-10- 01 16:00:00','2014-10-01 16:05:00',
 '2014-10-01 16:10:00']
 else:
 print "Wrong Choice!"
 sys.exit()
################################## LAYOUT 2 ####### ############################
elif lay == '2':
 tes = raw_input("Choose Test [1 for 30/09, 2 fo r 01/10]:\n")
 MeshPositions = [(8.4573611030943816, 15.378901 29341085732),
 (32.19934627506354019, 14.5327 8265246893142),
 (34.25747742550623798, 31.8416 9907549004463),
 (8.56883399923329137, 28.68614 385891768848)]
 if tes =='1':
 #30/09
 timesNOW = ['2014-09-30 15:15:00','2014-09- 30 15:20:00','2014-09-30 15:25:00',
 '2014-09-30 15:30:00','2014-09- 30 15:35:00','2014-09-30 15:40:00',
 '2014-09-30 15:45:00','2014-09- 30 15:50:00','2014-09-30 15:55:00',
 '2014-09-30 16:00:00','2014-09- 30 16:05:00','2014-09-30 16:10:00',
 '2014-09-30 16:15:00','2014-09- 30 16:20:00','2014-09-30 16:25:00',
 '2014-09-30 16:30:00','2014-09- 30 16:35:00','2014-09-30 16:40:00',
 '2014-09-30 16:45:00','2014-09- 30 16:50:00','2014-09-30 16:55:00',
 '2014-09-30 17:00:00']
 elif tes == '2':
 #01/10
 timesNOW = ['2014-10-01 16:30:00','2014-10- 01 16:35:00','2014-10-01 16:40:00',
 '2014-10-01 16:45:00','2014-10- 01 16:50:00','2014-10-01 16:55:00',
 '2014-10-01 17:00:00','2014-10- 01 17:05:00','2014-10-01 17:10:00',
 '2014-10-01 17:15:00','2014-10- 01 17:20:00','2014-10-01 17:25:00',
 '2014-10-01 17:30:00','2014-10- 01 17:35:00','2014-10-01 17:40:00',
 '2014-10-01 17:45:00','2014-10- 01 17:52:00','2014-10-01 17:57:00',

167
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

 '2014-10-01 18:02:00','2014-10- 01 18:07:00','2014-10-01 18:12:00',
 '2014-10-01 18:17:00']
 else:
 print "Wrong Choice!"
 sys.exit()
################################## LAYOUT 3 ####### ############################
elif lay == '3':
 MeshPositions = [(4.52033820207128745, 20.23523 715507049303),
 (20.89279016717234683, 10.9960 9148383166968),
 (39.96342015864106401, 21.7361 2628962893112),
 (20.89279016717235393, 33.4181 4505422586024)]
 timesNOW = ['2014-10-01 10:10:00','2014-10-01 1 0:15:00','2014-10-01 10:20:00',
 '2014-10-01 10:25:00','2014-10-01 1 0:30:00','2014-10-01 10:35:00',
 '2014-10-01 10:40:00','2014-10-01 1 0:45:00','2014-10-01 10:50:00',
 '2014-10-01 10:55:00','2014-10-01 1 1:00:00','2014-10-01 11:05:00',
 '2014-10-01 11:10:00','2014-10-01 1 1:15:00','2014-10-01 11:25:00',
 '2014-10-01 11:30:00','2014-10-01 1 1:37:00','2014-10-01 11:42:00',
 '2014-10-01 11:48:00','2014-10-01 1 1:53:00','2014-10-01 11:59:00',
 '2014-10-01 12:04:00']
################################## LAYOUT 4 ####### ############################
elif lay == '4':
 MeshPositions = [(19.00734526019633108, 10.1699 0537971109987),
 (40.26027550729227045, 9.82033 913232249134),
 (40.26027550729227755, 43.8214 4896367393017),
 (19.00734526019633108, 33.6839 8416078886015)]
 #true point tested (id of room for each point) / different for layout 4
 truePOS = [3, 3, 7, 6, 6, 6, 5, 5, 4, 4, 5, 5]
 timesNOW = ['2014-10-01 12:50:00','2014-10-01 1 2:55:00','2014-10-01 13:00:00',
 '2014-10-01 13:05:00','2014-10-01 1 3:10:00','2014-10-01 13:15:00',
 '2014-10-01 13:20:00','2014-10-01 1 3:25:00','2014-10-01 13:30:00',
 '2014-10-01 13:35:00','2014-10-01 1 3:41:00','2014-10-01 13:46:00']
else:
 print "Wrong Choice!"
 sys.exit()

#RUNNER - for the above choices
for cell in cellMACs:
 room = []
 on = 0
 close = 0
 for t in range(len(timesNOW)):
 pos = multilateration.main(meshnames,MeshPo sitions,cell,timesNOW[t],
 T IMEinterval_min,False,False)
 if pos:
 roomID = findroom.main(pos,rooms)
 else:
 roomID = -1
 if roomID == truePOS[t]:
 on += 1
 close += 1
 room.append(roomID)
 if roomID in neighs[truePOS[t]]:
 close += 1

 print "\n\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~"
 print "~~~ End of operations for cellphone:", c ell,"~~~"
 print "~~ ~~~~~~~~~~~~~~~~~~"
 print "Point numbers on
plan:|01|02|03|04|05|06|07|08|09|10|11|12|13|14|15| 16|17|18|19|20|21|22|"
 print "Ground Truth room IDs:",truePOS
 print "Localization room IDs:",room
 print "Success Rate:",on*100.0 / len(truePOS)," %", "({0} out of {1} times correctly
localized)".format(on, len(truePOS))
 print "Extend to Neighbours Rate:",close*100.0 / len(truePOS),"%"

runner_SUBDIVISION_automatic_layout1.py [tester for automatic subdivision]
script to run for all points - Automatic Subdivis ion - ONLY LAYOUT 1
#import multilateration_goback
import multilateration

168
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

import findroom
import fiona
import sys

#meshlium table names from database #SPECIFIC ORDER
meshnames = ['mesh121','mesh309','mesh553','mesh678 ']

#cellphones MAC addresses to search
#TODO: This will change in app to either the user's MAC or the MAC the user is trying to find
cellMACs = ['f8:e0:79:2f:02:45','f8:e0:79:c1:9f:da' ,'f8:e0:79:30:1b:87']

#TODO: Need to find a way to choose which interval is trustable enough?
TIMEinterval_min = 5.0 #in minutes

#Space subdivision- get from shapefile:
rooms = []
with fiona.open('./shp/automatic_subdivision.shp', 'r') as c:
 for poly in c:
 coords =[]
 for xy in poly['geometry']['coordinates'][0]:
 coords.append((round(xy[0],6),round(xy [1],6)))
 rooms.append((coords,int(poly['properties']['FID'])))
c.close()

#SUBDIVISION 1 (automatic/scanner-reach areas)
#Dependent on space subdivision:
neighs = [[1,7], [0,6,7], [4,7], [4,5], [2,3,5,6,7], [3,4,6], [1,4,5,7], [0,1,2,4,6]]
print "Only layout 1 applicable."
#true point tested (id of room for each point)
truePOS = [0, 7, 7, 7, 1, 1, 6, 6, 7, 2, 2, 2, 4, 5, 3, 3, 1, 0, 1, 1, 2, 2]

################################## LAYOUT 1 ####### ############################

tes = raw_input("Choose Test [1 for 30/09, 2 for 01 /10]:\n")
#Point-like positions of meshliums scanners #SPECIF IC ORDER
MeshPositions = [(2.73631731473008211, 2.2964044622 0620564),
 (40.26027550729227045, 9.820339132 32249134),
 (40.26027550729227755, 43.82144896 367393017),
 (2.73631731473008566, 33.771274305 23957941)]
if tes =='1':
 #30/09
 timesNOW = ['2014-09-30 12:45:00','2014-09-30 1 2:50:00','2014-09-30 12:55:00',
 '2014-09-30 13:00:00','2014-09-30 1 3:05:00','2014-09-30 13:10:00',
 '2014-09-30 13:15:00','2014-09-30 1 3:20:00','2014-09-30 13:25:00',
 '2014-09-30 13:30:00','2014-09-30 1 3:35:00','2014-09-30 13:40:00',
 '2014-09-30 13:45:00','2014-09-30 1 3:50:00','2014-09-30 14:00:00',
 '2014-09-30 14:05:00','2014-09-30 1 4:15:00','2014-09-30 14:20:00',
 '2014-09-30 14:25:00','2014-09-30 1 4:30:00','2014-09-30 14:35:00',
 '2014-09-30 14:40:00']
elif tes == '2':
 #01/10
 timesNOW = ['2014-10-01 14:25:00','2014-10-01 1 4:30:00','2014-10-01 14:35:00',
 '2014-10-01 14:40:00','2014-10-01 1 4:45:00','2014-10-01 14:50:00',
 '2014-10-01 14:55:00','2014-10-01 1 5:00:00','2014-10-01 15:05:00',
 '2014-10-01 15:10:00','2014-10-01 1 5:15:00','2014-10-01 15:20:00',
 '2014-10-01 15:25:00','2014-10-01 1 5:30:00','2014-10-01 15:35:00',
 '2014-10-01 15:40:00','2014-10-01 1 5:45:00','2014-10-01 15:50:00',
 '2014-10-01 15:55:00','2014-10-01 1 6:00:00','2014-10-01 16:05:00',
 '2014-10-01 16:10:00']
else:
 print "Wrong Choice!"
 sys.exit()

#RUNNER - for the above choices
for cell in cellMACs:
 room = []
 on = 0
 close = 0
 for t in range(len(timesNOW)):
 pos = multilateration.main(meshnames,MeshPo sitions,cell,timesNOW[t],
 TIMEinterval_min,F alse,False)
 if pos:
 roomID = findroom.main(pos,rooms)
 else:

169
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

 roomID = -1
 if roomID == truePOS[t]:
 on += 1
 close += 1
 room.append(roomID)
 if roomID in neighs[truePOS[t]]:
 close += 1

 print "\n\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~"
 print "~~~ End of operations for cellphone:", c ell,"~~~"
 print "~~ ~~~~~~~~~~~~~~~~~~"
 print "Point numbers on
plan:|01|02|03|04|05|06|07|08|09|10|11|12|13|14|15| 16|17|18|19|20|21|22|"
 print "Ground Truth room IDs:",truePOS
 print "Localization room IDs:",room
 print "Success Rate:",on*100.0 / len(truePOS)," %", "({0} out of {1} times correctly
localized)".format(on, len(truePOS))
 print "Extend to Neighbours Rate:",close*100.0 / len(truePOS),"%"

runner_SUBDIVISION_complex.py [tester for combined method of intuitive+automatic]
script to run for all points - uses both intuitiv e (basis) and automatic
subdivisions - ONLY LAYOUT 1
#import multilateration_goback
import multilateration
import findroom
import fiona
import sys
import priority

#meshlium table names from database #SPECIFIC ORDER
meshnames = ['mesh121','mesh309','mesh553','mesh678 ']

#cellphones MAC addresses to search
#TODO: This will change in app to either the user's MAC or the MAC the user is trying to find
cellMACs = ['f8:e0:79:2f:02:45','f8:e0:79:c1:9f:da' ,'f8:e0:79:30:1b:87']

#TODO: Need to find a way to choose which interval is trustable enough?
TIMEinterval_min = 5.0 #in minutes

#Space subdivision- get from shapefile:
rooms = []
with fiona.open('./shp/intuitive_subdivision.shp', 'r') as c:
 for poly in c:
 coords =[]
 for xy in poly['geometry']['coordinates'][0]:
 coords.append((round(xy[0],6),round(xy [1],6)))
 rooms.append((coords,int(poly['properties']['FID_'])))
c.close()

#Utility subdivision for next possible room based o n scanner placement:
extrarooms = []
with fiona.open('./shp/automatic_subdivision.shp', 'r') as c:
 for poly in c:
 coords =[]
 for xy in poly['geometry']['coordinates'][0]:
 coords.append((round(xy[0],6),round(xy [1],6)))
 extrarooms.append((coords,int(poly['proper ties']['FID'])))
c.close()

#Priority list of next possible room:
nextrooms = priority.main(rooms, extrarooms)

#SUBDIVISION 1 (logical/human areas)
#true point tested (id of room for each point)
truePOS = [0, 0, 1, 1, 2, 2, 3, 7, 6, 6, 6, 5, 5, 3, 4, 4, 1, 1, 2, 2, 5, 5]

################################## LAYOUT 1 ####### ############################

tes = raw_input("Choose Test [1 for 30/09, 2 for 01 /10]:\n")
#Point-like positions of meshliums scanners #SPECIF IC ORDER

170
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

MeshPositions = [(2.73631731473008211, 2.2964044622 0620564),
 (40.26027550729227045, 9.820339132 32249134),
 (40.26027550729227755, 43.82144896 367393017),
 (2.73631731473008566, 33.771274305 23957941)]
if tes =='1':
 #30/09
 timesNOW = ['2014-09-30 12:45:00','2014-09-30 1 2:50:00','2014-09-30 12:55:00',
 '2014-09-30 13:00:00','2014-09-30 1 3:05:00','2014-09-30 13:10:00',
 '2014-09-30 13:15:00','2014-09-30 1 3:20:00','2014-09-30 13:25:00',
 '2014-09-30 13:30:00','2014-09-30 1 3:35:00','2014-09-30 13:40:00',
 '2014-09-30 13:45:00','2014-09-30 1 3:50:00','2014-09-30 14:00:00',
 '2014-09-30 14:05:00','2014-09-30 1 4:15:00','2014-09-30 14:20:00',
 '2014-09-30 14:25:00','2014-09-30 1 4:30:00','2014-09-30 14:35:00',
 '2014-09-30 14:40:00']
elif tes == '2':
 #01/10
 timesNOW = ['2014-10-01 14:25:00','2014-10-01 1 4:30:00','2014-10-01 14:35:00',
 '2014-10-01 14:40:00','2014-10-01 1 4:45:00','2014-10-01 14:50:00',
 '2014-10-01 14:55:00','2014-10-01 1 5:00:00','2014-10-01 15:05:00',
 '2014-10-01 15:10:00','2014-10-01 1 5:15:00','2014-10-01 15:20:00',
 '2014-10-01 15:25:00','2014-10-01 1 5:30:00','2014-10-01 15:35:00',
 '2014-10-01 15:40:00','2014-10-01 1 5:45:00','2014-10-01 15:50:00',
 '2014-10-01 15:55:00','2014-10-01 1 6:00:00','2014-10-01 16:05:00',
 '2014-10-01 16:10:00']
else:
 print "Wrong Choice!"
 sys.exit()

#RUNNER - for the above choices
for cell in cellMACs:
 room = []
 nextroom = []
 on = 0
 adj = 0
 for t in range(len(timesNOW)):
 pos = multilateration.main(meshnames,MeshPo sitions,cell,timesNOW[t],
 TIMEinterval_min,F alse,False)
 if pos:
 roomID = findroom.main(pos,rooms)
 autoID = findroom.main(pos,extrarooms)
 else:
 roomID = -1
 autoID = -1
 room.append(roomID)
 if autoID != -1:
 for nextID in nextrooms[autoID]:
 if nextID != roomID:
 nextroom.append(nextID)
 break
 else:
 nextroom.append(-1)

 #counters:
 if roomID == truePOS[t]:
 on += 1
 adj += 1
 elif nextID == truePOS[t]:
 adj += 1

 print "\n\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~"
 print "~~~ End of operations for cellphone:", c ell,"~~~"
 print "~~ ~~~~~~~~~~~~~~~~~~"
 print "Point numbers on
plan:|01|02|03|04|05|06|07|08|09|10|11|12|13|14|15| 16|17|18|19|20|21|22|"
 print "Ground Truth room IDs:",truePOS
 print "Localization room IDs:",room
 print "Localization next IDs:",nextroom
 print "Success Rate:",on*100.0 / len(truePOS)," %", "({0} out of {1} times correctly
localized)".format(on, len(truePOS))
 print "Extend to Next Room Rate:",adj*100.0 / l en(truePOS),"%", "({0} out of {1} times 2-
room localization)".format(adj, len(truePOS))

171
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

APPENDIX 5. PYTHON 2.7 CODE: WIFI FINGERPRINTING SCRIPTS

main.py

from read_data import read_data
from interpolation import interpolation
from draw_heatmap import draw_heatmap
from localization import localization
from read_polygon import read_polygon
from intersection import intersection
import pprint

read the data from a fixed-format txt file
[n1,n2,rows,columns,width,ids,x,y,z1,z2,z3,z4]=read _data('input_L1_22.txt')

interpolate the input points to create heatmaps
heatmaps=interpolation(n1,rows,columns,x,y,z1,z2,z3 ,z4)

draw the heatmaps
#draw_heatmap(heatmaps,rows,columns)

localize the testing points in the heatmaps
lcz=localization(n1,n2,rows,columns,x,y,z1,z2,z3,z4 ,heatmaps)
print the localization result
pprint.pprint(lcz) #[x[n1+k],y[n1+k],xx,yy,dx,dy,2* math.sqrt(dx**2+dy**2),mindiff]

#intersect the localized cells with the subdivision s and write it into shapefile
grid_fp='Shapefiles\Grid22_ply.shp'
subs_fp0='Shapefiles\Final_space_subdivision.shp'
subs_fp1='Shapefiles\SubdivisionLayout1.shp'
subs0=read_polygon(subs_fp0)
subs1=read_polygon(subs_fp1)
cells=read_polygon(grid_fp)

#print the given subdivisions in priority order for each testing points
pprint.pprint(intersection(rows,columns,lcz,cells,s ubs0,subs1))

read_data.py

def read_data(input):
#read the data from a fixed format txt file
fh=open(input,"r")
lines=fh.readlines()
fh.close()
data=lines[0].strip().split(' ')

number of rows in the grid
rows=int(data[0])
number of columns in the grid
columns=int(data[1])
width of the cell in the grid
width=int(data[2])
number of sampling points
n1=int(lines[1])
point id
ids=[]
x coordinate of the points # x coordinate of the points
x=[]
y coordinate of the points # x coordinate of the points
y=[]
RSSI values from 1st scanner
z1=[]
RSSI values from 2nd scanner
z2=[]
RSSI values from 3rdt scanner
z3=[]
RSSI values from 4th scanner
z4=[]
for line in lines[2:n1+2]:

data=line.strip().split(' ')
ids.append(int(data[0]))

172
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

x.append(int(data[1]))
y.append(int(data[2]))
z1.append(float(data[3]))
z2.append(float(data[4]))
z3.append(float(data[5]))
z4.append(float(data[6]))

number of testing points
n2=int(lines[n1+2])
for line in lines[n1+3:n1+n2+3]:

data=line.strip().split(' ')
ids.append(int(data[0]))
x.append(int(data[1]))
y.append(int(data[2]))
z1.append(float(data[3]))
z2.append(float(data[4]))
z3.append(float(data[5]))
z4.append(float(data[6]))

return [n1,n2,rows,columns,width,ids,x,y,z1,z2,z3,z 4]

interpolation.py
import numpy
import scipy.interpolate

def interpolation(n1,rows,columns,x,y,z1,z2,z3,z4):
create heat maps for each scanner

create a mesh grid
grid_x, grid_y = numpy.mgrid[0:rows, 0:columns]
Interpolation
rbf1 = scipy.interpolate.Rbf(x[0:n1], y[0:n1], z1[0 :n1], function='thin_plate')
Z1 = rbf1(grid_x, grid_y)
rbf2 = scipy.interpolate.Rbf(x[0:n1], y[0:n1], z2[0 :n1], function='thin_plate')
Z2 = rbf2(grid_x, grid_y)
rbf3 = scipy.interpolate.Rbf(x[0:n1], y[0:n1], z3[0 :n1], function='thin_plate')
Z3 = rbf3(grid_x, grid_y)
rbf4 = scipy.interpolate.Rbf(x[0:n1], y[0:n1], z4[0 :n1], function='thin_plate')
Z4 = rbf4(grid_x, grid_y)

make values below 0 to be 0
for i in range(0,rows):

for j in range(0,columns):
if (Z1[i][j]<0):

Z1[i][j]=0
for i in range(0,rows):

for j in range(0,columns):
if (Z2[i][j]<0):

Z2[i][j]=0
for i in range(0,rows):
for j in range(0,columns):

if (Z3[i][j]<0):
Z3[i][j]=0

for i in range(0,rows):
for j in range(0,columns):

if (Z4[i][j]<0):
Z4[i][j]=0

#exclude the part outside building (for 2 by 2 gird)
for i in range(0,5):

for j in range(0,11):
Z1[i][j]=float('nan')
Z2[i][j]=float('nan')
Z3[i][j]=float('nan')
Z4[i][j]=float('nan')

for i in range(9,15):
for j in range(4,8):

Z1[i][j]=float('nan')
Z2[i][j]=float('nan')
Z3[i][j]=float('nan')
Z4[i][j]=float('nan')

for k in range(12,17):
Z1[i][k]=float('nan')

173
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Z2[i][k]=float('nan')
Z3[i][k]=float('nan')
Z4[i][k]=float('nan')

for i in range(19,23):
for j in range(9,21):

Z1[i][j]=float('nan')
Z2[i][j]=float('nan')
Z3[i][j]=float('nan')
Z4[i][j]=float('nan')

#exclude the part outside building (for 4 by 4 gird)
for i in range(0,3):

for j in range(0,5):
Z1[i][j]=float('nan')
Z2[i][j]=float('nan')
Z3[i][j]=float('nan')
Z4[i][j]=float('nan')

for i in range(5,8):
for j in range(2,4):

Z1[i][j]=float('nan')
Z2[i][j]=float('nan')
Z3[i][j]=float('nan')
Z4[i][j]=float('nan')

for k in range(6,8):
Z1[i][k]=float('nan')
Z2[i][k]=float('nan')
Z3[i][k]=float('nan')
Z4[i][k]=float('nan')

for i in range(10,12):
for j in range(4,11):

Z1[i][j]=float('nan')
Z2[i][j]=float('nan')
Z3[i][j]=float('nan')
Z4[i][j]=float('nan')

return [Z1,Z2,Z3,Z4]

draw_heatmap.py
import matplotlib.pyplot as plt

def draw_heatmap(heatmaps,rows,columns):
Draw the heat maps
for i in range(0,len(heatmaps)):

plt.subplot(2, len(heatmaps)/2, i+1)
plt.imshow(heatmaps[i], extent=(1,columns,1,rows), origin='upper', vmin=0, vmax=60)
plt.title('Scanner{0}'.format(i+1))
plt.colorbar()
plt.show()

localization.py

import math

def localization(n1,n2,rows,columns,x,y,z1,z2,z3,z4 ,heatmaps):
localize testing points in the grid using the hea t maps created with the sampling points

lcz=[]
for k in range(0,n2):

mindiff=9999;
for i in range(0,rows):

for j in range(0,columns):
if math.isnan(heatmaps[0][i][j]):

continue
diff=math.sqrt((z1[n1+k]-heatmaps[0][i][j])**2+(z2[n1+k]-

heatmaps[1][i][j])**2+(z3[n1+k]-heatmaps[2][i][j])* *2+(z4[n1+k]-
heatmaps[3][i][j])**2)

if (diff<mindiff):
xx=i
yy=j
mindiff=diff

dx=x[n1+k]-xx
dy=y[n1+k]-yy

lcz.append([x[n1+k],y[n1+k],xx,yy,dx,dy,2*math.sqrt (dx**2+dy**2),mindiff])
return lcz

174
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

intersection.py
from grid_intersect_sub import grid_intersect_sub

def intersection(lcz,cells,subs0,subs1):
find the subdivision which the localized cell lie s in through intersection
rec=[]
for i in range(0,len(lcz)):

x0=lcz[i][0] #Ground truth x
y0=lcz[i][1] #Ground truth y
xx=lcz[i][2] #Calcuated x
yy=lcz[i][3] #Calcuated y

N0=columns*(rows-x0-1)+y0 #Index of ground truth ce ll in the grid
N1=columns*(rows-xx-1)+yy #Index of calculated cell in the grid

#Index of ground truth subdivision
indx_gt=grid_intersect_sub(cells[N0],subs0)[-1][1]
#Index of the subdivision which the calculated cell lies in
indx_s0_1st=grid_intersect_sub(cells[N1],subs0)[-1] [1]

 # check if it is correct. if not, a second or even a third subdivision alternative will

be given
if indx_s0_1st != indx_gt:

Check in which sub of subs1 the calculated cell l ies
indx_s1=grid_intersect_sub(cells[N1],subs1)[-1][1]
Check which subs of subs0 intersect with this sub of subs1
indx_s0s1=grid_intersect_sub(subs1[indx_s1],subs0)

if indx_s0_1st==indx_s0s1[-1][1] and len(indx_s0s1) >=2:

indx_s0_2rd=indx_s0s1[-2][1]
if indx_s0_2rd != indx_gt and len(indx_s0s1)>=3:

indx_s0_3nd=indx_s0s1[-3][1]
if indx_s0_3nd==indx_gt:

result='localized successfully'
else:

result='3 chances at most, localization failed'
else:

if indx_s0_2rd == indx_gt:
indx_s0_3nd=None
result='localized successfully'

else:
indx_s0_3nd=None

result='no other choice, localization failed'

elif indx_s0s1[-1][1] != indx_s0_1st and len(indx_s 0s1)>=1:
indx_s0_2rd=indx_s0s1[-1][1]
if indx_s0_2rd != indx_gt and len(indx_s0s1)>=2:

indx_s0_3nd=indx_s0s1[-2][1]
if indx_s0_3nd==indx_s0_1st:

if len(indx_s0s1)>=3:
indx_s0_3nd=indx_s0s1[-3][1]
if indx_s0_3nd==indx_gt:

result='localized successfully'
else:

result='3 chances at most, localization failed'
else:

indx_s0_3nd=None
result='no other choice, localization failed'

else:
if indx_s0_3nd==indx_gt:

result='localized successfully'
else:

result='3 chances at most, localization failed'
else:

if indx_s0_2rd == indx_gt:
indx_s0_3nd=None
result='localized successfully'

else:
indx_s0_3nd=None
result='no other choice, localization failed'

else:
indx_s0_2rd=None

175
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

indx_s0_3nd=None
result='no other choice, localization failed'

else:
indx_s0_2rd=None
indx_s0_3nd=None
result='localized successfully'

rec.append([N0,N1,indx_gt,indx_s0_1st,indx_s0_2rd,i ndx_s0_3nd,result])
return rec

grid_intersect_sub.py
def grid_intersect_sub(cell,subs):
#intersect grid cells with subdivisions
rec=[]
for i in range(0,len(subs)):

if cell.intersects(subs[i]):
rec.append((cell.intersection(subs[i]).area, i))

rec.sort()
return rec

APPENDIX 6. CODE FOR THE ANDROID APPLICATON

MainScreenActivity.java

package com.example.derotterdamappsql;
public class MainScreenActivity extends Activity{
 Button btnViewDepartments;
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main_screen);
 // Button
 btnViewDepartments = (Button) findViewById(R.id.btnViewDepartments);
 // view products click event
 btnViewDepartments.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 // Launching All products Activity
 Intent i = new Intent(getApplicationContext(), AllDepartmentsActivity.class);
 startActivity(i);
 }
 });

 }
}

AllDepartmentsActivity.java

package com.example.derotterdamappsql;
import com.example.derotterdamappsql.R;
public class AllDepartmentsActivity extends ListActivity {
 // Progress Dialog
 private ProgressDialog pDialog;
 // Creating JSON Parser object

176
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

 JSONParser jParser = new JSONParser();
 ArrayList<HashMap<String, String>> catchdepartmentsList;
 // url to get all products list
 private static String url_all_departments =

 "http://server.kirupa.nl/damien/get_all_departments.php";
 // JSON Node names
 private static final String TAG_SUCCESS = "success";
 private static final String TAG_CATCHDEPARTMENTS = "catchdepartments";
 private static final String TAG_DEPID = "depid";
 private static final String TAG_DEPARTMENT = "department";
 // products JSONArray
 JSONArray catchdepartments = null;
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.all_departments);
 // Hashmap for ListView
 catchdepartmentsList = new ArrayList<HashMap<String, String>>();
 // Loading products in Background Thread
 new LoadAllDepartments().execute();
 // Get listview
 ListView lv = getListView();
 // on click launch All Phonse Activity
 lv.setOnItemClickListener(new OnItemClickListener() {
 @Override
 public void onItemClick(AdapterView<?> parent, View view,
 int position, long id) {
 // getting values from selected ListItem
 String depid = ((TextView) view.findViewById(R.id.depid)).getText()
 .toString();
 // Starting new intent
 Intent in = new Intent(getApplicationContext(),
 AllPhonesActivity.class);
 // sending phoneid to next activity
 in.putExtra(TAG_DEPID, depid);
 // starting new activity and expecting some response back
 startActivityForResult(in, 100);
 }
 });
 }
 // Response from All Phones Activity
 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 super.onActivityResult(requestCode, resultCode, data);
 // if result code 100
 if (resultCode == 100) {
 Intent intent = getIntent();
 finish();
 startActivity(intent);

177
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

 }
 }
 /**
 * Background Async Task to Load all product by making HTTP Request
 * */
 class LoadAllDepartments extends AsyncTask<String, String, String> {
 /**
 * Before starting background thread Show Progress Dialog
 * */
 @Override
 protected void onPreExecute() {
 super.onPreExecute();
 pDialog = new ProgressDialog(AllDepartmentsActivity.this);
 pDialog.setMessage("Loading departments. Please wait...");
 pDialog.setIndeterminate(false);
 pDialog.setCancelable(false);
 pDialog.show();
 }
 /**
 * getting All phones from URL
 * */
 protected String doInBackground(String... args) {
 // Building Parameters
 List<NameValuePair> params = new ArrayList<NameValuePair>();
 // getting JSON string from URL
 JSONObject json = jParser.makeHttpRequest(url_all_departments, "GET",

params);
 // Check your log cat for JSON reponse
 Log.d("All Departments: ", json.toString());
 try {
 // Checking for SUCCESS TAG
 int success = json.getInt(TAG_SUCCESS);
 if (success == 1) {
 // products found
 // Getting Array of Phones
 catchdepartments = json.getJSONArray(TAG_CATCHDEPARTMENTS);
 // looping through All Products
 for (int i = 0; i < catchdepartments.length(); i++) {
 JSONObject c = catchdepartments.getJSONObject(i);
 // Storing each json item in variable
 String depid = c.getString(TAG_DEPID);
 String department = c.getString(TAG_DEPARTMENT);
 // creating new HashMap
 HashMap<String, String> map = new HashMap<String, String>();
 // adding each child node to HashMap key => value
 map.put(TAG_DEPID, depid);
 map.put(TAG_DEPARTMENT, department);
 // adding HashList to ArrayList
 catchdepartmentsList.add(map);

178
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

 }
 } else {
 }
 } catch (JSONException e) {
 e.printStackTrace();
 }
 return null;
 }
 /**
 * After completing background task Dismiss the progress dialog
 * **/
 protected void onPostExecute(String file_url) {
 // dismiss the dialog after getting all products
 pDialog.dismiss();
 // updating UI from Background Thread
 runOnUiThread(new Runnable() {
 public void run() {
 /**
 * Updating parsed JSON data into ListView
 * */
 ListAdapter adapter = new SimpleAdapter(
 AllDepartmentsActivity.this, catchdepartmentsList,
 R.layout.list_item, new String[] { TAG_DEPID,

TAG_DEPARTMENT},
 new int[] { R.id.depid, R.id.department });
 // updating listview
 setListAdapter(adapter);
 }
 });
 }
 }
}

AllPhonesActivity.java

package com.example.derotterdamappsql;
public class AllPhonesActivity extends ListActivity {
 // Progress Dialog
 private ProgressDialog pDialog;
 // Creating JSON Parser object
 JSONParser jParser = new JSONParser();
 ArrayList<HashMap<String, String>> catchphonesList;
 // url to get all products list
 private static String url_all_phones =

"http://server.kirupa.nl/damien/get_department_details.php";
 // JSON Node names
 private static final String TAG_SUCCESS = "success";
 private static final String TAG_CATCHPHONES = "catchphones";
 public static final String TAG_PHONEID = "phoneid";

179
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

 public static final String TAG_NAME = "name";
 public static final String TAG_MACADDRESS = "macaddress";
 private static final String TAG_DEPID = "depid"; // weg?
 String depid;
 String phoneid;
 // products JSONArray
 JSONArray catchphones = null;
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.all_phones);
 // getting product details from intent
 Intent j = getIntent();
 // getting department from intent
 depid = j.getStringExtra(TAG_DEPID);
 // Hashmap for ListView
 catchphonesList = new ArrayList<HashMap<String, String>>();
 // Loading products in Background Thread
 new LoadAllPhones().execute();
 // Get listview
 ListView lv = getListView();
 // on selecting single product
 // launching Edit Product Screen
 lv.setOnItemClickListener(new OnItemClickListener() {
 @Override
 public void onItemClick(AdapterView<?> parent, View view,
 int position, long id) {
 // getting values from selected ListItem
 String phoneid = ((TextView)

view.findViewById(R.id.phoneid)).getText().toString();
 String name = ((TextView)

view.findViewById(R.id.name)).getText().toString();
 String macaddress = ((TextView)

view.findViewById(R.id.mac)).getText().toString();
// reference naar list_item
 //create bundle
 Bundle extras = new Bundle();
 // fill bundle
 extras.putString("TAG_PHONEID",phoneid);
 extras.putString("TAG_NAME",name);
 extras.putString("TAG_MACADDRESS",macaddress);
 // Starting new intent Select Phone Activity
 Intent in = new Intent(getApplicationContext(),
 SelectPhoneActivity.class);
 // sending bundle to next activity
 in.putExtras(extras);
 // starting new activity and expecting some response back
 startActivityForResult(in, 100);
 }

180
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

 });
 }
 // Response from Edit Product Activity
 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 super.onActivityResult(requestCode, resultCode, data);
 // if result code 100
 if (resultCode == 100) {
 Intent intent = getIntent();
 finish();
 startActivity(intent);
 }
 }
 /**
 * Background Async Task to Load all product by making HTTP Request
 * */
 class LoadAllPhones extends AsyncTask<String, String, String> {
 /**
 * Before starting background thread Show Progress Dialog
 * */
 @Override
 protected void onPreExecute() {
 super.onPreExecute();
 pDialog = new ProgressDialog(AllPhonesActivity.this);
 pDialog.setMessage("Loading phones. Please wait...");
 pDialog.setIndeterminate(false);
 pDialog.setCancelable(false);
 pDialog.show();
 }
 /**
 * getting All phones from url
 * */
 protected String doInBackground(String... args) {
 // Building Parameters
 List<NameValuePair> params = new ArrayList<NameValuePair>();
 params.add(new BasicNameValuePair("depid", depid));
 // getting JSON string from URL
 JSONObject json = jParser.makeHttpRequest(url_all_phones, "GET", params);
 // Check your log cat for JSON reponse
 Log.d("All Phones: ", json.toString());
 try {
 // Checking for SUCCESS TAG
 int success = json.getInt(TAG_SUCCESS);
 if (success == 1) {
 // products found
 // Getting Array of Products
 catchphones = json.getJSONArray(TAG_CATCHPHONES);
 // looping through All Products
 for (int i = 0; i < catchphones.length(); i++) {

181
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

 JSONObject c = catchphones.getJSONObject(i);
 // Storing each json item in variable
 String phoneid = c.getString(TAG_PHONEID);
 String name = c.getString(TAG_NAME);
 String macaddress = c.getString(TAG_MACADDRESS);
 // creating new HashMap
 HashMap<String, String> map = new HashMap<String, String>();
 // adding each child node to HashMap key => value
 map.put(TAG_PHONEID, phoneid);
 map.put(TAG_NAME, name);
 map.put(TAG_MACADDRESS, macaddress); // only first values written?
 // adding HashList to ArrayList
 catchphonesList.add(map); }
 } else {
 }
 } catch (JSONException e) {
 e.printStackTrace();
 }
 return null;
 }
 /**
 * After completing background task Dismiss the progress dialog
 * **/
 protected void onPostExecute(String file_url) {
 // dismiss the dialog after getting all products
 pDialog.dismiss();
 // updating UI from Background Thread
 runOnUiThread(new Runnable() {
 public void run() {
 /**
 * Updating parsed JSON data into ListView
 * */
 ListAdapter adapter = new SimpleAdapter(
 AllPhonesActivity.this, catchphonesList,
 R.layout.phonelist_item, new String[] { TAG_PHONEID,
 TAG_NAME, TAG_MACADDRESS},
 new int[] { R.id.phoneid, R.id.name, R.id.mac }); //
 // updating listview
 setListAdapter(adapter);
 }
 });
 }
 }
}

SelectPhoneActivity.java

package com.example.derotterdamappsql;
public class SelectPhoneActivity extends Activity {

182
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

 // Creating JSON Parser object
 JSONParser jParser = new JSONParser();
 ArrayList<HashMap<String, String>> catchphonedetailsList;
 // JSON Node names
 String phoneid;
 // products JSONArray
 JSONArray catchphonedetails = null;
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.select_phone);
 // getting phone details from intent
 // getting bundle from intent
 Bundle extras = getIntent().getExtras();
 // get string messages
 String name = extras.getString("TAG_NAME");
 String macaddress = extras.getString("TAG_MACADDRESS");
 // find own wifi macaddress
 WifiManager manager = (WifiManager)

getSystemService(Context.WIFI_SERVICE);
 WifiInfo info = manager.getConnectionInfo();
 String address = info.getMacAddress();
 //select textviews
 TextView txtPhoneName = (TextView)findViewById(R.id.txtPhoneName);
 TextView txtPhoneMac = (TextView)findViewById(R.id.txtPhoneMac);
 // set text and content
 txtPhoneName.setText(name);
 txtPhoneMac.setText(macaddress);
 TextView txtOwnMac = (TextView)findViewById(R.id.txtOwnMac);
 txtOwnMac.setText(address);
 // Button
 Button btnGetRoute = (Button) findViewById(R.id.btnGetRoute);
 // view products click event
 btnGetRoute.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 // Launching GetRouteActivity
 Intent i = new Intent(getApplicationContext(), GetRouteActivity.class);
 startActivity(i);
 }
 });
 }
 // Response from Edit Product Activity
 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 super.onActivityResult(requestCode, resultCode, data);
 // if result code 100
 if (resultCode == 100) {
 Intent intent = getIntent();

183
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

 finish();
 startActivity(intent);
 }
 }
}

GetRouteActivity.java

package com.example.derotterdamappsql;
public class GetRouteActivity extends Activity {
 Button btnMapView;
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.get_route);
 // Button
 Button btnMapView;
 btnMapView = (Button) findViewById(R.id.btnMapView);
 // view map view click event
 btnMapView.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 // Launching All products Activity
 Intent i = new Intent(getApplicationContext(), MapViewActivity.class);
 startActivity(i);
 }
 });
 }
}
MapViewActivity.java

package com.synthesis.deRotterdamApp;
public class MapViewActivity extends UnityPlayerActivity {
 public static Context mContext;
 @Override
 protected void onCreate(Bundle bundle)
 {
 super.onCreate(bundle);
 mContext = this;
 }
}

184
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

routeRenderer.js

#pragma strict
var nodeInfo : TextAsset;

function Start () {
 var routeArray = [1408,1409,1404,1405];
 var routeVectorArray = new Array();
 var lines = nodeInfo.text.Split("\n"[0]);
 var nodeInfoLength : int = lines.Length;
 // MOVE CORRECT GEOMETRY INTO VIEW
 var finalNode : int = routeArray[routeArray.Length-1];
 var finalFloor : int = (finalNode/100);
 for (var geomIndex : int = 14; geomIndex < 17; geomIndex++)
 {Debug.Log(geomIndex);
 if (finalFloor != geomIndex)
 {var tempGeom : GameObject = GameObject.Find("RdamFloor" +

geomIndex); tempGeom.SetActive (false);}
 }
 // READ NODEINFO & FILL ROUTEVECTORARRAY
 for(var i : int = 0; i < routeArray.length; i++)
 {
 var tempNode = routeArray[i];
 for(var j : int = 1; j < nodeInfoLength; j++)
 {
 var nodeParts = lines[j].Split(";"[0]);
 var nodeID = int.Parse(nodeParts[0]);
 if (nodeID == tempNode)
 {var nodeX = float.Parse(nodeParts[1]);
 var nodeY = float.Parse(nodeParts[2]);
 var nodeZ = float.Parse(nodeParts[3]);
 var nodeVector : Vector3 = Vector3(nodeX,nodeY,nodeZ);
 routeVectorArray.Push(nodeVector);
 }
 }
 }
 // CREATE GAMEOBJECT, ADD LINERENDERER AND SET POSITIONS /

COLORS
 var lineObjectArray = new Array();
 for(var index : int = 0; index < routeVectorArray.length-1; index++)
 {
 Debug.Log("pair" + index.ToString());
 var pairStart : Vector3 = routeVectorArray[index];
 Debug.Log(pairStart);
 var pairEnd : Vector3 = routeVectorArray[index+1];
 Debug.Log(pairEnd);
 var tempObject : GameObject = new GameObject();
 var renderer : LineRenderer = tempObject.AddComponent(LineRenderer);
 renderer.SetVertexCount(2);

185
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

 renderer.SetWidth(0.5f,0.5f);
 renderer.SetPosition(0, pairStart);
 renderer.SetPosition(1, pairEnd);
 var blueMat : Material = renderer.material;
 var mat : Material = Resources.Load("blueLine", typeof(Material)) as

Material;
 renderer.material = mat;
 blueMat.shader = Shader.Find("Custom");
 }
 //CREATE SPHERES
 //startnode
 var startNode : GameObject = GameObject.CreatePrimitive(PrimitiveType.Sphere);
 var startVector : Vector3 = routeVectorArray[0];
 startNode.renderer.material.color = Color(0.2,0.6,0.8,0);
 startNode.transform.position = startVector;
 //middlenodes
 for(var index1 : int = 1; index1 < routeVectorArray.length-1; index1++)
 {
 var middleNode : GameObject =

GameObject.CreatePrimitive(PrimitiveType.Sphere);
 var middleVector : Vector3 = routeVectorArray[index1];
 middleNode.renderer.material.color = Color(1,1,1,0);
 middleNode.transform.position = middleVector;
 }
 // end node
 var endNode : GameObject = GameObject.CreatePrimitive(PrimitiveType.Sphere);
 var endVector : Vector3 = routeVectorArray[routeArray.Length-1];
 endNode.renderer.material.color = Color(0.2,0.8,0.0,0);
 endNode.transform.position = endVector;

 }
function Update () {
}

rightButtonScript.js Similar code is created for all zoom and pan buttons
function OnMouseDown(){
 print("down");
 }
function OnMouseUp(){
 print("up");
 var currentX : float = Camera.main.transform.position.x;
 var currentY :float = Camera.main.transform.position.y;
 var currentZ :float = Camera.main.transform.position.z;
 var stepSize : float = 30/currentY;
 Camera.main.transform.position = Vector3(currentX+stepSize, currentY, currentZ);
 }

186
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

Get_all_departments.php

<?php

/*
 * Following code will list all the departments
 */

// array for JSON response
$response = array();

// include db connect class
require_once __DIR__ . '/db_connect.php';

// connecting to db
$db = new DB_CONNECT();

// get all departments from catchdepartments table
$result = mysql_query("SELECT *FROM catchdepartments") or die(mysql_error());

// check for empty result
if (mysql_num_rows($result) > 0) {
 // looping through all results
 // departmens node
 $response["catchdepartments"] = array();

 while ($row = mysql_fetch_array($result)) {
 // temp user array
 $catchdepartment = array();
 $catchdepartment["depid"] = $row["depid"];
 $catchdepartment["department"] = $row["department"];
 $catchdepartment["created_at"] = $row["created_at"];
 $catchdepartment["updated_at"] = $row["updated_at"];
 // push single department into final response array
 array_push($response["catchdepartments"], $catchdepartment);
 }
 // success
 $response["success"] = 1;

 // echoing JSON response
 echo json_encode($response);
} else {
 // no departments found
 $response["success"] = 0;
 $response["message"] = "No departments found";

 // echo no users JSON
 echo json_encode($response);
}

187
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

?>

Get_department_details.php

<?php

 //Following code will list all the phones of a single department
// array for JSON response
$response = array();
 // include db connect class
require_once __DIR__ . '/db_connect.php';
 // connecting to db
$db = new DB_CONNECT();
 // check for post data line 80 in alldepartmentsactivity
if (isset($_GET["depid"])) {
 $depid = $_GET['depid'];
 // get a department from departments table
 $result = mysql_query("SELECT * FROM catchphones WHERE depid = $depid");
 // $result - mysql_query("SELECT * FROM catchphones WHERE depid
 if (!empty($result)) {
 // check for empty result
 if (mysql_num_rows($result) > 0) {
 // looping through all results phones node
 $response["catchphones"] = array();
 while ($row = mysql_fetch_array($result)) {
 $catchphone = array();
 $catchphone["phoneid"] = $row["phoneid"];
 $catchphone["name"] = $row["name"];
 $catchphone["macaddress"] = $row["macaddress"];
 $catchphone["department"] = $row["department"];
 $catchphone["depid"] = $row["depid"];
 $catchphone["created_at"] = $row["created_at"];
 $catchphone["updated_at"] = $row["updated_at"];
 // push single phone into final response array
 array_push($response["catchphones"], $catchphone);
 } // success
 $response["success"] = 1;
 echo json_encode($response);
 }
 } else {
 // no phone found
 $response["success"] = 0;
 $response["message"] = "No phone found";
 // echo no users JSON
 echo json_encode($response);
 }
} else {
 // required field is missing
 $response["success"] = 0;
 $response["message"] = "Required field(s) is missing";

188
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

 // echoing JSON response
 echo json_encode($response);
}
?>
db_connect.php

<?php
 /**
 * A class file to connect to database
 */
class DB_CONNECT {
 // constructor
 function __construct() {
 // connecting to database
 $this->connect();
 }
 // destructor
 function __destruct() {
 // closing db connection
 $this->close();
 }
 /**
 * Function to connect with database
 */
 function connect() {
 // import database connection variables
 require_once __DIR__ . '/db_config.php';
 // Connecting to mysql database
 $con = @mysql_connect(DB_SERVER, DB_USER, DB_PASSWORD) or

die(mysql_error());
 //$con = mysqli_connect(DB_SERVER, DB_USER, DB_PASSWORD) or

die(mysql_error());
 // Selecing database
 $db = mysql_select_db(DB_DATABASE) or die(mysql_error()) or

die(mysql_error());
 // returing connection cursor
 return $con;
 }
 /**
 * Function to close db connection
 */
 function close() {
 mysql_close();
 }
 }
 ?>

Db_config.php

189
Synthesis Project De Rotterdam 2014:

Matilde Oliveti| Godelief Abhilakh Missier| Damien Mulder| Dimitris Zervakis| Haoxiang Wu

<?php
/*
 * All database connection variables
 */
 define('DB_USER', "XXXXX”); // db user
define('DB_PASSWORD', , "XXXXX”); // db password (mention your db password here)
define('DB_DATABASE', , "XXXXX”); // database name
define('DB_SERVER', "XXXXX”); // db server
?>

