

P5 REAL TIME ASSET TRACKING IN HOSPITALS USING QUUPPA INDOOR POSITIONING TECHNOLOGY

Martijn van der Ham 3 November 2015

© CGI Group Inc. CONFIDENTIAL

Supervisors

TU Delft

Delegate of the Board: Graduation professor: Daily mentor: Co-reader:

CGI Internship supervisor:

Ir. Engbert van der Zaag Dr. Sisi Zlatanova Ir. Edward Verbree Dr. Ir. Stefan van der Spek

Ir. Robert Voûte

Content

- Research
 Questions
- Methodology

- Quuppa
 technology
- Use case

- Test location
- Test setup in
 - Spark Center

- IV
- Processing
- Analysis
- Map matching
- Localization model

- Conclusions
- Future research

Content

 Description of the problem

- Research
 Questions
- Methodology

 Quuppa technology

Use case

- Test location
- Test setup in
 - Spark Center

- Processing
- Analysis
- Map matching

 Localization model Conclusions

• Future research

TUDelft CG

Description of the problem

Indoor localization of assets

- Context (Complex buildings, indoor positioning, asset management)
- Develop a model for indoor localization to find certain assets

Quuppa

• Bluetooth indoor positioning system

Use case

• Monitor the whereabouts of medical equipment for asset management

Research Questions

Main research question:

"Does the technical and operational positioning performance of **Quuppa technology** meet the localization requirements for **asset tracking** in a hospital environment?"

Research Questions

Sub research questions:

- 1. What are the possibilities and limitations of the Quuppa system?
- 2. What are the technical and operational performance parameters and how can they be measured?
- **3**. What is the performance of the system based on the technical parameters?
- 4. What is the performance of the system based on the operational parameters?
- 5. How can the results of the test and analyses be put into a model for localization of assets using Quuppa technology?

Positioning: Determining a point in a space represented by coordinates (x, y, z)

Localization: Determining a place with semantics and attributes about the identity added by human beings

Methodology

Research steps

Content

- Research
 Questions
- Methodology

- Quuppa
 technology
- Use case

- III
- Test location
- Test setup in
 - Spark Center

- IV
- Processing
- Analysis
- Map matching
- Localization model

- Conclusions
- Future research

TUDelft CG Cuppa

Quuppa positioning technology

Specifications

- Bluetooth Low Energy (BLE) based
- Angle of Arrival (AoA) positioning method
- Accuracy up to sub-meter level (between 10m and 10 cm)
- Real-time data (between 1min and 100ms latency)

Tag

Locator

Quuppa positioning technology

Positioning method

- Angle of Arrival (AoA)
- Measuring
 - Elevation angle
 - Azimuth angle
- in...
 - 2D (this research)
- or...
 - 3D

Use case for hospital

Requirements for localizing IV pumps

- Default height (Z value) Attached to stand (e.g. 1,2m)
- Area of Interest (AoI)
 Cupboard/Table/Open space
- Size 0,20m
- Velocity Dynamic/static

Content

- Research
 Questions
- Methodology

- Quuppa technology
- Use case

- Test location
- Test setup in
 - Spark Center

IV

- Processing
- Analysis
- Map matching
- Localization model

- Conclusions
- Future research

Slide 14 of 40

Test set up in Spark Centre

Test set up in Spark Centre

Content

Slide 17 of 40

- Description of the problem
- Research
 Questions
- Methodology

- Quuppa technology
- Use case

- Test location
- Test setup in
 - Spark Center

- IV
- Processing
- Analysis
- Map matching
- Localization model

- Conclusions
- Future research

TUDelft CG C Rijnstate

Processing

Processing steps

- Mean
- Median
- Standard Deviation (SD)

	Test 1	Test 2	Test 3
Z value [m]	0	0,8	0,8
Transmit rate [Hz]	2	5	5
Latency [s]	0,1	0,1	0,1
Logging	CSV	CSV	JSON
Time span [s]	± 60	10/30/60	1/5/10
Tracking area	Spark	no	Spark/no

Analysis

Parameters for analysis

Reliability (R)

Technical

- Accuracy
- Precision
- Coverage
- Latency
- Update rate

Operational

- Clustering
- Indoor environment
 - Material
 - Lay out
 - Obstacles

Analysis

Conclusions for positioning

- Influences of the indoor environment are significant
- Strong relation between range and reliability
 - Accuracy <0,5 m
- Reliability is not time dependent

Test cases

Cupboard

R = 67%

R = 16%

Test cases

Table

R = 75%

R = 100%

-

Test cases

Open space

R = 25%

Summary

PointInPolygon

Threshold	Test case	Accuracy	Precision
 Accuracy: 0,5m 	Name		
 Precision: 0,2 	Cupboard along the wall	0,74	0,27
 Decreased reliability around borders 	Table in the storage room	0,17	0,05
	Walking space around table	0,39	0,03
	Cupboard in the corner	0,39	0,02
	Patient's bed	0,35	0,09
	Walking space around bed	0,57	0,09

Map matching

PositionAccuracy

- Quuppa parameter
 - Value indicating the quality of the measurement
- No direct relation to SD
- Measure for on-the-fly accuracy estimation

Map matching

ShapeRelatedProbability

- Chance of being located 'across the border' is larger near the border of the polygon
- Based on accuracy of measurements
- Decreased reliability in zone B

Map matching

FunctionalConstraints

- Define areas where:
 - asset **can** be positioned
 - asset **cannot** be positioned

Content

Slide 31 of 40

- Description of
 the problem
- Research
 Questions
- Methodology

- Quuppa
 technology
- Use case

- Test location
- Test setup in
 - Spark Center

- IV
- Processing
- Analysis
- Map matching
- Localization model

Conclusions

• Future research

1. What are the possibilities and limitations of the Quuppa system?

- + High accuracy
- + Designed for positioning
- Availability of hardware

2. What are the technical and operational performance parameters and how can they be measured?

- Subjects for positioning analysis cover technical parameters
- Locations types take into account the operational parameters

3. What is the performance of the system based on the technical parameters?

- + Accuracy and precision values are influenced by distance to locator and obstructions
- + Update rate can be relatively low for this kind of application
- Coverage is subject to environmental issues, range and obstructions
- Latency only affects high speed movements

4. What is the performance of the system based on the operational parameters?

- Reflective surfaces have a large influence on performance
 - TV screens
 - Metal objects
- Obstructions and interior elements affect reliability

5. How can the results of the test and analyses be put into a model for localization of assets using Quuppa technology?

- Accuracy is key
 - Localization depends highly on reliability of the position
- In addition to Point-In-Polygon method (> 75%):
 - Position accuracy
 - Shape related probability
 - Functional constraints

Answering the main research question

MQ: Does the technical and operational positioning performance of Quuppa technology meet the localization requirements for asset tracking in a hospital environment?

- Accuracy of the measurements is not time span related and not related to precision
- Area of Interest is main driver of locator constellation
- Localization can be optimized by on-the-fly correction of map matching using PA and covariance

Recommendations

Future Research

- Correction grid (vectors) for improved positions and thus localization
 - Based on error vectors covariance matrix
- Performance of Quuppa in 3D for localization and FunctionalConstraints

References

p11/12/13: Quuppa (2015a). Quuppa – enabling sub-meter positioning and real-time asset management. Quuppa%20company%20presentation%20January%202015-JC.pdf.

p14: http://www.ortusgroupbv.com/data/news/957c0fca1231dbb0c191aaa6a0321522.jpg http://www.modocarts.com/images/work/CareFusion-Alaris-CareStand-IVPole-2.jpg

Literature

p12/13: Quuppa (2015a). Quuppa – enabling sub-meter positioning and real-time asset management. Quuppa%20company%20presentation%20January%202015-JC.pdf.

