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Abstract- This study proposes the application of a
Lyapunov-based Model Predictive Control (L-MPC) approach
to a 9-level Crossover Switches Cell (CSC9) converter operating
in grid connection mode. The proposed method utilizes the
structure of the classical finite-control-set MPC (FCS-MPC)
technique while integrating a cost function that requires no
tuning. By deriving the cost function based on Lyapunov theory,
the system stability is ensured. Notably, the suggested approach
offers several advantages over traditional MPC controllers.
Firstly, it eliminates the need for gain tuning, thereby
simplifying the implementation process. Secondly, the proposed
controller prioritizes stability as a key design aspect. The
presented simulation results prove that the proposed controller
effectively regulates the voltage of the DC capacitor around its
desired value and feed a smooth sinusoidal current to the grid
with low total harmonic distortion (THD) while operating at a
unity power factor.

Keywords-Crossover Switches Cell Converter, Multilevel
Inverters, Lyapunov-based Control, Model Predictive Control,
Grid-Connection.

1. INTRODUCTION

A convergence of factors and challenges has made the
growing demand for renewable energy sources a global
obligation. The transition to cleaner/sustainable energy
sources has been sparked by the pressing need to combat
climate change and reduce greenhouse gas emissions. A
practical substitute for fossil fuels, renewable energy sources
have the potential to reduce their negative environmental
effects while still providing for society's expanding energy
needs. In addition, as energy storage and grid integration
technologies have advanced, the costs of renewable energy

solutions have decreased, boosting their competitiveness,
viability, and investment appeal [l].

In this context, grid-connected Photovoltaic (PV) systems
have grown significantly in popularity in recent years as a
dependable and environmentally friendly method of
electricity generation. They facilitate the overall transition to
a sustainable and decentralized energy system by supplying
clean and renewable energy as well as helping to maintain grid
stability. They are a desirable option for residential,
commercial, and utility-scale applications due to their
scalability, easy installation, and compatibility with current
grid infrastructure, opening the way for a greener and more
sustainable energy future [2].

Multilevel Inverters (MUs) have become the preferred
option in grid-connected PV applications due to their
numerous advantages. MUs use an arrangement of switching
devices and capacitors/DC sources to create a staircase
(multilevel) output voltage waveform, which provides various
advantages compared to conventional2-level converters such
as reduced harmonic content at a lower switching frequency,
ability to use standard power switches in medium/high­
voltage applications, reduced switching losses, increased
maximum output power, enhanced system efficiency, reduced
common-mode voltage, and low dv/dt ratio [3]-[4].

Several MLI configurations have been introduced in the
literature, while some of them have been widely employed in
industry. The Cascaded H-bridge (CHB) topology has
triggered the MLI revolution in the 1970s [5] followed by the
Neutral Point Clamped (NPC) [6] and the Flying Capacitor
(FC) [7] configurations. These MLI topologies have been
usually considered as conventional structures and form the
basis of all other complex topologies.
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Fig. 1. System under study

where L represents the inductance of the filter and Vg is the
grid voltage.

di 1
.:s: --(v -v) (1)dt - L ab g

dV2 =~(s -s -s )i (2)
dt C 3 2 7 g

sd
+ ig

1
S2

1 vab ru vg
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utilizing the principles of Lyapunov stability analysis [27]­
[28]. Compared to conventional MPC strategies, the adopted
approach does not require gains tuning while the cost function
is designed from a stability perspective.

II. SYSTEM MODELLING AND CONTROL

A. System Configuration

The CSC inverter under study is presented in Fig. 1. It is
worth noting that the cell switches (SI,S4) and (S3,S6) are
complimentarily controlled to prevent DC capacitors short­
circuits, while only one switch turns ON at the time from the
middle cell switches (S2,SS,S7,SS).

As shown in TABLE I, if the voltage V2 is controlled at
vdcl3, the 16 valid switching states (where s, represents the
ON/OFF state of the switch Si) allow the generation of 9
distinct output voltage levels (with boosting capability) where
the peak voltage corresponds to ±(Vdc+V2).

B. Mathematical Modelling

In this paper, the control objectives are the supply of a
smooth sinusoidal current (i g ) synchronized with the grid and
the control of the voltage V2 across the DC capacitor at its
desired value. By applying the Kirchhoff's current/voltage
laws, the state equations are computed by (1)-(2), and the
output equation is presented by (3).

Considering the main development stages, the MLI
topologies can be classified into two main categories. The first
one consists of CHB-based inverters where the main
advantage is the high modularity while the need of multiple
isolated DC sources and the unequal power sharing between
the cascaded power cells limits their usability [8]. The other
category includes Single DC-Source (SDCS) MLI topologies
such as NPC, FCI, Packed U Cell (PUC), Modular Multilevel
Converter (MMC), and Crossover Switches Cell (CSC)
inverters. The main advantage of these SDCS-MLIs is their
ability to be fully integrated into power conversion systems
where traditional 2-stage inverters are operating with no
amendment requirements on the DC and AC sides and few
tunings on the controller design.

However, only few SDCS-MLI topologies have been
successfully employed in the industry, such as NPC [9], 3­
level T-type inverter [10], ANPC [11], FCI [11], and very
recently the PUC inverter [13]. Lately, a modified version of
the PUC inverter, known as CSC inverter, appeared as a
standalone inverter in [14], where 9 voltage levels are
generated (with boosting capability) making use of 8
switching devices and 1 capacitor.

These SDC-MLIs are typically controlled by cascading
voltage, current, or power loops (inner and outer loops). To
achieve precise current tracking, enough control bandwidth,
and quick transient operation, an inner current control is
employed [15]. A voltage regulator is commonly employed in
the outer loop to minimize the disturbance effect from the
input and grid sides and to guarantee steady power flow.
Voltage errors are further supplied to the current reference in
PV systems in order to regulate the DC-link voltage.
However, this might not be able to guarantee an adequate
distribution of active power among the DC-links (capacitors'
voltages balancing). For instance, an external regulator has
been used to balance the two capacitors' voltages ofNPC and
T3 topologies in [16]. So, the main challenge in SDCS-MLI
topologies is to track the reference of the output current while
balancing the voltage of the DC capacitor. Additionally, in the
majority of the SDCS-MLIs topologies such as FCI, CSC, and
MMC, the state variables are interconnected and any alteration
in one variable may have an impact on the other state
variables. To avoid the use of external controllers, redundant
switching states can be used in specific arrangements.

In this context, due to its easy implementation and high
transient performance, model predictive control (MPC) has
been broadly implemented to deal with multi-objective
control problems of SDCS-MLIs [17]-[19] where the current
system's state variables are used to predict the future ones. The
principle of MPC is the optimization of a designed cost
function where weighting factors are commonly used to assess
the relative weight of each objective in the control decision. In
order to achieve high-performance results, fine-tuning those
parameters is in fact extremely important. They can be
automatically computed [20]-[26] or manually tweaked by
trial and error.

Alternatively, this paper proposes a Lyapunov-based MPC
(L-MPC) approach to deal with the multi-objective control
problem of the grid-connected CSC9 inverter under study.
Indeed, Lyapunov-based control has been attracting an
increased interest in power electronics systems. Such
approaches offer a rigorous framework for analyzing the
system behavior, designing control laws, and ensuring
stability in the occurrence of disturbances and uncertainties by
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TABLE 1. SWITCHING PATTERNS

C. Control Design

Let's define the grid current and capacitor voltage errors
as follows:

[

(SI -S2 -Ss)vde +(S2 -S3 +S7 )V;efJ
• k ~ •W =--.1. -v - u« (12)
egg

+e2 (( S3 -S2 -S7 )i;ef)
According to the Lyapunov control theorem, the

controlled system will be stable for the positive definite cost
function given in (6) if its derivative computed in (12) is
negative.

The idea of the proposed controller is to assess the cost
function given in (12) for the finite set of inputs and select the
control set that corresponds to the negative value. It is worth
noting that the only gain included in the cost function does not
affect the minimum value selection and can be randomly set.
For the sake of simplicity, k2 is chosen to be 1, which implies
having a gain-free cost function.

D. Lyapunov-based MPC

Using the first order Forward Euler approximation of (1)­
(3), the discrete-time state and output equations of system are
computed by:

T
ig(k+l) =i/k) + 1(vab(k)-v/k)) (13)

v2(k+l) =v2(k)+ ~ (S; -s; -s;)i/k) (14)

vab(k) =(s; -s; -s;)vdc +(s; -s; +s;)v2(k) (15)

where T, represents the sampling time, k is the sample
index, and n denotes the switching pattern as indicated in
TABLE I.

3 1
v (k+l)=-v (k)--v (k-l) (16)g 2 g 2 g

t ef (k +1)=~ t ef (k) - ~ t ef (k - 1) (17)g 2 g 2 g

Then, the proposed L-MPC technique substitutes the
conventional MPC cost function by the discrete-time form of
the cost function given by (12) as follows:

Moreover, the grid voltage and reference grid current are
predicted at (k+1) sample using the following equations [30]:

(7)

(8)

(10)

. .
e = i _tef

] g g. .
e =v _vref (9)

2 2 2

By combining the previous equations with (1), (2), and (7),
one can obtain:

TV =k,et (v", -v, )-i:r]+
k (

1 ( ) . :efJ2e2 C S3 -S2 -S7 19 -v2

Substituting (3) in (10) and making use of the errors
defined in (4) and (5) gives:

where:

1 2 1 2
W=-~~+-~~ ~

2 2
It is worth noting that the gains k] and k2 are selected to be

real and positive numbers. As the selected Lyapunov function
is positive definite, by making its derivative represented in (7)
negative for all values of errors, the stability of the controlled
system is guaranteed [29].

e =i _tef
(4)1 g g

e =v - vref
(5)2 2 2

In this paper, v{ef is set to vdcl3 to obtain 9 output voltage
levels.

A positive definite cost function (Lyapunov function)
could be defined by:

Switching
S1 S3 S2,S5,S7,S8 VabState (n)

1 1 ° 0,0,1,0 V",+V2

2 1 ° 0,1,0,0

3 v'"
1 1 0,0,1,0

4 1 1 0,1,0,0 Vdc - V2

5 ° ° 0,0,1,0

6
V2

1 ° 1,0,0,0

7 ° 1 0,0,1,0

S 1 1 1,0,0,0

9 °° ° 0,1,0,0

10 1 ° 0,0,0,1

11 ° 1 0,1,0,0

12
- V2

1 1 0,0,0,1

13 ° ° 1,0,0,0 - Vdc + V2

14 ° ° 0,0,0,1

15 - v'"

° 1 1,0,0,0

16 ° 1 0,0,0,1 - Vdc - V2
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Fig. 3. Capacitor voltage tracking against its desired value

The tracking of the voltage V2 across the capacitor against
its reference value (v{ef=vdcl3) is shown in Fig. 3. Moreover,
it can be seen that the grid current is fed with high tracking
quality against its reference sinewa.ve and unity P?wer factor
as illustrated in Fig. 4 and FIg. 5, respectively. The
corresponding harmonics spectrum along with the computed
THD are depicted in Fig. 6.

As expected, 9 voltage levels (Fig. 7) can be distinguished
at the output terminals where the peak value of the generated
output voltage (400 V) is higher than the DC-link voltage
value of300 V (boosting capability).

In Fig. 8 and Fig. 9, the transient performance of the
presented L-MPC is assessed by implemen~ng sudd~n step
changes on the specified reference values. FIg. 8 depIc.ts the
re-tracking qualities (fast dynamic performance without
overshoot) of the capacitor voltage and grid current after
introducing a peak current step-up variation of 50%.

The capacitor voltage dynamic response is shown in Fig.
9 where the input voltage Vdc is increased from 300 V to 450
V and subsequently decreased back to 300 V (±50% of DC­
link voltage variation). These findings demonstrate the strong
dynamic performance of the L-MPC method in re-tracking the
desired values in the presence of disturbances.

Time (s)

Fig. 4. Grid current tracking against its reference sinusoidal waveform

Lyapunov-based
MPC

Equation (18)

Equations (13)
to (17) 1-----"'----'---'--->1

Designation Value

Fundamental frequencyf 50 Hz

Sampling Time t, 20/ls

DC-Link voltage Vd, 300 V

Peak reference current lig"~ 10 A

Grid Voltage vg (rms) 240 V

Filtering Inductor L 7mH

Fig. 2. Synoptic ofthe proposed Lyapunov-based MPC technique

TABLE II. SIMULATION PARAMETERS

(51 -S2-SS)Vdc(k)+

• k el (k+1) (S2-S3+S7)tief(k)

W(k+1) =-.1.
C -vg -; (it(k+1)-i;ef(k)) (18)

s

+eik+1)((S3 -S2-s7)i;ef(k+1))

The controller picks the switching state that corresponds
to the maximum negative value of (18) and applies it to the set
of switching devices. The synoptic of the proposed control
approach is presented in Fig. 2.

III. SIMULAnON RESULTS AND ANALYSIS

In order to demonstrate the effectiveness of the proposed
L-MPC technique in regulating the system variables around
their references, several tests have been performed in
MATLAB/Simulink using the parameters recorded in TABLE
II.
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IV. CONCLUSIONS

This work investigated the application of a Lyapunov­
based Model Predictive Control (L-MPC) teclmique to a
Crossover Switches Cell (CSC9) converter operating in grid
connection mode. The Lyapunov-based cost function was
conceived from the stability perspective to minimize the
errors on the grid current capacitor voltage. The proposed
controller does not require any gains tuning (easy
implementation under various operation conditions). The
results presented in the study proves the high performance of
the designed L-MPC in regulating the capacitor voltage at the
reference value of Vdc/3 (to generate 9 output voltage levels)
while injecting grid current with low THD synchronized with
the grid voltage. Moreover, the outcomes validated the high
dynamic performance of the proposed controller (claimed by
Lyapunov-based control approaches) in re-tracking the
desired values in the presence of disturbances (variations on
the DC-link voltage and grid current reference).
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