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Dr. L. Buşoniu, Technische Universiteit Cluj Napoca
Prof. dr.ir. J.M.A. Scherpen, Rijksuniversiteit Groningen
Prof. dr.ir. N. van de Wouw, Technische Universiteit Delft

Other member:
Dr. D. Jeltsema, Technische Universiteit Delft

Reserve member:
Prof. dr.ir. B. De Schutter, Technische Universiteit Delft

This dissertation has been completed in partial fulfillment of the requirements of the
Dutch Institute of Systems and Control (DISC) for graduate studies.

Copyright © 2016 by Subramanya Nageshrao

All rights reserved. No part of the material protected by this copyright notice may be
reproduced or utilized in any form or by an means, electronics or mechanical, includ-
ing photocopying, recording or by any information storage and retrieval system, without
written permission of the author.

Email: subramanyanageshrao@gmail.com

ISBN 9789461866219

An electronic version of this dissertation is available at
http://repository.tudelft.nl/
Cover design by: Reshu Gupta e-mail:reshurgupta@gmail.com
Printed in the Netherlands

http://repository.tudelft.nl/


Dedicated to my grandparents.





ACKNOWLEDGEMENTS

This is a rather interesting section for me to write. Considering this is the last section
that I am writing for the thesis, owing to structure of the book, this would probably be
the first one to be read. I always felt acknowledgments is a way to humanize the thesis.
It is farthest from all the mathematical equations that follow. Writing this gave me an
opportunity to look back at the last few years. Assuming this will be the last thesis I am
ever going to write, I have taken the liberty of words to thank various individuals who
have helped, inspired and influenced me, albeit, with a near certainty that I might miss
someone important.

Probably it was during my high school that I came across this story, the gist of which
goes like this: A student at the start of academic life is more like a raw material, say a
piece of rock. It takes a sculptor to work on it relentlessly and make something good out
of that potential. When I look back at the last four years I could not have asked for a
better sculptor than my promotor Prof. dr. ir. Robert Babuška.

Dear Robert, thank you for believing in me, for giving me this wonderful opportunity
to pursue doctoral education. I always admired your sincerity to help students. Your
attention to details, curiosity to learn and immense enthusiasm are few of the qualities I
actively tried to imitate and often failed miserably.

This thesis would have stayed a mote idea if it was not for my co-promotor and daily
supervisor Dr. Gabriel Lopes. Dear Gabriel, while you had to take care of little kids at
home, you had to endure grown up kid(s) at the office. Your patience and constant en-
couragement made my last four years exceptional. A special thanks for always keeping
your office door open to discuss any (non) technical issues. You have always supported
me both on professional and personal front, helped and pushed me to achieve higher
goals while simultaneously giving me enough freedom to conduct the research, Thank
you!

I would also like to thank my other (unofficial) supervisor Dr. Dimitri Jeltsema, his
willingness to collaborate, his patience in teaching me the basics of port-Hamiltonian
systems and nonlinear control greatly helped me in my work. I would also like to thank
ir. Olivier Sprangers, for being the first person to work on this idea.

During the initial four months of 2015, I visited University of Texas at Arlington (UTA)
as a research visitor. I am grateful to Prof. dr. Frank Lewis for providing this valuable op-
portunity and for introducing me to multi-agent systems and distributed control. Dur-
ing my stay at UTA, I got the opportunity to work with Dr. Hamidreza Modares, it is
extremely rare to come across a person who works relentlessly, is highly talented and
adores his job. Reza, my friend you are destined for greatness.

I express my gratitude to the members of PhD committee, Prof. dr. Shalabh Bhatna-
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1
INTRODUCTION

In this chapter the motivation behind the thesis is provided. It also introduces reinforce-
ment learning as a key concept that is prominently used in this work. Following the
introduction, an overview on the focus and contributions of the thesis is given. Subse-
quently a detailed outline of the thesis, both verbal and pictorial, is presented.

1.1. MOTIVATION

T he need to control a (man-made) physical system is arguably as ancient as our civi-
lization. However, the genesis of modern control can be traced to the onset of indus-

trial revolution, which ushered the beginning of our technological era [1]. Control and
technology form a positive feedback loop: control enhances the technical performance
of a system and advances in technology enable the realization of better control algo-
rithms. Over time, this mechanism results in significant improvement in performance
[1, 2].

Humanity is surrounded by man-made machines. The accessibility of technology
in daily life such as, advanced medical facilities, transportation, etc. is often used as a
measure for the quality of human development. The technology and machines gener-
ally enhance the comfort and ease of life. Many of the dynamic machines require a valid
controller in order to function in a safe and efficient manner. Even though control is
the functioning brain in various applications, its ubiquitous presence is not readily evi-
dent. Control applications range from a simple coffee maker to an awe inspiring space
shuttle. The available control methods are as diverse as the systems to which they are ap-
plied. Most of the control methods can be broadly classified either as linear or nonlinear
control [3]. Linear control is prominently used and it is a rich field with a wide-variety
of methods. As it is beyond the scope of this thesis, these methods are not discussed
in detail, for further information see [4, 5]. The desirability of linear control can be at-
tributed to the elegant design methods and the ease of implementation. Although it is
widely used, linear control may be inefficient when the control objective is demanding
or when the dynamic system under consideration does not obey the superposition prin-
ciple. This may be due to hard nonlinearities such as hysteresis, saturation, nonlinear

1
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friction, etc. In these scenarios, linear control may be used in a relatively small operating
range. Typically, this implies a rather small part of operating space where the controller
can achieve the desired stability and performance criterion. Some of these difficulties
can be addressed by using nonlinear control. Moreover nonlinear control will also be
extremely useful when the system under consideration is complex, multi-domain and
has a large operating range or is driven by stringent control objectives [6, 7].

Although nonlinear control is highly desired, designing and implementing a non-
linear controller can be a challenging and extremely hard task. In many instances it is
stymied by the need for full state information, high sensitivity to the system parame-
ters and dependence on the system model. Even if these requirements are addressed,
for example, by using a nonlinear observer and by performing a precise system iden-
tification, the nonlinear control synthesis problem is still difficult as it often involves
a set of partial-differential, algebraic equations or differential equations [8, 9]. Solving
these equations can be both cumbersome and time consuming. In an abstract sense,
the issue faced can be attributed to the structure of the feedback controller itself. This
is because the control can be viewed as a fixed map from plant states to the plant in-
put that is obtained offline. When encountering an uncertain and imprecise model, a
pre-fixed map might not be able to achieve the desired control objectives. This is also
evident when only a limited prior system information is available. In these scenarios it is
nearly impossible to consider all the uncertainties during the feedback control synthesis.
Additionally, while designing a nonlinear controller, there is no general mechanism to
incorporate a performance measure. This is because most of the techniques are devised
only to achieve regulation or tracking without alluding to the performance criterion. By
using learning techniques, instead of model-based nonlinear methods, at least some of
the mentioned issues can be addressed [10].

Animals and humans have the ability to share, explore, act or respond, memorize the
outcome and repeat the task to achieve better result when they encounter the same or
similar scenario. This is called learning from interaction [11, 12]. A learning system is
characterized by its ability to improve the performance, use the past experience or in-
formation and adapt to changes in the environment. Thus learning algorithms, in prin-
ciple, are capable of controlling a poorly modeled nonlinear dynamic system. As will be
explained in the following sections, in this thesis an instance of learning algorithm called
Reinforcement Learning (RL) is used to solve a particular family of nonlinear control and
distributed control problems [13].

1.2. REINFORCEMENT LEARNING
Reinforcement learning is a subclass of machine learning techniques. It is a collection
of algorithms that can be used to solve sequential decision making problems [14]. The
learning objective is to control a system so as to maximize some predefined performance
criterion. The system is assumed to be a Markov decision process (MDP), which is a
default framework for sequential decision making problems. The sequential problem
generally involves a mechanism to obtain a series of actions in a closed-loop setting. In
RL this is addressed by the policy,1 a map from the system’s state to action. The control

1In RL literature the terms policy, agent, actor, and controller are used interchangeably.
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objective is to find an optimal policy such that some expected measure of performance
is maximized [15].

While the system is assumed to be an MDP, RL methods can learn a policy without
requiring any a priori information about the system. In an RL algorithm the required
knowledge is obtained by directly interacting or experimenting with the system. Based
on the experimental data a control law is learned online. Owing to this basic principle
of learning from interaction, RL can obtain a local optimal policy even in an uncertain
and/or time-varying environment. Thus RL can readily address model and parametric
uncertainties [16].

Unlike in supervised learning where an explicit desired output is given to the agent,
in RL the only available feedback is an evaluative scalar reward. The reward gives an
instantaneous measure of performance. The working of an RL algorithm is as follows: at
every time instance the agent senses the system’s state. It then calculates an appropriate
action using the policy at hand. On applying this action the system transits to a new
state and provides a numerical scalar reward. Using this evaluative feedback the policy
is modified [17, 18].

A key component for any learning method is its memory. In the RL setting this is
represented either by the state-value or the action-value function. These functions ap-
proximate the cumulative reward, called the return, starting from a particular state or a
state-action pair, respectively. The goal in RL is to find a policy that maximizes the return
over the course of interaction.

RL algorithms can be broadly classified into three categories. The Critic-only meth-
ods first learn an optimal value function from which an optimal policy is computed.
The Actor-only algorithms directly search for an optimal policy in the policy-space using
a gradient-based optimization approach. Actor-Critic methods explicitly learn a policy
(actor) and also a value-function (critic). The critic provides an evaluation of the actor’s
performance. As will be explained in the following sections, the main focus of this thesis
is to solve the parameterized nonlinear control and distributed control problems. For
this purpose the useful class of RL algorithms are Actor-only and Actor-Critic methods.
In both of these approaches the learning algorithm can use parameterized policies and
the parameters of which can be learned online by using the gradient descent optimiza-
tion method [19].

1.3. FOCUS AND CONTRIBUTIONS
Although the use of reinforcement learning in control and robotics is gaining traction,
its widespread applications are still limited. A prominent factor that adversely affects the
broad use of RL is the lack of interpretability of the policy, i.e., no physical meaning can
be attributed to the learned control law. This is due to the absence of a general frame-
work to relate an existing parameterized control law to an RL policy. Additionally, RL
methods are stymied by the curse of dimensionality, slow and non-monotonic conver-
gence of the learning algorithm, etc. Partially, this can be attributed to the characteristic
of RL as it lacks a standard mechanism for incorporating any a priori model information
into the RL algorithm [20–22].

This thesis aims to address the mentioned issues such as, interpretability of the learned
control law, easier mechanisms to incorporate prior knowledge, enhancing the learn-
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ing speed, etc. This is done by first parameterizing a well known nonlinear control de-
sign method called passivity-based control. The parameters of the controller are then
learned online by using a variant of the standard actor-critic algorithm. Using the ele-
ments of stochastic approximation theory the convergence of the policy parameters to
a local minimum of the pre-defined cost function is shown. In the last part of the the-
sis, RL is used to solve the multi-agent output synchronization problem for a network of
linear heterogeneous systems [23, 24].

1.3.1. SOLVING PBC USING RL
Passivity-based control (PBC) is a well-known model-based nonlinear control approach.
It is prominently used for regulation and tracking control of physical systems. Applica-
tions of PBC can be found in various domains such as, electrical, mechanical, electro-
mechanical, etc. [9, 25, 26]. PBC achieves the control objective by rendering the closed-
loop passive, hence the name [27]. PBC is a model-based control strategy and it tra-
ditionally relies on the system’s model. The system’s dynamic model is typically repre-
sented either in the Euler-Lagrangian [9] or port-Hamiltonian (PH) form [25]. In this
thesis, the physical systems modeled in the PH form are used.

Port-Hamiltonian theory provides a novel mechanism to model a complex physical
system. By using the port theory for networked systems, the interaction between various
components of a complex system can be represented, whereas the dynamics of each
component can be derived by using the Hamiltonian framework. This natural way of
representing the dynamics of a complex multi-domain system is the most prominent
feature in the PH framework. In the control community, PBC is a preferred model-based
control approach for systems represented in PH form.

However, the passivity-based control synthesis for a PH system often involves solv-
ing a set of under-determined complex partial differential equations (PDEs) [28]. Ana-
lytic solutions of these equations can be hard to compute. Additionally, similar to other
model-based approaches, the veracity of the solution may not be guaranteed due to pa-
rameter and model uncertainties. Even if a feasible solution is found there is no standard
mechanism to incorporate a performance criterion. In this thesis instead of obtaining
an analytical solution for the PBC control law of a PH system, the controller is first pa-
rameterized in terms of an unknown parameter vector. Then, by using a variation of
the standard actor-critic learning algorithm the unknown parameters are learned on-
line [18]. Thanks to the online learning capabilities, parameter/model uncertainties and
performance criterion can be readily addressed. Thanks to the effectiveness of the de-
veloped algorithms, real-time learning on an experimental setup for various systems is
possible.

An extensive numerical and experimental evaluation of the developed algorithms is
conducted to check for the scalability and performance. Since in the proposed methods
prior system knowledge can be easily incorporated in the form of a PH model, a com-
parison study is done to highlight the advantages w.r.t. the standard model-free actor-
critic approach. Additionally, because of learning, the proposed methods can achieve
zero steady state error in the presence of model uncertainties. A comparison study is
done to highlight the advantages w.r.t. standard passivity-based control. A mechanism
to convert the PBC control law into a stochastic policy is given. By using the principles
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of stochastic approximation algorithms the proof-of-convergence of the passivity-based
actor-critic method is shown [29, 30].

1.3.2. SOLVING MULTI-AGENT TRACKING USING RL
Using the port-based modeling framework PH theory can be used to model a networked
system when complete state information is available. Alternatively, a networked system
can be considered as a set of individual agents sharing only limited information such as
output among the neighbours. In multi-agent systems the control objective is that all the
agents are required to reach agreement on certain quantities of interests. If the common
value that agents agree on is not specified, then the problem is called leaderless consen-
sus. If all agents follow the trajectories of a leader node, then the problem is known as
cooperative tracking (leader-follower) control. A rich body of literature is available on
distributed control of multi-agent systems. Generally the available methods for multi-
agent tracking of heterogeneous systems assume complete knowledge of the leader as
well as the agent’s dynamics [24]. However, in practice this assumption is rather unreal-
istic. Although the existing adaptive methods can address the uncertainty in the agent’s
dynamics, the optimality of the control law is yet to be explicitly achieved. In Chapter
6, a novel model-free integral reinforcement-learning algorithm is proposed. Unlike the
standard methods, the proposed approach does not require either the solution of the
output regulator equations or the incorporation of a p-copy, i.e., a model of the leader’s
dynamics in the controller of each agent. Also because of RL, the learned control is both
model-free and optimal. Numerical evaluation demonstrates the effectiveness of the de-
veloped method.

1.3.3. CONTRIBUTIONS
The major contributions of this thesis are:

1. A set of actor-critic learning algorithms are proposed to solve the passivity-based
control problem for mechanical and electro-mechanical systems.

2. Using the stochastic approximation theory [29] the convergence of the developed
RL based passivity methods is shown.

3. A learning algorithm was developed to solve the optimal output tracking control
problem for a heterogeneous multi-agent network.

1.4. THESIS OUTLINE
Including the introduction, this thesis in total consists of 7 chapters. The remaining
chapters are organized as follows. Chapter 2 introduces two basic entities that are promi-
nently used throughout the thesis, namely, port-Hamiltonian systems and passivity-
based control. First, examples are given to illustrate the modeling in PH form. Following
this, various port-Hamiltonian system properties are explained. The chapter ends with a
brief survey on the standard model-based passivity control methods for PH systems. In
Chapter 3 the existing state-of-the-art adaptive and learning methods that explicitly use
the PH structure are reviewed. Starting with the need for learning in the PH framework,
adaptive control, iterative control, and evolutionary control techniques that use the PH
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system properties are reviewed. For each method the essential changes from the general
setting due to the PH model are highlighted. This is followed by a detailed presenta-
tion of the respective control algorithms. Finally as a concluding remark a brief note on
the open research issues is given. Chapter 4 introduces the actor-critic method and its
modifications to solve the passivity-based control problems. A detailed numerical and
experimental study of the developed algorithms is provided. Furthermore, a compar-
ison study with the standard actor-critic and model-based PBC is given. In Chapter 5
the proof-of-convergence of the developed methods is shown using the stochastic ap-
proximation framework. The application of RL to solve the optimal output tracking of a
multi-agent heterogeneous system is given in Chapter 6. First a distributed adaptive ob-
server is used to obtain an estimate of the leader’s state in each agent. Following this, in-
tegral reinforcement-learning (IRL) is used to learn the feedback and feed-forward com-
ponents of the tracking control law, online and model-free. Detailed numerical study
shows the effectiveness of the proposed method. The thesis concludes with Chapter 7
where a summary of major conclusions and recommendations for future research is pro-
vided. The list of the publications by author is listed on page 134 of the thesis. The pic-
torial representation of the thesis outline is given in Figure 1.1. Sequential reading of
the thesis is recommended since it gradually introduces all the essential components.
However, if the reader has prior knowledge of PH theory and PBC, then Chapter 3 can be
skipped.



1.4. THESIS OUTLINE

1

7

Introduction
Chapter 1

PH Systems
Chapter 2

 PH Systems in adaptive 
    and learning control

Chapter 3

Solving passivity-based control 
  using reinforcement learning

Chapter 4

 Proof of convergence
Chapter 5

 Conclusions and 
recommendations

Chapter 7

 Distributed control using
  reinforcement learning

Chapter 6

Figure 1.1: Outline of the thesis providing an suggestive roadmap for the reading order.





2
PORT-HAMILTONIAN SYSTEMS

Port-Hamiltonian (PH) theory is a novel, but well established modeling framework for
nonlinear physical systems. Due to the emphasis on the physical structure and modu-
lar framework, PH modeling has become a prime focus in system theory. This has led
to a considerable research interest in the control of PH systems, resulting in numerous
nonlinear control techniques. This chapter describes the modelling and model-based
control of port-Hamiltonian systems. A variation of the Hamiltonian systems called the
controlled-Hamiltonian systems will also be introduced. The methods surveyed here
provide a brief overview of the state of the art model-based control of PH systems. These
methods are extensively used in later part of the thesis for e.g., in Chapter 3 and 4.

2.1. INTRODUCTION

P ort-Hamiltonian (PH) modeling of physical systems [8, 31, 32] has found a wide ac-
ceptance and recognition in the systems and control community. Thanks to the

underlying principle of system modularity and the emphasis on the physical structure
and interconnections, the PH formulation can be efficiently used to model complex
multi-domain physical systems [25]. The main advantage of the PH approach is that
the Hamiltonian can be used as a basis to construct a candidate Lyapunov function,
thus providing valuable insight into numerous system properties like passivity, stabil-
ity, finite L2 gain [8], etc. These features have led to a deep research focus on the control
of port-Hamiltonian systems. There are numerous interrelated control methods which
have been extended or developed specifically for PH systems, namely canonical trans-
formation [33], control by interconnection (CbI) [25, 34, 35] , energy-balancing [34, 36],
interconnection and damping assignment passivity-based control (IDA-PBC) [37, 38].
In this chapter these methods are collectively denoted as model-based synthesis meth-
ods. A brief overview of the prominent synthesis methods for PH systems is presented.
For an in-depth review of the PH control approaches refer to [25, 26] and the references
therein. All these methods rely on the PH model of the physical system and generally the
controller is obtained by solving a set of partial-differential or algebraic equations.

9
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The chapter is organized as follows. In Section 2, PH systems will be introduced along
with examples to illustrate the representation of well-known mechanical and electro-
mechanical systems in PH form. The conversion from PH form to the controlled Hamil-
tonian representation is also given in Section 2. In Section 3 properties of port and con-
trolled Hamiltonian systems are given. Following this, prominent passivity-based con-
trol methods are explained in Section 4, and Section 5 provides the summary.

2.2. HAMILTONIAN SYSTEMS
In this section basic theoretical background on port and controlled-Hamiltonian frame-
work, representation, and examples are given.

2.2.1. PORT-HAMILTONIAN SYSTEMS

Port-Hamiltonian1 systems are often considered as a generalization of Euler-Lagrangian
or Hamiltonian systems. PH modeling stems from the port-based network modeling of
multi-domain complex physical systems having distinct energy storage elements (e.g.,
electrical, mechanical, electro-mechanical, chemical, hydrodynamical and thermody-
namical systems). A strong aspect of the port-Hamiltonian formalism is that it empha-
sizes the physics of the system by highlighting the relationship between the energy stor-
age, dissipation, and the interconnection structures. Additionally, finite-dimensional PH
theory can be readily extended to infinite-dimensional (distributed-parameter) systems
[39].

A time-invariant PH system in the standard input-state-output form is given as

ẋ = (
J (x)−R(x)

)∂H

∂x
(x)+ g (x)u, x ∈Rn ,

y = g T (x)
∂H

∂x
(x), (2.1)

where J (x) = −J T (x) ∈Rn×n is the skew-symmetric interconnection matrix, R(x) = RT (x) ∈
Rn×n is the symmetric positive semi-definite dissipation matrix, and g (x) ∈ Rn×m is the
input matrix. The Hamiltonian H(x) ∈ R is the system’s total stored energy, obtained by
adding the energy stored in all the individual energy-storing elements. Signals u ∈ Rm

and y ∈ Rm are called the port variables and their inner-product forms the supply rate
which indicates the power supplied to the system.

Example 1. PH modeling of a mechanical system: Some systems have a natural PH rep-
resentation, for example, a fully actuated mechanical system is described by:[

q̇
ṗ

]
=
([ 0 I

−I 0

]
︸ ︷︷ ︸

J

−
[ 0 0

0 D

]
︸ ︷︷ ︸

R

)[ ∂H
∂q (x)

∂H
∂p (x)

]
+

[
0
I

]
︸ ︷︷ ︸

g

u,

y = [
0 I

][ ∂H
∂q (x)

∂H
∂p (x)

]
, (2.2)

1The terminology used in the literature also includes terms like port-controlled Hamiltonian systems (PCH),
port-controlled Hamiltonian systems with dissipation (PCHD), generalized Hamiltonian systems, etc.
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where the generalized position q ∈Rn̄ and the momentum p ∈Rn̄ form the system state
x = [qT pT ]T . The matrix D ∈ Rn̄×n̄ represents the dissipation, and 2n̄ = n. The
Hamiltonian H(x) is the sum of the kinetic and the potential energy,

H(x) = 1

2
pT M−1(q)p +V (q) = T (x)+V (q), (2.3)

where M(q) ∈ Rn̄×n̄ is the mass-inertia matrix, T (x) ∈ R and V (q) ∈ R are the kinetic and
the potential energy terms, respectively. �

Example 2. PH modeling of an electro-mechanical system: The magnetic levitation sys-
tem of Figure 2.1 consists of two subsystems, namely i) a mechanical system — iron ball
of mass M , ii) an electro-magnetic system — a coil of nominal inductance L0 and resis-
tance Z .

u

z i

g

q

M

Figure 2.1: Schematic representation of magnetic levitation of an iron ball [32].

The dynamics of the magnetic-levitation system using the first principles are [37]:

φ̇= u −Z i ,

M q̈ = Femf −M g , (2.4)

where u ∈R and i ∈R are the voltage across and the current through the coil, respectively,
q is the position of the ball and Femf is the magnetic force acting on the ball. The effective
magnetic fluxφ linking the coil is a function of the position q , and it can be approximated
as φ= L(q)i . Using the approximation for the varying inductance

L(q) = L0

1−q
, (2.5)

the effective force Femf on the iron ball is

Femf =
1

2

∂L(q)

∂q
i 2. (2.6)



2

12 2. PORT-HAMILTONIAN SYSTEMS

For the Hamiltonian

H(x) = M g q + p2

2M
+ 1

2L0
(1−q)φ2, (2.7)

where p = M q̇ is the momentum of the iron ball. By substituting (2.4)-(2.7) in (2.1), the
system dynamic equation (2.4) can be represented in the PH form as

 q̇
ṗ
φ̇

=
 0 1 0

−1 0 0
0 0 0

−
 0 0 0

0 0 0
0 0 Z




∂H
∂q
∂H
∂p
∂H
∂φ

+
 0

0
1

u,

y = [
0 0 1

]
∂H
∂q
∂H
∂p
∂H
∂φ

 , (2.8)

where 
∂H
∂q
∂H
∂p
∂H
∂φ

=

 M g − φ2

2L0p
M

(1−q)φ
L0

 . (2.9)

For more examples and an in-depth theoretical background on PH theory, see [25, 32]
and the references therein. �

2.2.2. CONTROLLED-HAMILTONIAN SYSTEMS
A controlled-Hamiltonian system – following the terminology of [40] – is described as

ẋ = (J −R)
∂H

∂x
(x,u),

y =−∂H

∂u
(x,u). (2.10)

Note that (2.10) differs from the PH system representation of (2.1) in the input u, output y
and constant system matrices J and R. Although the two types of systems are structurally
different, there is a subclass of systems that can be written in both forms, as illustrated
by the following example.

Example 3. Continued from Example 2
For the sake of simplicity, by using the resistance of Z = 1Ω and inductance L0 =

1H, the system Hamiltonian (2.7) can be rewritten as the controlled-Hamiltonian in
terms of input u and state x = [q p φ]T

H(x,u) = M g q + p2

2M
+ 1

2
(1−q)φ2 − φ

Z
u. (2.11)

Observe that the product φ
Z u has the unit of energy. Equation (2.1) can be transformed
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to a controlled-Hamiltonian form (2.10) as

 q̇
ṗ
φ̇

=
 0 1 0

−1 0 0
0 0 −1


︸ ︷︷ ︸

(J−R)


∂H
∂q (x,u)

∂H
∂p (x,u)

∂H
∂φ (x,u)


︸ ︷︷ ︸

∂H
∂x (x,u)

. (2.12)

Note that due to the structural differences, the transformation from PH to a controlled-
Hamiltonian system is not always possible. �

2.3. SYSTEM PROPERTIES
In this section essential system properties of the port-Hamiltonian and the controlled-
Hamiltonian systems are explained.

2.3.1. PASSIVITY AND STABILITY
The notion of passivity can be stated using a generic time-invariant input affine nonlin-
ear system

ẋ = f (x)+ g (x)u, (2.13)

where x ∈ Rn is the system state vector, f (x) ∈ Rn is the state-dependent nonlinear func-
tion and g (x) ∈ Rn×m is the input function and u ∈ Rm is the input.

Definition 1. A given nonlinear system (2.13) is said to be passive if there exists a non-
negative function S(x) ∈ R+ and a system output y = h(x) ∈ Rm such that the inequality

S (x(T ))−S (x(0)) ≤
∫ T

0
u(t )T y(t )d t , (2.14)

is satisfied.

For a continuous storage function S(x) the passivity inequality (2.14) can be simpli-
fied as

dS

d t
(x(t )) ≤ u(t )T y(t ), (2.15)

for an appropriate control input, for example the passive feedback u(t ) =−K y(t ) where
K = K T ≥ 0, the system (2.13) can be rendered stable. The storage function S(x) then
becomes a Lyapunov-like function and it can be used to demonstrate the stability of the
system. This indicates a strong correlation between passivity and stability, because given
a passive system it can be easily stabilized using the passive feedback [41].

The passivity of a system is evaluated in two steps. First, for the given system (2.13)
a passive output y = h(x) is found. Then an appropriate positive semi-definite storage
function S(x) is formulated so that it satisfies the passivity inequality (2.15).

By assuming that the system’s Hamiltonian H(x) of (2.1) is bounded from below it is
straightforward to illustrate the passivity property of a given PH system. Consider the
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time-derivative of the Hamiltonian H(x):

d H

d t
(x(t )) = ∂H T

∂x
ẋ

= ∂H T

∂x

(
J (x)−R(x)

)∂H

∂x
+ ∂H T

∂x
g (x)u

=−∂H T

∂x
R(x)

∂H

∂x
+uT y, (2.16)

where uT y is the supply rate. It is defined as the product of conjugate variables which is
the power supplied to the system, for instance, Voltage × Current, Force × Velocity, etc.
For a positive semi-definite dissipation matrix (i.e. R(x) ≥ 0) the equality (2.16) reduces
to

d H

d t
(x(t )) ≤ uT y. (2.17)

Equation (2.17) is called the differential dissipation inequality and it implies that in the
presence of dissipation the change in the system’s total stored energy is less than or equal
to the supply rate with the difference being the dissipated energy [41]. Observe that
(2.17) is similar to the derivative of the storage function S(x) in (2.15).

2.3.2. VARIATIONAL SYSTEM
Consider a general nonlinear system operator Σ, acting on an input signal u and result-
ing in a system output y

Σ(u) :

{
ẋ = f (x,u), x ∈Rn ,u ∈Rm

y = h(x,u),
(2.18)

where f :Rn×m →Rn is a system function and h :Rn×m →Rm is an output function. One
can linearize (2.18) along an input and a system trajectory, u(t ) and x(t ), respectively,
resulting in a linear time-variant (LTV) system [42]:

dΣ(uv) :


ẋv = ∂ f (x,u)

∂x
xv(t )+ ∂ f (x,u)

∂u
uv(t ),

yv = ∂h(x,u)

∂x
xv(t )+ ∂h(x,u)

∂u
uv(t ),

(2.19)

where (xv,uv,yv) are the variational state, input and outputs, respectively. They represent
the variation along the trajectories (x, u, y). For any controlled-Hamiltonian system
(2.10) (or the subset of PH systems (2.1)) one can obtain the variational system using
(2.19) [43]

dΣ(uv) :


ẋv = (J −R)

∂Hv

∂xv
(x,u, xv,uv),

yv =−∂Hv

∂uv
(x,u, xv,uv),

(2.20)

where Hv(x,u, xv,uv) is the new controlled-Hamiltonian

Hv(x,u, xv,uv) = 1

2

[
xv uv

] ∂2H(x,u)

∂(x,u)2

[
xv

uv

]
, (2.21)
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provided there exists a transformation matrix T ∈Rn×n that satisfies

J =−T JT −1,

R = T RT −1,

∂2H(x,u)

∂(x,u)2 =
[

T 0
0 I

]
∂2H(x,u)

∂(x,u)2

[
T −1 0

0 I

]
. (2.22)

Unfortunately for a generic controlled-Hamiltonian system, obtaining a transforma-
tion matrix T so as to satisfy (2.22) is rather difficult. However, for a fully actuated me-
chanical system a simple trick to circumvent this problem has been demonstrated in
[44], this is done by using an internally stabilizing PD controller .

2.3.3. ADJOINT SYSTEM
For a given LTV system

Σ(u) :

{
ẋ = A(t )x(t )+B(t )u(t ),

y =C (t )x(t )+D(t )u(t ),
(2.23)

the adjoint operator is

Σ∗(u∗) :

{
ẋ∗ =−AT (t )x∗(t )−C T (t )u∗(t ),

y∗ = B T (t )x∗(t )+DT (t )u∗(t ).
(2.24)

and it is related to the original system (2.23) by the vector inner-product [45]

〈y,Σ(u)〉 = 〈Σ∗(y),u〉. (2.25)

The adjoint operator of a given system possesses various interesting properties, namely
it can be used for model-order reduction [46], adjoint-based optimal control [47], etc.

Since the variational system (2.19) and (2.20) are in LTV form one can obtain their re-
spective adjoint form. In [43], assuming invertibility of J−R, the adjoint of the controlled-
Hamiltonian system (2.10) is obtained as

dΣ∗(u∗) :


ẋ∗ =− (J −R)

∂H∗

∂x∗ (x,u, x∗,u∗),

y∗ =−∂H∗

∂u∗ (x,u, x∗,u∗),
(2.26)

in terms of the new controlled-Hamiltonian H∗(x,u, x∗,u∗)

H∗(x,u, x∗,u∗) = 1

2

[
x∗ u∗ ] ∂2H(x,u)

∂(x,u)2

[
x∗
u∗

]
. (2.27)

From (2.20) and (2.26) it is evident that the variational and the adjoint of a Hamil-
tonian system have similar state-space realization. In [43] it is shown that – under the
assumption of non-singularity of (J −R) or the time symmetry of the Hessian of H(x,u)
– they are related by a time-reversal operator, i.e.,

(dΣ(uv))∗ := dΣ∗(uv) =R ◦dΣ(uv), (2.28)
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where R is the time-reversal operator, i.e.,

R(u(t )) = u(T − t ) ∀t ∈ [0,T ]. (2.29)

This implies that the adjoint of a variational controlled-Hamiltonian system can be ob-
tained from the variational system itself. Additionally the complexity involved in obtain-
ing the variational system dΣ can be avoided by using the local linear approximation
[42]

dΣ(uv) ≈Σ(u +uv)−Σ(u). (2.30)

Hence the adjoint output of a controlled-Hamiltonian system can be obtained from the
actual system output without any a priori system information [43]. Optimal iterative
learning controller of a port-Hamiltonian system by using self-adjoitness property is
elaborated in Chapter 3.4.

2.4. CONTROL OF PH SYSTEMS
Passivity-Based control (PBC) is a model-based nonlinear control methodology that ex-
ploits the passivity property of a system to achieve various control objectives. In this
section a brief overview of prominent static state-feedback PBC methods are given.

2.4.1. STABILIZATION VIA DAMPING INJECTION
Asymptotic stability of a given PH system can be achieved by using (2.17). Consider a
negative feedback to the system as

u =−K (x)y, (2.31)

with K (x) = K T (x) > 0 ∈Rm×m i.e., K (x) is a symmetric positive definite damping injec-
tion matrix, that needs to be designed by the user. Then the dissipation inequality (2.17)
becomes

d H

d t
(x) ≤−yT K (x)y. (2.32)

By assuming zero state detectability, the asymptotic stability of the PH system (2.1) at
the origin can be inferred [8]. Stabilizing the system at the origin which corresponds
to the open loop minimum energy is not an enticing control problem. Alternatively a
wider practical interest is to stabilize the system at a desired equilibrium state, say x∗.
In the PH framework this set-point regulation can be achieved by the standard PBC as
elaborated below.

2.4.2. STANDARD PASSIVITY BASED CONTROL

ENERGY BALANCING

The energy-balancing (EB) equation is defined as

H(x(t ))−H(x(0)) =−R̄(t )+
∫ t

0
uT (τ)y(τ)dτ. (2.33)

Equation (2.33) is obtained by integrating the dissipation inequality (2.16), where R̄(t ) is

R̄(t ) =
∫ t

0

∂H

∂x

T

R(x)
∂H

∂x
dτ,
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is the existing dissipation in the system. The objective of EB is to devise a control input
β(x) so as to stabilize the given system (2.1) at a desired equilibrium. This equilibrium is
generally associated with a minimum of the desired closed-loop Hamiltonian, i.e.,

x∗ = argmin Hd(x), (2.34)

which is achieved by adding an external energy Ha(x) to the existing energy H(x), i.e.,

Hd(x) = H(x)+Ha(x). (2.35)

The desired Hamiltonian Hd(x) is called energy-balancing if the control input β(x) sat-
isfies the equality

Ha(x(t )) =−
∫ t

0
βT (x(τ))y(τ)dτ, (2.36)

or the differential inequality(
∂Ha

∂x
(x)

)T [
(J (x)−R(x))

∂H

∂x
+ g (x)β(x)

]
=−yTβ(x). (2.37)

At the equilibrium the controlled system satisfies the equality,

(J (x∗)−R(x∗))
∂H

∂x
(x∗)+ g (x∗)β(x∗) = 0,

this implies that the controller will not be able to extract any power at the equilibrium
since y(x∗)Tβ(x∗) = 0. Alternatively, this means energy-balancing can be used if and
only if the given system (2.1) can be stabilized by extracting a finite amount of energy
from the controller.

In energy-shaping the control objective is to find a control input that results in the
closed-loop

ẋ = (J (x)−R(x))
∂Hd

∂x
(x),

where Hd(x) satisfies (2.35) and (2.36). For the PH system (2.1), the energy-balancing
control input β(x) is obtained by solving the equality,

g (x)β(x) = (J (x)−R(x))
∂Ha

∂x
(x). (2.38)

ENERGY BALANCING AND DAMPING INJECTION

A combination of the previous two methods i.e., energy-balancing (2.38) and damping-
injection (2.31) (EB-DI) is predominantly used for PH control. For a given PH system
(2.1), the EB-DI objective is to obtain a target closed-loop of the form [36]

ẋ = (
J (x)−Rd(x)

)∂Hd

∂x
(x), (2.39)

where Rd(x) is the desired dissipation matrix given as

Rd(x) = R(x)+ g (x)K (x)g T (x), (2.40)



2

18 2. PORT-HAMILTONIAN SYSTEMS

in terms of the damping injection matrix K (x).
The desired closed-loop form of (2.39) can be obtained by using the control input2

u = ueb(x)+udi(x)

= (
g T (x)g (x)

)−1g T (x)
(

J (x)−R(x)
)∂Ha

∂x
(x)

−K (x)g T (x)
∂Hd

∂x
(x), (2.41)

where the added energy term Ha(x) is a solution of the set of PDE’s[
g⊥(x)(J (x)−R(x))T

g T (x)

]
∂Ha

∂x
(x) = 0, (2.42)

with g⊥(x) the full-rank left annihilator matrix of the input matrix g (x), i.e., g⊥(x)g (x) =
0. Among the solutions of (2.42) the one satisfying (2.34) is chosen. If the second part of

the matching condition (2.42) is satisfied, then g T (x) ∂Hd
∂x (x) in (2.41) can be rewritten as

g T (x)
∂Hd

∂x
(x) = g T (x)

(
∂H

∂x
(x)+ ∂Ha

∂x
(x)

)
,

= g T (x)
∂H

∂x
(x) = y.

By multiplying ( ∂Ha
∂x )T to (2.38),(
∂Ha

∂x

)T

(J (x)−R(x))

(
∂Ha

∂x

)
=

(
∂Ha

∂x

)T

g (x)β(x) (2.43)

using the second equality of (2.42) in (2.43) results in

R(x)
∂Ha

∂x
= 0. (2.44)

This roughly implies that the added energy Ha(x) should not depend on the states of the
system that have natural damping. This is called the dissipation obstacle. A major draw-
back of the ES-DI approach is the dissipation obstacle, as it constraints the set of achiev-
able equilibria by the controller 3. This often limits the applicability of the method,
whereas the following two additional methods, namely energy-shaping and intercon-
nection and damping assignment (IDA) PBC, explained below, do not suffer from this
drawback.

ENERGY SHAPING

The dissipation obstacle can be readily avoided by relaxing the second equality con-
straint in (2.42). This results in only one matching condition

g⊥(x)(J (x)−R(x))
∂Ha

∂x
(x) = 0. (2.45)

The relaxed constraint implies that the closed-loop will no longer be passive with respect
to the original system output y of (2.1) [36].

2Note that g (x) is assumed to be full rank such that the matrix g T (x)g (x) is always invertible [48].
3For in-depth analysis and examples see [36].
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2.4.3. INTERCONNECTION AND DAMPING ASSIGNMENT (IDA)-PBC
For a PH system (2.1) the IDA-PBC design objective is to obtain a closed-loop system of
the form [37]

ẋ = (
Jd(x)−Rd(x)

)∂Hd

∂x
(x), (2.46)

where the desired interconnection and the damping matrices satisfy skew-symmetry
and symmetric positive definiteness respectively, i.e.,

Jd(x) =−J T
d (x), Rd(x) = RT

d (x), Rd(x) ≥ 0.

The closed-loop (2.46) can be achieved by the control input:

u = (
g T (x)g (x)

)−1g T (x)

((
Jd(x)−Rd(x)

)∂Hd

∂x
− (

J (x)−R(x)
)∂H

∂x

)
, (2.47)

where the desired Hamiltonian Hd(x) and system matrices Jd(x), Rd(x) are obtained by
solving the matching condition

g⊥(
J (x)−R(x)

)∂H

∂x
= g⊥(

Jd(x)−Rd(x)
)∂Hd

∂x
, (2.48)

such that Hd(x) satisfies the desired equilibrium condition (2.34).
Prior to solving the matching condition (2.48), some facts about the choice of the

system matrices of (2.46) need to be highlighted [38].

• The desired interconnection matrix Jd(x) and the dissipation matrix Rd(x) can be
freely chosen provided they satisfy the skew-symmetry and positive semi-definiteness,
respectively.

• The left-annihilator matrix g⊥(x) can be considered as an additional degree of
freedom. Hence for a particular problem it can be appropriately chosen to reduce
the complexity of the matching condition (2.48).

• The desired Hamiltonian Hd(x) can be partially or completely fixed to satisfy the
desired equilibrium condition (2.34).

Using the combination of the stated options there are three main approaches to solve
the PDE (2.48) [38].

• Non-parameterized IDA-PBC — In this general form, first introduced in [37], the
desired interconnection matrix Jd(x) and the dissipation matrix Rd(x) are fixed
and the PDE (2.48) is solved for the energy function Hd(x). Among the admissible
solutions the one satisfying (2.34) is chosen.

• Algebraic IDA-PBC [33] — The desired energy function Hd(x) is fixed thus making
(2.48) an algebraic equation in terms of the unknown matrices Jd(x) and Rd(x).

• Parameterized IDA-PBC — Here, the structure of the energy function Hd(x) is fixed.
This imposes constraints on the unknown matrices Jd(x) and Rd(x), which need
to be satisfied by the PDE (2.48) [38].
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2.4.4. CONTROL BY INTERCONNECTION
In CbI the controller is also a PH system in the input-state-output form

ξ̇= (
Jc(ξ)−Rc(ξ)

)∂Hc

∂ξ
(ξ)+ gc(ξ)uc, ξ ∈Rnc ,

yc = g T
c (ξ)

∂Hc

∂ξ
(ξ), (2.49)

where Jc(ξ) ∈ Rnc×nc is the skew-symmetric interconnection matrix, Rc(ξ) ∈ Rnc×nc is
the symmetric dissipation matrix, and gc(ξ) ∈ Rnc×mc is the input matrix. The controller
Hamiltonian Hc(ξ) ∈ R is the energy available in the controller. Generally, the plant (2.1)
and the controller (2.49) are connected by a power preserving feedback interconnection
[34], [

u
uc

]
=

[
0 −I
I 0

][
y
yc

]
, (2.50)

the resulting closed-loop can be represented as a PH system[
ẋ
ξ̇

]
=

[
J (x)−R(x) −g (x)g T

c (ξ)
gc(ξ)g T (x) Jc(ξ)−Rc(ξ)

][
∂H
∂x (x)
∂Hc
∂ξ (ξ)

]
,

[
y
yc

]
=

[
g T (x) 0

0 g T
c (ξ)

][
∂H
∂x (x)
∂Hc
∂ξ (ξ)

]
. (2.51)

For an appropriate controller Hamiltonian Hc(ξ) the PH system (2.1) can be stabilized
at x∗, provided the overall closed-loop Hamiltonian H(x)+Hc(ξ) has a minimum at the
desired equilibrium.

This can be achieved by ensuring a static relationship between the controller state ξ
and the system state x. Generally, this problem is solved by using an invariant function
called the Casimir function (or simply Casimir) [49] [26].

Casimir’s are the state-dependent conserved quantities that are invariant along the
system dynamics. They provide a static relationship between the system states and the
controller states. In the literature, a prominent choice for the Casimir function is [34]

C (x,ξ) = ξ−S(x) = 0, (2.52)

where S is some unknown state-dependent function. Since the invariance condition
requires Ċ (x,ξ) = 0, this results in the following partial differential equation[− ∂S

∂x (x) I
][

J (x)−R(x) −g (x)g T
c (ξ)

gc(ξ)g T (x) Jc(ξ)−Rc(ξ)

]
= 0, (2.53)

which can be further simplified to the following chain of equalities [35]

∂T S

∂x
J (x)

∂S

∂x
= Jc(ξ), (2.54)

R(x)
∂S

∂x
= 0, (2.55)

Rc(x) = 0, (2.56)

J (x)
∂S

∂x
=−g (x)g T

c (ξ). (2.57)
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By solving the equalities (2.54)– (2.57) controller matrices and the state-dependent
function S(x) can be obtained. From S(x) the controller Hamiltonian can be formu-
lated as Hc(ζ) = Hc(S(x)), using these in (2.49) along with (2.50) results in control-by-
interconnection.

2.5. SUMMARY
The PH framework gives an intuitive approach for modeling complex multi-domain sys-
tems. This is thanks to the emphasis on the interconnection and energy exchange be-
tween subsystems [26]. The model-based control approaches for PH systems explicitly
depends on this feature in order to achieve the control objective. For example, PBC for
PH system renders the closed loop passive by energy pumping and damping, so as to
ensure the system stability [36]. Compared to generic non-linear control techniques, the
model-based approaches that explicitly use the PH framework have various attractive
properties, e.g. passivity, Lyapunov stability, finite L2 gain, etc [8, 25, 26].





3
PORT-HAMILTONIAN SYSTEMS IN

ADAPTIVE AND LEARNING CONTROL

Generally a nonlinear control method can be classified in a spectrum from model-based
to model-free, where adaptation and learning methods typically lie close to model-based
and model-free methods, respectively. Various articles and monographs provide a de-
tailed overview of model-based control techniques that are based on port-Hamiltonian
(PH) framework, but no survey is specifically dedicated to the learning and adaptive con-
trol methods that can benefit from the PH structure. To this end, in this chapter, a com-
prehensive review of the current learning and adaptive control methodologies that have
been developed specifically to PH systems will be provided. After establishing the need
for learning in the PH framework, various general machine learning, iterative learning,
and adaptive control techniques and their application to PH systems will be given. For
each method the essential changes from the general setting due to PH model will be
highlighted, followed by a detailed presentation of the respective control algorithm. In
general, the advantages of using PH models in learning and adaptive control are: i) Prior
knowledge in the form of PH model will speeds up the learning. ii) In some instances
new stability or convergence guarantees are obtained by having a PH model. iii) The re-
sulting control laws can be interpreted in the context of physical systems. The chapter
will be concluded with brief notes on open research issues.

3.1. INTRODUCTION

N onlinear control synthesis methods rely to different degrees on the availability of a
system model. Examples include model-based control for input affine systems [7],

adaptive control [50], or reinforcement learning (RL) [12]. The absolute reliance on the
system model in model-based methods and the lack of system knowledge in the learning
algorithms, places these two approaches at two extremes of a spectrum. Adaptive con-
trol and model-based learning lie close to the model-based and model-free methods,
respectively. Each approach has its trade-offs. Nonlinear model-based methods can be
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very sensitive to mismatches in the model. On the other side of the spectrum, learn-
ing methods achieve the desired control objective by adapting the control law based on
the interactions with the system. Thanks to this approach, design objectives such as
robustness against model uncertainties and/or parameter variations can be achieved.
However, learning methods suffer from several notable drawbacks, such as: slow and
non-monotonous convergence and non-interpretability of the learned control law, often
arising from the ‘learning from scratch’ mind-set. This chapter explores how standard
learning and adaptive methodologies can benefit from the rich structure of the port-
Hamiltonian models, thus ‘moving’ into the middle regions of the model-based/pure
learning spectrum and mitigating some of the hurdles present in the standard control
synthesis methodologies.

A few prominent advantages of incorporating PH models in learning are:

• Prior system information in the form of a PH model can significantly improve the
rate of convergence.

• New stability or convergence guarantees are obtained in some instances by the
virtue of having a PH model.

• The resulting control laws can have an interpretation in terms of physical quanti-
ties, such as energy, power, etc.

Simultaneously, there are various improvements to the synthesis of passivity-based con-
trollers (PBC) for PH systems by having learning or adaptive structures. These advan-
tages are:

• Learning can avoid the need for solving complex mathematical equations (PDE’s)
analytically.

• Performance criteria can be incorporated via learning.

• Novel design problems can be solved which would otherwise be intractable. For
example, optimal control problems for PH systems [44] have not been addressed
by using solely model-based synthesis methods.

The combination of learning with PH models opens new avenues for solving com-
plex control problems which otherwise would be intractable using either method in iso-
lation. In this chapter, a comprehensive overview of various learning control methods
that extensively use the PH system properties will be provided. When applicable, a sim-
ple algorithmic (pseudo-code) representation of the learning method will be presented.

This chapter is organized as follows. The need for adaptive and learning control
in the PH framework is explained in Section 2. Sections 3 through 5 describe various
learning methods that have been introduced for the control of PH systems. Starting with
adaptive methods in Section 3, iterative and repetitive control methods are elaborated
on in Section 4. Applications of evolutionary strategies for PH control is given in Sec-
tions 5. Section 6 concludes the chapter with a discussion on possible open research
areas.



3.2. ADAPTIVE AND LEARNING CONTROL IN PH SYSTEMS: A MOTIVATION

3

25

3.2. ADAPTIVE AND LEARNING CONTROL IN PH SYSTEMS: A

MOTIVATION
Using the stated model-based synthesis methods of Section 2.4, one can acquire a de-
tailed insight into the closed-loop system properties. However, external disturbances
and model uncertainties can result in performance issues as illustrated by the following
example.

Example 4. (Continued from Example 1) Consider a vessel such as boat floating in a
water canal. The simplified dynamics for the lateral movement of the vessel are

ẋ = J
∂H

∂x
+ g (x)(u +d), (3.1)

where g (x) = [0 1]T , d = A sin(w t ) represent the waves in the canal modeled as a
sinusoidal disturbance of an unknown amplitude A and a known frequency w . The po-
sition q and the momentum p constitutes the state vector x = [q p]T . The propulsion
u can be used to position the vessel along the horizontal direction. The system Hamilto-
nian, input matrix and the interconnection matrix are

H = p2

2M
, g = [0 1]T , J =

[
0 1
−1 0

]
.

In the absence of external disturbances, the standard ES-DI control input

u =−∂Vd

∂q
−Kd y, (3.2)

can stabilize (3.1) at the desired equilibrium (q∗,0), where

Vd(q) = 1

2
q̄T Kpq̄ = 1

2
(q −q∗)T Kp(q −q∗)

is the desired potential energy. Generally, the proportional gain matrix Kp and the pos-
itive definite damping-injection matrix Kd = K T

d are chosen by the user. Note that the
control law (3.2) is same as a standard PD compensator to stabilize a system at (q∗,0).
Observe that (3.1) is influenced by the external disturbance d which is generally un-
known, possibly resulting in performance degradation [51]. �

A dynamical system can typically experience external disturbances and/or exhibit
parameter variations during its operational life span. These variations generally require
fine tuning of the control parameters so as to achieve the desired objective [50, 52, 53].
Robustness against disturbances and parameter variations is often addressed either by
the robust or adaptive control methods. In robust control, the required behavior is
achieved by making the closed-loop insensitive to parameter uncertainties, resulting in
varying, but acceptable performance. In adaptive control the parameters are modified
online, thus ensuring the desired performance. This makes adaptive control approaches
more appealing when performance is of high importance. In robust control, the trade-
off between performance and robustness is always present [54]. In Section 3, adaptive
methods that use the PH framework are discussed.
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Many industrial systems often execute the same task multiple times. For repetitive
operations, the idea of using previous time-history to improve the performance of the
system has a rich literature spanning over three decades [55]. The general idea behind
these methods is to minimize a cost function related to the tracking error during each
repetition. This is achieved by using the error information of the previous iteration to
generate the control action in the current iteration [56]. Iterative control methods adapt
the control signal directly, whereas in adaptive control the parameters of the control law
are modified. The main objective of the iterative approach is to generate the desired
output trajectory without using a priori system information. In [55] six postulates have
been given in order to characterize an approach as iterative. If a given method satisfies all
the six postulates (see Chapter 1.1 of [55]) then it is classified as iterative learning control
(ILC). If the initial condition is different in each iteration then the iterative method is
called repetitive control (RC). Using a uniform mathematical framework, similarity and
differences between ILC and RC have been described in [57]. In Section 4, ILC and RC
methods for the port-Hamiltonian systems will be given.

The need to fine-tune the controller parameters online so as to satisfy a given perfor-
mance criterion arises in various control applications. Iterative Feedback Tuning (IFT)
[58] is one such prominent online tuning method. IFT learns the optimal parameters
by using the measured data from the system. The application of IFT for PH systems will
be discussed in Section 4. In the last few decades both offline and online data-driven
techniques have been widely used to solve nonlinear control problems [59–61]. A major
advantage of the data-driven methods is that they can learn the optimal control param-
eters for a given cost-function. One such prominent machine-learning approach is Evo-
lutionary Algorithm (EA) [62]. The use of the Evolutionary Algorithm (EA) for PH system
control will be discussed in Section 5.

A few of the well-known control methods for port-Hamiltonian systems are listed in
Table 3.1. Some of the model-based methods, like ES-DI, and IDA-PBC are briefly in-
troduced in Section 2.4, for other methods references are given in the table. Along with
the system dynamics, if the desired closed-loop Hamiltonian and the desired-system
structure are known a priori, then the model-based approaches can be used with a rel-
atively low effort. Table 3.1 also provides the list of adaptive and learning methods that
are discussed in detail in this chapter. As it will be explained in the following parts of
the chapter (Sections 3.3 – 3.5), these methods can be used to address complex control
objectives, model uncertainty, input disturbance and performance requirements, etc.

3.3. ADAPTIVE CONTROL METHODS

As shown in Example 4, the need to adapt or modify the control law often arises due
to external disturbance, ageing etc. This issues can be solved by using adaptive control
methods [50]. The standard adaptive control framework consists of two components: a
parameterized control law (3.3) and a parameter update law (3.4)

u =β(x, θ̂), (3.3)

˙̂θ = η(x, θ̂,e), (3.4)
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Table 3.1: port-Hamiltonian control methods.

Model-based methods (Sec-
tion 2.4)

Learning methods (Section 3.3–
3.5)

Stabilization Energy shaping and damping
injection (ES-DI) [34], Intercon-
nection and damping assign-
ment (IDA)-PBC [37], power
based method [63], Canonical
transformation (CT) [33], Con-
trol by interconnection (CbI)
or energy-casimir methods
[25, 34, 35]

Iterative feedback tuning (IFT)
[64], Evolutionary strategy (ES-
IDA-PBC) [65], Adaptive control
(AC) [66–69]

Tracking Modified IDA-PBC [70], Canoni-
cal transformation [71]

Iterative learning control (ILC)
[44], Repetitive control (RC) [72],
Adaptive control [67]

where e = x − x∗ is the error between the desired and the actual state, θ is an unknown
parameter vector and θ̂ is its estimate. Adaptive control methods are broadly classified as
indirect and direct control methods [52, 53]. In indirect adaptive control, the unknown
plant parameter vector θ is estimated as θ̂ and an appropriate controller is then devised.
In direct adaptive control, θ̂ is the estimate of an unknown parameter vector of the con-
trol law. A common principle behind the adaptive methods is to treat the estimate as a
true value; this is called as the certainty equivalence principle [50, 53].

Since many multi-domain systems can be represented in the port-Hamiltonian form,
the self-tuning of the PH controller is of interest. In this section the adaptive control
framework for port-Hamiltonian systems will be introduced using a simple example for
input disturbance compensation.

Example 5. (Continued from Example 1 and Example 4) In order to compensate for the
external disturbance in (3.1) one can use the adaptive approach [67]. The unknown dis-
turbance can be approximated as

d = A sin(w t ) = θTφ(t ), (3.5)

where θT is the unknown parameter and φ(t ) is a non-constant, known basis function
matrix. The unknown parameter vector θ is estimated as θ̂, resulting in an estimate of
the disturbance

d̂ = θ̂Tφ(t ), (3.6)

which is added to the standard EB-DI input (2.41). To ensure the PH structure for the
closed-loop, the parameter update law is constrained to be

˙̂θ =−QφT (t )y, (3.7)

where y is the system output of (2.2) and Q = QT is the update rate matrix. Combining
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(2.41) with (3.3) — (3.7), the closed-loop for (2.2) is

 q̇
ṗ
˙̃θ

=
 0 1 0

−1 −Kd φ(t )Q
0 −QφT (t ) 0




∂H̄
∂q

∂H̄
∂p

∂H̄
∂θ̃

 , (3.8)

where

H̄ = p2

2M
+ 1

2
q̄T Kpq̄ + 1

2
θ̃T Q−1θ̃, (3.9)

is the closed-loop Hamiltonian, with θ̃ = θ̂−θ. The closed-loop Hamiltonian can be used
for the stability analysis. From (3.9) positive semi-definiteness of H̄ is evident, i.e., H̄ ≥ 0
now taking the derivative,

d H̄

d t
= ˙̄H =−Kd

( p

M

)2
≤ 0,

hence H̄ is a decreasing function. Unfortunately, by using Lyapunov theory neither the
asymptotic stability nor the parameter convergence can be demonstrated, i.e., q → q∗
and θ̂ → θ cannot be shown. This is because of the negative semi-definiteness of ˙̄H .
However, based on the assumption that φ(t ) is non-constant and by further analysis of
the closed-loop dynamics based on the LaSalle’s extension it can be shown that indeed
the convergence happen, i.e., q → q∗ and θ̂→ θ. This can be shown by using the closed-
loop dynamics at the equilibrium

 q̇
ṗ
˙̃θ

=

 0

−Kp(q −q∗)+φ(t )(θ− θ̂)

0

 ,

from this it is clear that the largest set that satisfies ˙̄H = 0 is [q p θ]T = [q+ 0 θ+]T ,
where q+,θ+ are some constants values. From the second equation the following equal-
ity can be obtained,

Kp(q −q∗) =φ(t )(θ− θ̂).

As it is assumed that φ(t ) is time varying and non-constant hence the only possibility to
satisfy the equality is q → q∗ and θ̂→ θ. This ensures both the asymptotic stabilization
of the system at (q∗,0) and the convergence of the parameter error [67]. In the classical
sense, the non-constant and boundedness assumptions on the basis function φ(t ) as
t →∞ ensures the required persistency of excitation. �

This is one of the simple and most straightforward implementation of adaptive con-
trol for PH systems. Because of its plainness adaptive control was one of the first self-
tuning methods used in the PH framework [66]. The schematic representation of adap-
tive control of a PH system is illustrated in Figure 3.1.

The adaptive control law depends on the design objective for e.g., stabilization, si-
multaneous stabilization [68], tracking [51], input disturbance rejection [67], etc. The
parameter update rule is devised to ensure the PH form for the closed-loop. Normally,
a candidate Lyapunov function (3.9) is constructed with a minimum where the desired
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PH system

Parameter update
           rule
      e.g, Eq (3.7)

-
 Control Law
  e.g, Eq (3.2)

θ̂

x* x

y

u

Figure 3.1: Adaptive control schematic for PH systems.

control goal and zero parameter estimation error (i.e., θ = θ̂) are attained. Adaptive con-
trol for port-Hamiltonian system has several advantages:

• As the closed-loop (Figure 3.1) retains the PH structure, various system properties
like passivity and finite L2 gain can be readily inferred;

• As the closed-loop (see (3.8)) is in the PH form it satisfies the inequality (2.17), from
which an upper bound on the error signal can be derived [63];

• For the closed-loop (3.8) by using the Hamiltonian (3.9) the asymptotic stability of
the equilibrium point x∗ was shown by assuming the basis functionφ(t ) to be non-
constant and bounded as t →∞. As a generalization of this approach by using the
Barbalat’s lemma and zero-state detectability, the uniform asymptotic stability of
the equilibrium point x∗ can be demonstrated, for the proof see Theorem 3 in [67];

• By using the closed-loop Hamiltonian H̄ as a Lyapunov function and from the in-
equality (2.17), the stability of the origin can be shown provided the dissipation
matrix R is positive definite (i.e., R > 0). For the proof see [68];

• Unlike standard adaptive methods [54, 73], redefinition of the error signal is not
required for adaptive control of PH systems [63].

Because of the above advantages, the adaptive framework for PH systems has been used
in various applications. Notable examples include power system stabilization [66], adap-
tive tracking control and disturbance rejection [51, 63, 67], simultaneous stabilization of
a set of uncertain PH systems [68, 69], and stabilization of time-varying PH systems [74].

Although the advantages of the adaptive control in the context of port-Hamiltonian
systems is evident, its usage is rather limited. This is mainly due to the lack of analy-
sis tools and the detailed study of the closed-loop system properties. For example, the
prominent notions in the adaptive control literature such as persistency of excitation,
stability analysis using Lyapunov-like functions, adaptive control for identification [53],
model-reference adaptive control [50] and extremum seeking control [75] are missing
in the context of port-Hamiltonian systems. These missing techniques can be valuable
future avenues.
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3.4. ITERATIVE AND REPETITIVE CONTROL METHODS
Iterative methods are based on the notion that, for a repetitive task the performance of
the system can be improved by using the time-history of the previous executions [56].
The basic working principle of an iterative method is to find an input trajectory ud(t )
such that it results in the prescribed system output yd(t ). This objective is achieved by
an iterative law

ui+1(t ) = ui (t )+Γ(
yd(t )− yi (t )

)︸ ︷︷ ︸
ei (t )

= ui (t )+Γ (ei (t )) , (3.10)

where ei (t ) is the tracking error in the i th iteration and Γ is an algorithm specific update
function [55]. Most of the available iterative methods either use D-Type or its modifi-
cations like PD-Type or PID-Type update function. The main advantage of using the
standard update rule is that the resulting iterative method can learn the required in-
put without using a priori system information. However, the standard methods for a
generic nonlinear system suffer from non-monotonic convergence of the tracking error,
i.e., prior to convergence, the tracking error may not decrease in every iteration. Using
the adjoint output of the system, a mechanism to ensure monotonic error convergence
for repetitive tasks, was proposed in [47]. Unlike the standard iterative methods the ad-
joint based iterative method requires the complete system information, thus hindering
its usability.

As elaborated in Section 2.3.3 the self-adjoint property was shown for controlled-
Hamiltonian systems (2.10) [40, 43]. This means that the algorithm-specific update func-
tion Γ in (3.10) can be obtained without any a prior system information while guarantee-
ing monotonic convergence. Using this feature, various iterative methods for controlled-
Hamiltonian systems are proposed in [44, 64, 76].

3.4.1. ITERATIVE LEARNING CONTROL (ILC)
To get an ILC law that ensures monotonic error convergence one needs to constrain the
update function Γ of equation (3.10) such that the quadratic cost function

J (yi ) =
∫ t1

t0

(
yd(t )− yi (t )

)T Q
(
yd(t )− yi (t )

)
d t , (3.11)

is reduced in every iteration, where Q is a positive definite weight matrix [44]. From the
principles of functional analysis, Γ needs to be the negative gradient of the cost function

d J (yi ) =−2〈Q(yd − yi ),d yi 〉,
=−2〈Q(yd − yi ),dΣ(dui )〉, (3.12)

=−2〈dΣ∗(Q(yd − yi )),dui 〉,
where d yi = dΣ(dui ) was used for the second identity. This refers to small change in the
system output d yi due to small variation in the system input dui . For the last identity
the equality (2.25) is used. The resulting ILC law is

ui+1 = ui +Ki
(
dΣ∗(Q(yd − yi ))

)︸ ︷︷ ︸
Γ

, (3.13)
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where Ki is a user-defined constant, it can be considered as an extra tuning to ensure
monotonic convergence. Although it can be changed after every iteration, in the simu-
lation analysis it was kept constant for all the iterations.

Using (2.28)–(2.30) in (3.13) the update law becomes

ui+1 = ui +Ki
(
R ◦Σ(ui +Q(yd − yi ))−R ◦Σ(ui )

)
, (3.14)

as this involves two output trajectories, the update law (3.14) can be split into a two-step
iteration law [44] :

u2i+1 = u2i +R
(
Q(yd − y2i )

)
,

u2i+2 = u2i +Ki R
(
y2i+1 − y2i )

)
. (3.15)

The working of the iterative control law is illustrated by the following example.

Example 6. Figure 3.2 shows the schematic of a two degree-of-freedom (DOF) manipu-
lator arm. This system can be represented both in the PH form (2.1) and in the controlled-
Hamiltonian form (2.10).

Figure 3.2: A two degree of freedom manipulator arm.

The 2-DOF manipulator arm is characterized by link length li , mass of link mi , center
of gravity ri , and moment of inertia Ii where i ∈ {1,2}. The arm’s motion is confined to
the horizontal plane hence it has no potential energy term. The generalized position of
the arm q = [q1 q2]T along with the momentum p = [p1 p2]T = M(q)q̇ constitute the
system state x = [q p]T . The mass-inertia matrix is

M(q) =
[

C1 +C2 +2C3 cos(q2) C2 +C3 cos(q2)
C2 +C3 cos(q2) C2

]
, (3.16)

with the constants C1,C2, and C3 defined as

C1 = m1r 2
1 +m2l 2

1 + I1, C2 = m2r 2
2 + I2, C3 = m2l1r2.
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For numerical values of the parameters see [44]. For a desired system output

yd(t ) =
[

0.5−0.5cos(πt )
0.5cos(πt )−0.5

]
, (3.17)

the ILC law (3.15) is evaluated for 20 iteration, the resulting quadratic cost (3.11) for Q = I
is given in Figure 3.3. �
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Figure 3.3: Quadratic cost function for ILC.

It must be noted that the ILC update law (3.15) does not depend on the system enti-
ties J ,R, H(x,u) and the transformation matrix T . They are required to demonstrate the
self-adjointness of the given Hamiltonian system, hence the only requirement for the
update law (3.15) is that the input-output data samples are obtained from a controlled-
Hamiltonian system (2.10). In general ILC for PH system has various advantages, namely,

• The ILC algorithm (3.15) is less sensitive to the measurement noise since it does
not require higher order derivatives of the error signal;

• System convergence to a global minimum can be demonstrated, for proof see [44];

• Monotonic convergence of the error signal in the sense of L2-norm can be shown
[44].

Owing to its simplicity and advantages, the iterative law (3.15) has been extended
to address different control problems, namely optimal gait generation [77, 78], optimal
control [79], optimal control with input constraints [80], and control of nonholonomic
Hamiltonian systems [72, 81], etc.

3.4.2. REPETITIVE CONTROL
Using ILC one can readily achieve tracking or disturbance rejection of a periodic signal.
However, a major drawback of ILC is that, in every iteration it requires the same initial
state of the system. For various applications this requirement can be extremely hard to
satisfy. This disadvantage can be overcome by using yet another time-periodic trajectory
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learning method called repetitive control (RC). Repetitive control does not rely on the
initial condition of the system as it uses a desired trajectory of an infinite time horizon
[55].

Repetitive control for a general system relies on the internal model principle, which
can be loosely stated as follows: in order to track or reject a periodic signal, a model
of this signal must be included in the closed-loop [57]. Almost all the RC algorithms use
the internal model principle by having the model of T-periodic signals in the closed-loop
[82]. However, repetitive control for PH systems, introduced in [76], does not require the
signal model since it is based on the variational symmetry of the Hamiltonian system
(2.28)–(2.30). Similar to ILC, repetitive control of a PH system achieves the local mini-
mum for a given quadratic cost function (3.11). The RC framework of [76] is summarized
in Algorithm 1. In [76] it is stated that ∆τi → 0 as i → ∞. Next, this is demonstrated

Algorithm 1 Repetitive control

1: Given the controlled-Hamiltonian system (2.10) and the cost function (3.11)
2: repeat: for every iteration i
3: Using the iterative control law (3.15) obtain a suitable control input ui (t ), t ∈

[t0, t1]

4: Apply ui (t ) to system (2.10) and observe the system states x(t ), t ∈ [t0, t1]. For
time t > t1 set ui (t ) = 0

5: Wait until the system state x(t ) converges within a predefined error bound b, for
τi the shortest time duration s.t. ‖x(τi )‖ < b. Calculate the excess convergence time
∆τi = τi − t1

6: Evaluate the cost function (3.11)
7: until the cost function ceases to decrease

for trajectory tracking of a 2-DOF manipulator arm. The trajectory tracking repetitive
control task is evaluated for the desired system output

yd(t ) =
[

0.5+0.5sin(πt )
−0.5−0.5sin(πt )

]
. (3.18)

The resulting cost, using (3.11) with Q = I , is given in Figure 3.4.

3.4.3. ITERATIVE FEEDBACK TUNING
Using ILC or RC one can obtain a control input that achieves the tracking of a desired ref-
erence. An equally important control objective is online tuning of the feedback control
parameters so as to achieve a desired performance criterion irrespective of the model
variation or parameter uncertainty. For example, the parameters of a state-feedback
controller can be adjusted online via experiments to reduce a quadratic type of cost.
One such online tuning method for repetitive task is iterative feedback tuning (IFT). In-
troduced in [83], IFT has found a wide acceptance as a self-tuning control design method
for nonlinear or model-uncertain systems [58, 84]. In [64], by using self-adjointness of
the Hamiltonian system, an IFT algorithm has been devised for the systems in controlled-
Hamiltonian form.
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Figure 3.4: Quadratic cost function for RC.

Consider for instance the system (2.10) that has been modified by using energy-
shaping feedback as

H(x,u) = 1

2
pT M−1(q)p + 1

2
qT Kp q −uT q, (3.19)

where x = [q p]T is the system state vector. If the parameter Kp is tunable, then the
Hamiltonian (3.19) can be rewritten as a function of the unknown parameter matrixΘ

H(x,u,Θ) = 1

2
pT M−1(q)p + 1

2
qTΘq −uT q. (3.20)

If the design objective is to stabilize the system at the origin by using minimum en-
ergy, then the cost function can be formulated as

J (q,Θ) =
n∑

i=1

∫ T

0

1

2
Q1q2

i d t +
n∑

i=1

n∑
j=1

1

2
Q2Θ

2
i , j , (3.21)

where Q1,Q2 are weighting constants. The optimal parameter values forΘi , j that achieve
the minimal cost can be obtained by using the gradient descent method. In [64], a gra-
dient expression has been devised which is similar to (3.12). The gradient of (3.21) also
depends on the adjoint of the variational operator. By using the self-adjointness prop-
erty of the controlled-Hamiltonian, (2.28)–(2.30), an iterative feedback tuning algorithm
is given in [64]. The feasibility of the algorithm was demonstrated by stabilizing a 3 DOF
mass-spring-damper system at the origin.

3.5. EVOLUTIONARY STRATEGIES
For a nonliner system, obtaining an analytical solution of matching conditions for the
IDA-PBC (2.48) (also ES-DI-PBC (2.42)) can be tedious and cumbersome, as illustrated
by the following example.
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Example 7. (Continued from Example 1) For a fully actuated mechanical system (2.2),
consider the parameterized IDA-PBC problem. In order to simplify the IDA-PBC prob-
lem, as explained in Section 2.4.3, the interconnection and dissipation matrices can
be fixed. For this example Jd = J is chosen and the dissipation matrix is modified as
Rd = diag

(
[0 D(x)]T

)
. Then by using (2.48), the obtained desired Hamiltonian is Hd =

φ(q)+ 1
2 pT M−1(q)p.

For a valid control action (2.47), the unknown elements φ(q),D(x) need to be cho-
sen so as to ensure the minimality condition (2.34) and the positive semi-definiteness
of Rd. For simple control problems like stabilization of a mass-spring-damper system,
the unknown elements φ(q) and D(x) can be obtained using the approach introduced
in [36]. However, as shown in [85] finding the appropriate functions φ(q) and D(x) for
relatively complex complex systems/tasks such as the swing-up and stabilization of pen-
dulum is rather involved. This problem becomes prominent for multi-domain systems
or under-actuated systems. �

In order to circumvent the elaborated issues, the authors in [65] parameterized the
added energy component Ha(x) as

Ha(ξ, x) = hT (P1,P2, x)P0h(P1,P2, x) (3.22)

where Pi , for i ∈ {0,1,2}, are the unknown symmetric square matrices of dimension n ×
n. Additionally, P0 is constrained to be positive definite. A single vector ξ is constructed
by vectorizing the unknown elements of Pi . To satisfy the equilibrium condition (2.34),
the sigmoid function h(P1,P2, x) is chosen such that h(P1,P2, x∗) = 0. The matrices Pi

are assumed to be full rank. The unknown parameters of the added energy function are
learnt by using the Evolutionary Algorithms (EA), which is an instance of a stochastic
optimization method.

Evolutionary algorithms are inspired by biology. In EA a population of candidate
solutions called parents are evolved by a variation operator and a subset is chosen us-
ing population selection to form new candidate solutions. The variation operator and
the population selection together result in a new offspring generation. This process is
repeated until a desired objective is achieved. EA can be partitioned in three compara-
ble methods [86], namely, Evolutionary Programming (EP), Genetic Algorithm (GA), and
Evolutionary Strategies (ES). The main difference among these methods are in

• problem representation: real-valued vectors, finite state machines, strings of data,
etc.

• offspring generation: mutation, cross-over, recombination, elitism, self-adaptation,
etc.

For example, in ES the optimization problem is represented by a real-valued vec-
tor. The variation operator is often a combination of mutation and self-adaptation of
the parents and the population selection mechanism is either described by

(
λ,µ

)
-ES or(

λ+µ)
-ES methods, where λ represents the number of offsprings and µ the number of

parents. In the first approach, λ offsprings are created by variation of µ parents. Irre-
spective of the fitness of the new offsprings λ, the original µ parents are discarded prior
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to the next iteration. In the second approach, after creating a set of λ offsprings, the
worst fit individuals are discarded from the total population of (λ+µ).

A special form of this method is (1+1)-ES where one offspring is created from one
parent, both the individuals are compared and the fitter one is reselected as parent for
the next iteration. A pseudocode of (λ+µ)-ES is given in Algorithm 2 [62].

Algorithm 2 (λ+µ)-Evolutionary strategy

1: k = 0
2: Initialize µ parents: ξ (i.e., (ξ1, ξ2, · · · ,ξµ)
3: Evaluate: Fitness functionΦ(ξ)
4: Repeat
5: Execute: Obtain λ offsprings ξ′ from ξ via mutation and self-adaptation.
6: Evaluate: Fitness functionΦ(ξ′)
7: Update: Parent ξ ← select best fit among(ξ∪ξ′)
8: Until termination condition

In [65] the unknown parameters Pi of the parent are learnt using a variation of Algo-
rithm 2 called the evolutionary strategy IDA-PBC (ES-IDA-PBC). To ensure the reliability
of the learnt parameters Pi , the control objective is verified for a set of initial states called
the basin of attraction. The problem specific fitness functionΦ(ξ) is computed using the
pseudocode provided in Algorithm 3, see [65] for the detailed implementation.

Algorithm 3 φ(ξ)-Fitness function

1: Given a PH system (2.1), user defined performance index function ρ(x), and set of
initial conditions Ini t

2: for 1: every initial condition indexed by j
3: Ini t j ← x(t0)
4: for 2: every time step indexed by i
5: Calculate the added energy Ha(ξ, x) of (3.22)
6: Calculate u(ξ, x) of (2.47)
7: Integrate ẋ = (J (x)−R(x)) ∂H

∂x + g (x)u(ξ, x) to obtain the new system state x(ti )
8: Calculate the performance index: ρi = ρ(x(ti )) (Generally, a quadratic perfor-

mance function is used e.g., ρ(x) = xT Qx, for some positive definite weight matrix
Q.)

9: end for 2
10: f j = Sum(ρi ) (other operators such as Max can be used, depending on the design

objective)
11: end for 1
12: f = Sum( f j ) (other operators can be used to obtain f )
13: Return fitness value f

The authors demonstrate their results by stabilizing an underactuated Hamiltonian
system (ball and beam) at a desired position.
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3.6. DISCUSSION AND CONCLUSIONS
In control engineering, learning techniques are often used to address uncertainties and
disturbances. Generally, learning methods are model independent. However, by aug-
menting learning techniques with the rich structure of the PH models numerous advan-
tages can be obtained.

In Table 3.2 the requirement of prior system information for various learning meth-
ods that are discussed in this chapter is listed. With the exception of the evolutionary
strategy (ES-IDA-PBC), all other learning methods of Table 3.2 can be used for online
control tuning, hence they are capable of handling model and parameter uncertain-
ties. For example, stabilization method like IFT, can learn an optimal feedback law even
for an imprecise model. Iterative methods like ILC and RC are independent of system
parameters, the only requirement being that the measured data is from a controlled-
Hamiltonian system. Their robustness against model and parameter uncertainty is im-
plied. Additionally, ILC and RC can compensate for periodic disturbances in the system.

Table 3.2: port-Hamiltonian learning control methods.

No a prior model informa-
tion

Uncertain but known
model and known control
structure

Precise model and known
control structure

Iterative learning control
(ILC) [44], Repetitive con-
trol (RC) [72], Iterative feed-
back tuning (IFT) [64]

Adaptive control (AC) [66–
69]

Evolutionary strategy (ES-
IDA-PBC) [65]

In this section the prominent advantages and possible future research for each of the
proposed methods will be enumerated.

3.6.1. ADAPTIVE CONTROL
Adaptive methods that are based on the PH formalism yield various advantages, for ex-
ample, passivity of the closed-loop, finite L2 gain, etc. However, several prominent tools
are missing in the context of adaptive techniques for PH systems. Namely, analysis of
persistency of excitation, conditions for parameter and error convergence, closed-loop
stability analysis using Lyapunov-like functions, model-reference adaptive control and
identification for adaptive control [50, 53], extremum seeking control [75], etc. Exten-
sions of these methods for PH systems can provide an exciting research avenue.

3.6.2. ITERATIVE METHODS
One of the prominent iterative methods is iterative learning control (ILC). This method
uses only the measured data, hence it is impervious to parameter uncertainty. This is
a standard advantage for any generic ILC method. The major enhancement due to the
use of a PH model is monotonic error convergence. While for LTI systems monotonic
convergence can been shown by using the system’s Markov parameters, for a general
nonlinear system, error convergence is still an active research area. However, for a PH
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system, thanks to its self-adjointness property, the monotonic error convergence of the
iterative and repetitive algorithm is shown to be implicit [44, 76].

Although, the advantages are significant, the analysis and the available tools for it-
erative control of PH systems are limited. Several areas which can provide a valuable
road-map for future research are analysis of system behavior during transient learning
[87], repetitive disturbance rejection, extension of iterative methods for multi-domain
PH systems, augmenting iterative methods with adaptive techniques [88, 89], etc.

3.6.3. PROOF OF CONVERGENCE
One common link that is missing in the adaptive and learning framework for PH systems
is the detailed mathematical proof of convergence. For example, the convergence for ES-
IDA-PBC algorithms is yet to be shown. Although the proof of convergence for iterative
methods has been given, it only holds for the controlled-Hamiltonian systems and their
extension to a generic PH system would be a valuable addition. Parameter convergence
of adaptive control methods for PH systems is available, but it is limited to tracking con-
trol of a fully actuated mechanical system or to systems with a positive-definite dissipa-
tion matrix. A generic parameter convergence and stability proof would be extremely
helpful. All these missing mathematical proofs and analysis tools can provide a valuable
direction for the future research.

3.6.4. CONCLUSION
In this chapter a comprehensive review of various state-of-the art learning and adaptive
control methods for PH systems is provided. An additional benefit in bringing PH mod-
els into learning and adaptive control framework is also highlighted. On the learning
side, the extra PH structure results in new desirable properties. From the PH side, learn-
ing extensions introduce new values. A few notable examples are: i) the use of learning
algorithms (such as ES-IDA-PBC) reduces the complexity of the PH control synthesis; ii)
iterative and repetitive control for PH systems achieve monotonic error convergence; iii)
global asymptotic stability can be shown for adaptive control of PH systems. Thanks to
learning, control design problems can be solved, which would otherwise be intractable
for PH systems. However, introducing learning does involve a certain degree of compro-
mise particularly in terms of computational cost, and memory.
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PASSIVITY-BASED CONTROL

USING REINFORCEMENT LEARNING

As explained in Chapter 3, adaptive and learning control methods can benefit from the
PH structure. This idea will be further extended here. Although the passivity-based con-
trol (PBC) is an intuitive way to achieve stabilization of a physical system, in many in-
stances the passivity-based controller is obtained by solving a set of complex partial
differential equations (PDEs), which can be extremely difficult. Additionally, there is
no proper mechanism to incorporate any performance measure. In order to address
these issues in this chapter a set of novel reinforcement learning based approaches will
be introduced 1. Unlike the model-based PBC, here the control law is parameterized
by an unknown parameter vector. Then, these parameters are obtained online by us-
ing the actor-critic reinforcement learning, thus achieving a near-optimal control policy
that satisfy the desired closed-loop objective. Compared to the standard reinforcement
learning, the advantage here is that the learned solutions have a physical interpreta-
tion. Additionally as the method allows for the class of port-Hamiltonian systems to be
incorporated in the actor-critic framework, this enhances the learning speed. The key
advantages of combining learning with PBC are: i) the complexity of the control design
procedure is reduced as the proposed methods does not require the specification of a
global desired Hamiltonian, ii) performance criteria can be readily incorporated, addi-
tionally the learning algorithm is robust against model and parameter uncertainties, iii)
partial knowledge about the system, given in the form of a PH model, speeds up the
learning process, iv) physical meaning can be attributed to the learned control law.

4.1. INTRODUCTION

P assivity-based control has been applied to various electrical, mechanical, electro-
mechanical applications modeled in PH form [25, 90]. Although the passivity-based

1Parts of this chapter is from Olivier Sprangers, Robert Babuska, Subramanya P. Nageshrao, and Gabriel A. D.
Lopes. "Reinforcement learning for port-Hamiltonian systems." IEEE Transactions on Cybernetics, vol 45, no. 5
(2015): 1003-1013.

39
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control of a port-Hamiltonian system provides physical interpretation of the control law,
it is stymied by few challenges that hinder its widespread use, they are

1. The geometric structure of the PH system reformulates the PBC problem as a set of
partial differential equations (PDEs) (2.42) or nonlinear ordinary differential equa-
tions (2.48), which can be challenging to solve [34]

2. Most solutions are founded on stability considerations and overlook performance.
This is due to lack of a formal mechanism to incorporate the performance mea-
sure.

3. In model-based PBC, parameter and model uncertainty can influence the perfor-
mance of the PBC law.

The classical model-based PBC strongly relies on the system model. However, for
various practical applications obtaining an accurate model of the system is extremely
difficult [25]. This makes the passivity-based control synthesis hard to apply. The aim of
this chapter is to address these hurdles by incorporating learning. To this end, first the
control law for the model-based PBC methods (2.41),(2.47), are parameterized in terms
of an unknown parameter vector. Then, by using an appropriate learning approach the
parameters can be learned, while simultaneously verifying the matching PDEs namely
(2.42) and (2.48).

Amongst various alternative learning methods, reinforcement learning (RL) is a promi-
nent approach that is independent of the system model. RL is a semi-supervised stochas-
tic learning control method [12]. In RL, the controller (also called policy or actor or agent)
optimizes its behavior by interacting with the system. For each interaction, the actor re-
ceives a numerical reward, which is often calculated as a function of the system’s state
transition and the control effort. Generally, in control the objective is to maximize the
long term cumulative reward, an approximation of this is given by the value function.
Hence, most of the RL algorithms learn a value function from which the control law can
be derived [12, 15].

This combination of solving passivity-based control using RL can be seen as a paradigm
shift from the traditional model-based control synthesis for PH systems. As there is no
need to synthesize a controller in the closed-form, but instead it can be learned online
with proper structural constraints. This brings a number of advantages:

1. It allows to specify the control goal in a “local” fashion through a reward function,
without having to consider the entire global behavior of the system. The simplest
example to illustrate this idea is to assign a reward function that gives a reward
of 1 when the system is in a small neighborhood of the desired goal and 0 every-
where else [12]. The learning algorithm will eventually find a global control policy,
whereas in the model-based PBC synthesis one needs to specify a desired global
Hamiltonian and system matrices.

2. Learning brings performance in addition to the intrinsic stability properties of
PBC. The structure of RL is such that the rewards are maximized, and these can
include performance criteria, such as minimal time, energy consumption, etc.
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3. Learning offers additional robustness and adaptability since it tolerates model un-
certainty in the PH framework. Thus a precise model is not required, a partial
knowledge of the system in the form of PH model will suffice.

From the learning point of view, the presented approaches provides a systematic way
of incorporating a priori knowledge into the RL problem. The learning methods yield a
controller that can be interpreted in terms of physical quantities, such as additional en-
ergy that is added to the system or extra damping etc. The same interpretability is typi-
cally not found in the traditional RL solutions. In addition one major drawback in RL is
the slow and non-monotonic convergence of the learning algorithm. The absence of in-
formation about the system forces the algorithm to explore a large part of the state-space
prior to finding an optimal policy. By incorporating partial knowledge of the system, the
learning speed can be significantly increased [91]. The use of RL algorithms in control
has a rich literature spanning over two decades [92–94].

Historically, the trends in control synthesis have oscillated between performance and
stabilization. PBC of PH systems is rooted in the stability of multi-domain nonlinear
systems. By including learning it is possible to address performance in the PH frame-
work. In the experimental section of the chapter, the developed methods are shown to
be robust to parameter and model uncertainties and unmodeled nonlinearities, such
as control input saturation. Control input saturation in PBC for PH systems has been
addressed explicitly in the literature [71, 85, 95–99]. The developed approach solves the
problem of control input saturation on the learning side without the need of augmenting
the model-based PBC.

The work presented in this chapter draws an interesting parallel with the application
of iterative feedback tuning (IFT) [58] for the PH systems explained in Section 3.4 see
also [64] for further details. Both techniques optimize the parameters of the controller
online, with the difference that in IFT the objective is to minimize the error between the
desired output and the measured output of the system, while the proposed approaches
aim at maximizing a reward function, which can be very general. The choice of RL is war-
ranted by its semi-supervised paradigm, as opposed to other traditional fully-supervised
learning techniques, such as artificial neural networks or fuzzy approximators where the
control specification (function approximation information) is input/output data instead
of reward functions. Such fully-supervised techniques can be used within RL as function
approximators to represent the value functions and control policies. Evolutionary algo-
rithms, as explained in Section 3.5, can also be considered as an alternative. This is be-
cause similar to RL evolutionary algorithms rely on fitness functions that are analogous
to the reward function. However, the evolutionary methods are usually computationally
involved and therefore generally not suitable for online learning control.

This chapter is organized as follows. In Section 2 components of reinforcement learn-
ing and standard actor-critic along with its limitations will be discussed. Energy-balancing
actor-critic, an application of reinforcement learning to solve the energy-shaping and
damping-injection problem is explained in Section 3. Sections 4 explores the learning
algorithms for interconnection and damping assignment (IDA) PBC for PH systems. Sec-
tion 5 explores the use of RL to solve the control-by-interconnection problem. Section 6
concludes the chapter with a discussion on the design issues and possible solutions.
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4.2. REINFORCEMENT LEARNING

The mechanism of performing a task, remembering its outcome and improving upon it
when encountered a same or a similar situation can be widely observed in animals. The
use of ‘reinforcement’ is an effective approach to learn in unfamiliar environment. It can
be prominently observed in pet animals and as well as in humans. Hence naturally the
study of this mechanism called ‘learning from interactions’ has its origins in psychology.
However, the mathematical and computational aspects constitutes a branch of artificial
intelligence called ‘reinforcement learning’ (RL). Since RL is one of the main topic of this
thesis the essential background will be given in this section.

There are three main components for any reinforcement learning algorithm namely
i) policy, also called actor or controller ii) environment or the process on which the con-
troller acts upon and iii) reward function.

A stochastic policy dictates the choice of the action in the form of a probability den-
sity function, whereas a deterministic policy provides an action that can be applied to the
system under consideration. As it will be explained later in the thesis, a state-feedback
control law can be considered as synonymous to a deterministic policy. Most of the mod-
ern control algorithms are implemented on a computer thus inherently leading to sam-
pling and discretization. Hence in this thesis discrete-time version of the reinforcement
learning algorithms are detailed. Continuous-time variants are not discussed as they are
not relevant in this work, for details see [100].

In control-theory and robotics, reinforcement learning methods are often used to
solve an optimal control problem for a system modelled as Markov decision proces (MDP).
An MDP is a tuple 〈X ,U ,P,ρ〉 where X ∈ S ⊂ Rn is the state-space and U ∈ U ⊂ R is the
action-space, a single-input system (i.e., environment) is assumed for the sake of plain-
ness. For discrete space, P : X ×U×X → [0,∞) is the state-transition probability of reach-
ing a state xk+1 = x ′ from the current state xk = x on applying an action uk = u, where k is
the time index. In discrete space setting, the state transition can be represented in com-
pact form as P u

xx′ = P uk
xk xk+1

. It is important to note that for a continuous-space system,
represented by xk+1 = f (xk ,uk ), the state transition P can provide only a probability of
reaching a state xk+1 in the region Xk+1 ⊂ X from the current state xk on applying an
action uk , i.e.,

P u
xx′ = P (xk+1 ⊂ Xk+1|xk ,uk ) =

∫
Xk+1

f (xk ,uk , x ′)d x ′. (4.1)

After transiting to the next state xk+1 the controller receives a numerical reward rk+1 =
ρ(xk+1,uk ). This reward a measure of user defined performance and it provides an in-
stantaneous evaluation on the desirability of the action uk . The reward function ρ de-
fines the goal of the RL problem. It is generally user-defined and considered as a part of
the environment. The reward function is assumed to be bounded.

The control action uk is obtained by a state-to-action map denoted by uk = π(xk ).
The general goal in reinforcement learning is to find an optimal map or policy π that
maximizes a certain return function Rπ(x) . In this thesis the discounted sum of reward
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is used as the return function 2 and it is defined as

Rπ(x0) =
∞∑

k=0
γk rk+1 =

∞∑
k=0

γkρ(xk+1,uk ), (4.2)

where x0 is an initial state and γ ∈ [0,1) is the discount factor. The expected value of the
return is given by the state-value function, i.e.,

V π(x) = E {Rπ(x|x0 = x)} = E {
∞∑

k=0
γk rk+1|x0 = x,π}. (4.3)

Since the state-value function only depends on the state x, in the literature it is also
called as value function. It gives the expected desirability of following a policy π starting
from a state x.

Similarly, the desirability of performing action u in state x and then following the
policy π after the transition is given by the action-value function defined as,

Qπ(x,u) = E {
∞∑

k=0
γk rk+1|x0 = x,u0 = u,π}. (4.4)

In the state-value function the first action u is a free variable. The relationship between
the two value functions (4.3) and (4.4) is given by,

V π(x) = E {Qπ(x,u)|u =π(x)}. (4.5)

After some manipulation the value functions (4.3) and (4.4) can be written in a re-
cursive form called the Bellman equation (for definition and properties see [12]). For an
MDP having a discrete-state and finite action space, then the Bellman equation can be
solved recursively resulting in value function convergence. From this value-function, a
better policy can be obtained. Iteratively following these steps results in optimal value
function. From this optimal value-function, an optimal control action can easily be ob-
tained. In the case of state-value function (4.3) this is done by one-step search, whereas
an action that gives the highest Q-value is chosen in the case of optimal action-value
function (4.4). This is an indirect approach. Alternatively, there exist RL methods that
directly search for an optimal control law.

Depending on whether the algorithm search for a value function or a control law or
both, RL methods can be broadly classified into three categories [101]

• Actor-only algorithms directly search for an optimal control law;

• Critic-only methods first learn an optimal value function, from which the control
law is obtained by one-step optimization;

• Actor-Critic algorithms [19, 102] search explicitly for an optimal control law. Ad-
ditionally, they also learn a value-function which provides an evaluation on the
controller’s performance.

2Other prominent cost formulation are total reward, average reward, risk-sensitive return function etc, for
details see [18].
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A major goal of this thesis is to synthesize passivity-based control using the reinforce-
ment learning approach. The useful class of RL algorithms are Actor-only and Actor-
Critic methods. In both these approaches the learning algorithm uses parameterized
policies.

By using actor-only methods the policy parameters that can result in an optimal con-
troller can be directly obtained. The major advantage of the actor-only method is that
it can cover the complete spectrum of the continuous action space. Since the policy
parameters are updated using the gradient descent method the convergence to the op-
timal policy can be inferred. However, actor-only algorithms generally suffer from high-
variance resulting in a slow and non-monotonous convergence [19, 103]. In addition,
actor-only methods are computationally involved and therefore not always suitable for
real-time learning control. Some of the widely used RL algorithms are based on tempo-
ral difference (TD) and they fall in the category of critic-only methods. They are based
on learning a state-value function and the control is only implicitly defined via the value
function. As this is not the current objective such algorithms are not suitable for this
thesis and hence not considered.

The actor-critic methods combine the advantages of both actor-only and critic-only
methods. While the actor provides a continuous action using the parameterized pol-
icy, the critic provides a low-variance gradient thus resulting in a faster convergence of
the actor [19, 103]. The critic evaluates the current policy under consideration and pro-
vides an estimate of the value-function. In this thesis temporal-difference, i.e., TD(λ)
[12] is used to evaluate the policy. Hence, other prominent approaches such as least-
square temporal-difference (LSTD) and residual gradients are not discussed, for details
see [103].

Many of the RL methods are developed for systems with finite, discrete state and ac-
tion space. However, most of the physical systems operate on a continuous state-space
and the control law also needs to be continuous. This issue is often addressed by using
function approximation, for methods and examples see [12, 15].

The actor-critic consists of two independent parameterized components, the value-
function (critic) (4.3) is approximated by using a parameter vector υ ∈ Rnc and a user
defined basis function vector φc(x) ∈Rnc as

V̂ π̂(x,υ) = υTφc(x). (4.6)

Similarly, by using the parameter vector θ ∈ Rna , the policy π̂(x,θ) (actor) is approxi-
mated as

π̂(x,θ) = θTφa(x), (4.7)

where φa(x) ∈ Rna is a user-defined basis function vector. At every time step k the critic
improves the value function. The actor then updates its parameters in the direction of
that improvement. The critic and the actor, i.e., (4.6) and (4.7) are usually defined by
a differentiable parameterization such that gradient ascent can be used to update the
parameters. This is beneficial when dealing with continuous-action space [104].

For a given continuous state-space system Actor-critic (AC) methods can efficiently
learn a continuous control action by using approximated value function and the policy.
In terms of AC, the reinforcement learning objective can be expressed as: find an optimal



4.2. REINFORCEMENT LEARNING

4

45

policy π̂(x,θ), such that for each state x, the discounted cumulative reward V̂ π̂(x,υ) is
maximized.

The unknown critic parameters are updated using the gradient-ascent rule

υk+1 = υk +αcδk+1∇υV̂ (xk ,υk ), (4.8)

where αc > 0 is the update rate and δk+1 is the temporal difference [12]

δk+1 = rk+1 +γV̂ (xk+1,υk )− V̂ (xk ,υk ). (4.9)

In the above temporal-difference update rule, the critic is updated using the information
obtained in two consecutive time steps, while the reward is received often due to the
result of a series of steps. As a consequence, the plain TD update results in a slow and
sample-inefficient learning. Eligibility traces ek ∈Rnc offer a way of assigning credit also
to states visited several steps earlier and as such can speed up the learning. The update
for the critic parameters using eligibility trace is [12],

ek+1 = γλek +∇υV̂ (xk ,υk ),

υk+1 = υk +αcδk+1ek+1, (4.10)

where λ ∈ [0,1] is the trace-decay rate.
In order to obtain an optimal policy the reinforcement learning algorithms generally

use exploration. This is in order to visit new, unseen parts of the state-action space so as
to possibly find better policy parameters. This is achieved by perturbing the policy (4.7)
by an exploration term ∆uk . Many techniques have been developed for choosing the
type of exploration term (see e.g. [105]). In this chapter gaussian noise with zero mean
is used as the exploration ∆uk . The overall control input to the system is

uk = π̂(xk ,θk )+∆uk . (4.11)

The policy parameter vector θ is increased in the direction of the exploration term ∆uk

if the resulting temporal difference δk+1 of (4.9) due to control input (4.11) is positive,
otherwise it is decreased. The parameter update rule in terms of the update rate αa is

θk+1 = θk +αaδk+1∆uk∇θπ̂(xk ,θk ). (4.12)

Although not as common as it is used for the critic, eligibility traces can also be used
for the actor parameter update [102]. However, for the sake of simplicity it is not used in
the current work.

4.2.1. STANDARD ACTOR-CRITIC ALGORITHM
A schematic representation of standard actor-critic algorithm is given in Figure 4.1. The
critic is used to update both the controller i.e., actor and the value function. Each run of
the actor-critic algorithm is called a trial. Each trial starts at an initial state x0 and ends
after collecting certain prefixed number of samples. It must be noted that in this thesis
discrete-time actor-critic algorithms are used. Hence the time index k is synonymous
with the sample index. At the end of the trial the system is reset to the initial state x0

and the learning iteration is repeated. The actor and critic parameters are initialized at
the start of first trial. In this thesis the parameters are initialized to zero, alternatively
they can be either randomly initialized or to a previously known parameter. A simple
representation of the standard actor-critic scheme is given in Algorithm 4.
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Figure 4.1: Schematic representation of the standard actor-critic algorithm.

4.2.2. FUNCTION APPROXIMATION
For continuous state and action space the value function (4.6) and the policy (4.7) are
parameterized using function approximators in terms of the basis function φc(x), and
φa(x), respectively. The number of basis function nc, na are generally dictated by the
system under consideration and/or the empirical knowledge, whereas the choice of the
basis function type is generally characterized by the choice and preference of the de-
signer. Prominent approximators are neural networks, fuzzy approximators, tile coding,
local linear regression, radial basis function, etc. In this thesis polynomial, radial and
Fourier basis functions [106] are used. This is because of its ease of use, the possibility to
incorporate symmetry information about the system under consideration.

The polynomial basis function is a vector of polynomial degree of up to nc or na.
Using a multivariate N th-order (i.e., the order of approximation) the Fourier basis for a
system with n dimensions (i.e., the number of states in the system) is

φi (x̄) = cos(πcT
i x̄), i ∈ {1, . . . , (N +1)n}, (4.13)

sin basis functions3 can be defined similar to cos basis functions, also a combination of
sin and cos basis functions can also be used . In (4.13), ci ∈ Zn implies that all possible
N+1 integer values, or frequencies they are combined in a vector inZn to create a matrix
c ∈Zn×(N+1)n

containing all possible frequency combinations. For example,

c1 = [0 0]T , c2 = [1 0]T , . . . , c(3+1)2 = [4 4]T , (4.14)

for a 3rd-order Fourier basis in 2 dimensions. The state x is scaled as

x̄i =
xi −xi ,min

xi ,max −xi ,min

(
x̄i ,max − x̄i ,min

)+ x̄i ,min, (4.15)

for i = 1, . . . ,n with (x̄i ,min, x̄i ,max) = (−1,1). Projecting the state variables onto this sym-
metrical range ensures the same priority for the states with different numerical range.
For the Fourier basis function the learning rate is also adjusted,

αai =
αab

‖ci‖2
, (4.16)

3They are defined as φi (x̄) = cos(πcT
i x̄), i ∈ {1, . . . , (N +1)n }.
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Algorithm 4 Standard actor-critic algorithm

Input: System such as (2.1), λ, γ, αa for actor, αv for critic. Critic and actor are approxi-
mated as (4.6) and (4.7), respectively.

1: e0(x) = 0 ∀x
2: Initialize θ0, υ0

3: for # Trials do
4: Initialize x0

5: k ← 1
6: loop until # number of samples
7: Execute: Draw action using (4.11), apply the control input to the system for e.g.

(2.1), observe next state xk+1 and reward rk+1 = ρ(xk+1,uk )
8: Temporal Difference:
9: δk+1 = rk+1 +γV̂ (xk+1,υk )− V̂ (xk ,υk )

10: Critic Update: total nc parameters
11: ek+1 = γλek +∇υk V̂ (xk ,υk )
12: Assuming (4.6) the gradient is ∇υk V̂ (xk ,υk ) =φc(xk )
13: υk+1 = υk +αvδk+1ek+1(x)
14: Actor update: total na parameters
15: θk+1 = θk +αaδk+1∆uk∇θk

uk (x,θ)
16: Assuming (4.7) the gradient is ∇θk

uk (xk ,θ) =φa(xk )
17: end loop
18: end for

for i = 1, . . . , (N + 1)n with αab is the base learning rate for the actor which needs to be
tuned by the designer, where αa1 = αab this is to avoid division by zero for c1 = [0 0]T .
Equation (4.16) implies that parameters corresponding to basis functions with higher
(lower) frequencies are learned slower (faster) [106].

4.2.3. S-AC EXAMPLE: PENDULUM SWING-UP AND STABILIZATION

The standard actor-critic Algorithm 4 is used to solve the problem of swinging up and
stabilization of an inverted pendulum subject to control saturation. The schematic of
the setup under consideration is in Figure 4.2.

The pendulum swing-up is a low-dimensional, but nonlinear control problem. The
control task is to learn to swing up and stabilize the pendulum from the initial position
pointing down x0 = [π,0]T to the desired equilibrium position at the top x∗ = [0,0]T .
When the control action is limited to a small range, the system is not able to swing up
the pendulum directly, hence it must rather swing back and forth and build up the mo-
mentum so as to eventually overcome the local minimum and reach the equilibrium.
This problem is commonly used as a benchmark in the RL literature [91] and it has also
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q
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u

Figure 4.2: Inverted pendulum setup.

been studied in PBC [85]. The equations of motion in the PH form (2.1) are[
q̇
ṗ

]
=

([
0 I
−I 0

]
−

[
0 0
0 R22

])[ ∇q H(q, p)
∇p H(q, p)

][
0

Kp

Rp

]
u,

y =
[

0
Kp

Rp

][ ∇q H(q, p)
∇p H(q, p)

]
, (4.17)

with q the angle of the pendulum and p the angular momentum, denote the full mea-
surable state x = [q p]T . The damping term R22 is

R22 = bp +
K 2

p

Rp
. (4.18)

The system Hamiltonian is defined as,

H(q, p) = p2

2Jp
+V (q), (4.19)

where the potential energy V (q) is

V (q) = Mpgplp(1+cos q). (4.20)

The model parameters are given in Table 4.1.
The reward function ρ for the Algorithm 4 is defined such that it has its maximum at

the desired unstable equilibrium and penalizes other states via,

ρ(x,u) =Qr
(
cos(q)−1

)−Rrp2, (4.21)

where,

Qr = 25 , Rr = 0.1

J 2
p

. (4.22)
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Table 4.1: Inverted pendulum model parameters

Model parameters Symbol Value Units
Pendulum inertia Jp 1.90 ·10−4 kgm2

Pendulum mass Mp 5.2 ·10−2 kg
Gravity gp 9.81 m/s2

Pendulum length lp 4.20 ·10−2 m
Viscous friction bp 2.48 ·10−6 Nms
Torque constant Kp 5.60 ·10−2 Nm/A
Rotor resistance Rp 9.92 Ω

The critic is defined using the Fourier basis function approximation as

V̂ (x,υ) = υTφc(x), (4.23)

with φc(x) a 3rd-order Fourier approximators consisting of both sin and cos basis func-
tions resulting in 55 learnable parameters υ in the domain [qmi n , qmax ]× [pmi n , pmax ] =
[−π,π]× [−8πJp ,8πJp ]. Over the similar domain the policy is approximated using a lin-
ear in parameter function approximation

π̂(x,θ) = θTφa(x), (4.24)

where θ is the parameter to be learned. The resulting control input is,

uk = π̂(x,θ)+∆uk , (4.25)

where the exploration term ∆uk is zero-mean gaussian random noise. The S-AC Algo-
rithm 4 is evaluated using the simulation parameters given in Table 4.2. The learning
rate has been tuned such that no failed simulations occur.

Figure 4.3 shows the maximum, average and the minimum of the learning curve ob-
tained from 50 consecutive simulations of the S-AC Algorithm 4. The standard actor-
critic generally needs around 60 trials before a near-optimal policy is obtained.

Faster convergence for the S-AC can be achieved by increasing the learning rate αa,θ.
However, when using a higher learning rates a considerable number of failures were ob-
served. As it will be compared later with the developed methods, the S-AC algorithm
was found to use a much larger number of basis functions. In addition to slower con-
vergence and higher number of basis functions, one major drawback S-AC is the lack
physical interpretability of the learned control law. Additionally, prior knowledge of the
system cannot be readily incorporated into the standard actor-critic method.

4.3. ACTOR-CRITIC ALGORITHM FOR STANDARD-PBC
As illustrated in the Example 7 solving the matching condition (2.42) for the standard
PBC can be tedious and cumbersome. In this section an approach to parameterize the
standard-PBC closed-loop Hamiltonian is developed. The unknown parameter vector
is then learned using a variation of the standard actor-critic Algorithm 4 called energy
balancing actor-critic (EBAC).
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Table 4.2: Simulation parameters

Simulation parameters Symbol Value Units
Number of trials − 200 -
Trial duration Tt 3 s
Sample time Ts 0.03 s
Number of samples Ns 100 -
Decay rate γ 0.97 -
Eligibility trace decay λ 0.65 -
Exploration variance σ2 1 -
Max control input umax 3 V
Min control input umax −3 V
Learning rate of critic αc 0.05 -
Learning rate of actor αaθ 5×10−5 -
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Figure 4.3: Learning curve for the Standard Actor-Critic method for 50 simulations.
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4.3.1. PARAMETERIZED HAMILTONIAN FOR STANDARD PBC
As explained in Section 2.4.2 due to the dissipation obstacle (2.44) the standard PBC,
(energy-balancing and damping-injection) can be used if and only if the system is con-
trollable by using a finite amount of added energy Ha(x). This implies that only the dy-
namics with no explicit dissipation can be regulated. Generally, in mechanical systems
(2.2) the dissipation is associated with momentum p whereas position dynamics have no
explicit dissipation term. Hence, by using standard PBC one can stabilize the momen-
tum p only at the origin while the position q can be regulated to any desired state say
qd. In terms of the system’s Hamiltonian, this means that only the potential energy of a
mechanical system can be shaped, whereas the kinetic energy term remains unaltered.
For example, the desired Hamiltonian for a mechanical system consists of the original
kinetic energy term T (x) in (2.3) and the shaped potential energy term Vd(x), i.e.,

Hd(x) = T (x)+Vd(x). (4.26)

For a general physical system, the desired Hamiltonian consists of shapable (s) and non-
shapable (ns) components

Hd(x) = Hns(x)+Hs(x). (4.27)

A procedure to separate the non-shapable and shapable components of the state-vector
can be devised by reformulating the PDE (2.42) in terms of the desired closed-loop en-
ergy Hd(x), by applying (2.35)[

g⊥(x)F T (x)
g T (x)

]
︸ ︷︷ ︸

A(x)

(∇x Hd(x)−∇x H(x)) = 0, (4.28)

and reformulating the kernel of A(x) as

ker(A(x)) = {N (x) ∈Rn×b : A(x)N (x) = 0}, (4.29)

such that (4.28) reduces to

∇x Hd(x)−∇x H(x) = N (x)a, (4.30)

with a ∈Rb . Suppose that the state vector x can be written as x = [wT zT ]T , where z ∈Rc

and w ∈ Rd , c +d = n corresponding to the zero and non-zero elements of N (x) such
that [∇w Hd(x)

∇z Hd(x)

]
−

[∇w H(x)
∇z H(x)

]
=

[
Nw (x)

0

]
a . (4.31)

The matrix Nw (x) can be assumed of rank d , which is always true for fully actuated me-
chanical systems. It is clear that ∇z Hd(x) = ∇z H(x), which is the matching condition,
and hence ∇z Hd(x) cannot be chosen freely. Thus, only the desired closed-loop energy
gradient vector ∇w Hd(x) is free for assignment.

Normally, in the standard PBC framework, the shapable component Hd(w) of the
desired energy term of (4.27) is chosen to be quadratic [36]. Instead, in this chapter, the
desired Hamiltonian is formulated as a linearly parameterized function approximator.
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The “hat” symbol stands for the approximation, e.g. Ĥd is the approximation of the de-
sired Hamiltonian Hd.

Ĥd(x,ξ) = Hns(x)+ξTφes(x), (4.32)

where ξ ∈ Rnes is the unknown parameter vector and φes(x) ∈ Rnes is a user defined ba-
sis function vector. In order to completely characterize (4.32) the unknown parameter
vector

ξ= [ξ1 ξ2 · · · ξnes ]T ,

must be obtained.
It is important to constrain the local minima of Ĥd(x,ξ) to be the desired equilibrium

x∗, via the choice of the basis functions. For a mechanical system this can be done by
constraining φes(x) to be zero at the desired equilibrium qd. This will locally ensure the
minimality condition (2.34) at xd = (qd,0).

4.3.2. ENERGY BALANCING ACTOR-CRITIC
By using the parameterized energy function (4.32) and (2.35) in (2.41), the control policy
is obtained in terms of an unknown parameter vector ξ and basis function φes(x) as

u(x,ξ) = g †(x)
(

J (x)−R(x)
)(∇x Ĥd(x,ξ)−∇x H(x)

)
−K (x)g T (x)∇x Ĥd(x),

= g †(x)
(

J (x)−R(x)
)(
ξT ∂φes

∂x
(x)−∇x H(x)

)
−K (x)g T (x)∇x Ĥd(x),

= π̂(x,ξ), (4.33)

where the policy π̂(x,ξ) is a function of the user defined damping injection matrix K (x).
The damping-injection matrix K (x) can be considered as an additional degree of

freedom. It can be parameterized by using an unknown parameter vector ψ and a user
defined basis function vector φdi(x) ∈Rndi as

[
K̂ (x,ψ)

]
i j =

ndi∑
l=1

[
ψ

]
i j l

[
φdi(x)

]
l , (4.34)

where [ψ]i j ∈Rndi is constrained to verify[
ψ

]
i j =

[
ψ

]
j i , (4.35)

so that the required symmetry condition of K (x) is satisfied. Using the approximated
K̂ (x) matrix in the control law (4.33) results in two unknown parameter vectors, namely
ξ (with nes unknown entries) and ψ (with m(m +1)ndi/2 unknown entries).

Most of the physical systems are subject to the control input saturation problem.
The saturation constraints can be easily addressed while devising the standard-PBC law
(4.33). This is done by considering a generic saturation function ς : Rm → S, S ⊂ Rm ,
such that

ς(u(x)) ∈ S ∀u, (4.36)
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where S is the set of valid control inputs. The control action with exploration (4.11) be-
comes

uk = ς(
π̂(xk ,ξk ,ψk )+∆uk

)
, (4.37)

where ∆uk is a zero-mean gaussian noise. Due to the saturation constraint the explo-
ration term to be used in the actor update (4.12) must be adjusted

∆ūk = uk − π̂(xk ,ξk ,ψk ) . (4.38)

Note that due to this step, the exploration term ∆ūk used in the learning algorithm is no
longer drawn from the chosen distribution present in ∆uk . Furthermore, the gradients
of the saturated policy will be

∇ξς(π̂) =∇π̂ς(π̂)∇ξπ̂, (4.39)

∇[Ψ]i j ς(π̂) =∇π̂ς(π̂)∇[Ψ]i j π̂ . (4.40)

Although not explicitly detailed, the (lack of) differentiability of the saturation function
ς can be problematic in the computation of the gradient of (4.39) and (4.40). For a tra-
ditional saturation in ui ∈ R of the form max(umi n ,min(umax ,ui )), i.e. assuming each
input ui is bounded by umi n and umax , then the gradient of ς is the zero matrix outside
the unsaturated set S (i.e. when ui < umi n or ui > umax ). In this work the gradient of ς at
the boundary is assumed to be unity. For other types of saturation the function ∇ς must
be computed. The actor parameters ξk , [Ψk ]i j are updated respecting the saturated pol-
icy gradients. For the parameters of the desired Hamiltonian ξ is updated as,

ξk+1 = ξk +αa,ξδk+1∆ūk∇ξς (π̂(xk ,ξk ,Ψk )) , (4.41)

and the parameters of the desired damping are updated as

[Ψk+1]i j = [Ψk ]i j +αa,[Ψ]i j δk+1∆ūk∇[Ψk ]i j ς (π̂(xk ,ξk ,Ψk )) , (4.42)

where (i , j ) = 1, . . . ,m, while observing (4.35). Algorithm 5 gives the entire Energy-Balancing
Actor-Critic (EBAC) algorithm with input saturation. For the EBAC algorithm the critic is
approximated, similar to S-AC, using (4.6). A block diagram representation of the control
Algorithm 5 is given in Figure 4.4.

u(x,ξ,ψ)

Cost Function
ρ(x,u)

Learning Algorithm

Plant
Control Law

x

Actor-Critic
ref

ξ,ψ

reward

Figure 4.4: Block diagram representation of the energy-balancing actor critic (EBAC) algorithm.
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Algorithm 5 Energy-Balancing Actor-Critic

Input: System (2.1), λ, γ, αa for each actor (i.e., αaξ and αaψ), αc for critic. The value
function is approximate using (4.6) and the policy is approximated as in (4.33) and
(4.34).

1: e0(x) = 0 ∀x
2: Initialize θ0, ξ0, ψ0

3: for number of trials do
4: Initialize x0

5: k ← 1
6: loop until number of samples
7: Execute: Draw an action using (4.33), apply the control input uk =
ς
(
π̂(xk ,ξk ,ψk )+∆uk

)
to (2.1), observe the next state xk+1 and the reward rk+1 =

ρ(xk+1)
8: Temporal Difference:
9: δk+1 = rk+1 +γV̂ (xk+1,υk )− V̂ (xk ,υk )

10: Critic Update:
11: for i = 1, . . . ,nc do
12: ei ,k+1 = γλei ,k +∇υi ,k V̂ (xk ,υk )
13: υi ,k+1 = υi ,k +αcδk+1ei ,k+1(x)
14: end for
15: Actor update:
16: for i = 1, . . . ,nes do
17: ξi ,k+1 = ξi ,k +αaξδk+1∆ūk∇ξi ,k

ς
(
π̂(xk ,ξk ,ψk )

)
18: end for
19: for i = 1, . . . ,m(m +1)ndi/2 do
20: ψi ,k+1 = ψi ,k + αaψδk+1∆ūk∇ψi ,kς

(
π̂(xk ,ξk ,ψk )

)
21: end for
22: end loop
23: end for
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4.3.3. EXAMPLE I: PENDULUM SWING-UP
For the pendulum system (4.17), the desired Hamiltonian (4.32) is,

Ĥd(x,ξ) = p2

2Jp
+ξTφes(q) . (4.43)

Only the potential energy can be shaped, denoted by V̂d(q,ξ) = ξTφes(q). Furthermore,
as there is only one input, K̂ (x,Ψ) becomes a scalar

K̂ (x,ψ) =ψTφdi(x) . (4.44)

Thus, control law (4.33) results in

u(x,ξ,ψ) = g †F

[
ξT ∇qφes −∇qV

0

]
− K̂ g T

[
ξT ∇qφes

J−1
p p

]
=−Rp

Kp

(
ξT ∇qφes +Mpgplp sin(q)

)
− Kp

Rp
ψTφdiq̇ , (4.45)

which is defined as the policy π̂(x,ξ,ψ), where g † is the pseudo-inverse g † = (g T g )−1g T .
The resulting two actor updates are

ξk+1 = ξk +αa,ξδk+1∆ūk∇ξς
(
π̂(xk ,ξk ,ψk )

)
, (4.46)

ψk+1 =ψk +αa,ψδk+1∆ūk∇ψς
(
π̂(xk ,ξk ,ψk )

)
, (4.47)

for the desired potential energy V̂d(q,ξ) and the desired damping K̂ (x,ψ), respectively.
The parameters were all initialized with zero vectors of appropriate dimensions, i.e.

(θ0, ξ0, ψ0) = 0. The EBAC Algorithm 5 was first run with the system simulated in Matlab
for 200 trials of three seconds each (with a near-optimal policy, the pendulum needs ap-
proximately one second to swing up). Each trial begins in the initial position x0 = [π,0]T .
Using the actor learning rateαab,ξ = 1×10−10 for the desired potential energy V̂d(q,ξ) and
αab,ψ = 0.2 for the damping-injection term K̂ (x,ψ) the EBAC Algorithm 5 was evaluated
50 times using the reward function (4.21) and simulation parameters from the Table 4.2.
Figure 4.5 shows the average learning curve obtained after 50 simulations. The algorithm
shows good convergence and on an average needs about 2 minutes (40 trials) to reach a
near-optimal policy. The initial drop in performance is caused by the zero-initialization
of the value function (critic), which is too optimistic compared to the true value func-
tion. Therefore, the controller explores a large part of the state space and receives a lot
of negative rewards before it learns the true value of the states. Note that the learning
rates were tuned such that there are no failed experiments, i.e. all 50 consecutive simu-
lations converge to a near-optimal policy. It was observed that if the learning rates are set
higher, faster learning can be achieved, however, at the cost of a higher number of failed
experiments. A simulation using the policy learned in a typical experiment is given in
Figure 4.6a. As can be seen, the pendulum swings back once to build up the momen-
tum and eventually gets to the equilibrium. The desired Hamiltonian Ĥd(x,ξ) (4.43),
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Figure 4.5: Learning curve for the proposed Energy-Balancing Actor-Critic method for 50 simulations.
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Figure 4.6: Simulation results for the angle q (a, top), momentum p (a, bottom) and the desired closed-loop
Hamiltonian Hd(x,ξ,ψ) (b) including the simulated trajectory (black dots) using the policy learned.

acquired through learning, is given in Figure 4.6b. There are three minima, of which one
corresponds to the desired equilibrium. The other two equilibria are undesirable wells
that come from the shaped potential energy V̂d(q,ξ) (Figure 4.7a). These minima are the
result of the algorithm trying to swing up the pendulum in a single swing, which is not
possible due to the saturation. Hence, a swing-up strategy is necessary to avoid staying
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in these wells. The number of these undesirable wells is a function of the control satura-
tion and of the number of basis functions chosen to approximate V̂d(q,ξ). The learned
damping K̂ (x,ψ) (Figure 4.7b) is positive (white) towards the equilibrium thus extracting
energy from the system, while it is negative (gray) in the region of the initial state. The
latter corresponds to pumping energy into the system, which is necessary to build up the
momentum for the swing-up and to escape the undesirable wells of V̂d(q,ξ) (see discus-
sion of expression (4.34)). A disadvantage is that control law (4.33), with the suggested
basis functions, is always zero for the setΩ= {x | x = (0+ jπ,0), j = 1,2, . . . } which implies
that it is zero not only at the desired equilibrium, but also at the initial state x0. During
learning this is not a problem since there is constant exploration, but after learning the
system should not be initialized at exactly x0 otherwise it will stay in this set. This can
be solved by initializing with a small perturbation ε around x0. In real-life systems it will
also be less of a problem as noise is generally present in the sensor readings.

(a) V̂d(q,ξ) (b) sgn
(
K̂ (x,ψ))

)
Figure 4.7: Desired potential energy (a) and desired damping (b) (gray: negative; white: positive) for a typical
learning experiment. The black dots indicate the individual samples of the simulation in Figure 4.6a.

STABILITY OF THE LEARNED CONTROLLER

Due to the control saturation the target dynamics might not satisfy (2.39). Hence, to

conclude the local stability of x∗ based on passivity first calculate ˙̂Hd(x,ξ) for the unsat-

urated case (Figure 4.8a) and the saturated case ( ˙̂Hd,sat(x,ξ)) and compute the sign of the
difference (Figure 4.8b). By looking at Figure 4.8b, it appears that ∃δ ⊂ Rn : |x − x∗| < δ

such that ˙̂Hd,sat(x,ξ) = ˙̂Hd(x,ξ). It can be seen from Figure 4.8b that such a δ exists, i.e.,

a small gray region around the equilibrium x∗ exists. Hence, by using ˙̂Hd(x,ξ) around
x∗ the stability using passivity can be assessed. Extensive simulations show that similar
behavior is always achieved.
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(a) sgn
(

˙̂Hd(x,ψ)
)

(b) ˙̂Hd,diff(x,ψ)

Figure 4.8: Signum of ˙̂Hd(x,ψ) (a) indicating positive (white) and negative (gray) regions and (b) ˙̂Hd,diff(x,ψ) =
sgn

(
˙̂Hd(x,ψ)− ˙̂Hd,sat(x,ψ)

)
indicating regions where ˙̂Hd(x,ψ) = ˙̂Hd,sat(x,ψ) (gray) and ˙̂Hd(x,ψ) 6= ˙̂Hd,sat(x,ψ)

(white). Black dots indicate the simulated trajectory.

REAL-TIME EXPERIMENTS

Using the physical setup shown in Figure 4.2, 20 learning experiments were run using
identical settings as in the simulations. There were no failures in this set of experiments
(i.e., the learning process always converged to a near-optimal policy capable of swinging
up and stabilizing the pendulum). The results are illustrated in Figure 4.9. The algorithm
shows slightly slower convergence - about 3 minutes of learning (60 trials) to reach a
near-optimal policy instead of 40 - and a less consistent average when compared to Fig-
ure 4.5. This can be attributed to a combination of model mismatch and the symmetrical
basis functions (note that it is not possible to incorporate non-symmetrical friction that
is present in the real system). Overall, the performance can be considered good when
compared to the simulation results. Also, the same performance dip is present which
can again be attributed to the optimistic value function initialization.

For the EBAC controller (4.33), physical meaning can be attributed to the learned
control law. This is not possible for the standard actor-critic controller in (4.24). Ad-
ditionally, when compared to the standard actor-critic (see Section 4.2.3) that needed
more than 100 policy parameters, energy balancing actor-critic (EBAC) can achieve the
same control objective with only 40 control parameters. Also, it can be observed from
Fig.4.5, that the proposed methods can learn the control policy much faster when com-
pared to the standard actor-critic algorithm (see Fig.4.3). An improvement of 30-50% in
learning speed was noticed. This faster convergence can be attributed to the available
prior knowledge in the form of PH model.

4.3.4. EXAMPLE II: REGULATION OF A 2-DOF MANIPULATOR ARM

The EBAC Algorithm 5 is used for set-point regulation of a fully actuated 2-DOF ma-
nipulator arm. The schematic and the physical setup used in this work is shown in the
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Figure 4.9: Learning curve for the proposed Energy-Balancing Actor-Critic method for 20 experiments with the
real physical system.

Figure 4.10. The manipulator has 2 links, each characterized by a link length li , mass mi ,
center of gravity ri , and moment of inertia Ii where i ∈ {1,2}.

The arm can operate either in the vertical or in the horizontal plane. Here only the
equations of motion for the vertical plane are given. For the horizontal plane, the poten-
tial energy terms in (2.3) are neglected. The system Hamiltonian is given by (2.3) with
q = [q1 q2]T , and p = [p1 p2]T = M(q)q̇ , and the system’s state-vector x = [qT pT ]T . The
mass-inertia matrix M(q) is

M(q) =
[

C1 +C2 +2C3 cos(q2) C2 +C3 cos(q2)
C2 +C3 cos(q2) C2

]
, (4.48)

and the potential energy V (q) is

V (q) =C4 sin(q1)+C5 sin(q1 +q2). (4.49)

The constants C1, . . . ,C5 are defined as

C1 = m1r 2
1 +m2l 2

1 + I1,

C2 = m2r 2
2 + I2,

C3 = m2l1r2,

C4 = m1g (r1 + l1),

C5 = m2g r2.
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(a) (b)

Figure 4.10: A two degree of freedom manipulator arm.

The equations of motion for the manipulator arm in PH form (2.1) are[
q̇
ṗ

]
=

([
0 I
−I 0

]
−

[
0 0
0 R22

])[ ∇q H(x)
∇p H(x)

]
+

[
0

g21

]
u,

y = [
0 g T

21

][ ∇q H(x)
∇p H(x)

]
, (4.50)

where R22 is the dissipation matrix in terms of the friction component µ

R22 =
[
µ 0
0 µ

]
,

and g21 is the input matrix in terms of gear ratio gr and scaling factor b

g21 =
[

grb 0
0 grb

]
.

The identified system parameters of (4.50) are given in Table 4.3.
The shaped energy term (4.32) is parameterized using 2nd order Fourier basis func-

tions (4.13) resulting in 9 learnable parameters ξ1, . . . ,ξ9. Along similar lines, the damp-
ing injection term in (4.34) and the value function (4.6) are approximated using 2nd or-
der Fourier basis function resulting in 243 and 81 learnable parameters, for the actor
and critic, respectively. The choice for the Fourier basis function is influenced by the
symmetry in the state and action space, since it can result in a smaller number of basis
functions as compared to the radial basis function (RBF) or polynomial basis function.
This reduces the number of parameters to be learnt hence resulting in a relatively faster
convergence of the learning algorithm. In order to guarantee equal weight to all the sys-
tem states, they are scaled to an uniform range of x̄ ∈ (−1,1). In addition, x̄ is mapped to
zero at x = xd. This is to explicitly satisfy the equilibrium requirement of equation (2.34).

For the 2-DOF manipulator system (4.50), using energy-balance (4.32) and damping
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Table 4.3: Manipulator arm parameters

Model parameters Link Symbol Value Units
Length of link 1 l1 18.5×10−2 m
Center of mass of link 1 r1 11.05×10−2 m

2 r2 12.3×10−2 m
Mass of link 1 m1 0.5 kg

2 m2 0.5 kg
Moment of inertia of link 1 I1 5×10−3 kg m2

2 I2 5×10−3 kg m2

Gear ratio gr 193
Scaling factor b 3.74×10−2

Friction coefficient µ 0.8738

injection term (4.34) the control action (4.33) is

[
u1(x,ξ,ψ)
u2(x,ξ,ψ)

]
=


−1

grb

(
ξT ∇q1φes(q)−∇q1 Hs(q)

)
−1

grb

(
ξT ∇q2φes(q)−∇q2 Hs(q)

)


−
[
ψ11φdi(x) ψ12φdi(x)
ψ21φdi(x) ψ22φdi(x)

][ ∇p1 Hns(x)
∇p2 Hns(x)

]
, (4.51)

with ψ12 =ψ21, where Hns = 1
2 pT M−1(q)p and Hs =V (q).

A state feedback control law that stabilizes the manipulator arm at any desired state

xd = [
q∗

1 q∗
2 0 0

]T is learned by using the EBAC Algorithm 5. The reward function ρ for
the algorithm is formulated such that, at the desired state xd the reward is maximum,
and everywhere else a penalty is incurred

ρ(q, p) = [
Qr Qr

][
cos(q1 −q∗

1 )−1
cos(q2 −q∗

2 )−1

]
− [

p1 p2
][

Pr 0
0 Pr

][
p1

p2

]
, (4.52)

where Qr = 25 and Pr = 104 are the weighting constants. The cosine function is used in
(4.52) to take into account the fact that the angle measurements wrap around 2π, i.e., the
use of cosine function is consistent with the mapping S1 →R for the angle. Additionally,
this proved to improve performance over a purely quadratic reward, such as the one
used in e.g. [91]. When the system is at the desired equilibrium xd = (q∗

1 , q∗
2 ,0,0) there is

no penalty. Elsewhere there is a negative reward proportional to the error between the
system state and the desired state xd.

The simulation parameters and system bounds for EBAC Algorithm 5 are given in
Table 4.4 and Table 4.5, respectively.

Using simulation the parameters (Table 4.4), the reward function (4.52) the EBAC Al-
gorithm 5 is used to learn the unknown parameters of the control law (4.51). The simu-
lation was repeated for 100 trials each of 3 seconds. This procedure is repeated 50 times
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Table 4.4: Learning parameters

Parameters Symbol Value Units
Trials − 100 -
Trial duration Tt 3 s
Sample time Ts 0.01 s
Decay rate γ 0.97 -
Eligibility trace λ 0.65 -
Exploration variance σ2 1/3 -
Learning rate for critic αc 0.01 -
Learning rate for V̂d(q,ξ) αa,ξ 1×10−2 -
Learning rate for K̂d(x,ψ) αa,ψ 1×10−8 -

Table 4.5: Bounds on system states and input

Bounds Symbol Value Units
Max control input umax 1 -
Min control input umin −1 -
Maximum angle qmax 5π/12 rad
Minimum angle qmin −5π/12 rad
Maximum momentum pmax 2π×10−2 kg rad/sec
Minimum momentum pmin −2π×10−2 kg rad/sec
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and the resulting mean, minimum, maximum, and confidence region of the learning
curve are plotted in Figure 4.11.
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Figure 4.11: Results for the EBAC method for 50 learning simulations (k denotes 103).

As evident from the average learning curve in Figure 4.11, the algorithm shows good
convergence as it takes around 10 trials (i.e. 30 sec) to obtain a near optimal policy.
During the initial stage a dip in the learning curve is visible due to zero-initialization of
the unknown parameters υ, ξ, and ψ, which is too optimistic compared to the learned
solution. Once the algorithm has converged with sufficient accuracy the exploration is
reduced by setting the variance of ∆uk to 0.05, resulting in a considerable jump in the
learning curve at 3 minutes and 45 seconds into simulation.

By following the similar procedure the parameters of the EBAC control law (4.51) was
learned experimentally on a physical setup. The evaluation of the learned controllers is
depicted in Figures 4.12 and 4.13. The two learned control laws, one in simulation and
the other on the physical setup, provide a comparable performance.

A major drawback of the standard PBC is the model and parameter dependency, i.e.,
for model and parameter uncertainties the resulting ES-DI controller might not be able
to achieve zero steady-state errors [67]. This issue can be straightforwardly handled by
the EBAC Algorithm 5 due to its learning capabilities. This is evaluated by intention-
ally considering an incorrect system Hamiltonian, neglecting the potential energy term
V (q) in (2.3). The physical equivalence is that the arm operates in the vertical plane
while to design the control law, the horizontal plane of operation was assumed. Fig-
ure 4.14 illustrates the comparison between standard PBC and EBAC for an imprecise
system Hamiltonian, whereas the standard PBC results in a small steady state error. The
EBAC Algorithm 5 successfully compensates for modeling errors. The EBAC algorithm
was evaluated for parameter uncertainties. This is done by using incorrect mass and
length values in the control law (4.51). The EBAC algorithm was able to compensate and
learn an optimal control law with zero steady-state-errors. However, the learning algo-
rithm was found to be sensitive for the variations in the friction coefficient.
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Figure 4.12: Comparison: Simulation and experimental results θ1 and u1.
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Figure 4.13: Comparison: Simulation and experimental results θ2 and u2.
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4.4. ACTOR-CRITIC ALGORITHMS FOR IDA-PBC
Due to the dissipation obstacle (2.42) the standard passivity-based method and hence
energy-balance actor-critic (EBAC) can only be applied to a limited set of physical sys-
tems. This problem can be addressed by using the interconnection and damping as-
signment PBC (IDA-PBC). Also unlike standard-PBC, in IDA-PBC the original system
does not need to be in the port-Hamiltonian form (2.1), any generic input-affine non-
linear form (2.13) would suffice. In this section a modified version of the online standard
actor-critic learning Algorithm 4 is developed to solve the algebraic IDA-PBC and non-
parametric IDA-PBC problems. The combination of these two method can be used to
obtain the parameterized IDA-PBC controller, which is not detailed in this thesis.

4.4.1. ALGEBRAIC IDA-PBC
For a generic input-affine nonlinear system (2.13), the algebraic IDA-PBC objective is to
find a state-feedback law u =β(x) such that the resulting closed-loop is of the form [38],

ẋ = Fd(x)∇x Hd(x), (4.53)

where ∇ denotes the gradient operator ∂
∂x . In algebraic IDA-PBC the desired Hamilto-

nian needs to satisfy the minimality condition (2.34) and the system matrix Fd(x) is ob-
tained by the desired interconnection and dissipation matrix as

Fd(x) = Jd(x)−Rd(x). (4.54)

Using the Moore-Penrose inverse of the input matrix g (x), the control law β(x) that
achieves the desired closed-loop (4.53) is

β(x) = (
g T (x)g (x)

)−1
g T (x)

(
Fd(x)∇x Hd(x)− f (x)

)
. (4.55)

The control law in (2.47) and (4.55) are equivalent, where the PH system dynamics
(

J (x)−
R(x)

)
∂H
∂x in (2.47) is replaced by a more generic nonlinear system f (x) in (4.55). Some

of the unknown elements of Fd(x) and Hd(x) can be obtained by using the matching
condition

g⊥(x)
(
Fd(x)∇x Hd(x)− f (x)

)= 0, (4.56)

where g⊥(x) ∈R(n−m)×n is the full-rank left annihilator matrix of g (x), i.e., g⊥(x)g (x) = 0.
The control law (4.55) is a generalized version of (2.47) for the nonlinear system (2.13).
The same implies for the matching condition (4.56) and (2.48).

In this section the algebraic IDA-PBC method is explained by using a fully actuated
mechanical system as an example. Some of the difficulties encountered in using alge-
braic IDA-PBC will also be highlighted. Consider a fully actuated mechanical system[

q̇
ṗ

]
=

[
0 I
−I 0

][ ∂H
∂q (x)

∂H
∂p (x)

]
+

[
0
I

]
u, (4.57)

where the state vector x = [qT pT ]T consists of the generalized position q ∈Rn̄ and gen-
eralized momentum p ∈ Rn̄ , with 2n̄ = n. The total energy or the system Hamiltonian
H(x) is given by the sum of the kinetic and potential energy (2.3).
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In algebraic IDA-PBC, one can choose the desired closed-loop Hamiltonian to be
quadratic in increments. The minimality condition (2.34) at x∗ = [qT∗ 0]T can be ensured
by choosing Hd(x) as

Hd(x) = 1

2
pT M−1(q)p + 1

2
(q −q∗)TΛ(q −q∗) (4.58)

whereΛ ∈Rn̄×n̄ is a positive-definite scaling matrix.
For a generic system matrix Fd(x)

Fd(x) =
[

F11(x) F12(x)
F21(x) F22(x)

]
(4.59)

by using (4.57)–(4.59) in (4.56) results in the algebraic equation

F11(x)Λ(q −q∗)+F12(x)M−1(q)p −M−1(q)p = 0, (4.60)

which can be trivially solved by choosing F11(x) = 0 and F12(x) = I . Similarly by substi-
tuting (4.57)–(4.59) in (4.55) the control law will be

u =β(x) = F21(x)Λ(q −q∗)+F22(x)M−1(q)p + ∂H

∂q
, (4.61)

where the unknown entries F21 and F22 need to chosen appropriately. For simple con-
trol problems, like stabilization of the mass-spring-damper, the choice of F21 and F22 is
straightforward [36]. However, for more challenging control tasks such as the pendulum
swing-up and stabilization, finding these parameters can be difficult [85].

In this work, rather than choosing the unknown elements F21 and F22, they are pa-
rameterized by using linear-in-parameters function approximators

β(x) = ξT
1 φ(x)Λ(q −q∗)+ξT

2 φ(x)M−1(q)p + ∂H

∂q
, (4.62)

where ξ = [ξT
1 ξ

T
2 ]T is the unknown parameter vector and φ(x) is a user-defined matrix

of basis functions.

AIDA-AC ALGORITHM

The algebraic interconnection and damping assignment actor-critic algorithm (AIDA-
AC) is constructed as follows. Consider the generic algebraic IDA control law in (4.55),
parameterize the matrix Fd as Fd(x,ξ) to obtain

π̂(x,ξ) = (
g T (x)g (x)

)−1
g T (x)

(
ξTφ(x)︸ ︷︷ ︸

Fd(x,ξ)

∇x Hd(x)− f (x)
)
, (4.63)

where ξ is the unknown parameter matrix. These parameters are updated by using the
standard actor-critic Algorithm 4. A block diagram representation of the algebraic IDA
learning algorithm is given in Figure 4.15. The following two examples demonstrates
the feasibility of the algorithm, first it is evaluated for swing-up and stabilization of the
pendulum at the upright position. In the second example the learning algorithm is used
to solve the regulation control of a magnetic levitation system.
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Cost FunctionLearning Algorithm

PlantControl Law 
    Eq (4.63)

Actor-Critic
refreward

Figure 4.15: Block diagram representation of AC algorithm for Algebraic IDA-PBC.

EXAMPLE I: PENDULUM SWING-UP AND STABILIZATION

The AIDA-AC algorithm is evaluated for the pendulum swing-up and stabilization task.
As explained in [85], devising a single smooth energy-based control-law that can achieve
both swing-up and stabilization of a pendulum is an arduous task. Here, by using the
learning method the swing-up and stabilization of a pendulum can be achieved with
relatively low controller complexity.

For the pendulum dynamics (4.17), the system parameters of the laboratory setup
given in Figure 4.2 are in Table 4.1. The desired Hamiltonian is chosen to be quadratic in
increments as

Hd(x) = 1

2
γq(q −q∗)2 + p2

2Jp
, (4.64)

where x = [q p]T , γq is a unit conversion factor. It is evident that the desired Hamilto-
nian Hd(x) satisfies the minimality condition (2.34) at x∗ = (q∗, p) = (0,0). By using the
desired closed-loop matrix (4.59), the matching condition (4.56) is

p

Jp
= F11(x)γq(q −q∗)+F22(x)

p

Jp
, (4.65)

which can be trivially solved by choosing F11(x) = 0 and F12(x) = 1. For the sake of
plainness we chose F22(x) = R22, where R22 is given in (4.18). The algebraic IDA-PBC
feedback control law (4.63) for the pendulum (4.17) using (4.59) and (4.64) is

β(x) =−F21(x)γq(q −q∗)−Mpg lp sin(q),

=−ξTφ(x)γq(q −q∗)−Mpg lp sin(q). (4.66)

The unknown vector ξ is then learned using the standard actor-critic Algorithm 4. The
actor and critic learning rate is given in Table 4.6. For other simulation parameters, see
Table 4.2.

Table 4.6: Learning rates for the pendulum swing-up task(for rest of the parameters see Table 4.2)

Learning rate Symbol Value [Units]
Learning rate critic αc 0.01 [-]
Learning rate F21(x) αaξ 1×10−8 [-]
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Using the quadratic reward function ρ(x,u) = Qrq2 −Rrp2 where Qr = 30 , Rr = 0.1
J 2

p
,

two controllers are learnt, one in simulation and the other on the physical system. The
evaluation of the learned control laws in simulation and experiment is given in Fig-
ure 4.16. Due to the limited actuation, the pendulum first builds up the required mo-
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Figure 4.16: Simulation and experimental result for pendulum swing-up using AIDA-PBC.

mentum by swinging back and forth. After sufficient energy is achieved, the controller is
able to swing-up and stabilize the pendulum at the desired up-right position.

EXAMPLE II: STABILIZATION OF MAGNETIC LEVITATION SYSTEM

The dynamics of the magnetic levitation system [107], illustrated in Figure 4.17, are

M q̈ = M g − e2C1

2
(
C1 +L0(C2 +q)

)2 ,

ė =−R
e(C2 +q)

C1 +L0(C2 +q)
+u, (4.67)

where q is the position of the steel ball, and e = L(q)i is the magnetic flux, a function of
the current i through the coil and the varying-inductance L(q) given by

L(q) = C1

C2 +q
+L0. (4.68)

The actuating signal is the voltage u across the coil. The system parameters from
[107] are given in Table 4.7.

Table 4.7: System parameters for the magnetic levitation system
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Figure 4.17: Schematic of the magnetic levitation system. Adopted from [32].

Model parameters Symbol Value Units
Mass of steel ball M 0.8 kg
Electrical resistance R 11.68 Ω

Coil parameter 1 C1 1.6×10−3 Hm
Coil parameter 2 C2 7×10−3 m
Nominal inductance L0 0.8052 H
Gravity g 9.81 m/s2

The desired Hamiltonian is

Hd(x) = 1

2
γq (q −q∗)2 + p2

2M
+ 1

2L0
(e −e∗)2, (4.69)

where the system state is x = [q p e]T in terms p = M q̇ which is the momentum
and e∗ = √

2M g /C1
(
C1 + L0(C2 + q∗)

)
is the required flux at the desired position q∗.

Observe that the desired Hamiltonian Hd(x) satisfies the minimality condition (2.34) at
x∗ = (q∗,0,e∗)T . A generic system matrix Fd(x) for the magnetic levitation system is

Fd(x) =
 F11(x) F12(x) F13(x)

F21(x) F22(x) F23(x)
F31(x) F32(x) F33(x)

 . (4.70)

By using the desired closed-loop matrix (4.70), the first matching condition (4.56) is

p

M
= F11(x)γq(q −q∗)+F12(x)

p

M
+F13(x)

e −e∗
L0

, (4.71)
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which can be trivially solved by choosing F11(x) = 0, F12(x) = 1 and F13(x) = 0. For the
sake of plainness by choosing F21(x) = 1, F31(x) = 0, and F33(x) = R where the resistance
R is given in Table 4.7. The achievable algebraic IDA-PBC closed loop is

 q̇

ṗ

ė

=

 0 1 0

1 −F22(x) F23(x)

0 −F23(x) −R




∂Hd
∂q (x)

∂Hd
∂p (x)

∂Hd
∂e (x)

 . (4.72)

The feedback control law (4.63) for the magnetic levitation system (4.67) using (4.72)
and (4.69) is

β(x) =−F23(x)
p

M
−R

(e −e∗)

L0
+R

e(C2 +q)(
C1 +L0(C2 +q)

)
=−ξTφ(x)

p

M
−R

(e −e∗)

L0
+R

e(C2 +q)(
C1 +L0(C2 +q)

) (4.73)

The unknown parameter vector ξ of (4.73) is learnt using the standard actor-critic
Algorithm 4. It must be noted that for the choice of the desired system matrix (4.70) and
desired Hamiltonian (4.69), the second matching condition

M g − e2C1

2
(
C1 +L0(C2 +q)

)2 = F22(x)
p

M
+F23(x)

e −e∗
L0

, (4.74)

was not explicitly solved. This is to ensure a higher freedom in learning at the cost of
guaranteed closed-loop passivity. For the learning algorithm the required simulation
parameters are given in Table 4.8.

Table 4.8: Learning parameters for magnetic levitation system

Parameter Symbol Value Units
Trials − 100 -
Time per trial Tt 2 s
Sample time Ts 0.004 s
Decay rate γ 0.95 -
Eligibility trace λ 0.65 -
Learning rate critic αc 0.01 -
Learning rate F23(x) αaξ 1×10−7 -

Due to physical constraints, the control input and the system states are bounded, their
respective ranges are given in Table 4.9. A stabilizing control law without pre-magnetization
was learned in simulation. The resulting learning curve and a sample simulation of the
learnt control law are illustrated in Figure 4.18 and Figure 4.19, respectively. For the mag-
netic levitation system (4.67), the algebraic-IDA control law (4.73) was learned 20 times
the resulting the average learning curve is given in Figure 4.20.



4.4. ACTOR-CRITIC ALGORITHMS FOR IDA-PBC

4

71

Table 4.9: Bounds on system states and input for the magnetic levitation system

System state Symbol Value Units
Input voltage umax 60 V

umin −60 V
Position qmax 13 mm

qmin 0 mm
Momentum pmax 3×10−1 kg m/s

pmin −3×10−1 kg m/s
Magnetic flux emax 3 Wb

emin −3 Wb
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Figure 4.18: Magnetic levitation learning curve for algebraic IDA-PBC.
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Figure 4.19: Evaluation of learned control law for magnetic levitation using AIDA-AC.

Although there is an input, the steel ball stays in the rest position (i.e. 13mm) till 0.05
seconds, this is due to the time required to magnetize the coil.
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Figure 4.20: Learning curve for magnetic levitation system using algebraic-AC for 20 simulations.

4.4.2. NON-PARAMETERIZED IDA-PBC
In this section the design issues associated with non-parameterized IDA-PBC control de-
sign are explained. The control synthesis procedure is simplified by using function ap-
proximators in terms of unknown parameter vectors. These parameters are then learned
using the actor-critic approach. This is evaluated for the stabilization of a generic input-
affine nonlinear system. The combination of this method with the AIDA-AC approach
introduced in the previous section can be used to address the parameterized IDA-PBC
synthesis problem.

CONTROL PARAMETRIZATION

As explained in Section 4 of Chapter 2, for the non-parameterized IDA-PBC the desired
system matrix Fd(x) defined in (4.54) is fixed. The design objective is to find an appro-

priate gradient of the desired Hamiltonian, i.e., ∂Hd
∂x (x) such that the matching condi-

tion (4.56) is satisfied and the system (2.13) is stabilized at the desired equilibrium x∗.

However as explained in [28] finding the correct gradient ∂Hd
∂x (x) can be cumbersome.

Instead the gradient can be replaced as ∂Hd
∂x (x) = [h1(x) h2(x) · · · hn(x)]T , where

h1(x),h2(x), · · · ,hn(x) etc. are unknown functions [28]. By using a prefixed system ma-
trix Fd(x), the IDA-PBC control law (4.55) can be obtained in terms of (n −m) gradient
components, (h1(x),h2(x), · · · ,hn−m(x)). This can be explained with a simple example.
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Consider a fully actuated mechanical system

[
q̇
ṗ

]
=

[
0 I
−I 0

][ ∂H
∂q (x)

∂H
∂p (x)

]
+

[
0
I

]
u, (4.75)

where the generalized position q ∈ Rn̄ and the momentum p ∈ Rn̄ constitutes the state
vector x = [qT pT ]T with 2n̄ = n. The total energy or the system Hamiltonian H(x) is
given by the sum of the kinetic and potential energy

H(x) = 1

2
pT M−1(q)p +V (q), (4.76)

where the mass-inertia matrix M(q) ∈ Rn̄×n̄ is positive-definite. The potential energy
term V (q) ∈R is assumed to be bounded from below. By fixing the desired system matrix
Fd(x) as

Fd(x) =
[ −1 1

−1 −1

]
, (4.77)

the matching condition (4.56) for (4.75) using (4.77) and the gradient ∇x Hd(x) = [h1(x)
h2(x)]T is

−h1(x)+h2(x) = M−1(q)p, (4.78)

the component h1(x) can be parameterized by using the function approximation in terms
of an unknown parameter vector ξ ∈ Rnc and a known basis function vector φc(x) ∈ Rnc

i.e., h1(x) = ξTφc(x). Then the non-parameterized IDA-PBC control law for the system
(4.75) is

u =β(x) =−ξTφc(x)−M−1(q)p + ∂H

∂q
, (4.79)

The minimality condition (2.34) at x∗ = [qT∗ 0]T can be ensured by having an appropriate
value for the basis function φc(xd). The unknown parameter vector ξ can be learned
online by using reinforcement learning as explained in the following section.

NON-PARAMETERIZED IDA ACTOR-CRITIC

The non-parameterized IDA algorithm is constructed similar to algebraic IDA. First con-
sider the generic IDA control law in (4.55) for an affine nonlinear system (2.13), parame-
terize the Hamiltonian derivative as∇x Hd(x,ξ) = ξTφc(x)= [h1(x) h2(x) · · · hn−m(x)]T ,
where (h1(x),h2(x), · · · , hn−m(x)) are free components and they satisfy the matching
condition (4.56). The control law is

π̂(x,ξ) = (
g T (x)g (x)

)−1
g T (x)

(
Fd ξ

Tφc(x)︸ ︷︷ ︸
∇x Hd(x,ξ)

− f (x)
)
, (4.80)

where ξ is the unknown parameter matrix. These parameters are updated by using the
standard actor-critic Algorithm 4. A block diagram representation of the non-parametric
IDA-PBC learning algorithm is given in Figure 4.21. The following example demonstrates
the feasibility of the algorithm, it is evaluated to show the stabilization of an affine non-
linear system at the origin.
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PlantController

Actor-Critic
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ξ
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Figure 4.21: Block diagram representation of AC algorithm for non-parameterized IDA-PBC.

EXAMPLE: NONLINEAR SYSTEM

For the nonlinear system [
ẋ1

ẋ2

]
=

[
x2

1 +x2

x1 +2x2

][
0
1

]
u, (4.81)

non parametric actor-critic algorithm is used to stabilize the system at the origin from a
given initial state. The system matrix Fd(x) is fixed as

Fd(x) =
[ −1 1

−1 −1

]
. (4.82)

Using (4.81), (4.82) with ∂Hd
∂x = [h1(x) h2(x)]T and g⊥ = [1 0] in the matching con-

dition (4.56) results in
−h1(x)+h2(x) = x2

1 +x2. (4.83)

The resulting non-parameterized IDA-PBC control law (4.55) for h2(x) = h1(x)+ x2
1 + x2

is
β(x) =−2h1(x)−x2

1 −x1 −3x2, (4.84)

where h1(x) is yet to be designed. In this work this function is parameterized using a
function approximator as h1(x) = ξTφc(x). The unknown vector ξ is then learned using
the standard actor-critic Algorithm 4. The actor and the critic learning rate is given in
Table 4.10. For other simulation parameters, see Table 4.2. The control input and the
system states are bounded and their respective ranges are given in Table 4.11.

Table 4.10: Learning rates for the pendulum swing-up task (for rest of the parameters see Table 4.2)

Learning rate Symbol Value [Units]
Learning rate critic αc 0.01 [-]
Learning rate F21(x) αaξ 1×10−4 [-]

Using the square root reward function ρ(x,u) =−Q1
p

x̄1−Q2
p

x̄2 where Q1 =Q2 = 5,
and x̄ = si g n(x) x

xmax
. A stabilizing control law was learned in simulation. The result-

ing learning curve and a sample simulation of the learnt control law are illustrated in
Figure 4.22 and Figure 4.23, respectively.
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Table 4.11: Bounds on system states and input for the nonlinear system

System state Symbol Value
Input umax 60

umin −60
State xmax 5

xmin −5
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Figure 4.22: Non-parameterized IDA-PBC learning curve for nonlinear system (4.81).
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Figure 4.23: Evaluation of non-parameterized IDA-PBC learned control law for the nonlinear system (4.81).

4.5. CONTROL-BY-INTERCONNECTION USING RL
For a given port-Hamiltonian system (2.1) depending on whether the state is indepen-
dent of dissipation or not, its state-space can be separated into shapable and non-shapable
components (i.e., x = [xT

s xT
ns]T ) [36]. This classification is dictated by the dissipation ob-

stacle (2.57), which requires the state-dependent function S in (2.52) to be a function of
only the shapable component. Thus the static relationship between controller and the
system states is ξ = S(xs). For a mechanical system (2.2), the dissipation component
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of the system is embedded in the submatrix D . Since the dissipation influences only
the momentum p, thus making it the non-shapable component, based on the earlier
remark, the static relationship between the controller and system states will be ξ= S(q).

A straightforward choice for the function S would be S(q) = q +κ where κ is some
constant that ensures equilibrium condition for x∗ = (q∗,0), a common choice is κ =
−q∗. The resulting controller Hamiltonian will be Hc(ξ) = Hc(q +κ).

It must be noted that the controller Hamiltonian Hc(q +κ) is still an unknown func-
tion and it may have infinitely many solutions. Also in CbI, it is not possible to incor-
porate performance measures to determine a valid choice for Hc(q +κ). The aforemen-
tioned issues can be addressed by first parameterizing the controller Hamiltonian as a
polynomial of degree na,

Hc(q +κ) = θ1

2
(q +κ)2 + θ2

3
(q +κ)3 +·· ·+

θna

na +1
(q +κ)na+1 (4.85)

where θ = (θ1, · · · ,θna ) is an unknown parameter vector. The parameters can then be
learned by using the standard actor-critic algorithm 4.

4.5.1. CBI-AC ALGORITHM
For the controller Hamiltonian (4.85), the control law for CbI is

u =−yc

=−g T
c (ξ)

∂Hc

∂ξ
(ξ)

=−g T
c (ξ)

(
θ1(q +κ)+θ2(q +κ)2 +·· ·+θn(q +κ)n)

,

=−g T
c (ξ)

(
θTφa(xs)

)
,

= π̂(xs,θ) (4.86)

where θ is the unknown parameter matrix. These parameters can be learned using the
standard actor-critic scheme Algorithm 4. A block diagram representation of the control
by interconnection learning algorithm is given in Figure 4.24.

Cost FunctionLearning Algorithm

PlantController

Actor-Critic
refreward

Figure 4.24: Block diagram representation of AC algorithm for Control by interconnection.
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(a) (b)

Figure 4.25: A two degree of freedom manipulator arm.

The Algorithm 4 is modified to consider the saturation function which limits the con-
trol input between an upper and a lower bound. For a traditional saturation in u ∈ R of
the form max(umi n ,min(umax ,u)), i.e. assuming input u is bounded by umi n and umax ,
then the gradient of the policy is the zero outside the unsaturated region (i.e. when
u ≤ umi n or u ≥ umax ). For other types of saturation the function the gradient of the
policy must be computed. It must be noted that during learning the asymptotic stability
of the equilibrium cannot be guaranteed, however, the closed loop remains passive. This
is because the controller Hamiltonian is learned while ensuring the chain of equalities
(2.54)–(2.57). The boundedness of the actor parameter (controller parameter θ in (4.85))
can be ensured by using an appropriate projection operator [30].

4.5.2. EXAMPLE: MANIPULATOR ARM
The setpoint regulation of a two degree-of-freedom manipulator arm by using control-
by-interconnection is evaluated using the Algorithm 4. The schematic of the physical
setup is given in Figure 4.25. The equations of motion for the manipulator arm is given
in (4.50) and its parameters is in Table 4.12.

Table 4.12: Parameter values of the manipulator arm

Model parameters Link Symbol Value Units
Length of link 1 l1 10×10−2 m

2 l2 10×10−2 m
Center of mass of link 1 r1 5×10−2 m

2 r2 5×10−2 m
Mass of link 1 m1 0.2 kg

2 m2 0.2 kg
Moment of inertia of link 1 I1 5×10−4 kgm2

2 I2 5×10−4 kgm2

Gear ratio gr 20
Scaling factor b 3×10−1

Friction coefficient µ 0.15
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The control input to the manipulator arm (4.50) using (4.85) to ensure the equilib-
rium condition for x∗ = (q∗,0) is

u = θ1(q −q∗)+θ2(q −q∗)2 +·· ·+θna (q −q∗)na . (4.87)

The parameters of the control law (4.87) can then be learned using the Algorithm 4.
The simulation and system bounds used for the evaluation are given in Table 4.13 and
Table 4.14, respectively. The algorithm was implemented in Matlab, the simulation was
repeated for 100 trials each of 2 seconds (i.e., 2000 samples).

Table 4.13: Learning parameters for manipulator arm

Parameter Symbol Value Units
Trials − 100 -
Trial duration Tt 2 s
Sample time Ts 0.001 s
Discount factor γ 0.97 -
Eligibility trace λ 0.67 -
Critic learning rate αv 0.01 -
Actor learning rate αa 5×10−7 -

Table 4.14: Bounds on system states and input

System variable Symbol Value Units
Control input umax 0.3 -

umin −0.3 -
Position qmax 1 rad

qmin −1 rad
Momentum pmax π kg rad/s

pmin −π kg rad/s

The algorithm was evaluated for two different variants of cost functions. First using
a quadratic type of cost function the usefulness of the CbI-AC is demonstrated. For this
purpose the reward function ρ is formulated as

ρ(x,u) =−(x −x∗)T Qx(x −x∗)−uT Quu, (4.88)

where Qx penalizes the controller if the system state x is away from the desired state
x∗. Similarly, Qu will penalize the control effort if it uses too large a control action. The
chosen values are

Qx =


1×102 0 0 0

0 1×102 0 0
0 0 0 0
0 0 0 0

 ,

Qu =
[

8×103 0
0 8×103

]
.
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The choice for Qu is motivated by the saturation bounds. The CbI-AC is evaluated us-
ing the parameters of Table 4.13 for the cost function (4.88). The control objective is
to stabilize the arm at the desired position x∗ = (0, 0, 0, 0)T from an initial position
x0 = (qmin, qmin, 0, 0)T . The simulation is repeated 20 times, the resulting average, min-
imum, maximum and the confidence region of the learning curve are plotted in Fig-
ure 4.26.
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Figure 4.26: Result of CbI-AC for cost function (4.88).

The evaluation of the learned control law that stabilizes the arm at x∗ = (0, 0, 0, 0)T

from an initial position x0 = (qmin, qmin, 0, 0)T is given in Figure 4.27.
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Figure 4.27: Evaluation of CbI-AC control law for linear quadratic cost function.

As it is evident from the response shown in Figure 4.27 there is no control saturation
and the system input is well within the bounds. However, the response is rather slow. In
order to achieve faster step response a lower Qu can be used thus resulting in a higher
control action. Also a faster response can be achieved by incorporating a time-weighted
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penalty for the controller. For this purpose the reward function is made time varying

ρ(x,u,k) =−ηk (x −x∗)′Qx(x −x∗), (4.89)

where η> 1 is some constant and k is the time index. The longer the controller takes to
stabilize the system at the desired position x∗ the more negative reward it will receive.
It must be noted that the reward function (4.89) depends on the time index k hence it
does not strictly satisfy the Markov property. However, the system dynamics can still be
assumed to be a Markov decision process as this reduces the complexity of the problem
[12]. The CbI-AC Algorithm 4 is evaluated using the parameters of Table 4.13 for the cost
function (4.89). The simulation is repeated 20 times, the resulting average, minimum,
maximum and the confidence region of the learning curve are plotted in Figure 4.28.
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Figure 4.28: Result of CbI-AC for cost function (4.89).

The evaluation of the learned control law that stabilizes the system at the origin is
given in Figure 4.29.
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Figure 4.29: Evaluation of CbI-AC control law for time-based cost function.
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4.6. DISCUSSION AND CONCLUSIONS
Based on the results and observations done in this chapter it can be summarized that
the general advantages of combining learning with PBC are

• Learning based algorithms (EBAC, AIDA-AC, CbI-AC etc.) can avoid solving com-
plex nonlinear equations. For example the PDE’s resulting from the matching con-
dition was either solved implicitly or used to formulate the control law.

• RL allows for the local specification of the stabilization or regulation objective, i.e.,
the minimality condition (2.34) can be easily satisfied for the desired Hamiltonian,
whereas in model-based PBC, one must specify the global desired Hamiltonian.

• The use of prior information in the form PH model increases the learning speed.
This has been experimentally observed for a simple pendulum stabilization, regu-
lation of a manipulator arm etc.

• Robustness against model and parameter uncertainty can be achieved thanks to
learning.

• Nonlinearities such as control saturation can be easily handled by RL.

• Physical meaning can be attributed to the learned control law.

In this chapter various learning based approaches were evaluated for different phys-
ical systems, such as pendulum, manipulator arm, magnetic levitation etc. The PBC
control law was systematically parameterized using function approximators and the un-
known parameters were learned either using the standard actor-critic algorithm 4 or a
variation of the same. Because of the use of gradient-based parameter update rule, the
actor-critic based algorithms introduced in this chapter can find a locally (near-) opti-
mal control law. Additionally, due to its learning capabilities the introduced actor-critic
based algorithms are robust against model and parameter uncertainty. However, learn-
ing for PH systems introduces a few notable challenges. For example, exploration, an
integral part of actor-critic techniques (hence also the introduced methods), may not
be feasible when it is too dangerous to explore the system’s state-space, particularly in
safety-critical applications. Similar to many RL algorithms, the developed methods are
also affected by the curse of dimensionality.

Additionally learning itself introduces new complexities. For example, Algorithm 4
has many learning parameters that need to be tuned by the designer (e.g. γ,λ,αa,αc,
etc.). It must be noted that, among these parameters only the learning rate for the actor
and the critic needs to be carefully chosen, since the rest are nominal values and can be
obtained from the literature. An improper learning rate may result in poor or no learn-
ing. To obtain an appropriate learning rates (i.e., α’s) a typical approach followed in RL
community is gridding. The learning rate α is gridded over a suitable range and for each
combination the learning process is repeated until a satisfactory result is obtained [18].
This is a rather long and computationally expensive approach. Nevertheless, there is a
great potential in integrating learning algorithms within the PH framework, as it consid-
erably simplifies the control design process.





5
CONVERGENCE OF

PASSIVITY-BASED ACTOR-CRITIC

ALGORITHMS

The learning algorithms introduced in Chapter 4 follow the standard actor-critic frame-
work of Algorithm 4. In this chapter a generic proof-of-convergence is given, which can
be applied to the methods discussed in Chapter 4, this is provided Gaussian exploration
is used. For the convergence proof, in this chapter the system is assumed to operate
in a discrete time and discrete space setting, this is a major deviation from the meth-
ods discussed in Chapter 4. The discretization in space and time can be partly justified
due to the computer control of physical systems. Since when using a digital computer
discretization in both time and space is inevitable.

This chapter is formulated in a tutorial framework, to this end we compile all the rele-
vant material from the literature, such as policy gradient (Section 2), stochastic approx-
imation theory (Section 4) etc. We have developed a framework to convert an existing
parameterized control law in to policy and we obtain the parameter update rule for this
policy (Section 3). Finally the available actor-critic convergence proof [30, 108] is ex-
tended for discounted reward setting in Section 5.

5.1. INTRODUCTION
In this chapter the proof of convergence for the passivity-based learning algorithms pro-
posed in Chapter 4 is given. As stated in Chapter 4, the objective in RL is to find a param-
eter vector θ of the policy π(x,θ) so as to maximize a user defined return function. When
evident, the parameter θ will not be explicitly indicated. Algorithms in Chapter 4 use
discounted reward as the return function. For the purpose of proof, in this chapter we
deviate from the nomenclature that is used in the previous chapter. As will be explained
later, the actor update (4.12) can be represented as a stochastic ODE. Instead of maxi-
mizing a return function as done in Chapter 4, the stability and the convergence proof
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can be considerably simplified by opting for a minimization problem. The RL objective
can be redefined as: find an optimal policy π(x,θ) so that a user defined cost function
Jπ(x) is minimized. From the basics of the optimization theory the parameter update
for θ to minimize the cost function is [109, 110]

θk+1 = θk −αak∇θ Jπ(x), (5.1)

where k is the time index and ∇ is the gradient derivative.
For the stability and convergence proof, the system is assumed to operate in a dis-

crete time and discrete space setting. This assumption can be justified due to the com-
puter control of physical systems. Since when using a digital computer discretization in
both time and space is inevitable. This is due to the sampling and resolution, respec-
tively. Use of discrete time framework is consistent with the algorithms presented in
Chapter 4. Assuming the operating-space of a system is limited. The state space and
action space can be discretized into a finite but large number of sections. Because of the
discrete setting, a probability mass function can be used to depict the state transition
probability. This simplifies the proof discussed in this chapter. Additionally, the discrete
time and discrete space representation simplifies the notation and thus enhances read-
ability.

The chapter is organized as follows, in Section 2, policy gradient for discounted re-
ward is provided. The proof is a repetition of the available results in [18, 19, 30, 104]. It is
detailed here for the sake of completeness. We have developed a framework to convert
the parameterized control law to a probability density function (i.e., RL policy) and it is
given in Section 3. For alternate representations of the control policy see [111]. In Sec-
tion 4 a brief overview on the stochastic approximation algorithm is given, it is based on
the available literature, for e.g., [29, 112–114]. Following this, in Section 5, an outline for
the actor and critic convergence in discounted reward setting is given. This is reformu-
lation of the convergence proof available in [30, 108], it is detailed here for the sake of
completeness. In Section 6 concluding remarks are provided.

5.2. POLICY GRADIENT FOR DISCOUNTED REWARD SETTING

A ctor-critic is a reinforcement learning method that can be used to solve an optimal
control problem for a Markov decision process (MDP). As introduced in Chapter 4,

an MDP is a tuple 〈X ,U ,P,ρ〉 where X ∈ S ⊂ Rn is the state-space and U ∈ U ⊂ R is the
action-space. Here a single-input single-output system is assumed for the sake of notion.
The proof of convergence, developed in this chapter can be easily extended to multi-
input multi-output system. In a discrete space setting, P : X ×U × X → [0,∞) is the
state-transition probability density function of reaching state xk+1 = x ′ from the current
state xk = x on applying action uk = u, where k is the time index. The state transition
can be represented in the compact form as P u

xx′ = P uk
xk xk+1

. The reward function ρ is a
measure of user defined performance criterion and it provides an instantaneous reward
rk+1 = ρ(xk ,uk , xk+1).

The purpose of an actor-critic algorithm is to obtain a policy π(x,u), which dictates
the probability of choosing action u in state x. For a continuous state space and ac-
tion space the policy is formulated in terms of an unknown parameter vector θ ∈ Rna as
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πθ(x,u). Now the RL objective can be restated as, find an optimal vector θ such that a
cost function Jπ(x) is minimized. However, in order to simplify the proof, in this chapter,
a minimization problem is considered. In this chapter the discounted function Jπ(x) is
minimized. The discounted return function (4.2) results in the cost-to-go function to be
minimized as

Jπ(x) = E {
∞∑

k=0
γk rk+1}. (5.2)

The difference when compared to Chapter 4 is that here the cost function is used to solve
a minimization problem whereas the value function was used for solving maximization
problem. It must be explicitly noted that the change from reward to cost setting and
changing maximization to minimization problem will result in the same policy.

In (5.2) γ ∈ (0,1) is the discount factor used to ensure the boundedness of the cost-
function. As the objective is to find a parameter vector θ so as to minimize the cost
function (4.2), this implies the policy vector needs to be updated along the gradient of
the cost function

θk+1 = Γ
(
θk −αak∇θ J

)
, (5.3)

where the operator ∇θ is the partial derivative ∂
∂θ , the argument θ is neglected when it is

evident and αak is a scaling factor. The function Γ projects the vector θ into an compact
convex set, this is to ensure the boundedness of the iterates [30]. The gradient of the cost
function is given by the policy gradient theorem (5.8) [103, 104].

5.2.1. POLICY GRADIENT FOR DISCOUNTED REWARD
Consider the Bellman equation that relates the state and the action-value functions

Qπ(x,u) = E {ρ(x,u)+
∞∑

k=1
γk rk+1},

= E {rk+1 +γ
∑
x′

P u
xx′V

π(x ′)}, (5.4)

where Qπ(x,u) is the action-value function or Q-value function and it gives the dis-
counted cost for starting from an initial state x and applying an initial action u.

In reinforcement learning, the well known relationship between the state-value func-
tion and the action-value function is [12]

V π(x) =∑
u
πθ(x,u)Qπ(x,u). (5.5)

The derivative of the value function w.r.t. the policy parameter vector θ is 1,

∂V π

∂θ
(x0) = ∂

∂θ

∑
u0

(
πθ(x0,u0)Qπ(x0,u0)

)
,

=∑
u0

(∂πθ
∂θ

(x0,u0)Qπ(x0,u0)+πθ(x0,u0)
∂Qπ

∂θ
(x0,u0)

)
, (5.6)

1When evident the Expectation E { } is omitted, this is reduce clattering and to enhance readability.



5

86 5. PROOF OF CONVERGENCE

by using the equality (5.4) the gradient of the value function is,

∂V π

∂θ
(x0) =∑

u0

(
∂πθ

∂θ
(x0,u0)Qπ(x0,u0)+πθ(x0,u0)

∂

∂θ

[
r1 +γ

∑
x1

P u0
x0x1

V π(x1)

])
,

Since the instantaneous reward rk is independent of the parameter vector θ. This results

in ∂rk
∂θ = 0, where k is the time index.

∂V π

∂θ
(x0) =∑

u0

(
∂πθ

∂θ
(x0,u0)Qπ(x0,u0)+πθ(x0,u0)

∑
x1

γP u0
x0x1

∂V π

∂θ
(x1)

)
, (5.7)

by substituting equation (5.6) for the next state-action pair (x1,u1) in (5.7),

∂V π

∂θ
(x0) =∑

u0

(∂πθ
∂θ

(x0,u0)Qπ(x0,u0)

+πθ(x0,u0)
∑
x1

γP u0
x0x1

∑
u1

(∂πθ
∂θ

(x1,u1)Qπ(x1,u1)

+πθ(x1,u1)
∂Qπ

∂θ
(x1,u1)

))
,

by following the similar process for ∂Qπ

∂θ (x1,u1), the gradient of the cost function is,

∂V π

∂θ
(x0) =∑

u0

(∂πθ
∂θ

(x0,u0)Qπ(x0,u0)

+πθ(x0,u0)
∑
x1

γP u0
x0x1

∑
u1

∂πθ

∂θ
(x1,u1)Qπ(x1,u1)

+πθ(x0,u0)
∑
x1

γP u0
x0x1

πθ(x1,u1)
∑
x2

γP u1
x1x2︸ ︷︷ ︸

γ2Pπ
x0 x2

∂V π

∂θ
(x2)

)
,

where Pπ
x0x2

is the probability of reaching state x2 from an initial state x0 by following the
policy π. By repeating the same procedure for more iterations and using the condition∑

u0 πθ(x0,u0) = 1 the policy gradient is simplified as

∂V π

∂θ
(x0) =

∞∑
k=0

γk Pπ
x0xk

∑
uk

∂πθ

∂θ
(xk ,uk )Qπ(xk ,uk ).

Using the notation dπ(x0) =∑∞
k=0γ

k Pπ
x0xk

the policy gradient will be

∂V π

∂θ
(x0) =∑

x
dπ(x0)

∑
u

∂πθ

∂θ
(x,u)Qπ(x,u).

The gradient of the cost function is

∂Jπ

∂θ
(x0) =∑

x
dπ(x0)

∑
u

∂πθ

∂θ
(x,u)Qπ(x,u),

=∑
x

dπ(x0)
∑
u
πθ(x,u)∇θ lnπθ(x,u)Qπ(x,u). (5.8)
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The second equation is obtained by using the equality ∂πθ
∂θ (x,u) = πθ(x,u)∇θ lnπθ(x,u)

in terms of the compatibility function ∇θ lnπθ(x,u). For the policy gradient (5.8) a state
dependent baseline function can be added which reduces its variance.

5.2.2. APPROXIMATE POLICY GRADIENT: INCLUSION OF BASELINE
By adding a baseline function b(x) to the policy gradient (5.8)

∂Jπ

∂θ
(x) =∑

x
dπ(x)

∑
u

∂πθ

∂θ
(x,u)

[
Qπ(x,u)−b(x)

]
,

=∑
x

dπ(x)
∑
u

∂πθ

∂θ
(x,u)Qπ(x,u)−∑

x
dπ(x)b(x)

∂

∂θ

∑
u
πθ(x,u),

=∑
x

dπ(x)
∑
u

∂πθ

∂θ
(x,u)Qπ(x,u)−∑

x
dπ(x)b(x)

∂

∂θ
(1),

=∑
x

dπ(x)
∑
u

∂πθ

∂θ
(x,u)Qπ(x,u), (5.9)

The baseline function b(x) does not change the gradient of the cost function. It is solely
used to reduce the variance of the gradient. The modified policy gradient is

∂Jπ

∂θ
(x) =∑

x
dπ(x)

∑
u

∂πθ

∂θ
(x,u)[Qπ(x,u)−b(x)], (5.10)

the state-value function is generally chosen as the baseline function, i.e., b(x) = V π(x).
This is because the resulting advantage function defined as Aπ(x,u) = Qπ(x,u)−V π(x)
can be estimated by using the temporal difference, i.e., Aπ(x,u) = E[δk |xk ,uk ,π]. This
can be easily demonstrated using the definition of the temporal difference

E[δk |xk = x, uk = u, π] = E[rk+1 +γV π(xk+1)−V π(xk )],

= E[rk+1 +
∑
x ′
γP u

xx′V
π(x ′)]−E[V π(x)],

=Qπ(x,u)−V π(x),

= Aπ(x,u). (5.11)

Using this the policy gradient (5.8) becomes,

∂Jπ

∂θ
(x) =∑

x
dπ(x)

∑
u

∂πθ

∂θ
(x,u)δk ,

=∑
x

dπ(x)
∑
u
πθ(x,u)∇ lnπθ(x,u)δk . (5.12)

The temporal difference for the policy gradient can be obtained by using the approxi-
mate state-value function called the critic

δk = rk+1 +γV̂ π(xk+1,υk+1)− V̂ π(xk ,υk ). (5.13)

The critic is defined as V̂ π(x,υ) = υTφv(x), where υ ∈ Rnv is an unknown parameter vec-
tor and φv(x) ∈ Rnv is an user-defined vector of basis functions. The unknown critic
parameters are updated using the following gradient update rule [103]

υk+1 = υk +αvkδk+1∇υV̂ (xk ,υk ), (5.14)
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where αvk is the critic update rate. The rate of parameter convergence can be increased
by using the eligibility trace ek ∈Rnv , this results in the following parameter update rule

ek+1 = γλek +∇υV̂ (xk ,υk ),

υk+1 = υk +αvkδk+1ek+1, (5.15)

where λ ∈ [0,1] is the trace decay rate.

5.3. CONTROL LAW TO POLICY
The feedback control such as (4.33), (4.55) etc. generally has a state-to-action mapβθ(x).
The control law is parameterized in terms of some unknown parameter vector θ. A pos-
sible option to obtain an optimal θ is by using actor-critic approach. However, in order
to use (5.3) the state-action map βθ(x) must be converted into a policy πθ(x,u). This is
done by exploiting a requirement for the online RL algorithm called the exploration [12].
Here a Gaussian noise with zero mean is added to the output of the state-action map.
The final control input u that is applied to the system is,

u =βθ(xk )+N (0,σ2),

=βθ(xk )+∆u, (5.16)

this can also be written as a probability density function

πθ(x,u) = 1p
2πσ

exp

(−(u −βθ(x))2

2σ2

)
. (5.17)

This can be considered as the policy for the passivity based actor-critic algorithms intro-
duced in Chapter 4. The gradient of the policy (5.17) is

∂πθ

∂θ
= 1p

2πσ
exp

(−(u −βθ(x))2

2σ2

)
2

(u −βθ(x))

2σ2

∂βθ

∂θ
(x),

= 1

σ2πθ(x,u)(u −βθ(x))
∂βθ

∂θ
(x),

= 1

σ2πθ(x,u)∆u
∂βθ

∂θ
(x). (5.18)

In the gradient (5.18), the scalar factor 1
σ2 can be neglected for the sake of plainness.

By using (5.18), the policy gradient (5.12) is

∂Jπ

∂θ
(x) =∑

x
dπ(x)

∑
u
πθ(x,u)

∂βθ

∂θ
(x)δk∆u. (5.19)

Note that even for the compatibility function the policy gradient will be same as (5.19).
By using (5.19) in (5.12) the parameter update for the state to action map βθ(x) is

θk+1 = Γ
(
θk −αak

∂βθ

∂θ
(x)δk∆u

)
. (5.20)
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5.4. STOCHASTIC APPROXIMATION ALGORITHM
Prior to showing the proof-of-convergence for the actor-critic algorithms, a generic stochas-
tic approximation framework is introduced. Consider the following assumptions are
true:

Assumption 1. The policy πθ(x,u) is continuously differentiable in the parameter θ.

Assumption 2. The Markov chain induced by the policy πθ(x,u) is both aperiodic and
irreducible.

Consider a generic stochastic approximation algorithm

ϑk+1 =ϑk +αk
[
p(ϑk )+Mk+1

]
(5.21)

where ϑ ∈ Rl is a parameter vector, αk is a sequence of positive numbers and Mk is a
sequence of uncorrelated noise with zero mean. Observe that the critic update (5.14)
and the policy update (5.20) can be represented in the generic form, albeit after some
minor modifications.

In [29] it is shown that the algorithm (5.21) can be approximated by an ODE,

ϑ̇(τ) = p (ϑ (τ)) , (5.22)

if the ODE (5.22) has a globally asymptotically stable equilibrium ϑ∗ then the conver-
gence of the iterates can be shown, i.e., ϑk → ϑ∗ as k → ∞ provided the following as-
sumptions are satisfied.

Assumption 3. The function p(·) is Lipschitz. Additionally, there exists a steady state
ODE defined as

ϑ̇= p∞(ϑ) := lim
η→∞

p(ηϑ)

η
. (5.23)

Furthermore, the origin of the steady state ODE (5.23) is a globally asymptotically stable
equilibrium.

Assumption 4. The sequence Mk is a martingale difference sequence with
Fk =σ (ϑ(i ), M(i ), i ≤ k) , additionally the discretization error is upper-bounded

E
[‖Mk+1‖2|Fk

]≤C0
(
1+‖ϑk‖2) . (5.24)

Assumption 5. The sequence αk is tapering and satisfies∑
k
αk =∞,

∑
k
α2

k <∞. (5.25)

In [112] two major theorems are introduced, one for stability and the other for the
convergence. They are repeated here for the sake of completeness, for proof see [29, 112].

Theorem 1. Stability and convergence theorem

• Stability: If the Assumptions 3-5 are satisfied, then for any initial condition ϑ(0) ∈
Rl , supk ‖ϑk‖ <∞ with probability 1 (w.p.1).

• Convergence: Suppose all the listed assumptions are satisfied, additionally the
ODE (5.22) has an asymptotically stable equilibrium ϑ∗. Then ϑk → ϑ∗ w.p.1 as
k →∞ for any initial condition ϑ(0) ∈Rl .
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5.5. PROOF OF CONVERGENCE
In this section the critic and actor convergence is shown, prior to that the following as-
sumptions on the critic basis function vector and the learning rate are made [108].

Assumption 6. The critic basis vector {φ(i )
v }i=nv

i=1 is linearly independent. Alternatively,
let Φ be the ns ×nv dimensional matrix (ns is the cardinality of the space S) whose i th

column is given by φ(i )
v =

(
φ(i )

v (x), x ∈S
)

is full rank.

Assumption 7. The actor and critic learning rate αak and αck satisfy∑
k
αak =

∑
k
αvk =∞,∑

k
α2

ak,
∑
k
α2

vk <∞,

αak <αvk.

5.5.1. CRITIC CONVERGENCE
The critic convergence can be shown using the stability and convergence theorem.

Theorem 2. Critic convergence: Under Assumptions 1, 2, 6, and 7, for a given policy
πθ the critic iterates (5.14) converges, i.e., υ→ υπ with probability one, where υπ is the
unique solution to

ΦT DΦυπ =ΦT D
(
Rπ+γPΦυπ

)
, (5.26)

where D is the diagonal matrix with entries dπ(x),∀x ∈ S. And Rπ is the reward vector
and P is the transition probability matrix.

Proof: Prior to the proof of convergence of the critic some preliminary manipulation
of the value function is required. Generally, the critic approximates the value function as
V̂ (xk ) = υTφv(xk ) where k is the time index. The state-value function is approximated in
terms of the unknown parameter vector υ= (υ1,υ2, · · · ,υnv ) and the basis function vector
φv(xk ) = (

φ1(xk ),φ2(xk ), · · · ,φnv (xk )
)
. The bounded state-space can be discretized into

a large but finite number of sections x ∈ {x1, x2, · · · , xns }, where ns is a large number. The
expected value of the state-value function is

E[V̂ (x)] = E[υTφv(x)]

=∑
x

d(x)υTφv(x)

= d(x1)
(
φ1(x1)υ1 +·· ·+φnv (x1)υnv

)
+d(x2)

(
φ1(x2)υ1 +·· ·+φnv (x2)υnv

)
· · ·
+d(xns )

(
φ1(xns )υ1 +·· ·+φnv (xns )υnv

)
, (5.27)

this can be written in compact matrix form as

E[V (x)] = DΦϑ, (5.28)
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where D is the diagonal matrix with entries d(x) for all x ∈ S. Φ is the ns ×nv dimen-
sional matrix (ns is the cardinality of the space S) whose i th column is given by φ(i )

v =(
φ(i )

v (x), x ∈S
)
, and ϑ= (ϑ1,ϑ2, · · · ,ϑnv )T is the parameter vector. Consider the critic up-

date (5.14). Assuming a linearly parameterized state-value function the critic iterate is

υk+1 = υk +αvkδkφv(xk )

= υk +αvk

E
[
δkφv(xk )|Fk

]︸ ︷︷ ︸
p(υ)

+δkφv(xk )−E
[
δkφv(xk )|Fk

]︸ ︷︷ ︸
Mk+1


= υk +αvk

(
p(υ)+Mk+1

)
(5.29)

is of the form (5.22), with Mk+1 the Martingale difference sequence. The stochastic critic
ODE υ̇= p(υ) can be written in a compact form as

υ̇= E
[
δkφv(xk )

]
=∑

x
d(x)

∑
u
πθ(x,u)

(
rk+1 +γυT

∑
x′

P (x,u, x ′)φv(x ′)−υTφv(x)
)
φv(x)

=ΦT D
(
Rπ+γPΦυ−Φυ) (5.30)

where Rπ =
(∑

u πθ(x1,u)ρ(x1,u),
∑

u πθ(x2,u)ρ(x2,u) · · ·∑u πθ(xns ,u)ρ(xns ,u)
)T

and P

is the state-to-state transition probability matrix defined as

P =

 p(x1, x1) · · · p(x1, xns )
...

. . .
...

p(xns , x1) · · · p(xns , xns )

 , (5.31)

where p(xi , x j ) =∑
u πθ(xi ,u)P (xi ,u, x j ), i and j ∈ (1,ns).

We show using Theorem 1 that the iterates (5.14) are bounded. Consider the steady
state ODE defined as in (5.22)

υ̇= lim
η→∞

ΦT D
(
Rπ+γηPΦυ−ηΦυ)

η

=ΦT D
(
γP − I

)
Φυ, (5.32)

because the diagonal matrix D > 0 is positive definite and for 0 < γ< 1 the matrix (γP−I )
is negative definite, the ODE (5.32) has a unique globally asymptotical stable equilibrium
at the origin, providedΦ is full rank.

Assumptions 3-5 of Section 5.4 along with boundedness condition are satisfied hence
the iterates (5.14) will converge to an equilibrium of (5.30), say υπ which is the unique
solution of (5.26). This can be shown by following the same procedure as in [30].

5.5.2. ACTOR CONVERGENCE
Since (5.3) is of the form (5.21) the iterated θ can be approximated by an ODE

θ̇ = Γ̂(−∇J ), (5.33)
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where, for any continuous function υ, Γ̂ is defined as

Γ̂(y) = lim
η→0

[Γ(θk +ηy)−θk

η

]
. (5.34)

here y = υ(θk ). LetZ be the set of equilibrium points of the ODE (5.33) andZε neighbor-
hood ofZ, i.e.,Zε = (x|‖x − z‖ < ε, z ∈Z), the actor convergence can be stated as:

Theorem 3. Actor convergence: Under the assumption 1,2, 6, and 7, and for the error in

the value function approximation ε= υπT
φv(x)−V π(x) the policy iterates obtained using

(5.20) converges toZε, i.e., θk → θ∗ ∈Zε as k →∞ w.p.1 provided ε→ 0.

Proof: Consider the parameter update law (5.20) for the feedback controller βθ(x)

θk+1 = Γ(θk −αak∇θβθ(x)∆uδk ),

this can be reformulated as

θk+1 = Γ
(
θk −αak E

[∇θβθ(x)∆uδπk |Fk
]−αak M 1 −αak M 2

)
, (5.35)

where M 1 = (∇θβθ(x)∆uδk −E
[∇θβθ(x)∆uδk |Fk

])
and M 2 = E

[∇θβθ(x)∆u
(
δk −δπk

) |Fk
]

are martingale sequences that converge, for proof see [30]. Hence the update (5.35) can
be approximated by an ODE

θ̇ = Γ̂(−E
[∇θβθ(x)∆uδπk

])
. (5.36)

The expected gradient E
[∇θβθ(x)∆uδπk

]
=Σx dπ(x)Σu∇π(x,u)

(
R(x,u)+Σx′γP u

xx′υ
πT
φv(x)

)
=Σx dπ(x)Σu∇π(x,u)

(
R(x,u)

+Σx′γP u
xx′V

π(x ′)+Σx′γP u
xx′

(
υπ

T
φv(x)−V π(x ′)

))
=∇J +ε. (5.37)

Using this in (5.36) and Hirsch lemma [115] it is easy to show θk → θ∗ as k →∞ provided
the error in value function approximation ε converges, i.e., ε→ 0. This can be shown by
following the same procedure as in [30].

5.6. DISCUSSION
The policy gradient theorem provides a low variance parameter update rule for the stochas-
tic policy. As explained in this chapter, in order to use the policy gradient theorem, the
parameterized control law must be converted into a stochastic policy. As shown in Sec-
tion 5.3, this can be done by adding a Gaussian noise to the control input. The added
noise acts as an exploration term. For the algorithms presented in Chapter 4, the policy
gradient is obtained online by directly interacting with the system and it is used to up-
date the parameters of the control law. This is a general framework and can be used to
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obtain the policy gradient for any parameterized policy, provided Gaussian exploration
is used.

The actor and critic proof given in Section 5.5 is a generic proof. It can be used as
a basis to demonstrate the convergence of any parameterized control law in the stan-
dard actor-critic setting. The convergence proof is valid provided the 7 assumptions that
are introduced in this chapter are explicitly satisfied. Assumption 1 and 2 are standard
requirements in the stochastic algorithm framework. For the developed actor-critic al-
gorithms, introduced in Chapter 4, Assumption 1 and 2 are implied and hence they are
not explicitly verified. Assumption 3 is used to demonstrate the stability of the steady
state ODE. For the developed methods this can be easily shown and it is explicitly dis-
cussed in Section 5.5. Although assumption 4 was not explicitly verified, for the pre-
sented methods this can be readily checked by following the framework available in [30].
Assumption 7 is a generalization of Assumption 5, and it is used to ensure separate time
scale for critic and actor convergence. Assumption 6 is a key element and it requires
the state-space to be discrete. This can be justified by the computer control of physical
systems, since in digital computers discretization in time and space is inevitable. This
can be attributed to the effects of sampling and resolution, respectively. Assuming the
operating-space of a system to be limited it can be discretized into a finite but large num-
ber of sections. For linearly independent basis function vector Assumption 6 is satisfied,
as detailed in Section 5.5. Since many physical systems have a bounded operating space,
discretization of the state-space is justified. The critic and actor convergence is based on
the general framework available in the stochastic approximation theory [29, 109, 113].





6
OUTPUT SYNCHRONIZATION OF

HETEROGENEOUS SYSTEMS USING

REINFORCEMENT LEARNING

This chapter shifts from the standard actor-critic approach discussed in Chapter 4 to the
application of reinforcement learning to solve the output tracking for linear multi-agent
systems (MAS). In this heterogeneous network all the agents are assumed to be differ-
ent not only in their dynamics but also in the state dimension. The available standard
methods for the output synchronization of a network of heterogeneous MAS require ei-
ther the solution of the output regulator equations or the incorporation of a p-copy or
internal model of the leader’s dynamics. By contrast, in the developed method neither
one is needed. Moreover, here both the leader and the follower’s dynamics is assumed to
be unknown. First, a distributed adaptive observer is designed to estimate the leader’s
state for each agent, this does not require any knowledge of the leader’s dynamics ma-
trix. A novel model-free off-policy reinforcement learning algorithm is then developed
to solve the optimal output synchronization problem online in real time. It is shown that
this distributed reinforcement learning approach implicitly satisfies the output regula-
tion equation without actually solving it. In addition the developed method does not
require any knowledge of the leader’s dynamics matrix or that of the agent’s dynamics.
The effectiveness of the proposed approach is verified by a simulation study.

6.1. INTRODUCTION

C ooperative control of multi-agent systems has undergone a paradigm shift from cen-
tralized to distributed control. This is due to the reliability, flexibility, scalability and

the computational efficiency of the distributed control methods. In distributed con-
trol, unlike centralized control, there is no central authority with the ability to control
the network of agents as a whole. Instead, each agent designs a controller based on
the limited information about itself and its neighbors. The control objective is that all
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the agents reach agreement on certain quantities of interests. If the common value that
agents agree on is not specified, then the problem is called leaderless consensus. If all
agents follow the trajectories of a leader node, then the problem is known as cooperative
tracking (leader-follower) control. A rich body of literature has been developed for the
distributed control of multi-agent systems. See for example [116–120] to name a few.

Most of the available work on distributed control focuses on the state synchroniza-
tion of a homogeneous multiagent network, where individual agents have identical dy-
namics. In many real-world applications of multi-agent systems, the individual systems
generally do not have identical dynamics. This has led to the emergence of new chal-
lenges in the design of distributed controllers for heterogeneous systems, in which the
dynamics and state dimension of each of the agents can be different. Since state syn-
chronization is not practical for general heterogeneous systems (as individual systems
may have different state dimensions), distributed output synchronization of heteroge-
neous systems has attracted wide attention in the literature [23, 24, 121–125]. How-
ever, existing state-of-the-art methods require complete knowledge of the agents and
the leader’s dynamics matrix which is not available in many real-world applications. In
practical applications, it is often desirable to have a model-free distributed controllers
conducive to real time implementation and able to handle modeling and parameter un-
certainties in the dynamics of the agents. Moreover, solutions found by these methods
are generally far from optimal.

Adaptive and robust distributed controllers have been developed in the literature to
adapt online to modeling uncertainties in the dynamics of the agents [126–138]. How-
ever, classical adaptive and robust distributed controllers do not converge to an optimal
distributed solution. Optimal distributed control refers to a class of methods that can be
used to synthesize a distributed control policy which results in best possible team be-
havior with respect to prescribed criteria (i.e., local control policies which leads to min-
imization of local performances for each agent). A suboptimal distributed controller is
designed in [139] for linear homogenous systems using linear quadratic regulator. The
distributed games on graphs are presented in [140] in which each agent only minimizes
its own performance index. In [141], the optimal linear-consensus algorithm for multi-
agent systems with single-integrator dynamics is proposed. The distributed inverse op-
timal control is also considered in [142]. All mentioned optimal distributed controllers
are limited to state synchronization of homogeneous systems and they require complete
knowledge of the agents and the leader. To our knowledge distributed adaptive optimal
output synchronization is not considered in the literature.

Over the last decades there has been increasing interest in the development of multi-
agent learning systems. The objective is to create agents that can learn from experience
about how to interact with other agents in a best possible way [143–147]. Reinforce-
ment learning (RL) techniques have been used prominently to design adaptive optimal
controllers for both single-agent and multi-agent systems. RL algorithms enables us to
solve the optimal control problem in an online manner without requiring the complete
knowledge of the system dynamics. The control is learned by using only the measured
data along the system trajectory. In [140], RL has been used to learn the optimal control
law for each agent in a network of homogenous systems. This method requires solving a
set of coupled algebraic Riccati equations (AREs) which can be extremely hard to solve.
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Besides, it requires complete knowledge of the system dynamics. Finally, this method
is limited to state synchronization of homogenous systems and cannot be extended for
solving optimal distributed output synchronization problem.

In this chapter, a novel RL algorithm is developed to solve the output synchronization
problem of a heterogeneous multi-agent system. It is shown that the explicit solution to
the output regulator equation is not needed, hence the agents do not need to know the
leader’s dynamics. The key components of the given method are

• A distributed adaptive observer is designed to estimate the leader’s state. This ob-
server does not require the knowledge of the leader’s dynamics matrix.

• A novel off-policy RL algorithm is developed to solve the output synchronization
problem without requiring any knowledge of the agent’s dynamics or the leader’s
dynamics matrix.

• It is shown that this distributed RL approach implicitly satisfies the output regula-
tion equations without actually solving them.

The proposed approach is as follows. The estimated leader’s state obtained from the
presented distributed observer is used along with the local state of each agent to design
a model-free optimal output synchronization controller. For each agent the objective
is to track the output of an exo-system i.e., the leader in an optimal manner. To this
end, the optimal output synchronization problem is cast into a set of optimal output
tracking problems for each agent. A local discounted performance function is defined
for each agent. Minimization of this cost function gives both feedback and feedforward
gains. An online solution to the tracking problem is then found by using an off-policy RL
algorithm. This algorithm does not require any knowledge of the dynamics of the agents
and uses only the measured data along the system and the reference trajectories to find
the optimal distributed solution to the output synchronization problem. A simulation is
conducted to verify the effectiveness of the proposed method.

This chapter is organized as follows, In Section 2 the essential theoretical background
is provided. The details along with the required proof of convergence of the distributed
adaptive observe is given in Section 3. The off-policy RL algorithm for the output regu-
lation is explained in Section 4. It is shown in Section 5 that the well-known separation
principle is satisfied and thus the observer and the controller design problem can be
treated separately. In Section 6, the simulation results for output tracking of multi-agent
heterogeneous systems is given. Section 7 concludes the chapter and gives directions for
future research.

6.2. THEORETICAL BACKGROUND
In this section, the essential theoretical background on graph theory is provided. The
problem of output synchronization for heterogeneous multi-agent systems is also de-
fined. The standard solution to this problem is presented and its shortcoming is empha-
sized.
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6.2.1. GRAPH THEORY
Consider a weighted directed graph or digraph G = {V ,E ,A } consisting of a nonempty
finite set of N nodes V = (v1,v2, · · · ,vN ), a set of edges or arcs E ⊂ V ×V and the associated
adjacency matrix A = [

ai j
] ∈ RN×N . Here the diagraph is assumed to be time-invariant

or alternatively A is assumed to be constant. An edge from a node v j to vi is indicated by
an arrow with head at node i and tail at node j , this implies that the information flow is
from node j to node i . The neighbor set of node i is depicted by Ni = { j |(v j ,vi ) ∈ E }. For
each node the entry ai j of the adjacency matrix A is nonzero (i.e., ai j > 0) if and only
if there is an edge (v j ,vi ) ∈ A else ai j = 0, also ai j indicates the weight associated with
the graph edge. Only simple graphs without a self-loop is considered, this means ai i = 0.
The in-degree of a node i is defined as

di =
N∑

j=1
ai j , (6.1)

and in-degree matrix as

D =


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dN

 , (6.2)

where D ∈RN×N . The graph Laplacian matrix is defined as

L = D −A . (6.3)

The product L1N = 0 for 1N = [1 1 · · · 1]T ∈RN . The out-degree of a node i is defined
as

d o
i =

N∑
j=1

a j i . (6.4)

A graph is said to be balanced if its in-degree is same as the out-degree, this implies
LT 1N = 0. In an undirected for every edge a j i = ai j that is the adjacency matrix A is

symmetric. For a given digraph G a sequence of successive edges in the form
(
(vi ,vk ), (vk ,vl ), · · ·

· · · , (vm ,v j )
)

gives a directed path from node i to node j . A diagraph is said to have a

spanning tree if there exist a root node ir , such that there is a directed path from ir to
every other node in the graph.

Assumption 1. The digraph G has a spanning tree and the leader is pinned to the root
node ir , with a pinning 1 gain gi > 0.

Observe that the leader can be pinned to multiple nodes in the graph or the leader
can itself be a root node. This results in a diagonal pinning matrix G = diag[gi ] ∈ RN×N

with the pinning gain gi > 0 if the node has access to the leader else otherwise zero.
Under the above assumption, the eigenvalues of L+G have positive real parts.

1It means the root node is connected, i.e., ’pinned‘ to the leader.
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6.2.2. OUTPUT SYNCHRONIZATION OF HETEROGENEOUS MULTI-AGENT SYS-
TEMS

Consider that the dynamics of the leader or trajectory generator to be followed are

ζ̇0 = Sζ0, (6.5)

where ζ0 ∈ Rp is the reference trajectory, and S ∈ Rp×p is the leader’s dynamic matrix.
The leader output can be defined as

y0 = Rζ0, (6.6)

where y0 ∈Rq .

Assumption 2. The leader’s dynamic matrix is marginally stable i.e. S in (6.5) has non-
repeated eigenvalues on the imaginary axis.

The dynamics of N linear heterogeneous followers is given by

ẋi = Ai xi +Bi ui ,

yi =Ci xi , (6.7)

where xi ∈ Rni is the system state, ui ∈ Rmi is the input and yi ∈ Rq is the output for
i = 1, · · · , N agents. The multi-agent system is called heterogeneous because agents dy-
namics (Ai ,Bi ,Ci ) and their state dimension are generally not the same.

Assumption 3. (Ai ,Bi ) is stabilizable and (Ai ,Ci ) is observable.

Problem 1. (Output Synchronization):, Design local control protocols ui such that the
outputs of all heterogeneous agents synchronize to the output of the leader node. That
is, yi (t )− y0(t ) → 0 ∀i .

To solve this problem, standard methods in the literature require solving the output
regulation equations given by

AiΠi +BiΓi =Πi S,

CiΠi = R, (6.8)

where Πi ∈ Rni×p and Γi ∈ Rmi×p for i = 1, · · · , N are the solution of the output regulator
equation (6.8). Based on these solutions, the following standard controller guarantees
the output tracking among heterogeneous agents [24, 123],

ui = K1i (xi −Πiζ0)+Γiζ0, (6.9)

where K1i ∈ Rmi×mi is the state-feedback gain which stabilizes Ai +Bi K1i . The tracking
control law (6.9) depends on the agent’s state and the leader’s state. However, the leader
state ζ0 is generally not available to all agents in a distributed multi-agent network. This
issue is circumvented in the literature [117] by designing the following local observer
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called synchronizer. This local observer is used in order to obtain an estimate of the
leader’s trajectory in all the agents

ζ̇i = Sζi + c

[
N∑

j=1
ai j (ζ j −ζi )+ gi (ζ0 −ζi )

]
, (6.10)

resulting in the modified tracking law

ui = K1i (xi −Πiζi )+Γiζi , (6.11)

where ζi is the estimation of ζ0 for the agent i and the constant c is the coupling gain.
The output synchronization is guaranteed when the control protocol (6.11) is applied to
the multi-agent system.

The observer estimation error for agent i is defined as

δi (t ) = ζi (t )−ζ0(t ), (6.12)

and the local neighborhood observation error for node i is defined as

ei =
N∑

j=1
ai j (ζ j −ζ0)+ gi (ζ0 −ζi ). (6.13)

Remark 1. Note that the solution to the output regulator equation (6.8) for each agent
requires the complete knowledge of the leader’s dynamic matrix, i.e., S , which is overly
conservative. Moreover, all the agents need to be aware of their own dynamics, i.e.
(Ai ,Bi ,Ci ), to solve the output regulator equation (6.8) and to obtain feedforward com-
ponent K1i . This knowledge, however, is not available in many applications.

6.3. DISTRIBUTED ADAPTIVE OBSERVER DESIGN
In the previous section, a standard solution to output regulation for heterogeneous multi-
agent systems was given. The standard approach requires the solution of the output reg-
ulator equations (6.8). This needs the full knowledge of the leader’s dynamics (S,R), and
the agent’s dynamics (Ai ,Bi ,Ci ).

In this section, a novel distributed adaptive observer is designed to estimate the
leader’s state for all the agents. In contrast to the standard observer (6.10), the proposed
method does not require the knowledge of the leader’s dynamic matrix S. In the next
section, it is shown how to use this adaptive observer along with reinforcement learning
to solve Problem 1 without solving the regulator equations (6.8) and without knowing
the agent’s dynamics.

To estimate the leader’s state, the following distributed observer is used.

ζ̇i = Ŝiζi + c

[
N∑

j=1
ai j (ζ j −ζi )+ gi (ζ0 −ζi )

]
, (6.14)

where Ŝi ∈ Rp×p is the estimation of the leader’s dynamic matrix S for node i . Using the
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tuning law for the leader’s dynamics estimator Ŝi as

˙̂Sveci =Π
(
−ΓSi (Iq ⊗ζi )

[
N∑

j=1
ai j (ζ j −ζi )+ gi (ζ0 −ζi )

])
,

=Π(−ΓSi (Iq ⊗ζi )ei
)

(6.15)

where Ŝveci is the vector representation of Ŝi , ΓSi is the diagonal positive update rate
matrix, and ⊗ is the Kronecker product [148]. The vector form is obtained by stacking
each row of Ŝi , and Π is the projection operator to ensure boundedness of the update
Ŝveci . Note that the projection operator is not used in the simulation analysis, it is only
used to assume boundedness of the estimate Ŝveci in the proof of convergence for the
local adaptive synchronizer.

The following two theorems shows the convergence of the local estimator ζi . The first
theorem proves that the estimation error δi (t ) in (6.12) converges to zero, i.e., δi (t ) → 0
for an undirected graph, whereas the second theorem demonstrates that the estimation
error can be made arbitrarily small δi (t ) < ε for a generic directed graph.

Theorem 1. For a symmetric graph Laplacian matrix, i.e., L = LT 2. Based on Assump-
tion 1, 2, consider the distributed observer and the update law given in (6.14) and (6.15),
respectively. Then, the observer estimation error (6.12) converges to zero, i.e., δi (t ) → 0,
provided the constant c in (6.14) is chosen large enough.

Proof Differentiating (6.12) and by using (6.5) and (6.14) gives the local estimation
error dynamics for each observer

δ̇i = Ŝiζi + c

[
N∑

j=1
ai j (ζ j −ζi )+ gi (ζ0 −ζi )

]
−Sζ0, (6.16)

which can be rewritten as

δ̇i = Siζi + c

[
N∑

j=1
ai j (ζ j −ζi )+ gi (ζ0 −ζi )

]
−Sζ0 + (Ŝi −S)ζi . (6.17)

The global error dynamics becomes

δ̇= [
IN ⊗S − c(L+G)⊗ Ip

]
δ+ S̃ζ (6.18)

where δ = [ζ−ζ] in terms of the vectors ζ = [ζT
1 (t )ζT

2 (t ) · · · ζT
N (t )]T and ζ

0
= [ζT

0 (t )ζT
0 (t )

· · · ζT
0 (t )]T . The error in the leader’s dynamics estimation is in S̃ = diag[Ŝ1 −S, Ŝ2 −S, · · · ,

ŜN −S]. Equation (6.18) in compact form is

δ̇= Asδ+ζM S̃vec (6.19)

where

As = IN ⊗S − c(L+G)⊗ Ip , (6.20)

ζM = diag
[
Ip ⊗ζT

1 , Ip ⊗ζT
2 , · · · , Ip ⊗ζT

N

]
, (6.21)

2This is possible when the subgraph consisting of N followers forms an undirected graph.
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where S̃vec is the vector representation of the error in leader dynamics estimation.
The error dynamics matrix As defined in (6.20) can be made Hurwitz for an appro-

priate choice of the constant c, because L +G is nonsingular and has eigenvalues with
positive real part. Now consider the Lyapunov function

V = δT [
(L+G)⊗ Ip

]
δ+ S̃T

vecΓ
−1
S S̃vec (6.22)

since the subgraph with N followers is undirected this makes
[
(L+G)⊗ Ip

]
symmetric

positive definite [124], and ΓS is a diagonal positive definite scaling matrix. The deriva-
tive of the Lyapunov function is

V̇ = δ̇T [
(L+G)⊗ Ip

]
δ+δT P

[
(L+G)⊗ Ip

]
δ̇+ ˙̃ST

vecΓ
−1
S S̃vec + S̃T

vecΓ
−1
S

˙̃Svec

= δT ([
(L+G)⊗ Ip

]
AS + AT

S

[
(L+G)⊗ Ip

])
δ+ S̃T

vecζ
T
M

[
(L+G)⊗ Ip

]
δ

+δT [
(L+G)⊗ Ip

]T
ζM S̃vec + ˙̃ST

vecΓ
−1
S S̃vec + S̃T

vecΓ
−1
S

˙̃Svec (6.23)

By choosing
S̃vec = Ŝvec =−ΓSζ

T
M Pδ (6.24)

the Lyapunov derivative becomes

V̇ = δT ([
(L+G)⊗ Ip

]
AS + AT

S

[
(L+G)⊗ Ip

])
δ. (6.25)

In order to demonstrate the negative semi-definiteness of V̇ , we need to show[
(L+G)⊗ Ip

]
AS + AT

S

[
(L+G)⊗ Ip

]< 0. For the sake of plainness let us redefine IN ⊗S =
M and (L +G)⊗ Iq = N , where M has no eigenvalues with positive real parts, and N
is non-singular. The Lyapunov equation

[
(L+G)⊗ Ip

]
AS + AT

S

[
(L+G)⊗ Ip

]
in compact

form is

= N (M − cN )+ (M T − cN T )N T

= (N M +M T N T )− c(N N +N T N T ). (6.26)

Where the property for the undirect graph
[
(L+G)⊗ Ip

] = [
(L+G)⊗ Ip

]T is used in the
first equation. It is well known that for any given Hermitian matrices E ,F , and some
constant c, the eigenvalue of the matrix sum is

λi+ j−1(E − cF ) =λi (E)− cλ j (F ) (6.27)

for i + j ≤ N +1, i ≤ N , j ≤ N . Thus, if c is greater than a certain bound, one can ensure
that the eigenvalues of matrix sum E − cF to have the negative real part. Note that the
terms in (6.26) are of form (6.27), hence the eigenvalues of the terms

(N M +M T N T )− c(N N +N T N T )

has negative real part provided that c is large enough. Additionally, the overall matrix
(N M +M T N T )−c(N N +N T N T ) is symmetric, as it is obtained by addition and subtrac-
tion of the symmetric matrices. This confirms that the eigenvalues of

[
(L+G)⊗ Ip

]
AS+
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AT
S

[
(L+G)⊗ Ip

]
are negative real and thus proves the negative semi-definiteness of the

Lyapunov derivative (6.25). That is,

V̇ =−δT Qδ≤ 0 (6.28)

for some Q ≥ 0. This shows the convergence of the local synchronizer, i.e., δi → 0 . Since
all the entries in the update rule (6.24) are block diagonal the parameter update rule for
each agent gives (6.15) this completes the proof.

Theorem 2. For a given generic directed graph. Based on Assumption 1, 2, consider the
distributed observer and the update law given in (6.14) and (6.15), respectively. Then,
the observer estimation error (6.12) can be made arbitrarily small, i.e., δi (t ) < ε provided
the constant c in (6.14) is chosen large enough.

Proof Consider the global observation error

e = [
(L+G)⊗ Ip

](
ζ(t )−ζ

0
(t )

)
. (6.29)

Differentiating (6.29), and by using (6.5) and (6.14) gives the estimation error dynam-
ics as

ė = [
(L+G)⊗ Ip

]


Ŝ1ζ1 + c
[∑N

j=1 a1 j (ζ j −ζ1)+ g1(ζ0 −ζ1)
]
−Sζ0

Ŝ2ζ2 + c
[∑N

j=1 a2 j (ζ j −ζ2)+ g2(ζ0 −ζ2)
]
−Sζ0

...

ŜNζN + c
[∑N

j=1 aN j (ζ j −ζN )+ gN (ζ0 −ζN )
]
−Sζ0

 (6.30)

By adding and subtracting Sζi the error dynamics (6.30) becomes

ė = (
(L+G)⊗ Ip

)[
(IN ⊗S)

(
ζ(t )−ζ

0
(t )

)
− c

(
(L+G)⊗ Ip

)(
ζ(t )−ζ

0
(t )

)
+ S̃ζ

]
. (6.31)

Using the matrix property (A⊗ I )(I ⊗B) = (I ⊗B)(A⊗ I ), (6.31) can be rewritten as

ė = [
(IN ⊗S)− c

(
(L+G)⊗ Ip

)]
e + (

(L+G)⊗ Ip
)

S̃ζ. (6.32)

Now consider the Lyapunov function

V = δT Pδ+ S̃T
vecΓ

−1
S S̃vec (6.33)

where P is positive definite and it is obtained as

p = (
(L+G)⊗ Ip

)−T 1N q ,

P = diag[p] (6.34)

where 1N q is vector with all entries 1. Taking the derivative of (6.33) using (6.32) is

V̇ = eT [
(IN ⊗S)T P +P (IN ⊗S)

]
e − ceT

[(
(L+G)⊗ Ip

)T P +P
(
(L+G)⊗ Ip

)]
e

+eT P
(
(L+G)⊗ Ip

)
S̃ζ+ζT S̃T (

(L+G)⊗ Ip
)T Pe

+ ˙̃ST
vecΓ

−1
S S̃vec + S̃T

vecΓ
−1
S

˙̃Svec. (6.35)
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The first term
[
(IN ⊗S)T P +P (IN ⊗S)

]
is skew-symmetric hence the norm is 0, whereas

the second term
[(

(L+G)⊗ Ip
)T P +P

(
(L+G)⊗ Ip

)] = Q, for a positive definite matrix

Q. Hence the Lyapunov derivative (6.35) reduced to

V̇ =−ceT Qe

+eT P
(
(D +G − A)⊗ Ip

)
S̃ζ+ζT S̃T (

(D +G − A)⊗ Ip
)T Pe

+ ˙̃ST
vecΓ

−1
S S̃vec + S̃T

vecΓ
−1
S

˙̃Svec. (6.36)

Using the matrix property (A+B)⊗C = (A⊗C )+ (B ⊗C ), equation (6.36) will be

V̇ =−ceT Qe

−eT P
(

A⊗ Ip
)

S̃ζ−ζT S̃T (
A⊗ Ip

)T Pe

+ S̃T
vecζ

T
M

[
(D +G)⊗ Ip

]T Pe +eT P
[
(D +G)⊗ Ip

]
ζM S̃vec

+ ˙̃ST
vecΓ

−1
S S̃vec + S̃T

vecΓ
−1
S

˙̃Svec. (6.37)

By choosing
˙̃Svec = ˙̂Svec =−ΓSζ

T
M

[
(D +G)⊗ Ip

]T Pe, (6.38)

the block diagonal structure of (6.38) results in (6.15). The Lyapunov derivative (6.37)
using (6.38) is

V̇ =−ceT Qe −eT P
(

A⊗ Ip
)

S̃ζ
0

, (6.39)

Observe that S̃ is bounded due to the boundedness of Ŝ and S, also ζ
0

is bounded due to
marginally stable leader. This results in

V̇ ≤−cσ(Q)‖e‖2 −νSMσ(A)σ(P )‖e‖ζ0M , (6.40)

where, SM is the maximum absolute bound on the parameter estimation error and ζ0M

is the maximum absolute bound on the leader’s state. Now by choosing a large c and
a relatively small ν the observer error can be made arbitrarily small. This shows that
provided c is large enough, the convergence of the local synchronizer, is bounded by an
arbitrarily small error ε i.e., δi (t ) < ε. This completes the proof.

Remark 2. Theorem 1 provides the proof of convergence for the local synchronizer i.e.,
δi → 0. Note that the convergence of the parameter Ŝi to the true leader dynamics S
cannot be guaranteed. In fact, the convergence of the Ŝi to the true dynamics is not
required. As the reinforcement learning based optimal tracking control law presented in
Section 6.6 doesn’t need the knowledge of S .

6.4. OPTIMAL MODEL-FREE OUTPUT REGULATION
In this section, a reinforcement learning (RL) algorithm is proposed to make the agents
track the leader’s output using an optimal tracking control of each agent. Based on the
adaptive observer of Section 6.3, it is assumed that every agent has a local estimate of the
leader’s trajectory. In Section 6.5, this RL based optimal control will be combined with
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the distributed adaptive synchronizer of Section 6.3. Due to this combination, the design
of the output synchronizing controller does not require either the leader’s dynamics S or
the agent’s dynamics (Ai ,Bi ,Ci ). This is because solution to (6.8) is not explicitly needed.

Consider a linear continuous-time system with the following dynamics

ẋi = Ai xi +Bi ui

yi =Ci xi (6.41)

where xi ∈ Rni is the system state, yi ∈ Rq is the system output, ui ∈ Rmi is the control
input, Ai ∈ Rni×ni gives the drift dynamics of the system, and Bi ∈ Rni×mi is the input
matrix. It is assumed that the pair (Ai ,Bi ) is stabilizable and the pair (Ai ,Ci ) is observ-
able.

Assume that the reference trajectory ζ0 ∈ Rq is bounded and it is generated by the
command generator system given by (6.5) and (6.6). Assume that S in (6.5) is a marginally
stable matrix with appropriate dimension.

In optimal output regulation problem, the goal is to find a control policy to make the
system output yi in (6.41) follow the reference trajectory output y0 generated by (6.5)
and (6.6), while minimizing a predefined performance function. Define the discounted
performance function for the system (6.41) as [149]

V (xi (t ),ui (t )) =
∫ ∞

t
e−γci (τ−t )

(
(yi − y0)T Qi (yi − y0)+uT

i Wi ui

)
dτ (6.42)

where the state weight matrix Qi and the control input weight matrix Wi are symmetric
positive definite, and γci > 0 is the discount factor.

Remark 3. The discount factor γci > 0 in (6.42) is used to ensure that the performance
function is bounded for a given control policy which assures the output regulation. This
is because the steady state part of the control input does not go to zero unless the com-
mand generator dynamics is stable.

Consider a fixed state-feedback control policy linear in the system state and the com-
mand generator state as

ui = K1i xi +K2iζ0 (6.43)

and define an augmented state as

Xi (t ) = [
xi (t )T ζT

0

]T ∈Rni+p (6.44)

where ζ0 is given by (6.5). The control input (6.43) in terms of the augmented state (6.44)
becomes

ui = K1i xi +K2i = Ki Xi (6.45)

where Ki = [K1i K2i ] . Moreover, the augmented dynamics, with an abuse of notation
become [149]

Ẋi = Ti Xi +B1i ui (6.46)

with

Ti =
[

Ai 0
0 S

]
,B1i =

[
Bi

0

]
(6.47)
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Finally, the value function for a control policy in form of (6.45) can be written as the
quadratic form [149]

V (Xi (t )) =
∫ ∞

t
e−γci (τ−t )X T

i

(
C T

1i Qi C1i +K T
i Wi Ki

)
Xi dτ

= X T
i (t )Pi Xi (t ) (6.48)

where
C1i = [Ci −R] (6.49)

with R as in (6.6). The optimal control input is then given by ui = Ki Xi [149] with

Ki = [K1i K2i ] =−W −1
i B T

1i Pi (6.50)

where Pi is the solution to the discounted algebraic Riccati equation (ARE)

T T
i Pi +Pi Ti −γci Pi +C T

1i Qi C1i −Pi B1i W −1
i B T

1i Pi = 0 (6.51)

The ARE (6.51) is first solved for Pi . Then the optimal gain is obtained by substituting
the ARE solution to (6.50).

6.4.1. AN UPPER BOUND FOR DISCOUNT FACTOR TO ASSURE ASYMPTOTIC

OUTPUT REGULATION
In this subsection, an upper bound is found for the discount factor in the performance
function (6.42) to assure that the tracking error er i = yi − y0 goes to zero asymptotically,
when the optimal control gain (6.50) found by solving the ARE (6.51) is applied to the
system. In [149], the authors showed that the control gain given in (6.50) makes e−γci t er i

converge to zero asymptotically. However, the tracking error may diverge if the discount
factor is not chosen appropriately. The following theorem shows that perfect output
regulation is achieved if (6.50) is applied to the system and the discount factor is chosen
small enough.

Theorem 3. From Assumption 2 and 3, the system (6.41) is stabilizable and the com-
mand generator (6.5) is marginally stable. Let the control input (6.45) with gain given by
(6.50), (6.51) be applied to the system. Then, Ai +Bi K1i is Hurwitz and the tracking error
er i = yi − y0 goes to zero asymptotically fast, if the discount factor satisfies the following
condition

γci ≤ γ∗ci
= 2‖(Bi W −1

i B T
i Qi )1/2‖ (6.52)

Proof: We first show that Ai +Bi K1i is Hurwitz. To this end, define

Pi =
[

P i
11 P i

12
P i

21 P i
22

]
(6.53)

Then, using (6.47), for the upper left-hand side of the discounted ARE (6.51) one has

AT
i P i

11 Ai −γci P i
11 +C T

i Qi Ci −P i
11Bi W −1

i B T
i P i

11 = 0 (6.54)
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and the control gain K1i becomes

K1i =−W −1
i B T P i

11 (6.55)

Since Qi > 0 and (Ai ,Ci ) is observable, then (Ai ,Q1/2
i Ci ) is observable and thus there

exists an unique positive definite solution P i
11 to (6.54). It is shown in [150] that if condi-

tion (6.52) is satisfied, then the eigenvalues of the closed-loop system Ai−Bi W −1
i B T

i P i
11 =

Ai +Bi K1i have negative definite parts and thus Ai +Bi K1i is Hurwitz. On the other
hand, it is shown in [149] that there exists a positive semi-definite solution to ARE (6.51)
if (Ai ,Bi ) is stabilizable and S − 0.5γci I is stable. Since (Ai ,Bi ) is assumed stabilizable
and S is assumed marginally stable, existence of a positive semi-definite solution to the
ARE (6.51) is guaranteed. Multiplying the left and right-hand sides of the ARE (6.51) by
X T

i and Xi , respectively, one has

2X T
i T T

i Pi Xi −γci X T
i Pi Xi +X T

i C T
1i Qi C1i Xi − (Pi Xi )T B1i W −1

i B T
1i (Pi Xi ) = 0 (6.56)

From this equation one can see that if Pi Xi = 0 then X T
i C T

1i Qi C1i Xi = 0 . That is, the null

space of Pi is a subspace of the null space of C T
1i Qi C1i . This indicates that if X T

i Pi Xi = 0

then X T
i C T

1i Qi C1i Xi and thus (yi − y0)T Qi (yi − y0) = 0 which yields er i = yi − y0 = 0 .
Therefore, the null space of Pi is in fact a subspace of the space in which the tracking
error is zero. Now, consider the following Lyapunov function

Vi (Xi ) = X T
i Pi Xi ≥ 0 (6.57)

To complete the proof, it remains to show that V̇i (Xi ) < 0 if X T
i Pi Xi 6= 0 and (6.52) is

satisfied. This is because since Pi ≥ 0 , if V̇i (Xi ) < 0 , then V̇i (Xi ) = Ẋ T
i Pi Xi = 0 and

consequently Pi Xi = 0 which conclude the tracking error is zero. On the other hand, if
V̇i (Xi ) < 0 , then, starting from any initial trajectory, it converges to the null space of Pi

which is a subspace of the space of the solutions in which the tracking error is zero. To
show that V̇i (Xi ) < 0 if (6.52) is satisfied for all Xi such that Pi Xi 6= 0, taking the derivative
of Vi (Xi ) gives

V̇i (Xi ) = X T
i (Pi Aci + AT

ci Pi )Xi (6.58)

where

Aci =
[

Ai +Bi K1i Bi K2i

0 S

]
(6.59)

is the closed-loop dynamics. Assume now that λk is an eigenvalue of Aci and Xk is its
corresponding eigenvector. That is,

Aci Xk =λk Xk , k = 1, · · · ,ni +p. (6.60)

Assuming for simplicity that Aci is diagonalizable, then for any arbitrary vector Xi one
has

Xi =
ni+p∑
k=1

αk Xk (6.61)

for some αk . Using (6.59) and (6.60) in (6.58) yields

V̇i (Xi ) = 2
ni+p∑
k=1

α2
k Re(λk )X T

k Pi Xk (6.62)
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If condition (6.52) is satisfied, then Ai+Bi K1i is Hurwitz and since S is assumed marginally
stable, one has Re(λk ) < 0 ∀k = 1 : ni and Re(λk ) = 0 ∀k = ni +1 : ni +p for the eigenval-
ues of Aci in (6.59) . Therefore, if Pi Xi 6= 0 and (6.52) is satisfied, then V̇i (Xi ) < 0 and this
completes the proof.

6.4.2. MODEL-FREE OFF-POLICY REINFORCEMENT LEARNING FOR SOLV-
ING OPTIMAL OUTPUT REGULATION

In this subsection, a state-feedback off-policy integral reinforcement learning (IRL) algo-
rithm is given to learn the solution to the discounted optimal output regulation problem.
This algorithm does not require any knowledge of the system dynamics or the leader’s
dynamics matrix S. In order to obviate the requirement of the knowledge of the system
dynamics, the off-policy IRL algorithm was proposed in [150] for solving the optimal reg-
ulation problem with an undiscounted performance function. This method is extended
in [149] for discounted performance functions such that it can be used for solving op-
timal output tracking problems. To this end, the system dynamics (6.46) is first written
as

Ẋi = Ti Xi +B1i (−K ∗
i Xi +ui ) (6.63)

With the abuse of notation Ti = Ti +B1i K ∗
i . Then, the Bellman equation becomes [149]

e−γci δt Xi (t +δT )T Pκ
i Xi (t +δt )−Xi (t )T Pκ

i Xi (t )

=
∫ t+δt

t

d

dτ
(e−γci (τ−t )X T

i Pκ
i Xi )dτ

=
∫ t+δt

t
e−γci (τ−t )[X T

i (T T
i Pκ

i +Pκ
i Ti −γci Pκ

i )Xi +2(ui −K κ
i Xi )T B T

1i Pκ
i Xi

]
dτ

=
∫ t+δt

t
e−γci (τ−t )X T

i Qi Xi dτ+2
∫ (t+δt )

t
e−γci (τ−t )(ui −K κ

i Xi )T Wi K κ+1
i Xi dτ (6.64)

where Qi =C T
1i Qi C1i + (K κ

i )T Wi K κ
i . For a fixed control gain K κ

i , (6.64) can be solved for
both the kernel matrix Pκ

i and the improved gain K κ+1
i , simultaneously. The following

Algorithm 1 uses the above Bellman equation to iteratively solve the ARE equation (6.51).
Algorithm 1. Online Off-policy IRL State-feedback algorithm

1. Initialization: Start with a control policy uκ
i = K 0

i Xi +e , where K κ
i is stabilizing and

e is the probing noise.

2. Solve the following Bellman equation for Pκ
i and K κ+1

i simultaneously.

e−γci δt Xi (t +δt )T Pκ
i Xi (t +δt )−Xi (t )T Pκ

i Xi (t )

=−
∫ t+δt

t
e−γci (τ−t )X T

i Qi Xi dτ+2
∫ t+δt

t
e−γci (τ−t )(ui −K κ

i Xi )T Wi K κ+1
i Xi dτ

(6.65)

3. Stop if convergence is achieved, otherwise set κ= κ+1 and got to 2.

4. On convergence set Ki = K κ
i .
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In Algorithm 1, the control policy which is applied to the systems, i.e. ui , can be a fixed
stabilizing policy. The data which is gathered by applying this fixed policy to the system
is then used in (6.65) to find the value function kernel matrix Pκ

i and the improved policy
uκ+1

i = K κ+1
i Xi corresponds to an updated policy ui = Ki Xi

6.5. OPTIMAL MODEL-FREE OUTPUT REGULATION FOR A MULTI-
AGENT HETEROGENEOUS SYSTEM

In this section, the distributed observer and the optimal tracking control from previous
two sections are combined, to solve Problem 1. The block diagram representation of the
presented approach is shown in Figure 6.1. The developed approach, unlike the stan-

Leader

Observer 1
Adaptive

Observer 2
Adaptive

Observer N
Adaptive

RL Based
Tracker Agent  1

Agent  2

Agent  N

Communication graph RL Based
Tracker

RL Based
Tracker

ζ1

ζ2

ζN

Figure 6.1: Block diagram representation of the proposed approach.

dard method (6.11), does not require the explicit solution of the output regulator equa-
tion (6.8). However, it is shown that this distributed reinforcement learning approach
implicitly solves the output regulation equations. The optimal control law (6.45) for a
single-agent system (6.41) depends on the leader’s state ζ0. But, in a distributed multi-
agent network, only few agents will be aware of the leader’s trajectory. Hence, the control
law (6.45) cannot be used for all the agents. However, as explained in Section 6.3, by us-
ing the local adaptive synchronizer (6.14) and the corresponding update law (6.15), every
agent can get a local estimation of the leader’s state ζ0 denoted by ζi . By using the local
estimate ζi in (6.45), the modified optimal tracking controller for each agent is

ui = K1i xi +K2iζi ≡ Ki Xi (6.66)

where Ki is obtained using the online Algorithm 1. Note that the tracking control (6.66)
is optimal and does not depend on either the agent’s system matrices (Ai ,Bi ,Ci ) or the
leader’s dynamics matrix S.

The proof of the asymptotic convergence of the distributed observer and the opti-
mal tracker are given in Sections 6.3 and 6.4, respectively. In the following theorem this
results are combined to achieve output-synchronization of multi-agent heterogeneous
systems.
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Theorem 4. Consider the distributed adaptive synchronizer (6.14) and the optimal track-
ing control solution (6.66) obtained using Algorithm 1 for each agent i . Then the output
synchronization problem is solved for i = 1, · · · , N as t → ∞ , i.e., for the given agents
yi (t )− y0(t ) → 0∀i , provided that c in (6.14) is sufficiently large and the discount factor
γci is less than the bound (6.52).

Proof : Using the control law (6.66), consider the augmented dynamics for a single
agent [

ẋi

ζ̇i

]
=

[
Ai +Bi K1i Bi K2i

0 Si

][
xi

ζi

]
+

[
0
ei

]
(6.67)

along with the adaptive law given by (6.15)

˙̂Sveci =−ΓSi (Iq ⊗ζi )ei (6.68)

where ei is defined in (6.13). Due to the block-triangular structure, the observer dy-
namics is independent of the agent state xi , thus based on the separation principle the
observer and the tracking control can be designed independent of each other. In The-
orem 1 it is shown, ζi (t )− ζ0(t ) → 0, t → ∞,∀i = 1, · · · , N . For any full rank matrix R,
Rζi (t )−Rζ0(t ) → 0, t → ∞ , i.e., Rζi (t )− y0(t ) → 0, t → ∞. Now based on Theorem 2,
yi (t )−Rζi (t ) → 0, t →∞ , this proves yi (t )− y0(t ) → 0, t →∞,∀i .

Remark 4. This theorem illustrates the separation principle for output regulation of het-
erogeneous multi-agent systems. It also shows that the explicit solution for the output
regulator equation (6.8) is not necessary since tracking is achieved by controller (6.66),
which is learned online using Algorithm 1 for each agent. By ensuring the observer is
faster than the learning agent we can reduce the effects of transient. Alternatively, first
the distributed adaptive synchronizer (6.14) can be used to estimate the leader’s state
trajectory and then only agents can learn the optimal controller using Algorithm 1.

The following lemma demonstrates that the output regulator equations (6.8) are in-
trinsically satisfied for the optimal tracking control (6.66).

Lemma 1. Consider a network of heterogeneous multi-agent systems (6.7), and the
leader (6.5). The control law (6.66) obtained using Algorithm 1 implicitly solves the out-
put regulation equations

AiΠi +BiΓi =Πi S

CiΠi = R (6.69)

where Πi ∈ Rni×p and Γi ∈ Rmi×p are unique nontrivial matrices. Moreover, if the gain
K1i in (6.66) and (6.9) are same then K2i = Γi −K1iΠi .

Proof : From Theorem 3, the control law (6.66) obtained using Algorithm 6.4.2,

ui = K1i xi +K2iζi (6.70)

stabilizes the system (6.7), i.e., Ai +Bi K1i is made Hurwitz, and guarantees output syn-
chronization i.e., limt→∞ yi (t ) − y0(t ) = 0 . Now based on Assumption 2, there exists
unique nontrivial matrixΠi ∈Rni×p that satisfies

(Ai +Bi K1i )Πi +Bi K2i =Πi S (6.71)



6.6. SIMULATION RESULTS

6

111

This is a Sylvester equation and the existence of the solutionΠi is guaranteed sinceσ(S)∩
σ(Ai +Bi K1i ) ∈∅ [125]. Also based on Theorem 2, an appropriate value of γ achieves the
output regulation for control law (6.66), i.e.,

lim
t→∞ yi (t )− y0(t ) = lim

t→∞=Ci xi (t )−Rζ0(t ) = 0. (6.72)

This is based on Theorem 1 where ζi → ζ0 is shown. Consider the state transformation
xi = xi −Πiζ0. The dynamics of the new state xi under (6.70) and (6.71) is

ẋi = ẋi −Πi ζ̇0

= Ai xi +Bi K1i xi +Bi K2iζ0 −Πi Sζ0

= (Ai +Bi K1i )xi (6.73)

this limt→∞ xi = 0. From Theorem 2,

lim
t→∞Ci xi (t )−Rζ0(t ) = lim

t→∞Ci xi (t )+ lim
t→∞(CiΠi −R)ζ0(t ) = 0 (6.74)

since ζ0(t ) is obtained from a marginally stable system (Assumption 2) this implies CiΠi−
R = 0 . Using the transformation Γi = K2i +K1iΠi in (6.71) along with (6.74) gives (6.69),
this completes the proof.

6.6. SIMULATION RESULTS
In this section, we provide a detailed simulation analysis of the proposed adaptive opti-
mal output synchronization approach. We choose the leader to be sinusoidal trajectory
generator and its dynamics is given by

ζ̇0 =
(

0 2
−2 0

)
ζ0

y0 =
(

1 0
)
ζ0 (6.75)

The heterogeneous followers are given by (6.8) for i = 1, · · · ,4 and their dynamics is

A1 = 0,B1 = 10,C1 = 1

A2 =
(

0 1
0 0

)
,B2 =

(
0
5

)
,C2 =

(
1 0

)
A3 =

(
0 1
−1 0

)
,B3 =

(
0
2

)
,C3 =

(
1 0

)
A4 =

 0 0 0
0 0 1
0 −1 0

 ,B4 =
 5

0
10

 ,C4 =
(

1 1 0
)

(6.76)

The underlying communication network of heterogeneous systems is given in Figure 2
The distributed observer (6.14), (6.15) is implemented for i = 1, · · · ,4 , The observer
and adaptive gains are chosen as c = 25,Γsi = 15. For the initial leader’s state ζ0(0) =
[1 1]T , the error between observer and leader’s state along with the Frobenius norm
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Figure 6.2: Communication graph for the heterogeneous systems.
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Figure 6.3: Error between adaptive observer and leader’s trajectory for state 1.
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Figure 6.4: Error between adaptive observer and leader’s trajectory for state 2.
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Figure 6.5: Frobenius norm ‖S − Ŝi ‖F for the adaptive observers.

‖S − Ŝi‖F is given in Figure 6.3 and Figure 6.4 and Figure 6.5, respectively. It can be
seen from these figures that the introduced distributed observer converges to the leader’s
state.

The solution of the output regulator equation (6.8) for the given heterogeneous sys-
tems (6.76) is

Π1 =
(

0 1
)

,Γ1 =
(

0 0.2
)

Π2 =
(

1 0
0 2

)
,Γ2 =

( −0.8 0
)

Π3 =
(

1 0
0 2

)
,Γ3 =

( −1.5 0
)

Π4 =
 0.36 0.48

0.64 −0.48
0.96 1.28

 ,Γ4 =
( −0.192 0.144

)
(6.77)

For the following choice of the weight matrices Qi ,Ri the resulting optimal state feed-
back gain using LQR method for (6.76) is

Q1 = 100,R1 = 1,K11 =−10

Q2 =
(

100 0
0 100

)
,R2 = 1,K12 =

( −10 −10.19
)

Q3 =
(

100 0
0 100

)
,R3 = 1,K13 =

( −9.51 −10.46
)

Q4 = 100

 1 0 0
0 1 0
0 0 1

 ,R4 = 1,K14 =
( −10 −12.66 −6.29

)
(6.78)

Using (6.77) and (6.78) the local optimal output regulator control (6.9) can be solved. In-
stead, the tracking control is obtained online by using the Algorithm 1. The convergence
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of the learning controller to their optimal values given by (6.77) and (6.78) for all the
agents is given in Figure 6.6. The evaluation of learned optimal tracking control along
with the adaptive observer for the given multi-agent heterogeneous network is in Fig-
ure 6.7.
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Figure 6.6: Convergence of the learning controller to their optimal values.
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Figure 6.7: Evaluation of the learned controller along with adaptive observer for all 4 heterogeneous agents
given in (6.76).

It can be seen from these results that the introduced approach implicitly solves the
output regulator equations (6.8) and solves problem 1 without requiring any knowledge
of either agent’s or leader’s dynamics.

6.7. CONCLUSIONS
A novel model-free approach is provided to design a distributed controller output track-
ing of a heterogeneous network. A local discounted performance function is defined for
each agent which penalizes its own control effort and its tracking error. It is shown that
minimizing these performance functions leads to solving AREs. It is also shown that the
solutions found by solving AREs ensures synchronization provided that the discount fac-
tor is small enough. An adaptive distributed observer is designed to estimate the leader
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state and reinforcement learning is used to solve the AREs without requiring any knowl-
edge of the dynamics of the agents. A simulation example is provided to show that the
proposed approach in fact implicitly solves the output regulator equation for each agent
(which is a necessary and sufficient condition to achieve output synchronization).





7
CONCLUSIONS AND

RECOMMENDATIONS

In this thesis, reinforcement learning methods to solve passivity-based and distributed
control problems have been proposed. The developed methods have various advantages
in comparison to the standard approaches, as illustrated by theoretical analysis, numer-
ical simulations and experimental studies. In this chapter the contributions and other
findings are summarized. Additionally open research issues and recommendations for
possible future work are given. Finally a generic outlook on using a parameterized con-
trol law in the reinforcement learning framework is provided.

7.1. SUMMARY OF CONTRIBUTIONS AND CONCLUSIONS

I n Chapter 2 the essential theoretical background on port-Hamiltonian theory and
passivity-based control was provided. Important system properties, such as stabil-

ity, passivity, variational symmetry, and self-adjointness are discussed. These properties
form the basis for various model-based approaches, such as control-by-interconnection,
passivity-based control, canonical transformation, etc. When combining PH models
with adaptive and learning approaches, various port-Hamiltonian system properties,
such as stability, passivity, etc. are retained. This is a key advantage and is the main
motivation for augmenting PH theory with learning and adaptive control. This and ad-
ditional details are given in Chapter 3.

The adaptive and learning techniques are preferred mechanisms to deal with the
model, parameter uncertainties and external disturbances. They are also desired when
an analytical model of the dynamical system under consideration is rather expensive to
obtain. It is shown that by combining the PH theory with adaptive and learning control
results in various advantages. A few of the prominent enhancements are: monotonic
error convergence (for ILC), optimal control, guaranteed error bounds, etc. A detailed
numerical study is performed to illustrate the effectiveness of the iterative and repet-
itive control in the PH framework. Simulation results show that augmenting learning
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and adaptation with the PH model is an effective mechanism. Thanks to this approach
various complex control objectives can be achieved. In many instances the given learn-
ing algorithm retains the PH structure, hence it inherently ensures the system proper-
ties that are introduced in Chapter 2. The existing state-of-the-art learning methods are
listed in Table 3.2. However, the enumerated methods lack the capability to learn an
optimal value for a parameterized control law. Although iterative feedback tuning (IFT)
and evolutionary strategy IDA-PBC (ES-IDA-PBC) can be used to learn the parameters of
the control law, their applicability is limited by the self-adjointness and offline learning
assumptions, respectively.

Chapter 4 has introduced various learning algorithms (EBAC, AIDA-AC, CbI-AC, etc.)
using the actor-critic framework. These algorithms can learn the parameterized passivity-
based control law. The unknown parameter vector of the feedback controller is learned
online by directly interacting with the system. In the proposed learning algorithms, the
control objective can be specified via a performance measure in the form of a reward
function. This solves the requirement for a global Hamiltonian, which is a key obstacle
in the existing passivity based methods. Thanks to learning, model and parameter un-
certainties can be readily addressed. Importantly, learning avoids computing explicit so-
lutions of the complex partial-differential and algebraic equations present in the model-
based passivity control synthesis. The parameters of the controller are then learned on-
line. Additionally, system nonlinearities such as control input saturation can also be
handled. This is achieved by setting the gradient update to zero when the control input
exceeds the saturation bound. This stops the actor parameter update thus avoiding the
saturation. Control saturation can also be achieved, to some extent, by formulating the
reward function to penalize a high control effort.

Unlike in prominent critic-only RL methods, continuous-actions can be achieved by
using the parameterized control law. Because of the simple framework, the proposed
methods can be extended for regulating multi-input multi-output systems. The online
learning control methods that are developed in this thesis are approximated by using
polynomial, radial and Fourier basis functions. Prior state-space knowledge such as
symmetry can be helpful while choosing the type of the basis functions.

Extensive numerical and experimental studies have shown that online learning is an
effective mechanism to solve the nonlinear control synthesis problem. Using learning
relatively complex control tasks, such as swing up and stabilization of a pendulum, can
be achieved by using a single control law. This is an involved control problem if only the
model-based port-Hamiltonian control approaches are used. Additionally, for the de-
veloped methods a physical meaning can be attributed to the learned control law. This
is not possible in the standard actor-critic framework. The developed methods gener-
ally require a smaller number of basis functions, thus resulting in faster convergence.
For example, compared to the standard actor-critic that needed more than 100 policy
parameters, energy balancing actor-critic (EBAC) can achieve the same control objec-
tive with only 40 control parameters. Also it must be noted that the proposed methods
can learn the control policy much faster when compared to the standard actor-critic al-
gorithm. An improvement of 30-50% in learning speed was noticed for passivity-based
actor-critic methods. It was also observed that when the policy gradient was adjusted
due to saturation bounds, then the learning algorithm generally required a larger num-
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ber of samples to learn the control policy. However, the learned policy was well within
the desired saturation limits. The faster convergence of the RL based passivity control
methods can be attributed to the available prior knowledge in the form of the PH model.

The proposed methods were used for stabilization and regulation of mechanical and
electro-mechanical systems. The simulation and experimental results show a compa-
rable learning curve. The actor and critic learning rates are generally chosen to be one
order of magnitude apart. Feasible learning rates were obtained by gridding. The learn-
ing rates were fine tuned to ensure nearly zero failure during the numerical simulations.
The chosen learning rates are rather conservative which often limits the speed of learn-
ing. A higher actor and critic learning rate generally leads to more aggressive learning.
However, when doing so a considerable number of failures were observed.

First a set of appropriate learning rates were obtained in simulation. Then, by using
these as a basis, the rates were fine tuned during the experimental study. Along with the
learning rates, the magnitude of the reward function also plays a key role in the proposed
methods. This is in contrast to the standard reinforcement learning framework.

The developed methods were evaluated for parameter and model uncertainties. In
simulation this is done by choosing incorrect system parameters in the control policy.
Extended evaluation of the proposed methods is done to check for scalability. For exam-
ple, the methods are evaluated experimentally for the regulation of a manipulator arm
having two degrees of freedom. It was observed that due to the symmetry of the state
space some systems require a smaller number of Fourier basis functions compared to
the polynomial approximation. A smaller number of parameter leads to faster learning.

Chapter 5 discussed the convergence of the developed actor-critic methods. For on-
line learning, exploration is a fundamental component. Using Gaussian noise as an
exploration term added to the control input, the parameterized control law can be re-
formulated as a probability density function. In the stochastic reinforcement learning
framework, for the discounted reward setting the policy gradient theorem is used to ob-
tain the gradient of the cost function in terms of action-value function and the control
law. On further simplification the policy gradient was approximated by the temporal dif-
ference and the actor basis function. Finally, by assuming the actor learning rate to be an
order of magnitude higher compared to the critic learning rate, the convergence to a lo-
cal minima is shown by using the stochastic approximation approach. This is a generic
proof and it can be used as a basis to demonstrate the convergence of any parameter-
ized control law in the standard actor-critic setting, provided that the 7 assumptions
introduced in Chapter 5 are satisfied.

Chapter 6 introduced a novel reinforcement learning algorithm to solve the optimal
distributed tracking problem for a network of linear heterogeneous systems. The exist-
ing methods available in the literature are model-based. That is, they require the com-
plete information of leader’s and all the agent’s dynamics. The existing state-of-the-art
adaptive and robust methods for heterogeneous MAS tracking are far from optimal. In
contrast the developed method does not require the system information and also it is
locally optimal as it learns the tracking controller by directly interacting with the system.
Detailed numerical evaluation was conducted to show the feasibility of the developed
method. A few prominent applications for the heterogeneous MAS are surveillance, ex-
ploration, search and rescue, etc.
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7.2. OPEN ISSUES RECOMMENDATIONS FOR FUTURE RESEARCH
In this section some of the open research issues that influence the developed parameter
learning RL framework are discussed. Additionally, several fundamental issues encoun-
tered when using RL for control will also be listed.

• Although the developed methods in Chapter 4 have been only evaluated for sta-
bilization and regulation of mechanical and electro-mechanical systems, their ex-
tension to at least some of the multi-domain complex systems should be possible.
A current exception may be electrical systems as they generally require faster sam-
pling compared to a high-inertia mechanical or electro-mechanical system. This
scenario might change with the enhancements in the embedded computational
capabilities.

• Continuing from the previous observation, in this thesis only the stabilization and
regulation control problems are addressed for a nonlinear system in PH form (see
Chapter 4). Extension of the developed RL based passivity control methods to
address tracking problem would be valuable. Application of these methods for
more complex systems such as nonholonomic systems, underactuated systems,
etc. would be another logical extension.

• The presented methods in Chapter 4 have been evaluated for systems with up to
four state variables. The scalability of the algorithm to systems with larger number
of state variables might lead to the curse of dimensionality. Currently, we lack a
mechanism that uses the prior system knowledge to decouple the state variables
into subgroups. This separation might reduce the computational and memory
requirements.

• The reward function is a key element in reinforcement learning. In standard liter-
ature, generally a simple choice for the reward function is suggested. The simplest
example is to give a reward of 1 when the system is at the desired goal and 0 at
other parts of the state-space. However, this simple formulation is not feasible for
control as it often results in slow learning. Also complex control objectives cannot
be included in this simple form. Hence for control applications the reward func-
tion needs to be formulated in a more intelligent and systematic way. Although,
initial results are available in [151] a detailed analysis would be useful.

• Extending the previous point, currently no general mechanism exists that can be
used to split the control objective (i.e., reward function) into a number of sub goals.
This can lead to simple and easier learning objectives and it might result in faster
convergence and monotonic learning. Reward-shaping is a novel technique, the
inclusion of reward-shaping in RL methods for control would be a valuable exten-
sion [152, 153].

• Currently it is not possible to explicitly incorporate the existing knowledge of a safe
operating region during policy parameterizations. The influence of this knowledge
on the actor formulation might provide a valuable insight.
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• In Chapter 4 only discrete-time learning algorithms are used. Modifying the pro-
posed methods for continuous-time RL would be a next logical extension.

• Distributed control of heterogeneous systems has a wide applications, such as ad-
vanced surveillance, exploration, search and rescue, etc. These applications gen-
erally require multiple physical systems to interact with each other. However, the
proposed method cannot be directly used as it assumes the heterogeneous agent
to be a linear time-invariant system, whereas many of the robotic systems are non-
linear. Hence a natural extension is to develop a distributed model-free multi-
agent heterogeneous tracking algorithm for nonlinear agents.

• In the methods developed in Chapter 6 the communication graph is assumed to be
a directional time-invariant graph. However, a more practical assumption would
be to consider an undirected but time-varying graph. In multi robotic networks, a
bi-directional communication (i.e., an undirected graph) can be justified. This is
because if agent i can send information to agent j then communication can also
happen in the other direction. An extension of the proposed algorithm to address
these scenarios would be a valuable addition.

• Approximate reinforcement learning methods can be used to find local optimal
solutions. An alternative would be to learn a control law which satisfies the de-
sired performance criterion but not specifically optimality. This is addressed by
the satisficing theory, a heuristic decision making strategy introduced by Herbert
Simon in [154]. The notion of satisficing is an upcoming control methodology. In
satisficing control instead of an optimal solution, a search is done to obtain an fea-
sible solution which satisfies the acceptable performance threshold. Using a vari-
ation of the satisficing framework in reinforcement learning might lead to faster
learning [155, 156].





GLOSSARY

The glossary contains summary of symbols, notations and abbreviations used through-
out the thesis.

MATH SYMBOLS
R set of real numbers
E expectation
P probability
∂ f
∂x or ∇x f gradient or partial derivative of f w.r.t. x

ẋ or d x
d t derivative of x w.r.t. time t

σ standard deviation
µ variance
xT transpose of x
g⊥ left-annihilator matrix
‖x‖ norm of x
k time or iteration index
N (µ,σ) normal distribution

PH AND PBC SYMBOLS
x; X state; state space
u control input
y system output
J interconnection matrix
R dissipation matrix
F system matrix
H system Hamiltonian
Jd desired interconnection matrix
Rd desired dissipation matrix
Fd desired system matrix
Hd desired Hamiltonian
Jd added interconnection component
Rd added dissipation component
Ha added energy component
Jc controller interconnection matrix
Rc controller dissipation matrix
Fc controller system matrix
Hc controller Hamiltonian
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Hns non shapable component of Hamiltonian
Hs shapable component of Hamiltonian
θ unknown parameter vector
φ basis function
θ̂ estimated unknown parameter vector
T kinetic energy in a system
V potential energy in a system
Vd desired potential energy
Kp proportional gain matrix
Kd damping-injection matrix
Γ update function
Σ nonlinear operator
Σv variational system
(xv,uv, yv) variational state, input and output, respectively
Σ∗ adjoint system
(x∗,u∗, y∗) adjoint state, input and output, respectively
ξ parameter vector
ς saturation function

RL-AC SYMBOLS
x; X state; state space
u,U action; action space
ρ reward function
r reward
π policy
Jπ cost function for policy π
V π state-value function for policy π
Qπ action-value function for policy π
Aπ advantage function for policy π
π̂ approximate policy
V̂ π̂ approximate state-value function
υ critic parameter vector
δ temporal difference
λ trace-decay rate
γ discount factor
θ actor parameter vector
α learning rate
∆u exploration
Tt trial duration
Ts sampling time
Ns number of samples
M martingale sequence
γc continuous-time discount factor
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DISTRIBUTED MAS SYMBOLS
G directed graph
V set of nodes
E set of edges
A or A graph adjacency matrix
D in-degree matrix
Π projection operator

LIST OF ABBREVIATIONS
PH port-Hamiltonian system
PBC passivity-based control
PDE partial differential equation
RL reinforcement-learning
AC actor-critic
EB energy balancing
DI damping injection
ES energy shaping
IDA interconnection and damping assignment
CbI control by interconnection
ILC iterative learning control
RC repetitive control
IFT iterative feedback tuning
ES evolutionary strategy
S-AC standard actor-critic
TD temporal difference
MDP Markov decision process
MAS multi-agent system
IRL integral reinforcement learning
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SUMMARY

Over the last couple of decades the demand for high precision and enhanced perfor-
mance of physical systems has been steadily increasing. This demand often results in
miniaturization and complex design, thus increasing the need for complex nonlinear
control methods. Some of the state of the art nonlinear methods are stymied by the re-
quirement of full state information, model and parameter uncertainties, mathematical
complexity, etc. For many scenarios it is nearly impossible to consider all the uncertain-
ties during the design of a feedback controller. Additionally, while designing a model-
based nonlinear control there is no standard mechanism to incorporate performance
measures. Some of the mentioned issues can be addressed by using online learning.

Animals and humans have the ability to share, explore, act or respond, memorize
the outcome and repeat the task to achieve a better outcome when they encounter the
same or a similar scenario. This is called learning from interaction. One instance of this
approach is reinforcement learning (RL). However, RL methods are hindered by the curse
of dimensionality, non-interpretability and non-monotonic convergence of the learning
algorithms. This can be attributed to the intrinsic characteristics of RL, as it is a model-
free approach and hence no standard mechanism exists to incorporate à priori model
information.

In this thesis, learning methods are proposed which explicitly use the available sys-
tem knowledge. This can be seen as a new class of approaches that bridge model-based
and model-free methods. These methods can address some of the hurdles mentioned
earlier. For example, i) a prior system information can speed up the learning, ii) new
control objectives can be achieved which otherwise would be extremely difficult to at-
tain using only model-based methods, iii) physical meaning can be attributed to the
learned controller.

The developed approach is as follows: the model of the given physical system is rep-
resented in the port-Hamiltonian (PH) form. For the system dynamics in PH form a
passivity-based control (PBC) law is formulated, which often requires the solution to a
set of partial differential equations (PDEs). Instead of finding an analytical solution, the
PBC control law is parameterized using an unknown parameter vector. Then, by using
a variation of the standard actor-critic learning algorithm, the unknown parameters can
be learned online. Using the principles of stochastic approximation theory, a proof of
convergence for the developed method is shown.

The proposed methods are evaluated for the stabilization and regulation of mechan-
ical and electro-mechanical systems. The simulation and experimental results show
comparable learning curves.

In the final part of the thesis a novel integral reinforcement learning approach is de-
veloped to solve for the optimal output tracking control problem for a set of linear het-
erogeneous multi-agent systems. Unlike existing methods, this approach does not need
to solve either the output regulator equation or requires a p-copy of the leader’s dynam-
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ics in the agent’s control law. A detailed numerical evaluation has been conducted to
show the feasibility of the developed method.



SAMENVATTING

Gedurende de laatste tientallen jaren is de vraag naar hogere precisie en verbeterde pres-
taties van fysieke systemen gestaag toegenomen. Deze vraag resulteert vaak in minituri-
satie en in complexe ontwerpen, waardoor de noodzaak van het gebruik van complexe
niet-lineaire regelmethoden toeneemt. Sommige state-of-the-art niet lineaire metho-
den zijn onder andere beperkt door hun afhankelijkheid van volledige toestand infor-
matie, onzekerheden in het model en de model parameters en wiskundige complexiteit.
In veel gevallen is het bijna onmogelijk om rekening te houden met alle onzekerheden
tijdens het ontwerp van de regelaar. Bovendien is er, voor het ontwerpen van een op
een model gebaseerde niet lineaire regelaar, geen standaard methodiek om rekening te
houden met de prestatiemaatstaven. Sommige van de genoemde problemen kunnen
verholpen worden door het gebruik van online learning.

Dieren en mensen hebben het vermogen om te delen, actie te ondernemen of te re-
ageren, de uitkomst van een taak te onthouden en de taak te herhalen om een beter
resultaat te behalen als ze de zelfde of een vergelijkbare situatie tegenkomen. Dit heet
learning from interaction (leren van interactie). Een voorbeeld van deze aanpak is rein-
forcement learning (RL). Echter, RL methoden worden gehinderd door de vloek van de
dimensionaliteit, de niet interpreteerbaarheid en de niet monotone convergentie van
de leer algoritmen. Deze problemen kunnen worden toegeschreven aan de intrinsieke
kenmerken van RL, aangezien het een modelvrije aanpak is waardoor er geen standaard
mechanisme bestaat om voorkennis te integreren.

In deze thesis worden leermethoden voorgesteld die expliciet de beschikbare sys-
teemkennis gebruiken. Dit kan worden gezien als een nieuwe klasse van methoden die
een brug vormt tussen model-gebaseerde en model-vrije methoden. Met deze metho-
den kunnen sommige van de eerdergenoemde moeilijkheden overkomen worden. Bij-
voorbeeld, i) voorkennis over het systeem kan gebruikt worden om het leren te versnel-
len, ii) nieuwe regel doelstellingen kunnen worden verwezenlijkt die anders - met alleen
model-gebaseerde methoden - bijna onhaalbaar zouden zijn, iii) er kan een fysieke be-
tekenis worden toegeschreven aan de geleerde regelaar.

De ontwikkelde methode werkt als volgt: het model van het gegeven fysieke systeem
wordt gerepresenteerd in de port-Hamiltonian (PH) vorm. Voor de systeem dynamica in
PH vorm wordt een passivity-based control (PBC) wet opgesteld, waarvoor vaak de op-
lossing van een stelsel van partiële differentiaalvergelijkingen nodig is. Inplaats van een
analytische oplossing te vinden wordt de PBC regelwet geparametriseerd met behulp
van een onbekende parameter vector. Daarna kunnen, met behulp van een variatie op
het standaard actor-critic algoritme, de onbekende parameters online worden geleerd.
Met behulp van de principes van stochastische benaderings-theorie wordt het bewijs
gegeven voor de ontwikkelde methode.

De voorgestelde methoden zijn geevalueerd voor de stabilizatie en regulatie van me-
chanische en electromechanische systemen.
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In het laatste deel van deze thesis wordt een nieuwe integrale reinforcement learning
methode ontwikkelt voor het oplossen van het optimale output tracking regel probleem
voor een set van lineaire heterogene multi-agent systemen. In tegenstelling tot bestaande
methoden vereist deze aanpak niet het oplossen van de output regulator equation of het
gebruiken van een p-copy van de dynamica van de leider in de regelwet van de agent.
Een gedetailleerde numerieke evaluatie is uitgevoerd om de haalbaarheid van de ont-
wikkelde methode aan te tonen.
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