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Online Caching With no Regret: Optimistic Learning
via Recommendations

Naram Mhaisen , George Iosifidis , and Douglas Leith

Abstract—The design of effective online caching policies is an
increasingly important problem for content distribution networks,
online social networks and edge computing services, among other
areas. This paper proposes a new algorithmic toolbox for tack-
ling this problem through the lens of optimistic online learning.
We build upon the Follow-the-Regularized-Leader (FTRL) frame-
work, which is developed further here to include predictions for
the file requests, and we design online caching algorithms for
bipartite networks with pre-reserved or dynamic storage subject to
time-average budget constraints. The predictions are provided by
a content recommendation system that influences the users viewing
activity and hence can naturally reduce the caching network’s
uncertainty about future requests. We also extend the framework to
learn and utilize the best request predictor in cases where many are
available. We prove that the proposed optimistic learning caching
policies can achieve sub-zero performance loss (regret) for perfect
predictions, and maintain the sub-linear regret bound O(

√
T ),

which is the best achievable bound for policies that do not use
predictions, even for arbitrary-bad predictions. The performance
of the proposed algorithms is evaluated with detailed trace-driven
numerical tests.

Index Terms—Edge caching, network optimization, online
learning, regret analysis.

I. INTRODUCTION

A. Motivation and Background

THE quest for efficient data caching policies spans more
than 50 years and remains today one of the most im-

portant research areas for wireless and wired communication
systems [2]. Caching was first studied in computer systems
where the aim was to decide which files to store in fast-accessible
memory segments (paging) [3]. Its scope was later expanded
due to the explosion of Internet web traffic [4] and the advent
of content distribution networks (CDNs) [5], and was recently
revisited as a technique to improve the operation of wireless
networks through edge caches [6] and on-device caching [7]. A
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common challenge in these systems is to design an online policy
that decides which files to store at a cache, without knowing the
future file requests, so as to maximize the cache hits or some
other cache-related performance metric.

There is a range of online caching policies that tackle this
problem under different assumptions on the request arrivals.
Policies such as the LFU and LRU are widely-deployed, yet
their performance deteriorates when the file popularity is non-
stationary, i.e., the requests are drawn from a time-varying
probability distribution [8], [9], [10]. This motivated modeling
non-stationary request patterns [11], [12] and optimizing ac-
cordingly the caching decisions [13], [14]. Another line of work
relies on learning techniques such as (multi-agent) reinforce-
ment learning to estimate the request probabilities and make
caching decisions accordingly [15], [16], [17]; but typically
these solutions either do not offer optimality bounds, or do not
scale due to having the library size in their bounds.

Caching was studied within the framework of online learning
in [18] for a single-cache system; and in its more general
form recently in [19] that proposed an online gradient descent
(OGD) caching policy. Interesting follow-up works include
sub-modular policies [20], online mirror-descent policies [21],
and the characterization of their performance limits [22], [23].
The advantage of these online learning-based caching policies
is that they are scalable, do not require training data, and their
performance bounds are robust to any possible request pattern,
even when the requests are generated by an adversary that aims
to degrade the caching operation. On the other hand, forecasting
models have been used to optimize caching e.g., evicting the file
with the furthest predicted request [24]. While these policies
have shown performance gains, their hit ratio can deteriorate
if the forecasted requests cease to meet reality due to, e.g.,
a shift in the training data (users request). Follow-up works
attempted to remedy this issue by designing mechanisms that
identify performance deterioration and trigger re-training of the
model [25]. Still, algorithms with explicit formal guarantees
that are agnostic to the quality of the predictions are yet to be
proposed.

Hence, an aspect that remains hitherto unexplored is whether
predictions about future requests can improve the performance
of such learning-based caching policies without sacrificing their
robustness. This is important in modern caching systems where
often the users receive content viewing recommendations from
a recommendation system (RecSys). For instance, recommen-
dations are a standard feature in streaming platforms such as
YouTube and Netflix [26]; but also in social network platforms
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such as Facebook and Twitter, which moderate the users’ view-
ing feeds [27]. Not surprisingly, the interplay between recom-
mendations and caching attracted recent attention and prior
works aimed to increase the caching hits or reduce routing costs,
by either recommending already-cached files to users, or through
the joint optimization of caching and recommendation decisions
[28], [29], [30], [31], [32], [33]. These important works, how-
ever, consider static caching models and require knowing in
advance the users’ expected requests and their propensity to
follow the recommendations, or make certain assumptions on
the structure of the loss function, e.g., strongly-convex.

Changing vantage point, one can observe that since recom-
mendations bias the users towards viewing certain contents,
they can effectively serve as predictions of the forthcoming
requests. This prediction information, if properly employed,
can hugely improve the efficacy of dynamic caching policies.
Nevertheless, the caching policy needs to adapt to the accuracy
of recommendations (i.e., of the predictions) and the users’
propensity to follow them – which is typically unknown and
potentially time-varying. Otherwise, the caching performance
might as well deteriorate by following these misleading hints
about future requests. The goal of this work is to tackle exactly
this challenging new problem and answer the question: Can we
leverage untrusted predictions in caching systems? We answer
this question in the affirmative by proposing online learning-
based caching policies that utilize predictions (of unknown
quality) to boost performance, if those predictions are accurate,
while still maintaining robust performance bounds otherwise.

B. Methodology and Contributions

Our approach is based on the theory of Online Convex Opti-
mization (OCO) that was introduced in [34] and has since been
applied in several decision problems [35]. The basic premise
of OCO is that a learner (here the caching system) selects in
each slot t a decision vector xt from a convex set X , with-
out knowing the t-slot convex performance function ft(x),
that changes with time. The learner’s goal is to minimize the
growth rate of regretRT =

∑T
t=1 ft(x

�)− ft(xt), wherex� =

argmaxx∈X
∑T

t=1 ft(x) is the benchmark solution designed
with hindsight, i.e., with access to the entire sequence of future
functions {ft}Tt=1. The online caching problem fits squarely in
this setup, where ft(x) depends on the users’ requests and is
unknown when the caching is decided. And previous works [19],
[20], [21], [22] have proved that OCO-based caching policies
achieve RT = O(

√
T ), thus ensuring asymptotically zero aver-

age regret: limT→∞RT /T = 0.
Different from these important studies, we extend the learning

model to include predictions that are available through the con-
tent recommendations. Improving the regret of learning policies
via predictions is a relatively new area in machine learning re-
search. For instance, [36] focuses on the competitive-ratio metric
and developed algorithms that use untrusted predictions while
maintaining worst-case performance bounds; while [37] applied
similar ideas to the paging problem. However, it was shown
in [38] that such competitive-ratio algorithms cannot ensure

sublinear regret, which is the performance criterion we employ
here, in line with all recent works [19], [20], [21], [22], [23].

For regret-minimization with predictions, [39] used predic-
tions for the function gradient ∇ft(xt) with guaranteed quality
to reduceRT fromO(

√
T ) toO(log T ); and [40] enhanced this

result by allowing some predictions to fail the quality condition.
A different line of works uses regularizing functions which
enable the learner to adapt to the predictions’ quality [41], [42].
This idea is more promising for the caching problem where the
recommendations might be inaccurate, or followed by the users
for only arbitrary time windows; thus, we used it as starting point
to develop our caching learning frameworks.

In specific, our approach relies on the Follow-The-
Regularized-Leader (FTRL) algorithm [43] which we extend
with predictions that offer optimism by reducing the uncertainty
about the next-slot functions. We study different versions of the
caching problem. First, we design a policy (OFTRL) for the bi-
partite caching model [6], which generalizes the standard single
cache case [18], [37]. In fact, the bipartite model represents a
wide range of caching systems including CDNs, Edge caching
and Femtocaching scenarios, D2D caching networks, and so on.
Theorem 1 proves that RT is proportional to prediction errors
(‖ct − c̃t‖2), diminishing to zero for perfect predictions; while
still meeting the best achievable bound O(

√
T ) for the regular

OCO setup (i.e., without using predictions) [22] even if all
predictions fail. We continue with the elastic caching problem,
where the system resizes the used caches at each slot based, e.g.,
on volatile storage leasing costs [44], [45], [46]. The aim is to
maximize the caching utility subject to a time-average budget
constraint for the storage capacity costs. This places the problem
in the realm of constrained-OCO [47], [48], [49], [50]. Using a
new saddle point analysis with predictions, we prove Theorem 2
which reveals how the regret and the budget violation depend on
the cache sizes and prediction errors, and how one can prioritize
one metric over the other while achieving sublinear growth rates
for both.

The above algorithms utilize the RecSys as the only source to
predict the next time-slot cost function gradient c̃t+1. In many
cases, however, content providers might have access to multiple
such sources. For example, a statistical user profiling model, a
deep learning-based predictive model for content requests [51],
or even another RecSys, see [52] and follow-up works. Those
sources can be used to obtain multiple, and possibly con-
tradicting, predictions. Our final contribution is, therefore, a
meta-learning caching framework that utilizes predictions from
multiple sources to achieve the same performance as a caching
system that used the best such source to start with. We show that
the regret in the case of multiple sources can be strictly negative
depending on the request sequence and the existence of a high-
accuracy predictor. At the same time, the meta-learning caching
framework maintains sublinear regret when all predictors fail.
Finally, we show that this framework can also be applied in
cases with single RecSys, and discuss its pros and cons com-
pared to the proposed regularization-based optimistic caching
solutions.

In summary, the contributions of this work can be grouped as
follows:
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• Introduces an online learning framework for bipartite and
elastic caching networks that leverages predictions to achieve a
regret that is upper-bounded by zero for perfect recommenda-
tions and remains sub-linear O(

√
T ) for arbitrary bad recom-

mendations. The results are based on a new analysis technique
that improves the bounds by a factor of

√
2 compared to the

state-of-art optimistic-regret bounds [42], which we used in our
recent work [1].
• Introduces a meta-learning framework that utilizes predic-

tions from multiple sources and learns which of them to use,
if any at all. This framework achieves regret similar to the best
predictor-based system, and maintains sub-linear regret if all
predictors fail.
• Evaluates the policies using various request models and

real datasets [53], [54] and compares them with (i) the best in
hindsight benchmark; and (ii) the online gradient descent policy,
which is known to achieve the best possible regret bound (with-
out using predictions) and outperforms other policies [19], [22].

The work presents conceptual innovations, i.e., using rec-
ommendations as an untrusted prediction source for caching
decisions, and leveraging different online caching algorithms
in an optimistic meta-learning algorithm; as well as technical
contributions such as the tightened bound of optimistic proximal
FTRL (Theorem 1) and the new optimistic proximal FTRL
algorithm with budget constraints (Theorem 2). While we focus
on data caching, the proposed algorithms can be directly applied
to caching of services and code libraries in edge computing
systems.

Paper Organization: The rest of this work is organized as
follows. Section II introduces the system model and states
formally the problem. Section III presents the optimistic online
caching policy for the bipartite graph, and Section IV presents
the respective policy and results for the case of elastic caching
systems. Section V introduces the meta-learning framework with
the inclusion of multiple predictors, and Section VI presents our
numerical evaluation of the proposed algorithms using synthetic
and real traces. We conclude in Section VII.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. Model Preliminaries

Notation: We use calligraphic capital letters, e.g.,X to denote
sets. Vectors are denoted with bold-face small letters,1 e.g., a,
and we use the subscript t to highlight a vector’s dependence
on a specific time slot e.g., at. Scalars are denoted with regular
letters and can as well depend on the time, e.g., ht. When a
component of the vector is indexed, the subscript is repurposed
to denote that component’s (multi-)index, while the t moves to
the superscript. i.e., for the d-dimensional vector at we write
at = (at1, a

t
2, . . . , a

t
d). We denote with {at}Tt=1 the sequence of

vectors or parameters from slot t = 1 up to slot T ; whenever the
horizon is not relevant we use {at}t. We also use the shorthand
sum notation for scalars b1:t =

∑T
i=1 bi and the element-wise

sum of vectors a1:t =
∑T

i=1 ai. We denote with [T ] the integer

1The only exception is the vector F t, which was done for better readability
of Section V

TABLE I
KEY NOTATION

Fig. 1. System Model. A network of J caches serves file requests from a set
of I users locations. Unserved requests are routed to the Root Server. Caching
decisions are aided via the recommendations provided by the RecSys.

set 1, 2, . . . , T . We make use of the indicator function IX (x),
which evaluates to IX (x) = 0 if x ∈ X and ∞ otherwise. The
notation is summarized in Table I.

Network: The caching network includes a set of edge caches
J = {1, 2, . . . , J} and a root cache indexed with 0, as shown in
Fig. 1. The file requests emanate from a set of user locations I =
{1, 2, . . . , I}. The connectivity between I and J is modeled
with parameters � = (�ij ∈ {0, 1} : i ∈ I, j ∈ J ), where �ij =
1 if cache j can be reached from location i. We consider the
general case where the caches have overlapping coverage; thus,
each user can be (potentially) served by one or more edge caches.
The root cache is within the range of all users in I. This is a
general non-capacitated bipartite model, see [55] for an overview
of caching models; and extends the celebrated femtocaching
model [6] since the link qualities (which are captured through
the utility gains; see below) not only may vary with time, but
can do so in an arbitrary (i.e., non-stationary) fashion. This latter
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feature is particularly important for the realistic modeling of
volatile wireless edge caching systems [56], [57].

Requests: The system operation is time slotted, t =
1, 2, . . . , T . Users submit requests for obtaining files from a
library N of N files with unit size; we note that the analysis
can be readily extended to files with different sizes. This will
be made clear in Section II-B. Parameter qtni ∈ {0, 1} indi-
cates the submission of a request for file n ∈ N by a user
at location i ∈ I in the beginning of slot t. At each slot we
assume there is one request;2 i.e., the caching decisions are
updated after every request, as in LFU and LRU policies, [58],
[59]. Hence, the request process comprises successive vectors
qt = (qtni ∈ {0, 1} : n ∈ N , i ∈ I) from the set:

Q =

{
q ∈ {0, 1}N ·I

∣∣∣ ∑
n∈N

∑
i∈I

qni = 1

}
.

We make no assumptions for the request pattern; it might
follow a fixed or time-varying distribution that is unknown
to the system; and can be even selected strategically by an
adversary aiming to degrade the caching operation. If a policy’s
performance is satisfactory under this model, it is ensured to
achieve (at least) the same performance for other request models.

Recommendations: There is a recommender system (RecSys)
that suggests files to each user i ∈ I, see [26] for the case of
Netflix. User i requests one of the recommended files with a
certain probability that captures the user’s propensity to follow
the recommendations. Unlike prior works that consider these
probabilities fixed [28], [60], we model them as unknown and
possibly time-varying. Namely, no assumption on their quality
is guaranteed to remain valid.

A key point in our approach is that the content recommen-
dations, if properly leveraged, can serve as predictions for the
next-slot requests which are otherwise unknown. We denote with
q̃t the prediction for the request qt that the system will receive at
the beginning of slot t, and we assume that q̃t is available at the
end of slot t− 1, i.e., when the RecSys provides its recommenda-
tions. Essentially, the recommender system serves as an indirect
mechanism for predicting the next request, and this can happen in
various ways. For example, the caching system can set q̃ t+1

n̂î
= 1

and q̃ t+1
ni = 0, ∀(n, i) 	= (n̂, î), where (n̂, î) is the request with

the highest predicted probability (top recommended file).3 In
Section V, we study the case where a set P = {1, . . . , P} of
P different predictors (other than the recommendation system)
are available, each one offering a prediction q

(p)
t , p ∈ P at every

slot t.
Caching: Each cache j ∈ J stores up to Cj << N files,

while the root cache stores the entire library, i.e., C0 ≥ N .
We also define C = maxj∈J Cj . Following the femtocaching
model [6], we perform caching using the Maximum Distance

2The proposed policies will still deliver the same regret guarantees when
requests are batched before an update. However, the Lipchitz constant will be
scaled according to the batch size, and this will affect accordingly the constant
factor of the guarantees.

3Note that our caching policy is orthogonal to the mechanism that maps the
recommendations to predictions. Namely, our results will be stated in terms of
the prediction error.

Separable (MDS) codes, where files are split into a fixed number
of F chunks, including redundancy chunks. A user can decode
the file if it receives any F -sized subset of its chunks. For
large values of F , the MDS model allows us to use continuous
caching variables.4 Hence, we define the variable ytnj ∈ [0, 1]
which denotes the portion of F chunks of file n ∈ N stored
at cache j ∈ J , and we introduce the t-slot caching vector
yt = (ytnj : n ∈ N , j ∈ J ) that belongs to set:

Y =

{
y ∈ [0, 1]N ·J

∣∣∣ ∑
n∈N

ynj ≤ Cj , j ∈ J
}
.

We note that our model can be readily extended to files of
different size, by replacing the capacity constraint in Y with∑

n∈N
vnynj ≤ Cj , j ∈ J

For some general size vector v ∈ R
N
+ . Such a change will

not affect the mathematical characteristics of the optimization
problem (both sets correspond to linear constraints).

Routing: Since each user location i ∈ I may be connected
to multiple caches, we need to introduce routing variables. Let
ztnij denote the portion of request qtni served by cache j. In the
MDS caching model the requests can be simultaneously served
from multiple caches and, naturally, we restrict5 the amount of
chunks not to exceed F . Hence, the t-slot routing vector zt =
(ztnij ∈ [0, 1] : n ∈ N , i ∈ I, j ∈ J ) is drawn from:

Z =

⎧⎨⎩z ∈ [0, 1]N ·J ·I
∣∣∣ ∑
j∈J

znij ≤ 1, n ∈ N , i ∈ I
⎫⎬⎭ .

Requests that are not (fully) served by the edge caches J are
served by the root server that provides the missing chunks. This
decision needs not to be explicitly modeled as it is directly
determined by the routing vector zt.

B. Problem Statement

Cache Utility & Predictions: We use parameterswnij ∈ [0, w]
to model the system utility when delivering a chunk of filen ∈ N
to location i ∈ I from cache j ∈ J , instead of using the root
server. This general utility model offers the ability to capture
bandwidth savings or delay reductions, as well as other common
objectives of edge-caching, in both wired and wireless networks.
It is noteworthy that under this model, the caching benefits may
vary for each cache and user location, and they can also change
over time. Additionally, the problem of maximizing cache hits
can be viewed as a specific instance within this context (when
wnij = 1), as discussed in [2]. To streamline presentation we

4Large files are composed of thousands of chunks, leading to a small chunk
size (compared to the original file). This induces practically negligible errors in
the utility function [55, Section 3.3]. In addition, even for exact discrete caching,
relaxing the integrality constraints and solving the continuous version is an
essential first step which is then followed by a randomized rounding technique
(see, e.g., [61, Sec. 6]).

5This practical constraint is called the inelastic model and compounds the
problem, cf. [22] for the simpler elastic model.
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introduce vector xt = (yt, zt) ∈ R
m, with m = NIJ +NJ ,

and define the system utility in slot t as:

ft(xt) =
∑
n∈N

∑
i∈I

∑
j∈J

wnijq
t
niz

t
nij (1)

and we denote its gradient ct = ∇ft(xt). As it will become
clear, our analysis holds also for non-linear concave functions
ft(x); this generalization is useful in case, e.g., we wish to
enforce fairness in the dispersion of caching gains across user
locations [45].

The main challenge in online caching is the following: at
the end of each slot t where we need to decide the cache
configuration, the utility function ft+1 is not available. Indeed,
this function depends on the next-slot request qt+1, which is
made known only after yt+1 has been decided and fixed,6

see [19], [22], [37]. Note that this is also the operation timing
of the LRU/LFU policies [58], [59]. However, the recommen-
dations provided to users can be used to form the vector of
predicted requests q̃t+1, which in turn can be used to create
a prediction for the gradient of the next slot function f̃t+1(·).
This predicted gradient, denoted c̃t+1, suffices for designing the
proposed optimistic algorithms.

Benchmark: In such learning problems, it is important to
understand the objective that our algorithm aims to achieve.
If we had access to an oracle for all requests over a horizon
of T slots {qt}Tt=1 (and the utility parameters) we could have
devised the utility-maximizing static caching and routing policy
x� = (y�, z�), by solving the following convex optimization
problem:

P1 : max
x

.
T∑

t=1

ft(x) (2)

s.t. znij ≤ ynj�ij , i ∈ I, j ∈ J , n ∈ N , (3)

z ∈ Z, y ∈ Y, (4)

where (3) ensure that the routing decisions for each requested
file use only caches that store enough chunks of that file. Let us
define the convex set of constraints:

X = {{Y × Z} ∩ {(3)}} (5)

that we will use henceforth to streamline presentation.
Clearly, this hypothetical solution x� can be designed only

with hindsight and is the benchmark for evaluating our online
learning policy π which outputs {xt}t. Thus, in line with prior
works, we use the metric of static regret:

RT (π) = sup
{ft}Tt=1

[
T∑

t=1

ft (x
�)−

T∑
t=1

ft (xt)

]
, (6)

which quantifies the performance gap of π from x�, for any
possible sequence of requests or, equivalently, functions {ft}t.
Our goal is to find a policy that achieves sublinear regret,
RT (π) = o(T ), thus ensuring the average performance gap
RT /T will diminish as T grows. This policy, similar to other
online policies, decides xt+1 at the end of each slot t using the

6In our case, since the routing is directly shaped by the caching, this restriction
affects also zt+1.

previous utility functions {fτ}tτ=1 and the next-slot prediction
f̃t+1 devised from the RecSys.

Note that, in principle, the regret metric can be negative. This
is especially true for optimistic policies. To see why, recall that
x� is the best fixed caching configuration, whereas xt is allowed
to change for each t. Hence, it might happen, e.g., that xt

performs better than x� on some steps, ft(xt) ≥ ft(x
�), while

performing similar tox� in the remaining ones ft(xt) ≈ ft(x
�).

Of course, the occurrence of such an event depends on the request
sequence and the policy that determines xt.

On the other hand, there are stricter benchmarks such as those
that allow the hindsight policy to pick a different decision in each
slot,x�

t ∈ argmaxx∈X ft(x). These benchmarks give rise to the
dynamic regret metric,7 which compares the learning algorithm
with

∑T
t=1 ft(x

�
t ). However, it is well established that achieving

sublinear dynamic regret requires additional assumptions on
the variability of the function ft(·) (see, e.g., the discussion
in the introduction section of [62]). In addition, for the caching
problem in particular, such a dynamic policy, (i.e., {x�

t }Tt=1),
will alter the cache state at every time-step, inducing prohibitive
switching cost. This is in contrast to the presented policies that
converge to the best fixed solution. In the following sections,
we show that optimism can greatly decrease the upper bound on
RT , increasing the chances of negative regret.

III. OPTIMISTIC BIPARTITE CACHING

Unlike recent caching solutions that rely on Online Gradient
Descent (OGD) [19] or on the Follow-the-Perturbed-Leader
(FTPL) policy [22], our approach draws from the Follow-The-
Regularized-Leader (FTRL) policy, cf. [63], appended with
prediction-adaptive regularizers. A key element in our proposal
is the optimism emanating from the availability of predictions,
namely the content recommendations that are offered to users
by the RecSys in each slot.

Let us begin by defining the proximal regularizers:8

r0(x) = IX (x), rt(x) =
σt
2
‖x− xt‖2, t ≥ 1 (7)

where ‖ · ‖ is the euclidean norm, and recall that IX (x) = 0
if x ∈ X and ∞ otherwise. We apply properly selected regu-
larizing parameters, which change the strong convexity of rt
according to the predictions’ quality until t, and also ensure
rt(x) ≥ 0, ∀t, namely:

σ1 = σ
√
h1, σt = σ

(√
h1:t −

√
h1:t−1

)
, t ≥ 2

with ht = ‖ct − c̃t‖2, (8)

where σ ≥ 0, ct = ∇ft(xt), and we used the shorthand sum
notation h1:t =

∑t
i=1 hi for the aggregate prediction errors

during the first t slots. The basic step of the algorithm is:

xt+1 = arg min
x∈Rm

{
r0:t(x)− (c1:t + c̃t+1)

�x
}
, (9)

which calculates the decision vector using past utility observa-
tions c1:t, the aggregate regularizer r0:t(x) and the prediction

7We refer the reader to [35, Ch. 10] for variations on the regret metric
8A proximal regularizer induces a proximal mapping for the objective func-

tion; see [64, Ch. 6.1] for the formal definition.
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Algorithm 1: Optimistic Bipartite Caching (πobc).

c̃t+1. The update employs the negative gradients as it concerns
a maximization problem. Henceforth, we refer to (9) as the
optimistic FTRL (OFTRL) update. To provide some intuition on
(9), ignore for a moment the regularization term. Our decision
vector for t+ 1 is then simply the minimization of a linear cost
(or, equivalently, the maximization of linear utility) that consists
of the total cost witnessed until time t, plus the cost prediction
for t+ 1. This is indeed a reasonable objective, provided that
the prediction is accurate. However, the solution to any linear
program is on the extremes of the decision set. Hence, the
adversary can exploit this and make the learner jump between
extreme points while placing maximum costs at those (e.g., via
wrong predictions). Here comes the role of the regularization
term, which stabilizes our decisions since the solution to the
quadratic program is no longer on the extreme points. In fact,
we want such regularization to be proportional to the witnessed
accuracies of the predictions (hence the choices in (8)). This
way, if the predictions are accurate, the linear program provides
good decisions. Otherwise, the regularization induces a stable
quadratic program whose solution cannot be arbitrarily harmed.

Policy πobc is outlined in Algorithm 1. In each iteration,
OBC solves a convex optimization problem, (9), involving a
projection on the feasible set X (via r0(x)). For the latter, one
can rely on fast-projection algorithms specialized for caching,
e.g., see [19]; while it is possible to obtain a closed-form solution
for the OFTRL update for linear functions. We quantify next the
performance of Algorithm 1.

Theorem 1: Algorithm 1 ensures the regret bound.

RT ≤ 2
√
1 + JC

√√√√ T∑
t=1

‖ct − c̃t‖2.

For the proof, we modify the “strong FTRL lemma” [63,
Lemma 5] by adding predictions for next-slot utility function.
The following lemma bounds the regret in terms of the difference
between two values of a strongly convex function evaluated at
xt and at xt+1, for each t.

Lemma 1: (Optimistic Strong FTRL Lemma) Let vt(x) =
−c�t xt + rt(xt), and v0:t(x) = −c�1:txt + r0:t(xt). Let xt+1

be selected according to (9). Then:

RT ≤ r0:T (x
�) +

T∑
t=1

v0:t(xt)− v0:t(xt+1)− rt(xt)

+ c̃�T+1 (xT+1 − x�) (10)

Proof of Lemma 1:

T∑
t=1

vt(xt)−
(
v0:T (x

�)− c̃�T+1x
�
)

=

T∑
t=1

(v0:t(xt)− v0:t−1(xt))− (v0:T (x
�)− c̃�T+1x

�)

≤
T∑

t=1

v0:t(xt) +

T∑
t=1

(−v0:t−1(xt))

− (v0:T (xT+1)− c̃�T+1xT+1) (by def. of xT+1)

(a)
=

T∑
t=1

v0:t(xt)− v0(x1) +

T−1∑
t=1

(−v0:t(xt+1))

− v0:T (xT+1) + c̃�T+1xT+1

(b)

≤
T∑

t=1

(v0:t(xt)− v0:t(xt+1)) + c̃�T+1xT+1 (11)

where equality (a) follows by reindexing the second sum (i.e.,
changing the sum index from t to t+ 1), and inequality (b)
by dropping the non-positive term −v0(x1) = −r0(x1) and
appending the term −v0:T (xT+1) to the second sum. Thus, we
have that:

T∑
t=1

vt(xt)− v0:T (x
�) + c̃�T+1x

�

≤
T∑

t=1

(v0:t(xt)− v0:t(xt+1)) + c̃�T+1xT+1. (12)

Expanding the definition of vt(xt) and rearranging give the
regret inequality:

c�0:Tx
� −

T∑
t=1

c�t xt ≤ r0:T (x�)+

T∑
t=1

(v0:t(xt)− v0:t(xt+1))

− rt(xt) + c̃�T+1 (xT+1 − x�) .

Noticing that the LHS is essentially the regret defined in (6) for
ft(x) = 〈ct,x〉 completes the proof.9 �

With the weak assumption that the caching system will be
notified upon the serving of the last request, we can set c̃T+1 = 0
and hence cancel the last term in the above inequality. Otherwise,
it will be an additional constant factor in the regret bound.10

Next, we will make use of the following results to bound each
v0:t(xt)− v0:t(xt+1) term:

Lemma 2 [63, Lemma 7]: Let φ1 : Rn → R be a convex
function such that x1 = argminx φ1. Let ψ be a convex func-
tion such that φ2(x) = φ1(x) + ψ(x) is strongly convex w.r.t

9This inequality holds for all ct, including supc〈c,x〉.
10It is possible to slightly change the semantics of the algorithm to avoid this

rare case by making the adversary first commit and hide the cost function, and
then the learner pick the action, see [65, Thm 7.29].
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norm ‖ · ‖. Then, for any b ∈ ∂ψ(x1) and x′, we have that
φ2(x1)− φ2(x

′) ≤ 1
2‖b‖2�.

Now we are ready to prove Theorem 1:
Proof of Theorem 1: We start by applying Lemma 2 to the

result in (10). Namely, we select:

φ1(x) = v0:t(x) + c�t xt − c̃�t xt, and

φ2(x) = φ1(x)− c�t xt + c̃�t xt.

This way, we have that xt = argminφ1(xt), φ2(x) = v0:t(x),
ψ(x) = (−ct + c̃t)

�x, and (−ct + c̃t) ∈ ∂ψ(x).
Then, dropping the non-positive terms −rt(·) in (10), setting

c̃T+1 = 0, and defining the norm ‖ · ‖(t) = √
σ1:t‖ · ‖ so that

the regularizer r1:t(x) is 1-strongly-convex w.r.t. ‖ · ‖(t), we
get:

RT ≤ r1:T (x
�) +

1

2

T∑
t=1

‖ct − c̃t‖2(t),�, ∀x� ∈ X . (13)

Now, we have that rt ≤ σt

2 D
2
X , where DX is the euclidean

diameter of the set X i.e., ∀x,xt ∈ X :

‖x− xt‖2 =
∑
n,j

(ynj − ytnj)
2 +

∑
n,i,j

(znij − ztnij)
2

(a)

≤
∑
n,j

|ynj − ytnj |+
∑
n,i,j

|znij − ztnij |

(b)

≤ 2(JC + 1) � D2
X

where (a) holds as ynj , znij ∈ [0, 1], ∀n, i, j; (b) holds by the
triangle inequality and definitions of Y , C � maxj Cj , and the
fact that the routing variables differ at one coordinate only. To
see why, recall that we serve one request per time slot and we set
the routing variablezt after observing that request qt. Hence, we
can modify the routing variables and set z�nij = ztnij = 0 ∀n 	=
n′, i 	= i′, j 	= j ′, where qn′i′ = 1 ∧ �i′j′=1. Due to the structure
of ft(·), the utility of these modified z�nij and ztnij will not
change (compared to their utility before modification). In words,
knowing the requested file n′, and the location from which it is
requested i′, there will be no utility from routing a non-requested
filen 	= n′, or routing from a non-connected cache j 	= j′. Thus,
we can zero these variables and get a smaller value for DX ,
without affecting the utility values.

Using this diameter bound, and the fact that the dual norm of
‖x‖(t) is ‖x‖(t),� = ‖x‖/√σ1:t, inequality (13) can be written
as:

RT ≤ σ1:T
2
D2

X +
1

2

T∑
t=1

ht
σ1:t

. (14)

Note that the sum σ1:t telescopes and evaluates to σ
√
h1:t.

Using this observation and substituting it in (14), and combining
it with [66, Lem. 3.5] to bound the second term as follows∑T

t ht/
√
h1:t ≤ 2

√
h1:T , we eventually get:

RT ≤ σ

2

√
h1:TD

2
X +

1

σ

√
h1:T

(a)

≤
√
2DX

√
h1:T ,

where (a) is obtained by setting σ =
√
2/DX . Finally, substi-

tuting the actual diameter value, namely DX =
√

2(JC + 1),
completes the proof. �

Discussion: Theorem (1) shows that the regret does not de-
pend on the library size N and is also modulated by the quality
of the predictions; accurate predictions tighten the bound, and in
the case of perfect predictions, i.e., when users follow the recom-
mendations, we get negative regretRT ≤ 0, ∀T , which is much
stronger than the sub-linear growth rates in other works [19],
[67]. In fact, even when predictions fail for a constant number
of time slots L ∈ [T ], the regret will be constant of the same
orderRT ≤ O(L), which is still a significant improvement over
any time-dependent bound.

On the other hand, for worst-case prediction, we can still use
the bound ‖ct − c̃t‖2 ≤ 2w2, and get:

RT ≤ 2
√
2w

√
JC + 1

√
T = O(

√
T )

i.e., the regret is at most a constant factor worse than the regret
of those policies that do not incorporate predictions.11 Thus,
OBC offers an efficient and safe approach for incorporating
predictions in cases where we are uncertain about their accuracy,
e.g., either due to the quality of the RecSys or the behavior of
users.

Another key point is that the utility parameters might vary with
time as well. Indeed, replacing wt = (wt

nij ≤ w, n ∈ N , i ∈
I, j ∈ J ) in ft(xt) does not affect the analysis nor the bound.
This is important when the caching system employs a wireless
network where the link capacities vary, or when the caching util-
ity changes; and we note that this utility can be even file-specific.
Parameterswt can be also unknown whenxt is decided, exactly
as it is with qt, and they can be predicted using e.g., channel
measurements. Essentially the proposed model drops several
restricted assumptions of prior works regarding, not only the
knowledge of request rates/densities, but also about the system
state, link quality, and user utilities. Finally, we observe that in
case the algorithm is used to optimize the operation of an edge
computing system, these parameters can capture the potentially
time-varying utility of each computation, for each service (n)
and each pair of user - cache.

On a technical note, Lemma 1 presents a novel theoretical
result and enables the improvement of the best known proximal
OFTRL bound of [42] by a constant factor of

√
2. This also

opens the door for leveraging the modular analysis tools de-
veloped in [63] in the optimistic OCO framework for different
special cases of the utility functions. This technical result is of
independent interest.

Lastly, in the case of more than one request per time slot
(e.g., B requests), the euclidean norm would instead be D2

X =
2(JC +B). Therefore, the same results hold in terms of the
regret being always sub-linear and commensurate with the
prediction accuracy. However, the worst case bounds will of
course be scaled by a factor of

√
B since now we would use

‖ct − c̃t‖2 ≤ 2B w2.

11The factor is
√
2 compared to the “any-time” version of the bound that does

not use predictions, and 2 compared to those that assume a known T .
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Algorithm 2: Optimistic Elastic Caching (πoec).

IV. OPTIMISTIC CACHING IN ELASTIC NETWORKS

We extend our analysis to elastic caching networks where
the caches can be resized dynamically. Such architectures are
important for two reasons. First, there is a growing number of
small-size content providers that implement their services by
leasing storage on demand from infrastructure providers [68];
and second, CDNs often resize their caches responding to the
time-varying user needs and operating expenditures [69].

We introduce the t-slot price vector st = (stj ≤ s, j ∈ J ),
where stj is the leasing price per unit of storage at cache j in
slot t, and s its maximum value. In the general case, these prices
may change arbitrarily over time, e.g., because the provider has
a dynamic pricing scheme or the electricity cost changes [44],
[45]; hence the caching system has access only to st at each
slot t. We denote with BT the budget the system intends to
spend during a period of T slots for leasing cache capacity. The
objective is to maximize the caching gains while satisfying:

T∑
t=1

gt(xt) =

T∑
t=1

∑
j∈J

∑
n∈N

stjy
t
nj −BT ≤ 0. (15)

In particular, the new benchmark problem in this case is:

P2 : max
x∈X

T∑
t=1

ft(x), s.t.

T∑
t=1

gt(x) ≤ 0, (16)

which differs from P1 due to the leasing constraint.
Indeed, in this case the regret is defined as:

R
(e)
T (π) = sup

{ft}Tt=1

[
T∑

t=1

ft (x
�)−

T∑
t=1

ft (xt)

]
, (17)

where

x� ∈ Xe � {x ∈ X | (3), gt(x) ≤ 0, ∀t},
i.e., x� is a feasible point of P1 with the newly introduced
additional restriction to satisfy the budget constraint gt(x) ≤ 0
in every slot. In the definition ofX ,C now denotes the maximum
leasable space. Learning problems with time-varying constraints
are hard, see impossibility result in [70], and hence require such
additional restrictions on the selected benchmarks. We refer the
reader to [47] for a related discussion, and to [48], [49] for
different benchmarks. Finally, apart from R

(e)
T , we need also

to ensure a sublinear growth rate for the budget violation:

V
(e)
T =

T∑
t=1

[gt(xt)]+ .

To tackle this new problem we follow a saddle point analysis,
which is new in the context of OFTRL.

Namely, we first define a Lagrangian-type function by re-
laxing the budget constraint and introducing the dual variable
λ ≥ 0:

Lt(x, λ) =
σt
2
‖x− xt‖2 − ft(x) + λgt(x)− λ2

at
. (18)

The last term is a non-proximal regularizer for the dual variable;
and we use at = at−β , where parameter β ∈ [0, 1) can be used
to prioritize either R(e)

T or V (e)
T . The main ingredients of policy

πoec are the saddle-point iterations:

λt+1 = argmax
λ≥0

{
− λ2

at+1
+ λ

t∑
i=1

gi(xi)

}
, (19)

xt+1 = arg min
x∈Rm

⎧⎨⎩r0:t(x)+
(

t+1∑
i=1

λisi − c1:t − c̃t+1

)�

x

⎫⎬⎭ ,

(20)

and its implementation is outlined in Algorithm 2. Note that we
use the same regularizer as in Section III for the primal variables
xt, while λt modulates the caching decisions by serving as a
shadow price for the average budget expenditure.

The performance of Algorithm OEC is characterized in the
next theorem.

Theorem 2: Algorithm 2 ensures the bounds.

R
(e)
T ≤

√
2DX

√√√√ T∑
t=1

‖ct − c̃t‖2 + aM

2
T 1−β ,

V
(e)
T ≤

√√√√√2
√
2DXT β

a

√√√√ T∑
t=1

‖ct − c̃t‖2+MT − 2R
(e)
T T β

a
,

where we have used the grouped constants M = (sJC)2

1−β .
Proof: Observe that the update in (20) is similar to (9) but

applied to the Lagrangian in (18) instead of just the utility, and the
known prices when xt+1 is decided represent perfect prediction
for gt(x). Using Theorem 1 with ct − λtst instead of ct, and
c̃t − λtst instead of c̃t, we can write:

T∑
t=1

(ft(x
�)− ft(xt)+λtgt(xt)−λtgt(x

�))≤
√
2DX

√
h1:T ,

and rearrange to obtain:

R
(e)
T ≤

√
2DX

√
h1:T +

T∑
t=1

λtgt(x
�)−

T∑
t=1

λtgt(xt). (21)
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For the dual update (19), we can use the non-proximal-FTRL
bound [63, Theorem 1] to write:

−
T∑

t=1

λtgt(xt) + λ

T∑
t=1

gt(xt) ≤ λ2

aT
+

1

2

T∑
t=1

atg
2
t (xt).

(22)

Since gt(x�) ≤ 0, ∀t and combining (21), (22) we get:

R
(e)
T ≤

√
2DX

√
h1:T − λ

T∑
t=1

gt(xt) +
λ2

aT
+

1

2

T∑
t=1

atg
2
t (xt)

(23)

Setting λ = 0, using the identity:

T∑
t=1

at−β ≤ aT 1−β

1− β

and the bound gt(xt) ≤ sJC, we arrive at the R(e)
T bound.

For the violations, we use the following property in (23):

aT
2

[
T∑

t=1

gt(xt)

]2
+

= sup
λ≥0

[
T∑

t=1

gt(xt)λ − λ2

2aT

]
,

Rearranging, we get:

aT
2

(
V

(e)
T

)2
≤

√
2DX

√
h1:T +

a(sJC)2

2− 2β
T 1−β −R

(e)
T .

Finally, taking the square root yields the V (e)
T bound. �

Discussion: The worst-case bounds in Theorem 2 arise when
the predictions are failing. In that case, we have ‖ct − c̃t‖2 ≤
2w2 and use the bound −R(e)

T = O(T ) for the last term of V (e)
T ,

to obtain R
(e)
T = O(Tκ), with κ = max{1/2, 1− β} while

V
(e)
T = O(Tφ), with φ = 1+β

2 . Hence, for β = 1/2 we achieve

the desired sublinear rates R(e)
T = O(

√
T ), V

(e)
T = O(T 3/4).

However, when the RecSys manages to predict accurately the
user preferences, the performance ofπoec improves substantially
as the first terms in each bound are eliminated. Thus, for bounded
T , we practically halve the regret and violation bounds.

It is also interesting to observe the tension between V
(e)
T

and R(e)
T , which is evident from the V (e)

T bound and the con-

dition −R(e)
T = O(T ). The latter refers to the upper bound

of the negative regret, thus when it is consistently satisfied
(i.e., for all T ), we obtain an even better result: πoec outper-
forms the benchmark. Another likely case is when −R(e)

T =

O(
√
T ), i.e., the policy does not outperform the benchmark

at a rate larger than
√
T . Then, Theorem 2 yields R

(e)
T =

O(Tκ) with κ = max{1/2, 1− β} while V (e)
T = O(Tφ) with

φ = max{1/2, 1/4 + β/2}. Hence, for β = 1/2 the rates are
reduced to R(e)

T = O(
√
T ), V

(e)
T = O(

√
T ).

Finally, it is worth observing that πoec can be readily extended
to handle additional budget constraints such as time-average
routing costs or average delays. And one can also generalize
the approach to consider a budget-replenishment process where
in each slot t the budget increases by an amount of bt units. This
is made possible due to the generality of the conditions (model

perturbations can be non-stationary and correlated) under which
the regret and violation bounds hold.

V. CACHING WITH MULTIPLE PREDICTORS

In this section, we consider the case where we have additional
predictors, apart from the RecSys, predicting the next-slot utility.
Thus, we have a set of predictions {c̃(p)t , p ∈ P} at each slot t. To
handle this setup and benefit from this abundance of predictions,
we take a different approach and instead of using prediction-
adaptive regularizers, as in the previous sections, we model the
predictions as experts using the classical paradigm of learning
through experts cf. [35]. Based on this approach, we design a
novel tailored optimistic meta-learning policy to accrue the best
possible caching gains.

In particular, we associate an expert to each predictor, and we
will abuse notation denoting them both with p ∈ P . We refer to
these predictors-linked experts as the optimistic experts. Every
optimistic expert p proposes its caching action {y(p)

t }t at each
slot t, by solving the following problem:12

y
(p)
t = argmax

y∈Y
c̃
(p)�
t y. (24)

Note that (24) is indeed a certainty-equivalent13 linear program.
We denote with R(p)

T the regret of each expert w.r.t the optimal-
in-hindsight caching configuration for the entire time period of
T slots, i.e.:

y� = argmax
y∈Y

c�1:T y.

Besides the optimistic experts, we consider an expert that does
not use predictions. This special expert proposes an FTRL-based
caching policy, and we refer to it as the pessimistic expert and
associate it with the special index p = 0. The pessimistic expert
proposes caching actions {y(0)

t }t according to (9), but setting
c̃t = 0 for the regularization parameter σt in (8). Its regret is
denoted withR(0)

T . Our full experts set is the union of the group
of optimistic experts with the pessimistic expertP+ = {0 ∪ P}.

We aim to learn a caching policy whose regret is upper-
bounded by the regret of the best expert and does not exceed the
O(

√
T ) regret of the pessimistic expert. Such a methodology of

modeling policies as experts has been studied in the past [71].
However, this is the first work that implements optimistic learn-
ing through an experts model. In addition, here we also make the
next step and propose to include a prediction for the performance
of each predictor.

In particular, the caching decision is the convex combination
of experts’ proposals according to the weights ut = (u

(p)
t , p ∈

P+) selected from the simplex:

ΔP+ =

⎧⎨⎩u ∈ [0, 1]P+1

∣∣∣∣ ∑
p∈P+

u
(p)
t = 1

⎫⎬⎭ ,

12To streamline the presentation, our analysis focuses on one cache, hence
using onlyyt decisions. However, this method can be readily extended to caching
networks as discussed later.

13A certainty-equivalent program is one that considers a predicted utility
vector as true and optimizes the decisions accordingly.
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Fig. 2. Decision step for the meta-learning policy πxc. The policy is a combination of experts’ proposals (predictors) according to their priority weights that
were learned based on observations that are collected until slot t.

Algorithm 3: Experts Caching (πxc).

namely:

yt =
∑
p∈P+

u
(p)
t y

(p)
t . (25)

Thus, yt+1 remains a feasible caching vector, despite being
produced by mixing all the experts’ proposals. The mixing
weights, {ut}t, are updated through a new OFTRL step, which
is similar to the updates of πobc but we use the superscript (u)
for the involved parameters to make clear the distinction. In
particular, the update is:

ut+1 = arg min
u∈ΔP+

{
r
(u)
0:t (u)− (F 1:t + F̃ t+1)

�u
}
, (26)

whereF t = (ft(y
(p)
t ), p ∈ P+) is the t-slot performance vector

for the experts. The regularizers and the respective parameters,
in this case, are decided by the following formulas:

r
(u)
0 (u) = IΔP+ (u), r

(u)
t (u) =

σ
(u)
t

2
‖u− ut‖2, t ≥ 1,

σ
(u)
1 = σ(u)

√
h
(u)
1 , σ

(u)
t = σ(u)

(√
h
(u)
1:t −

√
h
(u)
1:t−1

)
, t ≥ 2,

with h
(u)
t = ‖F t − F̃ t‖2. (27)

For the predictions of the experts’ performance F̃t, at each
time step, we will use experts’ performance of the previous time
step:14

F̃ t =
(
f̃
(p)
t , p ∈ P+

)
�
(
ft−1(y

(p)
t−1), p ∈ P+

)
. (28)

This type of meta-optimism comes for free since, in practice,
we expect the predictors to have consistent accuracy across
contiguous slots; either accurately due to a recently trained
model, or poorly due to e.g., distributional shift (see [72] and
references therein) hence we can use the previous function. As
for the pessimistic expert, its caching decisions do not vary much
in consecutive slots (due to using strongly convex regularizers
in updating the decisions).

The execution of the policy is summarized in Algorithm 3;
and we also include the step-by-step visualization in Fig. 2.
We see the sequence of steps where: (1) The Predictors output
{c̃(p)t , p ∈ P}; (2) The optimistic experts optimize for the pre-
dictions, whereas the pessimistic expert performs an FTRL step;
(3) The experts’ proposals are combined via the meta-learner
weights; (4) The performance of experts’ proposals is calculated
through the revealed request; (5) The meta-learner optimistically
sets the next-slot experts’ performance to be the same as the
current one; (6) & (7) The meta-learner performs an OFTRL
step to calculate and set the weights for the next-slot. And the
process repeats for the next slot.

The following theorem bounds the regret of the proposed
meta-learning policy, which is defined as:

R
(xc)
T =

T∑
t=1

ct
�(y� − yt).

14We note that the motivation for a large corpus of optimistic learning works
stems from the fact that in many cases the cost functions are changing slowly [41],
[42]. While the motivation in this work has been different until this section
(availability of RecSys), the optimism in the meta-learner has the same scope
as those initial works.
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Recall that vector ct indicates which file is requested and the
utility associated with the request, and vectors y� and yt are
the optimal caching decisions/ the caching at time slot t, respec-
tively.

Theorem 3: Algorithm 3 ensures the regret bound:

R
(xc)
T ≤ 2

√√√√ T∑
t=1

‖F t − F t−1‖2 + min
p∈P+

{
R

(p)
T

}
≤ 2w

√
(P + 1)T + min

p∈P+

{
R

(p)
T

}
.

Proof: We first relate the regret of the combined caching
decisions to that of the experts. Then, we can re-use the result
of Theorem 1:

R
(xc)
T =

T∑
t=1

⎛⎝ct
�y� − ct

� ∑
p∈P+

u
(p)
t y

(p)
t

⎞⎠
=

T∑
t=1

ct
�y� − F t

�ut

=

T∑
t=1

ct
�y� − F t

�u� + F t
�u� − F t

�ut

= R
(u)
T + min

p∈P+

{
R

(p)
T

}
(29)

where R
(u)
T is the regret for the weights u: R

(u)
T =∑T

t=1 F t
�u� − F t

�ut. Note that (29) holds because u� =

argmaxu F�
1:tu = ek, k = argmaxpft(y

(p)
t ) and ek is standard

basis vector. Thus, we have:

F�
1:t u

� = max
p∈P+

{
T∑

t=1

ft

(
y
(p)
t

)}
. (30)

We use the result of Theorem 1 to bound R(u)
T :

R
(u)
T ≤

√
2DΔP+

√√√√ T∑
t=1

‖F t − F̃ t‖2 ≤ 2w
√

(P + 1)T ,

(31)

where the last inequality follows from the simplex diameter
(DΔP+ ≤ √

2) and the fact that:

‖F t − F̃ t‖2 ≤
∑
p∈P+

‖
(
ft(y

(p)
t )− ft−1(y

(p)
t−1)

)
‖2 ≤ |P+|w2

i.e., we predicted a miss or a hit, whichever happened at t− 1, but
the opposite happens at t. Substituting in (29) gives the bound.�

Discussion: A key observation in Theorem 3 is that its bound
contains the regret of the best optimistic expert. This yields
very improved bounds forR(xc)

T whenever there is an optimistic
expert that achieves negative regret. For example, if an expert
can achieve RT = Θ(−T ), e.g., because it has a very accurate
RecSys (its recommendations are most-often followed), then

the overall regret isR(xc)
T = O(

√
T )−Θ(−T ), which becomes

strictly negative for large T . Moreover, theO(
√
T ) term shrinks

with more consistent performance of the experts, a condition
that is rather expected in practical systems, thus getting us even
faster to the regret of the best expert. Nonetheless, since the
pessimistic expert exists in the group of experts, the min term
is upper bounded by O(

√
T ) and R(xc)

T will maintain O(
√
T )

regardless of the performance of the optimistic experts.
Since Algorithm 3 can work with a single optimistic expert,

which is the setup handled by πobc, it is interesting to compare
their bounds. In fact, neither of those algorithms is better in
all possible scenarios (regarding request patterns; evolution of
utility parameters, etc. see also Section VI) than the other; and
their relative performance ranking (in terms of utility) depends
on the specific problem instance. For example, under worst-case
predictions, we have that:15

R
(xc)
T ≤ 2w

√
(P + 1)T + 2w

√
CT

≤ 2(
√
2 +

√
C)w

√
T (P = 1), (32)

which can be actually better than policy πobc’s worst-case pre-
diction bound16 for practical values of the constants C.

On the other hand, in cases where inaccurate predictions occur
for a certain fraction of the steps �αT �, 0 < α < 1 the min term
in the R(xc)

T bound might evaluate to the pessimistic expert’s
regret since the optimistic experts can suffer linear regrets17

R
(p)
T ≤ O(αT ). For πobc, the regret will be of the form

RT ≤ 2
√
C

√ ∑
t∈[�αT �]

‖c̃t − ct‖

≤ 2
√
2Cw

√
�αT �. (33)

For example, for α ≤ 1/2, The upper bound in (33) is tighter
than that in (32) for all C,w. Hence, πobc’s regret can be
smaller if in the described case. Overall, the choice between
πxc and πobc in the case of a single predictor depends on
the request sequence and the number of steps where predic-
tions fail. Section VI demonstrates these cases using various
scenarios.

Regarding the extension to caching networks (more than one
cache), note that sets Y and Z are convex by definition. Also,
the set defined by the connectivity constraints (3) is convex
(linear constraint in the variable x). Recalling that the Carte-
sian product and the intersection of convex sets is convex, we
conclude that the constraint set X defined in (5), from which
the joint caching-routing variable z is selected, remains con-
vex. Finally, as demonstrated earlier, the meta-learner takes the
convex combination of the experts’ proposals, and since each
expert proposes a caching-routing configuration z

(p)
t ∈ X , the

15The pessimistic expert’s regret is bounded by 2w
√
CT for the single cache

setup (i.e., the diameter DY =
√

2C).
16Note that πobc’s worst-case bound is 2w

√
2CT for the single cache setup

discussed here.
17This happens, e.g., when the pessimistic expert achieves a hit on the steps

[αT ].
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TABLE II
ONLINE CACHING POLICIES WITH ADVERSARIAL GUARANTEES: A SUMMARY OF THE CONTRIBUTIONS AND COMPARISON WITH LITERATURE.

meta caching-routing policy:

zt+1 =
∑
p∈P+

u
(p)
t+1 z

(p)
t+1, ut+1 ∈ ΔP+ (34)

remains a valid one (i.e., zt ∈ X , ∀t). Therefore, indeed, the
ideas proposed in this section can be readily applied to bipartite
caching networks.

Now that we have presented all of our algorithms, let us
summarize in Table II their main features and revisit how they
compare with the state-of-the-art results. For Alg. 1–2, the best
case refers to the scenario where the request predictions are
perfect c̃t = ct, ∀t; and the worst case to the scenario where pre-
dictions are furthest from the truth c̃t = argmaxc ‖c− ct‖, ∀t.
The dependence of the constant factors of the regret bound,
denoted with κ to facilitate presentation, was made explicit
for Alg. 2 where we saw that these constants shrink with the
predictions’ accuracy; and the same holds for Alg. 1. For Alg.
3, the best case refers to the scenario where the experts’ predic-
tions are perfect F̃ t = F t, ∀t; while the worst case arises when
F̃ t = argmaxF ‖F − F t‖, ∀t. Algorithms that do not leverage
predictions in regret analysis (all prior work in caching18) have
the best and worst case columns merged. We also distinguish
between adaptive and static learning rates. While some prior
works do employ time-adaptive learning (dynamic steps), as
e.g., in [19], none of them adapts the rates (or, equivalently the
regularization) to the observed gradients {ct}t and/or prediction
errors, as we propose here, but instead use the Lipschitz constant
w, where ‖ct‖ ≤ w,∀t. This leads to looser bounds in most
practical cases [63] and, of course, does not allow to benefit
from the availability of predictions.

VI. PERFORMANCE EVALUATION

We evaluateπobc,πoec andπxc under different request patterns
and predictions modes; and we benchmark them against x�

and the OGD policy [19] that outperforms other state-of-the-art
policies [58], [59]. Note that the OGD policy has been shown
to match the theoretical lower bound on the regret [19, Thm.

18We note the exception of [37] which considers ML advice in the paging
problem (single cache, uncoded), but its bounds are defined w.r.t. the cache size
and quantified in terms of competitive ratio – a different metric than regret, see
discussion in [38].

1]. In other words, it achieves (up to constant factors) as small
regret as theoretically possible under adversarial settings and
without predictions. Hence, it serves as the main competitor in
our experiments. We observe that when reasonable predictions
are available, the proposed policies have an advantage, and under
noisy predictions, they still reduce the regret at the same rate
with OGD, as proven in the Theorems. First, we compare πobc
and πxc against OGD [19] in the single cache case. We then
study πobc for the bipartite model and πoec with the presence
of budget constraints. We consider three requests scenarios,
stationary Zipf requests (with parameter ζ = 1.1) and two actual
request traces: YouTube (YT) [53] and MovieLens (ML) [54].
For predictions, we assume that at each time step, the user
follows the recommendation with probability ρ (unknown to
the caching system), and we experiment with different ρ values.
The full codebase for the proposed policies and experiments is
available via GitHub [73].

Single Cache Scenarios: We set w = 1 to study the cache hit
rate scenario, use a library size of N = 104 files, and cache
capacity of C = 100 files. Fig. 3(a)–(c) depict the attained
average utility, 1

t

∑t
i=1 fi(xi), for each policy and the Best

in Hindsight (BHS) cache configuration until that slot, i.e., we
find the best in hindsight19 for each t. Note that BHS always
achieves utility 1 initially (first requests to fill the cache). Thus,
we cut the y-axis for better presentation in Fig. 3(b), (c). It can
be seen that the accurate predictions (i.e., when users follow
the recommendations 70% of the time) push the performance
of our online caching towards BHS. For example, in Fig. 3(b),
the utility gap is at most 21% after t = 6 k. At the same time,
even when users do not follow the recommendation at all, we
still maintain a diminishing regret; the gap in Fig. 3(c) goes
from 81.1% at t = 1 k, to 26.3% at t = 10 k. In Fig. 4, we study
the effect of increasing the cache size. Expectedly, the regret
increases since the diameter of the decision set also increases.
However, with higher prediction quality, this effect is minimized
since the regret is proportional to a shrinking error term. We also
plot 15

√
T/T which is proportional to the average theoretical

regret bound (Recall that RT ∝ √
CT ), and remark that the

average regret of the proposed algorithms decays at a similar
rate.

19Unlike [19] that finds x� for t = T , we find a x�
t for each t. Thus, the gap

among any policy and BHS is the evolving average regret Rt/t.
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Fig. 3. Utility in the single cache model with one RecSys of different recommendation quality levels (i.e., ρ) in (a) Zipf requests with ζ = 1.1, (b) YouTube
request traces, (c) MovieLens request traces.

Fig. 4. Regret over time in the single cache model with different values of the cache capacity for (a) πogd, (b) πobc with ρ = 0, (c) πobc with ρ = 0.7.

Fig. 5. Utility in the single cache model with two RecSys of recommendation qualities ρ = 2% and ρ = 20%, each modeled as an expert within XC, in (a) Zipf
requests with ζ = 1.1, (b) YouTube request traces, (c) MovieLens request traces. (d) A comparison between πobc and πxc using one RecSys of an alternating
recommendation quality.

For multiple predictors, we use πxc. In Fig. 5(a)–(c), we
evaluate πxc with 3 experts: an FTRL expert, and two other
optimistic experts. The first optimistic expert is endowed with
a predictor (e.g., a recommendation system) that gets followed
with probability ρ = 2%. For the other it is ρ = 20%. As shown
in the plots, πxc achieves negative regret on the traces (it out-
performs the BHS policy) and converges to the performance of
the best expert (0.20 utility). This is because in more spread
distributions and real request traces, predicting the next request
provides a great advantage for policies that modify the cache
online over the fixed BHS. In the stationary Zipf request pattern,
the optimal cache is for the files with top probabilities, which are

easily captured by BHS. Thus, BHS policy performs the best.
In Fig. 5(d) we show the advantages of πobc compared to πxc
with two experts: an FTRL expert and a recommendation-based
expert. ρ alternates between 100% and 0% (i.e., requesting the
file recommended at a time step t, and any other file at t+ 1,
and so on). Here, πobc outperforms πxc since the alternating
prediction accuracy induces frequent switching between the two
experts in πxc: the performance of the optimistic expert alternate
between 0 and 1, while that of pessimistic expert is in the range
(0.55, 0.65). Hence, πxc is inclined to place some weight on the
prediction expert at one step, only to retract and suffer a greater
loss at the following one had it stayed with the full weight on

Authorized licensed use limited to: TU Delft Library. Downloaded on April 18,2024 at 08:22:24 UTC from IEEE Xplore.  Restrictions apply. 



5962 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

Fig. 6. Attained utility in the bipartite model under different recommendation quality levels in (a) Zipf requests with ζ = 1.1, (b) YouTube request traces, (c)
MovieLens request trace.

the FTRL expert. Due to the additional regret caused by such
frequent switching, πobc’s regret is 54.8% of πxc’s. πobc also
achieves 38.2% of πogd’s regret. It is noteworthy that the optimal
dynamic policy would achieve a utility of 1 across all time steps.
This is because, unlike the BHS policy, it is allowed to change
at every time step and can thus simply cache every file before it
gets requested (recall that the optimal dynamic caching policy
is defined as x�

t = argmaxx∈X ft(x)). However, as mentioned
earlier when introducing the benchmark, it is unclear whether
such a policy is desirable since it comes with a high switching
cost. Furthermore, under the assumptions in this paper, no algo-
rithm can find such a policy beforehand. Bipartite Networks. We
consider next a bipartite graph with 3 caches and 4 user locations,
where the first two locations are connected with caches 1 and 2,
and the rest are connected to caches 2 and 3. The utility vector
iswn = (1, 2, 100), ∀i, j, thus an efficient policy places popular
files on cache 3. This is the setup used in [19] that we adopt here
to make a fair comparison. For the zipf scenario, we consider a
library ofN = 1000 files and C = 100. For the traces scenario,
files with at least 10 requests are considered, forming a library
of N = 456 files for the YouTube dataset, and we set C = 50,
and N = 1152 for the ML dataset, and we increase C = 100.
The location of each request is selected uniformly at random.
Similar to the single-cache case, we plot the average utility of
the online policies and the best static configuration until each
t. Recall that the area between a policy and BHS is the average
regret of that policy. To avoid clutter, we shade this area for
OGD in the first sub-figure, as an example, and for OBC in the
next two.

In Fig. 6(a), the effect of good predictions is evident as OBC
maintains utility within 5.5% of BHS’s utility after t = 2.5 k.
Even when the recommendations are not followed, OBC pre-
serves the sublinear regret, achieving a gap of 30.4% and 8.5%
for t = 1 k and t = 10 k, respectively. Akin patterns appear in
the traces scenarios. Namely the similarity between OBC with
good predictions and BHS, and the improvement in OBC utility
despite the recommendations quality. We also note lower utility
across all policies due to the more spread requests. Note that
under this bipartite model, the optimal dynamic policy, x�

t ,
would achieve a utility of exp ft(x�

t ) = 4/4 + 200/4 = 51. This
is because the requests appear uniformly randomly at one of the

four users’ locations, and the first two locations can always be
served by cache 2 (utility 2), whereas the other two locations
can be served by cache 3 (utility 100).

Next, we consider the case of budget constraint and evaluate
πoec for Zipf requests in Fig. 7(a), and the traces in Fig. 7(b),
(c). The prices at each t are generated uniformly at random
in the normalized range [0, 1], and the available budget is
generated randomly bt = N (0.5, 0.05)× 10 i.e., enough for
approximately 10 files. Such tight budgets magnify the role of
dual variables and allow testing the constraint satisfaction. The
benchmark x� is computed once for the full time horizon, and
its utility is plotted for each t. In both scenarios, we note the
constraint violation for all policies is similar, fluctuating during
the first few slots and then stabilizing at zero. Hence, we plot it
for one case.

Concluding, we find that πoec can even outperform the bench-
mark. This is because the actual request patterns in the traces
are not actually adversarial. Also, unlike the benchmark policy,
πoec is allowed to violate the budget at some time slots, provided
that the constraints are eventually satisfied, which occurs either
due to strict satisfaction or due to having an ample subsidy at
some slots. For example, in the first scenario (Fig. 7(a)), the
good predictions enable OEC to outperform x� by 42.2% after
observing all requests (T = 5K). OGD, and OEC with noisy
predictions attain utility units improvement of 16.1%, 39.3%,
respectively, over the BHS. We note in Fig. 7(b), (c) the delay
in learning due to initially over-satisfied budget constrain. This
is a transient effect as the dual variables approach their optimal
value. Eventually, the bounds on regret are satisfied. We stress
that the algorithms scale for very large libraries N ; the only
bottleneck in the simulations is finding x�, which involves the
horizon T ; this is not required in real systems.

Computational Complexity: Note that the OFTRL update
(e.g., (9)) is either a linear program in case rt(·) = 0, ∀t, or a
quadratic program otherwise. In the former case, the solution is
finding the topCmost requested files. This can be done through a
simple ordering operation whose worst-case complexity is linear
in the dimension of the decision variable (e.g.,O(N log(N) for
each cache). If, however, we have regularization terms, then
the resulting quadratic program can be solved in closed form
in R. Then, for the projection to the feasible set X , we can use
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Fig. 7. Utility and budget utilization with (a) Zipf requests with ζ = 1.1 and (b) YouTube traces (c) MovieLens traces.

Fig. 8. Average regret over time for the single cache, generalized batched requests model for (a) πogd, (b) πobc with ρ̄ = 0.25, and (c) πobc with ρ̄ = 0.75.

Fig. 9. Average time consumed per decision step in the bipartite network
configuration and the ML Dataset (N = 1152, C = 100, |I| = 4, |J | = 3)
with (a) pre-reserved storage (πobc), and (b) elastic storage (πoec).

specialized projection algorithms for the capped simplex (the ca-
pacity constraints for each cache) whose worst-case complexity
is still polynomial in the dimension (i.e., O(N2)) [74].

The above discussion refers to worst-case scenarios. In prac-
tice, we leverage the fact that we repeatedly solve similar op-
timization problems at each time step (the update step differs
by adding one linear term and one quadratic term). Thus, the
solution in a step can be used as an initial point for the fol-
lowing one. We note that the experimental running times are
significantly less than the worst-case ones, as can be seen in
Figs. 9 and 10. These simulations were performed using CVXPY
1.2 package with Python 3.10 running on an Apple M1 Pro
Chip and 16 GB of RAM. The difference between OGD and
the optimistic one is due to the difference in the update problem

Fig. 10. Average time consumed per decision step in the single cache config-
uration and stationary requests with different library sizes N . The sample size
is T = 10 k.

structure (lazy versus greedy projection). The chosen library
sizes were selected considering that the simulations are done on
a conventional PC, yet they do provide insight into the scalability,
which is mostly positive as discussed earlier. Larger library sizes
might necessitate custom hardware setup, or heuristic techniques
such as dividing the library into sub-sets and running one of the
proposed algorithms on each subset.

Batched Requests: As mentioned in the discussion of the
system model, as well as that of Theorem 1, our assumption on
the request model (one request per time slot) is for technical ease
of analysis. The main feature of the proposed policies, which is

having RT ∝ O(
√∑T

t=1 ‖ct − c̃t‖), remains valid when the
request model is batched (i.e., processing B requests per time
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slot). However, the upper bound (not necessarily the regret) will
be scaled accordingly since the diameter of the decision set will
now increase. Namely, following the same steps in the proof of
Theorem. 1 (after (13)), instead ofDX = 2(JC + 1), we would
have DX = 2(JC +B). Fig. 8 shows experimentally how the
batch size affects the regret. We also plot the line 18

√
T/T (recall

that RT ∝ G
√
T , and in turn G ∝ B). In this experiment, we

introduce a new parameter, ρ̄, which denotes the percentage of
requests correctly predicted out of the total B. We note in these
experiments that with better predictions, the effect is amortized

since the term
√∑T

t=1 ‖ct − c̃t‖ remains small.

VII. CONCLUSION

The problem of online caching is timely with applications
that extend beyond content delivery to edge computing and in
fact to any dynamic placement problem with Knapsack-type
constraints. This work proposes a new suite of caching poli-
cies that leverage predictions obtained from content recom-
mendations, and possibly other forecasters, to minimize the
caching regret w.r.t an ideal (yet unknown) benchmark cache
configuration. As recommender systems permeate online con-
tent viewing platforms, such policies can play an essential
role in optimizing caching efficacy. We identified and built
upon this new connection between caching and recommender
systems. The proposed algorithmic framework is scalable and
robust to the quality of recommendations and the possible
variations of network state and the request sequences, which
can even be decided by an adversary. The achieved bounds
improve upon the previously known caching regret performance,
see [19], [20], [21], [22] and references therein. Finally, we
believe this work opens new research directions both in terms
of caching, e.g., pursuing the design of optimistic policies for
uncoded caching; and in terms of resource scheduling in perti-
nent network and mobile computing problems using untrusted
sources of optimism, i.e., predictors of unknown or varying
accuracy.
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