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Design optimization offers the potential to develop lightweight aircraft structures with reduced environmental
impact. Due to the high number of design variables and constraints, these challenges are typically addressed using
gradient-based optimization methods to maintain efficiency, however overlooking the global design space.
Moreover, gradients are frequently unavailable. Bayesian optimization presents a promising gradient-free
alternative, enabling sample-efficient global optimization through probabilistic surrogate models. Although
Bayesian optimization has shown its effectiveness for problems with a small number of design variables, it
struggles to scale to high-dimensional problems, particularly when incorporating large-scale constraints. This
challenge is especially pronounced in aeroelastic tailoring, where directional stiffness properties are integrated into
the structural design to manage aeroelastic deformations and enhance both aerodynamic and structural
performance. Ensuring the safe operation of the system requires simultaneously addressing constraints from
various analysis disciplines, making global design space exploration even more complex. This study seeks to
address this issue by employing high-dimensional Bayesian optimization combined with dimensionality reduction
to tackle the optimization challenges in aeroelastic tailoring. The proposed approach is validated through
experiments on a well-known benchmark case, as well as its application to the aeroelastic tailoring problem,
demonstrating the feasibility of Bayesian optimization for high-dimensional problems with large-scale constraints.

Check for
updates

I. Introduction

HE design of modern aircraft with enhanced efficiency is

crucial for enabling more sustainable aviation. Achieving this
involves optimizing structural designs to reduce energy consump-
tion. Aeroelastic tailoring emerges as a key technique that has the
potential to reduce the weight of aeroelastically efficient high-
aspect-ratio wings. Pioneered by Shirk et al. [1], aeroelastic tailoring
incorporates directional stiffness properties to effectively carry and
control the aeroelastic deformations. Performing aeroelastic tailor-
ing is a multidisciplinary design and optimization (MDO) effort,
involving aerodynamics for the outer-mold- shape definition and
calculation of the loads acting over the wing, structural design that
usually defines the layout of the main structural components of the
wingbox, structural analysis to define and evaluate the relevant
failure modes that should be considered as constraints, aeroelasticity
that couples the aerodynamic loads with the inertial and elastic
properties of the wing to characterize the flutter behavior, and
optimization to properly explore the design space. Other disciplines
are also involved, such as manufacturing, typically resulting in
additional constraints for the design variables.

Evaluating these complex aeroelastic models is computationally
expensive, therefore necessitating efficient optimization algorithms
that require fewer analyses before finding an optimum solution. Due
to the high number of design variables describing the structural
properties of the system, gradient-based optimization algorithms are
commonly used, leading to an efficient convergence toward the
optimal solution. However, the computation of gradients is not always
feasible, especially if the model’s source code is unavailable. In such
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cases, the model must be treated as a black box, relying on methods
such as finite differences to obtain the design sensitivities, which can
lead to prohibitively high computational costs that would ultimately
motivate the use of gradient-free methods. Furthermore, many
engineering problems, such as noisy responses or experimental
results, possess inherent complexities that can render gradient-based
approaches less effective or even impractical. Additionally, the
response surface for feasible designs in aeroelastic tailoring is often
multimodal. This complexity can cause gradient-based methods to
become trapped in local optima, overlooking the broader global design
space and hindering the discovery of superior designs. Therefore, it is
essential to develop methods that efficiently explore the global design
space, optimizing structures to achieve lighter aircraft configurations.

The optimization problem at hand can be formulated as follows:

min f(x) s.t. Vje€{l,...,G},c;(x) <0 €))

x€XCRP

where X C R? is a D-dimensional space of potential designs,
f(x):x € X - R the objective function, and G constraints arising
from the multidisciplinary analyses. Overall, aeroelastic tailoring
can be seen as an optimization problem consisting of high-
dimensional inputs and outputs, where the utilized models are able
to map the vector of design variables to the objective function
f(x) € R and all G constraints ¢(x) € RC.

The simultaneous consideration of multiple disciplines can lead
to large-scale constraints where G > 103, combining buckling,
aeroelastic stability, maximum stress, maximum strain, and various
others. In aeroelastic tailoring, the optimal stiftness distribution is
achieved by means of a sizing optimization that, in the case of
laminated composite wings, consists of finding the best set of
lamination parameters and the optimum thickness for one or more
composite regions [2]. Lamination parameters allow a condensed
and theoretical representation of the membrane, bending, and
coupled stiffness terms of a laminate with continuous variables
[3], making the sizing optimization more convex and more adequate
to established continuous optimization techniques, where the design
variables can be treated as continuous variables. Once this sizing
optimization is complete, a second discrete optimization is per-
formed to retrieve a manufacturable set of ply orientations. Yet,
the presence of multiple design regions to maintain design freedom
can still result in the number of design variables being in the order of
hundreds or thousands.

Article in Advance / 1


https://orcid.org/0000-0001-7002-4823
https://orcid.org/0000-0002-7882-2173
https://orcid.org/0000-0001-9711-0991
https://doi.org/10.2514/1.J065252
www.copyright.com
https://aiaa.org/publications/publish-with-aiaa/rights-and-permissions/
https://aiaa.org/publications/publish-with-aiaa/rights-and-permissions/
http://crossmark.crossref.org/dialog/?doi=10.2514%2F1.J065252&domain=pdf&date_stamp=2025-07-31

Downloaded by Technische Universiteit Delft on August 1, 2025 | http://arc.aiaa.org | DOI: 10.2514/1.J065252

2 Article in Advance / MAATHUIS, DE BREUKER, AND CASTRO

Given the expensive nature of evaluating an aeroelastic model to
obtain the objective function values and associated constraints, a
sample-efficient optimization algorithm is crucial. Compared to
other gradient-free approaches such as Random Search, Genetic
Algorithms, and others, Bayesian optimization (BO) has proven to
be a powerful method for complex and computationally costly
problems [4] and has been extensively applied across various
domains, including aircraft design [5]. BO addresses the challenge
of expensive evaluations by using computationally inexpensive
probabilistic surrogate models, such as Gaussian Processes (GP).
These models replace the black-box functions representing the
objective and constraints, significantly improving optimization effi-
ciency [6]. Although many authors have shown that for lower-
dimensional problems BO methods perform well, high-dimensional
cases pose significant challenges due to the curse of dimensionality
[7,8], resulting from the fact that high-dimensional search spaces are
difficult to explore exhaustively. However, BO offers a probabilistic
approach to efficiently search the design space to find promising
regions and to reduce the computational burden. Although these
algorithms offer a variety of advantages, including the learning-
from-data aspect, uncertainty quantification, the lack of need for
gradients, the ability to fuse data in a multifidelity context, and the
capability to learn the correlation between simulation and experi-
mental data, their scalability to high-dimensional problems with
many constraints, as is often the case in engineering design, remains
a significant challenge.

The present study focuses on employing high-dimensional BO
algorithms for aeroelastic tailoring while considering large-scale
constraints arising from the multidisciplinary analyses, as formu-
lated in Eq. (1). The novelty of this paper lies in the application of a
high-dimensional BO method with a dimensionality reduction
approach that significantly lowers the computational burden arising
from the incorporation of a large number of constraints. Sub-
sequently, the methodology is applied to the 7D speed reducer
benchmark problem with 11 black-box constraints [9] before its
application to aeroelastic tailoring is presented.

The structure of the paper is as follows. First, Sec. II introduces
GPs as a probabilistic surrogate modeling technique, as well as BO
for both unconstrained and constrained problems, highlighting scal-
ability challenges. Section III then explores dimensionality reduc-
tion in the context of constrained BO, followed by a discussion of
the numerical results in Sec. V. Finally, the paper concludes with a
discussion and directions for future work in Sec. V.

II. High-Dimensional Constrained Bayesian
Optimization

This section briefly introduces BO within the context of high
dimensionality and constraints. GPs are introduced as the herein
employed surrogate modeling technique. Subsequently, GPs are
linked to unconstrained BO, which is then expanded to address
the constrained scenario, followed by an outline of the challenges
encountered in this work.

A. Gaussian Processes

A GP in the context of BO serves as a probabilistic surrogate model
that efficiently represents an unknown function f(x). Recall that X' C
RP is a D-dimensional domain and the corresponding minimization
problem s presented in Eq. (1), beginning with a Design of Experiments
(DoE) denoted by Dy = {x;, f(x;)}i=y. . n» Where x; € X CRP is
the ith of N samples and f(x;) : X — R the objective function, mapping
from the design space to a scalar value. GPs are commonly employed
within BO to construct a surrogate model f (x): X - R of the objective
function f from this given data set D. Therefore, it is assumed that the
objective function f follows a GP, which is also called a multivariate
normal distribution A/, By defining the mean m:X — R and covari-
ance k: X X X — R, a noise-free surrogate can thus be denoted as

f)|D ~ GP(m(x), k(x.x")) @

also known as the prior. The prior encapsulates the initial belief that
observations are normally distributed. A common choice for the covari-
ance function, also called kernel, is the squared exponential kernel
k(x,x") defined as

’ 1 2 X,'—)Ci/ 2
k(x,x") = o exp(—iz (17) ) 3)

i=1

which encodes the similarity between two chosen points x and x " [10].
The parameter /; fori = 1,..., D is called the length scale and mea-
sures the distance for the correlation along x;. Together with 6, often
called the signal variance, the parameters form a set of so-called hyper-
parameters @ = {l,,...,lp, o}, in total D + 1 parameters, which
need to be determined to train the model with respect to the target
function. The kernel matrix is defined as K = [k(x,v,xj)]l._/.=] _____ v €

RN*N_ The kernel needs to be defined such that K is symmetric positive
definite to ensure its invertibility. The positive definite symmetry is
guaranteed if and only if the used kernel is a positive definite
function, as detailed in Schoenberg [11]. The values of the hyper-
parameters @ are determined by maximizing the marginal like-
lihood, written as

1 1 N
log p(f|D.6) = =3 fTK"'f ~>log |K| - Tlog2x  (4)

Computing the partial derivative with respect to the hyperpara-
meters 0 gives

0 1 4 0K 1 _, 9K

%, log p(f|D,0) = 2f K 06’/-K f 2tr(K 80/-) 5)

which can be used within a gradient-based optimization for model

selection, or in other words, hyperparameter tuning. More detailed

information can be found in Rasmussen and Williams [10].
Considering a new query point x; € &, the stochastic process in

Eq. (2) can be used to predict the new query point

fa)ID~N(u(xy), k(xg,x,)) (6)

The posterior mean u(e) and covariance function o(e) are com-
puted by

uxy) =k(x,, KX, X)"' f (7N
o(xy) = k(xy,xy) —k(x,, X)K(X, X)"'k(X,x,) (8)

where X = [x,X,,...,xy] C D is the collection of samples and
f=1fi,.f2--.,fn] C D of computed objective values in D.

B. Unconstrained Bayesian Optimization

Up to this stage, the GP has been computed using the initial
samples contained in D,. BO now proceeds iteratively to enhance
the accuracy of the surrogate model by enriching D while exploring
the design space. Thus, leveraging the acquired data, the endeavor is
to identify regions expected to yield optimal values. The problem at
hand can be written as

gg;g f®) )

An acquisition function a: X — R is used to guide the optimization
through the design space while trading off exploration and exploi-
tation based on the posterior mean and variance defined in Eq. (7).
The former describes the exploration of the whole design space,
whereas the latter tries converging to an optimum based on the data
observed. This can be written as

x, € argmax a(x|D) (10)
xeX
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Numerous acquisition functions exist, often making use of the
predictive mean fi(x) and variance &(x). Popular choices for such
an acquisition function are, for example, Expected Improvement
(EI) [12] or Thompson Sampling (TS) [13].

C. Constrained Bayesian Optimization

Most engineering design problems involve constraints, which can
be integrated into the earlier introduced BO method, discussed in,
for example, Gardner et al. [14], Gelbart et al. [15], and Herndndez-
Lobato et al. [16]. This assumes that the output of a model evalu-
ation at design point x; includes not only the objective function
f(x;), but also a mapping from the design space to a collection of G
constraints ¢(x;) : X — RC. Consequently, the DoE for this scenario
is represented as D = {x;, f(x;), c(x;)};=,... n- The new design
point found needs to lie in the feasible space Xy, written as
x, €X,C X, where X;:={x€X|c;x)<0,j=1,...,G}.
Gardner et al. [14] propose modeling each constraint c;(x), j =
1,...,G with an independent surrogate model, akin to how the
objective function is modeled:

¢;(0)|D ~ GP(m(x), k(x,x")) an

leading to G + 1GP models in total. Accordingly, these surrogate
models can then be used within a constrained acquisition strategy,
solving the optimization problem formulated as

x, € argmax a.(x|D) (12)
XeX,CX

where a,. denotes a constrained acquisition function. This subsec-
tion serves to introduce the fundamental aspects of constrained BO
concisely, emphasizing that each constraint must be modeled via a
separate GP model. Of course, a multitude of constrained acquis-
ition functions exist. Among these approaches, for instance, is the
use of Thompson Sampling [13] as an acquisition function [17],
extended to the constrained setting in Eriksson et al. [18]. A major
advantage is its scalability to larger batch sizes. The latter study also
demonstrates the superiority of this approach compared to con-
strained EI, which is why constrained TS is employed in the course
of this work and is explained in Algorithm 1. Therein, for each GP
used for modeling the objective function and the G constraints, the
posterior is computed. For a batch size of Q points, a sample is
drawn to get realizations of the surrogate models. Then, N, candi-
date points are evaluated on the GPs to obtain either a set of feasible
points with optimal objective value or points with a minimum total
constraint violation X, .

Algorithm 1:  Constrained Thompson Sampling

Input: D, of kth iteration, Q batch size, X. = [x,x,,...,xy | with N,

candidates
while Computational budget is not exhausted do
X, ={
Compute current posterior p(@|D;) for f,cy,...,cq
for ¢ = 1:Q do
Sample @ from p(6|D;) to obtain realisations for f,&,,. .., ¢
Evaluate {x;/i € N,1 <i < N_} on f(x,-), ¢1(x7),...,¢q(x;) from

the respective posterior distribution
Obtain £(x;), & (x,),. .., ¢6(x;)
Choose X, = {x;[¢;(x;) <0 for 1 <1< G}
if X, # @ then x! = argmax,ex, )
else Obtain the minimum of total violation by computing
x§ = arg min,ex, Y ;1. max(¢;(x),0)
end if
X, =X, u{x®}
end for
end while

D. High-Dimensional Bayesian Optimization: Challenges and
Advances

BO algorithms consist of two main components, namely the
probabilistic surrogate model, GPs, which are based on Bayesian
statistics [10], and an acquisition function to guide the selection
where to query the next point to converge toward the minimizer of
the objective function. Although these algorithms have been proven
to be very efficient for lower-dimensional problems [19], scaling
them to higher dimensions implies some difficulties:

1) The curse of dimensionality dictates that as the number of
dimensions increases, the size of the design space grows exponen-
tially, making an exhaustive search impractical.

2) With higher dimensions, there is an increase in the number of
tunable hyperparameters @ € RP+!, resulting in a more cumber-
some GP model learning, possibly leading to increased uncertainty.

3) Higher-dimensional problems necessitate more samples N to
construct an accurate surrogate model. The inversion of the covari-
ance matrix K € RN becomes computationally intensive with a
complexity for inference and learning of O(N?) and O(N?) for
memory.

4) Insufficient data collection results in sparse sampling across
the D-dimensional hyperspace, causing samples to be widely dis-
persed from each other. This dispersion hinders effective correlation
among the samples.

5) Acquisition function optimization faces increased uncertainty
in high-dimensional settings, requiring more evaluations of the
surrogate model [19].

Various strategies have been employed to address the challenge of
high-dimensional input spaces in scenarios with few or no con-
straints. In Wang et al. [20], random projections are utilized to
reduce high-dimensional inputs to a lower-dimensional subspace,
allowing for the construction of the GP model directly in this
reduced space, thereby reducing the number of hyperparameters.
Similarly, Raponi et al. [21] and Antonov et al. [22] employ (kernel)
Principal Component Analysis on the input space to identify a
reduced set of dimensions based on evaluated samples, followed
by training the surrogate model in this reduced dimensional space.
In contrast, Eriksson and Jankowiak [7] adopt a hierarchical Baye-
sian model that assumes varying importance among design varia-
bles, using a sparse axis-aligned prior on the length scale to discard
dimensions unless supported by accumulated data. However, San-
toni et al. [23] demonstrates high computational overhead in this
approach. Additionally, decomposition techniques, such as additive
methods, are employed to partition the original space, as demon-
strated in Kandasamy et al. [24] and Ziomek and Bou-Ammar [25].

The Trust-Region Bayesian Optimization (TuRBO) algorithm,
described in Eriksson et al. [18], takes a different route, where the
design space is partitioned into multiple independent trust regions
(TRs). Results from Eriksson et al. [18] demonstrate promising
outcomes for this approach, particularly in high-dimensional prob-
lems where gathering sufficient data to construct a globally accurate
surrogate model is challenging due to the curse of dimensionality.
Instead, surrogates are focused on these defined TRs, which adjust
in size during optimization. TRs are defined as hyperrectangles of
size L € R, centered at the best solution found so far and initialized
with L « L;.;;, auser-defined parameter. The size Lty of each TR is
determined using the length scale /; of the GP, defined in Eq. (3),
and a base length scale L:

I,L 13

LTR = 1/D
(1p.1)
j=17%

In each optimization iteration, a batch of g samples are drawn within
the TR. When the design space is normalized to X € [-1, 1] and L
spans the entire design space with L — 2 kept constant, the TR
approach resembles a standard BO algorithm as outlined in Frazier
[6]. The evolution of L significantly influences the convergence of
this method, and specific hyperparameters governing its adaptation
are detailed in Eriksson et al. [18].
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All the algorithms discussed earlier focus exclusively on uncon-
strained optimization problems. The TR approach, however, ad-
dresses constraints explicitly by adapting the batched Thompson
Sampling method from Thompson [13] as an acquisition function
for constrained problems [26], detailed in Algorithm 1. This
method, known as scalable constrained Bayesian optimization
(SCBO), employs separate GPs to model each constraint within
the current TR. Scaling BO to high-dimensional problems neces-
sitates addressing significant challenges through specific assump-
tions. Although existing approaches demonstrate promising results,
handling large-scale constraints, such as those encountered in air-
craft design problems where G > 10°, remains insufficiently
addressed. This work adopts the constrained TuRBO algorithm
SCBO for high-dimensional BO due to its explicit treatment of
constraints. Next, an extension of this method is introduced to
address the challenge posed by large-scale constraints.

III. Large-Scale Constrained Bayesian Optimization
via Latent- Space Gaussian Processes

Recall the optimization problem formulated in Eq. (1). By using
constrained BO methods, as shown earlier, each of the G constraints
needs to be modeled with an independent GP, denoted as ¢;(x).
This work follows the idea of Higdon et al. [27] to construct the
surrogates on a lower-dimensional, latent output space. Let V C RS
denote a G-dimensional space. The objective of this work is to
identify a latent space V' C R# such that V' C V, where g < G.
This subspace may be found by using dimensionality reduction
methods such as Principal Component Analysis (PCA) [28] on
the training data in D;. An extended nonlinear version of PCA is
the kernel PCA (kPCA), presented by Scholkopf et al. [29].

During the DoE, alongside the samples x; and their corresponding
objective function values f;, constraint values ¢: X — R are also
collected in D. This enables the construction of a matrix C(x) given by

c(xl)T cx) olx) ... cglxy)
Clx) = C(xlz)T _ Cl(.xz) Cz('xz) CG('x2)  RVXG
c(xN)T ci(xy) clxy) ... cglxy)

(14)

Here, N represents the number of samples and G denotes the number
of constraints.

A. Principle Component Analysis (PCA)

Within PCA, a linear combination with maximum variance is
sought, such that

Cv=2. (15)

where v is a vector of constants. These linear combinations are
called the principle components of the data contained in C. After
centering the data with C = C — Iyu with g = (1/N) SN ¢ a
covariance matrix C is computed:

a) Principal component analysis

1

N léTc'eRGxG (16)

C =
Subsequently, PCA seeks the set of orthogonal vectors that capture
the maximum variance in the data. This is achieved by performing
an eigenvalue decomposition of C, to obtain the corresponding
eigenvalues A and eigenvectors v such that

Cv;=Av;, Vi=12....G (17)

WiFh M 24 > ... 2 = 0. The eigendecomposition of C is then
written as

C = WAY! (18)

The matrix ¥ = [¥,,...,¥;] € R9C has orthonormal columns

such that WTW = Iy and A = diag(4,,...,15) € R is a diago-
nal matrix, containing the eigenvalues. By investigating the eigen-
values in A, and choosing the ones with the g-highest values, the
truncated decomposition is obtained, consisting of the reduced basis
containing g orthogonal basis vectors in ¥, € RO*¢ with g < G.
The new basis vectors can subsequently be used as a projection
¥I:V cRE > V' C RS to project the matrix C onto the reduced

subspace C € RN*¢ written as

C=CY, (19)
Summarizing, the G constraints ¢(x) can be represented on a reduced
subspace through the mapping ¥, while the eigenvalues 4; give an
indication about the loss of information, potentially drastically low-
ering the number of constraints that need to be modeled. A graphical
interpretation is depicted in Fig. la. For a more thorough derivation of
this method, the reader is referred to Jolliffe and Cadima [28].

B. KkPCA

Whereas PCA can be seen as a linear dimensionality reduction
technique, in Scholkopf et al. [29] the authors present an extension,
called kPCA, using a nonlinear projection step to depict nonlinear-
ities in the data. Similarly to the PCA algorithm, the starting point is
the (centered) samples ¢;(x;) € VCR°Vie{l,...,N}.

Let F be a dot product space (in the following, also called feature
space) of arbitrary large dimensionality. A nonlinear map ¢(x) is
defined as ¢p:R® — F. This map is used to construct a covariance
matrix C, similar to PCA, defined as

N
C= %Z b(e(x)(c(x))T (20)
i=1

The corresponding eigenvalues and eigenvectors in F are computed
by solving
Cv=/Av (21)

As stated earlier, because the function ¢p maps possibly to a very
high-dimensional space F, solving the eigenvalue problem therein

b) Kernel principal component analyis

Fig. 1 Graphical interpretation of dimensionality reduction for constraints.
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may be costly. A workaround is used to avoid computations in F.
Therefore, similar to the formulation of the GP models in Sec. ILA,
a kernel k:RY x R¢ — R is defined as

k(e(x;), e(x))) = ((e(x). d(c(x)))) = plc(x))T(e(x;) (22)

and the corresponding kernel matrix K;; as

Kij = (§(c(x)). d(c(x;)) € RN (23)

By solving the eigenvalue problem for nonzero eigenvalues
Kal' = /1,~a,~ (24)
the eigenvalues A; > 1, > ... > 1y and eigenvectors a!, ..., a"
are obtained. This part can be seen as the linear PCA, as presented
before, although in the space F. To map a test point ¢, (x) from the

feature space F to the gth principle component v? of Eq. (21), the
following relationship is evaluated:

N
()T h(e, () = D al(dle(x)Tdle, (x) =¢,(x;) (25)
i=1

A graphical interpretation can be found in Fig. 1b. The kernel
function in Eq. (22) can also be replaced by another a priori chosen
kernel function.

C. Dimensionality Reduction for Large-Scale Constraints

When large-scale constraints are involved, the computational time
as well as the needed storage scales drastically because one GP model
has to be constructed and trained for each constraint. Therefore,
describing the constraints on a latent space allows to significantly
lower the computational burden. This idea is based on the work of
Higdon et al. [27], who project the simulation output onto a lower-
dimensional subspace where the GP models are constructed. Other
works then extended this method by employing, among others, kKPCA
as well as manifold learning techniques to account for nonlinearities
[30,31]. However, the aforementioned authors try to approximate
partial differential equations (PDE) model simulations with high-
dimensional outputs, whereas, to the best of the authors’ knowledge,
the combination of dimensionality reduction techniques for use in
high-dimensional BO with large-scale constraints for design optimi-
zation is novel.

The methods herein presented are capable of extracting the earlier
introduced, most important principle components of available data,
reducing the required amount of GP models to g instead of G, with
v; as the jth orthogonal basis vector. After projecting the data onto
the lower-dimensional subspace by using either PCA as in Eq. (19)
or kPCA as in Eq. (25), GPs are constructed on the latent output
space as independent batch GPs, formulated as

¢ ~GP(m;(x), ki(x,x")) Vie{l,..., g} (26)

These constraint surrogates on the latent space are then used to
navigate through the design space to ultimately find a feasible and
optimal design. A graphical interpretation is depicted in Fig. 1,
inspired by Scholkopf et al. [29]. In the following, the projection
of the constraints onto the lower-dimensional subspace in the ith
iteration is denoted as P;:R¢ — Rs.

(]Y)PCA ” f(X)

X > M

- c(x) > ¢(x)

Fig. 2 Schematic illustration of (k)PCA-GP.

A schematic illustration of the GP construction is presented in
Fig. 2, where M: X — RY*+! denotes the numerical model, map-
ping from the design space & to the objective f: X — R and
constraints ¢: X — RY as outputs. The constraints are then pro-
jected via (k)PCA onto a lower-dimensional representation ¢ where
the independent GPs are constructed. It is important to emphasize
that the validity of a feasible design, where no constraints are
violated, is checked in the original space rather than within the
lower-dimensional subspace. This is made possible because in each
iteration, a batch of ¢ new samples is obtained and evaluated using
the expensive-to-evaluate model. Hereinafter, the two methods are
called PCA-GP SCBO and kPCA-GP SCBO.

D. Related Work and Complexity Considerations

To tackle the issue of many outputs, several works have been
published. The Intrinsic Co-Regionalization Model can be
related to the Linear Model of Co-Regionalization, presented in
Alvarez et al. [32] and based on Multitask Gaussian Processes
[33]. However, due to taking into account intertask correlation,
the size of the covariance matrix increases drastically. Whereas in
independent GP models inference and learning typically have a
complexity of O((G + 1)N?) and O((G + 1)N?) for storage, the
size of multitask models extends due to their Kronecker structure
to complexities of O(N3(G + 1)3) for inference and learning,
with G + 1 denoting the number of constraints plus the objective.
Similarly, the storage complexity also scales to O(N?*(G + 1)?),
posing significant computational challenges when the number of
tasks/constraints and/or data points becomes large. The benefit
of (k)PCA-GPs now is the fact that by mapping the outputs/
constraints onto a g-dimensional subspace while no intertask
correlations are respected, the computational costs for inference
and learning only scale linearly to O((g + 1)N3 + G?), where
O(G?) accounts for the eigendecomposition during (k)PCA and
O((g + 1)N?) for storage, where g < G.

To address some of the issues, apart from Higdon et al. [27], Zhe
et al. [34] present scalable High-Order GPs (HOGP) and show that
their method is superior to (k)PCA-GP in terms of accuracy.
Because (k)PCA-GPs assume a linear structure of the outputs,
meaning that the output is a linear combination of bases vectors,
HOGP does not impose this kind of structure, thus claiming to be
more flexible. The authors in Maddox et al. [35] then extend multi-
task GPs and later HOGP for a large number of outputs by employ-
ing Mathoron’s rule to alleviate the computational burden of
sampling from the posterior. Additionally, Bruinsma et al. [36]
introduce a method that tackles the problem of needing a high
number of linear basis vectors in PCA-GP, which still scale cubi-
cally in the dimensionality of the subspace when intertask correla-
tions are taken into account. They leverage the statistics of data to
achieve linear scaling. However, all these works take into account
intertask correlation and thus scale poorly compared to k(PCA)-GP,
as concluded by Zhe et al. [34]. Due to the fact that in engineering
design problems the dimensionality and constraints can become
very large, and thus high values for N and G can be expected, this
work uses batched, independent GPs in the reduced latent space, as
originally proposed by Higdon et al. [27]. Due to the use in BO and
the continuous retraining of the surrogates, the approach employed
here significantly accelerates computations while maintaining
acceptable accuracy, as presentbed in Zhe et al. [34].

IV. Numerical Experiments

In this section, the presented methodology is applied to a bench-
mark case before results for the aeroelastic tailoring optimization
problem are shown. For comparison purposes, we adopt the reason-
ing of Herndndez-Lobato et al. [16], where a feasible solution is
always preferred over an infeasible one. Therefore, we use the
maximum value from all feasible solutions as the default for all
infeasible solutions. To leverage the capabilities of existing, well-
performing frameworks, this study employs BoTorcH [37] and
GPyTorcH [38] to make use of their extensive capabilities.
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A. 7D Speed Reducer Problem with 77 Black-Box Constraints

The 7D speed reducer problem from Lemonge et al. [9] includes
11 black-box constraints. The known optimal value for this problem
is f* =2996.3482. The results for all three evaluated methods
(SCBO, PCA-GP SCBO, and kPCA-GP SCBO) are shown in Fig. 3.
Twenty experiments are performed, where the solid line represents
the mean objective value over the 20 experiments and the shaded
area the standard deviation. f* denotes the known optimal value of
this problem. The eigenvalues of the matrix C with N = 10 samples
are plotted on the right. Additionally, the decay of the eigenvalues A
of the constraint matrix C C D is depicted. In this example where
G = 11, g = 4 principal components are chosen. The SCBO hyper-
parameters are defined according to Eriksson and Poloczek [26].
The batch size is defined as ¢ = 1 and N = 20 initial samples. The
results are compared in Table 1. All methods find a feasible and
optimal design. It is obvious that the original SCBO method con-
verges faster than the ones employing latent GPs. In SCBO, each
constraint is modeled independently via batched GPs. However,
besides the fact that the proposed methods are significantly faster,
see Table 1, it is shown that both are ultimately converging to an
optimum very close to the one obtained via SCBO and the analytical
solution f*. kPCA-GP SCBO uses the Gaussian kernel, written as

_ /12
k(x,x") = exp(M) 27)

262

Here, PCA-GP SCBO converges slightly faster than kPCA-GP
SCBO. It needs to be emphasized that this problem also does not
show a fast decay of the eigenvalues, as can be seen in Fig. 3 (left).

In addition, the influence of the number of principal components,
g, is studied in Fig. 4. It can be observed that g affects the
convergence of the optimization. Notably, when g = 2, although
convergence is slower, the mean value found is close to the analytic
value f*. However, when g = 1 the subspace does not cover
enough of the feasible design space, resulting in no feasible value
being found.

Lastly, the dimensionality of both the input and output spaces are
examined. After demonstrating in this section that the method is
generally effective on a lower- dimensional problem, the benchmark
is now extended to explore cases with either high-dimensional inputs
or high-dimensional outputs. To achieve this, the benchmark is modi-
fied in two ways. First, it is embedded into a 100-dimensional input

6000
[¢b)
=
< — g=
> 5000 — g2
=]
RS — g=4
-~ —_— _
2 4000 1 g==6
= — g=11
=

3000

0 50 100
Number of evaluations

Fig. 4 The influence of the number of principal components g on
the result.

space. Second, artificial constraints are introduced, increasing the
number of constraints to G = 500, while preserving the original
optimization problem’s characteristics. This is ensured by adding
nonviolated constraints such that each additional constraint ¢, < 0.
These modifications allow for an in-depth investigation of different
components. The corresponding results are presented in Fig. 5, where
the following is determined:

1) Case 1 represents the benchmark problem embedded in a high-
dimensional input space with D = 100 and G = 11.

2) Case 2 retains the original input space dimension with D = 7
but extends the number of constraints to G = 500.
(k)PCA-GP SCBO is applied to both cases, where the number of
principal components is set to g = 6. Additionally, SCBO is included
for Case 1, where constraints are directly modeled using independent
GPs. However, Case 2 exceeds memory resources because SCBO
tries to construct 501 GPs, one for the objective and 500 for the
constraints. Moreover, N = 20 initial samples are used, with a batch
size of ¢ = 3 and an evaluation budget of 200 over 20 experiments.
The experiments demonstrate that our proposed method successfully
handles both high-dimensional input spaces (Case 1) and large-scale
constraints (Case 2), whereas the original approach fails in the latter
scenario due to the need for excessive surrogate model construction,
exceeding memory resources. Although both cases converged to

100 -
6000 -—— 101 ]
£ 5000 8 107 5
=] =
2 £ 103
§ 4000 A &
€9 = 1074 .
3000 4 ————=== mm—————
10—5 -
0 25 50 75 100 2 4 6 8 10
Number of evaluations Sample Index
—— SCBO —— PCA-GP SCBO —— kPCA-GP SCBO ——= f*
Fig. 3 7D speed reducer problem with 11 black-box constraints from [9].
Table 1 Computational time for speed reducer benchmark
Method f* - (F* =/ f*, % Time, s Time saving, % Successful runs, -
SCBO 3007.20 0.36 501.38 —— 20/20
PCA-GP SCBO 3053.30 1.90 201.38 59.83 20/20
kPCA-GP SCBO 3088.39 3.07 216.96 56.73 20/20
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Fig. 5 The influence of the input and output dimensionality.

similar function values, it can be observed that Case 1 converges at a
slower rate than Case 2. This discrepancy can be attributed to the curse
of dimensionality, which affects the efficiency of surrogate modeling
and exploration in high-dimensional spaces. In contrast, although a
large number of constraints increases computational cost, it does not
fundamentally alter the exploration process when efficient dimension-
ality reduction is possible, allowing for faster convergence. These
findings confirm the effectiveness of our method in tackling high-
dimensional and large-scale constrained optimization problems. Sum-
marizing, the lower-dimensional subspace is constructed based on the
constraint values in D. Assuming that the global optimum lies on the
boundary of the feasible space X', the success of the method highly
depends on how accurately the lower-dimensional subspace captures
the original space. That stresses the importance of computing the
projection matrix P; in every iteration. However, we find that for this
specific case fixing P; = Py, Algorithm 2 exhibits a better perfor-
mance, presumably due to the rather low dimensionality and low
number of constraints in combination with the use of the TR.

Algorithm 2:  SCBO with Latent-Space Gaussian Processes

Input: Input space X', Number of candidates N, batch size g., number of
initial samples N;, SCBO hyperparameters, number of eigenvalues N,, or
tolerance 7.,

Compute DoE Dy = {x;, f(x;), ¢(x)) }i=1.n,
k=0
while Computational budget is not exhausted do
With ¢(x) C D, compute projection Py
Project constraints onto lower-dimensional subspace ¢(x) = P(c(x))
Fit GP for f(x), ¢;(x),...,Co(x)
X < CONSTRAINEDTHOMSPONSAMPLING (see Algorithm 1)
Evaluate x and observe f(x, ), c(x)
Update TuRBO state
D1 =D U dxy, fxy), elxy)}
k—k+1
end while

B. Aeroelastic Tailoring: An MDO Problem with 708D and 1786
Black-Box Constraints

The MDO problem of aeroelastic tailoring addressed in this work
presents a high-dimensional problem with large-scale constraints,
involving both high-dimensional inputs and outputs. Unlike the
aforementioned benchmark problem where it is practical to con-
struct a GP for each constraint, this is computationally infeasible
here, where the number of constraints is 10 < G < 10°. Therefore,
the methodology presented in this study facilitates the process by
modeling these constraint GPs in a latent space. Figure 6 depicts the
wing to be aeroelastically tailored by optimizing the stiffness and
thickness of the wingbox. The wingbox is spanwise discretized in
three sections, where top skin, bottom skin, front spar, and rear spar
can take on different stiffness and thickness values. The wingspan
exhibits b = 12.28 m, with a ¢ = 2.068 m chord at the root and

¢ = 1.113 m chord at the tip. The front and rear spar are located at
xgs = 0.15¢ and x,; = 0.65¢, respectively. In total, D = 108 design
variables are defined, consisting of the lamination parameters & €
[—1, 1] and the thickness ¢ € [0.002, 0.03] m of each panel, respec-
tively. Each panel is described by a set of parameters x!2™.

x = {xlam xlam o xlamy € R0 with

<X,

(28)
X ={6,8.6.8.60.8.8. 8.1 e R’

Based on the classical laminate theory, the following constitutive

equations are used to relate the distributed forces N and moments

M, with the in-plane €% and curvature « strains:

N A(x 0 0
_[4® ¢ 9
M 0 Dkx]L«x
The so-called ABD-matrix can be calculated by means of lamina-
tion parameters according to Tsai and Pagano [39] as follows:

A(x) = 1Ty + & 4+ 128 4 Ta&s + Tay)
= (30)
D(x) = E(Fo + &P + oD + TaED + TyéD)

where I'; are material invariants, defined in Tsai and Pagano [39].
Equation (30) encodes the dependency of the design variables x
with the stiffness of the system [40]. The constraints result from the
incorporation of two load cases. These multiple load cases are often
one of the reasons why the number of constraints can become very
high. The aforementioned constraints arise from the multidiscipli-
nary analyses, summarized in Table 2 and leading to a total number
of G = 1786, similarly depending on the input variables x. More
information on the aeroelastic tailoring optimization problem can be
found in Maathuis et al. [41]. Apart from the mathematical reason-
ing to find a latent space of the output data, the premise of the
introduced methodology lies in the consistency of the physics
governing the constraints across load cases, where eventually only
the load changes. This stresses the potential for compressing this
information due to the unchanged underlying physics for varying
load cases.

The lamination parameter feasibility constraints are, however,
closed-form equations. These analytical equations do not need to
be modeled via surrogates because their behavior is known in the
design space. Thus, these constraints are taken into account inher-
ently within the sampling process via rejection sampling. Every
candidate point in N, is only added if it is not violating one of these
feasibility constraints.

The aforementioned aeroelastic tailoring model is used to com-
pute the DoE D with N = 416 samples. Sampling was performed
via Latin Hypercube Sampling. One evaluation of this low-fidelity
model takes ~10 s due to parallelization. Anyway, subsequently
PCA is applied on the matrix C to investigate its eigenvalues.
Figure 7 depicts the decay of these computed eigenvalues. If it is
the same error metric as in Sec. IV.A, eigenvalues up to approx
A; ~ 1072, thus g = 29 principal components might be enough to
construct a lower-dimensional subspace of sufficient accuracy.

As noted earlier, the high number of constraints stems from the
incorporation of multiple load cases. Consequently, it becomes
intriguing to explore how the eigenvalues vary when the number
of load cases is altered. Recall that the eigenvalues denote the
importance of their corresponding eigenvector, which serves as a
measure of where to truncate the projection matrix. Beyond that, in
Fig. 7 we compared the eigenvalues of n,. = 1 and n. = 2 load
cases. It can be observed that, even though the number of constraints
in the original space has doubled, from G = 893 to G = 1786, if the
eigenvalues A; > 1072 are used, no more principal components have
to be taken into account. For 4; > 1073, however, only 27 more
components are needed to maintain the same error. Beyond that, the
threshold of the eigenvalues is commonly set based on experience,
thus it can be seen as a hyperparameter of the method.
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Fig. 6 Wing structure consisting of wingbox and airfoil shape.

Table 2  Aeroelastic tailoring constrained optimization problem

Type Parameter Symbol #
Objective Minimize wing mass, kg f —_—
Design variables (D) Lir;rlnniigzn tgi;ig;estser * - o
Laminate feasibility [ars 72 ——
Static strength Ciw 96 /load case
. Buckling ¢ 768 /load case
Constraints (G) Aeroelastic stability Cys 10 /load case
Aileron effectiveness Cae 1 /load case
Local angle of attack CAroA 18 /load case

—_ —_
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Fig. 7 Investigating the constraints in D.

To compute the projection error, some unseen data C,, is mapped
onto the lower-dimensional subspace C. = ‘I‘EC*. Because PCA is
a linear mapping, the inverse mapping can be simply computed by
¢ . = C,¥. The approximation error can then be computed by

~ 12

IC.IIF

In Fig. 7 (right), the trend reveals that including more components
leads to a reduced error, even for unseen data. Furthermore, to
investigate how the construction of the lower-dimensional subspace
behaves with sample size variation, the error € is shown for N = 40,
N =416, and 2N samples. It can be seen that the error is approx-
imately the same for the latter two cases. As anticipated, an insuffi-
cient initial sample size N results in limited information availability
during the subspace construction, consequently leading to a larger

error. Moreover, the conclusion drawn is that even with N = 416
samples, sufficient data is available to attain a reasonable subspace.
Furthermore, increasing the number of samples in the DoE does not
contribute to higher accuracy. To mitigate this issue, the projection
matrix is recalculated in every iteration of the optimization process
to incorporate as much data as possible.

Figure 8 (left) shows the results for the 108D aeroelastic tailoring
problem, comparing the results of SCBO, (k)PCA-GP SCBO, Ran-
dom Search, and Covariance Matrix Adaptation Evolutionary Strat-
egy (CMA-ES) [42]. Again, kKPCA-GP SCBO uses the Gaussian
kernel defined in Eq. (27). A total of five experiments are performed
per method on a conventional computer with the following: INTEL
XEON Ww3-2423, 6 cores, and 3268 RAM. The original SCBO
method crashes due to insufficient memory after the first iteration,
while trying to construct 1786 high-dimensional GP surrogates.
However, a good convergence can be observed for the PCA-GP
SCBO and kPCA-GP SCBO, with g =35, where again PCA
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Fig. 8 Optimization results of aeroelastic tailoring case (left) and history of TR hyperrectangle size L (right).

performs better than KPCA. Additionally, it is important to note that
given the size of the DoE D, being N = D, a feasible design point
can be efficiently identified, even if all points in the DoE at iteration
k = 0 were initially infeasible. This is also highlighted by the results
of the random search and CMA-ES, which both fail in finding a
feasible point.

Due to the high-dimensional design space and the high number of
constraints, the probability of finding a feasible point where no
constraints are violated is extremely low with random search, which
was unable to find a single feasible design point. Therefore, the
proposed method renders the observed advantage of finding effi-
ciently feasible points even when D, only contains infeasible ones.
Figure 8 (right) illustrates the size of the TR over the number of
model evaluations for three randomly chosen runs. It can be
observed that the size generally decreases. However, as seen for
instance in the dark blue curve, the optimizer occasionally gets
stuck, increases the TR size to escape the locality while the evalu-
ation budget is not exhausted, and then restarts to decrease it.
Furthermore, for this specific example, we can alternatively perform
a gradient-based optimization for comparison. Using this approach,
an objective value of f* = 402.06 kg is obtained.

For the sake of completeness, we compare the proposed method
to the so-called constraint aggregation approach, using the Kreis-
selmeier—Steinhauser (KS) function, written as

1 m
KS(x) = cpax + 710g|: eﬂw)] (32)
o022

Jj=1

This function aggregates multiple constraints, arising for example
from a buckling or strength analysis into one constraint function.
We implement this to lower the number of needed surrogates and
compare the results against the best candidate so far. We aggregate the
strain and buckling constraints for each load case individually for
which we construct the GP, whereas the other constraints are modeled
independently, leading to a reduced number of constraints g = 66. It
should be noted that, compared to PCA-GP SCBO/kPCA-GP SCBO
where g = 35 principal components were used, in the aggregation
approach 66 surrogate models need to be constructed, needing approx-
imately twice as long for surrogate construction. Thus, downsides are
the increased number of needed surrogate models in high-
dimensional space as well as the additional hyperparameters
needed to define which constraints to aggregate, as well as the
hyperparameter p, which we set in this case to p = 100. For more
information the reader is referred to Martins and Poon [43].

It should be pointed out that in the constraint aggregation case it
not only requires more GPs to be constructed, increasing the need
for computational resources, but also the structure of the constraints
needs to be known such that only constraints arising from one
discipline are aggregated. This is additionally needed knowledge
that might be not available, drastically lowering the generality of
this approach. The corresponding results can be found in Fig. 9,
where we compare SCBO with the aggregation technique with
PCA-GP SCBO.

800
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Fig. 9 Comparison of best result with constraint aggregation.

Hypothesizing why the aggregation method performed worse than
the herein-introduced approaches is first of all its conservativeness,
and second, the high order of the output function due to approximat-
ing all the constraints, possibly leading to a quasi-nonsmooth func-
tion, which is cumbersome to approximate. However, further research
has to be performed to confirm these statements.

V. Conclusions

The aeroelastic tailoring problem exemplifies a high-dimensional
multidisciplinary design optimization challenge characterized by
large-scale constraints. Conducting a global design space search is
inherently complex, particularly when dealing with black-box opti-
mization problems where computing gradients is problematic. Con-
strained Bayesian optimization (BO) faces scalability issues due to
the extensive number of constraints involved. To mitigate the scal-
ability shortcomings of the aforementioned methods, Gaussian Proc-
esses (GPs) are constructed on the latent space of the high-
dimensional outputs in combination with a trust-region-based
approach. By significantly reducing the number of required GPs,
substantial computational savings can be realized, making certain
problems feasible and aligning with the objectives to reduce computa-
tional expenses. These savings are even more pronounced in high-
dimensional settings, where large evaluation budgets can occur, thus
increasing the computational costs for surrogate construction.

Within aeroelastic tailoring, feasible designs can be found rela-
tively easily by increasing the thickness of each panel. However, this
simplicity does not extend to other problems. The presented
approach demonstrates the capability to drastically reduce computa-
tional time, thus making constrained Bayesian optimization feasible
for such problems. Numerical investigations confirm the applicabil-
ity of this method to aeroelastic tailoring, showcasing its effective-
ness for multiple load cases with minimal additional principal
components required.

An analytical example further illustrates that the proposed
method converges to approximately the same objective function
value. Whereas the authors' work primarily addresses aeroelastic
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tailoring, the method’s generality allows for application to various
problems involving large-scale constraints. This flexibility is sup-
ported by numerical evidence showing the ease of application to
diverse high-dimensional constraint problems.

Additionally, any dimensionality reduction method, such as
autoencoders, can be seamlessly integrated into the methodology.
When compared to other methods for handling large-scale con-
straints, such as penalty and constraint aggregation methods, the
authors' proposed method demonstrates superior results without
relying on specific knowledge about constraint categories. Whereas
the herein presented method works with a fixed user-defined or
eigenvalue-based number of principal components g, a promising
path could be an extension of this method, using an adapting
number g such that the approximation error of the latent space is
minimized. This might further improve the method. Moreover,
future research will focus on simultaneously reducing input and
output spaces. The authors' current methodology necessitates train-
ing latent GPs on the full-dimensional input space. The introduced
approaches in Ch. IL.D perform dimensionality reduction in the
input space, offering promising avenues for further improvements.
Simultaneously reducing input and output space would highly
increase the scalability of this approach. Moreover, the efficient
utilization of gradients, if available, will be explored to combine
gradient-based and surrogate approaches. This could facilitate the
use of active subspaces, potentially enhancing performance.

Besides its application in BO, this research also holds promise for
design under uncertainty. GPs offer a distinct advantage in providing a
measure of variance. When addressing systems with high-dimensional
outputs, this method becomes particularly advantageous. By lev-
eraging Principal Component Analysis, the authors facilitate an
efficient mapping back to the original high-dimensional space.
This approach is particularly pertinent for engineering challenges
where multiple model outputs are commonplace, offering a scal-
able solution for variability assessment. Furthermore, this meth-
od’s potential application in a multifidelity optimization strategy
will be explored to bolster computational efficiency and practical
feasibility.
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