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Samenvatting
Dit proefschrift bestudeert fundamentele aspecten van atmosferische turbulentie
door middel van direct numerieke simulaties van homogene roterende turbulentie
en van een brekende traagheid-zwaartekrachtgolf in de middelste atmosfeer. De
numerieke experimenten werden uitgevoerd met een nieuwe computationele tool,
specifiek ontworpen voor dit onderzoek en bedoeld om te profiteren van massaal
parallel verwerking op supercomputer hardware.

Ten eerste is de overgang van een gespleten naar een voorwaarts kinetisch ener-
gie cascade systeem onderzocht in de context van homogene roterende turbulentie
met een driedimensionale isotrope willekeurige kracht die niet gecorreleerd is met
het snelheidsveld. De parametrische studie behandelt begrenzing e�ecten in domei-
nen met grote aspectverhoudingen, die in de draairichting ongeveer 340 keer groter
zijn dan de typische initiële wervelgrootte, en een breed scala aan rotatiesnelheden.
De huidige gegevens voegen substantieel toe aan eerdere werken, die daarentegen
gericht waren op kleinere en ondiepere domeinen. Resultaten geven aan dat voor
vaste geometrische afmetingen het Rossby nummer als controle parameter fungeert,
terwijl voor een vast Rossby nummer het product van de domeingrootte langs de
rotatie-as met het forcerende golfgetal de hoeveelheid energie regelt die gedeeltelijk
omgekeerd wordt overgedragen. Onze resultaten laten zien dat het criterium voor
regime overgang afhangt van beide controle parameters.

Ten tweede, met behulp van de vorige database, twee aspecten van homogeen
roterende turbulentie worden gekwantificeerd. Door de tijdevolutie van de integrale
lengteschaal langs de rotatie-as ¸ te volgen, de groeisnelheid van de zuilvormige
wervelingen en zijn afhankelijkheid van het Rossby nummer Ro

Á

wordt bepaald als
“ = 3.90 exp(≠16.72 Ro

Á

) voor 0.06 Æ Ro

Á

Æ 0.31 waarbij “ de niet-dimensionale
groeisnelheid is. Daarna wordt een schaalwet voor de energie dissipatie snelheid Á

‹

gezocht. Een vergelijking met de huidige beschikbare schaalwetten laten zien dat de
relatie die voorgesteld wordt door Baqui & Davidson (2015), namelijk Á

‹

≥ u

Õ3
/¸ ,

waarbij u

Õ de r.m.s. snelheid is, onze gegevens gedeeltelijk goed benadert, daarbij
specifiek in het bereik 0.39 Æ Ro

Á

Æ 1.54. Echter, de voorgestelde relaties in de
literatuur slagen er niet in de gegevens te modelleren voor het tweede en meest in-
teressante bereik, namelijk 0.06 Æ Ro

Á

Æ 0.31, die gekenmerkt zijn door de formatie
van zuilvormige wervels. Om een overeenkomstige relatie te vinden voor het laatste,
maken wij gebruik van het concept van een spectrale overdrachtstijd die geïntro-
duceerd is door Kraichnan (1965). Binnen dit kader wordt de energie dissipatie
snelheid beschouwd af te hangen aan zowel de niet-lineaire tijdschaal als de ont-
spanningstijdschaal. Dus door onze gegevens te analyseren zijn uitdrukkingen voor
deze verschillende tijdschalen verkregen die resulteren in Á

‹

≥ u

Õ4
/(¸

2

‹Ro

0.62

Á

·

iso

nl

),
waarbij ¸‹ de integrale lengteschaal is in de richting loodrecht op de draaias, en ·

iso

nl

de niet-lineaire tijdschaal is van het initiële homogene isotrope veld.
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x Samenvatting

Ten derde onderzoeken we een testcase waarin rotatie- en stratificatie-e�ecten
gecombineerd optreden. Daarom simuleren we traagheidszwaartekrachtgolven die in
de midden-bovenste mesosfeer breken, namelijk op hoogtes die overeenkomen met
het Reynolds nummer van 28 647 en 114 591 die gebaseerd zijn op de golflengte
en de periode geassocieerd met het opwaartse drijfvermogen. Terwijl het eerste al
bestudeerd is door Remmler et al. (2013), wordt deze hier herhaald met een ho-
gere resolutie en dient als basis voor vergelijking met de hoge Reynolds nummer
testcase. De simulaties zijn ontworpen op basis van de studie van Fruman et al.
(2014), en worden geïnitialiseerd door optimale verstoringen bovenop de onstabiele
convectieve basisgolf te plaatsen. Binnen één golfperiode, vergankelijke groei leidt
tot een bijna onmiddellijke golfbreking en secundaire uitbarsting van turbulentie.
We laten zien dat dit proces gekenmerkt wordt door de vorming van fijnstroom-
structuren die zich voornamelijk in de omgeving bevinden van het minst stabiele
punt van de golf. Tijdens de golfafbraak, de energie dissipatie snelheid neigt naar
een isotrope tensor, terwijl dit sterk anisotropisch is tussen de brekende gebeur-
tenissen. We vinden dat de verticale kinetische energie spectra een duidelijke 5/3

schaalwet vertonen bij instanties van intensieve energie dissipatie snelheid en een
kubieke machtswet in rustigere periodes. Het term-voor-term energiebudget laat
zien dat de drukterm de belangrijkste bijdrage levert aan het globale energiebud-
get, aangezien het de verticale en horizontale kinetische energie koppelt. Tijdens de
brekende gebeurtenissen is de lokale energieoverdracht voornamelijk van het gemid-
delde tot het fluctuerende veld en de kinetische energie productie is in evenwicht
met de pseudo-kinetische energie dissipatie snelheid. De laatstgenoemde studie is
gericht op de gecombineerde e�ecten van rotatie en stratificatie.



Summary
This thesis studies fundamental aspects of atmospheric turbulence through direct
numerical simulations of homogeneous rotating turbulence and of an inertia-gravity
wave breaking in the middle atmosphere. The numerical experiments were per-
formed with a new computational tool designed for the sole purpose of this research
and meant to take advantage of massively parallel processing on supercomputer
hardware.

First, transition from a split to a forward kinetic energy cascade system is ex-
plored in the context of homogeneous rotating turbulence with a three-dimensional
isotropic random force uncorrelated with the velocity field. The parametric study
covers confinement e�ects in large aspect ratio domains, which is in the direction of
rotation about 340 times larger than the typical initial eddy size, and a broad range
of rotation rates. The present data adds substantially to previous works, which,
in contrast, focused on smaller and shallower domains. Results indicate that for
fixed geometrical dimensions the Rossby number governs the amount of energy that
cascades inversely, whereas for a fixed Rossby number the product of the domain
size along the rotation axis and forcing wavenumber acts as the control parame-
ter. Our results show that the regime transition criterion depends on both control
parameters.

Second, using the previous database, two aspects of homogeneous rotating tur-
bulence are quantified. By following the time evolution of the integral lengthscale
along the axis of rotation ¸ , the growth rate of the columnar eddies and its de-
pendency on the Rossby number Ro

Á

is determined as “ = 3.90 exp(≠16.72 Ro

Á

) for
0.06 Æ Ro

Á

Æ 0.31 where “ is the non-dimensional growth rate. Then, a scaling law
for the energy dissipation rate Á

‹

is sought. A comparison with current available
scaling laws shows that the relation proposed by Baqui & Davidson (2015), i.e.,
Á

‹

≥ u

Õ3
/¸ , where u

Õ is the r.m.s. velocity, approximates well part of our data,
more specifically the range 0.39 Æ Ro

Á

Æ 1.54. However, relations proposed in the
literature fail to model the data for the second and most interesting range, i.e.,
0.06 Æ Ro

Á

Æ 0.31, which is marked by the formation of columnar eddies. To find a
similarity relation for the latter, we exploit the concept of a spectral transfer time
introduced by Kraichnan (1965). Within this framework, the energy dissipation rate
is considered to depend on both the nonlinear timescale and the relaxation timescale.
Thus, by analyzing our data, expressions for these di�erent time-scales are obtained
that results in Á

‹

≥ u

Õ4
/(¸

2

‹Ro

0.62

Á

·

iso

nl

), where ¸‹ is the integral lengthscale in the
direction normal to the axis of rotation and ·

iso

nl

is the nonlinear timescale of the
initial homogeneous isotropic field.

Third, we explore a test case where rotation and stratification e�ects appear
combined. Therefore, we simulate inertia-gravity waves breaking in the middle-
upper mesosphere, namely at altitudes which correspond to the Reynolds number of

xi



xii Summary

28 647 and 114 591 based on wavelength and buoyancy period. While the former was
studied by Remmler et al. (2013), it is here repeated at a higher resolution and serves
as a baseline for comparison with the high Reynolds number case. The simulations
are designed based on the study of Fruman et al. (2014), and are initialized by
superimposing primary and secondary perturbations to the convectively unstable
base wave. Transient growth leads to an almost instantaneous wave breaking and
secondary bursts of turbulence. We show that this process is characterized by the
formation of fine flow structures that are predominantly located in the vicinity of
the wave’s least stable point. During the wave breakdown, the energy dissipation
rate tends to be an isotropic tensor, whereas it is strongly anisotropic in between
the breaking events. We find that the vertical kinetic energy spectra exhibit a clear
5/3 scaling law at instants of intense energy dissipation rate and a cubic power law
at calmer periods. The term-by-term energy budget reveals that the pressure term
is the most important contributor to the global energy budget, as it couples the
vertical and the horizontal kinetic energy. During the breaking events, the local
energy transfer is predominantly from the mean to the fluctuating field and the
kinetic energy production is in balance with the pseudo kinetic energy dissipation
rate.
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Introduction

If it works once, it’s a trick.
If it works twice, it’s a method.

If it works three times, it’s a law.

Source Unknown
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2 1. Introduction

1.1. The Study of Turbulent Flows
The word turbulence is often used to describe situations full of commotion and it
appears in di�erent contexts. For instance, we may all have heard the expression “a
turbulent life” as a synonym for a life marked by accidents and unplanned events.
Or, the reader might be familiar with the term “turbulent financial market”, which
basically means economists can not accurately predict the future. In fluid mechanics,
the field we deal with in this thesis, the term turbulent flows has been coined to
describe the chaotic multiscale motion of fluids (gases and liquids). Like everything
in life, it also has a contrary, namely laminar flows, which symbolizes the calm fluid
motion, just like the water flow in the Dutch canals.

The laws governing fluid motion were first revealed in 1822 by C.L. Navier and
later shown to be valid for a number of experiments by G.G. Stokes (see Dugas
(2012) for details of the historical facts). However, knowing the governing equations
was not su�cient. The rules which fluids obey were found, but the reason for specific
flow behavior could not be inferred directly from the rules. Due to nonlinearities
in the equations of motion, solutions were only found for elementary problems. It
was then not until the experiments by Reynolds (1883), roughly 60 years later, that
the notion of direct (now referred to as laminar) and a sinuous (now referred to as
turbulent) flow stream was clarified. In that seminal work, O. Reynolds introduced
what today is known as the Reynolds number and pinpointed that the di�erent flow
regimes are a consequence of the balance between the inertial and the viscous forces.

In nature, as well as in most engineering systems, we are more likely to find
turbulent flows, i.e., situations in which the inertial forces prevail over the viscous
forces. The importance of turbulent flows is therefore utmost. It has driven the cu-
riosity of many researches and paved the way to a number of discoveries. Situations
in which turbulent flows are encountered range from simple things in our daily lives
to more complicated ones which are harder to grasp. Classical examples are the
ones of stirring a cup of co�ee or blowing out a strike-anywhere match (Fig. 1.1a).
More sophisticated examples are found in the atmosphere and oceans of planets

(a) (b)

Figure 1.1: (a) A strike-anywhere match being blown out; the image shows the interaction of
turbulent structures from the air and the flame itself (Miller et al., 2014). (b) Polar meshosperic
clouds (aka Noctilucent clouds) over the sky of Solna (Stockholm/Sweden) showing turbulence in
the atmosphere.
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Figure 1.2: Turbulent gas in the interstellar medium of the Milky Way. The picture shows regions
of intense density and magnetic field variations. (Gaensler et al., 2011).

(e.g., on Earth Fig. 1.1b), where turbulence promotes mixing and influences the
climate and the dynamics of oceanic currents; or in the cosmos (Fig. 1.2), where
turbulence is vital for sustaining magnetic fields. Incidentally, we can still mention
turbulent flows over surfaces (viscous boundary layers), which occurs in any kind of
transportation system we may think of (e.g., boats, cars and airplanes).

Similarly to other fields in science, turbulence is studied by both theoreticians
and experimentalists. Progress in this field, however, is slow and often smoothed
out over the years, with major breakthroughs far from being the rule. Advances
are accomplished by small victories and the big wins follow from contributions of
di�erent parties. For a good part of the 20th century, the scientific community
experienced great advances towards an universal turbulence theory. During this
time, progress was mainly led by the outburst of ideas from the Russian School (see
e.g., Davidson et al. (2011) for a historical overview), which is nowadays probably
best known due to the work of A. N. Kolmogorov. Unfortunately, an universal
theory of turbulence has not emerged, and the question whether one even exists
remains open. Currently, advances in this field are powered by a continuous techni-
cal progress, which allows for improved measurement techniques and unprecedented
computational power — although at the cost of new programming paradigms. This
has enabled the scientific community to harvest unprecedented data, both numer-
ically and in laboratories, which can help elucidate unsolved problems and unveil
new flow physics.

By envisioning the potential of computers in the study of turbulence, R. Kraich-
nan and S. Orszag were the pioneers in what today is called Direct Numerical
Simulations (DNS) — see e.g. Orszag & Patterson (1972) for the first simulations
of fluid turbulence. In this kind of experiment, numerical techniques are employed
to accurately solve the laws of motion. Whereas classical experiments provide mea-
surements of the real world, and can always be argued to represent in some sense
reality, there is no doubt that numerical experiments have contributed (and will
continue) to understanding the underlying physics of turbulent flows. In fact, nu-
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merical and experimental techniques complement each other. Whereas the former
can provide highly accurate temporal and spatial data, the latter can, for example,
probe flows at much higher Reynolds number.

In this thesis, we deal with a very small part of this vast and exciting field. In
particular, we focus our attention mainly on flow physics that can potentially lead to
a better comprehension of atmospheric and oceanic flows. Our plan of attack relies
exclusively on a computational approach that employs highly accurate and state-of-
the-art numerical techniques for solving the equations of motion. In the following,
we give a brief overview of the fundamentals of rotating flows. The experienced
reader can skip ahead to Section 1.3, where we present the aim and outline this
thesis.

1.2. Fundamentals of Rotating Flows
1.2.1. Preliminaries
Whether in engineering, geophysical or in astrophysical flows, rotation can influence
and shape fluid motion. In engineering systems, classical examples of rotating flows
are found in turbomachinery, like in wind/water turbines, or in turbofan reactors
where rotation rates are as high as 10

5

rpm (Godeferd & Moisy, 2015). In geophysical
flows, it is planetary rotation that engenders the atmosphere and the ocean of planets
with special traits and characteristic coherent structures. On Earth, hurricanes are
perhaps the simplest example of the consequences of a rotating atmosphere. But a
rotating atmosphere is not limited to our rock. On Jupiter, the dynamics induced
by rotation are often called to explain the existence of a persistent red spot in
its atmosphere. And, on icy moons like Enceladus, the e�ects of rotation are also
important for the mixing of saline oceans that are conjectured to exist; there is hope
that some sort of life could be found in these oceans.

The rules that govern the motion of incompressible fluids in an inertial frame of
reference and in the absence of external forces are given by

Ò · u = 0 (1.1)

ˆu
ˆt

+ Ò · (u ¢ u) = ≠Òp + ‹Ò2u, (1.2)

where u is the fluid’s velocity, t denotes time, p is the hydrodynamic pressure nor-
malized by the fluid’s constant density fl, ‹ is the kinematic viscosity, and ¢ denotes
the dyadic product. Strictly speaking, these laws could be applied anywhere, as long
as we obey the condition that the observer rests upon an inertial frame of reference.
Obeying this condition, however, is not an easy task. For instance, since our planet
is continuously rotating (with a period of T

earth

= 86 400 s), any motion on its frame
of reference is continuously accelerated, and therefore it does not qualify as an in-
ertial frame of reference. Thus, depending on the problem of interest, it might be
convenient to consider non-inertial frames of reference and the above laws (Eqs. (1.1)
and (1.2)) must be corrected to include the so-called fictious or inertial forces (see
Appendix A for the mathematical details).
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In a frame rotating with angular velocity �, there are two fictitious forces: the
Coriolis and the centrifugal force. Under these conditions, Eqs. (1.1) and (1.2)
become

Ò · u = 0 (1.3)
ˆu
ˆt

+ Ò · (u ¢ u) + 2(� ◊ u) = ≠Òq + ‹Ò2u, (1.4)

in which, the Coriolis force appears explicitly added to the left-hand-side of Eq. (1.4)
through the cross product between the angular velocity and the fluid’s velocity, and
the centrifugal force has been written in form of a potential and combined with the
hydrodynamic pressure to yield the reduced pressure

q = p ≠ �R

2

2

. (1.5)

In the equation above, � is the norm of the angular velocity �, and R is the shortest
distance to the axis of rotation. Whereas the centrifugal force acts in the plane of
motion and pulls the fluid elements outward, the Coriolis force acts perpendicularly
to the plane containing the axis of rotation and the velocity vector, and deflects
the motion of the fluid particles. The centrifugal force depends only on the angular
velocity of the frame and on the distance between the fluid particle and the axis of
rotation; it does not introduce kinematic changes and it simply modifies the existing
pressure field without altering the velocity field (cf. Eq. (1.5)). The Coriolis force,
on the other hand, is the one that imparts di�erent dynamics to incompressible
rotating flows.

Although for the reason cited above any motion occurring on Earth takes place
in a rotating frame of reference, depending on the scales of the physical process of
interest, the influence of Earth’s rotation can be neglected. This statement is clari-
fied if the equations of motion are made non-dimensional by defining characteristic
scales of motion such as a velocity scale u

0

and a lengthscale l

0

. By introducing
these quantities, Eqs. (1.3) and (1.4) can be alternatively written as

Ò · uú
= 0 (1.6)

ˆuú

ˆt

ú + Ò · (uú ¢ uú
) +

1

Ro

(e
�

◊ uú
) = ≠Òq

ú
+

1

Re

Ò2uú
, (1.7)

where the star as superscript denotes non-dimensional quantities. The Reynolds
and the Rossby numbers, which are the two non-dimensional numbers governing
the problem, appear naturally in Eq. (1.7) and are (for now and without specifying
u

0

and l

0

) defined as
Re =

u

0

l

0

‹

and Ro =

u

0

2�l

0

. (1.8)

The Rossby number, named after the Swedish meteorologist Carl-Gustaf Arvid
Rossby, represents the ratio between the timescale for fluid motion t

f

= l

0

/u

0

and the timescale induced by the system’s rotation ·

�

= 1/�. For large Ro, i.e.,
·

�

∫ t

f

, the fluid particles move as if in a fixed frame of reference, without noticing
the e�ects of rotation. Conversely, for small Ro, i.e., ·

�

π t

f

, the e�ects of system
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Ro

Re

Ro π 1

Ro ≥ 1

Ro ∫ 1

Re ≥ 1

Wave Turbulence

Quasi 2D Turbulence 3D Isotropic Turbulence

Inertial Waves

Figure 1.3: Map of the di�erent regimes in homogeneous rotating turbulence. Inspired by Godeferd
& Moisy (2015).

rotation modulate the flow. Indeed, from Eq. (1.7) we see that that the Coriolis
force is proportional to 1/Ro, thus vanishing for Ro ∫ 1, and becoming more rele-
vant the smaller Ro is. In many cases, Eq. (1.7) can be approximated by Eq. (1.4).
But generally speaking, the importance of rotational e�ects depends on a balance
of timescales.

1.2.2. Flow Regimes
From the previous section, we have seen that the Rossby number plays an important
role, since it can change the form of the governing equations. As probably already
expected, this may lead to di�erent flow regimes which depend on the Reynolds and
on the Rossby number. A qualitative description of the possible regimes is given in
Godeferd & Moisy (2015), here reproduced in Fig. 1.3.

In the both low Reynolds and Rossby number limits, inertial waves are expected
to dominate the flow. By increasing the Reynolds number and making the flow
more energetic, while Ro π 1, we have rotating turbulence. For relatively low
Re, the Coriolis force shapes the dynamics of both small and large scales, and the
flow is marked by the interplay between turbulent eddies and inertial waves (wave
turbulence). For higher Re, the e�ects of the Coriolis are felt only by the large
scales, and the result is a quasi 2D turbulent flow.

Next, we first discuss what happens in the limit of very strong rotation and low
Re, and subsequently we review the foundations of rotating turbulence.

Inertial Waves as Product of the Linear Dynamics
Let us consider first the case of rapidly rotating flows. One of the features that
make rotating flows special is that the Coriolis force endows the fluid with wave
motions. These waves, commonly referred to as inertial waves, are dispersive and
can propagate energy anisotropically throughout the fluid.

For inviscid rapidly rotating fluids, such that the magnitude of the Coriolis force
is much larger than of the inertial forces, conservation of linear momentum in a
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rotating frame of reference, i.e., Eq. (1.4), assumes the following form:

ˆu
ˆt

+ 2(� ◊ u) = ≠Òq. (1.9)

It can be shown that the equation above supports plane wave solutions of the type

u = Ÿ{ˆu exp [I(Ÿ · x ≠ ‡t)]}, (1.10)

where ˆu is the wave amplitude vector, I is the unit imaginary number, Ÿ is the
wavenumber vector, ‡ is the wave frequency and Ÿ denotes the real part (see Ap-
pendix B for the details). The frequencies of the inertial waves depend on the
wavenumber Ÿ, and are given as

‡ = ±2(� · Ÿ)

Ÿ

, (1.11)

from which follows that the phase and the group velocity are

c
p

= ±2

(Ÿ · �)

Ÿ

3

Ÿ and c
g

= ±2

Ÿ ◊ (� ◊ Ÿ)

Ÿ

3

, (1.12)

respectively. Note that throughout this work Ÿ = ÎŸÎ and that both symbols are
used interchangeably to denote the 2-norm of Ÿ. From the relations appearing in
Eq. (1.12), it can be seen that c

p

and c
g

are orthogonal vectors, and therefore the
wavepackets travel in the direction perpendicular to the phase velocity. A visual
confirmation of their existence and of their anisotropic characteristic can be obtained

(a) (b)

Figure 1.4: Flow field visualizations of a rapidly rotating fluid showing the inertial waves due an
oscillating disk (a), and the formation of a Taylor-Proudman column on top of a slowly moving
spherical object (b). Both figures have been taken from Greenspan (1968).
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in a simple experimental setup: if we place a cylindrical container filled with water
on a spinning turntable, and we induce a small oscillatory disturbance at the center
of the container, we observe the formation of two cones that meet at the source, and
bound the region along which energy is transported (Fig. 1.4a).

Another important feature of rapidly rotating fluids is that the steady-state
regime does not allow for straining motions along the axis of rotation. This state-
ment is often referred to as the Taylor-Proudman theorem, a reference to the two
scientists who experimentally demonstrated it (Taylor, 1921) and derived it math-
ematically (Proudman, 1916). A simpler mathematical derivation can be obtained
from the vorticity equation. An evolution equation for the vorticity field can be
obtained by taking the curl of Eq. (1.9) to yield

ˆÊ

ˆt

≠ 2(� · Òu) = 0, (1.13)

where Ê = (‘

ijk

ˆu

k

/ˆx

j

) ẽ
i

is the vorticity vector, ‘

ijk

is the permutation symbol
and ẽ

i

is the Cartesian versor. By neglecting temporal variations in Eq. (1.13), we
find that the vorticity field is orthogonal to the gradient of the velocity field. If we
consider (for simplicity), that the rotation vector is oriented upwards, i.e., � = � ẽ

3

,
this implies that

ˆu

i

ˆx

3

= 0, (1.14)

and therefore in the limit of rapid rotation, velocity gradients in the direction of
the rotation axis are not allowed. This feature can be experimentally demonstrated
by slowly towing a solid object across a rapidly rotating fluid, and with the aid of
dye (Fig. 1.4b). In such a set-up, a column of fluid, known as the Taylor-Proudman
column, forms on the top of the object such that the motion of all other fluid
particles are constrained to the plane horizontal to the axis of rotation. The column
moves as if it were attached to the object, and no other fluid particle enters it, in
agreement with Eq. (1.14).

The first evidences of this phenomenon in rotating flows dates back to the ex-
periments by Lord Kelvin. In that experiment, two corks were placed in a rotating
tank, one on top of the other. By displacing the upper cork with the aid of a thin
wire, it was observed that the cork below also moved. As the fluid could not be
strained, it behaved like a rigid body and propagated the force from one cork to
the other. Note that although the Taylor-Proudman theorem (Eq. (1.14)) states
that the flow is two-dimensional, it does not impose any restriction regarding the
magnitude of the velocity component along the axis of rotation. Hence it does not
prohibit the existence of 2D-3C (two-dimensional three-component) flows.

Rotating Turbulence
The first observations on rotating turbulence were made by Ibbetson & Tritton
(1975), Hopfinger et al. (1982), S. C. Dickinson (1982). Although these experiments
brought insight to the topic and motivated further studies, they were far from the
idealized flow, i.e., statistically homogeneous turbulence (Davidson et al., 2013). A
common finding in these early experiments, nevertheless, was that rotation induces
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the formation of long-lived columnar eddies aligned with the rotation axis. Ex-
periments of statistically homogeneous rotating turbulence were later reported by
Jacquin et al. (1990), whose configuration used an axial wind-tunnel in the presence
of a rotating fine mesh. Jacquin et al. (1990) carried out measurements and reported
that for small Ro, the integral lengthscale in the direction of the rotation axis grew
linearly with time, thus verifying the observations of early experiments related to
the formation of elongated structures. Moreover, they noted that rotation reduced
the rate of energy decay, suggesting that rotation inhibits energy dissipation. These
findings have also been confirmed more recently in the experiments of Staplehurst
et al. (2008). Following Davidson et al. (2013) and Sagaut & Cambon (2018), we
can summarize the main features of rotating turbulence as:

I for Ro ¥ 1 and smaller, columnar eddies form;

I the integral lengthscale parallel to the rotation axis grows linearly during the
formation of columnar eddies;

I rotation reduces the kinetic energy dissipation rate

I distinct anisotropy characterized by a transition from a three-dimensional to
a two-dimensional state.

Among the features above, the formation of columnar eddies is the most inter-
esting trait of rotating turbulence. The growth of the flow structures preferentially
along the axis of rotation renders the flow anisotropy and is a visual confirmation
of the tendency towards a two-dimensional three-component (2D-3C) state. The
reason for transition towards a 2D flow is often wrongly attributed to the Taylor-
Proudman theorem, which can not predict transition from a 3D state to a 2D state.
Due to its linear and inviscid equations, it yields conservation of energy and en-
strophy and therefore does not allow inter-scale energy transfer (Cambon et al.,
1997). However, other explanations of the formation of these columnar eddies have
appeared in literature.

Works like Davidson et al. (2006) and Staplehurst et al. (2008) claim that the
linear dynamics can contribute to the formation of columnar structures. These
authors, for instance, performed experiments where an initially quiescent fluid is
spun. In this scenario, they observed that the size of the turbulent regions grew in
time in the direction of rotation. The growth rate was linear and they associated it
with the group velocity of the inertial waves. In contrast, several other authors a�rm
that the formation of columnar eddies is a nonlinear phenomena. Their hypothesis
is that the Coriolis force, which does not appear in the kinetic energy evolution
equation, but does plays a role in the energy exchange among the di�erent velocity
components, modulates energy transfers and favors the accumulation of energy in
the slow-manifold — Ÿ

3

= 0 plane, where Ÿ

3

is the wavenumber along the direction
of rotation. This process was early suggested to lead to two-dimensionalization of
the flow in the work of Cambon & Jacquin (1989), who was able to account for the
rotational e�ects in an initial isotropic field by employing a modified Eddy Damped
Quasi-normal Markovian Theory (EDQNM2). The accumulation of energy in the
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plane normal to the axis of rotation has since then been confirmed by di�erent
Direct Numerical Simulations, see e.g., Mininni et al. (2009); Morinishi et al. (2001)
or Alexakis & Biferale (2018) for a review.

Direct Numerical Simulations have therefore proven to be an important pillar
for the study of rotating turbulence. These kind of simulations provide easy and
accurate access throughout the domain to quantities which are often called upon
to explain the dynamics of rotating turbulence, e.g., directional two-point corre-
lations, transfer functions (triad interactions) and multidirectional energy spectra.
By using directional two-point correlations for example, Yoshimatsu et al. (2011)
reported the evolution of lengthscales. Longitudinal and transverse lengthscales,
which are related when rotation is not present, were reported to di�er when Ro < 1.
The longitudinal lengthscale was observed to grow faster, which is in accordance
with previous observations of long elongated structures aligned with the rotation
axis. This evolution from an isotropic to an anisotropic flow is associated with a
progressive loss of dependence in the direction parallel to the axis of rotation, i.e.,
a decrease of the variations ˆ/ˆz (Godeferd & Moisy, 2015), upper left regime in
Fig. 1.3.

In rotating turbulence at moderate Ro numbers, however, not every scale of
motion becomes anisotropic. The scales of motion a�ected by rotation are delimited
by the Zeman wavenumber Ÿ

�

, “a cut-o� wavenumber that delimits the region of
the spectrum where rotation e�ects are important” (Zeman, 1994). Mininni et al.
(2012) confirmed indeed that wavenumbers smaller than Ÿ

�

were a�ected by rotation
and became highly anisotropic, whereas isotropy was recovered for wavenumbers
larger than Ÿ

�

. This result should also be taken into account when performing
forced simulations of rotating turbulence. In large scale forced simulations, energy
is artificially injected into the large scales (small wavenumbers). This means that
large scales are modeled by the chosen forcing scheme, whereas the smallest scales
of motion are resolved. It should be noted that if the forcing acts on wavenumbers
smaller than Ÿ

�

, the forcing method would be in competition with the true dynamics
of rotating turbulence.

The observation of an inverse energy cascade in rotating turbulence, with energy
being transferred from small to large scales, is also noteworthy. In turbulent flows,
energy transfer is ruled by triadic interactions, which involve energy exchange be-
tween three wavenumbers. In order to analyze the energy transfers in turbulence,
Wale�e (1993) introduced the instability assumption. According to this hypothe-
sis, energy is always released by the most unstable wavenumber and leads to two
di�erent types of transfer: forward and reverse. In the forward type, energy is re-
leased from small wavenumbers and handed to larger ones, whereas in the reverse
type, energy is transferred in the opposite direction. In the absence of rotation and
in the inertial range, the forward type of interactions dominate, and results in a
forward energy cascade characterized by the ≠5/3 Kolmogorov scaling law for the
energy spectrum (Sagaut & Cambon, 2018). The results obtained by Wale�e (1993)
were also believed to be applicable to rotating turbulence, but with a modified set
of possible triadic interactions altered by the Coriolis force. An analysis of the
possible interactions leads to the conclusion that energy is mostly transferred from
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modes with wavenumbers aligned with the rotation axis to modes whose wavenum-
bers are closer to the transverse plane. These hypotheses were also confirmed by
Smith & Wale�e (1999) and Morinishi et al. (2001) in more recent numerical stud-
ies. In addition, Delache et al. (2014) also report multidirectional energy spectra,
which supports the idea that energy is drawn from the longitudinal direction and
accumulates in the transverse plane.

The presence of an inverse energy cascade leads also to di�erent spectra scaling
laws. Smith & Wale�e (1999), for instance, argue that for scales of motion where
rotational e�ects are much more important, the only dimensional parameters to
be considered are the wavenumber itself and the rate of rotation. Non-dimensional
analysis then yields a ≠3 power law for the region Ÿ < Ÿ

f

, where Ÿ

f

is the wavenum-
ber associated to the force. In an early study, Zhou (1995) suggested that in the
presence of strong rotation, if the time scale of energy transfer is taken to be equal
to the frequency of rotation, one obtains a ≠2 power law for the inertial range of the
energy spectrum. Such scaling laws are indeed di�erent from the ≠5/3 power law
based on Kolmogorov hypothesis. However, in the DNS of Mininni et al. (2012) a
≠5/3 power law is recovered for wavenumbers larger than the Zeman wavenumber,
motivating the authors to refer to the presence of a “Coriolis” and a Kolmogorov
range. Baqui & Davidson (2015) have recently revisited the aforementioned laws
and investigated the regime for which Ro ¥ 1. Intriguingly a ≠5/3 power law is
obtained for this regime when rotation is introduced to the system. The scaling
law, however, has nothing to do with the Kolmogorov spectra, since the simulations
were carried for a relatively small Reynolds number, for which an inertial range is
not yet present. In passing, let us also mention that the weak inertial-wave theory
of Galtier (2003) predicts anisotropic scaling, with the longitudinal energy spectra
proportional to Ÿ

≠1/2 and the transversal energy spectrum proportional to Ÿ

≠5/2

‹ .

1.3. Aim and Overview
The main goals of this thesis are: (a) find whether the inverse energy cascade in ho-
mogeneous rotating turbulence can vanish for a combination of the non-dimensional
parameters, (b) obtain predictive laws for the growth rate of columnar eddies, and
(c) propose a correction for the scaling of the kinetic energy dissipation rate. Addi-
tionally, having in mind that rotation often appears in combination with stratifica-
tion, we explore the physics associated with the breaking events of inertia-gravity
waves in the atmosphere.

As a first step towards our goals, we have designed an entirely new single-purpose
DNS solver to simulate homogeneous rotating and stratified flows in unbounded
domains. The details regarding the solver, i.e., governing equations, numerical ap-
proach and performance, are laid out in Chapter 2, in which we also present results
that verify and validate our numerical tool. This numerical tool was tailored to
perform the present numerical experiments and e�ciently use high-performance
computing resources. For the simulations of rotating homogeneous turbulence, we
design experiments that allow us to focus solely on the interaction between the
Coriolis force and an initial cloud of homogeneous isotropic eddies. Our numerical
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experiments are intended to be as clean as possible, in the sense that we minimize
the influence of secondary e�ects on the flow, as typically occurs in numerical studies
due to artificial boundary conditions. The present database generated in this work
is unprecedented and accounts for variation in the domain size and Rossby number,
totalizing more than 50 new direct numerical simulations.

In Chapter 3, the e�ects of the non-dimensional parameters on the direction
of the energy cascade are investigated, more specifically the influence of the do-
main aspect ratio and the Rossby number. This chapter shows for the first time
simulations of rotating turbulence in elongated domains, in which the typical eddy
size is about 340 times smaller than the computational domain. Chapter 4 builds
upon the preceding chapter and analyzes one dataset for fixed domain size and 21

di�erent rotation rates. The growth rate of columnar eddies is investigated, and a
comparison with current scaling laws for the energy dissipation rate is presented.
Faced with the fact that di�erent theories fail to collapse our data for the energy
dissipation rate into a single curve, we follow the ideas introduced by Kraichnan
(1965) and propose a correction in terms of a power law of the Rossby number. In
both of the aforementioned chapters, we also present results of the energy spectra
in this large-box limit.

Additionally, we also explore a problem of atmospheric turbulence where rotation
appears in combination with stratification. Chapter 5 studies the case of two inertia-
gravity waves breaking in the middle-upper atmosphere and highlights the possible
di�culties that basic turbulence models might encounter when employed to simulate
anisotropic flows. Lastly, Chapter 6 o�ers a summary and conclusions of the work.

This dissertation is arranged in such a way that Chapters 3 to 5 can be read
separately; each chapter begins with a brief introduction to the topic together with
a review of the relevant literature.



2
Numerical Framework

13



2

14 2. Numerical Framework

2.1. A Numerical Tool for Homogeneous Flows
Although several tools are available in the scientific community to numerically sim-
ulate turbulent homogeneous flows, we decided to start from scratch and concept a
computational code that could bring together up-to-date programming techniques.
In the most general case, we consider as numerical domain cuboids of arbitrary size,
i.e., L = [0, L

1

] ◊ [0, L

2

] ◊ [0, L

3

], that are filled with an incompressible rotating and
stratified fluid. The equations governing the fluid dynamics are

Ò · u = 0 (2.1)
ˆu
ˆt

+ Ò · (u ¢ u) + 2(� ◊ u) = ≠Òq + ‹Ò2u + b n (2.2)

ˆb

ˆt

+ Ò · (b u) = ≠B

2

f

(u · n) + –Ò2

b, (2.3)

where, apart from the already defined quantities, b represents the buoyancy field, –

is the thermal di�usivity, B

f

is the Brunt-Väisälä frequency and n is a unit vector
that points in the direction of gravity. Equations (2.1) and (2.2) are the conservation
of mass and momentum, whereas Eq. (2.3) follows from conservation of energy along
with Boussinesq’s approximation. As before, the e�ects of the centrifugal forces in
Eq. (2.2) have been added to the reduced pressure q (cf. Eq. (1.5)).

Our numerical approach for numerically solving Eqs. (2.1) to (2.3) employs a
pseudospectral method combined with hybrid time marching techniques. The gov-
erning equations on the discrete level are obtained by assuming that the field of
interest (velocity or buoyancy) can be expanded in terms of orthogonal basis func-
tions. Because we deal exclusively with homogeneous flows, it is enough to consider
only basis functions that are trigonometric polynomials, i.e., we restrict ourselves
to Fourier series representations. For instance, the velocity field is expressed as

u

i

(x, t) =

ÿ

Ÿ

û

i

(Ÿ, t)e

IŸ·x
, (2.4)

in which the compact notation for the summation term represents a triple summa-
tion, i.e., it takes place over every wavenumber direction, and the caret ˆ

(·) denotes
the Fourier coe�cients. The wavenumbers Ÿ are related to the domain size through

Ÿ

i

= (2fi/L

i

)m, (2.5)

where m is an integer ranging from ≠N

i

/2 to N

i

/2 ≠ 1, with N

i

the number of
degrees of freedom in each direction, and the nodes of the corresponding physical
grid are

x

i,j

= (j ≠ 1)�x

i

(2.6)
where �x

i

= L

i

/N

i

is the grid spacing and j œ N : 1 Æ j Æ N

i

.
The solver is built around the basic idea of converting the partial di�erential

equations (Eqs. (2.1) to (2.3)) to a set of dynamical equations for the Fourier co-
e�cients that can be further advanced in time. In the sequence (Sections 2.1.1
and 2.1.2), we cover the discretization procedure and present the resulting equa-
tions in the wavenumber domain. In Section 2.1.3, we discuss time integration.
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2.1.1. Equations in the Wavenumber Domain
The procedure to find approximate solutions for partial di�erential equations with
the aid of appropriate orthogonal basis functions can be summarized as follows.
First, one needs to replace every field in the original partial di�erential equation by
its expansion, i.e., make use of Eq. (2.4) and the corresponding expansion for the
buoyancy field in Eqs. (2.1) to (2.3). Second, one defines a residual (error) function,
which, upon multiplication with trial functions, is forced through integration to
return null. Then, with the aid of the orthogonality relation between the basis
and the trial function, one obtains a dynamical system, whose unknowns are the
coe�cients of the expansion, and that can be later advanced in time by a suitable
time integration scheme. Although at first glance the process seems tedious, it is
instead relatively simple. In Appendix C, we illustrate the procedure by applying
the aforementioned steps to the Burgers’ equation.

Here, we present the equations in the wavenumber domain, which follow from
the sequence of steps mentioned above, and constitutes the foundations of the nu-
merical method. We do this in parts. First, we treat Eq. (2.2) due to its slightly
more complex form, and second, we show the resulting equation for Eq. (2.3). For
Eq. (2.1), it is enough to note that in the wavenumber domain this equation requires
that Fourier coe�cients are orthogonal to the wavenumber vector, i.e., Ÿ · ˆu(Ÿ) = 0.

Conservation of Linear Momentum
Following the instructions described in Appendix C, it is readily shown that Eq. (2.2)
yields

ˆû

i

ˆt

+ ĉ

i

+ 2‘

ijk

�

j

û

k

= ≠IŸ

i

q̂ ≠ ‹ ÎŸÎ2

û

i

+ bn

i

, (2.7)

where the convective terms have been grouped as ĉ

i

= IŸ

j

F {u

i

u

j

}, with F {·}
denoting the Fourier coe�cients of the terms within the brackets. An advantage
of this method with respect to approaches that deal with the equations of motion
in physical space is that it does not need require to solve for the pressure field, as,
for example, typically required by the fractional-step method in finite-di�erence or
finite-volume methods (Ferziger & PeriÊ, 2002). In our case, the pressure field can
be computed with the aid of the incompressibility condition, and its solution can be
back propagated to eliminate the pressure from the set of equations. By enforcing
Ÿ

i

û

i

= 0 upon Eq. (2.7), we obtain

q̂ =

IŸ

m

ĉ

m

ÎŸÎ2

+ 2I

Ÿ

m

ÎŸÎ2

‘

mjk

�

j

û

k

≠ IŸ

m

bn

m

ÎŸÎ2

, (2.8)

which contains on its right-hand-side the divergence of the convective terms, along
with contributions due to the Coriolis and to the buoyancy force. We can further
simplify Eq. (2.8) by grouping the contributions due to the convective and the
buoyancy terms into ˆ

h

m

= ĉ

m

≠ bn

m

, such that

q̂ =

IŸ

m

ˆ

h

m

ÎŸÎ2

+ 2I

Ÿ

m

ÎŸÎ2

‘

mjk

�

j

û

k

. (2.9)
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Now, back substitution of Eq. (2.9) into Eq. (2.7) leads to

ˆû

i

ˆt

+ ‹ ÎŸÎ2

û

i

+

C
2‘

ijk

�

j

û

k

≠ 2

Ÿ

i

Ÿ

m

ÎŸÎ2

‘

mjk

�

j

û

k

D
= ≠

A
”

im

≠ Ÿ

i

Ÿ

m

ÎŸÎ2

B
ˆ

h

m

. (2.10)

We see that, as a result of the elimination of the pressure field, the influence of the
Coriolis force (terms within the square brackets in the left-hand-side) is twofold. By
invoking the incompressibility condition (see Appendix E), these two terms can be
concatenated and Eq. (2.7) can be finally written as

ˆû

i

ˆt

+ ‹ ÎŸÎ2

û

i

+

2�

p

Ÿ

p

ÎŸÎ2

‘

iql

Ÿ

q

û

l

= ≠
A

”

im

≠ Ÿ

i

Ÿ

m

ÎŸÎ2

B
ˆ

h

m

. (2.11)

Alternatively, Eq. (2.11) can be written in a more compact notation, viz.,

ˆˆu
ˆt

+ Dˆu + Rˆu = ≠Pĥ, (2.12)

from which we will benefit in Section 2.1.3 when we deal with time marching schemes.
In Eq. (2.12), the second-order tensors D and R are

D =

Q

a
‹ ÎŸÎ2

0 0

0 ‹ ÎŸÎ2

0

0 0 ‹ ÎŸÎ2

R

b and R =

2�

p

Ÿ

p

ÎŸÎ2

Q

a
0 ≠Ÿ

3

Ÿ

2

Ÿ

3

0 ≠Ÿ

1

≠Ÿ

2

Ÿ

1

0

R

b
,

and

P
im

=

A
”

im

≠ Ÿ

i

Ÿ

m

ÎŸÎ2

B
(2.13)

is the projection tensor.

Conservation of Energy
Writing the conservation of energy in the wavenumber domain is essentially simpler,
since Eq. (2.3) is neither influenced by the pressure field nor by the Coriolis force.
Following the same logical steps (cf. Appendix C), it can be shown that Eq. (2.3)
becomes

ˆ

ˆ

b

ˆt

+ IŸ

j

F {bu

j

} = ≠B

2

f

(û

i

n

i

) ≠ – ÎŸÎ2

ˆ

b, (2.14)

or in compact notation
ˆ

ˆ

b

ˆt

+ “

ˆ

b = ĉ

buo

(2.15)

where “ = – ÎŸÎ2 and ĉ

buo

= ≠B

2

f

(û

i

n

i

) ≠ IŸ

j

F {bu

j

}.
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2.1.2. The Pseudospectral Approach
If it were not for one di�culty, it would be straightforward to advance Eqs. (2.12)
and (2.15) in time. This di�culty arises from the nonlinear terms that appear on
the right-hand-side of both Eqs. (2.12) and (2.15) and require information about all
other wavenumbers. More precisely, we refer here to the terms

F {u

i

u

j

} and F {bu

j

} , (2.16)

which compose ˆh and ĉ

buo

. In the following, we elaborate on what makes it hard
to compute these terms, and show how their computation is in practice handled.
We confine our attention to the calculation of F {u

i

u

j

}, since this is su�cient to
understand the gist of the problem.

In theory, we could calculate F {u

i

u

j

} through a convolution sum. By definition,
the Fourier transform of a product is given by

F {u

i

u

j

} =

ÿ

ŸÕ
+ŸÕÕ

=Ÿ

û

i

(ŸÕ
)û

j

(ŸÕÕ
) (2.17)

(Tolstov & Silverman, 1976). Nevertheless, the number of operations required to
evaluate the summation in Eq. (2.17) scales with N

2

p

, where N

p

is the total number
of degrees of freedom. In fluid mechanics, we usually encounter problems with
large number of unknowns. For certain cases, the number of degrees of freedom is
proportional to Re

9/4 (Landau & Lifshitz, 1959), meaning that a small increase in
Re requires a steep rise in N

p

to cope with the new spatial scales of motions. As
a result, evaluating F {u

i

u

j

} through Eq. (2.17) turns out to be computationally
expensive and often prohibitive.

An alternative to remedy this cost is to employ the pseudospectral method in-
troduced originally by Orszag (1969). The central idea is to first build the non-
linear product in physical space, e.g., s

ij

= u

i

u

j

, and then transform the result
into the wavenumber domain, using Discrete Fourier Transforms (DFT) to obtain
F {s

ij

}. This technique can drastically reduce the number of operations from N

2

p

to N

p

log

2

(N

p

). But, it comes at a price. It introduces aliasing errors and the
obtained result is not fully equivalent to Eq. (2.17). Mathematically speaking, the
pseudospectral leads to

F {s

ij

} =

ÿ

ŸÕ
+ŸÕÕ

=Ÿ

û

i

(ŸÕ
)û

j

(ŸÕÕ
) +

ÿ

ŸÕ
+ŸÕÕ

=Ÿ±N

û

i

(ŸÕ
)û

j

(ŸÕÕ
)

¸ ˚˙ ˝
aliasing errors

, (2.18)

from which we see that the aliasing errors contaminate the Fourier coe�cients as-
sociated with high wavenumbers.

Fortunately, there are several techniques for removing the aliasing errors, viz.,
de-aliasing techniques, which overall still yield a lower computational cost than
computing the convolution sum (see e.g. Boyd (2001) and Canuto et al. (2006a,b)
for an extensive discussion). A popular choice, due to the ease of implementation is
the 3/2-rule, also known as the 2/3-rule. In this technique, the velocity field (or the
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variable of interest) is first sampled in physical space on a uniform grid with 3N

i

/2

nodes per direction. Multiplication is then performed in the physical grid and the
Fourier coe�cients are obtained through an oversized DFT. Upon transformation
to the wavenumber domain, the Fourier coe�cients are pruned, i.e., the coe�cients
associated to the additional degrees of freedom are discarded. This approach shifts
the aliasing errors to wavenumbers higher than those associated with m = N

i

/2,
and guarantees that the coe�cients of interest are una�ected.

When a dealiasing technique is combined with the pseudospectral approach,
the final set of equations are equivalent to those obtained with the Fourier-Galerkin
method. There are, however, ongoing debates in the scientific community on whether
dealiasing is required. Many authors consider it unnecessary as long as enough res-
olution is provided. For large N

p

, both truncation and aliasing errors decays at
the same rate, but for a fixed N

p

, the pseudospectral error will be larger than the
Fourier-Galerkin error (Canuto et al., 2006b). This point will be further discussed
in Section 2.1.5 where we compare results of aliased and dealiased computations for
di�erent formulations of the Navier-Stokes equations.

2.1.3. Time Integration
So far we have shown how to transform the original partial di�erential equations
into dynamical equations for the Fourier coe�cients. Here, we target an essential
part of the code, namely the time integration schemes, necessary for obtaining the
long-time behavior of the system of equations. To advance the equations in time, we
use a hybrid approach, in which some of the terms are treated with the integrating
factor technique (Morinishi et al., 2001; Rogallo, 1977) and the remaining are treated
with either a third or fourth-order low-storage Runge-Kutta scheme (Canuto et al.,
2006a,b).

Technically, time integration could be solely accomplished by employing an ex-
plicit scheme like the Runge-Kutta scheme. For that, we would need to rearrange
the equations of motion, e.g., Eq. (2.12), such that it is written as

ˆˆu
ˆt

= l(ˆu, t). (2.19)

By comparing Eq. (2.12) with Eq. (2.19), we see that this simply requires l(ˆu, t) =

≠Dˆu ≠ Rˆu ≠ Pĥ. Although this approach su�ces, it places severe constrains in
the size of the marching step (�t). In numerical time integration, the timestep size
follows from a compromise between the maximum eigenvalue of the operator on the
right-hand-side of Eq. (2.19) and the size of the stability region, which depends on
the time integration scheme. In another words, to integrate the equations in a stable
manner, the maximum eigenvalue scaled with the timestep size must lie within the
stability limits of the time integration scheme.

The di�erent terms that compose l(ˆu, t) can stem from di�erent physical pro-
cesses, and impose limits on �t in di�erent ways. For example, it can be show from
the structure of the operator D that the maximum eigenvalue imposed by the vis-
cous terms lies always on the real axis and is proportional to ‹Ÿ

2

max

, where Ÿ

max

is
the largest positive wavenumber. Similarly, it can also be shown that the maximum
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eigenvalue of R varies with 2�, where � is the absolute angular velocity of the rotat-
ing frame, and lies on the imaginary axis. In the case of l(u, t) = ≠Dˆu ≠ Rˆu ≠ Pĥ,
the maximum eigenvalue would have a component on the real axis due to the vis-
cous terms and a component on the imaginary axis defined by the rotation rate.
This would imply that we would have to choose a timestep of the order of either
1/(‹Ÿ

2

max

) or 1/(2�), whichever is stricter. We can then imagine that, even in the
case of small Re (large ‹), for high rotation rates, the above constraint requires
increasingly small �t, which would render simulations of multiples of large-eddy
turnover times unfeasible.

In passing, we should also mention that the convective terms ˆh impose con-
straints in the timestep size. Stability analysis of a simplified linear transport equa-
tion with constant velocity shows that the eigenvalues lie on the imaginary axis and
their magnitude is proportional to the transport velocity. However, when rotation
is considered, stability limits on the imaginary axis are more likely to stem from the
e�ects of rotation.

Exact Time Integration
In non-rotating unstratified flows, a common approach is to combine the Runge-
Kutta scheme with another method for the integration of the viscous terms, for
example, with the Crank-Nicolson method. This is definitely one way to go, since
methods like the Crank-Nicolson are implicit and unconditionally stable. In the
wavenumber domain, implementation of the Crank-Nicholson method is straight-
forward and has no noticeable extra cost. because the viscous terms are linear and
local. Yet, another approach turns out to be more attractive, namely the inte-
grating factor technique, which was introduced by Rogallo (1977) to integrate the
viscous terms. This technique provides exact integration and it is not limited by
the timestep size. Further, it can also be used to integrate any other linear term,
such as the Coriolis force (see e.g. Morinishi et al. (2001)).

In Appendix D, we include a surrogate problem to illustrate the innerworkings of
the integrating factor technique. In its essence, it allows us to find transformations
that can bring Eq. (2.12) into the following form,

ˆˆv
ˆt

= l
v

(ˆv, t) (2.20)

where ˆv is a new variable, which contains the former velocity field ˆu and the e�ects
due to viscosity and/or rotation. If we know how to compute exponentials of second-
order tensors, it turns out that the required steps are relatively simple. For instance,
in the absence of rotation and stratification, Eq. (2.12) is

ˆˆu
ˆt

+ Dˆu = ≠P ĉ, (2.21)

and multiplying both sides by M
‹

= exp[Dt], leads to

ˆ(M
‹

ˆu)

ˆt

= ≠M
‹

Pˆc, (2.22)
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from which we can define ˆv = M
‹

ˆu and l
v

(ˆv, t) = ≠M
‹

Pˆc to obtain an expression
in the fashion of Eq. (2.20). In this case, M

‹

is a diagonal tensor and defined by

M
‹

= exp[Dt] = exp (‹ ÎŸÎ2

t) I, (2.23)

where I is the identity tensor. Note that because D is diagonal, calculating exp[Dt]

is straightforward.
If we now consider the Coriolis force and include the term Rˆu into Eq. (2.21),

we can still apply the same procedure. But this time, we multiply Eq. (2.21) with
both M

‹

and M
�

= exp[Rt] such that we obtain

ˆ(M
‹

M
�

ˆu)

ˆt

= ≠(M
�

M
‹

)Pˆc. (2.24)

Again, we can define ˆv = (M
‹

M
�

)ˆu and l
v

(ˆv, t) = ≠(M
‹

M
�

)Pˆc to obtain an
equation like Eq. (2.20).

Nevertheless, R is not diagonal and to compute M
�

= exp[Rt] we need the
eigendecomposition of M

�

, i.e., we need to write R = Q R
�

Q≠1, where Q is
obtained from the eigenvectors of R and R

�

is a diagonal tensor whose elements
are the eigenvalues of R (see Appendix B.1 for the definitions). This way, M

�

=

exp[Rt] = Q exp[R
�

t]Q≠1, and Eq. (2.24) becomes

ˆ

ˆt

!
exp[(D + R

�

)t]Q≠1

ˆu
"

= ≠(exp[(D + R
�

)t]Q≠1

) Pˆc, (2.25)

from which we can define

ˆv = (exp[(D + R
�

)t]Q≠1

) ˆu (2.26)

and
l
v

(ˆv, t) = ≠(exp[(D + R
�

)t]Q≠1

) Pˆc. (2.27)
Including the e�ects of stratification only requires to replace ˆc by ˆh in Eq. (2.27).

The same procedure can also be applied to the conservation of energy. Equa-
tion (2.15) is essentially simpler as it does not contain any explicit influence of the
Coriolis force, and the resulting equation is

ˆ

ˆt

1
exp[“t]

ˆ

b

2
= exp[“t] ĉ

buo

. (2.28)

2.1.4. Forcing Methods
It is often convenient to study homogeneous turbulent flows that are sustained in
time. In contrast to studies that initialize the velocity field according to an initial
energy spectrum (typically of the Batchelor of Sa�man type), and let the flow field
decay in time, forced simulation allow the gathering of flow statistics in time, without
the need to repeat the numerical experiment to build ensemble averages. Current
literature contains a multitude of ways to design a force term that, when added to
the right-hand-side of the momentum equations, produces statistically steady-state
solutions. In our tool, we choose to implement two di�erent forcing schemes, namely
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the schemes proposed by Eswaran & Pope (1988) and Alvelius (1999). Whereas the
former allows for forcing schemes with a characteristic timescale, the latter is more
versatile and allows for fine tuning of the energy input rate.

The rate at which energy is injected on the system depends on both force-velocity
and force-force correlations. This can be illustrated by considering a one-dimensional
dynamical system as shown in Alvelius (1999). Instead of the full Navier-Stokes
equations, let the evolution equation be one-dimensional and given by

ˆu

1

ˆt

= f

1

(x

1

, t) (2.29)

where f

1

is a random external force that drives the system. Now, assume that we
employ a time marching scheme to numerically solve Eq. (2.29), e.g., an explicit
Euler scheme. The (in time) discretized equation is

u

j+1

1

= u

j

1

+ �tf

j

1

, (2.30)

where the superscript j denotes the time level. The local kinetic energy at any time
level j is defined as (u

j

1

u

j

1

)/2, such that, in a discrete sense, the box-averaged kinetic
energy K varies as

K

j+1 ≠ K

j

�t

= Èuj

1

f

j

1

ÍL +

1

2

Èf j

1

f

j

1

ÍL�t, (2.31)

in which È · ÍL denotes box-averages. From this simple example, we observe that the
rate at which energy is injected into the system depends on both spatial correlations:
the force-velocity correlation, and the force-force correlation, the latter being also
proportional to the timestep size.

In simulations it is desirable to known a priori the final energy input rate due to
the force, since this allows for the design of the numerical experiments and for
control of the physical parameters. In a steady-state, the box-averaged energy
input rate ÈÁ

I

ÍL matches the viscous dissipation ÈÁ
‹

ÍL. Knowledge of ÈÁ
I

ÍL in
beforehand allows for predictions of quantities such as the Kolmogorov microscale
and the ultimate Re

⁄

of the simulation.
In the following, we detail how the methods introduced by Eswaran & Pope

(1988) and Alvelius (1999) construct the external forcing f . In both cases, the forcing
is constructed in the wavenumber domain and applied to a narrow wavenumber-
band. The characteristic forcing wavenumber is defined as Ÿ

f

, and the set of the
forced wavenumbers is denoted as N

f

.

Eswaran & Pope (1988)
The forcing scheme introduced in Eswaran & Pope (1988) is based on the Ornstein-
Uhlenbeck process. In a discrete sense, the components of the forcing term are given
as

ˆ

f

i

(Ÿ, t + �t) =

ˆ

f

i

(Ÿ, t)

3
1 ≠ �t

T

L

4
+ ’

i

3
2‡

2

�t

T

L

4
1/2

(2.32)

where ’

i

is a complex random number drawn from a normal distribution with zero
mean and unity variance, T

L

is the characteristic timescale of the random process
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and ‡

2 is the variance. (Note that when �t equals the characteristic timescale T

L

,
the force becomes white-noise and uncorrelated in time.) In practice, it is convenient
to introduce another quantity, namely Á

ú
= ‡

2

T

L

, such that in the limit of T

L

æ 0,
the energy input rate remains finite (Eswaran & Pope, 1988). This force is typically
a large-scale force, in the sense that it is applied to a narrow wavenumber range,
such that the forced wavenumbers lie in the range [0, Ÿ

f

], where Ÿ

f

is a characteristic
forcing wavenumber. This forcing scheme has then 3 free parameters, i.e., Ÿ

f

, T

L

and
Á

ú, which can be tuned to obtain a turbulent field with specific physical parameters.
A common di�culty encountered when using this scheme is that it is not straight-

forward to predict the final energy input rate and consequently the final energy dis-
sipation rate. This problem can be circumvented, to some extent, through ad-hoc
approximations. Using a model that takes as input a measure of the timescale of the
resulting velocity field, Eswaran & Pope (1988) obtained an analytical expression
to predict the final time and box-averaged energy input rate rate:

ÈÁ
I

ÍL,t

¥ 4Á

ú
N

F

1 + T

ú
L

N

1/3

F

/—

, (2.33)

where T

L

ú = T

L

(Á

ú
)

1/3

Ÿ

2/3

0

is the nondimensional forcing timescale, Ÿ

0

the lowest
resolved wavenumber in the simulation, and the adjusted constant — is taken as
0.8. With prior knowledge about the energy input rate, the viscous dissipation and
consequently the resulting Re

⁄

can be estimated. However, when the aim is to design
numerical experiments with large Re

⁄

, our experience has shown that Eq. (2.33)
leads to unsatisfactory estimates; see also the study of Chouippe & Uhlmann (2015),
who experienced the same problem.

Our approach to select the free parameters that yield a desired energy dissipa-
tion rate uses as basis Eq. (2.33) but combines it with an iterative procedure to seek
for the best value of T

ú
L

/—. In short, through a series of smaller simulations (typ-
ically with the number of degrees of freedom being set to one eighth of the actual
computation), a Newton-Raphson algorithm is employed to search for a value of Á

ú

that delivers a desired Re

⁄

.
As a final step, the force ˆf needs to be made divergence free by projection in the

wavenumber direction, i.e.,

ˆ

f

i

(Ÿ) æ ˆ

f

i

≠ Ÿ

i

A
Ÿ

j

ˆ

f

j

ÎŸÎ2

B
. (2.34)

The latter step is required for the external force to not directly interfere with the
pressure field.

Alvelius (1999)
Alvelius (1999) proposes a forcing term that is constructed around a predefined
Gaussian spectrum F (Ÿ), which is centered around a forcing wavenumber Ÿ

f

and
has standard deviation c, i.e.,

F (Ÿ) = C

A

exp

C
≠

3ÎŸÎ ≠ Ÿ

f

c

4
2

D
. (2.35)
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In the equation above, C

A

is a free parameter which can be tuned to control the
energy input rate. The Fourier coe�cients of the external force f are

ˆ

f

i

(Ÿ, t) = A

ran

e

1

i

(Ÿ) + B

ran

e

2

i

(Ÿ), (2.36)

in which e1 and e2 are unit vectors and A

ran

and B

ran

are complex random numbers
uniformly distributed. The unit vectors are orthogonal to the wavenumber such that,
per definition, the force is divergence free i.e., Ÿ ·ˆf = 0. For each wavenumber triad,
e1 and e2 are defined as

e

1

1

=

Ÿ

2

(Ÿ

2

1

+ Ÿ

2

2

)

1/2

, e

1

2

= ≠ Ÿ

1

(Ÿ

2

1

+ Ÿ

2

2

)

1/2

, e

1

3

= 0 (2.37)

e

2

1

=

Ÿ

1

Ÿ

3

ÎŸÎ (Ÿ

2

1

+ Ÿ

2

2

)

1/2

, e

2

2

= ≠ Ÿ

2

Ÿ

3

ÎŸÎ (Ÿ

2

1

+ Ÿ

2

2

)

1/2

, e

2

3

= ≠ (Ÿ

2

1

+ Ÿ

2

2

)

1/2

ÎŸÎ . (2.38)

The complex random numbers A

ran

and B

ran

are defined as

A

ran

=

A
F (Ÿ)

2fi ÎŸÎ2

B
1/2

exp(I◊

1

)g

A

(„) (2.39)

B

ran

=

A
F (Ÿ)

2fi ÎŸÎ2

B
1/2

exp(I◊

2

)g

B

(„) (2.40)

where the real functions g

A

and g

B

satisfy the relation g

2

A

+ g

2

B

= 1, and ◊

1

, ◊

2

and „ are uniformly distributed real numbers drawn for each wavenumber at each
timestep; the first two are taken from the interval [0, 2fi], while the latter is taken
from [0, fi]. Choosing g

A

= sin(2„) and g

B

= cos(2„) ensures that the energy
input rate is the same in all three directions and results in isotropic flow fields. For
generating anisotropic flow fields with an specific energy input rate ratio between
the directions, other functions can be chosen (Alvelius, 1999).

Due to its robust design, this scheme allows one to place constraints in the
choice of ◊

1

and ◊

2

such that the force-velocity correlation is always zero, and the
energy input rate stems solely from the force-force correlation. Since the force-force
correlation is known and it can be computed in beforehand, it allows one to have
absolute control over the energy input rate. As shown in Alvelius (1999), this is
achieved by choosing ◊

1

such that it satisfies

tan(◊

1

) =

g

A

(„)Ÿ{›

1

} + g

B

(„)(sin(Â)⁄{›

2

} + cos(Â)Ÿ{›

2

})

≠g

A

(„)⁄{›

1

} + g

b

(„)(sin(Â)Ÿ{›

2

} ≠ cos(Â)⁄{›

2

})

, (2.41)

where ›

1

and ›

2

are the projections of the coe�cients of the velocity field on the
directions defined by e1 and e2, i.e., ›

1

= û

i

e

1

i

and ›

2

= û

i

e

2

i

, and Â = ◊

2

≠ ◊

1

.
Finally, the free parameter C

A

follows from the desired energy input rate ÈÁ
I

ÍL:

C

A

=

ÈÁ
I

ÍL
�t

1

⁄

NF

exp

3
≠ (ÎŸÎ ≠ Ÿ

f

)

2

c

4
dŸ

(2.42)
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where integration is taken over every forced wavenumber. The energy input rate is,
for every instant of time, constant.

2.1.5. A Note on Different Formulations
In the previous sections, we have used the Navier-Stokes equations in their conser-
vative form for our discussion on how to numerically solve the equations of motion.
Here, we comment on alternative ways to express the conservation of linear momen-
tum, which may result in computationally faster algorithms.

Besides the divergence form, which has already appeared in Eq. (2.2), the in-
compressible Navier-Stokes can be restated in three additional forms, namely in the
skew-symmetric, rotation and convective form. The mathematical expressions that
represent each of these forms in an inertial frame of reference and in the absence of
any external/body forces are:

Skew-Symmetric: ˆu
ˆt

+

1

2

(u · Òu) +

1

2

Ò · (u ¢ u) = ≠Òp + ‹Ò2u, (2.43)

Rotation: ˆu
ˆt

+ (Ê ◊ u) +

1

2

Ò ÎuÎ2

= ≠Òp + ‹Ò2u (2.44)

Convective: ˆu
ˆt

+ u · Òu = ≠Òp + ‹Ò2u, (2.45)

Divergence: ˆu
ˆt

+ Ò · (u ¢ u) = ≠Òp + ‹Ò2u. (2.46)

where, for completeness, we have repeated the divergence form. All these 4 formu-
lations are analytically equivalent, since they can be derived from each other with
the aid of vector identities and assuming a solenoidal velocity field.

Yet, equivalence at the continuous level does not necessarily imply equivalence at
the discrete level. That is, the alternative formulations may yield unequal discretized
equations. When designing numerical algorithms, it is desirable to construct a
numerical approximation such that the discretized equation preserves the properties
of the continuous equation. Violating essential features of the original equations can
result in faulty computations, which range from simulations being unreliable and
not producing the correct picture of the phenomena, to unpractical simulations due
to numerical overflow.

If we inspect the equations above, we note that they di�er in the structure of
the nonlinear operator. The fact that the nonlinear term in the Navier-Stokes can
be always recast in a conservative form (as in the divergence form), ensures that in
the absence of viscosity, kinetic energy is globally conserved, i.e., the kinetic energy
is an invariant of the Euler equations. Therefore, if we employ the sequence of steps
required to bring the continuous equations into a discrete form (Section 2.1.1), we
may expect dissimilar results regarding the conservation of kinetic energy.

Canuto et al. (2006a,b) present a detail discussion on this matter. The bottom-
line is that when the pseudospectral approach is employed for evaluation of the
nonlinear terms, the only formulations that ensures conservation of the kinetic en-
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ergy in the discrete sense is either the skew-symmetric or the rotation form. The
convective and the divergence form results in an over-accumulation of energy and
ultimately overflow. Nevertheless, when a dealiasing method is included, a Fourier
Galerkin approximation is obtained. In this case, all 4 formulations lead to analog
semi-discrete equations, i.e., discrete in space and continuous in time, whose inviscid
form conserve kinetic energy, i.e., dK/dt = 0, where K =

1

2

Èu · uÍL.
It is also worthwhile noting that the time integration scheme plays a role. The

fully discrete equations only satisfy the conservation law of the semi-discrete equa-
tions if the time discretization scheme is symmetric (e.g., Crank-Nicolson). For un-
symmetric time discretization schemes, as in the case of the Runge-Kutta scheme,
it can be shown that the overall conservation of kinetic energy is broken. However,
there is only minor violation of the conservation laws and errors typically shrink
with decreasing timestep size.

So, assuming that a dealiasing technique is always necessary, what makes us
choose one formulation over the other? The answer lies in the number of operations
required to evaluate the nonlinear term. The computation of the nonlinear terms
demands specific numbers of forward and backward discrete Fourier transforms. The
number of transforms per timestep is the largest for the skew-symmetric formulation
(21), and lowest for the rotation form and the divergence form (9), whereas the
convective form requires 15 transforms per timestep. Thus, the rotation form is the
best choice, in the sense that it requires less Fourier transforms and can be used
without dealiasing.

2.1.6. A Note on Computational Implementation and Per-
formance

In the following, we highlight the main ingredients of our DNS solver, and give an
overview of its computational performance.

The computational code was written in Fortran 90 and it has been designed to
e�ciently exploit massively parallel supercomputer hardware. To achieve that, we
have joined di�erent programming paradigms: message passing interface (MPI) for
inter-node communication, OpenMP for intra-node parallelization and parallel I/O
through the HDF5 library. The user can choose to time march the incompressible
Navier-Stokes equations using any of the 4 formulations presented in Section 2.1.5,
which can be further combined with the 2/3-rule to obtain alias free solutions. The
time-stepping scheme uses specific strategies for each of the terms in the governing
equations, cf. Section 2.1.3. In most of the cases, the integrating factor is applied
to the viscous terms and the Coriolis force, whereas the convective terms and the
external/body forces are integrated with a low-storage Runge-Kutta scheme (3rd
or 4th order). Occasionally, and for the reasons given in Section 2.1.3, the Crank-
Nicolson scheme can be applied to the viscous terms and the Runge-Kutta scheme
can be also used to integrate the Coriolis force.

The performance of the code depends strongly on the e�ciency of the discrete
Fourier transforms, since these account for roughly 80% of the total computational
time. In distributed-memory systems, Fourier transforms require global transposi-
tion of the three-dimensional arrays (all-to-all communication), and this operation
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Figure 2.1: Performance of our numerical solver when applied to a problem size with N

3 = 10243

degrees of freedom (dealiased). The panels refer to two parallelization approaches: distributed
with MPI (left) and hybrid with MPI/OpenMP (right). Panels (a) and (b) show the e�ciency of the
code, whereas (c) and (d) show the elapsed time per timestep normalized by the case with 240
processes. In (e) and (f), markers are used to represent the speed-up of the parts that constitute
a single timestep: vectorized loops ( ), discrete Fourier transforms ( ) and the timestep
itself ( ). The thin blue line denotes the ideal behavior ( ).
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Figure 2.2: Wall-clock time required for the computation of discrete Fourier transforms per timestep
for increasing number of processes. The problem size is fixed and has N

3 = 10243 degrees of free-
dom (dealiased) as in Fig. 2.1. Again, the markers denote two di�erent parallelization approaches:
fully distributed with MPI ( ), and hybrid MPI/OpenMP ( ). The thin blue line shows the
ideal scaling ( ).

hinges on network performance. Exclusively for this part of the code, we have
opted to rely on P3DFFT, a well established FFTW-based library designed to handle
three-dimensional Fourier transforms in parallel (Pekurovsky, 2012). During the de-
velopment phase of the code, we have also investigated the performance of another
library, namely 2DECOMP. However, our tests have shown that P3DFFT outperforms
2DECOMP, especially for large problem size and for large number of processes. In
fact, Mohanan et al. (2019) has recently documented the performance of di�erent
libraries and confirmed the supremacy of P3DFFT, in agreement with our experience.

In terms of memory usage, the code is very e�cient and memory requirements per
core are extremely low. For each grid point, a computation with dealiasing requires
approximately 630 bytes per grid point. For instance, for a problem with N

3

= 1024

3

(dealiased), therefore with corresponding physical domain compromising 1536

3 grid
points, the required memory is not larger than 700 GB. This is significantly less
than what is available in recent hardware, and only requires a couple of computing
nodes, considering a typical memory size of 64 GB per node

To demonstrate the overall scalability and the speed-up of the code, we performed
a scaling test on the Dutch National Supercomputer (Cartesius) with Haswell pro-
cessors (Intel Xeon E5-2690V3). For the test, we fixed the problem size (N3

= 1024

3,
no dealiasing) and marched in time for a few timesteps with total number of pro-
cesses ranging from 240 to 3840. This procedure was repeated for several realizations
to obtain more reliable statistics, and it was conducted for 2 parallelization strate-
gies: (i) purely based on MPI, and (ii) based on a hybrid approach which splits the
number of processes among MPI-tasks and OpenMP-threads. For (ii), the number of
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Figure 2.3: Validation of the temporal and the spatial discretization schemes. (a) Time convergence
using as test case the TGV-2D. Solid line with markers indicate the numerical error due to di�erent
time integration schemes: Crank-Nicolson ( ) and integrating factor ( ). A second-order power-
law is added for reference ( ). (b) Spectral convergence obtained for increasing number of degrees
of freedom N

3 when simulating the TGV-3D.

MPI-tasks was taken as the number of sockets per node, in this case two.

Remarkably, when the hybrid approach is used, the code scales well up to 3840

cores, leading to a quasi-ideal performance in terms of speed-up and e�ciency
(Fig. 2.1). Conversely, the pure MPI-based approach shows an e�ciency lower than
50 percent for more than 3000 processes, and the speed-up is consequently poorer.
We attribute this gain in performance to the fact that all-to-all communications
are cheaper in the hybrid approach, since several processes share the same memory
space. Consequently, the Fourier transforms require less intra-node communication,
and are less impacted by the maximum network throughput. This can actually be
seen in Fig. 2.2, where we show the wall-clock time per timestep elapsed in Fourier
transforms for both cases. A comparison reveals that the scaling with the hybrid
approach is nearly ideal, whereas the performance of the MPI-based approach flats
when the number of processes is increased. It is however worthwhile noting that for
small number of processes, in this cases slightly smaller than 1000, the MPI-based
approach can lead to faster execution times, in spite of the poorer scalability.

2.2. Verification and Validation
In this section, we present a set of test cases that were used to verify the correctness
of our implementation. Each of them was designed to test a di�erent part of the
code. In the following, we show examples that range from simple and manufactured
problems to fully developed homogeneous turbulence.
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2.2.1. Taylor-Green Vortex
Perhaps the most used mean to validate and verify numerical solvers in fluid me-
chanics is to consider the time evolution of a Taylor-Green vortex flow. Taylor-Green
vortices are velocity fields that satisfy the Navier-Stokes equations, and they can
be defined in both two (TGV-2D) or three dimensions (TGV-3D). We define the
TGV-2D and the TGV-3D velocity fields as

TGV-2D:

Y
_]

_[

u

1

= A cos(x

1

) sin(x

2

)

u

2

= ≠A sin(x

1

) cos(x

2

)

u

3

= 0

(2.47)

TGV-3D:
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) sin(x
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) cos(x
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= cos(x
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) cos(x

2

) sin(x

3

)

(2.48)

with A = 1/4 the amplitude of the velocity field. The velocity fields are built
from harmonic functions, which share special symmetries and periodicity, and the
streamlines form an array of counter rotating vortices. Note that other definitions
may appear in the literature, but they only di�er by a prefactor.

When either the TGV-2D or the TGV-3D is given as initial condition to the
Navier-Stokes equations, we observe di�erent dynamics. For the TGV-2D, due to
its definition, the convective terms are null and the vortices simply decay in time.
For this specific case, analytical solutions for the flow field exist, and one can show
that the box-averaged kinetic evolves as

K

2D

a

(t) =

A

2

4

e

≠4‹t

. (2.49)

In three dimensions, the time evolution of the TGV-3D is marked by a strong
coupling between the velocity components. This interaction yields, at least initially,
to an energy exchange among the di�erent velocity components, similarly to what
is observed in a real turbulent flows (energy cascade). Nevertheless, after the initial
phase, which is characterized by a surge in the energy dissipation rate, the TGV-
3D also decays in time due to viscous e�ects. For the verification and validation
of the pseudospectral method and the temporal integration schemes, we performed
simulations of both TGV-2D and TGV-3D in a triple periodic domain L = [0, 2fi]

3

and at Re = u

tgv

¸

tgv

/‹ = 100. The terms u

tgv

and ¸

tgv

denote the characteristic
velocity and lengthscale, respectively, and were both set to unity.

Exclusively for verifying the time integration schemes, we performed a set of
simulations of the TGV-2D with di�erent temporal resolutions �t. The total simu-
lation time was t

obs

= 10(¸

tgv

/u

tgv

). The correctness of the method was measured
by comparing the box-averaged kinetic energy at the final simulation time against
its true value, i.e., K

2D

a

(t = t

obs

). Figure 2.3a shows the convergence rate of the
temporal integration. We observe that the Crank-Nicolson integrating scheme leads
to the expected error decay rate of the order of O(�t

≠2

), whereas the error due to
the integrating factor technique is, irrespective of the timestep size, O(10

≠15

), i.e.,
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Figure 2.4: Time evolution of the box-averaged energy dissipation rate normalized by its maximum
value for the TGV-3D at Re = 100. The simulation was performed with 1283 (dealiased) and fixed
timestep size �t = 0.01. The di�erent line colors represent runs with di�erent three time marching
techniques: integrating factor technique ( ) and Crank-Nicolson ( ). The markers ( )
represent the data from Hickel et al. (2006).

machine precision. Both results are in solid agreement with theoretical predictions,
thus verifying our time marching strategies.

For assessing spatial convergence, a separate set of runs with the TGV-3D was
performed. This time, we fixed �t and varied the spatial resolution. Unfortunately,
we did not have analytical solutions nor access to any database with the same quality
as the ones produced by our tool. Hence, we first generated reference data by using
N

3

= 256

3 degrees of freedom and the skew-symmetric formulation, which is more
than su�cient to resolve all scales of motion found in the TGV-3D at Re = 100.
Figure 2.3b shows the relative error between the box-averaged kinetic energy of each
of the runs and the reference box-averaged kinetic energy from our over-resolved
simulation, i.e., K

3D

num

. We observe that the error decay rate is proportional to 1/N

(spectral convergence), showing that it decays faster than any finite power-law.
Again, this is in solid agreement with the theory.

As a final test, we set N

3

= 128

3 and computed the TGV-3D with both time
integrating schemes. The time evolution of the energy dissipation rate compared
against the data found in Hickel et al. (2006) is shown in Fig. 2.4, from which we
find a perfect agreement with the reference data. Altogether, this set of tests give
us confidence regarding the numerical implementation.

2.2.2. Integrating Factor: Coriolis
Now, we verify the integrating factor technique for integration of the Coriolis force.
For this test, we create a toy-problem for which an analytical solution can be eas-
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ily obtained. Instead of solving the full Navier-Stokes equations, we consider the
following system of equations:

du
dt

= 2� ◊ u, (2.50)

with � = � ẽ
3

, where ẽ
3

is the unit vector along the third Cartesian direction.
It is readily shown that this problem has two eigenvalues, namely ⁄ = ±2I�,

which are associated to the eigenvectors (I/Ô
2, 1/Ô

2) and (≠I/Ô
2, 1/Ô

2), respec-
tively. Therefore Eq. (2.50) can be diagonalized, and the solution is of the type

u

⁄

1

= C

1

exp (≠I—t) (2.51)
u

⁄

2

= C

2

exp (I—t), (2.52)

where the superscript “⁄” denotes the variables on the basis spanned by the eigenvec-
tors, — = 2� and C

1

and C

2

are two integration constants which can be determined
for a given initial condition. For an arbitrary initial condition, say u(t = 0) =

(u

0

1

, u

0

2

) the final solution in Cartesian coordinates is given by

u

1

=u

0

1

cos(—t) + u

0

2

sin(—t) (2.53)
u

2

= ≠u

0

1

sin(—t) + u

0

2

cos(—t). (2.54)

Note that Eqs. (2.53) and (2.54) are simply the equations for clockwise rotation of
the vector u(t = 0) = (u

0

1

, u

0

2

). At any instant of time, the velocity can be then
obtained by a linear transformation of the initial velocity field.
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As initial condition, we impose the two-dimensional Taylor-Green vortex, cf.
Eq. (2.47). Further, we set � = fi/2 and march Eq. (2.50) in time until t

obs

=

1/2 by using two integration schemes — the third-order Runge-Kutta and the exact
integrating factor. The numerical error stems solely from time integration and we
define it as the di�erence between the final state of the velocity field (u

obs

1

, u

obs

2

)

and the expected solution (u

0

2

, ≠u

0

1

), which is essentially the initial field rotated
clockwise by fi/2, cf. Eqs. (2.53) and (2.54). Figure 2.5 shows the numerical error
for di�erent timestep sizes and for both methods. As we can see, the results agree
perfectly, i.e., the Runge-Kutta displays an error decay rate varying with (�t)

3 and
the exact integrating factor is machine accurate. In the latter case, the fact that the
error increases for decreasing timestep size is attributed to round-o� errors, which
naturally accumulate; the smaller �t, the larger are the number of steps required
to reach the final simulation time.

2.2.3. Decaying Homogeneous Isotropic Turbulence
Let us now consider decaying fully developed homogeneous turbulence. For this
test case, we use as reference the results from Comte-Bellot & Corrsin (1971), who
reported experiments of grid turbulence. In that experiment, turbulence was gener-
ated by the contact of an incoming flow and a grid, and measurements were taken
downstream of the grid, where the flow was assumed nearly isotropic. The data
provided by these authors is a hallmark in the study of homogeneous isotropic
turbulence, and here we attempt to reproduce the same experimental conditions
numerically.

In the experiment, the flow field was first sustained for a certain time before
let decay. Later, while decaying, data is probed at 3 consecutive instants of time,
referred to as stages 42, 98 and 171. The first of these corresponds to the instant at
which the flow is left to decay. For comparison with the available data, we generate
a random velocity field and rescale every velocity component to match the initial
spectrum at stage 42. Then, we give this velocity field as initial condition and evolve
the equations of motion in time without external force and, obviously, in the absence
of rotation and stratification.

During the first instants of time, the Fourier coe�cients of the velocity field are
rescaled such that the energy spectrum remains constant and the influence associ-
ated with the random initialization is diminished. After a certain time is reached,
the rescaling is switched o� and the flow decays. The simulations are repeated with
all 4 formulations of the Navier-Stokes equations, to observe the influence on the
results.

Figure 2.6a compares the energy spectrum at all 3 stages with N

3

= 384

3

(dealiasing) and using the rotation formulation. Overall, we observe a good agree-
ment between our simulations and the reference data. In fact, when dealiasing is
used, the good agreement is independent of the chosen formulation; see Fig. 2.6b,
which shows that all di�erent formulations lead to the same result at stage 98. Con-
versely, in the presence of aliasing errors, the rotation and the skew-symmetric form
lead to disparate behavior, especially in the high wavenumber range of the energy
spectrum. Figure 2.6c compares aliased calculations with two the skew-symmetric
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Figure 2.6: Validation of homogeneous isotropic turbulence against the experiments of CBC for
stages 48, 98 and 171, together with the influence of the aliasing error on the numerical solution.
( ) corresponds to the reference data from CBC. (a): ( ) energy spectra at the three di�erent
stages computed with the rotation formulation and 3843 DoF (dealiased). (b): energy spectra for
stage 98 computed using 2563 DoF (dealiased) with the four alternative formulations of the NSE,
i.e., convective ( ), divergence ( ), rotation ( ) and skew-symmetric ( ). (c) energy
spectra at stage 98 computed using 2563 DoF (aliased) using the rotation form ( ) and skew-
symmetric ( ). (d) energy spectra at stage 98 computed using 5123 DoF (aliased) using the
rotation form ( ) and skew-symmetric ( ).
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and the rotation form and N

3

= 256

3. We see that the reference data is better
reproduced by the skew-symmetric formulation. With the rotation formulation,
aliasing errors are larger and causes significant discrepancies. If the resolution is
however increased to N

3

= 512, while still aliased, both formulations are able to
reproduce results accurately (cf. Fig. 2.6d). In the latter case, N

3

= 512

3 is more
than su�cient, implying that truncation and aliasing errors are probably very small
in both cases.

These tests were performed in the initial development phase of the code, and all
simulations used the Crank-Nicolson method for integrating the viscous terms and
the 3rd order Runge-Kutta for integrating the convective terms.

2.2.4. Forced Homogeneous Isotropic Turbulence
In contrast to the previous section, we now consider cases for which the system
is initially at rest, and homogeneous isotropic turbulence is generated by injecting
energy into the system with the aid of an external force. In other words, here we test
the implementation of the forcing schemes of Eswaran & Pope (1988) (henceforth
EP) and Alvelius (1999) (henceforth AL).

The tests with the forcing of EP were aimed at reproducing the results of Jiménez
et al. (1993), for which reference data of homogeneous isotropic turbulence at di�er-
ent Re

⁄

is available1. Our numerical experiments focused on two di�erent Reynolds
numbers, namely Re

⁄

¥ 60 and Re

⁄

¥ 140, and compared the probability density
functions (pdfs) of the longitudinal and the transversal velocity gradients as well
as the energy spectra. In all cases, the numerical resolution is chosen such that
Ÿ

max

÷ ¥ 1.5, where ÷ is the Kolmogorov lengthscale.
Through a proper choice of the free parameters, the simulation was setup such

that the desired final Re

⁄

were obtained. After an initial transient that lasted about
6 large-eddy turnover times, the velocity field reached a statistically steady-state.
Figures 2.7 and 2.8 show the results for Re

⁄

¥ 60 and Re

⁄

¥ 140. The present
results are in excellent agreement with the reference data although the reference
data was computed using a di�erent forcing scheme (negative viscosity). Further
and in agreement with theory, two behaviors for the probability density functions
are also salient: the skewed behavior in the pdf of ˆu/ˆx, and the fact that both
pdfs become wider for increasing Re

⁄

.
The test for the forcing scheme of AL was instead aimed at showing that a

constant power input is achieved throughout the entire simulation time. For this
purpose, we considered a simple case with relatively low Re

⁄

. To excite a fluid
initially at rest, we imposed a force in the wavenumber range [0, 4Ÿ

0

] with Ÿ

f

/Ÿ

0

= 2.
After the usual transient, a statistically steady-state was reached with Re

⁄

¥ 68.
Figure 2.9 shows the temporal evolution of the individual terms in the turbulence

kinetic equation:
dK

dt

= ≠ ÈÁ
‹

ÍL + ÈÁ
I

ÍL . (2.55)

In a steady-state, i.e., dK/dt = 0, the box-averaged power input ÈÁ
I

ÍL must bal-
1Processed data for the basic flow statistics is available at http://torroja.dmt.upm.es/turbdata/
agard/

http://torroja.dmt.upm.es/turbdata/agard/
http://torroja.dmt.upm.es/turbdata/agard/
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Figure 2.7: Spherically averaged energy spectrum for the validation runs with (a) Re

⁄

¥ 60 ( )
and with (b) Re

⁄

¥ 140 ( ). The symbols represent the reference data from Jiménez et al.

(1993) at approximately the same Re

⁄
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Figure 2.8: Probability density function of the transversal and longitudinal (a) velocity derivatives
(b). The solid line denotes results obtained with our numerical tool for Re
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¥ 60 ( ) and
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¥ 140 ( ). The symbols denote the data from Jiménez et al. (1993) ( ) at approximately
the same Re

⁄
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ance the box-averaged viscous dissipation ÈÁ
‹

ÍL. These features are salient in
Fig. 2.9, and the departure from null for the time derivative of ÈKÍL is approxi-
mately 0.001 ÈÁ

‹

ÍL,t

.
Although omitted, we have also compared the results with the forcing scheme

of Alvelius (1999) with equivalent runs and the forcing scheme of Eswaran & Pope
(1988). The results are of the same quality as the ones presented in Figs. 2.7 and 2.8.

2.2.5. Vortex Blob in a Rotating Flow
Last, we consider a canonical example that illustrates one of the most basic features
of rotating flows, i.e., the elongation of the flow structures along the axis of rotation.
This example considers the time evolution of a compact eddy and it is taken from
Yoshimatsu et al. (2011). The equation of motion is the inviscid linearized Navier-
Stokes equations in a rotating frame of reference, i.e.,

ˆu
ˆt

+ 2(� ◊ u) = ≠Òq, (2.56)

in which � = � ẽ
3

, where ẽ
3

is the unit vector along the third Cartesian direction.
The numerical domain is defined as L = [0, 2fi] ◊ [0, 2fi] ◊ [0, 2fi], and the initial
velocity field is

u(x, 0) =

)
B exp [≠((x

1

≠ fi)

2

+ (x

2

≠ fi)

2

+ (x

3

≠ fi)

2

)/”

2

]

*
ẽ

3

◊ r, (2.57)

with r = x

i

˜e
i

the position vector, B = 5 and ” = 0.2. The velocity field consists
of an array of periodic vortex blobs which has maximum strength at the center of
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�t = 0 �t = 3 �t = 6

�

Figure 2.10: Time evolution of a vortex blob in a rotating environment reproducing the results
from (Yoshimatsu et al., 2011). The surface represents iso-contours of the enstrophy E = (Ê

i

Ê

i

)1/2

for the mean value plus 3 standard deviations.

the computational domain, and which is exponentially damped towards the domain
boundaries.

For the numerical test, we integrated Eq. (2.56) in time using the integrating
factor approach as described in Section 2.1.3 and compared the results with the data
from Yoshimatsu et al. (2011). Note that as explained in Section 2.1.1, the pressure q

can be eliminated from the set of equations. In Fig. 2.10, we show the iso-surfaces of
the enstrophy E = Ê

2 for three instants of time which correspond to the onset of the
simulation and two subsequent time instants. As time evolves, the initial compact
vortex blob stretches along the axis of rotation and attains a columnar shape. This
behavior is essentially the same as described in Yoshimatsu et al. (2011), and both
results agree visually very well. Nevertheless, a more strict way to validate our
numerical results is to quantify the elongation of the flow structures and compare
numerical values.

As been discussed in detail by those authors, the integral lengthscale based
on the enstrophy is a good candidate for measuring the spatial dimension of the
flow structures in this case. The integral lengthscale of enstrophy along a specific
direction is defined in terms of the two-point correlation as

¸

—

(E) =

1

ÈE ÕE ÕÍL

Œ⁄

0

ÈE Õ
(x, t)E Õ

(x + rẽ
—

, t)ÍL dr, (2.58)

where the prime denotes the fluctuations with respect to box averages, i.e., E Õ
=

E ≠ÈEÍL, and — œ {1, 2, 3} is any of the Cartesian directions. As seen from Fig. 2.11,
our numerical results for the temporal evolution of ¸

—

(E) for — = 2 and — = 3 is in
solid agreement with the data from Yoshimatsu et al. (2011).
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Figure 2.11: Time evolution of the enstrophy based integral lengthscales. The black and blue
markers are the reference data from Yoshimatsu et al. (2011) ( ; ), whereas the blue and black
solid lines ( ; ) represent the results obtained with our numerical tool.
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3.1. Background
The energy cascade is the fundamental mechanism in turbulent flows that describes
the energy exchange between the various scales of motion (Frisch, 1995). A forward
cascade from large to small scales is commonly observed in three-dimensional (3D)
flows, whereas an inverse energy cascade from small towards large scales is the
hallmark of two-dimensional (2D) flows (Alexakis & Biferale, 2018; Bo�etta & Ecke,
2012). Predicting the energy cascade direction, therefore, requires anticipating if,
for a given set of control parameters, the resulting flow field resembles best 3D or
2D flow dynamics. In lack of analytical predictions, a typical approach consists
of carefully designing numerical experiments, where the system’s parameters are
individually varied to produce a phase transition diagram. Throughout this study
we consider a large number of forced direct numerical simulations (DNS) and analyze
the influence of geometric confinement and system rotation on the cascade direction
in homogeneous rotating turbulence.

Inertial waves, i.e. plane wave solutions to the linearized Navier-Stokes equa-
tions, can modulate the energy transfer in rotating turbulence (Godeferd & Moisy,
2015; Greenspan, 1968). By considering high rotation rates and exploiting the fact
that rotating turbulence is a multi-timescale problem, Wale�e (1993) suggested that
the nonlinear dynamics are modified by wave interactions. Resonant wave interac-
tions can explain the favored energy transfer towards horizontal modes, whereas
non-resonant wave interactions are considered to damp and inhibit the triadic inter-
actions typical of homogeneous turbulence (Cambon et al., 1997; Smith & Wale�e,
1999). This mechanism also persists at lower rotation rates due to homochirical in-
teractions that transfer energy into the plane orthogonal to the rotation axis (Buzzi-
cotti et al., 2018). As a consequence, when rotating homogeneous flows are forced at
wavenumber Ÿ

f

, the injected energy can cascade both to larger (Ÿ < Ÿ

f

) and smaller
scales (Ÿ > Ÿ

f

); this is hereafter referred to as split energy cascade. These findings
help to explain the preferential upscale of energy typically found in numerical and
experimental investigations of rotating turbulent flows (Delache et al., 2014; Mininni
et al., 2009, 2012; Moisy et al., 2011; Smith & Wale�e, 1999; Yeung & Zhou, 1998).
Nevertheless, we must bear in mind that a large network of triadic interactions as
in the Navier-Stokes equations can evolve di�erently than a set of isolated triads,
as previously pointed out in Refs. (Linkmann & Dallas, 2017; Mo�att, 2014).

Among di�erent theories that elucidate the phenomenon of rotating turbulence,
the work of Galtier (2003) is regarded as an important contribution. Based on
wave turbulence theory, which deals with systems where interactions are governed
by waves, he derived scaling laws for the energy spectrum. These laws were also
shown to follow from phenomenological arguments for the spectral transfer time — a
typical energy transfer timescale. For infinitely large domains, as required by wave
turbulence theory (Nazarenko, 2011), the weak inertial-wave theory of Galtier (2003)
predicts that energy cascades forward and to small scales. However, a passage from
a split to a forward energy cascade system by approaching the large-box limit has
not yet been confirmed by DNS.

In the absence of rotation, however, the geometrical dimensions of the system it-
self influences the energy cascade direction. Using a two-dimensional two-component
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(2D2C) horizontal force, Smith et al. (1996) and Celani et al. (2010) found that the
ratio L

3

/¸

f

, where L

3

is the vertical domain extension and ¸

f

is the forcing length-
scale, is a governing control parameter. They showed that large L

3

/¸

f

results in a
forward energy cascade, whereas inverse energy transfer was triggered and split the
energy cascade for L

3

/¸

f

Æ 1/2. More recently, numerical simulations by Benavides
& Alexakis (2017) explored transitions in a thin layer of fluid subjected to free-slip
boundary conditions. Transition from a forward to a split energy cascade was shown
to be critical and depend on the ratio of forcing lengthscale to wall separation.

Regime transitions in rotating homogeneous turbulence are therefore a�ected by
geometrical dimensions and rotation rate. Deusebio et al. (2014) studied hypervis-
cous fluids in rotating small aspect ratio domains subjected to 2D2C forcing and
found that large rotation rates as well as small L

3

/¸

f

suppress enstrophy production
and induce an inverse energy cascade. Their data proves, at least for weak rotation
rates, that transition from a split to a forward cascade is possible by controlling
either rotation rate or domain size. For strong rotation, however, almost the entire
injected energy cascaded inversely. Although transition was not observed, they hy-
pothesized that it could still take place for su�ciently large L

3

/¸

f

. This conjecture,
however, remains to be verified by either forcing smaller flow scales or by increasing
the domain size (Seshasayanan & Alexakis, 2018).

The present work sheds light on the question whether a transition from a split to
a forward cascade system always exists in forced homogeneous rotating turbulence.
We conduct a systematic parametric study that covers several rotation rates and an
unprecedented range of geometric confinements by considering strongly elongated
domains and large forcing wavenumbers Ÿ

f

. This new database is complementary to
previous studies, which focused on the confinement induced transition in smaller and
shallower domains. Through large-scale forcing, we construct isotropic flow fields
that are posteriorly subjected to rotation. Di�erently from previous studies, we
employ a three-dimensional three-component (3D3C) forcing scheme that by design
provides a constant energy input independent of the velocity field. We believe this
results in a neater and more general framework where anisotropy originates solely
from rotation.

3.2. Description of the Simulations
We solve the incompressible Navier-Stokes equations in a frame rotating at rate �:

Ò · u = 0, (3.1)
ˆu
ˆt

+ (2 � + Ê) ◊ u = ≠Òq + ‹Ò2u + f . (3.2)

Here, u, Ê and f are velocity, vorticity and an external force, respectively. The
reduced pressure into which the centrifugal force is incorporated is given by q, and
‹ denotes the kinematic viscosity. Equations (3.1) and (3.2) are discretized in space
by a dealiased Fourier pseudo-spectral method (2/3-rule) in a triply-periodic domain
of size 2fiL

1

◊ 2fiL
2

◊ 2fiL
3

(Orszag, 1969; Pekurovsky, 2012). The rotation axis is
assumed aligned with the vertical direction, i.e. � = � ê

3

, and we restrict ourselves
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Table 3.1: List of the performed Direct Numerical Simulations at Re

Á

¥ 55 (Re

⁄

¥ 68) for di�erent
Ÿ

f

L , Ÿ

f

L‹ and Ro

Á

.

Case Ÿ

f

L‹ Ÿ

f

L A

r

N

p

kf02-a01 a 2 2 1 1923

kf04-a01 a 4 4 1 3843

kf04-a02 b 4 8 2 3842 ◊ 768
kf04-a04 b 4 16 4 3842 ◊ 1536
kf04-a08 b 4 32 8 3842 ◊ 3072
kf04-a16 b 4 64 16 3842 ◊ 6144
kf04-a32 b 4 128 32 3842 ◊ 12288
kf08-a01 a 8 8 1 7683

kf08-a02 b 8 16 2 7682 ◊ 1536
kf08-a04 b 8 32 4 7682 ◊ 3072
kf08-a08 c 8 64 8 7682 ◊ 6144
kf08-a16 b 8 128 16 7682 ◊ 12288
kf16-a01 a 16 16 1 15363

kf16-a02 b 16 32 2 15362 ◊ 3072
kf16-a04 b 16 64 4 15362 ◊ 6144
kf32-a01 b 32 32 1 30723

a

Ro

Á

¥ 0.31, 0.06
b

Ro

Á

¥ 0.06
c

Ro

Á

¥ 1.25, 0.63, 0.31, 0.27, 0.24, 0.22, 0.19, 0.16, 0.14, 0.11, 0.09, 0.08, 0.06

to cases where the domain size in the direction perpendicular to the axis of rotation
are equal: L

1

= L
2

= L‹ = 1. Accordingly, L replaces L
3

to denote the domain
size in the direction parallel to the rotation axis, and can be arbitrarily chosen. We
use Rogallo’s integrating factor technique for exact time integration of the viscous
and Coriolis terms and a third-order Runge-Kutta scheme for the nonlinear terms
(Morinishi et al., 2001; Rogallo, 1977).

The external force f injects energy to the system at rate Á

I

, see Alvelius (1999).
The force’s spectrum F (Ÿ), from which f in Eq. (3.2) is assembled, is Gaussian
distributed, centered around a wavenumber Ÿ

f

and has standard deviation c = 0.5:
F (Ÿ) = A exp(≠(Ÿ ≠ Ÿ

f

)

2

/c).
For given Ÿ

f

and c, the prefactor A is uniquely determined from the desired
energy input rate Á

I

. In the absence of rotation, we obtain isotropic velocity fields
and a balance between energy input rate and viscous dissipation, i.e. Á

I

= Á

‹

.
This forcing scheme ensures through projection that the force and velocity field
are uncorrelated at every instant of time (Alvelius, 1999). As a consequence, Á

I

is
solely determined by the force-force correlation and is independent of the velocity
field. Thus, we can define a priori true control parameters from which the governing
non-dimensional numbers are derived.

The domain size, L and L‹, the forcing wavenumber Ÿ

f

, the viscosity ‹, the
rotation rate � and the energy input rate Á

I

can all be freely chosen. Regarding Á

I

,
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Figure 3.1: Three-dimensional spherically averaged energy spectrum of the initial condition:
kf02-a01 ( ), kf04-a01 ( ), kf08-a01 ( ), kf16-a01 ( ), kf32-a01 ( ), kf04-a32
( * ), kf08-a16 ( )

it could be additionally decomposed in three contributions stemming from the power
injected in each direction. However, because the forcing is isotropic, it is su�cient to
consider the total power input Á

I

only. These six parameters {Ÿ

f

, ‹, Á

I

, �, L‹, L }
form the set of true control parameters and are the basis for the non-dimensional
similarity numbers. The characteristic length, velocity and time-scale follow natu-
rally as ¸

f

= Ÿ

≠1

f

, u

f

= Á

1/3

I

Ÿ

≠1/3

f

, and ·

f

= Ÿ

≠2/3

f

Á

≠1/3

I

, respectively. In addition,
a timescale based on the rotation rate is taken as ·

�

= 1/(2�).
The Reynolds and Rossby numbers are now unambiguously defined as

Re

Á

=

Á

1/3

I

Ÿ

≠4/3

f

‹

and Ro

Á

=

Ÿ

2/3

f

Á

1/3

I

2�

. (3.3)

From the problem’s geometry and the forcing wavenumber, we define two other
non-dimensional numbers, i.e. Ÿ

f

L‹ and Ÿ

f

L . Hence, we obtain a set of four
independent governing non-dimensional numbers that fully describes our numerical
experiments: Re

Á

, Ro

Á

, Ÿ

f

L‹ and Ÿ

f

L . As the final goal is to investigate dimen-
sional and rotational e�ects on forced homogeneous rotating turbulence, we fix Re

Á

and allow Ro

Á

, Ÿ

f

L and Ÿ

f

L‹ to vary. We remark that this set is not unique and
other non-dimensional groups exist. For instance, Re

Á

and Ro

⁄

could be combined
to form the micro-scale Rossby number Ro

⁄

= Re

1/2

Á

Ro

⁄

(ratio of rotation and
Kolmogorov timescale (Cambon et al., 1997)) or Ÿ

f

L and Ÿ

f

L‹ could be related
to obtain the domain’s aspect ratio A

r

= L /L‹.
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Initial conditions were generated by performing DNS of non-rotating forced
isotropic turbulence. We started from a zero-velocity field and marched in time
until a fully developed steady-state was achieved. After the initial transient statis-
tics, were sampled over at least 24 ·

f

, corresponding to approximately ten large-eddy
turnover times. Following this procedure, a reference isotropic solution was com-
puted for every entry in Table 4.2.

The initially imposed Re

Á

¥ 55 ultimately led to homogeneous non-rotating
turbulent fields with a characteristic Taylor micro-scale Reynolds number Re

⁄

¥ 68.
The spatial resolution in terms of the Kolmogorov lengthscale ÷ was kept constant
throughout this study, i.e. Ÿ

max

÷ ¥ 1.5, where Ÿ

max

is the largest represented
wavenumber. For the case with largest Ÿ

f

L , the integral lengthscale in the direction
of rotation is about 600 times smaller than the respective domain size.

Figure 3.1 compares the 3D spherically averaged energy spectrum E(Ÿ) for cases
with aspect ratio A

r

= 1, which contain “a01” in its name description, and two
additional simulations with A

r

= 16 and A

r

= 32 (cases kf04-a32 and kf08-a16
in Table 4.2). This data proves the equivalence between initial conditions for DNS
forced at di�erent wavenumbers and those computed with distinct Ÿ

f

L and Ÿ

f

L‹.
We find that the energy spectra perfectly coincide and that E(Ÿ) scales best with
Ÿ

2 at wavenumbers Ÿ < Ÿ

f

, in agreement with Dallas et al. (2015). The obtained
isotropic velocity fields were used as initial condition for the simulations with dif-
ferent rotation rates. The statistical variability of the results for small domains was
reduced by ensemble averaging. For the smallest domain kf02-a01 we ensemble
averaged 10 independent realizations and cases kf04 with A

r

> 1 are averages of 3

realizations. For all other cases, the data represents a single numerical experiment.

3.3. Results
First we assess the e�ects of geometrical dimension and rotation on the time evo-
lution of box-averaged kinetic energy K and viscous dissipation Á

‹

. The non-
dimensional geometric parameters Ÿ

f

L‹ and Ÿ

f

L are varied for two fixed rotation
rates: weak (Ro

Á

= 0.31; Fig. 3.2) and strong (Ro

Á

= 0.06; Fig. 3.3). Additionally,
for a fixed and large domain, Ÿ

f

L‹ = 8 and Ÿ

f

L = 64 (case kf08-a08; Fig. 3.4),
we investigate the Rossby number range 0.06 < Ro

Á

< 1.25. For more details about
the simulation parameters, please refer to Table 4.2.

All cases undergo a transient of roughly 10 ·

f

from the onset of rotation (Figs. 3.2
to 3.4), and converge towards a unique solution for su�ciently large Ÿ

f

L . We find
that the results are independent of the transversal domain size for Ÿ

f

L‹ Ø 4; see
Fig. 3.3, where the lines for di�erent Ÿ

f

L‹ and identical Ÿ

f

L coincide. Departing
from an isotropic state, where the energy cascade is strictly forward (Á

‹

/Á

I

= 1),
Á

‹

decreases monotonically until it is lowest at approximately 3 ·

f

(Figs. 3.2b, 3.3b
and 3.4b). For fixed Ro

Á

, Figs. 3.2b and 3.3b show that both Ÿ

f

L‹ and Ÿ

f

L have
no influence on the minimum of Á

‹

. On the other hand, Fig. 3.4b suggests a direct
proportionality between the minimum value of Á

‹

and Ro

Á

.
After t ¥ 3 ·

f

, Á

‹

increases towards Á

I

. Nevertheless, the strong and weak
rotation cases lead to a di�erent final state for Á

‹

. While increasing Ÿ

f

L restores
Á

‹

= Á

I

for the weak rotating case (Fig. 3.2b), the imbalance Á

‹

< Á

I

, although lower
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Figure 3.2: Time evolution of box-averaged kinetic energy (a) and energy dissipation rate (b) for
Ro

Á

¥ 0.31 (weak rotation). Lines corresponding to same Ÿ

f

L‹ are grouped by color: Ÿ

f

L‹ = 2
( ), Ÿ

f

L‹ = 4 ( ), Ÿ

f

L‹ = 8 ( ), Ÿ

f

L‹ = 16 ( ). Lines corresponding to the same A

r

are
grouped by line types: A

r

= 1 ( ), A

r

= 8 ( ), cf. Table 4.2.
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Figure 3.3: Time evolution of box-averaged kinetic energy (a) and energy dissipation rate (b) for
Ro

Á

¥ 0.06 (strong rotation). Lines corresponding to same Ÿ

f

L‹ are grouped by color: Ÿ

f

L‹ = 2
( ), Ÿ

f

L‹ = 4 ( ), Ÿ

f

L‹ = 8 ( ), Ÿ

f

L‹ = 16 ( ), Ÿ

f

L‹ = 32 ( ). Lines corresponding
to the same A

r

are grouped by line types: A

r

= 1 ( ), A

r

= 2 ( ), A

r

= 4 ( ), A

r

= 8
( ), A

r

= 16 ( ), A

r

= 32 ( ), cf. Table 4.2.
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than 0.075 Á

I

for Ÿ

f

L = 128, persists up to the final time for the strong rotating
case (Fig. 3.3b). Similarly to Fig. 3.2b, increasing Ro

Á

reestablishes a forward energy
cascade for a fixed domain size (Fig. 3.4b). After the initial transient (t > 10 ·

f

), Á

‹

follows mostly a slow linear decay (Fig. 3.3b) or remains nearly constant (Figs. 3.2b
and 3.4b). Consequently, K, which evolves in time as dK/dt = Á

I

≠Á

‹

, grows quasi-
linearly (Figs. 3.2a, 3.3a and 3.4a). Based on this idea we define the inverse energy
flux Á

inv

= Á

I

≠ Á

‹

from the imbalance between energy injection rate and viscous
dissipation. To estimate Á

inv

, which is equal to the local slope of K(t), a linear
least-square fit is applied to 15 ·

f

< t < 30 ·

f

in the time evolution of K (Figs. 3.2a,
3.3a and 3.4a). The r.m.s. residual between the actual and fitted data indicates
that the linear regression model is appropriate. For the worst case, kf04-a08, the
r.m.s. residual is 0.65% of the mean value. Assuming that the linear law is exact
and the noise is essentially Gaussian, one obtains 0.0004 for the standard error of
the slope coe�cient. Results for the inverse energy flux are thus shown in Figs. 3.5
and 3.6 in form of a phase transition diagram.

From Fig. 3.5a, we see that the inverse energy flux Á

inv

decreases monotonically
with Ÿ

f

L for both Ro

Á

¥ 0.31 and Ro

Á

¥ 0.06. Moreover, results for the strong
rotating case suggest that increasing Ÿ

f

L‹ while retaining Ÿ

f

L leads to negligible
di�erences in Á

inv

— see the overlapping circles with di�erent colors for Ro

Á

¥ 0.06.
Transition from a split to a forward cascade system occurs gradually. For Ro

Á

¥ 0.31

and Ÿ

f

L = 64 less than 0.004 Á

I

is transferred in the inverse direction, whereas for
Ro

Á

¥ 0.06 a split cascade is still present at Ÿ

f

L = 128. For a fixed domain size
with Ÿ

f

L‹ = 8 and Ÿ

f

L = 64 (case kf08-a08; Fig. 3.5b), Á

inv

is continuously
suppressed for increasing Ro

Á

and transition to a forward cascade system occurs in
the vicinity of Ro

Á

= 1.
A question that follows from these results is for which combination of govern-

ing non-dimensional parameters regime transition occurs. From literature, a pos-
sible criteria is Ro

Á

Ÿ

f

L = C, where C is a constant (Alexakis & Biferale, 2018;
Seshasayanan & Alexakis, 2018). To test this hypothesis, Fig. 3.6 presents the
data from Fig. 3.5, but juxtaposed in a single diagram and scaled accordingly with
Ro

Á

Ÿ

f

L . The curves for di�erent Ro

Á

do not line up; hence, this criteria disagrees
with our data. A discussion on a possible reason is given in the next section.

Now we turn our attention to the influence of Ÿ

f

L and Ÿ

f

L‹ on the spectral
energy flux and energy spectra. Hereafter we present results for the strong rotating
case with Ro

Á

¥ 0.06 only, as di�erences are more pronounced than in the weak
rotating case. Although we show instantaneous data at t = 30 ·

f

, the trend de-
scribed in what follows also holds for other instants of time. Conservation of energy
requires the portion of the injected energy that is not dissipated to be accumulated.
By analyzing the spectral energy flux �(Ÿ), we find that the net energy transfer
T (Ÿ) = ≠d�/dŸ is positive for Ÿ < Ÿ

f

. In other words, wavenumbers in this range
gain energy and we observe an upscale energy transfer. Evidence is presented in
Fig. 3.7, which also highlights how sensitive �(Ÿ) is with respect to changes in Ÿ

f

L
and Ÿ

f

L‹. In this regard, Fig. 3.7a, where Ÿ

f

L is constant and Ÿ

f

L‹ = {8, 16,
32}, shows that the shape of �(Ÿ) remains unaltered for di�erent Ÿ

f

L‹. On the
other hand, varying Ÿ

f

L from 16 to 64 while Ÿ

f

L‹ is constant, reduces the magni-
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Ÿ
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mensions (a) and for constant geometrical dimension and varying Ro

Á

(b). Color scheme of (a) is
the same as in Fig. 3.3. In (a), the data point for Ÿ

f

L‹ = Ÿ

f

L = 32 (case kf32-a01) is almost
identical to case kf04-a08 (Ÿ

f

L‹ = 4; Ÿ

f

L = 32), and is therefore not visible.
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tude of the inverse energy flux and the range of wavenumbers for which an upscale
energy transfer takes place, see Fig. 3.7b. Therein, greater values of Ÿ

f

L are also
associated with an enhanced spectral energy flux for Ÿ > Ÿ

f

. This is a consequence
of the fixed energy input rate Á

I

, which causes the step in �(Ÿ) at Ÿ = Ÿ

f

to be the
same for all cases.

The three-dimensional energy spectra E(Ÿ) for the same cases are shown in
Fig. 3.8. Additionally, the energy spectrum of case kf32-a01 with Ÿ

f

L = Ÿ

f

L‹ =

32 from Fig. 3.1 at the onset of rotation is included as reference. Figure 3.8a
reinforces that Ÿ

f

L dictates the degree of energy accumulation, as the curves for
di�erent Ÿ

f

L‹ and constant Ÿ

f

L overlap. In agreement with results in Fig. 3.7 for
�(Ÿ), we observe significantly higher levels of energy for Ÿ < Ÿ

f

with respect to the
isotropic reference spectrum. These are reduced for increasing Ÿ

f

L , see Fig. 3.8b.
As for the distribution of energy in terms of Ÿ and Ÿ‹, Fig. 3.9 presents the

two-dimensional energy spectrum E(Ÿ‹, Ÿ ). Results are shown exclusively for case
kf32-a01 with Ÿ

f

L‹ = Ÿ

f

L = 32, as it contains most large scale resolution. The
energy spectrum is non-dimensionalized with 2fiŸ‹, in such a way that contour
levels of isotropic spectra appear as circles centered at the origin. In agreement
with previous works, Fig. 3.9 confirms that the kinetic energy has the tendency
to accumulate at lower Ÿ /Ÿ

f

. Hence, E(Ÿ‹, Ÿ ) is anisotropic and contour levels
display an elliptical shape with major axis aligned with the Ÿ‹-direction. This
is observed even for high wavenumbers and suggests that all scales of motion are
influenced by rotation; indeed, for this case, Ÿ

�

÷ = 1.1, where Ÿ

�

= (�

3

/Á

I

)

1/2 is
the Zeman wavenumber (Delache et al., 2014). At the same time, the energy input
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remains isotropic. See the inset for the imprint of the isotropic forcing scheme,
which delineates the bright area located at Ÿ

2

+Ÿ

2

‹ = Ÿ

2

f

. In addition, we see higher
energy levels in the vicinity of Ÿ /Ÿ

f

= 0.
An anisotropic distribution of energy is predicted by the weak inertial-wave the-

ory, which suggests that the energy spectrum has the form E(Ÿ‹, Ÿ ) ≥ Ÿ

≠5/2

‹ Ÿ

≠1/2

(Galtier, 2003). To test if our data presents any sign of this scaling law, we show in
Fig. 3.10 instantaneous one-dimensional energy spectra along the perpendicular and
parallel directions, i.e. E‹(Ÿ‹) and E (Ÿ ) for t = 0, 10, 20 and 30 ·

f

. Figure 3.10a
shows that energy levels increase progressively for Ÿ‹ < Ÿ

f

, whereas for Ÿ‹ > Ÿ

f

,
the distribution of energy is nearly unaltered. Also for Ÿ‹ > Ÿ

f

, we observe that
a narrow wavenumber range develops from the initial state and approaches best a
Ÿ

≠5/2

‹ scaling law. Regarding E (Ÿ ), Fig. 3.10b, the energy content for Ÿ > Ÿ

f

is significantly lower than at the onset of rotation. This corroborates the idea that
rotation lessen the flow field dependency on the direction parallel to the rotation
axis. As time evolves, the range Ÿ < Ÿ

f

resembles best a Ÿ

≠1/2 scaling law for all
time instants. We emphasize that this result is essentially di�erent from predictions
of the weak inertial-wave theory, as the latter estimates E(Ÿ ) ≥ Ÿ

≠1/2 for Ÿ larger
than the forcing wavenumber.

3.4. Discussion
We attribute the fact that Á

inv

does not become exactly zero for Ro

Á

¥ 0.31 to two
e�ects. First, the simulations considered in this study are limited to Re

⁄

¥ 68. A
higher Reynolds number could contribute to a stronger forward cascade, possibly
reducing Á

inv

to zero. Second, although e�ects of the geometric non-dimensional
parameter Ÿ

f

L‹ are minor, the results hint that larger values of Ÿ

f

L‹ could also
contribute to a reduction of Á

inv

. In this manner, an indefinite increase of Ÿ

f

L‹
could potentially change the phase diagram in the vicinity of Á

inv

/Á

I

= 0, and
could cause regime transition to be sharp rather than smooth. The recent study
of Benavides & Alexakis (2017) has shown that a continuous increase of horizontal
domain dimensions shifts the transition behavior for thin layer turbulence from
smooth to critical. We hope that further studies will help to fill the parameter
space for higher Reynolds numbers and even longer domain sizes.

For Ro

Á

¥ 0.06, we agree with Deusebio et al. (2014) and believe that a con-
tinuous increase of Ÿ

f

L would result in transition to a forward energy cascade.
Nevertheless, results for the weak case suggest a slow-paced transition and signifi-
cantly larger values for Ÿ

f

L might be required. Interestingly, the transition of Á

inv

in terms of Ÿ

f

L resembles a logistic function, similar to what has been found for
regime transitions in thin layer turbulence (Benavides & Alexakis, 2017).

In search of a criteria for transition between a forward and a split cascade sys-
tem, we made an attempt to express Á

inv

/Á

I

for all parameter points as a function
of Ro

Á

Ÿ

f

L . As the di�erent curves do not overlap, we believe that a criteria for
transition should stem from a more general match of timescales. A criteria such
as Ro

Á

Ÿ

f

L = C, can be obtained by requiring the slowest inertial wave frequency
1/·

w

= 2�/Ÿ

f

L and the eddy turnover frequency u

f

Ÿ

f

at the forcing scale to be
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In (a), Ÿ

f

L‹ = 8 ( ), Ÿ

f

L‹ = 16 ( ) and Ÿ

f

L‹ = 32 ( ). In (b), Ÿ

f

L = 16, 32 and 64
( ). Arrow denotes the direction of increase.
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/Ÿ

3
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f
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f
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of same order (Alexakis & Biferale, 2018; Seshasayanan & Alexakis, 2018). Alter-
natively, we can frame the problem within the idea that rotation alters the spectral
transfer time ·

s

at which energy is transferred to smaller scales. Thus, it follows
that Á

‹

≥ u

2

¸

/·

s

, with u

¸

a velocity scale characteristic of eddies of size ¸, and
·

s

≥ ·

2

nl

/·

3

(Galtier, 2003; Kraichnan, 1965; Zhou, 1995). Here, ·

nl

≥ ¸/u

¸

is the
nonlinear timescale and ·

3

is the relaxation time of triple velocity correlations. The
relaxation time in isotropic turbulence simplifies to ·

nl

to recover the dissipation
law, i.e. Á

‹

≥ u

3

¸

/¸.
Now the condition Ro

Á

Ÿ

f

L = C can be obtained by requiring Á

‹

= Á

I

, and
assuming u ≥ u

f

, ·

nl

≥ ·

f

and ·

3

≥ ·

w

. So, Ro

Á

Ÿ

f

L = C is equivalent to state
that in the presence of rotation the nonlinear timescale remains of the order of ·

f

,
and that the relaxation timescale ·

3

is given by the inverse of the slowest inertial
wave frequency, i.e ·

3

≥ ·

w

. A generalization of the previous reasoning would be to
consider a ·

nl

obtained from a measured velocity quantity, like the r.m.s velocity,
and the lengthscale ¸ possibly as ¸‹, as the triadic interactions are expected to be
depleted in the direction parallel to the rotation axis (Nazarenko & Schekochihin,
2011). The relaxation time ·

3

could be sought as a function of both ·

f

and ·

�

. In
this manner, more general criteria like Ro

a

Á

(Ÿ

f

L )

b

= C arise, where a and b are yet
undetermined exponents.
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4.1. Background
Many geophysical and man-made fluid flows are a�ected by the interaction between
system rotation and turbulence (Bo�etta & Ecke, 2012; Greenspan, 1968). An ide-
alized approach to study rotating turbulence consists in observing the evolution of
an initial homogeneous isotropic flow in a non-inertial rotating frame of reference.
This way, early experimental studies already revealed the main features of homo-
geneous rotating turbulence (e.g., Jacquin et al. (1990)), although a few of them
did not meet the condition for homogeneity (e.g., Hopfinger et al. (1982); Ibbetson
& Tritton (1975)). When the Rossby number (Ro) was su�ciently small, i.e., the
ratio of the rotational time scale and the turbulent time scale, it was observed that
the energy dissipation rate Á

‹

is reduced with respect to the reference non-rotating
isotropic case. Further, the typical cloud of isotropic eddies found in isotropic flows
was strained, and grew in size to towards an array of flow structures aligned with
the axis of rotation (columnar eddies). These two features are the traits of rotating
turbulence and have been observed and analyzed in a number of recent experimental
and numerical investigations, see, e.g., van Bokhoven et al. (2009); Delache et al.
(2014); Mininni et al. (2009, 2012); Moisy et al. (2011); Staplehurst et al. (2008), or
Godeferd & Moisy (2015) for a review. Yet, it remains poorly understood how they
are quantitatively related.

For homogeneous isotropic turbulence, it is well accepted that the energy dissi-
pation rate scales as Á

‹

≥ u

3

0

/l

0

, where u

0

and l

0

are an integral velocity scale and
an integral length scale, respectively (Batchelor, 1953). This relation can be inter-
preted on the basis of phenomenological arguments as follows. Let us first assume
that Á

‹

depends on an energy content, say u

2

0

, and on a time scale ·

s

characteris-
tic of the downscale energy transfer: the spectral transfer time. In homogeneous
isotropic turbulence, the only time scale available to be taken as ·

s

is the time scale
characteristic of the non-linear triadic interactions, ·

nl

. If we further assume that
·

nl

≥ l

0

/u

0

, where l

0

is the typical size of the energy containing eddies, the dissipa-
tion law for homogeneous isotropic turbulence can be recovered. But for systems in
which other time scales are also relevant, as is the case of magnetohydrodynamics
(MHD) or rotating turbulence, ·

s

might be di�erent from ·

nl

. Within the context of
MHD, Kraichnan (1965) considered that ·

s

is in fact composed of two time scales of
opposing e�ects; the non-linear time scale ·

nl

, which can also be considered as the
measure of how fast triple velocity correlations are built-up, and the decorrelation
time scale ·

3

, which indicates how fast these correlations decay in time. Exploiting
these ideas, he suggested that the energy flux (energy dissipation rate) was directly
proportional to ·

3

and inversely proportional to ·

nl

.
Following this line of thought, one alternative to relate the energy dissipation rate

to the formation of columnar eddies in rotating turbulence is to find approximations
for ·

nl

and ·

3

that involve integral length scales and the rotation rate. However,
this is not straightforward. First, owing to the fact that the distribution of energy is
not isotropic, two distinct integral length scales in homogeneous rotating turbulence
exist, i.e., ¸

0 ‹ and ¸

0

, which can be defined along the directions normal and parallel
to the axis of rotation, respectively. Which one then is relevant to form ·

nl

? Second,
how does ·

3

depend on the time scale imposed by the background rotation, i.e., ·

�

=
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1/(2�)? In literature, a few dissipation laws for homogeneous rotating turbulence
have emerged from attempts to estimate the energy flux (Baqui & Davidson, 2015;
Galtier, 2003; Nazarenko & Schekochihin, 2011; Zhou, 1995). Despite the e�orts to
account for the e�ects of rotation, results available in current literature regarding
whether these laws generally hold or if they specifically apply to a Rossby number
range are inconclusive or even inconsistent.

Another problem, which is rather more technical, is the fact that the elongated
columnar flow structures restrict the maximum observation time in Direct Numerical
Simulations (DNS) of rotating turbulence. Because simulations of homogeneous
flows often consider periodic boundary conditions, a too small domain size with
respect to the characteristic size of the living eddies can modulate the dynamics of
the large scales and constrain their size. An obvious solution to circumvent this
problem and avoid numerical artifacts is either to consider larger domains or to
generate flow fields in which the characteristic eddy size is smaller than the domain
size. For example, in the DNS by Baqui & Davidson (2015) the initial characteristic
eddy size was 50 times smaller than the domain size. However, when Ro π 1 this
may be still insu�cient and limit the simulation to a few eddy-turnover times.

In view of these shortcomings, this study addresses the two following questions:

(i) What is the influence of the Rossby number in the growth rate of the columnar
eddies, in the absence of confinement e�ects?

(ii) Can we approximate the energy dissipation rate in homogeneous rotating
turbulence in a fashion similar to homogeneous isotropic turbulence, i.e., in
terms of a velocity scale, an integral length scale and the rotation rate?

For this purpose, we consider the evolution of an initial homogeneous isotropic
flow field in a rotating frame of reference. We conduct a systematic study that
consists of 21 di�erent rotation rates, thus covering a wide range of Rossby num-
bers. Our DNS are carried out in an elongated computational domain that is about
340 times larger than the initial characteristic size of the flow structures, provides
enough room for the columnar eddies to grow freely. All simulations are performed
with a stochastic large-scale forcing that injects energy at a constant rate. The forc-
ing scheme is three-dimensional, isotropic, and at all times uncorrelated with the
velocity field. To the best of our knowledge, the present database is unprecedented.

This work is organized as follows. In Section 4.2, the governing equations and
the numerical method is detailed together with a description of the simulations and
their physical parameters. The influence of the Rossby number in the growth rate
of the columnar eddies is investigated in Section 4.3, and approximations for the
energy dissipation rate are finally o�ered in Section 4.4.

4.2. Numerical Set-up
4.2.1. Governing Equations and Numerical Method
We consider an incompressible fluid in a triply periodic rectangular cuboid of size
2fiL

1

◊ 2fiL
2

◊ 2fiL
3

that rotates around �. Fluid motion is assumed governed by
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Ÿ

f

L‹ Ÿ

f

L (2fiL‹)/¸

iso

‹ (2fiL )/¸

iso

·

f

/T

e

Re

Á

Re

⁄

N

p

8 64 39.9 342.5 2.36 55.05 68 7682 ◊ 6144

Table 4.1: Numerical and physical parameters of the initial homogeneous isotropic turbulent flow
field used for the runs with rotation.

the incompressible Navier-Stokes equations:

Ò · u = 0, (4.1)
ˆu
ˆt

+ (2 � + Ê) ◊ u = ≠Òq + ‹Ò2u + f . (4.2)

Here, u, Ê and f are the velocity, the vorticity and an external force, respectively.
Time is denoted by t, the reduced pressure, into which the centrifugal force is
incorporated, is given by q, and ‹ denotes the kinematic viscosity of the fluid. The
rotation vector � is chosen to be aligned with the 3-direction, i.e, � = (0, 0, �),
where � is the rotation rate. The horizontal dimensions of the rectangular cuboid
(normal to the axis of rotation) are equal, L‹ = L

1

= L
2

= 1, whereas the vertical
extension (parallel to the axis of rotation) is by a factor of 8 larger than the horizontal
dimensions, i.e. L = L

3

= 8.
The numerical method is essentially the same as in Pestana & Hickel (2019b).

Equations (4.1) and (4.2) are solved by a de-aliased Fourier pseudo-spectral method
(2/3-rule), where the spatial gradients are computed with the aid of fast Fourier
transforms (Pekurovsky, 2012), and the time-stepper employs exact integration of
the viscous and Coriolis forces (Morinishi et al., 2001; Rogallo, 1977) together with a
third-order low-storage Runge-Kutta scheme for the non-linear terms. The number
of degrees of freedom is N

p

= 768

2 ◊ 6144, which has been increased accordingly to
the extended domain size to resolve all scales of motion. The smallest and largest
resolved wavenumber per direction is Ÿ

min,i

= 1/L
i

and Ÿ

max,i

= N

p,i

/(3L
i

), re-
spectively, where the index i = {1, 2, 3} denotes the di�erent directions.

In all simulations considered in this study, energy is injected through the external
force f on right-hand-side of Eq. (4.2). The forcing scheme is designed as proposed
in Alvelius (1999); the force spectrum F (Ÿ) is Gaussian with standard deviation
c = 0.5 and is centered around the forcing wavenumber Ÿ

f

:

F (Ÿ) = A exp(≠(Ÿ ≠ Ÿ

f

)

2

/c). (4.3)

In Eq. (4.3), the prefactor A, which controls the amplitude of F (Ÿ) can be deter-
mined a priori to the simulation and allow us to fix the power input Á

I

. This is
only possible because this forcing scheme ensures that the force-velocity correlation
is at all time instants zero. As a consequence, the injected power is an exclusive
product of the force-force correlation, which is directly related to F (Ÿ). For more
details about the forcing scheme and its design, please refer to (Alvelius, 1999).
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Figure 4.1: Two-point velocity correlations showing the ratio domain size to characteristic size of
the flow structures in the di�erent directions, and one-dimensional energy spectra showing that
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4.2.2. Description of the Simulations and Physical Param-
eters

To describe the considered physical problem, we are free to choose 6 control param-
eters. These form the set {Ÿ

f

, Á

I

, ‹, L , L‹, �}, which involves two physical units.
Thus, a total of 4 non-dimensional numbers is su�cient to describe the numerical
experiment. The governing non-dimensional numbers can be built by combination
of the free control parameters. For instance, using Ÿ

f

and Á

I

and assuming that the
constant of proportionality is 1, we can construct the velocity scale u

f

= Á

1/3

I

Ÿ

≠1/3

f

and the time scale ·

f

= Ÿ

≠2/3

f

Á

≠1/3

I

. Additionally, a characteristic length scale can
be taken as ¸

f

= 1/Ÿ

f

. Hence, the Reynolds and the Rossby number are defined as

Re

Á

=

Á

1/3

I

Ÿ

≠4/3

f

‹

and Ro

Á

=

Ÿ

2/3

f

Á

1/3

I

2�

. (4.4)

The two other governing non-dimensional numbers are formed by combining the
forcing wavenumber with the geometric dimensions of the domain to yield Ÿ

f

L‹ and
Ÿ

f

L . The 4 non-dimensional numbers, {Re

Á

, Ro

Á

, Ÿ

f

L , Ÿ

f

L‹}, whose definitions
have been borrowed from Seshasayanan & Alexakis (2018), form the parameter
space henceforth used to characterize the simulations performed in this study. Note,
however, that this set of non-dimensional parameters is not unique. For instance, one
may combine Re

Á

and Ro

Á

to form the micro-scale Rossby number Ro

⁄

= Re

1/2

Á

Ro

Á

,
which represents the ratio of rotation and Kolmogorov time scales, or express the
geometric dimensions in terms of the domain aspect ratio A

r

= L /L‹.
Another important parameter is the Zeman wavenumber Ÿ

�

= (�

3

/Á

I

)

1/2, which
indicates the wavenumber range for which rotational e�ects are relevant (Delache
et al., 2014; Zeman, 1994). The Zeman wavenumber is also automatically set by
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Figure 4.2: Flow field visualization of a sub-set of the computational domain (1/16 of the entire
computational domain), showing half of the horizontal domain extension and 1/4 of the vertical
domain size: [0, fi] ◊ [0, fi] ◊ [0, 4fi]. Iso-contours of the Q-criterion (Hunt et al., 1988) colored by
the normalized projection of the vorticity vector along the axis of rotation, i.e., Ê · e / ÎÊÎ. Blue
colors indicates structures that rotate in the same sense as � (counter-clockwise), whereas orange
colors indicate the opposite sense of rotation (clockwise). (a) Isotropic initial condition; (b) and
(c) correspond to the run with Ro

Á

= 0.06 at later time instants after the onset of rotation, i.e.,
t = 10.5 ·

f

and t = 20 ·

f

, respectively.
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Run Colormap Ro

Á

Ro

⁄

Ÿ

�

÷ Ÿ

�

/Ÿ

f

R1

Y
____________]

____________[

run01 1.54 11.42 0.009 0.19
run02 1.25 9.28 0.013 0.25
run03 1.00 7.42 0.017 0.35
run04 0.87 6.45 0.022 0.44
run05 0.77 5.71 0.026 0.52
run06 0.69 5.12 0.031 0.62
run07 0.63 4.64 0.035 0.72
run08 0.56 4.12 0.042 0.85
run09 0.47 3.45 0.055 1.11
run10 0.39 2.91 0.071 1.44

R2

Y
______________]

______________[

run11 0.31 2.32 0.100 2.02
run12 0.27 2.01 0.124 2.52
run13 0.24 1.79 0.148 2.99
run14 0.22 1.60 0.175 3.55
run15 0.19 1.40 0.213 4.31
run16 0.16 1.20 0.270 5.46
run17 0.14 1.00 0.352 7.12
run18 0.11 0.80 0.492 9.95
run19 0.09 0.70 0.599 12.12
run20 0.08 0.60 0.759 15.34
run21 0.06 0.47 1.088 21.99

Table 4.2: Numerical and physical parameters for the DNS of homogeneous rotation turbulence at
distinct rates of rotation. The runs that exhibit similar dynamics are collected together in groups,
namely R1 and R2.

fixing the aforementioned parameters as Ro

Á

= (Ÿ

f

/Ÿ

�

)

2/3

/2.
A posteriori, we can compute the usual physical parameters that describe the

flow field. The box-averaged kinetic energy K is given by Èu
i

u

i

ÍL /2, where the
operator È · ÍL denotes volume averages, and the viscous dissipation rate is Á

‹

=

2‹ ÈS
ij

S

ij

ÍL, where S

ij

= (ˆu

i,j

+ ˆu

j,i

)/2 is the strain-rate tensor. From K, we
define the r.m.s. velocity u

Õ
=


2K/3, which is used to define the large-eddy

turnover time T

e

= u

Õ2
/Á

I

. The Taylor micro-scale is defined as in Pope (2000),
i.e, ⁄ = (15‹u

Õ2
/Á

‹

)

1/2. The Taylor micro-scale Reynolds number is computed as
Re

⁄

= u

Õ
⁄/‹, and the Kolmogorov length scale is ÷ = (‹

3

/Á

I

)

1/4.
Last, we define the integral length scales along the directions normal and parallel

to the axis of rotation. These are constructed from the two-point velocity correlation:

R(r) =

Èu
i

(x)u

i

(x + r)ÍL
Èu

i

(x)u

i

(x)ÍL
, (4.5)

where r = r

i

ê
i

is an arbitrary position vector. We integrate Eq. (4.5) with r = rê
r

,
as in spherical coordinates, or with r = r‹ê‹ and r = r ê , as in cylindrical
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Figure 4.3: Instantaneous contours on a x

1

x

2

-plane of the vorticity projected along the axis of
rotation. (a) isotropic case; (b) Ro

Á

= 0.22; (c) Ro

Á

= 0.06. All panels correspond to the final
simulation time t ¥ 30 ·

f

.

coordinates, to obtain the integral length scales along the respective directions:

¸ =

⁄
fiLmin

0

R(r) dr, ¸‹ =

⁄
fiL‹

0

R(r‹) dr‹, and ¸ =

⁄
fiL

0

R(r ) dr .

(4.6)
In Eq. (4.6), L

min

is taken as min(L , L‹) in the limit of the integral that defines ¸.
To represent quantities from the initial and isotropic flow field we use the superscript
“iso”, like in ¸

iso.

Initial Conditions
The initial conditions for the simulations with rotation are produced by injecting
energy at constant rate Á

I

to a fluid that is initially at rest. The energy, which is
injected at wavenumber Ÿ

f

= 8, is progressively distributed over a wider range of
wavenumbers by action of the triple velocity correlations. When the energy cascade
is built up, the box-averaged kinetic energy K stops growing and a steady-state
is reached. The numerical resolution guarantees that at all times Ÿ

max

÷ Ø 1.5,
which is su�cient to resolve all scales of motion. The initial transient lasts for
20 ·

f

or, equivalently, 8.45 T

e

, and afterwards, statistics are collected for another
54 ·

f

(22.84 T

e

). For the fully-developed field, we find that Re

⁄

¥ 68, and that the
relation ¸

iso

= ¸

iso

= ¸

iso

‹ holds up to 2 decimal places. The latter suggests that the
flow field is in fact isotropic.

Other statistics of the steady-state match closely with typical values found in
DNS of homogeneous isotropic turbulence. For instance, the skewness and flatness
of the longitudinal velocity derivative ˆu

1

/ˆx

1

are ≠0.51 and 4.8, respectively, in
agreement with Tang et al. (2018) and Van Atta & Antonia (1980). The energy
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dissipation rate Á

‹

at the steady-state is well approximated by Á

‹

= C

iso

Á

(u

Õ iso

)

3

/¸

iso,
where C

iso

Á

¥ 0.35 is the constant of proportionality. Note, however, that the value of
this constant depends on how the two-point correlation in Eq. (4.5) is normalized.
If we normalize it with 2u

Õ, like in Kaneda et al. (2003), instead of 2K, like in
Eq. (4.5), a factor of 3/2 must be accounted for to yield C

iso

Á

¥ 0.5 in agreement
with the literature; see Ishihara et al. (2009) for a compilation of other numerical
results.

In this study, the goal is not to achieve the highest possible Reynolds number for
a given numerical resolution. Instead, we focus on maximizing the time for which
large scale eddies with typical size ¸

iso can evolve unbounded, while still resolving
all scales of motion. Therefore, apart from forcing at scales smaller than usual,
we consider an elongated domain with A

r

= 8. As a result, the isotropic fields to
which background rotation can be imposed to are in the vertical direction about 340

times larger than ¸

iso and, in the normal direction, 2fiL‹/¸

iso ¥ 40. In Fig. 4.1, we
show evidence of these aspects. Figure 4.1a confirms through the two-point velocity
correlation along the normal and the parallel directions that the ratio of domain size
to flow structures is indeed significantly larger in the vertical direction. The area
below the curves equals 2fiL‹/¸

iso

‹ and 2fiL /¸

iso, respectively. Alongside, Fig. 4.1b
verifies that the velocity fields are isotropic, as the curves for the one-dimensional
energy spectra along the normal and perpendicular directions overlap.

These features are also clearly visible in the flow field visualization; see Fig. 4.2,
where we show a sub-set of the computational domain with the flow structures
visualized by the Q-Criterion of Hunt et al. (1988) and colored by the normalized
projection of the vorticity vector on the axis of rotation, i.e., Ê ·e / ÎÊÎ. Reinforcing
the aforementioned results, we observe two main points in the isotropic field that
is used as initial condition for the runs with rotation (Fig. 4.2a). First, the flow
structures do not display any preferential sense of rotation, which is confirmed by
the uniform distribution of the colors. Second, they are also isotropically arranged
and therefore not aligned along any preferential direction. For a summary of the
numerical and physical parameters of the initial conditions, please refer to Table 4.1.

Runs in a Rotating Frame of Reference
The runs with rotation are constructed by imposing 21 di�erent background rotation
rates to the isotropic flow field shown in Fig. 4.2a; see Table 4.2 for the relevant
numerical and physical parameters. The result is a set of simulations that covers
a broad range of the Ro

Á

parameter space, i.e., 0.06 < Ro

Á

< 1.54. The Zeman
wavenumber in terms of the Kolmogorov length scale, Ÿ

�

÷, for instance, varies
from 0.1 for Ro

Á

= 1.54 (weakest rotation case) to 1.1 for Ro

Á

= 0.06 (strongest
rotation case). As the numerical resolution provides Ÿ

max

÷ = 1.5 for the fully
developed isotropic reference initial field, for Ro

Á

= 0.06, almost all scales of motion
are influenced by the system’s rotation.

With increasing the rotation rate, the flow field gradually departs from the ini-
tial isotropic state in agreement with previous experimental and numerical studies
(Bartello et al., 1994; van Bokhoven et al., 2009). This is observed from visualizing
4 movies (movie 1: Ro

Á

= 0.63; movie 2: Ro

Á

= 0.22; movie 3: Ro

Á

= 0.09; movie 4:
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Ro

Á

= 0.06), which show the evolution of the flow field in a sub-set of the computa-
tional domain; see our data repository Pestana & Hickel (2019a) for the animations,
and also 2 movies of the contours of the vorticity vector along the axis of rotation
(Ê ), on a normal (movie 5) and a parallel plane (movie 6). Altogether, the visual-
izations indicate that rotation destroys the small structures and modulates the flow
field such that columns elongated in the direction of rotation emerge. These typical
features of rotating turbulence are better appreciated in movies 3 and 4, where the
pairing and stretching of co-rotating eddies are more salient.

To give an impression of the flow field, we include two snapshots in Figs. 4.2b
and 4.2c for the run with Ro

Á

= 0.06 (strongest rotation) at times subsequent to the
onset of rotation (t = 10.5 ·

f

and t = 20 ·

f

) and visualizations of Ê for di�erent
Ro

Á

in Figs. 4.3 and 4.4.

4.3. The Growth Rate of Columnar Eddies
Now, we present results and discuss the influence of di�erent rotation rates on
the growth of the columnar eddies. For the quantitative analysis, we use integral
length scales, which on one hand can be used to quantify the typical eddy size that
contributes the most to the total kinetic energy, and on the other hand also serves
as an indicator of anisotropy. Due to the background rotation, the dynamics of
the flow in the parallel and transversal direction are essentially di�erent, which is
reflected in the temporal evolution of ¸ and ¸‹ (Bardina et al., 1985). As it will
be seen, the appearance of the columnar eddies in Figs. 4.2b and 4.2c is strongly
reflected in the growth of the integral length scale along the axis of rotation.

We obtain the time evolution of ¸ and ¸‹ by evaluating Eq. (4.6) on a series
of instantaneous velocity fields throughout the simulation time, see Fig. 4.5. We
choose to split the actual data in two diagrams, which are displayed side-by-side.
The left panels correspond to cases for which Ro

Á

Ø 0.39 (group R1 in Table 4.2)
and the right panels to Ro

Á

Æ 0.31 (group R2 in Table 4.2).
For Ro

Á

Ø 0.39 (left panels; group R1), ¸ and ¸‹ remain approximately un-
changed in time and at values similar to the ones at t = 0, which corresponds to the
initial isotropic field. Specifically for Ro

Á

= 0.39, the run with highest rotation rate
in this group, the departure from isotropy is marginal and ¸ /¸‹ ¥ 1.5 at the final
simulation time. Di�erently, for Ro

Á

Æ 0.31 (right panels; group R2), the disparity
between ¸ and ¸‹ is clear. We observe that ¸ grows substantially in time, whereas
variations in ¸‹ are small when compared to the latter. For instance, for Ro

Á

= 0.06,
the final value of ¸ is 26.8 times greater that its initial value, whereas ¸‹ only in-
creases by a factor of 1.21. Additionally, we observe an intriguing behavior in ¸‹. It
initially grows in time until a maximum is reached; thereupon, it decreases towards
a minimum, before growing again. On the other hand, ¸ increases monotonically
and approximately linearly for t > 10 ·

f

.
The growth of ¸ in Fig. 4.5d is in agreement with the formation of columnar

eddies observed in Fig. 4.2c. In order to identify the dependency between the growth
rate of ¸ and Ro

Á

, we have fit the data for ¸ in the interval 10 ·

f

< t < 30 ·

f

with a
straight line. The linear fit approximates fairly well the time evolution of ¸ and the
maximum residuum is found for Ro

Á

= 0.11, where the discrepancy is around 4.7% of
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Figure 4.4: Instantaneous contours of the vorticity projected on the axis of rotation on a x

2

x

3

-
plane. (a) isotropic case; (b) Ro

Á

= 0.22; (c) Ro

Á

= 0.06. All panels correspond to the final
simulation time t ¥ 30 ·

f

.
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Figure 4.5: Time evolution of the parallel and transversal integral length scales ¸ and ¸‹, for
group R1 (left panels; 1.54 Ø Ro

Á

Ø 0.39) and group R2 (right panels; 0.31 Ø Ro

Á

Ø 0.06).
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Figure 4.6: Non-dimensional growth rate “ = Ÿ

f

·

f

(d¸ /dt) as a function of Ro

Á

. Least-square fit
( ) for the range 0.06 Æ Ro

Á

Æ 0.31, which yields the power-law “ = a exp (b Ro

Á

) with a = 3.90
and b = ≠16.72. The thin dashed line ( ) represents a law of the type “ ≥ Ro

≠1

Á

, where the
constant of proportionality was arbitrarily chosen to fit the leftmost data point. The dot dashed
line ( ) represents a zero growth-rate.

the mean value of ¸ . The slope of the linear fit non-dimensionalized with the forcing
parameters, i.e., “ = Ÿ

f

·

f

(d¸ /dt), is shown in Fig. 4.6 as a function of Ro

Á

. For
Ro

Á

Ø 0.39, the e�ects of rotation are irrelevant and “ is approximately zero within
statistical error, suggesting that the integral length scales remain approximately at
their initial value. More precisely, the linear regression leads to both positive and
negative values of “ in this range. Nevertheless, the values are all very small and at
most of the order of O(10

≠3

). On the other hand, the range 0.06 Æ Ro

Á

Æ 0.31 is
marked by a significant rise in “, and, specifically for this range, a least-square fit
yields the power law “ = a exp (b Ro

Á

) with a = 3.90 and b = ≠16.72 (Fig. 4.6b).
A linear growth rate for ¸ is in agreement with experimental observations

(Jacquin et al. (1990); Staplehurst et al. (2008)), numerical simulations (Bartello
et al. (1994); Yoshimatsu et al. (2011)) and closure theories such as the EDQNM2
of Cambon & Jacquin (1989). Nevertheless, the growth rate obtained here is es-
sentially di�erent than what has been found in previous studies, which have mostly
focused on decaying homogeneous isotropic turbulence. For example, the laboratory
experiments of Staplehurst et al. (2008) and the DNS of Yoshimatsu et al. (2011)
found a growth rate proportional to 1/·

�

= 2�, which would result in “ ≥ Ro

≠1

Á

.
As we see from Fig. 4.6, our results do not agree with such a scaling, which suggests
a faster increase in “ for decreasing Ro

Á

. Nevertheless it is important to remark
that previous work have analyzed the first initial time instants upon the onset of
rotation, while our results include an extended observation time and it is therefore a
prediction of the growth rate of columnar eddies at later time instants. For example,
the numerical results by Yoshimatsu et al. (2011) consider a total simulation time
of 10 ·

�

for their strongest rotation case (Ro

⁄

= 0.90), whereas our results for a
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similar parameter point (run18; Ro

⁄

= 0.80) contains approximately 270 ·

�

. Last,
let us remark that the transition Rossby number found here (based on the disparity
between ¸ and ¸‹) is in close agreement with previous observations: for instance,
Moisy et al. (2011) report that anisotropy develops in decaying rotating turbulence
at a macro and a micro Rossby number of 0.4 and 1.8, respectively. In comparison,
results in Fig. 4.6 suggest a transition within the range 0.31 < Ro

Á

< 0.39, which
corresponds to 2.32 < Ro

⁄

< 2.91.
Note that to prevent the results from being a�ected by numerical artifacts, we

stopped the simulations when ¸ was about 8 time smaller than 2fiL . This con-
straint limited our runs to a duration of 30 ·

f

(12.7 T

e

), and was due to the simulation
with Ro

Á

= 0.06. Obviously, for the remaining cases, 2fiL /¸ > 8 at t = 30 ·

f

. The
decision of when to interrupt the runs were rather arbitrary, but a value of 8 for
the ratio 2fiL /¸ is common in DNS of homogeneous isotropic turbulence (Cardesa
et al., 2017).

4.4. Scaling Laws for the Energy Dissipation Rate
The analysis for the integral length scales in the previous section has identified two
regimes in our dataset. Whereas the group of runs R1 display a dynamics similar
to homogeneous isotropic turbulence with no characteristic growth of ¸ , runs in
the group R2 are characterized by strong anisotropy and “ > 0. In this section, we
present results for the evolution of the energy dissipation rate, and seek for similarity
relations that can collapse the data in the di�erent regimes.

After the onset of rotation, both K and Á

‹

evolve in time according to the
conservation of energy, i.e., dK/dt = ≠Á

‹

+ Á

I

. While K grows rapidly (Fig. 4.7a),
the viscous dissipation Á

‹

first decreases monotonically until a minimum Fig. 4.7b.
The minimum value decreases with Ro

Á

, and for the runs of group R2 it scales with
Ro

0.36

Á

(not shown). After reaching its lowest value, Á

‹

continues to grow towards
the power input Á

I

, although the inequality Á

‹

< Á

I

remains for some of the cases up
to the final simulation time. Generally speaking, the mismatch between the energy
dissipation rate and the energy input rate in Fig. 4.7b is stronger for small Ro

Á

(group R2). For the runs in this group, we also observe that the parallel direction
contributes significantly to Á

‹

(Fig. 4.7c). By splitting the energy dissipation rate
into its normal and parallel contributions such that Á

‹

= 2Á

‹,‹ + Á

‹,

, where Á

‹,‹ =

(Á

‹,11

+ Á

‹,22

)/2 and Á

‹,

= Á

‹,33

, we find that for decreasing Ro

Á

the contribution
due to the parallel direction increases, whereas for large Ro

Á

the energy dissipation
rate is equally partitioned among both directions. For instance, for Ro

Á

= 1.54 the
ratio Á

‹,‹/Á

‹,

is close to 1, while for Ro

Á

= 0.06 almost half of the total dissipation
stems from Á

‹,

. In Fig. 4.7c, we also note that Á

‹,‹/Á

‹,

remains approximately
unchanged in time for t > 15 ·

f

. Averaging Á

‹,‹/Á

‹,

(Fig. 4.7d) in the interval
15 ·

f

< t < 30 ·

f

shows that Á

‹,‹/Á

‹,

scales with Ro

0.37

Á

for 0.31 < Ro

Á

< 0.14,
while for smaller Ro

Á

the ratio between normal and parallel dissipation rates seems
to reach an asymptotic limit of 0.54 for Ro

Á

< 0.9. The latter finding however needs
to be confirmed by studies at even lower Ro

Á

.
The imbalance Á

‹

”= Á

I

is the footprint of an inverse energy cascade that is
triggered by the Coriolis force, and that leads to the accumulation of energy at the
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Figure 4.7: Time evolution of (a) box averaged kinetic energy K and (b) energy dissipation rate
Á

‹

. Panel (c) shows the ratio between the normal (Á
‹,‹) and parallel (Á

‹,

) energy dissipation
rate, whereas panel (d) shows the data from (c) averaged in the interval 15 ·

f

< t < 30 ·

f

and in
terms of Ro

Á

.

large scales. This is expected to occur when Ro

Á

is below a critical Rossby number
that depends on the geometrical dimensions of the system (Deusebio et al., 2014;
Pestana & Hickel, 2019b; Smith et al., 1996). In such cases, however, equilibrium
(Á

‹

= Á

I

) can still be restored after long integration times when the energy in
the wavenumbers Ÿ < Ÿ

f

is su�ciently high to contribute to Á

‹

(Seshasayanan &
Alexakis, 2018; Valente & Dallas, 2017). For the runs considered in this study, the
critical Ro

Á

is approximately 1 as show in Pestana & Hickel (2019b).
From Fig. 4.7b, it is evident that a naive scaling in terms of the forcing pa-

rameters can not cause the di�erent lines in Fig. 4.7b to collapse, as it would in
homogeneous isotropic turbulence. In other words, an approximation of Á

‹

in terms
of u

f

and Ÿ

f

is invalid because the evolution of Á

‹

in Fig. 4.7b depends clearly on
Ro

Á

. In homogeneous isotropic turbulence, the estimation Á

‹

≥ u

3

f

Ÿ

f

su�ces since
both u

f

and 1/Ÿ

f

are proportional to a characteristic velocity and a characteristic
length, and this expression is equivalent to Á

‹

≥ (u

Õ iso

)

3

/¸

iso. We must therefore
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search for other ways to approximate Á

‹

in rotating turbulence.

4.4.1. Spectral Transfer Time
To address this problem we followed the methodology introduced by Kraichnan
(1965) within the context of MHD and bridged by Zhou (1995) to homogeneous
rotating flows. The basic idea is that the rate at which energy is transferred to the
smaller scales depends on an energy content and on a time scale, viz. the spectral
transfer time. If we treat the characteristic scales as global quantities instead of
wavenumber dependent, the dissipation law can be written in terms of the r.m.s.
velocity and the spectral transfer time as

Á

‹

≥ u

Õ2

·

s

. (4.7)

The spectral transfer time, however, is composed of two additional time scales,
namely the nonlinear time scale ·

nl

and the relaxation time scale ·

3

. Whereas ·

nl

indicates how fast the triple velocity correlations are built up and favors the forward
energy cascade, ·

3

serves as a relaxation time or a measure of how fast the triple
velocity correlations are destroyed. The assumptions that the energy dissipation
rate Á

‹

is directly proportional to ·

3

and that the energy cascade is local lead to the
so-called “golden rule” (Zhou, 1995):

·

s

≥ ·

2

nl

·

3

. (4.8)

In Eq. (4.8), ·

nl

involves a velocity and a length scale and ·

3

can rest on any other
time scales that are relevant for the problem. For instance, in forced homogeneous
isotropic flows, ·

3

≥ ·

f

≥ ·

nl

≥ ¸

iso

/u

Õ iso, which implies ·

s

≥ ¸

iso

/u

Õ iso to recover
the well known dissipation law Á

‹

≥ (u

Õ iso

)

3

/¸

iso, extensively verified by DNS and
experiments. For more complex flows, which involve other time scales like rotating
turbulence with the rotation time scale ·

�

= 1/(2�), the relaxation time scale ·

3

can be assumed as function of the type ·

3

= ·

3

(·

f

, ·

�

) (Kraichnan, 1965; Matthaeus
& Zhou, 1989; Zhou, 1995). Combining Eqs. (4.7) and (4.8) leads to

Á

‹

≥ u

Õ2
3

·

3

·

2

nl

4
, (4.9)

and the problem of determining the dissipation law becomes the one of determining
·

nl

and ·

3

.

4.4.2. Evaluation of Current Available Dissipation Laws
In current literature, a few dissipation laws for homogeneous rotating turbulence
have been proposed. For example, the approximations that follow from the theory
of Galtier (2003); Nazarenko & Schekochihin (2011); Zhou (1995) and Baqui &
Davidson (2015) are

Á

‹

≥ u

Õ4

�¸

2

, Á

‹

≥ u

Õ4
¸

�¸

3

‹
, Á

‹

≥ u

Õ3

¸‹
, and Á

‹

≥ u

Õ3

¸

, (4.10)
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respectively. Although these authors do not explicitly present their theories within
the framework of a spectral transfer time, we have taken the freedom to also sum-
marize their theories within this context.

The law proposed by Zhou (1995), for instance, ignores anisotropy. It assumes
that ·

nl

≥ ¸/u

Õ and that the relaxation time scale is proportional to the rotation time
scale, i.e., ·

3

≥ ·

�

, to yield Á

‹

≥ u

Õ4
/(�¸

2

). In contrast, dimensional analysis for
the weak inertial-wave theory proposed by Galtier (2003), which takes into account
scale anisotropy, results in Á

‹

≥ u

Õ4
¸ /(�¸

3

‹), where ·

nl

≥ ¸‹/u

Õ and ·

3

≥ ¸ /(�¸‹).
When anisotropy is however disregarded, i.e., ¸ ≥ ¸ ≥ ¸‹, the predictions by Galtier
(2003) reduce to the relation proposed by Zhou (1995). The critical balance theory
of Nazarenko & Schekochihin (2011) considers that ·

nl

≥ ·

3

≥ ¸‹/u

Õ and the theory
of Baqui & Davidson (2015) suggests that ·

nl

≥ ·

3

≥ ¸ /u

Õ.
When we apply the scaling laws in Eq. (4.10) to the data presented in Fig. 4.7b,

we find a good match for the runs in group R1. In Figs. 4.8 and 4.9, we scale Á

‹

with
the di�erent laws; Fig. 4.9 shows the inverse of what appears in Fig. 4.8. We present
the results in this manner in order to provide a fair treatment and avoid misinter-
pretations from arbitrary choice of the axis limits, which can increase/decrease the
spread between the lines.

By comparing Figs. 4.8a and 4.9a, we see that the approximation suggested
by Zhou (1995) can not collapse the data. Whereas the data for the group R2
appears close to straight lines in Fig. 4.9a, Fig. 4.8a shows that they diverge and
instead increase in time. For large Ro

Á

, however, both figures show straight lines,
suggesting a correction factor in terms of Ro

Á

. For the weak inertial-wave theory,
Fig. 4.8b shows that the curves of the 5 last runs in group R2 (lowest Ro

Á

) seems
to follow a similar trend. This behavior is however not observed in Fig. 4.9b, which
shows that these lines actually increase in time with approximately the same slope.
For the runs in group R1, Fig. 4.9b shows a reasonable collapse of the data, which
is however opposed by Fig. 4.8b. The predictions by Nazarenko & Schekochihin
(2011) in Figs. 4.8c and 4.9c show that for large Ro

Á

, the curves are flat and tend
closer to each other. This is expected as ¸‹ must tend to ¸

iso for large Ro

Á

, and
in this limit the dissipation law of homogeneous isotropic turbulence is recovered.
For small Ro

Á

, this scaling delivers approximately straight lines in both diagrams,
which suggests that a correction in terms of Ro

Á

might also be possible.
The best approximation, at least for part of the data-set (group R1), is obtained

with the scaling law of Baqui & Davidson (2015). Figure 4.8d and Fig. 4.9d indicates
that this scaling is suitable for the runs in group R1 (indicated with an arrow in
the figure). For the other runs (group R2), Fig. 4.8d and Fig. 4.9d also provides
unsatisfactory results. We are then motivated to look into a similarity law for this
group of runs.

4.4.3. A Dissipation Scaling Law for Runs in Group R2
To find a dissipation law for runs in group R2 we base ourselves on Eq. (4.9). The
first question we turn to is the one of finding an approximation for ·

nl

. The non-
linear time scale involves an estimation of a velocity and a length scale, which we
shall assume as u

Õ and ¸‹, respectively. The reason behind this choice is as follows.
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Figure 4.8: Compensated time evolution of the energy dissipation rate for 0.06 < Ro

Á

< 1.54.
Di�erent panels correspond to the di�erent scaling laws found in the literature: (a) Zhou (1995); (b)
Weak inertial-wave theory (Galtier, 2003); (c) Critical balance theory (Nazarenko & Schekochihin,
2011); (d) Baqui & Davidson (2015).
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Figure 4.9: Compensated time evolution of the energy dissipation rate as in Fig. 4.8, but plotted
as the inverse. Di�erent panels correspond to the di�erent scaling laws found in the literature: (a)
Zhou (1995); (b) Weak inertial-wave theory (Galtier, 2003); (c) Critical balance theory (Nazarenko
& Schekochihin, 2011); (d) Baqui & Davidson (2015).
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From Figs. 4.5d and 4.7b, we observe that ¸‹ and Á

‹

display similar dynamics,
although inverted; the evolution of each variable is the opposite of the other. This
behavior hints to a dependency of the form Á

‹

≥ 1/¸‹, which can also be justified
like in the critical balance theory (Nazarenko & Schekochihin, 2011). Within this
theory, the basic idea is that rotation tends to destroy derivatives along the direction
of rotation and the advection term is mainly due to the normal velocity gradients and
the normal velocity field. Thus, ¸‹ is taken as the relevant length scale for the non-
liner interactions. On the other hand, for the velocity scale, an alternative would be
to take information about the transversal velocity fields only as in Baqui & Davidson
(2015). Nevertheless, although rotation favors two dimensionalization, the velocity
field remains three component and the anisotropy in the Reynolds stress tensor is
minimal Yeung & Zhou (1998). For the above reasons, we assume ·

nl

≥ ¸‹/u

Õ, and
Eq. (4.9) can be in a preliminary step expressed as

Á

‹

≥ u

Õ4

¸

2

‹
·

3

(·

f

, ·

�

). (4.11)

Now, to determine the relaxation time scale, we rearrange Eq. (4.11) so that
·

3

appears as a function of the other terms and examine its temporal evolution.
Figure 4.10a shows ·

3

≥ Á

‹

¸

2

‹/u

Õ4 over time for all runs. After a transient of
approximately 10 ·

f

, we observe that the curves for di�erent Ro

Á

reach a plateau,
with a terminal value that depends on Ro

Á

. To determine this dependency, results
from Fig. 4.10a are then averaged in the interval 10 ·

f

< t < 30 ·

f

and the mean
value is shown against the corresponding Rossby number in Fig. 4.10b. In the
latter figure, the ordinates appear normalized by the nonlinear time scale ·

iso

nl

times
C

iso

Á

, which is the constant of proportionality of the dissipation law in homogeneous
isotropic turbulence. For runs in group R1, ·

3

/(·

iso

nl

C

iso

Á

) increases with Ro

Á

and
asymptotically approaches 1, implying that for these Ro

Á

the e�ects of rotation
are negligible and the scaling law of homogeneous isotropic turbulence is recovered.
Contrarily and more surprising, we see that ·

3

/(·

iso

nl

C

iso

Á

) follow the power-law Ro

h

Á

with h = 0.62 for the runs in group R2. Consequently, for this group, we can finally
express Eq. (4.11) as

Á

‹

≥ u

Õ4

¸
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‹
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nl
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0.62

Á

) ≥ u
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53
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nl

·

nl

4
Ro

0.62

Á

6
. (4.12)

Equation (4.12) summarizes the e�ects of rotation for the runs with 0.06 < Ro

Á

<

0.31, and suggests that in a rotating frame of reference, the disparity between ·

nl

and ·

iso

nl

increases, such that the ratio (·

nl

/·

iso

nl

) shrinks with the inverse of Ro

0.62

Á

.
In other words, Eq. (4.12) implies that the relaxation time scale is ·

3

≥ ·

iso

nl

Ro

0.62

Á

.
Finally, scaling the data in Fig. 4.7b with Eq. (4.12) leads to Fig. 4.11a, where very
good agreement is found for all the cases in group R2.

4.4.4. Energy Spectra
With a dissipation law at hand, phenomenological arguments can be further em-
ployed to obtain predictions for the scaling exponents of the di�erent energy spectra.
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iso

Á

(b). Two reference lines are included. The horizontal line at the top signalizes that
for large Ro

Á

, the relaxation time scale tends to the value of the non-linear time scale of the
homogeneous isotropic case. The other line shows the power-law dependency of the type Ro

h

Á

with
h = 0.62 for runs of the group R2.
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Figure 4.11: Time evolution of the energy dissipation rate scaled according to Eq. (4.12) for
Ro

Á

Æ 0.

In fact, the di�erent theories presented in Eq. (4.10) are associated with predictions
for the kinetic energy spectra. Strictly speaking, the validation of scaling laws for
the energy spectra requires data with a well defined inertial range, in which the
spectral energy flux is constant and equals Á

‹

for a wide range of wavenumbers. In
our runs, the latter does not apply due to the relatively low Re

⁄

, see Fig. 4.12.
If we assume that the energy cascade is local, dimensional analysis leads to

(Zhou, 1995)

Á

‹

≥
3

·

3

·

2

nl

4
Ÿ Ÿ‹E(Ÿ‹, Ÿ ). (4.13)

In the equation above, the energy content of a scale of typical size ¸ ≥ 1/Ÿ was
assumed to be of the order of Ÿ Ÿ‹E(Ÿ‹, Ÿ ), where E(Ÿ‹, Ÿ ) is the energy spectra
and Ÿ‹ and Ÿ are the wavenumbers in the normal and longitudinal directions,
respectively. Using Eq. (4.12) in Eq. (4.13), we obtain that E(Ÿ‹, Ÿ ) ≥ BŸ

≠2

‹ Ÿ

≠1,
with B = (Á

‹

Ro

≠0.62

Á

/·
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)

1/2, whereas the weak inertial-wave theory of Galtier
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Figure 4.12: Energy spectra at the last instant of time, i.e., t = 30 ·

f

, for every other case in
Table 4.2. Left panels show cases of group R1, whereas right panels show cases of group R2. (a-b)
Spherical energy spectra; (c-d) normal energy spectra; (e-f) longitudinal energy spectra. The gray
dashed lined represents the initial isotropic state ( ). Colormap is as in Table 4.2.
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(2003) predicts that E(Ÿ‹, Ÿ ) ≥ Ÿ

≠1/2

Ÿ

≠5/2

‹ .
A least-square fit for the case with Ro

Á

= 0.31 indicates that E(Ÿ‹) varies with
Ÿ

≠2.54

‹ in the range 1.2 < Ÿ‹/Ÿ

f

< 6 (Fig. 4.12d), and that E(Ÿ ) varies with Ÿ

≠0.48

in the range 0.05 < Ÿ /Ÿ

f

< 0.8 (Fig. 4.12f). The exponents, however, increase with
Ro

Á

: for Ro

Á

= 0.3 (largest Ro

Á

displayed on the right panels of Fig. 4.12), we find
that in the same range E(Ÿ‹) varies with Ÿ

≠2.17

‹ and that E(Ÿ ) changes with Ÿ

≠0.34.
For the runs of group R1 we do not observe any significant changes with respect to
the initial isotropic energy spectrum. Di�erently from the runs in R2, where there
is a substantial accumulation of energy for Ÿ < Ÿ

f

(see e.g., Fig. 4.12b), the energy
spectra for runs in group R1 are marginally altered with respect to the isotropic
initial conditions (see left panels in Fig. 4.12). There is also no wavenumber range
with a distinctive scaling, apart from the range Ÿ < Ÿ

f

which scales approximately
with Ÿ

2, as in the initial isotropic conditions (Dallas et al., 2015).
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5.1. Background
The inherent multiscale nature of atmospheric phenomena makes accurate numerical
weather predictions a challenging task. At least for the near feature, solving the com-
plete set of governing equations is out of reach (Bauer et al., 2015). Parametrization
techniques, either based on a simplified physical description of the atmospheric pro-
cesses or based on statistics (e.g., stochastic parametrization (Berner et al., 2017))
will therefore continue to gain attention. Nevertheless, steady progress in this area
requires unveiling the processes driving small-scale atmospheric phenomena. In this
regard, Direct Numerical Simulations (DNS) of simplified scenarios can help us un-
derstand at least part of the problem.

Among the myriad of processes that take place in the atmosphere, gravity waves
have been recognized as an important player for the middle and upper atmosphere.
One interesting aspect is that due to instabilities they can break and induce turbu-
lence and dissipation in the overall large-scale flow (gravity wave drag). Further-
more, gravity waves transport energy and momentum from where they are created
to regions far away. Typical wavelengths of gravity waves are usually unresolved by
the numerical grid, which implies that their e�ects have to be included in simula-
tions through parametrization. For example, the deposition of momentum and heat
dissipation in the large-scale flow are usually based on linear wave theory models,
such as those originally introduced by Lindzen (1981), or based on nonlinear wave
interactions, as in the Doppler-spread parametrization of Hines (1997).

Several studies have focused on gravity waves giving special attention to the
growth of instabilities and the breakdown process. The studies of Andreassen et al.
(1994); Fritts et al. (1994); Isler et al. (1994), for instance, were among the first
to recognize the full three-dimensional character of the breakdown process and to
investigate the structure of the eddy motion, as well as its influence on the transport
of momentum and heat. More recently, the focus has been shifted towards expanding
the parameter space, while fully resolving the smallest turbulent scales. The DNS by
Fritts et al. (2009a,b) considered two gravity waves above and below the threshold
for static instability and at Reynolds number of the order of O(10

4

) (based on
the wavelength and the buoyancy period); and Fritts & Wang (2013); Fritts et al.
(2013) analyzed the breakdown of a monochromatic wave due to interaction with
vertically-varying fine structure.

Whereas most studies like the ones cited above have focused on high-frequency
inertia-gravity waves (HGWs) for which the e�ects of the Coriolis force can be ne-
glected, little attention has been paid to low-frequency inertia-gravity waves (IGWs).
In fact, it can be argued that HGWs are more relevant, since the background fre-
quency due to stratification supersedes the Coriolis parameter in the atmosphere.
Nevertheless, the dynamics of gravity waves depend on their frequency, the e�ects
of which must be studied separately (Achatz, 2005, 2007a,b).

Regarding the breakdown of IGWs, to the best of our knowledge the work of
Remmler et al. (2013) was the first to present resolved three-dimensional simula-
tions. In that work, the authors considered a statically unstable monochromatic
wave superimposed with its primary and secondary perturbations derived from the
linear theory studies of Achatz (2007b) and Fruman & Achatz (2012). The DNS by
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Remmler et al. (2013, 2015) showed that the breakdown process constitutes of a se-
quence of turbulent bursts, accompanied by a rapid reduction of the wave amplitude.
Additionally, their analyses indicate that the duration of the breaking events in 3D
simulations are shorter than those in typical investigations, which assume a three-
component velocity field with a two-dimensional spatial dependency (also known as
2.5D simulations), and that the energy dissipation rate is less homogeneous than for
HGWs.

In the present contribution, we build on the work of Remmler et al. (2013) and
turn attention to the breaking mechanism of IGWs at higher Reynolds numbers. Our
aim is to provide high-fidelity simulation data, which, on one hand highlights some
of the underlying features of the energy conversion during the breakdown process,
and, on the other hand, serves as reference data for models that do not resolve
inertia-gravity waves and wave-generated turbulence and instead account for their
e�ects through parametrization. Using the same setup as in Fruman et al. (2014)
and Remmler et al. (2013), we perform DNS at two distinct Reynolds numbers. We
start o� with flow field visualizations describing the breaking events. Second, we
investigate the temporal evolution of the kinetic energy and the available potential
energy and of their associated energy dissipation rate, as well as the vertical energy
spectra. Last, we turn our focus to the energy transfer process. We analyze it from
the aspect of the relevance of each term in the energy budget equation, as well as
from the view of energy transfers between the mean and the fluctuating field.

5.2. Methodology
5.2.1. Governing Equations
We consider fluid motion in the Earth’s atmosphere governed by the Boussinesq
equations on the f -plane:

Ò · u = 0

ˆu
ˆt

+ u · Òu = ≠Òp + bn ≠ f

c

n ◊ u + ‹Ò2u
ˆb

ˆt

+ u · Òb = ≠u · N

2n + –Ò2

b.

(5.1)

Here, u = [u, v, w] is the velocity field, t denotes time, p is the pressure field, and b is
the buoyancy field, which is defined as normalized deviations of the potential temper-
ature T from the vertically averaged temperature T

ú
(z). That is, b = g(T ≠T

ú
)/T

0

,
where T

0

and g are the reference temperature and the magnitude of the gravity
field, respectively. Further, the properties of the fluid are the kinematic viscosity ‹

and the thermal di�usivity –, and f

c

= 2�

E

sin — is the Coriolis parameter with �

E

the Earth’s angular velocity and — the latitude on the f -plane. The Brunt-Väisälä
frequency is N

2

= (g/T

0

)dT

ú
/dz and n is the negative gravity unit vector. The

coordinate system for a fixed observer on Earth is [x

Õ
, y

Õ
, z

Õ
].

For vanishing viscosity and thermal di�usivity, Eq. (5.1) admits wave like solu-
tions of the form Ÿ{[û, v̂, ŵ,

ˆ

b] exp (I„)}, where Ÿ denotes the real part, û, v̂, ŵ and
ˆ

b are complex amplitudes of the velocity and buoyancy field, „ is the phase (Achatz
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Figure 5.1: Sketch showing the relation between the di�erent coordinate systems and the base wave.
Panel (a) shows the rotation of the Earth’s coordinate system [xÕ

, y

Õ
, z

Õ] about the y

Õ-axis such that
the base wavenumber K is aligned with the vertical axis ÷. Panel (b) shows the computational
domain in the two-times rotated coordinate system [x, y, z].

& Schmitz, 2006), and I the imaginary unit. Here, we will focus on two-dimensional
waves that propagate at an angle � with the x

Õ-direction (see Fig. 5.1a). In these
cases, the gravity wave can be written as

[u

Õ
, v

Õ
, w

Õ
, b

Õ
] = Ÿ

;
a

5
i

Ê

k

,

f

c

k

, ≠i

Ê

m

, ≠N

2

m

6
e

i(kx

Õ
+mz

Õ≠Êt)

<
, (5.2)

where k and m are the components of the base wavenumber vector K, such that
the wavelength is � = 2fi/K with K = ÎKÎ =

Ô
k

2

+ m

2. In Eq. (5.2), the wave
frequency Ê is defined as

Ê

2

= N

2

cos

2

� + f

2

c

sin

2

�, (5.3)

and a is a non-dimensional amplitude. For a = 1 and t = 0 the wave is neutrally
stable at its least static stable point, i.e., ˆb/ˆz

Õ
= ≠N

2 at „ = kx

Õ
+ mz

Õ
= 3fi/2;

see Yau et al. (2004), for example.
Throughout this work, we consider inertia-gravity waves with phase velocity c

p

and group velocity c
g

as illustrated in Fig. 5.1. To ease the representation of the
inertia-gravity wave, we introduce a sequence of coordinate transformations, which
is better understood by looking at Fig. 5.1b. The first transformation is a coun-
terclockwise rotation by fi/2 ≠ � around the positive y

Õ-direction, such that in the
rotated coordinate system (›, y

Õ
, ÷), the ÷-direction is aligned with the wavenumber

vector K. The second transformation, on the other hand, simply rearranges the
coordinate system through a “ = fi/2 counterclockwise rotation around ÷. This set
of transformation leads to the double-rotated coordinate system [x, y, z], which is
related to the Earth’s coordinate system [x

Õ
, y

Õ
, z

Õ
] by

x

Õ
= ≠y sin � + z cos �

y

Õ
= x

z

Õ
= y cos � + z sin �.

(5.4)
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Accordingly, the relation between the velocity field [u

Õ
, v

Õ
, w

Õ
] in the Earth’s coordi-

nate frame and the velocity field [u, v, w] in the double-rotated coordinate system
is essentially the same as Eq. (5.4), but with the spatial coordinates replaced by
the corresponding velocities, since, e.g., dx/dt = u and dx

Õ
/dt = u

Õ. Upon substi-
tution in Eq. (5.2), and taking the real-valued part only, it can be shown that the
monochromatic inertia-gravity wave assumes the following form:

u =

af

c

K cos �

cos „

v = ≠ aÊ

K sin � cos �

sin „

w = 0

b =

aN

2

K sin �

cos „.

(5.5)

Note that „ = (kx

Õ
+ mz

Õ ≠ Êt) = (Kz ≠ Êt), which can be obtained with the aid
of k = K cos � and m = K sin �.

5.2.2. Numerical Setup
The design of the initial conditions for the simulations uses previous knowledge
on the instability of the inertia-gravity waves. Following Achatz (2007a), Fruman
& Achatz (2012) and Fruman et al. (2014), first a normal mode (NM) analysis of
the base wave is performed to identify the perturbation with the largest growth
rate. The velocity field of this primary perturbation has three non-zero components
that vary along the two spatial directions x and z and which is independent of
the third coordinate y. Second, a tangent linear stability analysis about the initial
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Figure 5.2: Contours of the buoyancy field depicting the initial condition for the simulations of
cases IGW81 and IGW72. The yellow isosurfaces (b = 0) spanning the x and y-directions outlines
the primary and the secondary perturbations of the base wave.
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Table 5.1: Physical and numerical parameters for the simulation of cases IGW72 and IGW81.

Domain Size L

x

= 3981 m; L

y

= 400 m; L

z

= 3000 m

Wavelength of the basewave � = 3000 m

Wavelengths of the perturbations � = 3981 m; �‹ = 400 m

Wave Vector Orientation � = 89.5°
Non-dimensional Wave Amplitude a = 1.2

Base Wave Amplitude u = 8.97 m/s; v = 14.56 m/s; b = 0.23 m/s

2

Phase Velocity Îc
p

Î = ≠0.106 m/s

Coriolis Parameter f

c

= 1.367 ◊ 10

≠4

s

≠1

Brunt-Väisälä Frequency N = 2 ◊ 10

≠2

s

≠1

Case IGW81:
Kinematic Viscosity ‹ = 1 m

2

s

≠1

Number of Grid Points N

p

= 2304 ◊ 246 ◊ 1728

Numerical Resolution �x = 1.73 m; �y = 1.63 m; �z = 1.74 m;
Case IGW72:
Kinematic Viscosity ‹ = 0.25 m

2

s

≠1

Number of Grid Points N

p

= 3072 ◊ 294 ◊ 2304

Numerical Resolution �x = 1.30 m; �y = 1.36 m; �z = 1.30 m;

2.5D dynamics developing after perturbing the wave by its leading normal mode
is performed to obtain the fully 3D secondary perturbation, which is taken as the
singular vector (SV) that maximizes the perturbation growth within the chosen op-
timization time (5 minutes). The initial conditions are then finally composed of the
base wave superimposed with its primary (NM) and secondary (SV) perturbations
and are fully three-dimensional owing to the singular vector — see Fig. 5.2 for an
illustration of the initial conditions.

Using this technique, we examine two inertia-gravity waves with vertical wave-
length � = 3000 m propagating at an inclination � = 89.5° and at di�erent altitudes
in the middle atmosphere, namely at 81 km and at 72 km. The corresponding hori-
zontal wavelength of the basewave in the Earth frame of reference is �

x

Õ
= 343 km.

The Coriolis parameter is taken from the f -plane approximation for a latitude
— = 70°, i.e., f

c

= 1.367 ◊ 10

≠4

s

≠1, and the Brunt-Väisälä frequency is taken
as constant in the range 72 ≠ 81 km with N = 2 ◊ 10

≠2

s

≠1. In terms of physical
parameters, the only di�erence between the two cases, henceforth referred to as
IGW81 and IGW72, is the kinematic viscosity ‹, which we estimate from the US
standard atmosphere model for the corresponding altitudes. The Reynolds number
based on the wavelength of the base wave � and on the buoyancy period T

b

= 2fi/N

is Re = �

2

/(‹T

b

) = 28 647 (case IGW81) and Re = 114 591 (case IGW72). In
both cases, the ratio of kinematic viscosity to thermal di�usivity is assumed to be
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Pr = ‹/– = 1, where Pr is the Prandtl number.
The wavelength of the base wave (�) defines the extension of the numerical do-

main in the z-direction, whereas the wavelengths of the perturbations, i.e., the lead-
ing NM with � = 3981 m and the SV with �‹ = 400 m, determines the normal (x)

and the transversal (y) domain size: [L

x

, L

y

, L

z

] = [� , �‹, �] = [3981, 400, 3000]m.
The set of equations Eq. (5.1) are solved numerically using the pseudospectral

technique. To compute the spatial gradients, we employ dealiased (2/3-rule) fast
Fourier Transforms (Pekurovsky, 2012). For time integration, we use a third-order
low-storage Runge-Kutta scheme to integrate the nonlinear, the Coriolis, and the
buoyancy di�usivity terms, whereas the viscous forces are integrated exactly us-
ing the integrating factor technique (Rogallo, 1977). For comparison, note that in
Remmler et al. (2013) the spatial gradients are approximated with a 4th order finite
volume scheme. Further, as in Remmler et al. (2013), we continuously translate
the numerical domain along the direction of wave propagation, i.e., z, as if we were
following the base wave. The translation velocity equals to the magnitude of the
phase-velocity.

The numerical tool is essentially the same as in Pestana & Hickel (2019b), with
minor modifications to accommodate the solution of an additional scalar transport
equation for the buoyancy field. The total number of grid points is N

p

= 2304◊246◊
1728 in case IGW81 and N

p

= 3072◊294◊2304 in case IGW72. The corresponding
numerical resolution along the di�erent directions [�x, �y, �z] is [1.73, 1.63, 1.74]m

for IGW81 and [1.30, 1.36, 1.30]m for IGW72.
For a summary of the physical and numerical parameters, please refer to Ta-

ble 5.1.

5.3. Results
Before we present the results, let us first introduce some notation. For any variable,
the angular brackets represent spatial averages, i.e., È · ÍL are box-averages, whereas
È · Í

xy

represent plane averages along the x and y directions. Spatial fluctuations
with respect to plane averages are denoted by a prime, e.g., the fluctuation of the
velocity in the x-direction is u

Õ
= u ≠ ÈuÍ

xy

. When convenient, we use indices
to denote the di�erent Cartesian directions, i.e., the velocity field [u, v, w] is also
referred to as [u

1

, u

2

, u

3

]. Unless stated otherwise, summation over repeated indices
is implied.

Cases IGW72 and IGW81 were integrated in time for 6 h. The total simulated
time is slightly shorter than the wave period T

w

= �/c

p

, which is approximately
8 h. As we will see in the qualitative and quantitative analysis below, the most
interesting di�erences in the breaking behavior of the two cases occur within the
simulated first couple of hours.

To asses the su�ciency of the numerical resolution in resolving the smallest scales
of turbulence, we estimated the Kolmogorov lengthscale by computing

¸

kolmo

=

C3
‹

3

Á

k

4
1/4

D
(5.6)
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Figure 5.3: Time evolution of the total energy dissipation rate ÈÁ
t

ÍL for cases IGW81 ( ) and
IGW72 ( ). The filled circles indicate local maxima and the instant of each breaking event.

locally and for every instant of time. In Eq. (5.6), Á

k

= 2S

ij

S

ij

is the local kinetic
energy dissipation rate, with S

ij

= (ˆu

i

/ˆx

j

+ ˆu

j

/ˆx

i

)/2 the strain-rate tensor.
We find that for case IGW81, the numerical resolution guarantees that approx-

imately at all times � < fi¸

kolmo

(Kaneda et al., 2003), where � is the smallest
grid width, i.e., � = min{�x, �y, �z}. For case IGW72, the resolution is lower
and satisfies, on average, � < 1.43fi¸

kolmo

. We are thus confident that both simu-
lations resolve the small-scale turbulent motion and that the results would remain
unchanged if the mesh is further refined.

5.3.1. Flow Field Description
A flow field visualization provides us with the general picture of the problem. In
addition to several instantaneous snapshots (Figs. 5.4 and 5.5), 2 videos are in-
cluded as supplementary material (Movie 1 and Movie 2). During the course of the
simulation, we observe that bursts of turbulence induce small-scale motion in the
overall large-scale flow. In both cases, however, turbulence is not omnipresent; it
is instead confined to certain regions of the domain and peculiar of specific time
intervals. The main qualitative di�erence between cases IGW81 and IGW72 is the
presence of much finer scales of motion in the latter, a natural consequence of its
higher Reynolds number.

The primary and secondary perturbations that define the initial conditions cause
the wave to break almost instantly in both cases. The breaking events begin with
three-dimensional flow structures developing in the upper-half of the domain where
the base wave is least stable, i.e., „ = 3fi/2 for z = (3/4)� = 2250 m cf. Sec-
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(a) t = 0.03 h (b) t = 0.09 h (c) t = 0.24 h

(d) t = 0.34 h (e) t = 0.47 h (f) t = 0.57 h

(g) t = 3.68 h (h) t = 3.94 h (i) t = 4.12 h

(j) t = 4.64 h (k) t = 4.96 h (l) t = 5.12 h

Figure 5.4: Instantaneous flow-field visualizations for case IGW81 showing the isosurfaces Q =
0.004 s≠2 on top of contours of the buoyancy field on the plane y = 400 m. Panels (a) to (f)
correspond to the first breaking event, whereas panels (g) to (i) and panels (j) to (l) correspond to
the third and fourth events, respectively.
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(a) t = 0.10 h (b) t = 0.19 h (c) t = 0.33 h

(d) t = 0.42 h (e) t = 0.48 h (f) t = 0.59 h

(g) t = 1.85 h (h) t = 1.94 h (i) t = 2.04 h

(j) t = 4.79 h (k) t = 4.92 h (l) t = 5.36 h

Figure 5.5: Instantaneous flow-field visualizations for case IGW72 showing the isosurfaces Q =
0.03 s≠2 on top of contours of the buoyancy field on the plane y = 400 m. Panels (a) to (f)
correspond to the first breaking event, whereas panels (g) to (i) and panels (j) to (l) correspond to
the second and the third events, respectively.
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Figure 5.6: Time evolution of the non-dimensional wave amplitude a for cases IGW81 ( ) and
IGW72 ( ).

tion 5.2.1. (Note that the unstable region remains always located in the upper-half
of the domain, because the coordinate system is continuously translated with the
phase speed). Thereupon, the flow structures are continuously transported horizon-
tally and eventually they spread over the entire domain. Although these features
are salient during the first hours of the simulation (Figs. 5.4a to 5.4f and Figs. 5.5a
to 5.5f), this sequence of events also reoccurs at later times, but with weaker inten-
sity.

To identify the actual time and the number of breaking events, we follow the
temporal evolution of the total energy dissipation rate:

ÈÁ
t

ÍL = 2‹ ÈS
ij

S

ij

ÍL +

–

N

2

=
ˆb

ˆx

i

ˆb

ˆx

i

>

L
, (5.7)

where the first and the second term on the right-hand-side are the kinetic energy
dissipation rate ÈÁ

k

ÍL and the potential energy dissipation rate ÈÁ
b

ÍL, respectively.
The total energy dissipation rate increases significantly at the times for which

turbulent spots dominate the flow-field. By following the time evolution of ÈÁ
t

ÍL
(Fig. 5.3), we observe 4 peaks in ÈÁ

t

ÍL for case IGW81, whereas 3 peaks are seen for
case IGW72. By searching for local maxima, we identify the time of each breaking
event as t

be

= {0.44; 1.84; 4.05; 4.95} h for IGW81 and t

be

= {0.38; 1.92; 4.88} h

for IGW72. Although the evolution of ÈÁ
t

ÍL is alike during the first breakdown
for the two Reynolds numbers, di�erences in magnitude and duration are evident
for the remaining breaking events. For example, for the second breaking event, at
around t = 1.88 h, ÈÁ

t

ÍL is approximately 1.6 times larger for case IGW81 than for
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Figure 5.7: Time evolution of the components of the kinetic energy dissipation rate tensor for cases
IGW81 (a) and IGW72 (b):

+
Á

k,11

,
L

( ),
+

Á

k,22

,
L

( ) and
+

Á

k,33

,
L

( ).

case IGW72. The inverse is observed however for the last breaking event, at around
t = 5 h, where ÈÁ

t

ÍL for case IGW72 is larger than for IGW81 by roughly the same
factor.

This sequence of breaking events causes the non-dimensional wave amplitude a

to decay monotonically with time (Fig. 5.6). For t . 0.5 h, a(t) follows the same
trend in both cases and decays rapidly. This is probably a consequence of the well-
defined initial conditions, which cause the first breaking event to be similar in both
cases. At posterior times, the decay rate reduces significantly. Case IGW72 exhibits
a slower decay rate, as is expected from a laminar decay: for Pr = 1, the non-
dimensional wave amplitude of an unperturbed laminar wave evolves as a

lam

(t) =

a

0

, exp (≠‹K

2

t) (Fruman et al., 2014). More interesting, we also notice that the
third and fourth breaking for case IGW81 occurs although the non-dimensional
amplitude is below the limit for static instability, i.e., a < 1. For case IGW72, a > 1

for the majority of the simulation time, but during the last breaking event a is also
smaller than 1.

5.3.2. Dissipation Tensor Anisotropy
The contributions of the kinetic and the potential energy dissipation rate to ÈÁ

t

ÍL
(Eq. (5.7)) di�er strongly between both cases, and varies over time. In fact, Fig. 5.8
shows that the main contributor to ÈÁ

t

ÍL is ÈÁ
k

ÍL. By comparing the temporal evo-
lution of the kinetic and potential energy dissipation rates, we find from Figs. 5.8a
and 5.8b that at the peak of the first breaking event the ratio ÈÁ

k

ÍL/ÈÁ
b

ÍL is ap-
proximately 1.96 irrespective of the Reynolds number. Nevertheless, the disparity
between the two quantities increases at later times. For example, at the last breaking
event of case IGW72 the ratio is approximately 16.1.

More information regarding the structure of the energy dissipation tensor is
obtained by decomposing it into its individual components along the three Cartesian
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Figure 5.8: Time evolution of the kinetic and potential energy dissipation rate for cases IGW81
(a) and IGW72 (b): ÈÁ

k

ÍL ( ) and ÈÁ
b

ÍL ( ).

directions, i.e.:

ÈÁ
k

ÍL =

1

2

!ÈÁ
k,11

ÍL + ÈÁ
k,22

ÍL + ÈÁ
k,33

ÍL
"

. (5.8)

By assessing the relative importance of each term on the right-hand-side of the
equation above (Fig. 5.7), we find that all three components contribute almost
equally to ÈÁ

k

ÍL at instants of time corresponding to the wave breakdown. The
later observation, however, is more explicit for the higher Reynolds number case
(Fig. 5.7b). Although we also observe the same tendency for the lower Reynolds
number (Fig. 5.7a), the di�erence between the components is still significant. Put
together, these results indicate that for increasing Reynolds number, we can expect
the energy dissipation tensor to attain an isotropic structure during the phases
with high turbulence intensity, while during calmer periods, we can expect the
kinetic energy dissipation tensor to have a strongly anisotropic structure. A certainly
interesting observation is that the component aligned with the direction of wave
propagation has the smallest contribution to the energy dissipation for both cases.

5.3.3. Hovmöller Diagrams
Now, we turn our attention to the distribution of di�erent quantities along the
direction of wave propagation. In particular, we look at the spatial distribution of
Á

k

and Á

b

and their relation to the Richardson number (Ri). For this purpose, we
average the di�erent quantities over planes normal to the direction of propagation
to obtain ÈÁ

k

Í
xy

, ÈÁ
b

Í
xy

and ÈRiÍ
xy

. Whereas the kinetic and potential energy
dissipation are obtained similarly to Eq. (5.7), the Richardson number follows from
the local balance between buoyancy gradients and shear rate. In the Earth’s frame
of reference, it is given as

Ri =

N

2

+ ˆb/ˆz

Õ

(ˆu/ˆz

Õ
)

2

+ (ˆv/ˆz

Õ
)

2

. (5.9)
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The Richardson number is computed in the rotated frame of reference [x, y, z] by
projection of the gradients.

A first hint towards the spatial distribution of the energy dissipation rate can
be obtained from the previous flow-field visualization. For instance, a comparison
of the first breaking event in both cases (Figs. 5.4a to 5.4f and Figs. 5.5a to 5.5f)
shows that the regions of stronger spatial gradients in the buoyancy field (lower-half
of the domain cf. Fig. 5.4c) do not coincide with the location of the eddies. In
the upper-half of the domain, the isopycnals are primarily horizontal and neatly
separated from each other, whereas the lower-half of the domain shows regions of
intense mixing in the buoyancy field and consequently larger spatial gradients.

To confirm these observations, we present in Fig. 5.9 Hovmöller diagrams of
ÈÁ

k

Í
xy

, ÈÁ
b

Í
xy

and ÈRiÍ
xy

, i.e., their evolution as a function of z and t. From
Figs. 5.9a and 5.9d, we see that large values of ÈÁ

k

Í
xy

dominate the region z > 1.5 km

and persist in this location for the entire simulation time. On the contrary, Figs. 5.9b
and 5.9e show that high dissipation of potential energy is found for z < 1.5 km and it
is restricted to t < 2 h. Overall, we see that the upper-half of the domain is marked
by a higher level of turbulence activity (stronger spatial gradients), in agreement
with the visualization of finer scales in the same region.

Regardless of the Reynolds number, the regions of intense dissipation of kinetic
energy are more likely to be found within an envelope delimited by the stability
threshold, i.e., ÈRiÍ

xy

= 0.25. Figures 5.9c and 5.9f show that values for which
ÈRiÍ

xy

< 0.25 are predominantly located in the upper-half of the domain, thus
evidencing the unstable nature of the upper-half of the wave domain. For com-
parison, we superimpose the contour ÈRiÍ

xy

= 0.25 on the distribution of ÈÁ
k

Í
xy

and ÈÁ
b

Í
xy

— see Figs. 5.9a, 5.9b, 5.9d and 5.9e. We observe that ÈRiÍ
xy

= 0.25

delineates the region of high kinetic energy dissipation well, indicating a correlation
between both quantities.

For these results, there are no significant di�erences between cases IGW81 and
IGW72, apart from the fact that in case IGW72, the regions of intense kinetic
energy dissipation are broader and better defined than in case IGW81. Incidentally,
as observed by Remmler et al. (2013) for case IGW81, Figs. 5.9a and 5.9b also
show us that in both cases the last breaking event occurs when remnant turbulence
from the first breaking event meets the least unstable region of the base wave. This
observation follows from tracking the evolution of a fixed point in the Earth’s frame
of reference, as represented by the dashed line in that figure. Although case IGW81
shows a clearer region of somewhat high kinetic energy dissipation traveling with
the phase speed in the co-moving frame of reference, case IGW72 indicates that
an even lower small-scale turbulence activity might be already su�cient to trigger
instabilities and be amplified.

5.3.4. Energy Spectra
The distinct turbulence level characteristic of the di�erent time instants is also
reflected in both the kinetic and potential energy spectra. In Fig. 5.10 we show
the spectra in terms of the vertical wavelength ⁄

z

for both cases. The kinetic and
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Figure 5.9: Hovmöller plots of the kinetic and potential energy dissipation rates, and the Richard-
son number. Left and right panels shows cases IGW81 and IGW72, respectively. The black solid
line ( ) represents the contour line Ri = 0.25, and the dashed line ( ) tracks a fixed position
in the Earth’s frame of reference.
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potential energy spectra, E

k

(⁄

z

) and E

p

(⁄

z

) respectively, are defined such that
⁄

⁄z

E

k

(⁄

z

) d⁄

z

= ÈKÍL (5.10)

and ⁄

⁄z

E

p

(⁄

z

) d⁄

z

= ÈAÍL , (5.11)

where K = (u

i

u

i

)/2 and A = b

2

/(2N

2

) are the local kinetic and potential energy.
For the following comparison of the energy spectra, we intentionally select two time
instants during the breaking event and two additional ones at calmer periods, which
correspond to o�-peak locations in the evolution of ÈÁ

t

ÍL.
At time instants corresponding to the breaking events, E

k

(⁄

z

) and E

p

(⁄

z

) scales
in good agreement with ⁄

5/3

z

. For instance, in case IGW72 (Figs. 5.10c and 5.10d) we
observe that for t = 0.39 h and t = 4.88 h, i.e., approximately during the first and the
third breaking events, respectively, E

k

(⁄

z

) and E

p

(⁄

z

) exhibits a ⁄

5/3

z

scaling from
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⁄

z

= 37 m to ⁄

z

= 750 m. On the other hand, the same figure shows that quiescent
periods, e.g., t = 3.20 h and 4.27 h, the scaling of the energy spectra matches better
a ⁄

3

z

law. Put together, these results suggest that during the breaking events the
flow field is isotropic, and follows a Kolmogorov scaling of the type ⁄

5/3

z

, which is
canonical for homogeneous isotropic turbulence. Further, the ⁄

3

z

scaling at calmer
periods indicates that buoyancy e�ects are more relevant during periods of decay
rather than during the periods of intense wave breaking, since a ⁄

3

z

is expected in
the inertial-range of strongly stratified flows (Brethouwer et al., 2007; Remmler &
Hickel, 2013).

Although the power-law dependencies are best seen in case IGW72 (Figs. 5.10c
and 5.10d), their footprint is also clear in case IGW81 (Figs. 5.10a and 5.10b).
Therefore, we hypothesize that these power laws should remain for even higher
Reynolds numbers.

5.3.5. Kinetic and Potential Energy
Here, we leave the Reynolds number comparison aside and focus on the temporal
evolution of the box-averaged kinetic energy and available potential energy, as well
as on the evolution of their individual components. We only show results for the
high Reynolds number case IGW72, since the qualitative behavior for case IGW81
is essentially the same.

The box-averaged kinetic and potential energy evolve in time according to

dÈKÍL
dt

≠ Èbu

i

n

i

ÍL + ÈÁ
k

ÍL = 0 (5.12)

and
dÈAÍL

dt

+ Èbu

i

n

i

ÍL + ÈÁ
b

ÍL = 0. (5.13)

Figure 5.11 shows each term of the equations above as a function of time. Not
surprisingly, dÈKÍL/dt and dÈAÍL/dt are mostly negative, as it is expected for
a decaying wave. This observation is in agreement with the previous flow field
visualizations, from which we have already seen that flow structures fade away and
are less likely to be found towards the end of the simulation. Nevertheless, Fig. 5.11
shows that for certain time windows there is a surplus of energy that causes positive
variations in either the kinetic or the potential energy. From Eqs. (5.12) and (5.13) it
is clear that this can only occur when the transfer term Èbu

i

n

i

ÍL becomes larger than
the energy dissipation rate. For the kinetic energy, Fig. 5.11a shows that this is the
case for 2 h < t < 4 h (approximately), whereas for the potential energy, Fig. 5.11b
shows positive variations of dÈAÍL/dt within the interval 4 h < t < 6 h. Further, we
also notice that during the breaking events, i.e., when dissipation is highest, potential
energy is converted into kinetic energy, whereas the opposite prevails during calmer
periods; to see that, contrast for example in Fig. 5.11 the behavior of Èbu

i

n

i

ÍL at
t ¥ 0.5 h and t ¥ 5 h with its behavior at t ¥ 3 h.

Now, we analyze the individual contributions of the three Cartesian velocity
components to the kinetic energy by following in time ÈuuÍL, ÈvvÍL and ÈwwÍL, and
the buoyancy variance ÈbbÍL/N

2

= 2ÈAÍL. Results in Fig. 5.12 show that energy is
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Figure 5.11: Kinetic (a) and potential (b) energy budget as defined in Eqs. (5.12) and (5.13).
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Figure 5.12: Time evolution of the individual components of the kinetic and potential energy and
the cross correlations for case IGW72. The data is split in panels (a) and (b) for better visibility.

mostly contained in the ÈuuÍL and ÈvvÍL components. In fact, both of them account
for 99% of the total kinetic energy and approximately 69% of the total energy; the
potential energy stores the remaining 31% of the total energy. If we focus on the
first hour of the simulation, i.e., t < 0.5 h (first breaking event), we observe that
ÈuuÍL and ÈvvÍL decrease in magnitude, whereas ÈwwÍL and ÈbbÍL/N

2 increase.
This suggests that during the breaking events energy is transferred to ÈwwÍL and
also stored as potential energy. Indeed, at the last breaking event, i.e., t = 4.88 h,
ÈbbÍL/N

2 rises once again, although less remarkable than during the first breaking
event at t = 0.38 h.

Regarding the cross correlations, Fig. 5.12 shows that ÈuvÍL is mostly positive,
but undergoes a sign change during the third breaking event, ÈuwÍL is slightly
negative throughout the whole simulation; ÈvwÍL on the other hand, fluctuates
weakly around null (Fig. 5.12b).
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pres
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Á
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,
L

) for case IGW72. Panels (a)
to (c) correspond to i = {1, 2, 3} in Eq. (5.14) and panel (d) shows the terms of Eq. (5.15).

5.3.6. The Energy Transfer Mechanism
A more detailed notion of the energy transfer mechanism can be obtained through
a energy budget analysis. To this end, we write the (componentwise) evolution
equations for the kinetic and potential energy, which are obtained from Eq. (5.1)
upon multiplication with the corresponding velocity and buoyancy fields followed
by a box-average:

ˆ Èu
i

u

i

ÍL
ˆt

= ÈT
pres,ii

ÍL ≠ +
T

ú
cor,ii

,
L +

+
T

ú
buoy,ii

,
L

≠ ÈÁ
k,ii

ÍL

(5.14)

and

1

N

2

ˆ ÈbbÍL
ˆt

= ≠ ÈT
buoy,11

ÍL ≠ ÈT
buoy,22

ÍL

≠ ÈT
buoy,33

ÍL ≠ 2 ÈÁ
b

ÍL .

(5.15)
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Figure 5.14: Schematic of the energy transfer mechanism and the role of each term during the
wave breaking event. Line styles is the same as in Fig. 5.13. The pressure term (T

pres

) appears
as a thicker line to highlight its dominance over the other terms. Note that we have omitted the
dissipation in the diagram, since its role is evident.

Equations (5.14) and (5.15) refer to the components of twice the kinetic and po-
tential energy respectively. In Eq. (5.14), no implicit summation over repeated
indices is considered, and the subscript i merely indicates the Cartesian direction,
i.e., i = {1, 2, 3} implies {x, y, z}. The terms on the right-hand side of Eqs. (5.14)
and (5.15) represent the contributions due to the pressure field (T

pres

), the Corio-
lis force (T

cor

), the buoyancy force (T

buoy

) and the energy dissipation rate. Also,
note that a superscript ú appears in Eq. (5.14) to indicate the terms that contain
contributions from the pressure field, as explained next.

We isolate the influence due to the Coriolis and the buoyant forces in Eq. (5.14)
by eliminating their contribution from the pressure field and adding it to their
respective transfer terms. That is, first we split the pressure field p, which satisfies
the Poisson equation

Ò2

p = ≠Ò · (u · Òu) ≠ Ò · (f

c

n ◊ u) + Ò · (bn), (5.16)

such that p = p

adv

+p

c

+p

b

, where p

adv

, p

c

and p

b

are the solutions of Eq. (5.16) con-
sidering either the first, second or the third term on the right-hand-side, respectively.
Then, we include the e�ects of p

c

and p

b

to T

cor,ii

and T

buoy,ii

, to form ÈT ú
cor,ii

Í
xyz

and ÈT ú
buoy,ii

Í
xyz

. Hence, ÈT
press,ii

Í
xyz

in Eq. (5.14) contains only the usual contribu-
tion due to p

adv

. The individual pressure contributions in ÈT
press,ii

Í
xyz

, ÈT ú
cor,ii

Í
xyz

and ÈT ú
buoy,ii

Í
xyz

do neither produce nor destroy kinetic energy, but rather redis-
tribute energy between the three velocity components in such a way that the fluid
volume is conserved (incompressible flow). The buoyancy term appears in Eq. (5.15)
without a ú, since the pressure field does not play a role in this equation.

The evolution of each term is presented in Fig. 5.13. Figures 5.13a to 5.13c
shows the term-by-term energy budget for i = {1, 2, 3} and Equation (5.14), whereas
Fig. 5.13d presents the results from Eq. (5.15). By individually analyzing the tem-
poral evolution of each term, we find that T

press

is the main supplier of energy to
ÈwwÍL; this energy is transferred away from ÈuuÍL, as clearly visible during the first
breaking event, for which it is evident that ÈT

press,11

Í is negative (Fig. 5.13a) and
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Figure 5.15: Time evolution of the small-scale fluctuation covariances for case IGW81 (a) and
case IGW72 (b). Di�erent line colors denote the di�erent terms: ÈuÕ

u

ÕÍL ( ), ÈvÕ
v

ÕÍL ( ),
ÈwÕ

w

ÕÍL ( ) and ÈbÕ
b

ÕÍL/N

2 ( ).

ÈT
press,33

Í is positive with roughly the same magnitude variation in time (Fig. 5.13c).
We attribute this fact to the primary instability, which is predominantly aligned with
the x and y directions and the main reason for the roll-up of eddies observed prior
to the first breaking event.

Regarding the conversion from kinetic to potential energy, we see from Fig. 5.13d
that ÈT

buoy,33

ÍL is positive when the wave breaks, and the corresponding ÈT ú
buoy,33

ÍL
is essentially negative in Fig. 5.13c. Therefore, we conclude that most of the en-
ergy gained by ÈwwÍL through ÈT

press,33

ÍL is converted into potential energy by
ÈT

buoy,33

ÍL. The di�erence between the sink ÈT ú
buoy,33

ÍL in the ÈwwÍL balance and
ÈT

buoy,33

ÍL, which is a source for ÈbbÍL/N

2

, is due to the pressure contribution which
transfers energy to the other components of the kinetic energy, in particular to ÈuuÍL.
In Fig. 5.14, we include a diagram that summarizes the transfer mechanism and the
function/relevance of each term in Eqs. (5.14) and (5.15).

5.3.7. Turbulent Kinetic and Potential Energy
So far, we have looked at the wave breakdown from a global sense, i.e., the veloc-
ity and buoyancy fields represented both the decaying base wave and the turbulent
structures. Although information about the global quantities are valuable for mod-
eling approaches which do not resolve any scale of the wave, more refined models
would probably aim at resolving at least the base wave and parameterizing only
small-scale turbulent fluctuations. To this end, we decompose the velocity and the
buoyancy field in two contributions: one related to the base wave and a second
related to small-scale fluctuations.

To split the fields we first average them over xy-planes and then compute the
di�erence between the average and the local solution, e.g., the x-component of the
velocity field is u(x, y, z) = ÈuÍ

xy

(z) + u

Õ
(x, y, z). Throughout time, the vertical

profiles of the mean kinetic and mean potential energy of the large scales, i.e.,
Èu

i

Í
xy

Èu
i

Í
xy

/2 and ÈbÍ
xy

ÈbÍ
xy

/(2N

2

), remain similar to the profiles obtained with
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Figure 5.16: Vertical profiles of the ratio between the kinetic energy production and the (pseudo)
kinetic energy dissipation rate for case IGW81 (top panels) and for case IGW72 (lower panels).
Panels (a) and (c) correspond to the first breaking event for the respective cases, whereas (b) and
(d) correspond to the last breaking event.

the full field (not shown). From the terms that constitute the mean kinetic energy,
ÈuÍ

xy

ÈuÍ
xy

is the one that changes the most in time (although modestly). In fact,
we already saw in the previous section that this term is the one responsible for
supplying energy to the third velocity component.

The temporal evolution of the fluctuation covariances, i.e., ÈuÕ
u

ÕÍL, ÈvÕ
v

ÕÍL,
ÈwÕ

w

ÕÍL and ÈbÕ
b

ÕÍL/N

2, shows that during the breaking events there is a signif-
icant increase of energy in the small-scale fluctuations, thus consistent with the idea
that when the wave breaks, energy is extracted from the base wave (mean flow).
This is clear from Fig. 5.15, which also shows that the energy gain by the fluctu-
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Figure 5.17: Vertical profiles of the ratio between the potential energy production and the (pseudo)
potential energy dissipation rate for case IGW81 (left) and for case IGW72 (right). The panels
correspond to the first breaking event in both cases.

ations is more pronounced for the first breaking event, implying that this event is
indeed stronger than the others.

The split of the velocity field allows us also to explore the energy transfer between
the mean and the fluctuating fields. Writing the governing equations for the energy
of the mean and the fluctuating fields, one sees that they include coupling terms,
namely the production of kinetic and potential energy, which are sink terms for the
mean kinetic and potential energy equation, and source terms in the corresponding
equation for the energy of the fluctuations. The production of kinetic and potential
energy are defined as

ÈP
k

Í
xy

= ≠ÈuÕ
i

u

Õ
j

Í
xy

ˆÈu
i

Í
xy

ˆx

j

(5.17)

and
ÈP

b

Í
xy

= ≠ 1

N

2

ÈbÕ
u

Õ
j

Í
xy

ˆÈbÍ
xy

ˆx

j

, (5.18)

respectively. The decomposition also yields the pseudo kinetic and potential energy
dissipation rate, which are based on the fluctuations, and are given as

ÈÁÕ
k

Í
xy

= ‹

=
ˆu

Õ
i

ˆx

j

ˆu

Õ
i

ˆx

j

>

xy

(5.19)

and
ÈÁÕ

b

Í
xy

=

–

N

2

=
ˆb

Õ

ˆx

j

ˆb

Õ

ˆx

j

>

xy

(5.20)

respectively. Notice that the above quantities are all functions of the vertical co-
ordinate z and that ÈÁÕ

k

Í
xy

and ÈÁÕ
b

Í
xy

are positive quantities, whereas ÈP
k

Í
xy

and
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ÈP
b

Í
xy

can assume both positive and negative values. The complete set of equations
including all terms that contribute to the evolution of the mean and the fluctuating
part can be found in Achatz (2007b). We do not include them here, since the other
terms do not contribute to the energy exchange between the horizontal mean and
the horizontally dependent deviations.

Figures 5.16 and 5.17 shows the production of kinetic and potential energy for
cases IGW81 and IGW72 normalized by the corresponding pseudo energy dissipa-
tion rate. From Fig. 5.16, we see that in the upper half of the domain, the ratio
ÈP

k

Í
xy

/ÈÁÕ
k

Í
xy

is approximately unity (cf. the zoomed figures). In fact, for the
first breaking event of case IGW81 (Fig. 5.16a) the ratio is 1.12 when averaged in
the range 1500 m < z < 3000 m, while for the last breaking event of case IGW72
(Fig. 5.16d) the averaged ratio in the interval 1500 m < z < 2500 m is 0.97. We
do not identify any sign of a local balance between the production and the dissipa-
tion of potential energy (Fig. 5.17). Although we only show the results at the first
breakdown, similar results are obtained for the other breaking events.

These figures also reveal that the vertical profiles of ÈP
k

Í
xy

and ÈP
b

Í
xy

at the
wave breakdown are inhomogeneously distributed in space. The fact that we find
both positive as well as negative values of ÈP

k

Í
xy

and ÈP
b

Í
xy

indicates that energy
transfers occur from the mean field to the fluctuations, and vice-versa. Specifically
for the kinetic energy, we find that ÈP

k

Í
xy

is predominantly positive in the upper
half of the numerical domain (z > 1500m). The large ratios of ÈP

k

Í
xy

/ÈÁÕ
k

Í
xy

observed in Figs. 5.16b and 5.16d are a consequence of the low energy dissipation
rate, as already observed in the Hovmöller diagrams in Section 5.3.3.



6
Conclusions

This work has investigated aspects of homogeneous rotating turbulence as well as
the breaking behavior of an inertia-gravity wave in the middle atmosphere. To this
end, we have employed high-fidelity numerical simulations to explore an yet unvisited
part of the physical parameter space. Further studies related to fundamental aspects
of turbulence as well as to turbulence modeling will benefit from our results. In the
following, we present the main conclusions of the topics covered in this study.

6.1. Homogeneous Rotating Turbulence
In Chapter 3, we investigated through direct numerical simulations the e�ects of
domain size and rotation rate on the energy cascade direction of rotating turbulence.
The data here presented adds substantially to previous works, which, in contrast,
focused on smaller and shallower domains (Ÿ

f

L and Ÿ

f

L‹ < 8 (Deusebio et al.,
2014; Smith et al., 1996)). The presented results, therefore, contribute towards a
complete picture of the phase diagram, which unveils the transition from inverse to
forward energy cascades through a split energy cascade.

Our results indicate that Ÿ

f

L is the primary control parameter, provided that
Ro

Á

is constant and Ÿ

f

L‹ > 4. In this scenario, transversal finite-size e�ects of
Ÿ

f

L‹ on the inverse energy transfer Á

inv

are negligible for our cases with aspect
ratio A

r

Ø 1. For weak rotation with Ro

Á

¥ 0.31, transition from a split to a
forward cascade was observed at Ÿ

f

L ¥ 64. For the strong rotating case, however,
although strongly suppressed, a portion of the injected energy (Á

inv

¥ 0.075 Á

I

) still
cascaded inversely and accumulated at the large scales for Ÿ

f

L = 128.
Results for scaling laws of the energy spectrum are not conclusive, and there is

no clear sign of an inertial range over several decades. This is plausible since our
initial and isotropic field with Re

⁄

¥ 68 does not contain a clear inertial range. In
spite of that, the narrow wavenumber region after Ÿ‹ = Ÿ

f

develops and approaches
best a Ÿ

≠5/2

‹ scaling law. Our results also show that, the Ÿ

≠5/2

‹ and Ÿ

≠1/2 scalings
appear at di�erent wavenumber ranges, and that the Ÿ

≠5/2 scaling prevails in the
3D energy spectrum, see Fig. 3.8.

In Chapter 4, we investigated the e�ects of system rotation with Rossby numbers
in the range 0.06 Æ Ro

Á

Æ 1.54 on the evolution of an initial cloud of isotropic eddies.
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In contrast to other studies, which have focused on the initial transient immediately
after the onset of rotation, we have focused instead on longer time intervals. This
was only possible because our DNS were carried out in elongated domains which
were 340 times larger than the initial characteristic eddy size.

The classical pictures of rotating turbulence were reproduced, in which we ob-
served the formation of columnar eddies along the axis of rotation and a decrease
in the energy dissipation rate. However, by following the evolution of the integral
length scales we identified di�erent dynamics that were shown to depend on Ro

Á

.
This led us to separate our dataset into two groups. While the runs in group R1
did not show any pronounced sign of growth in the integral length scales, for the
runs in group R2, ¸ grew substantially and approximately linearly with time. The
latter group of runs can be therefore associated with a regime where the formation of
columns predominate, whereas runs of group R1 are closer to homogeneous isotropic
turbulence. Furthermore, we found that the growth rate of the columnar eddies in
group R2 depends exponentially on Ro

Á

, i.e., “ = a exp (b Ro

Á

), with a = 3.90 and
b = ≠16.72.

The energy dissipation rate in the group of runs R1 is well approximated by the
scaling law proposed in Baqui & Davidson (2015). For the group R2, which consists
of runs at lower Ro

Á

, we have shown that the scaling laws currently available in the
literature fail to approximate Á

‹

. Still, we were able to find a similarity relation for
Á

‹

in the range 0.06 Æ Ro

Á

Æ 0.31 by applying the ideas introduced by Kraichnan
(1965), in which the spectral transfer time is regarded as composed of two opposing
time scales. First, by observing the inverse relation between ¸‹ and Á

‹

, we assumed
that ¸‹ was the relevant length scale to form ·

nl

. Second, the relaxation time scale
·

3

was shown to depend on a power law of Ro

Á

and on ·

iso

nl

, which implies that it
is exclusively a function of Ro

Á

and of the forcing parameters Ÿ

f

and u

f

. Thus, we
arrived at a similarity law for this Ro

Á

range. Scaling Á

‹

with u

Õ4
/(¸

2

‹Ro

0.62

Á

·

iso

nl

)

collapsed the data for di�erent Ro

Á

into a single curve.
Last, we would like to remark that the results for the case where the rotation rate

is highest, i.e., Ro

Á

= 0.06, were verified by increasing the numerical resolution and
the domain size by a factor of 2 in the direction of rotation. However, whether other
dynamics emerge at even lower Ro

Á

and the e�ects of Re

Á

remains to be studied.
In any case, we hope our numerical investigation contributes to the improvement of
turbulence models and stimulates future studies to elucidate and quantify the e�ects
of the Coriolis force on the evolution of a cloud of isotropic eddies in unbounded
domains.

6.2. Inertia-Gravity Waves Breaking in the Mid-
dle Atmosphere

In Chapter 5, we presented results from fully resolved three-dimensional simulations
of a inertia-gravity wave breaking in the middle atmosphere. Two cases were con-
sidered, which correspond to two di�erent Reynolds numbers and, accordingly, two
di�erent geopotential altitudes.

Both cases IGW81 and IGW72 undergo a sequence of breaking events, which are
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marked by a rise in the kinetic energy dissipation rate. The general picture of the
wave breakdown is somewhat similar for both Reynolds numbers. Flow field visu-
alization illustrates the outbreak of fine scales of motion in the vertical upper-half
of the numerical domain, which are finer in case IGW72 (higher Reynolds number).
On the same line, Hovmöller diagrams show that the kinetic energy dissipation
rate is more intense in the upper-half of the domain, indicating the dominance of
large spatial velocity gradients where the base wave is least stable. The Richardson
number can be used as a diagnostic tool to detect these regions.

At the time of wave breakdown, the kinetic energy dissipation rate tensor exhibits
an equipartition of dissipation among its individual components, and the vertical
kinetic energy spectrum displays a 5/3 scaling for a broad range of wavelengths. At
periods in between the breaking events, on the other hand, the kinetic energy dissi-
pation rate tensor is strongly anisotropic, and the vertical kinetic energy spectrum
scales with a cubic power law, indicating the relevance of buoyancy e�ects at these
times.

Through an energy budget analysis we saw that the energy transfer mechanism
during the wave breakdown is predominantly characterized by energy transfers sus-
tained by pressure field from ÈuuÍL to ÈwwÍL, and a subsequent energy conversion
into potential energy. The role of the Coriolis force, although less relevant, was also
present in shifting energy from ÈvvÍL to ÈuuÍL.

Complementing these observations, we also decomposed the velocity and the
buoyancy fields into a mean and a fluctuating part. These results shows that the
local transfer of kinetic energy between the mean and the fluctuating parts is mainly
forward, i.e., from the mean to the fluctuations. In the upper-half of the numerical
domain, where fine scales of motion were identified, we found that the pseudo kinetic
energy dissipation rate and the kinetic energy production are in roughly in balance
during the breaking events.





A
Fictious Forces in a

Rotating Frame of
Reference

Let F denote a fixed frame of reference and R a frame of reference that rotates with
constant velocity around the axis defined by the vector �. In addition to that, let
ê

i

be the unit vectors of the frame F and g
i

of the frame R.
A given vector c can be then written in any of the reference frames as c =

c

i

e
i

= ã

i

g
i

. However, the time derivatives of c di�er because the time derivative
of the unit vectors g

i

are di�erent from zero. These derivatives, nevertheless, are
connected through the following relation:

dc
dt

=

d(c

i

ê
i

)

dt

=

d(c̃

i

g
i

)

dt

= c̃

i

dg
i

dt

+

dc̃

i

dt

g
i

. (A.1)

In order to evaluate Eq. (A.1), one needs to determine dg
i

/dt. For that, we
first introduce the linear mapping represented by the operator R, which rotates any
vector by a given angle ◊ around an axis with unit vector ĥ:

R = cos(◊)I + sin(◊)h◊
+ (1 ≠ cos(◊))ĥ ¢ ĥ. (A.2)

In the above expression h◊ is the cross product operator, e.g., h◊ c = ĥ◊c. Because
the unit vectors g

i

are rotating around the axis defined by �, the linear mapping
defined in Eq. (A.2) can be used to determine the unit vectors g

i

at a posteriori
time t + �t, i.e.,

g
i

(t + �t) = Rg
i

(t). (A.3)

By definition, Î�Î = � = d◊/dt, which implies that after a relatively small �t the
vectors g

i

have been rotated by an angle �◊. Equation (A.3) can be then written
as:

g
i

(t + �t) = cos(�◊)g
i

(t) + sin(�◊) (ĥ ◊ g
i

(t)) + (1 ≠ cos(�◊))(ĥ ¢ ĥ)g
i

(t). (A.4)
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Subtracting g
i

from both sides of Eq. (A.4) and diving by �t yields

g
i

(t + �t) ≠ g
i

�t

=

(cos(�◊) ≠ 1)

�t

g
i

(t) +

sin(�◊)

�t

(ĥ ◊ g
i

(t))+

(1 ≠ cos(�◊))

�t

(ĥ ¢ ĥ)g
i

(t). (A.5)

If we now take the limit �t æ 0 in Eq. (A.5) as, we obtain the following relation:

dg
i

dt

= � ĥ ◊ g
i

= � ◊ g
i

. (A.6)

Eq. (A.6) is obtained by using L’Hopital’s rule, from which follows that the first
and the third term of Eq. (A.5) vanish. Now, Eq. (A.1) can be written as:

dc
dt

=

dc̃

i

dt

g
i

+ � ◊ (c̃

i

g
i

), (A.7)

and we have an equation that connects the time derivative of a given vector c
between a fixed and a rotating frame of reference.

If c is taken to be the position vector r, the above relation gives

dr
dt

=

dr̃

i

dt

g
i

+ � ◊ (r̃

i

g
i

). (A.8)

Further, introducing u
F

= d(r

i

ê
i

)/dt and u
R

= (dr̃

i

/dt) g
i

, we can obtain a relation
for the velocity between the fixed and the rotating frame of reference, i.e.,

u
F

= u
R

+ � ◊ r
R

. (A.9)

The relation between the acceleration in both frames follows

du
F

dt

=

d
dt

(u
R

+ � ◊ r
R

) =

d
dt

3
dr̃

i

dt

g
i

4
+ � ◊ dr

R

dt

. (A.10)

Using Eq. (A.7) and noting that du
F

/dt = a
F

and du
R

/dt = a
R

, Eq. (A.10) leads
to:

a
F

= a
R

+ (2� ◊ u
R

) + � ◊ (� ◊ r
R

). (A.11)



B
Inertial Waves: Phase and

Group Velocity
Here we briefly present the steps required to obtain the expressions for the phase
and group velocity of inertial waves. In a rapidly rotating frame of reference such
that the nonlinear forces can be neglected with respect to the Coriolis force, the
motion of an incompressible fluid is governed by the linear Navier-Stokes equations.
If the viscous e�ects are also neglected, conservation of linear momentum gives

ˆu

i

ˆt

+ 2‘

ijk

�

j

u

k

= ≠ ˆq

ˆx

i

, (B.1)

and an equation for the vorticity fields follows immediately as:
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3
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4
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j
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i

ˆx

j

(B.2)

Note that Eqs. (B.1) and (B.2) are exactly the same as Eqs. (1.9) and (1.13) and
are repeated here in index notation for convenience. Now, applying the operator
Ò ◊ (ˆ/ˆt), i.e., 3

Ò ◊ ˆ

ˆt

4

i

=

ˆ

ˆt

5
‘

imp

ˆ(·)
p

ˆx

m

6
, (B.3)

to Eq. (B.2) yields the wave-like equation

ˆ

ˆt

3
ˆ

2
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i
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j
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j

4
+ 4�

p

�

j

ˆ

2

u

i

ˆx

p

ˆx

j

= 0, (B.4)

which can be recast in vector notation as

ˆ

2

ˆt

2

(Ò2u) + 4 (� · Ò)

2u = 0. (B.5)

The equation above assumes plane wave solutions of the type

u = ˆu exp[I(Ÿ · x ≠ ‡t)]. (B.6)
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By substituting Eq. (B.6) into Eq. (B.5), we can show that the wave frequency must
satisfy

‡

2 ÎŸÎ2

= 4(� · Ÿ)

2

, (B.7)

and hence
‡ = ±2

(Ÿ · �)

ÎŸÎ . (B.8)

It follows from the definitions of phase and group velocity that

c
p

= ‡

Ÿ

ÎŸÎ2

= ±2

(Ÿ · �)

ÎŸÎ3

Ÿ, (B.9)

and
c

g

=

ˆ‡

ˆŸ
= ±2

Ÿ ◊ (� ◊ Ÿ)

ÎŸÎ3

, (B.10)

respectively. Eq. (B.10) can be further show to depend on two contributions:

c
g

≥ ± 2

ÎŸÎ3

Ë
� ÎŸÎ2 ≠ (� · Ÿ)Ÿ

È
. (B.11)

Note also that the inertial waves contain a definite helicity. This can be shown
by assuming that

Ê =

ˆÊ exp [I(Ÿ · x ≠ ‡

Ê

t)], (B.12)

where ‡

Ê

is the wave frequency, and enforcing Eq. (B.12) into Eq. (B.2). By doing
so, we find that the following relation must be satisfied:
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from which, with the aid of the relation ‡ = ±2(�

j

Ÿ

j

)/Ÿ, we can show that a
possible solution is:

Ê̂

i

= û ÎŸÎ û

i

and ‡

Ê

= ‡ = ±2(� · Ÿ)

ÎŸÎ . (B.14)

Therefore, the vorticity and the velocity field are in phase and the helicity is max-
imum. Waves with positive helicity carry energy in the negative c

g

direction and
vice-versa.

B.1. Eigendecomposition of the Curl Operator
In the wavenumber domain, the curl operator can be written in matrix form as

Q
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to make the exponentials match in Eq. (B.13), ‡

Ê

must equal ‡.
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The mode matrices used to diagonalize the curl operator are constructed from
its eigenvectors and read
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C
The Pseudospectral

Method in Short
Spectral method is a numerical technique employed to approximate the solution of
partial di�erential equations. The basic idea consists in approximating a desired
field by expanding it in terms of orthogonal basis functions, and seeking for the
coe�cients of the expansion. Because we will deal exclusively with homogeneous
flows, we will consider only basis functions that are trigonometric polynomials, i.e.,
we restrict ourselves to Fourier series representations. A much deeper discussion on
spectral methods is given in Canuto et al. (2006a,b); Karniadakis & Sherwin (2005).
Here, our aim is only to highlight the most important steps taken when converting
a partial di�erential equation into an dynamical equation. To illustrate the inner-
workings of spectral methods, let us restrict ourselves to the Burgers’ equations.
Although the Burgers’ equation is one-dimensional, it shares similarities with the
full Navier-Stokes equations, as it degenerates from the former.

Consider an arbitrary field u(x

1

), not necessarily the velocity field, which evolves
in time according to

ˆu

ˆt

+ u

ˆu

ˆx

1

= 0. (C.1)

Further, let us assume that the initial condition u(x

1

, t = 0) is known and that
Eq. (C.1) is valid on the periodic domain L

1

= [0, 2fi]; the subscript in x

1

denotes
the first and only Cartesian direction. The basic idea is to find an approximated
solution u

N , which is written as a series expansion. In our case, in form of a
truncated Fourier series, i.e.,

u

N

(x

1

, t) =

N1/2≠1ÿ

Ÿ=≠N1/2

û(Ÿ

1

, t) e

IŸ1x1
, (C.2)

where N

1

is the number of degrees of freedom, û

Ÿ1 are the Fourier coe�cients, I

is the unity imaginary number, „

Ÿ1 = e

IŸ1x are the basis functions and Ÿ

1

are the
wavenumbers. Because Eq. (C.2) is just an approximation to the true solution, we
can not expect it to satisfy Eq. (C.1) exactly for a given set of coe�cients. The
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measure of the error in approximating u by u

N can be computed by defining a
residual function in connection with Eq. (C.2):

R(x

1

, t) =

ˆu

N

ˆt

+ u

N

ˆu

N

ˆx

, (C.3)

which obviously returns null if u = u

N .
The idea now is to find relations for the coe�cients of the expansion by imposing

a weak condition to R(x

1

, t) with the aid of trial functions Â

p

, such that the integral
of the weighted residual over the entire domain is zero:

⁄

L1

R(u

N

1

)Â

p

dx

1

= 0. (C.4)

Although we are free to choose the trial functions, some specific choices turns out
to be more convenient. For instance, a straightforward choice, typical of Fourier-
Galerkin methods, is to pick trial functions that are polynomials orthogonal to the
basis functions, i.e., Â

Ÿ

Õ
= (1/2fi)e

≠IŸ

Õ
1x1 . Hence Eq. (C.4) becomes
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Using the orthogonality relation between trial and test functions, i.e.,
⁄
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where ”

Ÿ1,Ÿ

Õ
1

is the Kronecker’s delta, Eq. (C.5) is converted into an ordinary di�er-
ential equation for the coe�cients of the expansion.

dû
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) = 0. (C.7)

In the equation above, v̂ are the Fourier coe�cients of ˆu

N

/ˆx

1

, and their relation
to û can be obtained from di�erentiation of Eq. (C.2). Given the initial conditions,
we can integrate Eq. (C.7) in time, and posteriorly use the coe�cients in Eq. (C.2) to
yield the approximate solution for any (x

1

, t). Note however that Eq. (C.7) contains
a summation term on its left-hand-side. This term represents a convolution sum
and it appears due to the nonlinear character of Eq. (C.1), i.e., due to u(ˆu/ˆx

1

).
If we think of developing a computational code to numerically solve Eq. (C.7),

we will note that the convolution sum requires a large number of operations to be
evaluated. In fact, the number of operations is proportional to the square of the
number of degrees of freedom. This number can easily become large, especially if we
plan to consider three-dimensional problems; in such cases the number of degrees of
freedom are already of the order of N

3. Nevertheless, this cost can be remedied if
we use the pseudospectral method as introduced by Orszag (1969).

The pseudospectral method consists of first transforming û and v̂ in to the
wavenumber domain using the Discrete Fourier Transform (DFT) back to physical
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space. Then, building the product s = uv = u(ˆu/ˆx

1

) in physical space, and
subsequently transforming s(x

1

) to Fourier space to obtain ŝ(Ÿ

1

). Such procedure is
cheaper since the number of operations required to compute the DFTs scale N log

2

N

instead of N

2 as required by the convolution sum. The reduction in the number of
operations however comes at a cost, and this approach is not “clean”, in the sense
that it leads to an equation which is slightly di�erent than Eq. (C.7):
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¸ ˚˙ ˝
aliasing errors

= 0. (C.8)

When comparing Eq. (C.7) with Eq. (C.8), we note that an extra summation term is
present on the left-hand-side. While the Fourier-Galerkin approximates the real so-
lution and introduces only truncation errors (Eq. (C.7)), the pseudospectral method
includes aliasing errors in addition to the truncation errors. (Eq. (C.8)).

Several techniques for removing aliasing errors (de-aliasing techniques) are present
in the literature, e.g., the 3/2 rule and the technique of shifted grids. If applied to-
gether with the pseudospectral method, these techniques lead to a formulation that
is equivalent to the one obtained by the Fourier-Galerkin approximation. That is,
Eq. (C.8) becomes equivalent to Eq. (C.7).

Among other properties of spectral methods, spectral convergence is maybe the
most attractive. Spectral convergence means that convergence to the exact solu-
tion is faster than any finite power of 1/N . For this reason, spectral methods are
commonly chosen for simulating turbulent homogeneous flows where every scale of
motion needs to be resolved. The use of spectral methods can reduce the number
of required degrees of freedom, if compared to the resolution required by classical
methods such as finite-di�erences or finite-volumes.





D
Exact Integrating Factor

In this appendix, we refresh the idea behind the exact integrating factor technique.
As an example, we consider the one-dimensional ODE:

du

dt

+ f(t)u = G(u), (D.1)

where t denotes time, u is a given variable (not necessarily the velocity), and f(t)

and G(u) are two arbitrary functions.
The objective is to find a function, say M(t), such that the linear term f(t)u

and the temporal derivative can be brought together into a single operator, i.e., we
want a M(t) that allows us to rewrite Eq. (D.1) as:

d(uM(t))

dt

= M(t)G(u). (D.2)

Following Boyce et al. (2017), this can be achieved by first multipling Eq. (D.1)
by M(t), i.e.,

M(t)

du

dt

+ M(t)f(t)u = M(t)G(u), (D.3)

and equating the left-hand-sides of Eq. (D.2) and Eq. (D.3). This step leads to

M(t)

du

dt

+ u

dM

dt

= M(t)

du

dt

+ M(t)f(t)u (D.4)

u

dM

dt

= M(t)f(t)u (D.5)

0 = u

3
dM

dt

≠ M(t)f(t)

4
, (D.6)

from which follows that the term inside the parenthesis in Eq. (D.6) is zero and
that, apart from an additive constant,

M(t) = exp

3⁄
f(·) d·

4
. (D.7)

Thus Eq. (D.1) is analagous to
d
dt

1
ue

s
f(·) d·

2
= e

s
f(·) d·

G(u). (D.8)
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E
How to Combine the
Effects of Rotation

Here, we show how the two terms that stems from the Coriolis e�ects can be brought
together. These terms appear in the Navier-Stokes when written in the wavenumber
domain. In particular, we made reference to these terms in Eq. (2.10), and we repeat
them here for convenience:
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û

k

D
. (E.1)

First, let us introduce the vector n = Ÿ/ ÎŸÎ which allows us to rewrite the first
term involving the angular velocity as

2‘

ijk

�

j

û
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since the norm of n is unity. Furthermore, by using the fact that the velocity field
is solenoidal, i.e., Ÿ
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in which we made use of ‘
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. Continuing from
Eq. (E.5) and expanding the product of the permutation symbols, we obtain:
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Now, combining Eqs. (E.2) and (E.8) we obtain
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û

k

D
= 2n

i

n

q

‘

qjl

�

j

û
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and finally C
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