
Property-Based Testing in the Wild!
Exploring Property-Based Testing in Java: An Analysis of jqwik Usage in Open-Source Repositories

Harald Toth

Supervisor(s): Andreea Costea, Sára Juhošová
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Abstract
Property-based testing (PBT) verifies software cor-
rectness by checking that specific properties hold
across a wide variety of randomly generated in-
puts. Despite its apparent usefulness, we lack an
overview of how PBT is utilized in the Java ecosys-
tem. In this study, we investigated seven repos-
itories using the jqwik framework. We analyzed
84 PBTs to understand the types of properties de-
velopers typically test, their use of generators and
shrinkers, and the role of PBT in broader testing
strategies. Our findings show that PBT remains a
small part of most test suites, often representing
less than 2% of the total number of tests. Develop-
ers tend to focus on MUTATION, INVARIANT, and
ROUND TRIP as the properties they test, frequently
using custom generators combined with filtering
but never implementing custom shrinkers. We con-
clude that property-based testing is not being uti-
lized to its full potential in Java projects and high-
light areas for future research, including the impact
of filtering, the potential of custom shrinkers, and
the overall effectiveness of property-based testing.

1 Introduction
Property-based testing (PBT) is a testing strategy that veri-
fies if code is correct by checking that specific properties al-
ways hold for a wide range of automatically generated in-
puts. When a test fails, the framework starts a process called
shrinking, where it systematically simplifies the failing input
to produce the smallest or simplest version that still triggers
the failure, helping the programmer find the error.

Listing 1 shows an example of a property-based test written
in Java using functionality from the jqwik library. It generates
a list of integers and verifies that it has the same size after
reversing it.

The QuickCheck [10] framework, developed for Haskell,
introduced the concept of property-based testing. PBT has
since spread to other programming languages, and it is now
used for testing automotive software [1, 11], operating sys-
tems [12], and even data generated by machine learning mod-
els [7]. It also serves as a form of documentation for the
code’s behavior by specifying the properties it should sat-
isfy [10].

While property-based testing has been the topic of multi-
ple research papers, none of them focus on the Java ecosys-
tem or the jqwik framework. Given Java’s widespread use
in the enterprise and its role in powering secure and scalable
applications across nearly every industry, understanding how
property-based testing is applied within this ecosystem is cru-
cial.

Our research focuses on the properties that PBTs aim to
test and the use of generators and shrinkers. It builds on the
results of four other papers.

Specifically, our project consisted of five papers that ana-
lyzed open-source repositories using property-based testing.
The papers examined five different programming languages

1 @Property(tries = 1000)
2 void sameSizeAfterReverse(
3 @ForAll List<Integer> x
4 ) {
5 assert x.size() == ListUtils.reverse(x).

size();
6 }

Listing 1: Example of a jqwik property-based test (PBT) in Java for
list reversal. The “@Property” annotation declares the method as a
PBT, while the “tries” attribute specifies how many times the test
will run. The “@ForAll” annotation indicates that values should be
generated for the parameter.

and environments in detail: Java with jqwik, Haskell with
QuickCheck [14], Python with Hypothesis [4], Rust with
PropTest [2], and Rust with Quickcheck [5]. This paper fo-
cuses on Java and aims to gain insights into the kinds of
properties developers test with the long-term goal of improv-
ing bug detection. By breaking down complex properties
into simpler ones, identifying correlations or dependencies
between them, and examining the software that causes fail-
ures, it may be possible to find bugs more effectively and gain
deeper insights into how and why certain failures occur.

To guide our investigation, we formulated the following
research questions, split into two categories:

Properties:
RQ1. What sort of properties do PBTs generally check?

RQ2. How are these properties usually expressed?

RQ3. What role does PBT play in the project’s correctness
guarantees and bug-finding strategies?

Generators and Shrinking:
RQ4. How and when are generators implemented?

RQ5. In which cases is shrinking support explicitly added?

2 Related Work
Despite its apparent usefulness on paper, we still lack a gen-
eral view of how developers use PBT in real-world projects.
We still do not know much about the properties they test
and how they integrate PBT into their workflows. The ex-
isting literature explores the experiences developers had with
property-based testing in Python and OCaml, first in a prelim-
inary study [9] and then in a follow-up study [8] conducted by
the same authors. Both studies consisted of interviews with
experienced developers. The first one had seven participants,
and the second one had 30. They both focused on the reasons
behind the low usage of PBT in practice, extracting and clas-
sifying data such as properties, bugs, and experiences from
transcripts. In these cases, the interviewee may have left out
important details or may have been biased towards using PBT
in the first place.

Another study examined the use of Hypothesis for testing
open-source machine learning projects [13]. Like the other
studies, they highlighted the issues developers faced when
writing PBTs. We found only one study [3] that analyzed the
types of properties developers test and the features they use
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to create PBTs. This study also focuses on the Hypothesis
library.

So far, none of the studies we found examined PBT usage
in other programming languages, which could play a signifi-
cant role in people’s testing strategies or programming styles.
We aim to fill this gap in the existing knowledge by analyz-
ing PBT usage in the Java ecosystem, specifically through the
jqwik framework.

3 Methodology
This section outlines our approach to identifying, selecting,
and analyzing repositories relevant to our study. We also de-
fine the key terms we used throughout the paper.

3.1 Terminology
Before presenting our methodology for data collection and
analysis, it is important to define a few key terms that we use
throughout the paper to ensure consistency and avoid ambi-
guity when interpreting our findings.

System Under Test (SUT) refers to the specific piece of
code being evaluated by a test. This can range from a sin-
gle function or method to an entire class, module, or system,
depending on the scope of the test.

Filtering refers to setting constraints or rules for the au-
tomatically generated inputs (e.g., setting boundaries or ex-
cluding certain values).

Generators are components of property-based tests that
provide randomized inputs to the SUT. In jqwik, these are
typically defined using Arbitraries, which provide control
over the types of data produced. Developers can use the de-
fault generators provided by jqwik for common types or im-
plement custom generators for more specific data.

Shrinkers are also components of property-based tests, but
they minimize the input that failed a test to the smallest ver-
sion that still reproduces the failure. Shrinking is an auto-
matic part of jqwik PBTs, though developers can implement
custom shrinkers for more control over the process.

3.2 Finding Repositories
One of the most critical aspects of our work was selecting
the right repositories to analyze. Poorly chosen repositories
can lead to low-quality, misleading, or insufficient data, com-
promising the validity of our findings. For this reason, we
first needed to define the criteria for examining a repository.
We prioritized popular repositories, which we measured by
the amount of GitHub stars they had. While not a definitive
measure of code quality, GitHub stars often serve as an early
indicator of community interest and potential relevance, help-
ing us focus on repositories that are more likely to provide
meaningful insights.

We used several tools to find repositories. The first one was
GitHub’s advanced search engine. Our initial search targeted
repositories that listed jqwik as a dependency. Within this list,
we looked for the ones that also imported the “@Property”
annotation specific to jqwik PBTs. This two-step approach
helped us isolate projects that referenced jqwik and used its
testing features.

The second tool we used was SourceGraph, a code search
and navigation tool designed for exploring large-scale code-
bases across multiple repositories. We applied the same pro-
cess as the first search but got significantly more results this
time.

The last source we checked was Maven Repository, a
widely used public index for Maven artifacts. On jqwik’s
page, we found a list of projects and libraries that depend
on it. We reviewed the most popular ones after checking if
they were open-source, as the index also lists closed-source
libraries and frameworks. Maven Repository gave us the most
promising results, with repositories that had up to 30,000
stars.

Another way of measuring popularity could have been
through download statistics - both monthly and all-time.
However, these statistics about Java libraries are not avail-
able to the general public. Unlike platforms like crates.io for
Rust, a community-made registry that shows the number of
all-time downloads a crate1 has, Java lacks a platform with
this level of transparency. Public indexes like Maven Repos-
itory only list officially indexed libraries that used jqwik as a
dependency, but they do not provide download counts or us-
age metrics. This limitation strengthened our decision to use
GitHub stars to measure popularity.

In the end, we found seven repositories that met
our criteria: kafka, crate, simple-binary-encoding,
Mekanism, graph-data-science, java-storage, and
Poset. Among these, kafka was by far the most popular,
with 30.1k GitHub stars, followed by crate, with 4.3k stars,
and simple-binary-encoding, which had 3.2k stars. The
remaining repositories had fewer stars but were still relevant
due to their usage of jqwik and their open-source availability.
An overview of these repositories can be found in Table 1.

It is worth mentioning that Poset had no GitHub stars.
Despite its lack of apparent popularity and the fact that it had
only one contributor, we decided to include it in our analysis.
The long-term goal of this research is to improve debugging,
and the vast majority of coders do not have enough experi-
ence to write code without making mistakes. Analyzing this
repository allowed us to gain insights into more isolated, less
experienced, and less refined environments. We chose a well-
structured repository with a clearly defined purpose to ensure
the results are still relevant, making it suitable for our study.

3.3 Coding Techniques
We conducted a qualitative analysis of the repositories we
found, using inductive coding to categorize the properties
identified in each PBT. This method involves creating labels
directly from the data instead of making a list beforehand. As
we examined each repository, we iteratively refined the exist-
ing codes and added new ones to highlight existing patterns.
The process required multiple passes through the data to en-
sure that the resulting categories were accurate and meaning-
ful in representing the diverse uses of property-based testing.

Given the nature of this research topic, which spans multi-
ple languages and frameworks, it was essential to have con-

1A “crate” is the Rust community’s term for a library or package,
similar to a Java library.
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Repository Version Stars LOC PBT Number
kafka 3.9.1 30.1k 1.5M (1.2M, 84.9%) 19 (0.08%)
crate 5.10.7 4.3k 881k (804k, 91.23%) 2 (0.02%)
simple-binary-encoding 1.34.1 3.2k 111k (68.3k, 61.52%) 5 (0.74%)
Mekanism 1.20.1 1.5k 495k (259k, 52.23%) 3 (3.19%)
graph-data-science 2.16.0 674 1.1M (529k, 46.21%) 86 (1.2%)
java-storage 2.52.2 116 332k (316k, 95.31%) 24 (1.87%)
Poset 1.0.0 0 1.7k (1.6k, 91.94%) 8 (16.67%)

Table 1: Overview of analyzed repositories. “Stars” indicates the number of GitHub stars at the time of analysis. “LOC” shows the total lines
of code per repository, with the number and percentage of Java lines in parentheses. “PBT Number” indicates the number of property-based
tests (PBTs) from each repository, along with the percentage of PBTs relative to the total number of tests in that repository.

sistency across the analyses. After completing the inductive
coding process separately for each language and framework,
all the papers converged toward a set of shared terms and la-
bels. This common vocabulary served as a standard dictio-
nary, which we then used as a basis for the individual analy-
ses.

The terms we found for our dictionary are:
• INVARIANT, a property that must hold throughout the

execution of a test,
• IDEMPOTENCE, the principle that running your code

more than once is equivalent to executing it once,
• HARD TO PROVE, EASY TO VERIFY, a concept implying

that while it may be hard to formally prove the code’s
correctness, it is easy to verify that the result it gives is
correct,

• ROUND TRIP, which implies modifying the generated in-
put and attempting to return to the original value, such
as encoding and then decoding a value that should yield
the same value at the end,

• STRUCTURAL INDUCTION, a technique for verifying
code by first showing that it works for simple inputs to
prove that it also works for larger and more complex in-
puts,

• TEST ORACLE, an alternative implementation or trusted
reference of the algorithm used to verify the code’s out-
put against, and

• DIFFERENT PATHS, which describes executing methods
in varying orders while still arriving at the same correct
result.

Starting with this dictionary as a foundation, each pa-
per added language-specific codes or terms to help capture
unique aspects of their domain in their analysis. The one la-
bel we added was MUTATION, which represents a valid or
intended change in the state of the SUT.

3.4 Other Measures
When analyzing the selected repositories, we considered sev-
eral other measures beyond the properties to gain insights
into how PBTs are used as a testing strategy. These mea-
sures helped us compare property-based testing to other types
of testing and answer our questions related to generators and
shrinkers. Specifically, we used the following measures:

• lines of code (LOC), both overall and Java-specific, to
help understand the role of Java in large codebases,

• PBT density, calculated as the ratio of property-based
tests to total tests, to see how often developers imple-
ment property-based testing and why,

• property decomposability, which refers to whether
properties could be broken down into smaller properties
and is meant to give insights into possible bug origins,

• number of tries, which represents the amount of times
a PBT is executed with different inputs and is measured
to assess the thoroughness of each test,

• input filtering, which can overly restrict the input, po-
tentially leading to missed edge cases,

• use of custom generators and/or shrinkers to answer
our research questions, and

• exception assertions to determine whether tests explic-
itly verified failure conditions or exceptional behaviors.

We measured the lines of code in each repository using a
tool called Tokei, which reports statistics such as the number
of files, lines of code, and comments for all programming
languages it detects within a project.

In addition, we documented the release version of each
repository we analyzed to ensure our results were replicable
and valid.

All the results are available on the 4TU.ResearchData plat-
form [6].

4 Results
This section presents the results of our analysis of open-
source repositories, including the use of PBT in their test-
ing strategies, label distributions, the use of generators and
shrinkers, and other relevant measures. We also provide ob-
servations regarding these statistics and any conclusions that
we drew from them.

4.1 PBT as a Testing Strategy
We analyzed seven repositories, listed in Section 3.2. As
shown in Table 1, these repositories contained a total of 147
property-based tests. We initially aimed to analyze 50 PBTs
in total, but we surpassed our target, stopping at 84 tests due
to time constraints. In particular, we decided to omit some of
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the PBTs from graph-data-science and kafka because
they were similar to those we had already examined. We
made this decision to form a more diverse sample space from
a larger number of repositories.

As shown in Table 1, Java is the primary language across
all the analyzed repositories. Five of the seven reposito-
ries have over 60% of their codebase written in Java, while
graph-data-science and Mekanism, though below this
threshold, still use Java more than any other language. The
repositories also use Java to program the primary logic of
their codebases, as opposed to languages like TypeScript or
Python, which are used to generate user interfaces and docu-
mentation, or JSON configuration files that Tokei still counts.
These statistics imply that Java plays a central role in the
projects and suggest that the overall testing strategy should
prioritize the correctness and reliability of Java over those of
any other language.

With this context in mind, we can now examine the role of
PBT within these testing strategies in more detail. Also de-
tailed in Table 1, PBTs represent a small fraction of the total
tests. In six out of seven cases, they represent less than 2%,
with the only exception being the repository with no stars.
This trend suggests that property-based testing has a supple-
mentary or supportive role rather than being the primary test-
ing method in projects.

4.2 Label Distributions
The distributions of labels across repositories can reveal
meaningful patterns in how developers use property-based
tests in practice. As shown in Figure 1, the most frequent
labels we found were MUTATION and INVARIANT, followed
by ROUND TRIP. Together, these three categories account for
more than 60% of all labels assigned, indicating that develop-
ers tend to focus on properties that promote consistency and
functional integrity.

When analyzing the repositories individually, we observed
that most of them focused on one type of property-based test
more than others. For example, java-storage predomi-
nantly used ROUND TRIP tests, kafka focused on STRUC-
TURAL INDUCTION, and graph-data-science primarily
used MUTATION tests, with a smaller number of INVARI-
ANT tests. Moreover, eight of the nine tests labeled with
STRUCTURAL INDUCTION originated from the kafka repos-
itory alone. These trends suggest that developers often begin
using property-based tests with a specific purpose in mind,
typically aligned with the behavior and intentions of the sys-
tem under test. Once they fulfill this purpose, they also look
at other ways PBT can be applied in their codebase.

However, it is essential to note that since we only examined
a subset of the PBTs in graph-data-science and kafka,
the label distributions observed in these repositories may not
accurately represent their overall use of property-based tests.
For this reason, the previous conclusion may not hold if we
include additional tests in the analysis.

4.3 Generators and Shrinkers
Two of our research questions focused on the use of genera-
tors and shrinkers. As summarized in Figure 2, out of 84 an-
alyzed tests, 33 used custom generators, while none of them

31

27

15

9
9

7

4
2

Mutation Structural Induction
Invariant Test Oracle
Round Trip Different Paths
Hard to Prove, Idempotence
Easy to Verify

Figure 1: Distribution of assigned labels among analyzed property-
based tests. Tests may have multiple labels. Total labels assigned:
104

used custom shrinkers. In most cases, developers relied on
jqwik’s built-in generators, which were sufficient because the
required input was simple. When inputs consist of basic types
such as numbers, strings, booleans, or lists of primitive types,
the default generation strategy combined with filtering proved
sufficient for most tests.

Another notable pattern we observed is that when develop-
ers did implement custom generators, they sometimes cre-
ated helper classes used exclusively for testing purposes.
For example, the java-storage repository defines a static
TestData class, which is instantiated only within a custom
generator for a PBT in ChunkSegmenterTest.java. This
class also had one of its formatting methods used in three
unit tests but nowhere else. Such classes can increase the risk
of introducing bugs because their behaviors are not indepen-
dently verified. Any logic errors they contain can compro-
mise the validity of the tests and hide bugs in the production
code.

As previously stated, none of the tests used custom
shrinkers for their failing inputs. We concluded from this that
coders either don’t take shrinking into consideration because
their tests are already passing or they believe that jqwik’s de-
fault shrinker is good enough for their needs. Another pos-
sibility is that developers are generally unaware of shrinkers
and the possibility of implementing a custom one. However,
upon inspecting each PBT, we also found no apparent reason
to use custom shrinkers.

The only mentions of shrinkers we found were in the
kafka repository, which was the only one to use jqwik’s
AfterFailureMode option. Specifically, 13 of their tests
used AfterFailureMode.SAMPLE ONLY, which configures
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Figure 2: Distribution of analyzed property-based tests by four key
characteristics. “Decomposable” refers to a test that can be bro-
ken down into multiple smaller, independently testable properties.
“Custom Generators” and “Custom Shrinkers” represent ways for
developers to define how input is generated or how failing input is
minimized, respectively. “Filtered Input” refers to constraints set on
the automatically generated inputs.

jqwik to only rerun the final shrunk input that caused the fail-
ure, rather than re-executing the entire test with new input
samples. This option could indicate that developers prioritize
seeing the minimal failing output over the shrinking process,
which helps in the debugging process.

4.4 Other Measures
Filtering is a key element of generators as it helps guide the
input generation process. As shown in Figure 2, 46 tests used
this technique. These tests include both the ones that imple-
mented custom generators and those that did not. While filter-
ing helps exclude unpermitted inputs, it can also reduce input
diversity and even introduce bias toward narrower regions of
the input spaces. We left these aspects as future work due
to the time constraints associated with our research and the
complexity of the tests.

Property-based tests are designed, as the name suggests, to
verify specific properties that the SUT should satisfy. How-
ever, in practice, developers test multiple properties within a
single test. This approach can complicate debugging, as er-
rors can then originate from different properties, making it
harder to identify the exact cause of the bug. 60 of the PBTs
we analyzed can be further decomposed into smaller tests that
focus on individual properties. Doing so would simplify tests,
making them more maintainable and ensuring that failures are
easier to trace to their cause. At the same time, decomposi-
tion also increases the total number of tests, which may result
in redundant executions of the same code to verify different
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Figure 3: Distribution of tests by number of tries. This value repre-
sents how many times a property-based test will run. 1000 is jqwik’s
default number of tries.

properties. In large-scale projects, this overhead can signifi-
cantly increase implementation and execution times for tests,
which is a big compromise for what might be a small benefit.

An interesting observation from our analysis was the vari-
ation in the number of tries configured for different property-
based tests, as presented in Figure 3. Developers can set this
option in the library configuration file or as shown in Listing
1. Most tests used jqwik’s default of 1,000 tries, but some of
them had different values. The lowest we noted was just 25
tries in java-storage, and the highest was 100,000 in the
same repository, as well as in Mekanism. Many tests used
small counts, such as 25, 50, or 100 tries, likely to speed up
test execution. However, lowering this number can be risky,
as it may prevent generators from reaching edge cases, reduc-
ing test effectiveness.

In kafka, this behavior seems to be justified for some of
the tests by the fact that the generator only gives two values:
an enum and a “seed” value. The enum does not have many
values, but the seed represents a number that can be easily
generated more than 50 times without finding duplicates. In
contrast, this repository also includes tests with 5,000 tries to
check string prefix matching. Conversely, Poset overwrites
the default with 35,000 tries, which is unnecessarily large.
We found no apparent reason for this behavior.

Another notable observation we made was that kafka and
crate were the only repositories to use jqwik’s assumption
feature. Specifically, the Assume.that()method evaluates a
given condition and skips the test execution without counting
it as a try if the condition fails. kafka had five such tests,
and crate had one. They were the only repositories to do
so. crate used this functionality to ignore the PBTs that had
one of its integer parameters larger than another. kafka used
these assumptions to verify that the generated strings had a
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valid structure for the SUT. The strings had an interface for a
generator attached to them, but the interface was empty, and
no method implemented it. This was unusual, as it appeared
to serve no purpose.

The final aspect we examined was the scope of the PBTs:
whether they tested isolated functionality, elements of the
environment, or integration between systems, modules, or
multiple classes. We found four integration tests and no
environment-level tests. The others were more similar to
unit tests, as they only tested small parts of code function-
ality. This behavior suggests that developers primarily use
property-based testing to focus on the properties behind small
parts of their code rather than higher-level interactions.

5 Discussion
In this section, we outline the limitations of our research,
identify potential areas for improvement, and explore any
new research questions that have emerged from the current
findings.

5.1 Threats to Validity
One of the most significant limitations of our research was
the time constraint. We conducted this project over 10 weeks,
during which we gathered data from repositories, analyzed
the data, drew conclusions, and wrote this paper. Given more
time, we could have examined a larger number of reposi-
tories, resulting in a more representative overview of how
jqwick is used in practice and, therefore, have more accurate
results for our answers to the research questions. Despite this
limitation, we still believe that the sample size we currently
have is large enough to consider our results and insights rele-
vant and meaningful.

A second threat to the validity of our analysis lies in the
complexity of some of the PBTs we encountered. In multiple
cases, it was difficult to understand the purpose of a test or
the property it was designed to verify. As a result, we may
have misclassified some tests, or some subtle errors may have
gone unnoticed. While we interpreted each test as accurately
as possible, this possibility remains a potential source of error
in our analysis.

Our last limitation for our research stemmed from the fact
that we only had access to open-source repositories. For this
reason, we could not examine larger and more widely used
projects that may potentially have more structured and ef-
fective testing strategies. Moreover, such projects could use
property-based testing as a more significant part of their test-
ing suites, making the results from such an analysis more rep-
resentative and accurate for jqwik usage.

5.2 Potential Improvements and Future Work
We aimed to make our research as thorough and well-justified
as possible, but there are areas that can still be improved. One
clear improvement to our research would be gathering input
from developers. Understanding how and why developers use
property-based testing in their testing strategies can validate
or challenge the assumptions we made based on our results.
Although we base them on the patterns we observed and con-
crete results, they are still external observations that lack con-
text, such as the motivations and limitations of developers.

As mentioned in Section 4.4, filtering can introduce bias
when generating data by converging towards some areas of
the input sample space and overlooking others. This aspect
can be concerning during testing, as it may cause develop-
ers to miss edge cases or even typical cases that could fail
the tests. We suggest further examining this part of property-
based testing by conducting a study on how input filtering af-
fects input diversity and test effectiveness. Additionally, ex-
ploring automated methods for detecting excessive filtering
could be a step forward in automating bug finding in general.

Although our study included a high-level analysis of
shrinking in property-based testing, we still believe it is a
topic worth investigating in more detail. Our sample space
did not include any tests that implemented custom shrinkers,
and as a result, it only provided limited insights into how
Java developers use shrinking in practice. We recommend
a focused study that specifically targets repositories that use
custom shrinkers to gain a deeper understanding of their mo-
tivations, implementation patterns, and potential benefits or
challenges associated with shrinking.

While our investigation answered our original research
questions, it also raised new questions for us to consider.
Notably, we focused on the structure and categorization of
property-based tests rather than their effectiveness. We did
not evaluate how well these tests detect bugs, how often they
fail, or whether they improve code quality. These areas could
provide a better understanding of the impact PBTs have on a
project’s quality and correctness.

6 Responsible Research
In this section, we present the aspects that make our research
reproducible and replicable, and address any potential ethical
concerns that may come up during our investigation.

6.1 Reproducibility
We designed our research to be fully reproducible. We based
our analysis on open-source repositories that use the jqwik
library for property-based testing. Open-source repositories,
by their nature, are public and accessible to anyone for review.
For each repository, we specified the version we analyzed,
ensuring that anyone can reexamine the same codebases we
did. To further reinforce the idea of reproducibility, we also
archived the GitHub pages of the repositories, ensuring they
remain accessible even if the repositories are removed. The
tools we used to find the repositories are also publicly avail-
able, and we clearly describe the process we followed in se-
lecting codebases for our dataset.

Due to time constraints, we could not examine all the PBTs
in two of the repositories. However, to ensure that there is
no bias or selective sampling in our dataset, we chose the
tests we examined from these repositories entirely at ran-
dom. We made our results available on the publicly available
4TU.ResearchData platform [6] to allow others to reproduce
our findings.

6.2 Replicability
Our findings are also replicable. We based our results and
conclusions on the trends we found in our dataset, which rep-
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resents an overview of the current state of PBT usage in prac-
tice. The margin between the three most common labels in
our results and the other labels is significantly large, and any
new data should follow these trends.

However, one area that may affect the replicability of our
results is the use of custom shrinkers. Since we did not find
any repositories that used them, our conclusions are limited
by their absence. Any findings of shrinking implementations
could disprove our conclusions while also providing new in-
sights on this matter. We acknowledge this as a limitation
in Section 5.1 and note that future research can improve our
findings by expanding the dataset with more significant code-
bases from this perspective.

6.3 Ethical Considerations
We also examined other potential ethical concerns that may
arise from our research. We did not store or access any sen-
sitive or personal data, and we did not involve human inter-
actions in our research, eliminating any concern related to
privacy or consent. Furthermore, we did not use AI tools to
collect or analyze data. The only AI tool we used was Gram-
marly, an AI-based writing support tool, to assist with gram-
mar and spelling corrections during the writing of this paper.
To maintain transparency in our process, we also stated all
our decisions and the motivations behind them, including our
limitations and any compromises we made. Therefore, our
work can be verified and extended by anyone.

7 Conclusions
This section presents our findings from the research, includ-
ing an overview of the current state of property-based testing
in practice and answers to the research questions we posed in
our study.

7.1 The Current State of PBT Usage
Property-based testing is not yet being utilized to its full po-
tential by developers in open-source Java projects. As our
results revealed, most repositories utilized PBT for less than
2% of their tests, indicating a low interest in adopting PBT
as their primary testing strategy. Additionally, the lack of
repositories with high GitHub star counts in our dataset also
supports this result. We were only able to find one reposi-
tory with a relatively high number of stars, while the rest had
fewer than 4,000 stars.

Beyond its limited adoption, our analysis also highlights
how PBT, when used improperly, can introduce minor logic
issues into test suites. These issues may arise from tests that
check multiple properties simultaneously, the use of custom
classes for testing, or excessive filtering of generated input
data. They can introduce problems such as unclear failure
cases, overlap, omission of problematic code areas, and even
the introduction of new bugs. We consider these issues to be
relatively minor because, as mentioned in Section 4.4, more
than 95% of the tests we found are similar to unit tests rather
than integration or environment tests. Despite these risks, the
bugs appear to be localized and only related to logic, making
them relatively straightforward to debug once detected.

7.2 Answering our Questions
In our investigation of property-based testing usage in open-
source Java projects, we focused on identifying the types of
properties that developers commonly test and understanding
how these properties are typically expressed. We also consid-
ered PBT’s role in improving the project’s correctness guar-
antees and bug-finding strategies. Additionally, we analyzed
scenarios where developers implemented custom generators
and shrinkers to support their tests.

To answer RQ1. and RQ2., our analysis reveals that de-
velopers most often test properties related to state transfor-
mations and behavioral consistency. The most common cat-
egories we found were MUTATION, INVARIANT, and ROUND
TRIP, which together accounted for the majority of labeled
tests. These properties are commonly expressed by map-
ping inputs to outputs, sometimes using test oracles and other
times using predefined values, either generated or hardcoded
within the test.

Additionally, we observed that developers tend to priori-
tize one type of property in their projects. This preference is
likely influenced by the testing goals they had in mind or the
characteristics of the system under test. This behavior sug-
gests that developers focus more on isolated tasks rather than
using property-based testing in an exhaustive manner.

Regarding RQ3., as a testing strategy, property-based test-
ing typically accounts for a minor portion of test suites for
large-scale Java projects. Developers adopt PBT selectively,
applying it to isolated use cases where this technique offers
clear advantages. While effective in specific scenarios, devel-
opers do not integrate PBT enough in their projects to signif-
icantly improve their testing strategies.

In response to RQ4. regarding generators, we found
that developers typically implement custom generators when
working with custom classes. These classes may either be
part of the system under test or created specifically to sup-
port test scenarios. The need for custom generators typically
arises from their reusability, ease of use, and the fact that the
default jqwik generators are unable to create instances of the
SUT on their own. In most cases, developers pair them with
filtering and implement custom logic to control how values
are created, ensuring that the data respects the structures re-
quired for testing.

On the other hand, to answer RQ5., custom shrinkers are
never implemented in the repositories we examined. This
finding suggests that jqwik’s default shrinkers are either suf-
ficient for most testing needs or that developers are unaware
they can implement their own. In either case, the absence of
custom shrinkers suggests that shrinking is not considered a
concern, as no problems arise from using the default ones.
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Sára Juhošová. Property-based testing in the wild!
4TU.ResearchData, 2025. doi: 10.4121/368f63ab-10fc-
4603-a15a-bde25e72e778.

[7] Vinicius Durelli, Ricardo Monteiro, Rafael Durelli, An-
dre Endo, Fabiano Ferrari, and Simone Souza. Property-
based testing for machine learning models. In Proceed-
ings of the 9th Brazilian Symposium on Systematic and
Automated Software Testing, pages 39–48, Porto Ale-
gre, RS, Brasil, 2024. SBC.

[8] Harrison Goldstein, Joseph W. Cutler, Daniel Dickstein,
Benjamin C. Pierce, and Andrew Head. Property-based
testing in practice. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineer-
ing, ICSE ’24, New York, NY, USA, 2024. Association
for Computing Machinery.

[9] Harrison Goldstein, Joseph W Cutler, Adam Stein, Ben-
jamin C Pierce, and Andrew Head. Some Problems with
Properties. 2022.

[10] John Hughes. Quickcheck: A lightweight tool for ran-
dom testing of haskell programs. In Proceedings of the
5th ACM SIGPLAN International Conference on Func-
tional Programming (ICFP ’00), pages 268–279. ACM,
2000.

[11] John Hughes. Experiences with QuickCheck: Test-
ing the Hard Stuff and Staying Sane, pages 169–186.
Springer International Publishing, Cham, 2016.
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