

Delft University of Technology

A novel algorithm for fast grasping of unknown objects using C-shape configuration

Lei, Qujiang; Chen, Guangming; Meijer, Jonathan; Wisse, Martijn

DOI
10.1063/1.5006570
Publication date
2018
Document Version
Final published version
Published in
AIP Advances

Citation (APA)
Lei, Q., Chen, G., Meijer, J., & Wisse, M. (2018). A novel algorithm for fast grasping of unknown objects
using C-shape configuration. AIP Advances, 8(2), Article 025006. https://doi.org/10.1063/1.5006570

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1063/1.5006570
https://doi.org/10.1063/1.5006570

AIP ADVANCES 8, 025006 (2018)

A novel algorithm for fast grasping of unknown objects
using C-shape configuration

Qujiang Lei,a Guangming Chen, Jonathan Meijer, and Martijn Wisse
Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology,
2628CD Delft, Netherlands

(Received 26 September 2017; accepted 30 January 2018; published online 8 February 2018)

Increasing grasping efficiency is very important for the robots to grasp unknown
objects especially subjected to unfamiliar environments. To achieve this, a new algo-
rithm is proposed based on the C-shape configuration. Specifically, the geometric
model of the used under-actuated gripper is approximated as a C-shape. To obtain an
appropriate graspable position, this C-shape configuration is applied to fit geometric
model of an unknown object. The geometric model of unknown object is constructed
by using a single-view partial point cloud. To examine the algorithm using simulations,
a comparison of the commonly used motion planners is made. The motion planner
with the highest number of solved runs, lowest computing time and the shortest path
length is chosen to execute grasps found by this grasping algorithm. The simulation
results demonstrate that excellent grasping efficiency is achieved by adopting our
algorithm. To validate this algorithm, experiment tests are carried out using a UR5
robot arm and an under-actuated gripper. The experimental results show that steady
grasping actions are obtained. Hence, this research provides a novel algorithm for
fast grasping of unknown objects. © 2018 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5006570

I. INTRODUCTION

An unknown object can be defined as an item that has neither apparent information nor geometric
model.1 Fast grasping of unknown objects is quite important for robots efficiently to perform mis-
sions especially under unfamiliar environments. Due to the fact that various robots are increasingly
dependent in contemporary society, improving grasping speed emerges as one essential challenge for
fasting grasping of unknown objects.

A literature study reports five dominant fast grasping algorithms.2–6 Among them Ref. 2 is a well
acknowledged fast grasping algorithm using Hough transformation to visualize the edges of objects
into a 2D image. It can detect whether the edges have sufficient length and whether the parallel edges
suit the width of the used grippers. In the work of Eppner and Brock,3 the point cloud is transformed
into shape primitives (i.e., cylinder, disk, sphere and box). A pre-grasp (configuration of the hand)
is chosen according to shape primitives. Using the shape primitive, the scope of grasp searching is
significantly reduced. However, this may result in lots of grasp uncertainty, which may lead to grasp
failure.

Reference 4 applies the contact area of the grasping rectangle to determine the suitable grasps.
The problem with this algorithm is that when the contact area is too small, the grasp is likely to
fail, and thus has to be replaced by another one. Reference 5 utilizes principal axis and centroid of
the object to synthesize a grasping action. Pas6 attempted to fit the shape of the parallel gripper on
the point cloud of the objects. They use a detailed segmentation to pick objects from dense clutters.
This algorithm promotes quite efficient grasping action. These three fast grasping algorithms have a
common character of using the normal of the table plane as the grasp approaching direction, which can

aE-mail address: q.lei@tudelft.nl

2158-3226/2018/8(2)/025006/19 8, 025006-1 © Author(s) 2018

https://doi.org/10.1063/1.5006570
https://doi.org/10.1063/1.5006570
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/1.5006570
mailto:q.lei@tudelft.nl
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5006570&domain=pdf&date_stamp=2018-02-08

025006-2 Lei et al. AIP Advances 8, 025006 (2018)

FIG. 1. Three widely used commercial under-actuated grippers (a-c) and the approximation of C-shape (d).

accelerate grasp searching. However, due to the limitation that grasping from top is inapplicable for
many objects that are placed in enclosed spaces, e.g., fridges and shelves, this type of simplification
cannot be widely accepted.

As a summary, it is obtained that except Ref. 3, the other four fast grasping algorithms2,4–6 are
designed for parallel grippers. Furthermore, excluding Ref. 2 that uses RGB images as input of the
grasping algorithm, the rest four grasping algorithms use a partial point cloud as input, which can
reduce the computational time during a grasping process. In addition, four of them2,4–6 use parallel
grippers because parallel grippers have simpler geometry shape and are easier to control in comparison
with dexterous hands. Nevertheless, the parallel grippers are not advocated in terms of flexibility.
To make a trade-off, the under-actuated grippers are selected which have both sufficient flexibility
and operational convenience. Fig. 1(a–c) shows three commonly used under-actuated grippers. All
the three types of under-actuated grippers can be described as a C-shape with radii r1 and r2 as
particularly displayed in Fig. 1(d).

Additionally, due to the fact that few grasping algorithms provided details on the actual motion
planning of the robotic arm towards the unknown objects, grasping algorithms seem simply focusing
on finding specific grasps on certain objects. As a result, researchers and users who plan to imple-
ment the grasping algorithms have to firstly bridge the gap of motion planning. Hence, they are
required to investigate many different available motion planning methods before implementation,
which introduces much time. The visual application of MoveIt!,7 a motion planning interface in
ROS, is convenient to operate and therefore widely used for robot manipulation. In order to enable
researchers and users to quickly choose suitable motion planners, a comparison of motion planners
available in the simulation system (Moveit!) is made. To execute grasps, the motion planner with the
highest number of solved runs, lowest computing time and shortest path length found our grasping
algorithm is used.

The goal of this paper is to design a fast and general grasping algorithm for unknown objects. In
order to achieve this goal, the rest of this paper is organized as follows: Section II illustrates our fast
grasping algorithm. Section III compares different online motion planners. Section IV presents the
simulation results. Section V gives the experimental results. Finally, the conclusions are provided in
section VI.

II. A NOVEL ALGORITHM

In order to understand this novel algorithm, this section firstly presents the mathematical descrip-
tion of the C-shape configuration. Next, the outline of our fast grasping algorithm is presented. It
demonstrates that eight steps are required to execute an effective grasp. Using an example of grasping
an unknown object, these eight steps are interpreted in details.

A. Mathematical description of the C-shape configuration

Fig. 2(a) shows the C-shape of the under-actuated grippers, in which w is the width of the
griper. Fig. 2(b) demonstrates the area of the C-shape (Cc) from the perspective of x axis. Therefore,
Cc equals the outer cylinder space (Cout) minuses the inner cylinder space (Cin) and minuses the
red area (Cred) (equation (1)). Cred can be approximated as Cred ={(�0.5w≤x≤0.5w)∧(�r1≤y≤r1)
∧(�r2≤z≤0)}.

Cc =Cout − Cin − Cred (1)

025006-3 Lei et al. AIP Advances 8, 025006 (2018)

FIG. 2. Mathematical description of the C-shape (a) 3D illustration (b) YOZ projection of the C-shape.

In order to calculate Cout and Cin in the 3D space, the parametric equation for a random circle
on an arbitrary plane must be firstly obtained. Assuming that P (x0, y0, z0) is the center and r is the
radius of an arbitrary circle, the unit normal vector is given by N=(nx, ny, nz) shown as the red line in
Fig. 3. When the normal vector is projected to the XOY plane, XOZ plane and YOZ plane, the three
project lines are obtained, i.e., the three green lines. γ, β and α are respectively the angles between
the projected lines and the coordinate axes. Then the arbitrary plane can be obtained by transforming
the XOY plane through this manner: first, rotating around the X axis by α; then, rotating around the
Y axis by β; last, moving along the vector N to P (x0, y0, z0). The entire transformation is expressed
as equation (2).

T =

1 0 0 0
0 cos a sin a 0
0 − sin a cos a 0
0 0 0 1

cos β 0 sin β 0
0 1 0 0

sin β 0 cos β 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 0
x0 y0 z0 1

=

cos β 0 − sin β 0
sin a sin β cos a sin a cos β 0
cos a sin β − sin a cos a cos β 0

x0 y0 z0 1

(2)

Assuming that (x(t), y(t), z(t)) are the arbitrary points on the arbitrary circle, then the parametric
equation of the circle can be obtained by the equation (3).

*.....
,

x(t)

y(t)

z(t)

1

+/////
-

=

*.....
,

r cos t

r sin t

0

1

+/////
-

T

∗T =

x(t)= x0 + r cos t cos β + r sin t sin a sin β

y(t)= y0 + r sin t cos a

z(t)= z0 + r sin t sin a cos β − r cos t sin β

(3)

Where t should satisfy 0 ≤ t ≤ 2π. If {x(s,t), y(s,t), z(s,t)} is an arbitrary point on the cylinder,
and the axis vector of the cylinder is N = (cos a′, cos β′, cos γ′), then parametric equations for an
arbitrary cylinder in 3D space can be obtained using equation (4)

x(s, t)= x0 + r cos t cos β + r sin t sin a sin β + s cos a′

y(s, t)= y0 + r sin t cos a + s cos β′

z(s, t)= z0 + r sin t sin a cos β − r cos t sin β + s cos γ′
(4)

FIG. 3. Parametric definition for the space calculation of the C-shape.

025006-4 Lei et al. AIP Advances 8, 025006 (2018)

FIG. 4. The outline of our algorithm for fast grasping of unknown objects.

In which 0 ≤ s ≤ w, w is the width of the griper. Using equation (4), we can obtain equations
for Cout and Cin. In combination with Cred and using equation (1), the C-shape configuration can be
mathematically expressed.

B. Outline of our fast grasping algorithm

The outline of our fast grasping algorithm is shown in Fig. 4. It can be seen that eight steps are
required to execute fast grasping using our algorithm. In the following paragraphs, these eight steps
are respectively explained in detail.

1. Step 1: Obtaining the point cloud of the target object

Fig. 5(a) shows the experimental setup, which consists of a robot arm, a 3D sensor and a
target unknown object. The raw point cloud obtained from the 3D sensor contains the environ-
ment (for example the table plane). In order to quickly extract the point cloud of the target object,
down-sampling and distance filtering are firstly applied on the raw point cloud from the 3D camera to

FIG. 5. Obtaining the point cloud of the target object (a) experimental setup (b) raw point cloud.

025006-5 Lei et al. AIP Advances 8, 025006 (2018)

reduce the computing time and remove the points out of the reach of the robot arm. To isolated point
cloud of the target object, the Random Sample Consensus (RANSAC) method is applied to remove
the table plane.

2. Step 2: Generation of normals

Surface normals are important properties of a geometric surface, and are widely used in many
areas such as computer graphics applications. In this paper, normals are used to guide the configura-
tion of the C-shape to accelerate grasp searching. The solution for estimating the surface normal is
to analyze the eigenvectors and eigenvalues of a covariance matrix created from the nearest neigh-
bors of the query point. Specifically, for each point Pi, we assemble the covariance matrix C as
follows:

C =
1
k

k∑
i=1

(Pi − P̄) · (Pi − P̄)T C · ~Vj = λj · ~Vj j ∈ {0, 1, 2} (5)

Where k is the number of points in the neighborhood of Pi, P̄ represents the 3D centroid of the
nearest neighbors, λj is the j-th eigenvalue of the covariance matrix, and ~Vj is the j-th eigenvector.
The first eigenvector corresponding to least eigenvalue will be the normal at each neighborhood.

As one normal has two possible directions (the red and blue arrow lines) shown in Fig. 6, it must
be figured out which is the right direction of the normal. Since the point cloud datasets are acquired
from a single viewpoint, the camera view point pc is used to solve the problem of the sign of the
normal. The vector from the point pi to the camera view point pc is V i = pc � pi, To orient all normals
~ni consistently towards the viewpoint, it must satisfy the equation: ~ni ·Vi > 0. Using this equation can
constrain all the normals towards the camera viewpoint to obtain all normals (shown as all the red
lines in Fig. 6) of the target object.

3. Step 3: Down-sampling of point cloud

As can be observed in Fig. 6, the normals of the target object are too dense. In order to accelerate
the speed of grasp searching, the normals must be down-sampled. To down-sample the normals, the
K-d tree is used. Fig. 7(a) shows the green points of the original point cloud (Ω) that is used to
compute the normal, and the red points are the down-sampled point cloudΩd . At each red point (Pdi)
ofΩd , we use KNN search to find the nearest neighbor point (Pi) inΩ (shown as Fig. 7(b)). Then the
corresponding normal (ni) of Pi can be looked up in the dense normals obtained in step 2. Eventually,
all the corresponding normals are combined to form the down-sampled normals shown as Fig. 7(c).

4. Step 4: Effective configuration of a C-shape

Configuration of the C-shape is abided by a SE (3) group, thus it can mean many possibilities.
In order to reduce the possibilities to accelerate grasping searching, normals of the target object are
used to work as the approaching direction of the C-shape. Then the configuration of the C-shape can
be simplified from SE(3) to SE(2). In this step, we will explain how to configure the C-shape to find a

FIG. 6. Normals of the target object.

025006-6 Lei et al. AIP Advances 8, 025006 (2018)

FIG. 7. Down-sampling of normals of the target object. (a) original point cloud (b) KNN search (c) reduced normals.

suitable grasp. Besides, we will also illustrate the method to tackle the unseen part of object because
we cannot see the back side of the object when we use a single-view point cloud.

Fig. 8 shows the procedures to configure the C-shape. The blue line in Fig. 8(a) is a random normal.
Fig. 8(b) is an partially enlarged image of Fig. 8(a). When a normal is chosen as the approaching
direction of the C-shape, it means that the Z axis of the C-shape will align with the blue line in Fig. 8(a)
and (b). Then the C-shape can solely rotate around the normal, thus that the C-shape are configured
around the normal with an incremental angle δ (shown as Fig. 8(b)). Each red line in Fig. 8(a) and (b)
means a possible axis for the C-shape. The X axis of the C-shape will match with every red line to
construct a potential grasp candidate. Fig. 8(c) illustrates an example of a potential grasp candidate
corresponding to the black axis in Fig. 8(b), in which the red points in Fig. 8(c) represent the points
of the object covered by the C-shape.

As mentioned before, the C-shape axis is allocated around the normal with an incremental
angle δ. Then a question comes out, i.e., how to decide the first axis of the C-shape to increase the
possibility to find a suitable grasp? If δ is a big angle, for example 60o, we may get two totally different
allocations of C-shape axis shown in Fig. 9(a) and (b). The three cylinder axis in Fig. 9(a) will lead
to no appropriate grasp, because all the three C-shapes will collide with the object. However, the
C-shape axis in Fig. 9(b) can promote a suitable grasp candidate (shown as Fig. 9(c)). This difference
is ascribed to the position of the first axis. Hereby it is suggested to use the principal axis of the local
point cloud to work as the first C-shape axis.

Nevertheless, using a single-view partial point cloud of the object can also result in grasp uncer-
tainty. For instance, if the C-shape is configured as Fig. 10(a), the gripper will collide with the target
object. To overcome this, the boundary of the object is employed to eliminate the uncertainty. Specif-
ically, the point cloud in the camera frame is used to work out the boundary points Ωb (shown as
Fig. 10(b)). Fig. 10(c) illustrates our method to deal with the unseen part. In detail, the two red points
are on Ωb, the two orange lines are obtained by connecting the origin point of camera frame with
the two red points. These two orange dashed lines are obtained by extending the two orange lines.

FIG. 8. Configuration of the C-shape (a) selection of a random normal (b) identification of the normal (c) a potential grasp
candidate.

025006-7 Lei et al. AIP Advances 8, 025006 (2018)

FIG. 9. Determination of the first configuration of the C-shape (a) and (b) illustrate two different allocations from one big
angle (c) a suitable grasp.

FIG. 10. Illustration of the solution to deal with the unseen part of the target object (a) grasp collision with the object (b) the
boundary points (c) illustration on dealing with the unseen part (d) a point cloud which includes the unseen part.

When applying this method to all the points on the boundary, we can obtain a point cloud shown as
Fig. 10(d). After the unseen part is generated, the configuration space (C space) of the target object
(Cobj) is divided into two parts, which are C ′obj (the green points in (d)) and Cunseen (the orange points
in Fig. 10(d)), as shown in equation (6).

Cobj =C ′obj + Cunseen (6)

5. Step 5: Determination of the center point of the C-shape

As mentioned in the previous step, the under-actuated gripper will approach the target object
along the normal direction. Then the correct contact position for initiating a grasp must be determined.
Therefore it is required to determine the center point of the C-shape. Fig. 11(a) shows a possible grasp
candidate, the green points stand for the points covered by the C-shape. Fig. 11(b) is the abstracted
point cloud, and the red arrow stands for the approaching direction of the C-shape. The two red
points in Fig. 11(b) are two example center points of the C-shape. The two blue circles stand for

FIG. 11. Determination of the center point of the C-shape. (a) a possible grasp candidate (b) abstracted point cloud (c) convex
hull of the projected point cloud (d) one obtained point of the convex hull (e) all obtained best center points.

025006-8 Lei et al. AIP Advances 8, 025006 (2018)

the corresponding C-shape. Due to the fact that the center point can go down, meaning that the two
examples of center points of the C-shape are not useful. Fig. 11(c), (d) and (e) elaborate on the method
to find out the best center point, which is given below.

When the abstracted point cloud in Fig. 11(b) is projected to the YOZ plane to get the projected
point cloud (orange points shown as (c)), the convex hull of the projected point cloud is extracted
shown as the green points in (c). The green point in Fig. 11(d) gives one point of the convex hull
obtained in (c). When drawing a circle with r1 as radius (shown as the green circle), we can obtain
two intersects with Z axis (shown as the two purple points P1 and P2). Z = min(Z1,Z2) will work as
the C-shape center. In the same way, we can get all the center points Zc = (Zc1,Zc2,···,Zcn) (shown
as (e)) for all the green points in (c). The maximal Zc is used as the final C-shape center (shown as
the equation (7)). The maximal Zc means the earliest contact point with the object when the C-shape
tries to approach the object.

Zc max =max(Zc1, Zc2, · · ·, Zcn) (7)

6. Step 6: Collision analysis of the C-shape

After the configuration of the C-shape is obtained, it is necessary to predict whether this con-
figuration will collide with object. If the C-shape will not collide with object, then it means this
configuration is possible to be an executable grasp candidate, otherwise this configuration should be
ignored. In order to judge whether one configuration will collide with the object or not, points with
X axis value between �0.5w and 0.5w are abstracted to form a point cloud Ω[�0.5w ,�0.5w] (shown as
the red points in Fig. 12, w is the width of the gripper). If any points pi ofΩ[�0.5w ,�0.5w] falls inside of
the C-shape space, it means the C-shape will collide with the target object, then the grasp candidate
gi should be removed, otherwise gi is reserved for following analysis. Applying this method to all the
C-shape configurations, it leads to a vector G = (g1, g2...gn) which is used to store all grasp candidates
without collision with the target object.

7. Step 7: Local geometry analysis

Step 6 ensures that the C-shape will not collide with the object, which also means that the C-shape
can envelope the object at this configuration. In this step, we will account for the local geometry of
the points enveloped by the C-shape. Fig. 13(a) shows a grasp candidate, in which the local geometry
shape may lead to grasp uncertainty. To tackle this scenario, two grasp sides are abstracted shown
as the red points in Fig. 13(b). The distance between one red point and the blue line is defined as
di (0 < i ≤ n, and n is the total number of the red points). Thus a summation of the distances can be

used to evaluate the variance v of the grasp (v =
i=n∑
i=1

di). For the variance is smaller than the threshold

set by the system the grasp is saved. Otherwise, it is removed.

FIG. 12. Analyzing one grasp formed by a C-shape.

025006-9 Lei et al. AIP Advances 8, 025006 (2018)

FIG. 13. Local geometry analysis (a) a grasp candidate (b) two abstracted grasp sides.

8. Step 8: Force balance optimization

All grasp candidates passed previous steps can form a new vector Gj = (gj1, gj2...gjn), in which
all the grasps can be executed without collision with the target object. Generally, researchers employ
the physic property to do force balance computation, for instance, the friction coefficient. However,
it is inapplicable in this research because the physic property is unknown. To choose the final grasp,
we propose to use force balance optimization based on the local geometry shape.

Fig. 14(a) shows seven lines which stand for the C-shape axis of the grasps in vector Gj. It is
inferred that all the grasps from gj1 to gj7 can be executed. The blue points in Fig. 14(b) stand for the
grasp candidate 1 (gj1). It is projected to the XOY plane to get the projected point cloud shown as
Fig. 14(c). The two grasp sides are abstracted to shown as the red points in Fig. 14(d). Two orange
lines (y = kx + b) can be fit out for the tow grasp sides. The two angles between the two fit lines and X
axis are defined as ξ and θ. Fig. 14(e) shows three cases of allocation of ξ and θ. The sum (σ) of ξ and
θ is used to evaluate the force balance quality of this grasp. σ can be obtained using σ = fabs(arctan
(kθ)) + fabs(arctan(kξ)). The bigger σ is, the higher possibility that the grasp forces are vertical to
the grasp sides, correspondingly more stable the grasp is. The vector ψ = (ψ1,ψ2...ψ7) is used to stand
for all the force balance coefficients for the grasp vector Gj = (gj1, gj2...gj7). Fig. 14(f) displays a line
graph of the vector ψ, the grasp with the largest ψ is chosen as the final grasp. Fig. 14(g) shows the
returned best grasp, which corresponds to the 4th grasp in Fig. 14(a) and (f).

The above steps illustrate how the grasping algorithm work to find a suitable grasp at one normal
of the target object. If the grasping algorithm cannot find a suitable grasp at one normal, another
random normal will be used to repeat above steps until a suitable grasp is found. This was also
identified in the outline of the algorithm in Figure 4.

FIG. 14. Choose the best grasp using force balance optimization. (a) C-shape axis of the grasps (b) grasp candidate 1 (c)
projected point cloud (d) the abstracted two grasp sides (e) three cases of allocation (f) a line graph (g) the returned best grasp.

025006-10 Lei et al. AIP Advances 8, 025006 (2018)

III. SELECTION OF MOTION PLANNERS

Performance of motion planning depends on the chosen motion planner so that motion planning
is a very important part for grasp execution. In this section, we will investigate the choice of motion
planner based on the results of benchmark after a series of motion planner comparisons and parametric
selections in MoveIt!.

A. Motion planning using MoveIt!

MoveIt! itself does not provide motion planning. Instead, it is designed to work with plan-
ners or planning libraries. Currently four main planners/planning libraries can be configured to use:
namely, OMPL (Open Motion Planning Library),8 STOMP (Stochastic Trajectory Optimization for
Motion Planning),9 CHOMP (Covariant Hamiltonian Optimization for Motion Planning)10 and SBPL
(Search-Based Planning Library).11

OMPL8 is a popular choice to solve a motion problem. It is an open-source motion planning
library that houses many state-of-the-art sampling based motion planners. OMPL is configured as
the default set of planners for MoveIt!. Currently 23 sampling-based motion planners can be selected
for use. STOMP9 is an optimization-based motion planner. It is designed to plan smooth trajectories
for robotic arms. The planner is currently partially supported in MoveIt!. CHOMP10 mainly operates
by using two terms, which are dynamical quantity term and obstacle term. The dynamical quantity
term describes the smoothness of the trajectory. The obstacle term is similar to potential fields. The
planner is not yet configured in the latest version of MoveIt!. SBPL11 consists of a set of planners
using search-based planning that discretize the space. The library is not yet configured in the latest
version of MoveIt!.

Among the discussed four planning libraries, OMPL will be used to perform motion planning
in MoveIt! to compare different motion planners. This planning library also gives a wide variety of
choices to solve a motion planning problem because it contains 23 planners.

B. Overview of OMPL planners available in MoveIt!

Table I lists the 23 OMPL planners available in MoveIt!. Sampling-based motion planners in
OMPL work by constructing roadmaps in the configuration space of the robot. This is done by connect-
ing sampled configuration states with each other. Sampling-based motion planners are widely used
due to their success in finding feasible paths in high dimensional and geometrically constraint environ-
ments. Moreover, they are proven to be probabilistically complete.20 The 23 sampling-based motion
planners can be divided into two categories, i.e. none-asymptotically optimal planners and asymptot-
ically optimal planners. None-asymptotically optimal planners include SBL,12 EST,13 BiEST based
on Ref. 13, ProjEST based on Ref. 13, KPIECE,14 BKPIECE based on Ref. 14, LBKPIECE based on
Refs. 14 and 15, RRT,16 RRTConnect,17 PDST,18 STRIDE,19 PRM20 and LazyPRM.15 Asymptoti-
cally optimal planners contain RRTstar,21 PRMstar based on Refs. 20 and 21, LazyPRMstar based
on Refs. 15 and 21, FMT,22 BFMT,23 LBTRRT,24 TRRT,25 BiTRRT,26 SPARS27 and SPARStwo.28

C. Methodologies of comparing motion planners in MoveIt!

To compare the performance of the 23 motion planners available in MoveIt!, we created two
benchmarks shown in Fig. 15. The first benchmark resembles a grasp among dense obstacles and
the second resembles a long motion grasp. The planners are analyzed on the three respects of the
solved runs, computing time and path length. Solved runs, computing time and path length are used
as metric in our experiments. We analyze the measures individually to provide the best performing
planners in each one of the measures. Solved runs are analyzed by terms of percentage of total runs
of the planner resulting in feasible paths, higher performance is considered for higher solved runs.
Total computing time is measured for the time it takes for planners to produce feasible or optimal
paths with path simplification, a shorter time is considered as higher performance. Moreover, planners
with a small standard deviation from the average computing time and small interquartile range are
considered as better performance. Path length is measured by the length of the sum of motions for a
produced path. Shorter lengths are considered as higher performance. Finally, planners with a small
standard deviation from the average path length and small interquartile range are considered as better
performance.

025006-11 Lei et al. AIP Advances 8, 025006 (2018)

TABLE I. Available planners of OMPL in MoveIt!.

Planner name Reference Asymptotically optimal Time-invariant goal

SBL 12
√

EST 13
√

BiEST Based on Ref. 13
√

ProjEST Based on Ref. 13
√

KPIECE 14
√

BKPIECE Based on Ref. 14
√

LBKPIECE Based on Refs. 14 and 15
√

RRT 16
√

RRTConnect 17
√

PDST 18
√

STRIDE 19
√

PRM 20
LazyPRM 15
RRTstar 21

√

PRMstar Based on Refs. 20 and 21
√

LazyPRMstar Based on Refs. 15 and 21
√

FMT 22
√ √

BFMT 23
√ √

LBTRRT 24
√ √

TRRT 25
√ √

BiTRRT 26
√ √

SPARS 27
√

SPARStwo 28
√

The benchmarking experiments are performed using one thread on a system with an Intel i5
2.70GHz processor and 8GB of memory. To obtain reliable data on the solved runs, computing
time and path length, each algorithm was run 30 times for the given motion planning problem. The
algorithms were given a maximum computing time of 3s and 10s to show the effect of time on
different motion planners. The times are kept low since most robotics applications need to operate
quickly.

D. Parameter selection

One important parameter can affect all planners, which is the distance parameter
(longest valid segment fraction). This parameter is accounted when the planner detects collisions
between two nodes. Collision detection is not detected when the distance between the nodes is
smaller than the parameter value. In narrow passages and corners, this parameter can be critical. The
parameter is set in meters and by default has a value of 0.005m. After conducting experiments with
lower values, we found that reducing the value of this parameter did not play an immediate effect on
the solved runs for both benchmark problems in Fig. 15. Among the 23 available planners in MoveIt!,
19 of them have their own parameters. For the two benchmarks, parameters of the 19 planners were

FIG. 15. Simulation setting for comparison of different motion planners in MoveIt!. (a): Benchmark 1: Grasp among dense
obstacles. (b): Benchmark 2: The robot arm needs long motion path for grasping.

025006-12 Lei et al. AIP Advances 8, 025006 (2018)

TA
B

L
E

II
.

Sp
ec

ifi
ed

pl
an

ne
r

pa
ra

m
et

er
s.

SB
L

E
ST

B
iE

ST
Pr

oj
E

ST
R

R
T

R
R

T
C

on
ne

ct
PR

M
L

az
yP

R
M

R
R

T
st

ar

ra
ng

e:
.3

12
5

ra
ng

e:
.6

25
ra

ng
e:

0
ra

ng
e:

.6
25

ra
ng

e:
0

ra
ng

e:
.3

12
5

m
ax

n.
n.

:1
0

ra
ng

e:
.3

12
5

ra
ng

e:
0

go
al

bi
as

:.
05

go
al

bi
as

:.
05

go
al

bi
as

:.
05

go
al

bi
as

:.
05

de
la

y
c.

c.
:0

K
PI

E
C

E
B

K
PI

E
C

E
L

B
K

PI
E

C
E

ST
R

ID
E

FM
T

B
FM

T
T

R
R

T
B

iT
R

R
T

SP
A

R
S

SP
A

R
St

w
o

ra
ng

e:
.6

25
ra

ng
e:

.3
12

5
ra

ng
e:

.3
12

5
ra

ng
e:

.6
25

sa
m

pl
es

:1
00

0
sa

m
pl

es
:1

00
0

ra
ng

e:
1.

25
ra

ng
e:

1.
25

st
r.

fa
ct

or
:2

.6
st

r.
fa

ct
or

:3
go

al
bi

as
:.

05
bo

rd
er

fr
ac

.:
.9

bo
rd

er
fr

ac
.:

.9
go

al
bi

as
:.

05
ra

d.
m

ul
t.:

1.
05

ra
d.

m
ul

t.:
1.

05
go

al
bi

as
:.

05
te

m
p

c.
fa

ct
.:

.2
sp

.d
.f

ra
c.

:.
25

sp
.d

.f
ra

c.
:.

25
bo

rd
er

fr
ac

.:
.9

fa
ile

d
e.

s.
f.

:.
5

m
in

.v
.p

.f
ra

c.
:.

5
us

e
pr

oj
.d

is
t.:

0
ne

ar
es

tk
:1

ne
ar

es
tk

:1
m

ax
s.

f.
:1

0
in

it
te

m
p.

:5
0

d.
d.

fr
ac

.:
.0

01
d.

d.
fr

ac
.:

.0
01

fa
ile

d
e.

s.
f.

:.
5

m
in

.v
.p

.f
ra

c.
:.

5
de

gr
ee

:8
ca

ch
e

cc
:1

ba
la

nc
ed

:1
te

m
p

c.
fa

ct
.:

2
f.

th
re

sh
ol

d:
0

m
ax

fa
ils

:1
00

0
m

ax
fa

ils
:5

00
0

m
in

.v
.p

.f
ra

c.
:.

5
m

ax
de

gr
ee

:1
2

he
ur

is
tic

s:
1

op
tim

al
ity

:0
m

.te
m

p.
:1

e-
10

f.
n.

ra
tio

:.
1

m
in

de
gr

ee
:6

ex
te

nd
ed

fm
t:

1
ca

ch
e

cc
:1

i.t
em

p.
:1

e-
6

co
st

.th
re

s.
:5

e4
m

ax
p.

p.
le

af
:3

he
ur

is
tic

s:
1

f.
th

re
sh

ol
d:

0
es

t.
di

m
.:

0
ex

te
nd

ed
fm

t:
1

f.
N

od
eR

at
io

:.
1

m
in

.v
.p

.f
ra

c.
:.

1
k

co
ns

ta
nt

:0

025006-13 Lei et al. AIP Advances 8, 025006 (2018)

set to values that benefit one or more performance measures, and the corresponding values are given
in Table II.

While conducting parameter selections for LBTRRT, we found that this planner is behaving
unreliable in our setup. We tested all parameter combinations for this planner when conducting
motion planning, however, all parameter combinations resulted in crashes. As a result, we are unable
to provide benchmark data for this particular planner. There is an important parameter for the used
UR5 robot, i.e., joint limit settings for each joint. The parameter can be set as π or 2π. Validating by
means of simple motion planning experiments, we found that setting the joint limits to π resulted in
favorable performance for all the performance measures.

E. Comparison results

Results of benchmark 1 are shown in Fig. 16 and Table III. The motion problem affects planners
EST, RRT, RRTstar, TRRT and SPARStwo since they were not able to solve all the runs with a
percentage higher than 50% with a maximum computing time of 3s. For 10s of computing time,
more solved runs were retrieved. SBL, BiEST, KPIECE, BKPIECE and LBKPIECE compute valid
paths in a computing time shorter than one second. RRTConnect is the fastest planner and BiTRRT
is the fastest asymptotically optimal planner. RRTConnect paths have the lowest median. However,
the average is higher due to significant outliers. SBL has the lowest average path length with a small
standard deviation. Planners SBL, KPIECE, LBKPIECE, FMT, and TRRT are able to plan paths of
similar median and average lengths. For asymptotically optimal planners, BiTRRT has the lowest
median path length. TRRT has the lowest average path length and standard deviation. Selecting a
higher limit of computing time did not result in significant changes.

FIG. 16. Comparison results of 23 motion planners in MoveIt! for benchmark 1.

025006-14 Lei et al. AIP Advances 8, 025006 (2018)

TABLE III. Average values for benchmark 1.

Max. 3s computing time Max. 10s computing time

Planner name Time (s) Path length Time (s) Path length

SBL 0.29 (0.11) 10.07 (0.74) 0.37 (0.18) 9.90 (0.63)
EST 2.18 (0.31) 10.58 (0.77) 4.65 (2.55) 11.03 (1.01)
BiEST 0.21 (0.10) 14.81 (5.19) 0.18 (0.07) 13.32 (3.14)
ProjEST 1.83 (0.86) 11.82 (1.81) 2.37 (1.57) 12.13 (2.19)
KPIECE 0.20 (0.09) 10.89 (1.80) 0.22 (0.10) 10.55 (1.28)
BKPIECE 0.42 (0.21) 10.94 (1.86) 0.42 (0.21) 10.56 (1.82)
LBKPIECE 0.30 (0.08) 10.41 (1.53) 0.26 (0.11) 12.30 (7.16)
RRT 0.54 (0.84) 11.93 (1.41) 1.48 (2.71) 11.62 (1.14)
RRTConnect 0.11 (0.08) 12.52 (15.68) 0.09 (0.03) 11.89 (9.10)
PDST 1.37 (0.87) 11.96 (2.35) 1.68 (1.61) 12.37 (2.15)
STRIDE 0.59 (0.57) 11.97 (5.35) 1.12 (1.58) 11.20 (2.24)
PRM∗ 3.01 (0.01) 15.60 (2.26) 10.01 (0.01) 14.49 (1.65)
LazyPRM 3.02 (0.00) 12.13 (1.17) 10.02 (0.01) 12.48 (1.96)
RRTstar∗ 3.01 (0.01) 12.76 (0.93) 10.02 (0.02) 11.47 (1.03)
PRMstar∗ 3.02 (0.01) 14.43 (1.90) 10.02 (0.01) 12.99 (1.67)
LazyPRMstar 3.02 (0.00) 11.53 (1.23) 10.03 (0.01) 10.95 (1.59)
FMT 2.07 (0.45) 10.49 (0.99) 1.78 (0.21) 10.33 (0.64)
BFMT 1.17 (0.36) 11.74 (2.65) 0.89 (0.09) 10.88 (1.06)
TRRT 0.57 (0.58) 10.21 (0.52) 2.41 (2.82) 10.12 (0.45)
BiTRRT 0.13 (0.08) 15.56 (16.75) 0.13 (0.10) 11.03 (5.22)
SPARS∗ 3.04 (0.04) 23.63 (4.74) 10.07 (0.07) 23.87 (5.57)
SPARStwo∗ 3.00 (0.00) 22.98 (3.97) 10.00 (0.00) 26.34 (10.01)

FIG. 17. Comparisotan results of 23 motion planners in MoveIt! for benchmark 2.

025006-15 Lei et al. AIP Advances 8, 025006 (2018)

TABLE IV. Average values for benchmark 2.

Max. 3s computing time Max. 10s computing time

Planner name Time (s) Path length Time (s) Path length

SBL 0.05 (0.01) 9.48 (7.86) 0.04 (0.01) 7.76 (1.76)
EST 0.20 (0.13) 9.53 (2.58) 0.16 (0.11) 9.38 (4.00)
BiEST 0.09 (0.04) 11.36 (1.96) 0.08 (0.03) 12.71 (3.57)
ProjEST 0.18 (0.11) 9.86 (2.51) 0.15 (0.09) 8.99 (1.32)
KPIECE 0.18 (0.09) 9.10 (1.50) 0.14 (0.08) 9.49 (1.68)
BKPIECE 0.11 (0.11) 9.71 (5.83) 0.13 (0.16) 8.17 (2.79)
LBKPIECE 0.09 (0.06) 9.33 (5.53) 0.08 (0.03) 9.23 (3.80)
RRT 0.53 (0.62) 12.03 (7.08) 0.44 (1.10) 10.15 (1.99)
RRTConnect 0.09 (0.04) 13.90 (10.39) 0.06 (0.02) 9.65 (4.05)
PDST 0.24 (0.16) 11.71 (3.56) 0.24 (0.16) 12.27 (4.00)
STRIDE 0.19 (0.21) 9.42 (3.26) 0.14 (0.09) 8.98 (1.17)
PRM∗ 3.02 (0.01) 12.91 (3.41) 10.01 (0.00) 11.56 (1.56)
LazyPRM 3.02 (0.00) 9.80 (1.88) 10.02 (0.00) 9.58 (1.27)
RRTstar∗ 3.01 (0.02) 8.78 (0.00) 10.01 (0.01) 8.21 (0.94)
PRMstar∗ 3.03 (0.01) 12.30 (1.81) 10.02 (0.01) 11.11 (1.65)
LazyPRMstar 3.02 (0.00) 8.62 (0.98) 10.02 (0.01) 7.88 (0.72)
FMT 1.23 (0.16) 9.64 (6.44) 1.10 (0.15) 7.92 (1.15)
BFMT 0.79 (0.06) 8.24 (0.69) 0.73 (0.06) 8.35 (1.64)
TRRT 0.78 (1.00) 7.82 (0.91) 2.05 (2.43) 8.55 (2.17)
BiTRRT 0.08 (0.02) 8.39 (3.00) 0.07 (0.02) 7.75 (1.11)
SPARS∗ 3.05 (0.04) 19.38 (8.05) 10.07 (0.06) 16.22 (5.38)
SPARStwo∗ 3.00 (0.01) 14.98 (5.37) 10.00 (0.00) 20.10 (9.43)

Results of benchmark 2 are shown in Fig. 17 and Table IV. RRTstar, TRRT and SPARStwo have
a lower solved runs compared to the other planner algorithms. SBL, BiEST, BKPIECE, LBKPIECE,
RRTConnect and BiTRRT compute paths in under 0.1s, SBL is the fastest planner. Planners that
have a time invariant stopping goal, except for FMT and TRRT, are producing valid paths within
one second. BiTRRT is the fastest asymptotically optimal planner. Bi-directional planner variants
compute valid paths faster. SBL and BiTRRT have the shortest paths. The planners that keep sampling
the configuration space or optimizing the path until the maximum computing time is reached see
improved performance with respect to path length.

To sum up, SBL, BKPIECE, LBKPIECE, RRTConnect and BiTRRT can achieve better perfor-
mances than the other planners based on the comparison results of benchmark 1 and benchmark 2.
These five planners can work better with respect to both circumstances of grasp in dense obstacles and
grasp in a long motion. However, among these five planners, only BiTRRT is asymptotically optimal.
Asymptotically optimal planners are able to exclude potential high-cost paths and rough motions,
which can help to achieve a smoother path of the manipulator. Taking all factors into consideration,
we will adopt BiTRRT to work as the motion planner for the UR5 manipulator to execute the final
grasp.

IV. SIMULATION TESTS

In order to verify our grasping algorithm, the motion planner BiTRRT for the UR5 manipulator
is used to perform grasp action. The simulation tests were performed using a personal computer
(2 cores, 2.9GHz). Several objects with different geometry shapes are used in the simulation. Table V
lists the simulation testes for five objects. The first column shows the setup of each test. The second
column shows an example grasp found by the grasping algorithm. The third column shows the robot
arm arrived at the grasp point by using BiTRRT as motion planner. The fourth column shows the
number of points of the input partial point cloud. The last column shows the average computing time
(10 trials for each object). For all the tested objects, it demonstrates that the algorithm can quickly
find out a suitable grasp within two seconds.

025006-16 Lei et al. AIP Advances 8, 025006 (2018)

TABLE V. Experiment results.

Intial setup Example grasp found Grasp execution Points Time (s)

8154 1.95

7678 1.83

5274 0.58

7270 0.87

4710 0.73

V. EXPERIMENTAL TESTS

The experimental tests were conducted using a robot arm UR5 and an under-actuated Lacquey
Fetch gripper. An Xtion pro live sensor is used to acquire the partial point cloud of the target object.
The whole experiment setup and the objects chosen to do experiments are shown as the first column
of Table VI. The second column shows the example grasp found by the grasping algorithm. The third
column shows the robot arm arrives at the grasp position by using BiTRRT as motion planner. The
fourth column shows the number of points of the input partial point cloud. The last column shows
the computing time (10 trials for each object).

In comparison with the simulation tests in Table V, the point cloud in experiments may lose some
points. For instance, the coffee jar in the sixth column of Table VI lost certain amount of points because
the Xtion pro live sensor cannot detect transparent part. The neck of the coffee jar is transparent which
is therefore we cannot find the points for neck of the coffee jar. From Table VI, we can see that even
though the partial point cloud of the object has large number of points, our algorithm can quickly
work out a suitable grasp within two seconds. Therefore, it demonstrates that the experimental tests
are consistent with the simulation tests of using the grasping algorithm. Comparing with the five
fast grasping algorithms,2–6,29–32 it is summarized that our algorithm is distinguished from others
according to the following five points:

025006-17 Lei et al. AIP Advances 8, 025006 (2018)

TABLE VI. Experiment results.

Intial setup Example grasp found Grasp execution Points Time (s)

10596 1.74

9929 1.56

5267 0.67

7127 0.91

4345 0.68

• Grasp adaptiveness: Our grasping algorithm is specially designed for under-actuated grippers,
which adds compliance and dexterity without the need of adding additional actuators and sensors.
In combination with the low price of under-actuated grippers, our grasping algorithm is more
adaptive than others.2,4–6 Meanwhile, the grasping algorithm proposed in this paper does not
rely on object features, which means more adaptiveness than our previous work.32

• Object complexity: The presented grasping approach is applicable for relatively complex objects
such as electric drill and the cleaner spray bottle. This makes it better than Refs. 2, 4, and 5, which
only considers simple objects. Reference 3 transforms the objects into simple shapes (cylinder,
disk, sphere and box), which may result in loss of details of objects. Caging based grasping
algorithms29–31 are becoming popular in recent years because of their high flexibility, however,
they are only applicable for simple flat objects.
• Computing time: Our algorithm finds a suitable grasp for complex object within two seconds,

which is lower in comparison with the results by Refs. 3–6. It is noted that Ref. 2 uses a much
lower time because it only uses a RGB image at the cost of losing depth information of the object
that can involves grasp risks.
• Grasping direction: Refs. 2, 4, and 5 only consider grasping from top, which can result in

unreliable grasp, for instance, picking up the wineglass. In some cases, it is unallowable to grasp

025006-18 Lei et al. AIP Advances 8, 025006 (2018)

the target object from top, for example, objects in fridges or shelves. Our grasping algorithm
considers the local geometry property of the object. Moreover, we use the normal of the object
for approaching direction, which resembles a human-like grasp.
• Grasp execution: For the available fast grasp algorithms, only Ref. 6 considers grasp execution.

However, no information was given about motion planning. We showed by performing a com-
parison that using BiTRRT for grasp execution would result in high solved runs, low computing
time and short path length.

VI. CONCLUSIONS

This paper introduces a novel algorithm for fast grasping of unknown object grasping is based on
the C- shape configuration. For the grasping algorithm, the under-actuated grippers is simplified as a
C-shape. To accelerate the computing speed, this algorithm uses a single view partial point cloud as
input, which is also used for C-shape searching on the target object. The effectiveness and reliability
of our grasping algorithm is verified using available objects by simulations and experiments. Our
grasping algorithm can quickly work out a suitable grasp within two seconds for a test unknown object.
In comparison with other fast grasping algorithms, our algorithm shows significant improvement in
terms of the grasp speed and the applicability in practice.

ACKNOWLEDGMENTS

The work leading to these results has received funding from the European Community’s Seventh
Framework Programme (FP7/2007-2013) under grant agreement n◦ 609206.

1 J. Jeannette Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp synthesis: A survey,” IEEE Transactions on
Robotics 30(2), 1–21 (2013).

2 J. Baumgartl and D. Henrich, “Fast vision-based grasp and delivery planning for unknown objects,” 7th German Conference
on Robotics (ROBOTIK 2012), 1–5 (2012).

3 C. Eppner and O. Brock, “Grasping unknown objects by exploiting shape adaptability and environmental constraints,” In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 4000–4006 (2013).

4 Y.-c. Lin, S.-t. Wei, and L.-c. Fu, “Grasping unknown objects using depth gradient feature with eye-in-hand RGB - D
sensor,” In IEEE International Conference on Automation Science and Engineering (CASE), 1258–1263 (2014).

5 T. Suzuki and T. Oka, “Grasping of unknown objects on a planar surface using a single depth image,” In proceeding of
IEEE International Conference on Advanced Intelligent Mechatronic (AIM), 572–577 (2016).

6 A. t. Pas and R. Platt, “Using geometry to detect grasps in 3D point clouds,” 2015 International Symposium on Robotic
Research (ISRR), 1–16 (2015).

7 S. Bhattacharya, M. Likhachev, and V. Kumar, “Topological constraints in search-based robot path planning,” Autonomous
Robots (AURO) 33(3), 273–290 (2012).

8 I. Sucan, M. Moll, and L. Kavraki, “Open motion planning library: A primer,” IEEE Robotics & Automation Magazine
19(4), 72–82 (2014).

9 M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal, “STOMP: Stochastic trajectory optimization for motion
planning,” In IEEE International Conference on Robotics and Automation (ICRA), 4569–4574 (2011).

10 M. Zucker, N. Ratliff, A. Dragan, M. Pivtoraiko, M. Klingensmith, C. Dellin, J. A. Bagnell, and S. Srinivasa, “CHOMP:
Covariant Hamiltonian optimization for motion planning,” International Journal of Robotics Research 32(9-10), 1164–1193
(2013).

11 S. Bhattacharya, M. Likhachev, and V. Kumar, “Topological constraints in search-based robot path planning,” Autonomous
Robots (AURO) 33(3), 273–290 (2012).

12 G. Sánchez and J.-C. Latombe, “A single-query bi-directional probabilistic roadmap planner with lazy collision checking,”
In Robotics Research, Part of the Springer Tracts in Advanced Robotics book series (STAR), (6): 403–417 (2003).

13 D. Hsu, J. C. Latombe, and R. Motwani, “Path planning in expansive configuration spaces,” In IEEE International Conference
on Robotics and Automation (ICRA), 719–2726 (1997).

14 I. A. Sucan and L. E. Kavraki, “Kinodynamic motion planning by interior-exterior cell exploration,” Algorithmic Foundation
of Robotics VIII, Part of the Springer Tracts in Advanced Robotics book series (STAR), (57): 449–464 (2008).

15 R. Bohlin and L. E. Kavraki, “Path planning using lazy PRM,” In IEEE International Conference on Robotics and Automation
(ICRA), 521–528 (2000).

16 S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path planning,” Tech. Rep., (1998).
17 J. J. Kuffner, Jr. and S. M. Lavalle, “RRT-connect: An efficient approach to single-query path planning,” In IEEE International

Conference on Robotics and Automation (ICRA), 995–1001 (2000).
18 A. M. Ladd, R. Unversity, L. E. Kavraki, and R. Unversity, “Motion planning in the presence of drift, under-actuation and

discrete system changes,” In Robotics: Science and Systems (RSS), 233–241 (2005).
19 B. Gipson, M. Moll, and L. E. Kavraki, “Resolution independent density estimation for motion planning in high dimensional

spaces,” In IEEE International Conference on Robotics and Automation (ICRA), 2437–2443 (2013).

https://doi.org/10.1007/s10514-012-9304-1
https://doi.org/10.1007/s10514-012-9304-1
https://doi.org/10.1177/0278364913488805
https://doi.org/10.1007/s10514-012-9304-1
https://doi.org/10.1007/s10514-012-9304-1

025006-19 Lei et al. AIP Advances 8, 025006 (2018)

20 L. Kavraki, P. Svestka, J. claude Latombe, and M. Overmars, “Probabilistic roadmaps for path planning in high-dimensional
configuration spaces,” In IEEE International Conference on Robotics and Automation (ICRA), 566–580 (1996).

21 S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” CoRR, vol. abs/1105.1186 (2011).
22 L. Janson and M. Pavone, “Fast marching trees: A fast marching sampling-based method for optimal motion planning in

many dimensions-extended version,” CoRR, vol. abs/1306.3532 (2013).
23 J. A. Starek, J. V. Gómez, E. Schmerling, L. Janson, L. Moreno, and M. Pavone, “An asymptotically-optimal sampling-based

algorithm for bi-directional motion planning,” CoRR, vol. abs/1507.07602 (2015).
24 O. Salzman and D. Halperin, “Asymptotically near optimal RRT for fast, high-quality, motion planning,” CoRR, vol.

abs/1308.0189 (2013).
25 L. Jaillet, J. Corts, and T. Simon, “Sampling-based path planning on configuration-space costmaps,” IEEE Transactions on

Robotics 26, 635–646 (2010).
26 D. Devaurs, T. Siméon, and J. Cortés, “Enhancing the transition-based rrt to deal with complex cost spaces,” In IEEE

International Conference on Robotics and Automation (ICRA), 4105–4110 (2013).
27 A. Dobson, A. Krontiris, and K. E. Bekris, “Sparse roadmap spanners,” Algorithmic Foundations of Robotics X (2013),

pp. 279–296.
28 A. Dobson and K. E. Bekris, “Improving sparse roadmap spanners,” In IEEE International Conference on Robotics and

Automation (ICRA), 4106–4111 (2013).
29 W. Wan and K. Harada, “Achieving high success rate in dual-arm handover using large number of candidate grasps, handover

heuristics, and hierarchical search,” Advanced Robotics 30(17-18), 1111–1125 (2016).
30 W. Wan and F. Rui, “Efficient planar caging test using space mapping,” IEEE Transactions on Automation Science and

Engineering 15(1), 278–289 (2016).
31 W. Wan and F. Rui, “Finger-position optimization by using caging qualities,” Signal Processing 120, 814–824 (2015).
32 Q. Lei, G. Chen, and M. Wisse, “Fast grasping of unknown objects using principal component analysis,” AIP Advances

7(9), 1–21 (2017).

https://doi.org/10.1109/tro.2010.2049527
https://doi.org/10.1109/tro.2010.2049527
https://doi.org/10.1080/01691864.2016.1202138
https://doi.org/10.1016/j.sigpro.2015.04.012

