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Abstract. Attention mechanism has been regarded as an advanced
technique to capture long-range feature interactions and to boost the
representation capability for convolutional neural networks. However,
we found two ignored problems in current attentional activations-based
models: the approximation problem and the insufficient capacity problem
of the attention maps. To solve the two problems together, we initially
propose an attention module for convolutional neural networks by devel-
oping an AW-convolution, where the shape of attention maps matches
that of the weights rather than the activations. Our proposed attention
module is a complementary method to previous attention-based schemes,
such as those that apply the attention mechanism to explore the rela-
tionship between channel-wise and spatial features. Experiments on sev-
eral datasets for image classification and object detection tasks show the
effectiveness of our proposed attention module. In particular, our pro-
posed attention module achieves 1.00% Top-1 accuracy improvement on
ImageNet classification over a ResNet101 baseline and 0.63 COCO-style
Average Precision improvement on the COCO object detection on top of
a Faster R-CNN baseline with the backbone of ResNet101-FPN. When
integrating with the previous attentional activations-based models, our
proposed attention module can further increase their Top-1 accuracy on
ImageNet classification by up to 0.57% and COCO-style Average Preci-
sion on the COCO object detection by up to 0.45. Code and pre-trained
models will be publicly available.

Keywords: Attention mechanism · Convolution · Representation

1 Introduction

Recent literature [6,12,31] have investigated the attention mechanism since it can
improve not only the representation power but also the representation of inter-
ests. Convolutional neural networks can extract informative features by blend-
ing cross-channel and spatial information [9]. Attention modules [19,29] can learn
“where” and “what” to attend in channel and space axes, respectively, by focus-
ing on important features and suppressing unnecessary ones of the activations.
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Dynamic Filter Networks [13,17] generate the filters conditioned on the input and
show the flexibility power of such filters because of their adaptive nature, which
has become popular in prediction [15] and Natural Language Processing [30].
Both Dynamic Filter Networks and attention-based models are adaptive based
on the inputs, but there are significant differences between them. Attention-based
models [9,29] produce attention maps using the attention mechanism to operate
on the activations of convolution. On the contrary, Dynamic Filer Networks [22]
generate input information-specific kernels, such as position-specific kernels [22]
and few-shot learning setting-specific kernels [32], which work as the weights of
convolution. Our proposed attention module leverages the attention mechanism
to compute the attention maps for attending the activations of convolution, so it
is clear to categorized the models applied with our proposed attention module as
attention-based models instead of Dynamic Filter Networks.

In this paper, we analyze two ignored problems of the current attentional
activations-based models: the approximation problem and the insufficient capac-
ity problem of the attention maps. To address the two problems together, we
originally propose an attention module by developing an AW-convolution, where
the shape of the attention maps matches that of the weights instead of the acti-
vations. Besides, we present and refine the architecture of calculating attention
maps A. Our proposed attention module is a complementary method to previous
attention mechanism-based modules, such as Attention Augmented (AA) con-
volution [2], the SE [10] and CBAM [29] modules in the attentional activations-
based models. Integrating with our proposed attention module, the accuracy of
SE-Net, and CBAM-Net will be improved further.

We use image classification and object detection tasks to demonstrate the
effectiveness of our proposed attention module. With negligible computational
complexity increase, our proposed attention module can boost the image classi-
fication and object detection task performance, and it can achieve better accu-
racy when integrating with other attention-based models. In particular, our pro-
posed attention module achieves 1.00% Top-1 accuracy improvement on Ima-
geNet classification over a ResNet101 baseline and 0.63 COCO-style Average Pre-
cision improvement on the COCO object detection on top of a Faster R-CNN
baseline with the backbone of ResNet101-FPN. When integrating with the pre-
vious attentional activations-based models, our proposed attention module can
further increase their Top-1 accuracy on ImageNet classification by up to 0.57%
and COCO-style Average Precision on the COCO object detection by up to 0.45.

2 Related Work

2.1 Network Engineering

Increasing the depth of convolutional neural networks has been regarded as an
intuitive way to boost performance, which is the philosophy of VGGNet and
ResNet [7]. In addition, since the skip connection from ResNet shows a strong
ability to assist the gradient flow, WideResNet, PyramidNet, Inception-ResNet
[23], and ResNeXt are ResNet-based versions proposed to explore further the
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influence of the width, the increase of the width, the multi-scale and the cardi-
nality of convolution, respectively. In terms of efficiency, DenseNet [11] reuses
the feature maps by concatenating the feature maps from different layers. In
particular, MobileNet [8] and ShuffleNet [20] series present the advantage of
depthwise convolution and the shuffle operation between various group convolu-
tions, respectively. Another design approach uses automated neural architecture
search, which achieves state-of-the-art performance regarding both accuracy and
efficiency across a range of computer vision tasks [24].

2.2 Attention Mechanism

The attention mechanism plays an important role in the human vision percep-
tron since it can allocate the available resources to selectively focus on processing
the salient part instead of the whole scene [5]. Multiple attention mechanisms
are used to address a known weakness in convolution [3,4,10,14,19], by cap-
turing long-range information interactions [1,26]. The Inception family of archi-
tectures [23], Multigrid Neural Architectures [14], and Octave Convolution [3]
aggregate the scale-space information, while Squeeze-and-Excitation Networks
[10] and Gather-Excite [9] adaptively recalibrate channel-wise response by mod-
eling interdependency between channels. GALA [19], CBAM [29], and BAM [21]
refine the feature maps separately in the channel and spatial dimensions. Atten-
tion Modules [27] and self-attention [2,25] can be used to exploit global context
information. Precisely, non-local networks [28] deploy self-attention as a gener-
alized global operator to capture the relationship between all pairwise convolu-
tional feature maps interactions. Except for applying the attention mechanism
to computer vision tasks [16], it has been a widespread adoption to modeling
sequences in Natural Language Processing [30].

3 Proposed Attention Module

In this section, we analyze the two ignored problems in current attentional
activations-based models and develop an attention module that mainly refers
to the AW-convolution. Besides, we refine the branch of calculating the atten-
tion maps. Last but not least, we integrate our proposed attention module with
other attention-based models.

3.1 Motivation

First, we define basic notations in a traditional convolutional layer. In a tra-
ditional convolutional layer, the input activations, weights, and output acti-
vations are denoted as I, K, and O, respectively. For the input activations
I ∈ RN×C1×H×W , N , C1, H, and W refer to the batch size, the number of
input channels, the height, and width of the input feature maps, respectively.
For the weights K ∈ RC2×C1×h×w, C2, h and w refer to the number of out-
put channels, the height and width of the weights, respectively. For the output
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activations O ∈ RN×C2×H×W , it is computed as the convolution between the
input activations I and the weights K. In particular, every individual value of
the output activations O[l,p,m,n] is calculated as follows.

O[l,p,m,n] = Convolution(I,K) =
C1∑

o=1

h−1∑

j=1

w−1∑

k=1

I[l,o,m′+j,n′+k] × K[p,o,j,k] (1)

where l = 0, ..., N − 1, m = 0, ...,H − 1, n = 0, ...,W − 1, o = 0, ..., C1 − 1,
p = 0, ..., C2 − 1, m′ = m − h−1

2 , n′ = n − w−1
2 .

To apply the attention mechanism on the input activations I, previous
attentional activations-based models produce the channel attention maps Ac ∈
RN×C1×1×1 and spatial attention maps As ∈ RN×1×H×W separately. For exam-
ple, applying the channel attention maps Ac on the input activations I is pre-
sented as O = Convolution((I �Ac),K), where � refers to the Hadamard prod-
uct and broadcasting during element-wise multiplication is omitted.

Approximation Problem of the Attention Maps. To thoroughly attend
the input activations I, we need to compute the attention maps Af ∈
RN×C1×H×W and apply it as O = Convolution((I � Af ),K), which requires
too much computational and parameter overhead. Thus, all the current atten-
tional activations-based models produce the attention maps separately into the
channel attention maps Ac and spatial attention maps As. We use Ac and As to
approximate the four-dimensional attention map Af , which leads to the approx-
imation problem of attention maps.

Inspired by convolution, we adopt local connection and attention maps shar-
ing to reduce the size of the attention maps. We compute the attention maps
Aa ∈ RN×C1×h×w as follows, where ⊗ is a special element-wise multiplication
since it only works associated with convolution.

O[l,p,m,n] = Convolution(I ⊗ Aa,K)

=
C1∑

o=1

h−1∑

j=1

w−1∑

k=1

(I[l,o,m′+j,n′+k] × Aa[l,o,j,k]) × K[p,o,j,k]

(2)

Insufficient Capacity Problem of the Attention Maps. To compute differ-
ent channels of the output activations of the convolution, the input activations
are constrained to be recalibrated by the same attention map, i.e., the four-
dimensional attention map Af , which indicates the insufficient capacity of the
attention maps. As each channel of the feature maps is considered as a feature
detector, different channels of the output activations of the convolution expect
the input activations to be adapted by different attention maps.

Take two channels of output activations of a convolutional layer as an exam-
ple, the two channels are responsible for recognizing rectangle shape and triangle
shape, respectively. Thus, it is reasonable for the two channels to expect that
there are different attention maps for attending the input activations of the
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(a) The AW-convolution architecture.

(b) The architecture of calculating attention maps A.

Fig. 1. The architecture of our proposed attention module.

convolution (i.e., the attention maps to compute the channel of recognizing the
rectangle shape should be different from the attention maps to compute the
channel of recognizing the triangle shape). To meet this expectation, we need to
compute the five-dimensional attention map Aic ∈ RN×C2×C1×1×1 and apply it
on the input activations as follows.

O[l,p,m,n] = Convolution(I � Aic[l,p,:,:,:],K)

=
C1∑

o=1

h−1∑

j=1

w−1∑

k=1

(I[l,o,m′+j,n′+k] × Aic[l,p,o,0,0]) × K[p,o,j,k]

(3)

To solve the approximation problem and the insufficient capacity problem of
the attention maps together (i.e., combining the solution of Eq. 2 and the solu-
tion of Eq. 3), we introduce our proposed attention module by developing
the AW-convolution. Specifically, we propose to compute the attention maps
A ∈ RN×C2×C1×h×w and apply it as follows where the attention maps A[l,:,:,:,:]

has the same shape as that of the weights instead of the input activations. In
this paper, “Attentional weights” refers to the element-wise multiplication result
between the attention maps and the weights. Similarly, “Attentional activations”
refers to the element-wise multiplication result between the attention maps and
the activations in previous attentional activations-based models. Thus, I ⊗ A
and A[l,:,:,:,:] � K represent the attentional activations and attentional weights,
respectively. To reduces half the number of element-wise multiplications, we cal-
culate attentional weights instead of attentional activations as follows.

O[l,p,m,n] = Convolution(I ⊗ A,K)

=
C1∑

o=1

h−1∑

j=1

w−1∑

k=1

I[l,o,m′+j,n′+k] × (A[l,p,o,j,k] × K[p,o,j,k])

= Convolution(I,A[l,:,:,:,:] � K) = AW-Convolution(I,A � K)

(4)
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Fig. 2. The schema of bottlenecks when integrating with our proposed attention mod-
ule. Left: bottleneck in ResNet. Middle: bottleneck in SE-ResNet/CBAM-ResNet.
Right: bottleneck in AW-SE-ResNet/AW-CBAM-ResNet.

3.2 AW-Convolution in Proposed Attention Module

The AW-convolution in our proposed attention module is presented in Fig. 1a.
In this figure, the attention maps A has five dimensions, which is computed
from the input activations I as A = F1(I). F1 is a function to calculate the
attention maps A given the input activations I. Then, the attentional weights
AK ∈ RN×C2×C1×h×w is calculated as AK = F2(A,K) = K + A � K. F2 is a
function to calculate the attentional weights AK given the weights K and the
attention maps A. Finally, the output activations O is calculated from the input
activations I and the attentional weights AK as follows.

O[l,p,m,n] = F3(I,AK) = AW-Convolution(I,AK)

=
C1∑

i=1

h−1∑

j=1

w−1∑

k=1

I[l,o,m′+j,n′+k] × AK[l,p,o,j,k] = Convolution(I,AK[l,:,:,:,:])
(5)

where F3 is a function to calculate the output activations O given the input
activations I and the attentional weights AK. Compared with the traditional
convolution, the attentional weights AK of the AW-convolution in our proposed
attention module has five dimensions rather than four dimensions, which are
different from each other for every individual sample of the input activations
batch to convolute.

It is also worth explaining the definition of the function F2. AK = K+A�K
instead of AK = A�K is used to describe the function F2 since it can be regarded
as a residual design as follows.

O = F3(I,AK) = AW-Convolution(I, F2(A,K))
= Convolution(I,K) + AW-Convolution(I,A � K)

(6)
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3.3 Calculating the Attention Maps A

As shown in Fig. 1b, the architecture to compute the attention maps A (i.e.,
the definition of the function F1) is presented, which can be expressed as fol-
lows. Avgpool2d aggregates feature responses from the whole spatial extent and
embeds them into A0, and Pointconv1 and Pointconv2 followed by Relu redis-
tribute the pooled information to capture the dynamic and no-linear dependen-
cies between channels and spatial spaces.

A = F1(I) = ExpandC1(A2) = ExpandC1(Pointconv2(A1))
= ExpandC1(Pointconv2(Pointconv1(A0)))
= ExpandC1(Pointconv2(Pointconv1(Avgpool2d(I))))

(7)

where Pointconv1 and Pointconv2 are pointwise convolutions. We add Batch
Normalization and Relu layers after Pointconv1, while adding Batch Normaliza-
tion and Sigmoid layers after Pointconv2, and they are omitted here to provide
a clear expression.

In Fig. 1b, Expand function along C1 dimension, denoted as ExpandC1
, is

used as an example, and Expand function can be also executed along N , C2, h,
and w dimensions in a similar way. ExpandC1 function is used to expand the
tensor A2 ∈ RN×(C2C1/rC1 )×h×w into the attention maps A ∈ RN×C2×C1×h×w

with the reduction ratio rC1 , including necessary squeeze, reshape, and expand
operations. ExpandC1

can be expressed as follows.

A = ExpandC1(A2) = A2.reshape(N,C2, C1/rC1 , h, w).unsqueeze(dim = 3)
.expand(N,C2, C1/rC1 , rC1 , h, w).reshape(N,C2, C1, h, w)

(8)
Calculating the five-dimension attention maps A is not an easy computational
task without careful design. Thus, we analyze the additional computational com-
plexity of an AW-convolution compared with a traditional convolution as a ref-
erence to refine this design. Considering the trade-off between computational
complexity and accuracy, all the experiments in the remainder of this paper use
the same settings for the architecture of calculating the attention maps A in our
proposed attention module, including rC1 = C1, rC2 = rhw = 1, r = 16, used in
all the stages, and AK = K + A � K as the definition for the function F2.

3.4 Integrating with Other Attention-Based Modules

In this section, we show how to integrate our proposed attention module
with the previous attention-based convolutional neural networks to demonstrate
the complementary relationship between our proposed attention module and
other attention-based modules. Since applying our proposed attention module
is using the AW-convolution to replace the traditional convolution, we can eas-
ily integrate our proposed attention module with any convolutional neural net-
works consisting of traditional convolution, including all the recently developed
attention-based models [2,10,19,21,29].
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We choose the recent attentional activations-based models, i.e., SE-Net and
CBAM-Net, as examples to show how to integrate our proposed attention mod-
ule with other attention-based models. Here we use the popular ResNet [7] as
the backbone to apply the attention mechanism. As shown in Fig. 2, the left side
is the structure of a primary bottleneck in ResNet. The middle one is the struc-
ture of a bottleneck with SE/CBAM modules in SE-ResNet/CBAM-ResNet.
Integrating the central bottleneck with our proposed attention module is com-
pleted by replacing its 3 × 3 convolution with a 3 × 3 AW-convolution, and
its final structure in AW-SE-ResNet/AW-CBAM-ResNet is shown on the right
side. In summary, our proposed attention module is a general module to be inte-
grated seamlessly with any CNNs architectures, including previous attention-
based CNNs.

4 Experimental Results

4.1 ImageNet Image Classification

According to the results shown in Table 1, our proposed attention module is
complementary to other attentional activations-based models. AW-ResNet50
achieves a 1.18% Top-1 error reduction compared with the ResNet50 baseline.
Integrating with our proposed attention module, SE-ResNet50 [10] can improve
further by 0.42% Top-1 accuracy. The Top-1 accuracy of our AW-SE-ResNet101
is 1.60% and 0.57% higher than that of ResNet101 and SE-ResNet101, respec-
tively. To integrate with CBAM-ResNet [29] more carefully, we define CBAM-
ResNet (MaxPool) and CBAM-ResNet (Spatial) separately to reduce computa-
tional complexity. We do not use max-pooled features in CBAM-ResNet. The
Top-1 accuracy of AW-CBAM-ResNet50 is better than AW-ResNet50 by 0.18%
but worse than AW-SE-ResNet50. The number of additional parameters for our
proposed attention module is 0.16 M, which is much smaller than 2.83 M (i.e.,
one-sixteenth) of SE and CBAM modules. Moreover, it takes only 0.01 GFLOPs
to apply our proposed attention module on the ResNet50 model on ImageNet
classification, which is comparable with 0.01 GFLOPs and 0.04 to adopt the
SE and CBAM modules and is negligible in terms of FLOPs to implement the
baseline model.

Resource-Constrained Architecture. To inspect the generalization of our
proposed attention module in this resource-constrained scenario, we conduct
the ImageNet classification with the MobileNet architecture [8]. We apply our
proposed attention module to pointwise convolution instead of depthwise convo-
lution in every two depthwise separable convolutions. When integrating with the
CBAM models [29], we remove the max-pooled features and keep spatial atten-
tion maps. As shown in Table 1, AW-SE-MobileNet and AW-CBAM-MobileNet
achieve 0.56% and 0.19% Top-1 accuracy improvements compared with SE-
MobileNet [10] and CBAM-MobileNet, respectively. It is an impressive result
that the Top-1 accuracy of AW-CBAM-MobileNet is 2.57% better than that of
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Table 1. Comparisons of attention-based models on ImageNet classification. * refers
to the baseline results from [29]. All the rest results are produced using the source code
from [29].

Model Top-1 error Top-5 error GFLOPs Parameters (M)

ResNet50 [7] * 24.56%(+0.00%) 7.50% 3.86 25.56

AW-ResNet50 23.38%(+1.18%) 6.79% 3.87 25.72

SE-ResNet50 [10] * 23.14%(+1.42%) 6.70% 3.87 28.09

AW-SE-ResNet50 22.72%(+1.84%) 6.47% 3.88 28.25

AW-CBAM-ResNet50 (MaxPool) 22.82%(+1.74%) 6.41% 3.89 28.25

AW-CBAM-ResNet50 (Spatial) 23.20%(+1.36%) 6.58% 3.90 28.25

ResNet101 Baseline [7] * 23.38%(+0.00%) 6.88% 7.57 44.55

AW-ResNet101 22.38%(+1.00%) 6.21% 7.58 44.95

SE-ResNet101 [10] * 22.35%(+1.03%) 6.19% 7.58 49.33

AW-SE-ResNet101 21.78%(+1.60%) 5.74% 7.59 49.73

AW-CBAM-ResNet101 (MaxPool) 21.64%(+1.74%) 5.76% 7.60 49.73

AW-CBAM-ResNet101 (Spatial) 22.32%(+1.06%) 6.18% 7.61 49.73

MobileNet Baseline [8] * 31.39%(+0.00%) 11.51% 0.569 4.23

SE-MobileNet [10] * 29.97%(+1.42%) 10.63% 0.581 5.07

AW-SE-MobileNet 29.41%(+1.98%) 10.59% 0.623 5.52

CBAM-MobileNet [29] 29.01%(+2.38%) 9.99% 0.611 5.07

AW-CBAM-MobileNet (Spatial) 28.82%(+2.57%) 9.98% 0.652 5.52

the MobileNet baseline. For the MobileNet model, our proposed attention mod-
ule increases the computation by 0.041 GFLOPs, while SE and CBAM modules
need 0.012 and 0.041 GFLOPs, respectively. Also, the required parameters for
our proposed attention module are 0.45 M, which is much less than 0.84 M for
SE and CBAM modules.

4.2 Object Detection on COCO

To show the generalization of our proposed attention module, we apply it to object
detection tasks. We evaluate our proposed attention module further on the COCO
dataset, which contains 118K images (i.e., train2017) for training and 5K images
(i.e., val2017) for validating. Here we intend to evaluate the benefits of applying
our proposed attention module on the ResNet101-FPN backbone [18], where all
the lateral and output convolutions of the FPN adopt our AW-convolution. The
SE and CBAM modules are placed right before the lateral and output convolu-
tions. As shown in Table 2, applying our proposed attention module on ResNet101-
FPN boosts mAP@[0.5, 0.95] by 0.63 for the Faster R-CNN baseline. Integrating
with attentional activations-based models, Faster R-CNNs with the backbones of
ResNet101-AW-SE-FPN and ResNet101-AW-CBAM-FPN outperform Faster R-
CNNs with the backbones of ResNet101-SE-FPN and ResNet101-CBAM-FPN by
0.34 and 0.45 on COCO’s standard metric AP.



176 B. Zhu et al.

Table 2. Comparisons of attention-based Faster R-CNN on COCO. All the results are
produced using Pytorch.

Backbone Detector mAP@[0.5, 0.95] mAP@0.5 mAP@0.75

ResNet101-FPN [18] Faster R-CNN 37.13(+0.00%) 58.28 40.29

ResNet101-AW-FPN Faster R-CNN 37.76(+0.63%) 59.17 40.91

ResNet101-SE-FPN [10] Faster R-CNN 38.11(+0.98%) 59.41 41.33

ResNet101-AW-SE-FPN Faster R-CNN 38.45(+1.32%) 59.70 41.86

ResNet101-CBAM-FPN [29] Faster R-CNN 37.74(+0.61%) 58.84 40.77

ResNet101-AW-CBAM-FPN Faster R-CNN 38.19(+1.06%) 59.52 41.43

5 Conclusion

In this paper, we analyze the two ignored problems in attentional activations-
based models: the approximation problem and the insufficient capacity problem
of the attention maps. To address the two problems together, we propose an
attention module by developing the AW-convolution, where the shape of the
attention maps matches that of the weights rather than the activations, and inte-
grate it with attention-based models as a complementary method to enlarge their
attentional capability. We have implemented extensive experiments to demon-
strate the effectiveness of our proposed attention module, both on image classi-
fication and object detection tasks.
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with the support of SURF Cooperative.
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