

Delft University of Technology

Scymol
A python-based software package for initializing and running molecular dynamics
simulations using LAMMPS
Assaf, Eli I.; Maalouf, Elsa; Liu, Xueyan; Lin, Peng; Erkens, Sandra

DOI
10.1016/j.softx.2025.102044
Publication date
2025
Document Version
Final published version
Published in
SoftwareX

Citation (APA)
Assaf, E. I., Maalouf, E., Liu, X., Lin, P., & Erkens, S. (2025). Scymol: A python-based software package for
initializing and running molecular dynamics simulations using LAMMPS. SoftwareX, 29, Article 102044.
https://doi.org/10.1016/j.softx.2025.102044

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.softx.2025.102044
https://doi.org/10.1016/j.softx.2025.102044

Original Software Publication

Scymol: A python-based software package for initializing and running
molecular dynamics simulations using LAMMPS

Eli I. Assaf a,* , Elsa Maalouf b,**, Xueyan Liu a, Peng Lin a, Sandra Erkens a

a Delft University of Technology, Delft, The Netherlands
b Baha and Walid Bassatne Department of Chemical Engineering and Advanced Energy, American University of Beirut, Beirut, Lebanon

A R T I C L E I N F O

Keywords:
Molecular Dynamics Simulations
Computational Chemistry
LAMMPS
Graphical User Interface
High throughput
Software package

A B S T R A C T

Scymol is a Python-based software package specifically designed to facilitate the setup and execution of mo-
lecular simulations in LAMMPS. It comes equipped with a user-friendly interface, which simplifies the process of
initializing molecular systems and defining simulation parameters. Moreover, the software generates and exe-
cutes LAMMPS simulation sequences, enabling researchers to establish comprehensive simulation schemes, such
as heating or deformation cycles, in a single run. Through its successful application in diverse research projects
and its modular design, Scymol demonstrates considerable promise as an indispensable tool for researchers
aiming to carry out molecular dynamics simulations without sacrificing complexity or high-throughput capa-
bilities in their methodologies.

Metadata

Nr Code metadata description Please fill in this column
C1 Current code version V1.0.0 (major.minor.patch)
C2 Permanent link to code/

repository used for this code
version

https://github.com/eli-ams/scymol

C3 Permanent link to reproducible
capsule

https://codeocean.
com/capsule/1160181/tree

C4 Legal code license GNU General Public License (GPL)
C5 Code versioning system used None
C6 Software code languages, tools

and services used
Python 3.9+, Qt5, Rdkit, Pysimm, MPI,
LAMMPS

C7 Compilation requirements,
operating environments and
dependencies

See “Installation” on README.md in
https://github.com/eli-ams/scymol

C8 If available, link to developer
documentation/manual

See README.md in https://github.
com/eli-ams/scymol

C9 Support email for questions e.i.assaf@tudelft.nl

1. Motivation and significance

The application of Statistical Mechanics (SM) and Molecular Dy-
namics (MD) was confined to the domains of physics, chemistry, and

scientific computing [1,2]. However, these methodologies have now
gained traction in disciplines outside core areas because of their accu-
rate representation of novel materials without the need for extensive
experimental validation [3]. Over the years, molecular simulation en-
gines such as LAMMPS [4] (Large-scale Atomic/Molecular Massively
Parallel Simulator) and GROMACS [5] (Groningen Machine for Chem-
ical Simulations) have emerged as field standards. Despite their
comprehensive capabilities in facilitating diverse simulation configu-
rations, using these software packages appropriately presents its own set
of challenges [6].

Users should have a solid understanding of the chemistry of the
systems they are simulating, including the nature of the phenomena to
be captured and the necessary conditions. Physically, it is essential to
understand how classical mechanics and statistical methods interplay to
model atomic interactions [7]. On the computational side, these
methods require careful use of state-of-the-art algorithms and compu-
tational resources, making expertise in numerical and
High-Performance Computing (HPC) crucial [8,9]. Moreover, users
should be well-versed in LAMMPS-specific scripting including knowl-
edge in its source code [10]. Additionally, users should be prepared to
navigate Unix-based operating systems on which many LAMMPS simu-
lations run.

Commercially available software tools like Materials Studio [11],

* Corresponding author.
** Co-corresponding author.

E-mail addresses: e.i.assaf@tudelft.nl (E.I. Assaf), em40@aub.edu.lb (E. Maalouf).

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

https://doi.org/10.1016/j.softx.2025.102044
Received 30 September 2024; Received in revised form 13 December 2024; Accepted 9 January 2025

SoftwareX 29 (2025) 102044

Available online 15 January 2025
2352-7110/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://orcid.org/0000-0002-3740-9892
https://orcid.org/0000-0002-3740-9892
https://github.com/eli-ams/scymol
https://codeocean.com/capsule/1160181/tree
https://codeocean.com/capsule/1160181/tree
https://github.com/eli-ams/scymol
https://github.com/eli-ams/scymol
https://github.com/eli-ams/scymol
mailto:e.i.assaf@tudelft.nl
mailto:em40@aub.edu.lb
www.sciencedirect.com/science/journal/23527110
https://www.elsevier.com/locate/softx
https://doi.org/10.1016/j.softx.2025.102044
https://doi.org/10.1016/j.softx.2025.102044
http://creativecommons.org/licenses/by/4.0/

MedeA [12], Scienomics, and QuantumEspresso [13] have been devel-
oped to simplify the process of setting up and running MD. However,
these tools have limitations in terms of cost, flexibility, and compati-
bility with open-source alternatives. They often rely on graphical user
interfaces that, while user-friendly and comprehensive, hinder the
automation of high-throughput studies. Open-source solutions such as
Avogadro [14], OpenBabel [15], Visual Molecular Dynamics (VMD)
[16], and Ovito [17] offer some functionalities for MD preparation and
analysis but are not built to be a comprehensive solution around
LAMMPS. These tools still necessitate manual efforts to bridge gaps in
simulation workflows, particularly in areas that involve the initializa-
tion of LAMMPS simulations.

Additionally, renowned Python-based packages such as Chemistry at
HARvard Macromolecular Mechanics [18] (CHARMM) and its
web-based tool CHARMM-GUI, as well as the Molecular Simulation
Design Framework [19] (MosDef), offer direct solutions for preparing,
executing, and analyzing Molecular Dynamics simulations but present
certain limitations. For instance, CHARMM is not open-source, and ac-
cess to its underlying code is governed by restrictive licensing condi-
tions. CHARMM-GUI serves as an online tool for generating simulation
inputs, but the actual simulations are performed locally on compatible
MD engines, resulting in an interrupted workflow. In contrast, while
MosDef is open source, it does not include a UI and instead relies
extensively on Python scripting for setting up and running simulations.
Similarly, other open-source packages, such as PySoftK [20] and Poly-
matic [21], provide robust solutions for setting up and running MD
simulations. However, they also rely heavily on Python scripting skills
for their execution, which makes them less accessible to researchers with
limited scripting proficiency or those not specifically focused on the
fields for which the software is supported and designed.

In the current landscape, many researchers find themselves
combining functionalities from different software packages to establish
and execute LAMMPS-based simulations [22–28]. This situation is less
than ideal for scientists whose expertise should be focused on answering
important questions in their lines of study rather than figuring out how
to conduct complex simulations effectively and efficiently. For this
reason, the development of a software package like Scymol proves
valuable, as it aims to provide a simple and straightforward platform for
initiating and running MD simulations, from start to end, with the intent
of lowering the barriers related to technical proficiency to run LAMMPS
simulations. Moreover, Scymol aims to establish a foundation for a
growing library of LAMMPS simulation routines, designed to evolve
over time and address the need for predicting material properties
through a standardized set of sequences of LAMMPS operations. This is
particularly beneficial for researchers engaged in technical scientific
projects, such as Civil and Pavement Engineers, who seek a straight-
forward introduction to the use of Molecular Dynamics simulations and
anticipate a program that is continuously developed to meet their spe-
cific objectives.

The development of a software package for automating the initiali-
zation of molecular systems and preparing LAMMPS simulations has
been accelerated by the capabilities offered by Python libraries such as
Openbabel, Openmm [29], RDKit [30], and Pysimm [31]. These li-
braries, although not explicitly designed to interface with LAMMPS,
facilitate various tasks within the MD simulation workflow, thereby
simplifying the development of more comprehensive software packages
such as Scymol.

2. Software description

Scymol is a Python-based software package featuring a graphical
User Interface (UI) developed in PyQt5. The software is designed to
simplify the process of setting up and executing molecular simulations
using LAMMPS. It eliminates much of the complexity associated with
traditional simulation setups by offering intuitive features such as drag-
and-drop interfaces for configuring various LAMMPS stages. Users can

set up complex simulations of hydrocarbon mixtures involving defor-
mation and heating cycles by simply providing the SMILES notation or
other universally recognized molecular formats. Scymol is implemented
in Python 3.12 and is organized into three main components: the fron-
tend, the fron2back, and the backend.

The frontend is designed primarily as a UI developed using PyQt5
and QtDesigner [32]. It offers a simple yet comprehensive interface
where users can add or delete molecules, modify a number of configu-
ration parameters, and set up sequences of LAMMPS simulation stages.
The frontend employs the RDKit module to parse the inputs provided via
the UI, preparing the chemical system for subsequent processing by the
backend.

The fron2back functions as the link between the frontend and the
backend. It collects all the data in the elements of the frontend and
processes them to produce the inputs readable by the backend. It also
spawns, monitors, and controls the state of the jobs executed from the
UI.

The backend functions as an automated engine for executing
LAMMPS simulations based on user-defined inputs. It performs tasks
such as initializing molecular positions, generating necessary LAMMPS
inputs, and managing the execution of individual LAMMPS processes
through a Message Passing Interface (MPI) [33]. It also handles the input
and output files produced between LAMMPS stages and aggregates the
results. The backend uses the RDKit, Pysimm, and Numba [7] Python
packages to execute these functionalities. Importantly, the backend is
designed to operate independently from the frontend. It reads all the
required information from an inputs.py file, which the fron2back gen-
erates, to perform its operations. This file is both readable and modifi-
able, allowing users to adapt it to custom Python algorithms and run it in
environments that may not support UIs.

2.1. Software architecture

An illustration of the principal elements and their intercommunica-
tion is provided in Fig. 1, while Fig. 2 offers a snapshot of the main UI.
The entire package resides in a single directory, denoted as /. Within this
directory, there are several subdirectories—/backend, /frontend,
/front2back, and /output—as well as individual files such as /main.py,
/static_functions.py, and /prechecks.py. These components are organized
functionally and are detailed as follows.

2.1.1. main.py
The main.py file is pivotal for initializing the UI elements and

instancing the MainWindow class. This class serves as the main appli-
cation window and holds methods for initializing various attributes,
including data tables and molecule objects. It also configures window
properties and maps interface signals to corresponding actions. To
initialize an instance of Scymol, main.py must be executed from / (e.g.,
using the command python /main.py).

2.1.2. frontend/
The frontend directory functions as a custom module responsible for

building the UI. This directory contains various Python modules and
subdirectories that serve different functionalities:

2.1.2.1. main_window.py. Contains the Python class essential for con-
structing the UI of Scymol’s MainWindow instance. It encompasses el-
ements from all the tabs (Tab1 through Tab5) as well as the menu bar
located at the top of the MainWindow.

2.1.2.2. lammps_flowchart_window.py. Contains Python modules dedi-
cated to initializing instances of the LammpsFlowchartWindow class.
This window is crucial for enabling users to set up sequential LAMMPS
simulation substages through an intuitive drag-and-drop interface. An
associated subdirectory, frontend/dialog_windows/, contains subclasses

E.I. Assaf et al. SoftwareX 29 (2025) 102044

2

Fig. 1. Schematic of a standard job execution in the program, detailing directories, files, and class relationships. Bolded rectangles denote independent processes;
blue rectangles specify the core directories in Scymol’s root. Solid arrows indicate direct code interactions, and dashed arrows indicate signal-based communication.

Fig. 2. Depiction of Tab 1 and the LAMMPS Flowchart Interface in Scymol. The user interface in Scymol is partitioned into tabs, facilitating the sequential prep-
aration of simulation inputs. These tabs also serve as a structured guide through the various functionalities offered by the program.

E.I. Assaf et al. SoftwareX 29 (2025) 102044

3

for displaying windows where users can adjust parameters specific to the
LAMMPS substages initialized by the user.

2.1.2.3. molecule.py. Allows for the creation of molecule instances
when a user imports molecules into the system. Utilizing RDKit’s utili-
ties, this class holds pertinent information about the molecule while
checking if it possesses a stable structure, well-defined bonds, angles,
dihedrals, and so forth, ensuring its compatibility with LAMMPS.

2.1.2.4. static_functions.py. A standalone Python module comprising
utility functions that are independent of class states or methods. These
functions execute common tasks like computing chemical information
and file input/output operations.

2.1.2.5. /dialog_windows. This directory contains modules essential for
initializing dialog windows that are directly triggered from the Main-
Window instance. For example, a dialog window for entering the
SMILES notation of a molecule is initialized from this directory.

2.1.2.6. /custom_widgets. While Scymol predominantly employs stan-
dard Qt widgets, this directory focuses on the creation and custom-
ization of widgets that introduce custom functionalities or that override
the behavior of standard widgets.

2.1.2.7. /context_menus. Given the potential complexity of context
menus, which may offer a multitude of options and necessitate the
initialization of various submodules, this directory organizes the Python
files required for initializing instances of context menus.

2.1.3. /front2Back
The front2back/ directory facilitates a link between the frontend’s

state and the backend’s input requirements for constructing and
executing molecular systems. This directory comprises several Python
modules, each serving distinct functionalities:

2.1.3.1. BackendConnector.py. Manages the translation of UI in-
teractions into an inputs.py file and handles the lifecycle of backend
simulation processes. Jobs are stored in output/<job_id>.

2.1.3.2. RunningProcessDialog.py. Creates a dialog window instance to
display simulation output from a backend-generated log file and allows
for simulation termination.

2.1.3.3. BackendThread.py. Spawns a subprocess instance to run newly
submitted jobs, capturing stdout and stderr messages in a log file for real-
time feedback.

2.1.3.4. DataExtractor.py. Extracts data from UI widgets into a dictio-
nary, facilitating the generation of the inputs.py file by Back-
endConnector.py for submitting simulations.

2.1.4. /backend
The /backend directory serves as a specialized module in Scymol,

responsible for the core functionalities required for executing simula-
tions. This module is designed to function independently, relying solely
on the inputs.py file prepared by the /frontend for running a job. The
directory is organized into various Python files and modules, each
tailored for specific tasks:

2.1.4.1. lammps_commands.py. This file houses the LammpsCommands
class, which offers methods for defining and appending a range of
LAMMPS commands to a simulation script. It encompasses a large
number of basic LAMMPS scripting protocols, such as LAMMPS fixes and
computes [34], commonly used to build LAMMPS scripts. Structured
comments, the addition of custom code, and variable management are

also integral to this class.

2.1.4.2. lammps_stages.py. This file introduces the LammpsStage class,
central to generating full LAMMPS scripts by calling commands from the
LammpsCommands instance.

2.1.4.3. molecule.py. This file contains the Molecule class, which creates
instances for each molecule based on the SMILES string from the inputs.
py file. The class uses Rdkit’s functionalities to initialize, minimize, and
equilibrate molecules into valid conformers, just like in the Molecule
class of the frontend/.

2.1.4.4. mixture.py. This file contains the Mixture class which stores a
collection of molecule instances initialized using the Molecule class. It
provides methods involving mixture-wide computations, including
molecule sorting, force field assignment, and potential energy calcula-
tions, among others.

2.1.4.5. pysimm_system.py. This class interfaces with the PySIMM li-
brary to translate RdKit objects into LAMMPS-compatible inputs,
thereby facilitating the molecular system’s initialization for simulations
using LAMMPS.

2.1.4.6. inputs.py. This is a fundamental file containing comprehensive
input parameters and configuration settings, serving as the cornerstone
for the backend’s operations. All the information required by the
/backend to run a job through the backend is contained here.

2.1.4.7. log_functions.py. This module is responsible for logging job
executions in the backend. It enables the creation of log files with
varying levels of details (minimal, normal, or verbose), aiding in debug-
ging and tracking the progress of submitted jobs. The log file is stored in
output/<job_id>/log.

2.1.4.8. static_functions.py. Similar to its counterparts in the frontend
and front2back modules, it offers functions for common tasks, distinct
from other modules to maintain the backend’s independence.

2.1.4.9. main.py. This Python script is pivotal for running a complete
job. It operates independently of the frontend and front2back modules,
relying solely on the inputs.py file. It can be called by using the python
main.py –job_id 〈job_id〉 command.

2.1.4.10. /lammps_presets_library.py. This module contains predefined
LAMMPS substages, offering a flexible and expandable set of options for
simulations. The included presets involve Initialize, Minimize, Velocities,
NPT, NVT, NVE, and Uniaxial Deformation, all widely used LAMMPS
routines [34] in the scientific community [1,8].

2.2. Software functionalities

Scymol has a user interface that guides users through the necessary
steps for simulation setup, ensuring complete utilization of the soft-
ware’s features. While the interface is important for gathering and
organizing user inputs, the computational capabilities are primarily
contained within the backend architecture. These core functionalities,
along with their respective user interface elements, are presented as
follows.

2.2.1. Frontend

2.2.1.1. Molecule Selection (Tab 1). This tab enables users to create a
molecular set for use in their simulation. Molecules can be added either
through their SMILES notation or from a list of predefined molecule
structure files such as .mol and .pdb. As molecules are loaded, they are

E.I. Assaf et al. SoftwareX 29 (2025) 102044

4

added to a "List of Molecules" section (1.1), their key chemical infor-
mation is displayed in a "Description" section (1.2), and an interactive
2D representation appears in a "Drawing" section (1.3). The order of the
molecules in the list, which users can adjust via drag-and-drop, is re-
flected in the generated LAMMPS input files.

2.2.1.2. Mixture Setup (Tab 2). This tab provides tools for configuring a
molecular mixture. A "Setup" table (2.1) lists the molecules loaded in
Tab 1 and allows users to specify the number of each molecule and their
initial orientation. The "Settings" section (2.2) offers parameters crucial
for the initial placement of molecules in the simulation box without
overlap. An "Information" section (2.3) provides an overview of the
mixture, including the total number of molecules, average molecular
mass, and molecular formula.

2.2.1.3. LAMMPS Setup (Tab 3). This tab consists of two sections:
"Force Field" (3.1) and "Stages" (3.2). The Force Field section offers a
selection of commonly used force fields, namely GAFF and GAFF2 [35],
PCFF [36], CHARMM [37], and TIP3P [38]. The program loads the
atomic types and charges and checks if the selected force field is
applicable to cover all the interactions in the system. The Stages list lets
users design a sequenced list of LAMMPS stages. Each stage added is
expandable, revealing a LAMMPS Flowchart menu, where users can set
up a sequence of LAMMPS substages. A library is included to further aid
users in setting up commonly used LAMMPS sequences (e.g., a heat
cycle). Furthermore, each substage can be explored into, presenting
configuration options for each substage (e.g., to set the temperature in
an NVT substage).

2.2.1.4. Run (Tab 4). This tab allows users to specify the location of
LAMMPS (setting 4.1) and the parallelization library (e.g., MPI) (setting
4.2). By default, the program includes precompiled versions of LAMMPS
and OpenMPI, but users can choose their own versions. Setting 4.3

permits users to select the number of cores to be allocated for the job.

2.2.1.5. Postprocessing (Tab 5). Although not a primary focus of the
program, this tab enables users to view log files from previous jobs and
to display computed properties, thereby offering a preliminary view of
both computational and physical aspects of the simulations.

2.2.2. Backend
The backend follows a specific workflow as outlined in Fig. 3. The

backend of Scymol supports two operational modes. The first mode fo-
cuses on initializing new atomistic systems from scratch and performing
LAMMPS simulations, while the second continues simulations using pre-
existing atomistic systems, such as those generated by prior LAMMPS
runs. These modes are selected based on the configuration of the inputs.
py file, which provides all the necessary parameters to define and
execute a simulation workflow. This design allows Scymol’s backend to
function independently of the frontend or front2back components,
ensuring flexibility and usability in diverse simulation scenarios. The
following describes the detailed functionalities involved in initializing,
setting up, and running simulations under the first mode of operation.

2.2.2.1. Molecule Initialization. Individual molecules are parsed from
standard atomistic modeling formats into fully stable 3D conformers
using RDKit. This involves three key steps: (a) initializing atomic posi-
tions in three-dimensional space, (b) determining bonding connectivity
and bond order, and (c) generating multiple conformers and selecting
the one with the lowest intramolecular energy. This ensures the stability
of each molecule before its inclusion in the simulation box.

2.2.2.2. Mixture Initialization. The initialized molecules are placed
within a low-density simulation box using a low-discrepancy distribu-
tion method. The intermolecular potential energy of the system is
evaluated to ensure there is no atomic overlap. If the energy exceeds a

Fig. 3. Diagram showing how the software functionalities combine to aid users in generating LAMMPS input files and running the simulations as needed.

E.I. Assaf et al. SoftwareX 29 (2025) 102044

5

predefined threshold, the placement process is repeated. This iterative
approach guarantees a physically plausible starting configuration for
subsequent simulations.

2.2.2.3. Assignment of Force Field Types and Charges. Atom types and
charges are assigned to the molecules using the PySimm package, which
provides a library of predefined force fields. Each unique molecule type
is processed using PySimm’s apply_forcefield() function, and the
resulting parameters are then reused for identical molecules in the sys-
tem to optimize computational efficiency.

2.2.2.4. LAMMPS Scripting. Scymol generates a series of LAMMPS
commands organized into structured simulation routines, which are
compiled into scripts based on user specifications. These routines
include fundamental LAMMPS scripting commands such as units,
boundary, atom_style, pair_style, bond_style, and various fixes (e.g., NVT,
NPT, NVE). Each routine is designed to be self-contained, enabling
seamless sequencing and uninterrupted execution of LAMMPS
simulations.

2.2.2.5. Generation of Data and Input files. Two essential files are
created for each simulation: the structure.dat file, which contains atomic
coordinates, types, bonds, angles, dihedrals, and box dimensions, and
the input.dat file, which specifies the LAMMPS commands to be
executed. These files are generated using a combination of RDKit and
PySimm to ensure consistency and compatibility with LAMMPS.

2.2.2.6. Execution of LAMMPS/MPI Jobs. All required simulation files
are structured within the execution environment to enable standalone
operation by MPI/LAMMPS. Although the backend initiates the process
and remains connected to retrieve results, it is designed to allow MPI/
LAMMPS to function independently. Additional routines can be
executed sequentially as dictated by the simulation workflow. Addi-
tional routines, including those not exclusive to LAMMPS, can be
executed sequentially as dictated by the simulation workflow.

3. Illustrative examples

3.1. Example 1

The objective of this example is to create an equilibrated model of a
bitumen sample representative of AA1 70/100 bitumen from Supplier
“A.” The goal is to validate its equilibrium density against both experi-
mental measurements and models obtained using conventional Molec-
ular Dynamics (MD) methodologies. The molecular structures and mass
compositions are based on the work of Greenfield et al. [39,40], con-
sisting of 12 different molecule types, totaling 608 molecules. Detailed
information about the molecular structures, along with their SMILES

notations, is provided in Table 1.
To initialize and equilibrate the system, the molecules are first placed

in a simulation box with a low initial density—approximately one-tenth
of the expected final bitumen density—to minimize atomic overlaps.
The system is then imported into LAMMPS, where the GAFF2 force field
is applied. The initialization process involves a sequence of compression
and equilibration stages, beginning with uniaxial compression at pro-
gressively decreasing rates to simulate true strain. This is followed by
equilibration under NPT and NVT ensembles to achieve a stable system
at 298 K and 1 atm. Finally, an NVE stage is performed to evaluate
system stability and ensure energy conservation, allowing for results
collection. This multistep approach is widely accepted for modeling
condensed amorphous molecular systems.

Using the Scymol framework, the process begins by entering the
names and SMILES notations of the 12 molecule types into the Molecule
Selection tab (Tab 1). Scymol automatically generates the molecular
objects and 2D representations. The desired quantities of each molecule
type are specified in the Mixture Setup tab (Tab 2), as shown in Table 1.
Molecules are placed in the simulation box using the Sobol Distribution
Method, ensuring even spatial distribution while avoiding overlaps. All
other parameters for this step are left at their default values. In the
LAMMPS Setup tab (Tab 3), the GAFF2 force field is selected, and a
LAMMPS stage is added to the simulation workflow.

The specific stages of the LAMMPS workflow are defined in the
LAMMPS Flowchart Window. Users can either select the predefined
"Uniaxial Compression" stage from the library or manually assemble the
required sequence of substages: Initialize, Minimize, Assign Velocities,
NVT, Uniaxial Deformation, NPT, NVT, and NVE. Each stage is config-
ured with its respective parameters to match the experimental
conditions.

The simulation is initiated by clicking the "Run" button (4.4), which
triggers the associated subprocesses. A Running Process Dialog is dis-
played, allowing users to monitor progress in real time. Upon comple-
tion, the output directory contains all relevant data, including the initial
system configuration, LAMMPS input and output files, trajectory files,
and energy logs. These outputs can be used for further analysis, such as
comparing the simulated density with experimental values or examining
energy and pressure profiles during equilibration.

3.2. Example 2

In the second example, the density of bitumen is measured at
elevated temperatures of 60, 135, and 160◦C. Rather than being
confined to the initialization techniques native to the software, the
program can seamlessly continue from existing LAMMPS simulations.
To accomplish this, the equilibrated molecular model generated in
Example 1 serves as the starting point for this simulation. The system
undergoes a sequence of heating and equilibration substages designed to
elevate the temperature while allowing sufficient time for pressure

Table 1
The molecules selected to represent bitumen in the examples of this study and their corresponding SMILES notation.

Name Number SMILES

Squalane 16 CC(CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C)CCCC(C)C
Hopane 8 CC12CCC3C(C)(CCCC3(C)C)C1CCC1C2(C)CCC2C(CCC12C)C(C)CCCCCC
Dioctylcyclohexane naphthalene 168 CCCCCCCCC1Cc2cc3ccccc3cc2CC1CCCCCCCC
Perhydrophenanthrene

naphthalene
160 Cc1cc2cc3C4CCC5CCC(CC5C4CCc3cc2cc1CC)Cc1cccc(CCC)c1

Quinolinohopane 24 CC12CCC3C(C)(CCCC3(C)C)C1CCC1C2(C)CCC2c3c(nc4ccc(cc4c3C)CCCCC)CC12C
Thioisorenieratane 24 Cc1c(CCC(C)CCCC(C)CCc2sc(CCC(C)CCc3c(C)c(C)ccc3C)c(C)c2)c(C)ccc1C
Benzobisbenzothiophene 104 O=S1c2cc3c(cc2c2ccccc12)sc1ccccc13
Pyridinohopane 24 CC12CCC3C(C)(CCCC3(C)C)C1CCC1C2(C)CCC2c3c(nc(cc3C)CCCCC)CC12C
Trimethylbenzeneoxane 32 CC1(Oc2c(CC1)c(C)cc(C)c2C)CCCC(C)CCCC(C)CCCC(C)C
Phenolic asphaltene 16 CC(C)Cc1cc2c3c(cc4c(CC(CC4CC)CCCC)c3c1)c1cc(O)cc3c1c2cc(CCC)c3CCC(C)C
Pyrrolic asphaltene 16 CC(CCc1cc2c(cc1CCC)c1c3c4c5c6c(c7cc[NH]c7cc61)c(cc5c(c1CC(CC)c5cc(CCC(C)C)c6CCc2c3c6c5c41)C(C)CCC)CCCCCC(C)

CC)CC
Thiophenic asphaltene 16 Cc1cc(CCC(C)CCC)c2CC(CCC)c3cc4sc5c6c4c4c3c2c1cc4c1cc2c(CC(CC2CC)CCCC)c(cc5CC(C)C)c61

E.I. Assaf et al. SoftwareX 29 (2025) 102044

6

equilibration to reach reliable density values.
To integrate the data from Example 1 into Scymol, the ’File, Load,

from previous lammps’ option in the top menu bar is utilized. This ac-
tion imports both the structural data file and the final trajectory data
from the first example. All default settings are retained, and the simu-
lation is initiated in the usual manner.

3.3. Example 3

In the third example, the objective is to demonstrate the capacity of
Scymol’s backend module to function autonomously from its frontend,
particularly in a high-performance computing (HPC) environment that
supports standard installations of Python, MPI, and LAMMPS. This is
especially relevant for computational workloads requiring enhanced
performance, as in the case of the multiple heating-equilibration cycles
in Example 2. The simulation is executed on an HPC system (DelftBlue,
operated under a SLURM [41] job scheduler and RedHat operating
system) using 32 CPU cores.

To start, a new directory (e.g., /root) is created, and the backend/
folder from Example 2 is copied into it. Key parameters in the backend/
inputs.py file are adjusted to align with the HPC’s configurations. Spe-
cifically, the number of processes is set to 32, the MPI location is set to
either ’srun’ or ’mpiexec’ (with ’srun’ being recommended for SLURM-
managed systems [42]), and the LAMMPS location is set to ’lmp’. This
level of customization offers experienced users the ability to manually
adjust simulation parameters directly in the inputs.py file, without the
need for the frontend interface.

A job script tailored for HPC execution is manually created. The
script must import Python, MPI, and LAMMPS, and initiate the simu-
lation with a command akin to ‘srun python main.py –job_id <int:
job_id>’. The job proceeds to execute from start to finish in a manner
analogous to using Scymol’s frontend. This example not only establishes
the backend’s capability to run independently on an HPC, but also il-
lustrates the ease with which experienced users can modify input pa-
rameters to generate different molecular systems efficiently.

4. Impact

Scymol is an open-source Python package designed to facilitate the
setup and execution of molecular dynamics simulations using LAMMPS.
By addressing the complexities of simulation workflows, including
molecule initialization, force field assignment, and script preparation, it
has proven instrumental in both research and industrial applications.
For instance, it supported the KPE-CEAB project in conducting sensi-
tivity analyses on bituminous materials and has been utilized by com-
panies investigating the impact of additives in hydrocarbon mixtures
[43,44].

The development of Scymol is rooted in the need to provide a
structured and accessible approach to molecular dynamics simulations.
Its architecture integrates the collective expertise of our research group,
consolidating computational methods, data, and findings into a unified
and shareable framework. This approach not only facilitates reproduc-
ibility and transferability of simulations but also ensures that workflows
are cumulative, enabling the systematic development of new method-
ologies and applications.

Its dual-interface design—offering a graphical user interface for ease
of use and a backend for more advanced/automated job config-
urations—ensures usability across a wide range of expertise levels. This
makes Scymol a practical solution for researchers aiming to incorporate
molecular dynamics simulations into their work with minimal barriers,
especially for those involved in Civil and Pavement Engineering fields.

5. Future Direction

As of now, Scymol is self-sufficient and performs the tasks needed;
however, it serves as the foundation for the development of a more

advanced software package. The future development of Scymol is ex-
pected to follow two primary paths: (1) our group will extend this
version of Scymol to address specific needs in Civil and Pavement En-
gineering, and (2) a broader community of developers may further
enhance Scymol to tackle general molecular simulation challenges. The
following outlines potential areas for future work:

• Advanced LAMMPS Routines

The integration of more advanced LAMMPS routines that extend
beyond basic subroutines, such as NPT or NVT dynamics, is envi-
sioned. These routines would incorporate simpler LAMMPS com-
mands into encapsulated workflows, enabling the setup of
simulation schemes for determining complex, but critical material
properties, including cohesive energy density, shear viscosity, ther-
mal conductivity, among others. These features would be accessible
through the LAMMPS Flowgraph Window.

• Non-LAMMPS Routines

Currently, the functionality in Tab 3 – Stage 3.2 is limited to invoking
only LAMMPS-related runs. Future versions could incorporate
additional tasks not related to LAMMPS to enhance task automation
at runtime. For example, this could encompass stages for preparing
molecular systems, as currently implemented in Tabs 1 and 2 of
Scymol, enabling a more integrated approach to system initialization
and manipulation with LAMMPS executions.

• Enhanced Molecular File Input/Output System

To overcome limitations in file compatibility, Scymol could adopt an
intermediary package like OpenBabel. This would enable support for
a wide range of molecular file formats and facilitate a more robust
access to a number of molecular input files.

• Improved Force Field Handling

Developing a native system for force field atomic typing and charge
assignment would enhance Scymol’s applicability. Currently reliant
on Pysimm, this improvement would allow the integration of new
force fields, including all-atom, united-atom, and coarse-grained
models, expanding the software’s versatility.

• 3D Visualization Tools

The implementation of a 3D visualization tab, potentially utilizing
OpenGL, would allow users to visualize and manipulate atomistic
systems interactively. Such a feature would greatly enhance user
experience and provide intuitive insights into the progress of mo-
lecular simulations.

• Robust Job Submission System

Scymol could benefit from a networked job submission framework,
enabling the execution of tasks on remote servers. Such functionality
would streamline job management in high-performance computing
environments and foster collaborative workflows.

• Implementation of other Python-based atomistic design
packages

As discussed earlier in this manuscript, numerous software solutions
effectively address specific niche areas within computational chem-
istry. Similar to how Scymol utilizes OpenBabel for file format
standardization and normalization, components of other packages
could be integrated to enhance and expand Scymol’s functionality.

E.I. Assaf et al. SoftwareX 29 (2025) 102044

7

Declaration of generative AI and AI-assisted technologies in the
writing process

During the preparation of this work the author(s) used OpenAI’s
ChatGPT4.0 to simplify verbose paragraph descriptions. After using this
tool/service, the author(s) reviewed and edited the content as needed
and take(s) full responsibility for the content of the publication.

CRediT authorship contribution statement

Eli I. Assaf: Writing – review & editing, Writing – original draft,
Visualization, Validation, Software, Resources, Methodology, Investi-
gation, Formal analysis, Conceptualization. Elsa Maalouf: Writing –
review & editing, Supervision, Project administration, Conceptualiza-
tion. Xueyan Liu: Writing – review & editing, Supervision, Resources,
Project administration, Funding acquisition, Formal analysis. Peng Lin:
Writing – review & editing, Validation, Supervision, Data curation,
Conceptualization. Sandra Erkens: Writing – review & editing, Super-
vision, Resources, Project administration, Methodology, Funding
acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper

Acknowledgements

This paper/article is created under the research program Knowledge-
based Pavement Engineering (KPE). KPE is a cooperation between
Rijkswaterstaat, TNO, and TU Delft in which scientific and applied
knowledge is gained about asphalt pavements and which contributes to
the aim of Rijkswaterstaat to be completely climate neutral and to work
according to the circular principle by 2030. The opinions expressed in
these papers are solely from the authors.

References

[1] Shell MS. Thermodynamics and statistical mechanics: an integrated approach.
Cambridge University Press; 2015.

[2] Van Gunsteren WF, Berendsen HJ. Computer simulation of molecular dynamics:
methodology, applications, and perspectives in chemistry. Angew Chem Int Ed
Engl 1990;29(9):992–1023.

[3] Vlachakis D, Bencurova E, Papangelopoulos N, Kossida S. Current state-of-the-art
molecular dynamics methods and applications. Adv Protein Chem Struct Biol 2014;
94:269–313.

[4] Thompson AP, Aktulga HM, Berger R, Bolintineanu DS, Brown WM, Crozier PS, in
’t Veld PJ, Kohlmeyer A, Moore SG, Nguyen TD, Shan R, Stevens MJ, Tranchida J,
Trott C, Plimpton SJ. LAMMPS - a flexible simulation tool for particle-based
materials modeling at the atomic, meso, and continuum scales. Comput Phys
Commun 2022;271:108171.

[5] Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E. GROMACS:
High performance molecular simulations through multi-level parallelism from
laptops to supercomputers. SoftwareX 2015;1-2:19–25.

[6] Sharma S, Kumar P, Chandra R. Chapter 7 - Applications of BIOVIA materials
studio, LAMMPS, and GROMACS in various fields of science and engineering. In:
Sharma S, editor. Molecular dynamics simulation of nanocomposites using biovia
materials studio, lammps and gromacs. Elsevier; 2019. p. 329–41.

[7] Lam SK, Pitrou A, Seibert S. Numba: A llvm-based python jit compiler. In:
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC;
2015. p. 1–6.

[8] Ercolessi F. A molecular dynamics primer, spring college in computational physics.
Trieste: ICTP; 1997. p. 19.

[9] Stegailov VV, Orekhov ND, Smirnov GS. HPC hardware efficiency for quantum and
classical molecular dynamics. In: Parallel Computing Technologies: 13th
International Conference, PaCT 2015, Petrozavodsk, Russia, August 31-September
4, 2015, Proceedings 13. Springer; 2015. p. 469–73.

[10] FrantzDale B, Plimpton SJ, Shephard MS. Software components for parallel
multiscale simulation: an example with LAMMPS. Eng Comput 2010;26:205–11.

[11] Akkermans RL, Spenley NA, Robertson SH. Monte Carlo methods in materials
studio. Mol Simul 2013;39(14-15):1153–64.

[12] France-Lanord A, Rigby D, Mavromaras A, Eyert V, Saxe P, Freeman C, Wimmer E.
MedeA®: Atomistic simulations for designing and testing materials for micro/nano

electronics systems. In: 2014 15th International Conference on Thermal,
Mechanical and Mulit-Physics Simulation and Experiments in Microelectronics and
Microsystems (EuroSimE). IEEE; 2014. p. 1–8.

[13] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D,
Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G,
Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L,
Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C,
Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM.
QUANTUM ESPRESSO: a modular and open-source software project for quantum
simulations of materials. J Phys Condens Matter 2009;21(39):395502.

[14] Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR.
Avogadro: an advanced semantic chemical editor, visualization, and analysis
platform. J Cheminform 2012;4(1):17.

[15] O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR.
Open Babel: An open chemical toolbox. J Cheminform 2011;3(1):33.

[16] Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph
1996;14(1):33–8.

[17] Stukowski A. Visualization and analysis of atomistic simulation data with
OVITO–the Open Visualization Tool. Model Simul Mat Sci Eng 2009;18(1):015012.

[18] Brooks BR, Brooks III CL, Mackerell Jr AD, Nilsson L, Petrella RJ, Roux B, Won Y,
Archontis G, Bartels C, Boresch S. CHARMM: the biomolecular simulation program.
J Comput Chem 2009;30(10):1545–614.

[19] Cummings PT, McCabe C, Iacovella CR, Ledeczi A, Jankowski E, Jayaraman A,
Palmer JC, Maginn EJ, Glotzer SC, Anderson JA, Siepmann JI, Potoff J,
Matsumoto RA, Gilmer JB, DeFever RS, Singh R, Crawford B. Open-source
molecular modeling software in chemical engineering focusing on the Molecular
Simulation Design Framework. AIChE J 2021;67(3):e17206.

[20] Ziolek RM, Santana-Bonilla A, López-Riós de Castro R, Kühn R, Green M,
Lorenz CD. Conformational heterogeneity and interchain percolation revealed in
an amorphous conjugated polymer. ACS Nano 2022;16(9):14432–42.

[21] Abbott LJ, Hart KE, Colina CM. Polymatic: a generalized simulated polymerization
algorithm for amorphous polymers. Theor Chem Acc 2013;132:1–19.

[22] Cao H, Cao X, Zhao X, Guo D, Liu Y, Bian J. Molecular dynamics simulation of wax
molecules aggregational crystallization behavior during cooling of crude oil
mixture. Case Stud Therm Eng 2022;37:102298.

[23] Gao Y, Zhang Y, Yang Y, Zhang J, Gu F. Molecular dynamics investigation of
interfacial adhesion between oxidised bitumen and mineral surfaces. Appl Surf Sci
2019;479:449–62.

[24] Lu G, Zhang X, Shao C, Yang H. Molecular dynamics simulation of adsorption of an
oil-water-surfactant mixture on calcite surface. Pet Sci 2009;6:76–81.

[25] Ma X, Wu J, Liu Q, Ren W, Oeser M. Molecular dynamics simulation of the
bitumen-aggregate system and the effect of simulation details. Constr Build Mater
2021;285:122886.

[26] Ren S, Liu X, Lin P, Gao Y, Erkens S. Molecular dynamics simulation on bulk
bitumen systems and its potential connections to macroscale performance: Review
and discussion. Fuel 2022;328:125382.

[27] Xu M, Yi J, Feng D, Huang Y. Diffusion characteristics of asphalt rejuvenators based
on molecular dynamics simulation. Int J Pavement Eng 2019;20(5):615–27.

[28] Long Z, Tang X, Ding Y, Miljković M, Khanal A, Ma W, You L, Xu F. Influence of sea
salt on the interfacial adhesion of bitumen–aggregate systems by molecular
dynamics simulation. Constr Build Mater 2022;336:127471.

[29] Eastman P, Swails J, Chodera JD, McGibbon RT, Zhao Y, Beauchamp KA, Wang L-
P, Simmonett AC, Harrigan MP, Stern CD. OpenMM 7: Rapid development of high
performance algorithms for molecular dynamics. PLoS Comput Biol 2017;13(7):
e1005659.

[30] Landrum G. RDKit: A software suite for cheminformatics, computational chemistry,
and predictive modeling. Greg Landrum 2013;8:31.

[31] Fortunato ME, Colina CM. pysimm: A python package for simulation of molecular
systems. SoftwareX 2017;6:7–12.

[32] Summerfield M. Rapid gui programming with python and qt: the definitive guide
to pyqt programming (paperback). Pearson Education; 2007.

[33] Clarke L, Glendinning I, Hempel R. The MPI message passing interface standard. In:
Programming Environments for Massively Parallel Distributed Systems: Working
Conference of the IFIP WG 10.3, April 25–29, 1994. Springer; 1994. p. 213–8.

[34] LAMMPS Official Documentation. https://docs.lammps.org/fix.html. (Accessed
10th November 2023.

[35] Sprenger K, Jaeger VW, Pfaendtner J. The general AMBER force field (GAFF) can
accurately predict thermodynamic and transport properties of many ionic liquids.
J Phys Chem B 2015;119(18):5882–95.

[36] Sun H, Mumby SJ, Maple JR, Hagler AT. An ab initio CFF93 all-atom force field for
polycarbonates. J Am Chem Soc 1994;116(7):2978–87.

[37] Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E,
Guvench O, Lopes P, Vorobyov I. CHARMM general force field: A force field for
drug-like molecules compatible with the CHARMM all-atom additive biological
force fields. J Comput Chem 2010;31(4):671–90.

[38] Mark P, Nilsson L. Structure and dynamics of the TIP3P, SPC, and SPC/E water
models at 298 K. J Phys Chem A 2001;105(43):9954–60.

[39] Li DD, Greenfield ML. Chemical compositions of improved model asphalt systems
for molecular simulations. Fuel 2014;115:347–56.

[40] Ren S, Liu X, Lin P, Erkens S, Xiao Y. Chemo-physical characterization and
molecular dynamics simulation of long-term aging behaviors of bitumen. Constr
Build Mater 2021;302:124437.

[41] Yoo AB, Jette MA, Grondona M. Slurm: Simple linux utility for resource
management. In: Workshop on job scheduling strategies for parallel processing.
Springer; 2003. p. 44–60.

E.I. Assaf et al. SoftwareX 29 (2025) 102044

8

http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0001
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0001
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0002
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0002
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0002
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0003
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0003
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0003
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0004
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0004
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0004
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0004
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0004
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0005
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0005
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0005
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0006
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0006
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0006
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0006
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0007
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0007
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0007
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0008
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0008
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0009
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0009
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0009
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0009
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0010
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0010
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0011
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0011
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0012
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0012
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0012
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0012
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0012
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0013
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0013
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0013
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0013
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0013
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0013
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0013
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0014
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0014
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0014
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0015
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0015
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0016
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0016
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0017
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0017
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0018
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0018
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0018
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0019
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0019
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0019
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0019
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0019
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0020
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0020
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0020
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0021
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0021
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0022
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0022
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0022
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0023
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0023
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0023
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0024
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0024
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0025
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0025
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0025
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0026
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0026
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0026
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0027
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0027
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0028
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0028
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0028
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0029
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0029
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0029
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0029
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0030
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0030
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0031
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0031
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0032
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0032
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0033
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0033
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0033
https://docs.lammps.org/fix.html
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0035
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0035
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0035
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0036
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0036
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0037
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0037
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0037
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0037
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0038
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0038
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0039
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0039
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0040
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0040
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0040
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0041
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0041
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0041

[42] Comprés I, Mo-Hellenbrand A, Gerndt M, Bungartz H-J. Infrastructure and api
extensions for elastic execution of mpi applications. In: Proceedings of the 23rd
European MPI Users’ Group Meeting; 2016. p. 82–97.

[43] Assaf EI, Liu X, Lin P, Ren S, Erkens S. Predicting the properties of bitumen using
machine learning models trained with force field atom types and molecular
dynamics simulations. Mater Des 2024;246:113327.

[44] Assaf EI, Liu X, Lin P, Ren S, Erkens S. Predicting the diffusion coefficients of
rejuvenators into bitumens using molecular dynamics, machine learning, and force
field atom types. Mater Des 2024;248:113502.

E.I. Assaf et al. SoftwareX 29 (2025) 102044

9

http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0042
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0042
http://refhub.elsevier.com/S2352-7110(25)00011-1/sbref0042
http://refhub.elsevier.com/S2352-7110(25)00011-1/optDEfNTsV8bD
http://refhub.elsevier.com/S2352-7110(25)00011-1/optDEfNTsV8bD
http://refhub.elsevier.com/S2352-7110(25)00011-1/optDEfNTsV8bD
http://refhub.elsevier.com/S2352-7110(25)00011-1/optFDebB0k1j6
http://refhub.elsevier.com/S2352-7110(25)00011-1/optFDebB0k1j6
http://refhub.elsevier.com/S2352-7110(25)00011-1/optFDebB0k1j6

	Scymol: A python-based software package for initializing and running molecular dynamics simulations using LAMMPS
	1 Motivation and significance
	2 Software description
	2.1 Software architecture
	2.1.1 main.py
	2.1.2 frontend/
	2.1.2.1 main_window.py
	2.1.2.2 lammps_flowchart_window.py
	2.1.2.3 molecule.py
	2.1.2.4 static_functions.py
	2.1.2.5 /dialog_windows
	2.1.2.6 /custom_widgets
	2.1.2.7 /context_menus

	2.1.3 /front2Back
	2.1.3.1 BackendConnector.py
	2.1.3.2 RunningProcessDialog.py
	2.1.3.3 BackendThread.py
	2.1.3.4 DataExtractor.py

	2.1.4 /backend
	2.1.4.1 lammps_commands.py
	2.1.4.2 lammps_stages.py
	2.1.4.3 molecule.py
	2.1.4.4 mixture.py
	2.1.4.5 pysimm_system.py
	2.1.4.6 inputs.py
	2.1.4.7 log_functions.py
	2.1.4.8 static_functions.py
	2.1.4.9 main.py
	2.1.4.10 /lammps_presets_library.py

	2.2 Software functionalities
	2.2.1 Frontend
	2.2.1.1 Molecule Selection (Tab 1)
	2.2.1.2 Mixture Setup (Tab 2)
	2.2.1.3 LAMMPS Setup (Tab 3)
	2.2.1.4 Run (Tab 4)
	2.2.1.5 Postprocessing (Tab 5)

	2.2.2 Backend
	2.2.2.1 Molecule Initialization
	2.2.2.2 Mixture Initialization
	2.2.2.3 Assignment of Force Field Types and Charges
	2.2.2.4 LAMMPS Scripting
	2.2.2.5 Generation of Data and Input files
	2.2.2.6 Execution of LAMMPS/MPI Jobs

	3 Illustrative examples
	3.1 Example 1
	3.2 Example 2
	3.3 Example 3

	4 Impact
	5 Future Direction
	Declaration of generative AI and AI-assisted technologies in the writing process
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

