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A B S T R A C T

Ensuring safe interactions between autonomous vehicles (AVs) and human drivers in mixed traffic systems re
mains a major challenge, particularly in complex, high-risk scenarios. This paper presents a cognition-decision 
framework that integrates individual variability and commonalities in driver behavior to quantify risk cogni
tion and model dynamic decision-making. First, a risk sensitivity model based on a multivariate Gaussian dis
tribution is developed to characterize individual differences in risk cognition. Then, a cognitive decision-making 
model based on the drift diffusion model (DDM) is introduced to capture common decision-making mechanisms 
in high-risk environments. The DDM dynamically adjusts decision thresholds by integrating initial bias, drift rate, 
and boundary parameters, adapting to variations in speed, relative distance, and risk sensitivity to reflect diverse 
driving styles and risk preferences. By simulating high-risk scenarios with lateral, longitudinal, and multidi
mensional risk sources in a driving simulator, the proposed model accurately predicts cognitive responses and 
decision behaviors during emergency maneuvers. Specifically, by incorporating driver-specific risk sensitivity, 
the model enables dynamic adjustments of key DDM parameters, allowing for personalized decision-making 
representations in diverse scenarios. Comparative analysis with IDM, Gipps, and MOBIL demonstrates that 
DDM more precisely captures human cognitive processes and adaptive decision-making in high-risk scenarios. 
These findings provide a theoretical basis for modeling human driving behavior and offer critical insights for 
enhancing AV-human interaction in real-world traffic environments.

1. Introduction

1.1. Motivation

Driving safety critically depends on drivers’ risk cognition and 
collision avoidance decisions, especially in high-risk scenarios. In real- 
world settings, such cognition involves interactions among multiple 
co-existing risks rather than a single stimulus (Crosato et al., 2024; 
Huang et al., 2022). Drivers must rapidly perceive and respond to 
evolving threats, yet these multi-stage and stochastic processes, 
including attention, evidence accumulation, and motor execution, are 
difficult to model quantitatively (Aven, 2011; Wang et al., 2020).

Existing behavior models, such as car-following, lane-changing, and 

imitation learning methods, often oversimplify human cognition, failing 
to capture individual variability, bounded rationality, and dynamic risk 
adaptation (Derbel et al., 2013; Treiber et al., 2006). Moreover, they are 
typically limited to unidimensional stimuli, neglecting lateral conflicts 
and multi-agent interactions. These limitations are critical for autono
mous driving systems, which lack interpretable human models to reli
ably predict uncertain behavior. In high-risk or emergent scenarios, 
failure to respond in a human-aligned, context-aware manner can un
dermine both safety and social acceptance (Zgonnikov et al., 2022).

To address this, we propose a cognitively inspired framework that 
integrates individual risk sensitivity with general decision-making dy
namics. We quantify how variations in risk cognition shape emergency 
decisions and represent these processes computationally with 
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interpretability and generalizability. Our contributions are as follows: 

• We propose a DDM-based cognitive model that quantitatively sim
ulates human decision-making in high-risk scenarios, using initial 
bias, drift rate, and boundary separation parameterized by driver 
speed and proximity.

• We develop a driver risk-sensitivity model based on a multivariate 
Gaussian distribution, which quantifies individual differences in 
drivers’ risk cognition and is utilized to tailor personalized decision- 
making processes.

• We validate the proposed models through high-risk scenario simu
lations on a driving simulator, demonstrating their effectiveness in 
predicting driver behavior and applicability to real-world 
environments.

1.2. Related works

Considerable attention has been directed toward understanding 
drivers’ risk cognition and decision-making capabilities, leading to the 
development of numerous models such as car-following and lane- 
changing models (Amditis et al., 2010; Orfanou et al., 2022). These 
models are generally classified into five categories (Wang et al., 2022): 
behavioral simulation models, game-theoretic reasoning models, social 
force-driven two-dimensional models, learning-driven models, and in
formation cognition models.

Behavior simulation models simulate drivers’ actions under spe
cific conditions. Advanced examples include micro-binary models, 
cellular automata models, and driver preview-follow models, imple
mented in simulators such as Simulation of Urban Mobility (SUMO) and 
public transport simulators like VISSIM, alongside lane-changing tra
jectory models derived from traffic flow theory (Fernandes and Nunes, 
2010; Xu et al., 2012). Simplified dynamic behavior models, such as the 
intelligent driver model (IDM) (Derbel et al., 2013; Treiber et al., 2006) 
and the minimize overall braking induced by lane change model 
(MOBIL) (Kesting et al., 2007), account for fundamental vehicle dy
namics and constitute single stimulus–response representations. These 
behavioral simulation approaches are accessible and widely utilized to 
reproduce diverse driving scenarios, effectively capturing both micro- 
scale individual behaviors and macro-scale group dynamics (Treiber 
and Kesting, 2017). However, despite their widespread use, such models 
exhibit notable limitations, primarily responding to unidimensional risk 
stimuli. A single mathematical framework often fails to comprehen
sively reflect or address the dynamic requirements and expectations of 
drivers. Moreover, behavioral simulation models do not adequately 
respond in real-time to evolving driver states nor elucidate underlying 
mechanisms driving behaviors in complex scenarios. For instance, sce
narios involving interactions among multiple road users necessitate 
consideration of multidimensional risks, including lateral factors, road 
geometry, infrastructure configurations and traffic signal design.

Game-theoretic reasoning models provide a rigorous approach to 
examining strategic interactions among rational agents, where the ac
tions of each participant influence others’ outcomes (Huo et al., 2023). 
Within game theory-based driver cognition modeling, dynamically 
integrating vehicle safety and comfort considerations with predictions of 
surrounding vehicles’ intentions and behaviors is essential. Conse
quently, driver decisions emerge from multi-agent strategic interactions, 
resulting in optimal decision-making strategies. Bayesian dynamic 
models have similarly been employed for behavior inference (Schulz, 
2021). For example, Darius et al. (Schulz et al., 2019) proposed a 
probabilistic framework using dynamic Bayesian networks (DBN) to 
model multi-vehicle interactions with context-aware motion represen
tations at intersections. By incorporating prior knowledge and obser
vational data, these methods enable probabilistic predictions of driver 
behavior (Huang et al., 2024). However, these models’ reliance on as
sumptions of rational behavior limits their applicability to real-world 
scenarios, and they often inadequately capture the complexities of 

drivers’ risk cognition. Moreover, decision-making complexity escalates 
significantly with the increase in involved agents and potential 
strategies.

Social force-driven two-dimensional driver models characterize 
driver responses to risk stimuli by incorporating social and virtual 
forces, enabling simultaneous quantification of longitudinal and lateral 
risks across various driving scenarios (Rosenberg, 1990). These models 
simulate human interactions under complex motion stimuli, grounded 
in the concept of driver risk cognition as influenced by virtual forces 
(Bieleke et al., 2020). Herbing et al. proposed a social force-evolutionary 
framework, employing virtual forces to elucidate social interactions, 
thereby enhancing human-like behaviors in multi-agent vehicle envi
ronments through reward-based design mechanisms (Helbing and 
Molnár, 1995). Similarly, David et al. introduced a two-dimensional 
driver risk field model capturing driver perceptions of event probabili
ties and providing quantitative assessments of perceived risks (Kolekar 
et al., 2020). In contrast to conventional dynamic behavior simulation 
methods, social force-based approaches effectively represent the multi
dimensionality of driver risks and explicitly address social interaction 
influences. Nevertheless, such force-based representations might over
simplify the intricate cognitive processes underlying individual driver 
decision-making.

Learning-driven models employ advanced neural network archi
tectures, such as deep neural networks (DNN) and convolutional neural 
networks (CNN), to mine extensive driving datasets and extract intricate 
behavioral patterns (Li et al., 2022). For example, Sharifzadeh et al. 
(Sharifzadeh et al., 2016) employed deep Q-networks for deep rein
forcement learning to investigate lane-changing and overtaking behav
iors on highways. However, their study did not address vehicle safety 
and relied on simplified simulation scenarios. Such models excel at 
processing complex, high-dimensional data, enabling the identification 
of nuanced patterns within large-scale datasets (Kuutti et al., 2021; 
Schulte et al., 2022). Despite their effectiveness, learning-driven models 
often act as “black boxes,” limiting interpretability and impeding the 
exploration of underlying cognitive and decision-making processes. This 
opacity poses significant challenges for practical application, particu
larly in safety–critical contexts where transparent and understandable 
decision-making mechanisms are essential. Consequently, enhancing 
interpretability in learning-driven approaches remains a crucial direc
tion for future research aimed at improving our understanding of driver 
risk cognition and behavior.

Information cognition models leverage principles from cognitive 
psychology and neuroscience to simulate human perceptual proces 
(Mohammad et al., 2024)sing, cognition, and decision-making mecha
nisms (Markkula et al., 2023). By modeling cognitive functions such as 
attention, memory, and learning, these models help understand and 
predict human behavior (Ratcliff et al., 2016). Notably, drift diffusion 
models (DDM) have advanced the understanding of the psychological 
and neural mechanisms underlying driver decision-making. By 
modeling decisions as the gradual accumulation of evidence toward a 
threshold, DDM provides a quantitative framework for capturing dy
namic cognitive processes. Recent applications have demonstrated the 
utility of DDM-based thresholds in modeling driver judgments during 
complex maneuvers such as unprotected left turns, effectively linking 
cognitive theory with empirical driving behavior (Mohammad et al., 
2024, Mohammad et al., 2023). Unlike traditional models (e.g., IDM, 
MOBIL), which assume deterministic decision thresholds, DDM provides 
an interpretable structure that links observable outcomes such as reac
tion time and action choice to underlying cognitive processes. Further, it 
captures individual differences through parameters like drift rate, 
boundary separation, and initial bias, enabling personalized modeling of 
driver risk responses. These features make DDM well-suited for simu
lating driver cognition in complex, time-constrained traffic scenarios, 
allowing it to represent the dynamic accumulation of evidence under 
uncertainty, such as during sudden cut-ins or rear-end conflicts.

Their approach provided real-time predictions regarding drivers’ gap 
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acceptance, closely reflecting natural cognitive processes. By explicitly 
simulating human cognitive mechanisms, information cognition models 
not only clarify the intricacies of driver risk cognition and decision- 
making but also closely align with observed behaviors (Siebinga et al., 
2024; Zgonnikov et al., 2024). Consequently, these models are invalu
able for the development of automated systems such as AVs, where a 
comprehensive understanding of human decision-making can signifi
cantly enhance both safety and operational performance.

1.3. Paper organization

The remainder of this paper is organized as follows: Section 2 in
troduces the experimental methodology employed for collecting driver 
behavior data via a driving simulator. Section 3 describes the formula
tion of the risk sensitivity model, capturing individual differences in 
driver risk perception. Section 4 elaborates on the modeling approach 
for human decision-making behavior. Sections 5 and 6 present the 
evaluation results and conclusions of the study, respectively.

2. High-risk scenario driver cognition dataset

In this section, a series of driving simulator experiments were con
ducted to examine human cognition and decision-making in high-risk 
scenarios. Participants engaged in simulated environments featuring 
diverse risk factors, such as sudden obstacles, unpredictable traffic 
flows, and high-density conditions.

2.1. Participants

A total of 58 licensed drivers with normal or corrected-to-normal 

vision participated in the experiment. Before testing, they completed a 
demographic and subjective questionnaire (Table 1) covering age, 
driving experience, annual mileage, accident history, and self-reported 
driving style (cautious, normal, or aggressive). Data from 58 partici
pants (mean age = 36.5 years; standard deviation [SD] = 8.37; range =
22–55; 8 females and 50 males) were analyzed.

2.2. Experimental platform

The driving simulation platform is extensively used to evaluate the 
impact of driving performance on conflict risk. As illustrated in Fig. 1, 
the simulator hardware consists of a Logitech G29 steering wheel, 
accelerator and brake pedals, and display systems for the driving envi
ronment. It features a multi-freedom cockpit with a full-scale cabin 
equipped with a realistic operation interface, ambient noise simulation, 
and motion feedback, along with digital video playback and vehicle 
dynamics modeling. The simulation environment provides a 300-degree 
field of view at a resolution of 1400 × 1050 pixels, including left, center, 
and right rearview mirrors. The supporting software enables customized 
scenario design, virtual traffic environment simulation, and road 
modeling, facilitating road construction, traffic flow generation, and 
traffic control. Additionally, a Tobii Pro Spectrum 1200 mobile glasses- 
based eye tracker (1200 Hz, 0.01◦ precision) was used in a subset of 
experiments to support annotate key behavioral events. These annota
tions supported the temporal alignment of driver reactions with critical 
moments such as first fixation, hazard onset, and collision time.

2.3. Experimental design and analysis

To address conflicts among vehicles, environmental factors, and road 
users, our experimental design is guided by NHTSA and GES crash sta
tistics, highlighting the prevalence of rear-end collisions (29 %), 
intersection-related events including cut-ins (24 %), and lane-change 
incidents (12 %) (NHTSA, 2022; NHTSA-GES, 2022). Based on their 
frequency and their representation of distinct risk dimensions, namely 
lateral risk (cut-in), longitudinal risk (rear-end), and multi-dimensional 
risk (lane change), these three scenarios were selected. These scenarios 

Table 1 
Demographic variables for collected drivers.

Age 
/Year

Driving years/Year Average driving time/Hour Mileage/ 
Kilometer

Mean 36.50 12.10 39.29 23731.43
SD 8.37 7.10 38.24 19213.04

Fig. 1. Driving simulator platform.
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align with standardized testing protocols in driving simulator studies 
(Wang et al., 2020). They are also widely adopted in simulator and 
cognitive modeling studies to isolate specific risk types and elicit distinct 
driver responses. Each scenario incorporates diverse risk sources and 
two stimulus timing conditions (4 s and 8 s). These intervals align with 
temporal thresholds for driver hazard perception and response, where 4 
s reflects rapid risk assessment and 8 s captures behavioral adaptation to 
sustained risk exposure (Markkula et al., 2023; Zgonnikov et al., 2022), 
as illustrated in Fig. 2.

The experimental scenario setting details are as follows. All scenarios 
were designed to simulate expressway environments with high-speed 
(80–120 km/h) interactions, while certain elements (e.g., static obsta
cles) were included to mimic complex, multi-risk interactions, ensuring 
ecological validity for mixed traffic systems. Each scenario was con
structed as a two-lane environment where lane changes were permitted, 
consistent with driver instructions. Specifically, in the cut-in scenario 
(lateral risk source), we consider two vehicles: the ego vehicle A and the 
surrounding vehicle B. Vehicle A accelerates to a target cruising speed 
that falls within the range of 80 to 120 km/h in the right lane, while B, 
20 m away, suddenly cuts in at 120 km/h, forcing A to perform 

Fig. 2. The experimental scenarios.

Table 2 
Parameters of decision-making and control behavior in high-risk scenarios.

Parameters High-risk scenarios
Cut-in Rear-end 

collision
Lane- 
changing

Frequency 58 58 58
Disturbance occurrence (s) 22.54 ± 0.72 21.20 ± 1.93 5.47 ± 0.68
Brake reaction time (s) 1.62 ± 0.33 1.42 ± 0.35 0.73 ± 0.48
Speed adjustment time (s) 0.73 ± 0.26 0.64 ± 0.35 1.58 ± 0.74
Maximum deceleration 

(m/s2)
− 8.39 ±
1.52

− 7.92 ± 2.33 − 9.24 ± 2.01

Minimum time to collision 
(s)

0.92 ± 0.12 0.52 ± 0.14 0.74 ± 0.47

Braking spatial distance (m) 8.35 ± 1.21 42.15 ± 7.62 31.77 ± 7.46
Maximum steering angle ( ◦ ) 32.14 ± 9.40 36.74 ± 9.40 39.96 ±

12.47
Collision avoidance 

measures
Brake/Steer 
（54/4）

Brake/Steer 
（9/49）

Brake/Steer 
（12/46）

Number of accidents 2 18 12

Fig. 3. The multi-stage driver behavior experiment paradigm.
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emergency evasive actions. This scenario concludes within 5–6 s after 
the maneuver. In the rear-end collision scenario (longitudinal risk 
source), we involve three vehicles: the ego vehicle A, surrounding 
vehicle B, and lead vehicle C. Specifically, vehicle A, driven by a human, 
and vehicles B and C, set to a constant speed of 80 km/h by the simu
lator, are tested. When C abruptly brakes at − 8 m/s2, A must decide 
quickly whether to change lanes or stop abruptly, as outlined in Table 2. 
In the lane-changing scenario (multiple risk sources), the speed details 
remain consistent. We consider four vehicles: A, B, C and a stationary 
vehicle D. With a static obstacle D ahead, C suddenly changes lanes, 
requiring A’s driver to also engage in interactive driving. Notably, 
throughout the experiment, the test driver of A was unaware of the 
behavior settings of surrounding vehicles, allowing for a more authentic 
capture of reaction time, deceleration, and other behavior characteris
tics under unexpected conditions. Scenarios were presented in a ran
domized order, other unrelated high-risk scenarios (e.g., pedestrian 
crossings, sudden stops) were interleaved between trials to mitigate 
learning effects and reduce expectancy bias.

As depicted in Fig. 3, the multi-stage driver behavior experiment, 
based on the risk cognition experimental paradigm, consists of three key 
phases: (1) Pre-experiment preparation: Includes driver information 
collection, eye tracker calibration, and scenario familiarization. (2) In- 
lab testing: A structured driving process where drivers transition from 
normal driving to stimulus onset, followed by risk response and scenario 
conclusion. Fig. 3 illustrates these steps in a stimulus–response time 
window, detailing the transition from normal driving (4 s) to risk 
stimulus (4 s), followed by the driver’s response (2 s). As introduced 
before, the varying stimulus timing conditions (4 s vs. 8 s), selected to 
capture both immediate and adaptive driver responses. (3) Post- 
experiment processing: Extracts reaction time, steering/braking 
behavior, and acceleration/deceleration responses via video playback 
and feature quantification. This structured design ensures naturalistic 
driver behavior data collection, enabling a quantitative evaluation of 
decision-making and evasive maneuvers across different risk scenarios.

2.4. Data processing and key variable extraction

In the cognition process, key variables were extracted to assess driver 
reactions in high-risk scenarios. Cognitive Reaction Time (CRT) mea
sures the time from hazard appearance to driver recognition, 

determined via eye-tracking fixation or initial control input (braking/ 
steering). Brake Reaction Time (BRT) measures the delay from a traffic 
disturbance, such as sudden deceleration of the lead vehicle or a cut-in 
by another vehicle, to the driver’s initial brake input, defined by brake 
pedal depression exceeding a threshold (e.g., 5 %). It reflects emergency 
braking responsiveness. Speed Adjustment Time (SAT) captures the in
terval from brake initiation to maximum deceleration, indicating driver 
deceleration strategies. For the decision process, we extracted variables 
related to braking and steering strategies. Maximum deceleration eval
uates braking intensity, while Minimum Time to Collision (TTC) in
dicates collision risk, with lower values signifying higher danger levels. 
Maximum steering angle assesses evasive maneuvering, where larger 
angles indicate more aggressive avoidance strategies.

Table 2 summarizes decision-making and control behaviors across 
three high-risk scenarios. Cut-in events show longer minimum TTCs 
(0.92 ± 0.12  s) and moderate deceleration (− 8.39 ± 1.52  m/s2), 
indicating lower urgency compared to rear-end collisions (TTC: 0.52 ±
0.14  s; deceleration: − 7.92 ± 3.23  m/s2). Lane-changing requires 
stronger responses, with the highest deceleration (− 9.24 ± 2.01  m/s2) 
and longer adjustment times (1.58 ± 0.74  s), potentially due to their 
multi-dimensional risk nature. As shown in Fig. 4, individual cognitive 
processing time, such as brake reaction latency, significantly affects 
decision-making variability under identical external stimuli, leading to 
divergent collision outcomes. These findings underscore the heteroge
neity in risk perception and control behavior across drivers and 
scenarios.

3. Driver risk sensitivity modeling

Driver risk sensitivity characterizes an individual’s response to un
certain environments and potential risks, influencing their decision- 
making and collision avoidance strategies. In this study, risk sensi
tivity is quantified using vehicle kinematics, focusing on both longitu
dinal and lateral dynamics. To differentiate risk sensitivity levels among 
drivers and across scenarios, we define three sub-models representing 
high, medium, and low sensitivity levels: Rs={Rs,h,Rs,m,Rs,l}. These sub- 
models are derived from braking initiation velocity vb, longitudinal ac
celeration ax, and lateral acceleration ay, which reflect a driver’s evasive 
response intensity—higher acceleration magnitudes indicate greater 
sensitivity and more aggressive actions.

Fig. 4. Spatiotemporal distribution of decision-making behaviors in critical scenarios.
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3.1. Driver risk sensitivity with multivariate Gaussian distribution

To model driver risk sensitivity, we employ a Multivariate Gaussian 
Distribution (MGD), which effectively captures variations in risk 
cognition and decision-making tendencies. This probabilistic framework 
characterizes driver behavior by representing the distribution of colli
sion avoidance strategies under identical high-risk scenarios.

In driver risk sensitivity modeling, selecting an appropriate proba
bility density function (PDF) is essential for accurately capturing 
decision-making patterns. Skewness and kurtosis, as key statistical 
measures, allow for a quantitative evaluation of decision tendencies. 
Due to its robustness in modeling behavioral variability, MGD serves as a 
reliable framework for describing risk sensitivity, enabling the differ
entiation between common decision patterns across drivers and indi
vidualized risk-sensitive behaviors. For a bivariate random variable (e. 
g., longitudinal acceleration ay and lateral acceleration ax ), the proba
bility density function is given by: 

f(x) =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(2π)m

|Σ|
√ e−

1
2(x− μ)TΣ− 1(x− μ) (1) 

where, |Σ| represents the determinant of the covariance matrix, and μ =

E[x] denotes the mean of the random variable x.
Next, we use maximum likelihood estimation to fit the multivariate 

Gaussian model to driving behavior data, estimating parameters for 
precise distribution fitting. The likelihood function L(μ,Σ) for n samples 
is defined in Eq. (2). By deriving and setting the partial derivatives of μ 
and Σ to zero, we obtain the estimates μ̂ and Σ̂. These parameter esti
mates are detailed in Eqs. (3) and (4). 

L(μ,Σ) =
∏n

i=1
f(xi; μ,Σ)

=
∏n

i=1
(2π)−

m
2 |Σ|−

1
2exp

(

−
1
2
(xi − μ)TΣ− 1(xi − μ)

)

= (2π)−
nm
2 |Σ|−

n
2exp

(

−
1
2
∑n

i=1
(xi − μ)TΣ− 1(xi − μ)

)

(2) 

μ̂ = x (3) 

Σ̂ =
1
N
∑n

i=1
(xi − x)(xi − x)T (4) 

Finally, the distribution characteristics of control behavior parame
ters for different drivers in the same scenario can be accurately repre
sented using the multivariate Gaussian model.

3.2. Model performance analysis

Fig. 5 displays the driver risk sensitivity model results across various 
urgent scenarios, including cut-in, rear-end collision, and lane-changing 
high-risk scenarios, capturing variations in driving behavior. (1) Cut-in 
scenario (Rs impact on longitudinal deceleration): A narrow, high- 
peaked distribution along the longitudinal deceleration axis indicates 
consistent driver responses, with braking as the primary evasive action. 
While most drivers relied on deceleration with minimal lateral input, the 
broader lateral spread stems from a small subset of drivers who incor
porated slight steering corrections during braking, rather than engaging 
in steering-dominant maneuvers. (2) Rear-end collision scenario (Rs 
impact on braking intensity): A broader distribution suggests greater 
variability, with some drivers applying strong braking while others 
adopt gradual deceleration. (3) Lane-changing scenario (Rs impact on 
maneuver selection): A flatter, more dispersed distribution reflects 
higher variation in longitudinal and lateral accelerations, indicating a 
mix of steering and braking maneuvers.

These results align with the expected behavioral patterns: (1) Higher 
acceleration in high-risk scenarios: As risk levels increase, drivers 
exhibit stronger braking and steering responses, resulting in higher 
longitudinal (ax) and lateral (ay) accelerations. This is particularly 
evident in rear-end collision and lane-changing scenarios, where prob
ability distributions are broader, indicating more intense reactions. (2)
Significant individual differences in risk sensitivity: Some drivers 
consistently demonstrate higher acceleration values, reflecting a more 
aggressive evasive strategy, while others show lower response magni
tudes, favoring a more conservative avoidance approach. The results 
confirm that MGD-based risk sensitivity modeling effectively quantifies 
variations in driver decision-making.

These findings are consistent with existing literature and Gaussian- 
based driver behavior models (Zhou and Zhong, 2020), while our risk 
sensitivity model provides a more refined characterization, accurately 
distinguishing behavioral differences across scenarios. Additionally, it 

Fig. 5. Model performance analysis in different scenarios.
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predicts probability distributions under the same urgency level, seg
menting sub-models for different driver responses in high-risk condi
tions. This enhances the quantification of decision-making tendencies, 
supporting driving behavior prediction, risk assessment, and adaptive 
autonomous control.

4. Drift-diffusion decision-making modeling

Given the diverse risk sensitivities among drivers, it is crucial to 
explore the mechanisms shaping their decision-making behaviors in 
high-risk scenarios with multiple risk sources (Huang et al., 2024). We 
introduce the DDM to simulate and articulate these behaviors. It quan
tifies how the brain accumulates uncertain information until a decision 
threshold is reached, integrating cognitive psychology and neuroscience 
to explain driver decision-making in complex scenarios (Ratcliff et al., 
2016). Analyzing our dataset with DDM provides insights into partici
pant behaviors and response times.

4.1. Drift diffusion model

Fig. 6 illustrates the structure of the drift diffusion model (DDM) used 
to capture the temporal dynamics of driver decision-making under risk. 
In this model, two competing strategies, such as braking (strategy 1) 
versus maintaining speed (strategy 2), are represented by decision 
boundaries at + C and − C, which define the internal evidence thresholds 
required to trigger each choice. The decision process begins at a starting 
point (Z), which defaults to 0 without prior bias but may shift toward 
one boundary under contextual cues, expectations, or learned 
experience.

Drivers accumulate perceptual evidence over time (e.g., time-to- 
collision, relative speed), modeled as a stochastic process with drift 
rate indicating the speed and direction of evidence integration. A higher 
drift rate reflects quicker, more decisive responses; a lower rate suggests 
hesitation. Random noise accounts for variability due to distraction or 
uncertainty. A decision is made when the accumulated evidence reaches 
a boundary, with total reaction time (RT) including both cognitive and 
motor delays. Insets show the distribution of momentary evidence and 
the probabilistic mapping of strategy selection. Overall, the DDM pro
vides a psychologically grounded, mathematically tractable framework 
to model decision-making under risk, enabling inference of latent driver 
traits in safety–critical scenarios.

In the DDM, each strategy has a defined threshold dictating the 
necessary information accumulation for a response. Driver uncertainty 
introduces variability, influencing the accumulation direction. This 
model shows how decisions develop from information gathered over 

time. Illustrated in Fig. 6, DDM uses the search phase data and cognitive 
reaction times to time the initiation of avoidance actions in decision- 
making. This study applies DDM to analyze decision-making in three 
typical high-risk scenarios. Specifically, as illustrated in Fig. 2, we focus 
on the process that starts when vehicle B (e.g., cut-in vehicle) or vehicle 
C (e.g., lead vehicle) initiates an interaction at time t = 0, and ends 
when vehicle A (the ego vehicle) decides to either steer or brake in 
response. Key components of the DDM in this analysis include drift rate, 
boundary settings, initial bias, and non-decision time.

(1) Drift rate.
The drift rate g(t) characterizes the average rate of evidence accu

mulation over time, capturing both the speed and direction of the 
decision-making process. In this study, g(t) is modeled as a function of 
the initial speed of the ego vehicle A, and the time headway as well as 
the distance between the ego vehicle and other surrounding vehicles and 
conflict vehicles. Here, the initial speed refers to the instantaneous ve
locity of vehicle A at the moment the stimulus is triggered (t = 0), 
representing its stable motion state prior to risk onset. Referencing prior 
studies that incorporated vehicle kinematics into DDM-based decision 
models (Markkula et al., 2023; Mohammad et al., 2024; Zgonnikov 
et al., 2022), we formulate the following drift rate expressions for the 
three scenarios examined in this study. Initial speed, time headway, and 
relative distance are used as key inputs to capture drivers’ dynamic 
decision urgency under varying risk conditions. 

hAB(t) =
sAB(t)

vA
0

(5) 

hAC(t) =
sAC(t)

vA
0

(6) 

hAD(t) =
sAD(t)

vA
0

(7) 

g(t) = α
(
hAB(t) + κsAB(t) + γvA

0 − θ
)

(8) 

g(t) = α
(
hAB(t) + βsAB(t) + δhAC(t) + κsAC(t) + γvA

0 − θ
)

(9) 

g(t) = α
(
hAB(t) + βsAB(t) + δhAD(t) + κsAD(t) + γvA

0 − θ
)

(10) 

Eqs. (5)–(7) define the calculations for time headways between the 
ego vehicle A and other surrounding vehicles, conflict vehicles, and 
stationary vehicles, hAB(t), hAC(t), hAD(t). The time headways are calcu
lated by dividing the bumper-to-bumper distances, sAB, sAC, sAD, by the 
speed of the ego vehicle vA

0 .

Fig. 6. The illustration of the drift–diffusion model.
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Eq. (8) defines the calculation for the drift rate in the cut-in scenario. 
The time headway between ego vehicle A and conflict vehicle B, hAB, the 
distance between ego vehicle A and conflict vehicle B, sAB(t), and the 
initial speed of the ego vehicle A, vA

0 , are used in this calculation. α, κ, γ, θ 
are free parameters to be calibrated.

Eq. (9) defines the calculation for the drift rate in the rear-end 
collision scenario. The time headway between ego vehicle A and con
flict vehicle C, hAC, the distance between ego vehicle A and conflict 
vehicle C, sAC(t), together with hAB, sAB(t), and vA

0 are used in this 
calculation. α, β, δ, κ, γ, θ are free parameters to calibrate.

Eq. (10) defines the calculation for the drift rate in the lane-changing 
scenario. The time headway between ego vehicle A and static vehicle D, 
hAD, the distance between ego vehicle A and static vehicle D, sAD(t), 
together with hAB, sAB(t), vA

0 , are used in this calculation. α, β, δ, κ, γ, θ are 
free parameters to calibrate.

(2) Boundary.
The boundary b(t) defines the threshold of evidence required for 

decision-making. A decision is reached when the accumulated evidence 
meets either the upper or lower boundary, favoring the corresponding 
choice. Similar to the drift rate formulation, b(t) is modeled as a function 
of the initial speed of the ego vehicle A, and the time headway as well as 
the distance between ego vehicle A and other surrounding vehicles and 
conflict vehicles, but utilizes the SoftMax function. 

b(t) = ±
b0

1 + e− k(hAB(t)+κsAB(t)+γvA
0 − τ)

(11) 

b(t) = ±
b0

1 + e− k(hAB(t)+βsAB(t)+δhAC(t)+κsAC(t)+γvA
0 − τ)

(12) 

b(t) = ±
b0

1 + e− k(hAB(t)+βsAB(t)+δhAD(t)+κsAD(t)+γvA
0 − θ− τ)

(13) 

Eq. (11) defines the calculation for the boundary in the cut-in sce
nario. hAB, sAB(t), and vA

0 are used in this calculation. b0, κ, γ, τ are free 
parameters to be calibrated.

Eq. (12) defines the calculation for the boundary in the rear-end 
collision scenario. hAB, sAB(t), hAC, sAC(t), and A vA

0 are used in this 
calculation. b0, β, δ, κ, γ, τ are free parameters to calibrate.

Eq. (13) defines the calculation for the boundary in the lane- 
changing scenario. hAB, sAB(t), hAD, sAD(t), and vA

0 are used in this 
calculation. b0, β, δ, κ, γ, τ are free parameters to calibrate.

(3) Initial bias
The initial bias, denoted as Z represents the starting point of the 

evidence accumulation process. A negative value of Z indicates an initial 
bias towards the “Brake” decision, while a positive value suggests a bias 
towards the “Steer” decision. In this study, Z is modeled as a free 
parameter estimated individually for each participant using maximum 
likelihood estimation. Its value is constrained within the range [0,1], 
where Z = 0.5 denotes no initial preference toward either decision 
boundary. Deviations from 0.5 indicate early-stage decision biases, e.g., 
a value closer to 1 suggests a predisposition to steer, while a value closer 
to 0 implies a tendency to brake. To capture the influence of driving 
context on this bias, particularly the effect of initial vehicle speed, we 
further introduce a SoftMax function of the initial speed of ego vehicle A, 
vA

0 , for the calculation of the initial bias for all three scenarios (Eq. (14)). 
b0, bz, ν are free parameters, also estimated via maximum likelihood. 

Z =
2b0

1 + e− bz(v0 − ν) − b0 (14) 

(4) Non-decision time.
The non-decision time tND represents the time taken by processes that 

are not directly related to the decision-making process itself. These 
processes include stimulus encoding, motor response execution, and any 
other processes that occur before or after the actual evidence accumu
lation. In this study, we assume a Gaussian distributed non-decision time 

shown in Eq. (15) for all three scenarios. μND and σND are free parameters 
to be estimated. 

tND N
(
μND, σND) (15) 

(5) Drift diffusion model formulation
The formulation of the DDM is shown in Eq. (16), where x(t) rep

resents the evidence at time t, Positive values of x(t) support the decision 
to “Steer”, while negative values favor the decision to “Brake”. g(t) is the 
drift rate for the evidence accumulation defined in Eqs. (8)–(10). ε(t) is 
the random noise added to the evidence. The drift rate, boundary, initial 
bias and non-decision time for cut-in scenario are shown in Eq. (8), (11), 
(14), (15). for rear-end collision scenario are shown in Eq. (9), (12), 
(14), (15), for lane-changine scenario are shown in Eq. (10), (13), (14), 
(15). 

dx(t)
dt

= g(t)+ ε(t) (16) 

4.2. Impact of risk sensitivity on DDM parameters

The driver risk sensitivity model generates sub-models Rs={Rs,h,Rs,m,

Rs,l}, representing high, medium, and low sensitivity levels, which are 
classified based on the magnitude of drivers’ evasive responses, 
measured by their peak longitudinal (ax), and lateral (ay) accelerations 
in high-risk scenarios. These metrics are normalized and clustered via k- 
means (k = 3), and a Gaussian Mixture Model (GMM) was applied to 
automatically cluster the drivers into three distinct groups. Drivers 
exhibiting stronger and more immediate acceleration responses were 
assigned to the high sensitivity group, while those with moderate or 
minimal responses were classified as medium and low sensitivity, 
respectively. These sub-models directly influence key DDM parameters, 
adapting decision-making dynamics.

The drift rate g(t), representing decision speed, increases with risk 
sensitivity. High-risk-sensitive drivers accumulate information faster, 
leading to quicker decisions, while low-risk-sensitive drivers have a 
slower drift rate, indicating more cautious decision-making. The deci
sion boundary b(t), defining the required evidence for a decision, is 
lower for high-risk-sensitive drivers, allowing them to decide with less 
accumulated information, whereas low-risk-sensitive drivers require 
more certainty. The initial bias Z reflects decision inclination. Higher 
risk sensitivity shifts preference toward lane-changing, while lower 
sensitivity favors braking: 

gʹ(t) = g(t)+ λRs, bʹ(t) = b(t)e− ηRs , Zʹ(t) = Z+ ρRs (17) 

where λ is a scaling factor, η controls the degree of adjustment based on 
risk sensitivity, ρ is a tunable parameter determining the effect of risk 
sensitivity on initial bias.

By integrating risk sensitivity into DDM, the model dynamically 
adjusts decision-making speed, certainty thresholds, and action prefer
ences, providing a more realistic and adaptive simulation of driver 
behavior in high-risk scenarios.

5. Results

In this section, we analyze the modeling results in detail. First, we 
identify the free parameters for each DDM and calibrate them to ensure 
optimal model performance. The accuracy of the calibrated DDM is then 
evaluated to assess its reliability in predicting driver decision-making. 
Finally, leveraging the well-fitted models, we interpret drivers’ 
decision-making processes across the three scenarios from a cognitive 
perspective, providing insights into how risk perception and information 
accumulation influence their behavioral responses.
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5.1. Model parameters determining

We implement the DDMs using the pyddm library and calibrate them 
to the actual data using a differential evolution optimization algorithm. 
The Bayesian Information Criterion (BIC) was employed as the loss 
function for this optimization process. Table 3 presents the calibration 
results of the DDMs for the cut-in scenario, rear-end collision scenario, 
and lane-changing scenario.

The accuracy of the DDM is validated by comparing cumulative 
response time probabilities between actual data and predictions from 
the established DDM. Fig. 7 shows a comparison example from the rear- 
end collision scenario. In the actual data, for both steer and brake de
cisions, the response times generally decrease with increasing initial 
speed of ego vehicle A, vA

0 . The response times for vA
0 of 19.56 m/s and 

22.10 m/s are similar, and the response times for vA
0 of 23.32 m/s and 

25.80 m/s are also similar. When vA
0 is lower, there is no significant 

difference in response times between steer and brake decisions. How
ever, when the initial speed is higher, the response time for brake de
cisions is notably shorter than for steer decisions. Comparing the 
remaining small graphs, it can be observed that the trend in the cumu
lative probability shown by the established DDM is similar to the trends 
in the actual data. This indicates that the established model accurately 
represents the original data with high precision.

5.2. Generalized decision-making process

We now interpret the driver’s decision-making process from a 
cognitive perspective. The established DDM will be used to simulate 
decision-making in the cut-in scenario, rear-end collision scenario, and 
lane-changing scenario.

(1) Cut-in scenario.
Our objective is to evaluate whether our models effectively captured 

the general trends in participant behavior, rather than explaining indi
vidual differences, and to use these models to interpret the general 
trends of the decision-making process. Thus, we categorize the actual 
data into four groups based on the initial speed value of the ego vehicle 
A, vA

0 , with median initial speeds of 25.82 m/s, 29.39 m/s, 31.69 m/s, 
and 33.85 m/s for each group respectively in cut-in scenario. The 
grouping was derived from the empirical distribution of initial speeds 
recorded in the driving simulator to reflect realistic driver behavior 
patterns. We then configure the DDM simulation conditions to corre
spond with these four data groups. Given that the DDM model in
corporates random factors, such as ε(t) and tND, we conduct 1000 
simulations for each initial speed group to mitigate the influence of these 
random factors. The simulation results are summarized in Fig. 8.

From the left column of Fig. 8, it could be observed that when faced 
with a sudden cut-in by a surrounding vehicle, drivers typically choose 
to brake directly rather than steer. The observed data reveals that when 
the ego vehicle’s speed vA

0 is relatively low, 100 % of drivers chose to 

Table 3 
Parameters calibration results for the DDM in three scenarios.

Scenario α β δ κ γ θ b0 k τ μND σND bz ν

Cut-in 0.07 − − 0 0.63 71.97 0.56 1.83 1.50 1.33 0.23 0.12 4.07
Rear-end collision 1.09 0.57 0.00 1.00 1.59 79.75 0.60 0.95 5.43 0.61 0.17 0.09 14.71
Lane-changing 0.04 0.70 0.27 0.34 0.52 23.49 0.50 0.02 3.34 0.92 0.24 0.02 14.93

Fig. 7. Comparison of cumulative response time probabilities between actual data and predictions from the established DDM in the rear-end collision scenario.
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brake immediately. At higher ego vehicle speeds, approximately 90 % of 
drivers chose to brake, while about 10 % opted to steer, presumably due 
to insufficient time to brake effectively. This trend is also reflected in the 
established DDM. The developed DDM model predicts that in cut-in 
scenarios, 95 % of drivers would choose to brake directly.

From the right column of Fig. 8, it can be seen that the accumulation 
of evidence to support the decision-making goes through two stages. (i) 
Non-decision period: Receiving information about the sudden cut-in by 
a surrounding vehicle, during which the evidence does not change over 
time. From the fitting results of tND, it is known that this process takes 
about 1.33 s. Given that Z > 0, drivers may initially be inclined towards 
steering rather than braking when faced with this situation. (ii) Evidence 
accumulation period: The driver begins to process information about the 
sudden cut-in by a surrounding vehicle and determines whether to steer 
or brake in response. The decision-making time for drivers doesn’t vary 
significantly across different speeds. Although drivers initially lean to
wards steering, the value of the evidence x supporting the decision 
rapidly decreases, quickly reaching the threshold that triggers the 
braking decision. From a cognitive perspective, this can be interpreted 
as follows: When confronted with a sudden cut-in, drivers initially 
consider steering as a potential evasive action. However, as they rapidly 
assess the situation, the accumulation of evidence strongly favors 
braking.

(2) Rear-end collision scenario.
The actual data is grouped into four groups based on the initial speed 

value of the ego vehicle A, vA
0 , with median initial speeds of 19.56 m/s, 

22.10 m/s, 23.32 m/s, and 25.80 m/s for each group respectively in 
rear-end collision scenario. The DDM simulation conditions are config
ured to correspond with these four data groups. 1000 simulations for 
each initial speed group are conducted to mitigate the influence of these 
random factors. The simulation results are shown in Fig. 9.

From the left column of Fig. 9, when the initial speed is relatively 
low, drivers tend to choose to make a brake decision when faced with an 
emergency brake by a leading vehicle. As the initial speed increases, the 
probability of choosing the brake decision gradually decreases, while 
the probability of choosing the steer decision increases. When the initial 
speed is relatively high, facing an emergency brake by a leading vehicle, 
the time required to reduce the speed of an ego vehicle through braking 
is longer. Therefore, drivers will not choose to brake but instead make an 
immediate steer decision to respond. It could also be found that the 
decision-making probabilities predicted by the established DDM are 
close to probabilities from the actual data.

From the right column of Fig. 9, the accumulation of evidence also 
goes through two stages when making decisions. (i) Non-decision 
period: Receiving information about the emergency brake of the lead
ing vehicle, during which the evidence does not change over time. From 
the fitting results of tND, it is known that this process takes about 0.6 s. 
(ii) Evidence accumulation period: When the initial speed is relatively 
low, the response time required for drivers to make steer and brake 
decisions is similar. As the speed increases, the response times for both 

Fig. 8. Drivers’ decision-making analysis in the cut-in scenario at different initial speeds from a cognitive perspective using the predicted DDM. The left 
column shows the comparison of brake and steer decision ratios between actual data and DDM-predicted results. The right column illustrates the information 
accumulation process for both brake and steer decisions. The blue and green lines represent the accumulation process of evidence x(t) for steer and brake, 
respectively. The grey dashed lines represent the boundaries that trigger steer and brake decisions. When the evidence x(t) accumulates to either the steer or brake 
boundary, the driver will make the corresponding decision.
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steer and brake decisions decrease, but the decrease in brake response 
time is more drastic. At this time, the driver will first judge whether 
there is a suitable opportunity to reduce the speed by braking. If so, they 
will immediately make a brake decision. If not, the driver will choose an 
opportunity to make a steer decision.

(3) Lane-changing scenario.
In the rear-end collision scenario, the actual data is also categorized 

into four groups based on the initial speed vA
0 of ego vehicle. These 

groups have median initial speeds of 20.71 m/s, 23.27 m/s, 24.62 m/s, 
and 27.46 m/s respectively. The DDM simulation conditions are 
configured to correspond with these four data groups. To mitigate the 
influence of random factors, 1000 simulations are conducted for each 
initial speed group. Simulation results are presented in Fig. 10.

From the left column of Fig. 10, when faced with a sudden lane 
change by the leading vehicle and the appearance of a stationary 
obstacle ahead, drivers’ choices between braking and steering to avoid 
the obstacle are roughly evenly split. Moreover, the proportion of 
drivers choosing to brake versus those to steer shows no significant 
variation across different initial speeds of the ego vehicle. This trend is 
well captured by the established DDM.

From the right column of Fig. 10, the accumulation of evidence also 
goes through two stages as other two scenarios. (i) Non-decision period: 
During this initial stage, drivers receive visual and situational informa
tion regarding the presence of a stationary obstacle ahead. From the 
fitting results of tND, it is known that this process takes about 0.92 s. 

Since that Z < 0, drivers may initially be inclined towards braking rather 
than steering, This suggests that braking is perceived as the more im
mediate and intuitive response before further evidence accumulation 
refines the decision-making process. (ii) Evidence accumulation period: 
Information supporting both braking and steering accumulates at 
similar rates. The accumulated evidence typically reaches the decision- 
triggering boundary between 1.25 and 1.5 s. Notably, this process shows 
no significant variation across different initial speeds of the ego vehicle. 
From a cognitive perspective, this pattern suggests that drivers may 
process information for both potential actions, braking and steering, 
concurrently and with similar efficiency. The consistent timing of de
cision boundary attainment, regardless of initial speed, indicates a 
relatively stable cognitive processing time for lane-changing scenarios.

5.3. Personalized decision-making process with risk sensitivity

To further investigate the influence of driver risk sensitivity on in
formation accumulation and decision-making, experiments were con
ducted across three high-risk scenarios: cut-in, rear-end collision, and 
lane change. The analysis focused on decision-triggering moments and 
collision avoidance behaviors among drivers with varying risk sensi
tivity levels, quantifying their impact on the evidence accumulation 
process.

As illustrated in Fig. 11, (a)-(c): Evidence accumulation curves for 
three high-risk scenarios: cut-in, rear-end, and lane-changing. The 
dashed red line marks the average decision threshold fitted via the drift 

Fig. 9. Drivers’ decision-making analysis in the rear-end collision scenario at different initial speeds from a cognitive perspective using the predicted DDM.
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diffusion model (DDM). Blue triangles indicate individual decision 
points; their vertical positions reflect early (below threshold) or late 
(above threshold) responses. Red circles highlight trials with accidents 
caused by delayed decisions. (d): Example frames of early, average, and 
late decisions within the stimulus–response window.

Experimental findings show that driver risk sensitivity plays a crucial 
role in shaping the personalized decision-making process. It directly 
influences the drift rate (speed of evidence accumulation) and decision 
threshold (decision-triggering point), leading to distinct collision 
avoidance patterns. Specifically, high-risk sensitivity drivers (Rs,h) 
exhibit faster evidence accumulation and lower decision thresholds, 
allowing them to make quicker avoidance decisions and significantly 
reduce collision risk. In contrast, low-risk sensitivity drivers (Rs,l) 
demonstrate delayed responses in high-risk situations. For instance, in 
rear-end collision and lane-changing scenarios (Fig. 11 (b) and (c)), their 
decision-triggering moments occur above the threshold (Late Decision), 
requiring greater evidence accumulation before initiating action, mak
ing them more susceptible to collisions (red markers in Fig. 11).

Moreover, we observe that the average decision threshold varies 
across scenarios, reflecting scenario-specific cognitive demands. In rear- 
end collisions, drivers exhibit higher thresholds on average, suggesting 
greater caution and evidence requirements when closely following a 
lead vehicle at high speed. Conversely, lower thresholds in lane-change 
scenarios indicate a stronger reliance on rapid, time-constrained de
cisions due to spatial competition and multiple-agent interactions. This 
pattern is consistent with urgency-gated decision frameworks (e.g., 

Mohammad et al., 2024; Zgonnikov et al., 2022), in which scenario 
complexity and perceived control modulate threshold setting. Compared 
to conventional driving models, the DDM integrated with risk sensitivity 
modeling enables a more accurate representation of individual decision- 
making tendencies, allowing for personalized, risk-aware decision 
adaptation AVs.

5.4. Comparative experimental analysis

To validate the advantages of the DDM framework for modeling 
driver decisions in high-risk scenarios, comparative experiments were 
conducted against classical driver models (IDM, MOBIL, and Gipps). 
Given that some models only support longitudinal control, the evalua
tion focused on the cut-in scenario, where most participants adopted 
braking responses (Table 2). In contrast, evasive steering dominated in 
rear-end and lane-changing scenarios, which these longitudinal driver 
models cannot simulate. Thus, focusing on cut-in enables a valid com
parison of decision accuracy and collision rate.

(1) Experimental setup and parameter calibration
Experiments were conducted under identical high-risk scenarios as 

described previously (Section 5.2), with comparative analyses per
formed across four initial speed conditions (25.82 m/s, 29.39 m/s, 
31.69 m/s, and 33.85 m/s). Parameters for IDM and MOBIL were cali
brated according to standard values from prior studies (Kesting et al., 
2007; Treiber et al., 2006), while Gipps model parameters were opti
mized based on safe-distance theory (Gipps, 1981). DDM parameters 
were fitted from experimental data via Bayesian optimization (Table 3). 

Fig. 10. Drivers’ decision-making analysis in the lane-changing scenario at different initial speeds from a cognitive perspective using the predicted DDM.
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IDM and Gipps modeled only longitudinal decisions, and MOBIL inte
grated instantaneous lane-change decisions without cognitive accumu
lation. The DDM, however, incorporated dynamic information 
accumulation reflecting drivers’ cognitive evaluation of risks.

Specifically, IDM adjusts acceleration based solely on spacing and 
relative speed without cumulative decision time. Gipps adjusts accel
eration according to safe distance and acceptable speeds, assuming 
instantaneous decisions without information accumulation. MOBIL 
evaluates lane-changing decisions by maximizing lane-change benefits 
while accounting for safety and dynamic factors, but lacks cumulative 
decision time.

(2) Evaluation metrics and results analysis.
Decision accuracy measures the agreement percentage between 

model predictions (braking/steering) and observed driver behaviors, 

while collision rate indicates the proportion of simulation runs resulting 
in collisions. As shown in Table 4, at lower speeds (25.82 m/s and 29.39 
m/s), DDM maintained a consistently high accuracy (>95 %) with zero 
collision occurrences, comparable to other models. At higher speeds and 
elevated risks (31.69 m/s and 33.85 m/s), despite a slight decrease in 
accuracy (84.65 % and 87.46 %, respectively), DDM continued to ach
ieve zero collisions, significantly outperforming MOBIL (collision rates 
of 2.7 % and 1.4 %) and IDM/Gipps (collision rates of 1.6 % and 2.1 %). 
IDM and Gipps exhibited perfect accuracy (100 %) at lower speeds while 
showing reduced accuracy and increased collision rates at higher speeds 
due to their inability to model lane-change decisions.

DDM’s superior collision avoidance performance can be attributed to 
its adaptive drift rates and decision boundaries, dynamically adjusted 
based on driver risk perception. In contrast, MOBIL and IDM/Gipps rely 
on fixed thresholds, limiting their responsiveness and accuracy in 
detecting and addressing risks under challenging high-speed conditions.

Experimental results demonstrate that the DDM more accurately 
predicts driver decisions in cut-in scenarios, effectively capturing 
cognitive processes and dynamic decision-making under high-risk con
ditions. In contrast, IDM and Gipps, lacking lateral decision-making 
modules, ensure only safe braking but cannot generate lane-change 
maneuvers. Although MOBIL incorporates lane-changing, it relies 
solely on instantaneous safety gaps without modeling drivers’ cognitive 
accumulation and biases, resulting in notable deviations from observed 
behaviors. By dynamically adjusting thresholds through drift rates and 
decision boundaries, the DDM accurately captures driver behavior var
iations across speeds and risk levels. This finding highlights the impor
tance of integrating cognitive dynamics into autonomous driving 
interaction design to enhance human behavior prediction.

Fig. 11. Driver risk response and information accumulation process analysis.

Table 4 
Parameters calibration results for the DDM under the cut-in scenario.

Initial speed (m/s) Model Decision accuracy (%) Collision rate (%)

25.82 DDM 95.4 0
​ MOBIL 79.6 0
​ IDM/ Gipps 100 0

29.39 DDM 95.9 0
​ MOBIL 83.1 0
​ IDM/ Gipps 100 0

31.69 DDM 84.65 0
​ MOBIL 84.4 2.7
​ IDM 87.5 1.6

33.85 DDM 87.46 0
​ MOBIL 86.77 1.4
​ IDM/ Gipps 90.5 2.1
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6. Conclusion

This paper presents a cognition-decision framework that integrates 
risk sensitivity modeling and cognitive decision-making to enhance the 
understanding of driver behavior in high-risk scenarios. The risk sensi
tivity model, based on a multivariate Gaussian distribution, quantifies 
individual differences in risk cognition, capturing variations in how 
drivers perceive and respond to traffic risks. The DDM simulates 
decision-making by dynamically adjusting drift rate, boundary param
eters, and initial bias based on driver-specific risk sensitivity, speed, and 
relative distance to other vehicles. Experimental validation in a driving 
simulator demonstrates that the proposed framework accurately pre
dicts driver responses in emergency scenarios involving lateral, longi
tudinal, and multidimensional risk sources. Comparative analysis with 
IDM, Gipps, and MOBIL highlights the advantages of the DDM model in 
capturing cognitive decision processes and adaptive driving behaviors, 
particularly in scenarios requiring complex risk assessment and rapid 
decision-making. The results confirm the model’s superior predictive 
accuracy and practical applicability in understanding human driver 
behavior, which is essential for improving AV-human interaction. The 
findings offer theoretical support for human-centered autonomous 
driving, enabling safer and more adaptive AV integration into mixed 
traffic.

Our findings demonstrate that the risk-sensitive DDM significantly 
improves prediction accuracy (e.g., 95 % in cut-in scenarios) by 
dynamically adapting to individual cognitive styles, outperforming 
traditional models like IDM and MOBIL. This enhancement supports 
personalized AV interaction strategies, including real-time hazard alert 
calibration, which may reduce collision rates by 12 % to 15 %. While the 
reliance on simulator-based data and the imbalanced participant de
mographics (e.g., limited female representation) may affect generaliz
ability. Also, although each high-risk scenario was tested in an 
independent block and interleaved with unrelated tasks to reduce 
sequence learning, residual order effects related to scenario positioning 
may still exist. Interestingly, in the rear-end collision scenario, drivers 
more often opted for evasive steering over braking, likely due to the 
expressway setting and available open lanes, which encouraged lateral 
avoidance rather than abrupt deceleration. Future work could imple
ment fully randomized or counterbalanced scenario scheduling across 
participants to minimize potential anticipation bias. Further, adaptive 
scenario triggering based on real-time driver state monitoring (e.g., fa
tigue, workload) may help isolate behavioral variability more precisely 
and improve the interpretation of decision processes. Future efforts will 
focus on extending the model to naturalistic datasets and integrating 
multimodal inputs, including eye-tracking and LiDAR, to improve 
ecological validity and real-world applicability.
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