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ARTICLE INFO ABSTRACT
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Ensuring safe interactions between autonomous vehicles (AVs) and human drivers in mixed traffic systems re-
mains a major challenge, particularly in complex, high-risk scenarios. This paper presents a cognition-decision
framework that integrates individual variability and commonalities in driver behavior to quantify risk cogni-
tion and model dynamic decision-making. First, a risk sensitivity model based on a multivariate Gaussian dis-
tribution is developed to characterize individual differences in risk cognition. Then, a cognitive decision-making
model based on the drift diffusion model (DDM) is introduced to capture common decision-making mechanisms
in high-risk environments. The DDM dynamically adjusts decision thresholds by integrating initial bias, drift rate,
and boundary parameters, adapting to variations in speed, relative distance, and risk sensitivity to reflect diverse
driving styles and risk preferences. By simulating high-risk scenarios with lateral, longitudinal, and multidi-
mensional risk sources in a driving simulator, the proposed model accurately predicts cognitive responses and
decision behaviors during emergency maneuvers. Specifically, by incorporating driver-specific risk sensitivity,
the model enables dynamic adjustments of key DDM parameters, allowing for personalized decision-making
representations in diverse scenarios. Comparative analysis with IDM, Gipps, and MOBIL demonstrates that
DDM more precisely captures human cognitive processes and adaptive decision-making in high-risk scenarios.
These findings provide a theoretical basis for modeling human driving behavior and offer critical insights for
enhancing AV-human interaction in real-world traffic environments.

1. Introduction imitation learning methods, often oversimplify human cognition, failing
to capture individual variability, bounded rationality, and dynamic risk
adaptation (Derbel et al., 2013; Treiber et al., 2006). Moreover, they are

typically limited to unidimensional stimuli, neglecting lateral conflicts

1.1. Motivation

Driving safety critically depends on drivers’ risk cognition and
collision avoidance decisions, especially in high-risk scenarios. In real-
world settings, such cognition involves interactions among multiple
co-existing risks rather than a single stimulus (Crosato et al., 2024;
Huang et al., 2022). Drivers must rapidly perceive and respond to
evolving threats, yet these multi-stage and stochastic processes,
including attention, evidence accumulation, and motor execution, are
difficult to model quantitatively (Aven, 2011; Wang et al., 2020).

Existing behavior models, such as car-following, lane-changing, and

and multi-agent interactions. These limitations are critical for autono-
mous driving systems, which lack interpretable human models to reli-
ably predict uncertain behavior. In high-risk or emergent scenarios,
failure to respond in a human-aligned, context-aware manner can un-
dermine both safety and social acceptance (Zgonnikov et al., 2022).
To address this, we propose a cognitively inspired framework that
integrates individual risk sensitivity with general decision-making dy-
namics. We quantify how variations in risk cognition shape emergency
decisions and represent these processes computationally with
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interpretability and generalizability. Our contributions are as follows:

e We propose a DDM-based cognitive model that quantitatively sim-
ulates human decision-making in high-risk scenarios, using initial
bias, drift rate, and boundary separation parameterized by driver
speed and proximity.

e We develop a driver risk-sensitivity model based on a multivariate
Gaussian distribution, which quantifies individual differences in
drivers’ risk cognition and is utilized to tailor personalized decision-
making processes.

e We validate the proposed models through high-risk scenario simu-
lations on a driving simulator, demonstrating their effectiveness in
predicting driver behavior and applicability to real-world
environments.

1.2. Related works

Considerable attention has been directed toward understanding
drivers’ risk cognition and decision-making capabilities, leading to the
development of numerous models such as car-following and lane-
changing models (Amditis et al., 2010; Orfanou et al., 2022). These
models are generally classified into five categories (Wang et al., 2022):
behavioral simulation models, game-theoretic reasoning models, social
force-driven two-dimensional models, learning-driven models, and in-
formation cognition models.

Behavior simulation models simulate drivers’ actions under spe-
cific conditions. Advanced examples include micro-binary models,
cellular automata models, and driver preview-follow models, imple-
mented in simulators such as Simulation of Urban Mobility (SUMO) and
public transport simulators like VISSIM, alongside lane-changing tra-
jectory models derived from traffic flow theory (Fernandes and Nunes,
2010; Xu et al., 2012). Simplified dynamic behavior models, such as the
intelligent driver model (IDM) (Derbel et al., 2013; Treiber et al., 2006)
and the minimize overall braking induced by lane change model
(MOBIL) (Kesting et al., 2007), account for fundamental vehicle dy-
namics and constitute single stimulus-response representations. These
behavioral simulation approaches are accessible and widely utilized to
reproduce diverse driving scenarios, effectively capturing both micro-
scale individual behaviors and macro-scale group dynamics (Treiber
and Kesting, 2017). However, despite their widespread use, such models
exhibit notable limitations, primarily responding to unidimensional risk
stimuli. A single mathematical framework often fails to comprehen-
sively reflect or address the dynamic requirements and expectations of
drivers. Moreover, behavioral simulation models do not adequately
respond in real-time to evolving driver states nor elucidate underlying
mechanisms driving behaviors in complex scenarios. For instance, sce-
narios involving interactions among multiple road users necessitate
consideration of multidimensional risks, including lateral factors, road
geometry, infrastructure configurations and traffic signal design.

Game-theoretic reasoning models provide a rigorous approach to
examining strategic interactions among rational agents, where the ac-
tions of each participant influence others’ outcomes (Huo et al., 2023).
Within game theory-based driver cognition modeling, dynamically
integrating vehicle safety and comfort considerations with predictions of
surrounding vehicles’ intentions and behaviors is essential. Conse-
quently, driver decisions emerge from multi-agent strategic interactions,
resulting in optimal decision-making strategies. Bayesian dynamic
models have similarly been employed for behavior inference (Schulz,
2021). For example, Darius et al. (Schulz et al., 2019) proposed a
probabilistic framework using dynamic Bayesian networks (DBN) to
model multi-vehicle interactions with context-aware motion represen-
tations at intersections. By incorporating prior knowledge and obser-
vational data, these methods enable probabilistic predictions of driver
behavior (Huang et al., 2024). However, these models’ reliance on as-
sumptions of rational behavior limits their applicability to real-world
scenarios, and they often inadequately capture the complexities of
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drivers’ risk cognition. Moreover, decision-making complexity escalates
significantly with the increase in involved agents and potential
strategies.

Social force-driven two-dimensional driver models characterize
driver responses to risk stimuli by incorporating social and virtual
forces, enabling simultaneous quantification of longitudinal and lateral
risks across various driving scenarios (Rosenberg, 1990). These models
simulate human interactions under complex motion stimuli, grounded
in the concept of driver risk cognition as influenced by virtual forces
(Bieleke et al., 2020). Herbing et al. proposed a social force-evolutionary
framework, employing virtual forces to elucidate social interactions,
thereby enhancing human-like behaviors in multi-agent vehicle envi-
ronments through reward-based design mechanisms (Helbing and
Molndr, 1995). Similarly, David et al. introduced a two-dimensional
driver risk field model capturing driver perceptions of event probabili-
ties and providing quantitative assessments of perceived risks (Kolekar
et al., 2020). In contrast to conventional dynamic behavior simulation
methods, social force-based approaches effectively represent the multi-
dimensionality of driver risks and explicitly address social interaction
influences. Nevertheless, such force-based representations might over-
simplify the intricate cognitive processes underlying individual driver
decision-making.

Learning-driven models employ advanced neural network archi-
tectures, such as deep neural networks (DNN) and convolutional neural
networks (CNN), to mine extensive driving datasets and extract intricate
behavioral patterns (Li et al., 2022). For example, Sharifzadeh et al.
(Sharifzadeh et al., 2016) employed deep Q-networks for deep rein-
forcement learning to investigate lane-changing and overtaking behav-
iors on highways. However, their study did not address vehicle safety
and relied on simplified simulation scenarios. Such models excel at
processing complex, high-dimensional data, enabling the identification
of nuanced patterns within large-scale datasets (Kuutti et al., 2021;
Schulte et al., 2022). Despite their effectiveness, learning-driven models
often act as “black boxes,” limiting interpretability and impeding the
exploration of underlying cognitive and decision-making processes. This
opacity poses significant challenges for practical application, particu-
larly in safety—critical contexts where transparent and understandable
decision-making mechanisms are essential. Consequently, enhancing
interpretability in learning-driven approaches remains a crucial direc-
tion for future research aimed at improving our understanding of driver
risk cognition and behavior.

Information cognition models leverage principles from cognitive
psychology and neuroscience to simulate human perceptual proces
(Mohammad et al., 2024)sing, cognition, and decision-making mecha-
nisms (Markkula et al., 2023). By modeling cognitive functions such as
attention, memory, and learning, these models help understand and
predict human behavior (Ratcliff et al., 2016). Notably, drift diffusion
models (DDM) have advanced the understanding of the psychological
and neural mechanisms underlying driver decision-making. By
modeling decisions as the gradual accumulation of evidence toward a
threshold, DDM provides a quantitative framework for capturing dy-
namic cognitive processes. Recent applications have demonstrated the
utility of DDM-based thresholds in modeling driver judgments during
complex maneuvers such as unprotected left turns, effectively linking
cognitive theory with empirical driving behavior (Mohammad et al.,
2024, Mohammad et al., 2023). Unlike traditional models (e.g., IDM,
MOBIL), which assume deterministic decision thresholds, DDM provides
an interpretable structure that links observable outcomes such as reac-
tion time and action choice to underlying cognitive processes. Further, it
captures individual differences through parameters like drift rate,
boundary separation, and initial bias, enabling personalized modeling of
driver risk responses. These features make DDM well-suited for simu-
lating driver cognition in complex, time-constrained traffic scenarios,
allowing it to represent the dynamic accumulation of evidence under
uncertainty, such as during sudden cut-ins or rear-end conflicts.

Their approach provided real-time predictions regarding drivers’ gap



H. Huang et al.

Table 1
Demographic variables for collected drivers.
Age Driving years/Year ~ Average driving time/Hour Mileage/
/Year Kilometer
Mean 36.50 12.10 39.29 23731.43
SD 8.37 7.10 38.24 19213.04

acceptance, closely reflecting natural cognitive processes. By explicitly
simulating human cognitive mechanisms, information cognition models
not only clarify the intricacies of driver risk cognition and decision-
making but also closely align with observed behaviors (Siebinga et al.,
2024; Zgonnikov et al., 2024). Consequently, these models are invalu-
able for the development of automated systems such as AVs, where a
comprehensive understanding of human decision-making can signifi-
cantly enhance both safety and operational performance.

1.3. Paper organization

The remainder of this paper is organized as follows: Section 2 in-
troduces the experimental methodology employed for collecting driver
behavior data via a driving simulator. Section 3 describes the formula-
tion of the risk sensitivity model, capturing individual differences in
driver risk perception. Section 4 elaborates on the modeling approach
for human decision-making behavior. Sections 5 and 6 present the
evaluation results and conclusions of the study, respectively.

2. High-risk scenario driver cognition dataset

In this section, a series of driving simulator experiments were con-
ducted to examine human cognition and decision-making in high-risk
scenarios. Participants engaged in simulated environments featuring
diverse risk factors, such as sudden obstacles, unpredictable traffic
flows, and high-density conditions.

2.1. Participants

A total of 58 licensed drivers with normal or corrected-to-normal
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vision participated in the experiment. Before testing, they completed a
demographic and subjective questionnaire (Table 1) covering age,
driving experience, annual mileage, accident history, and self-reported
driving style (cautious, normal, or aggressive). Data from 58 partici-
pants (mean age = 36.5 years; standard deviation [SD] = 8.37; range =
22-55; 8 females and 50 males) were analyzed.

2.2. Experimental platform

The driving simulation platform is extensively used to evaluate the
impact of driving performance on conflict risk. As illustrated in Fig. 1,
the simulator hardware consists of a Logitech G29 steering wheel,
accelerator and brake pedals, and display systems for the driving envi-
ronment. It features a multi-freedom cockpit with a full-scale cabin
equipped with a realistic operation interface, ambient noise simulation,
and motion feedback, along with digital video playback and vehicle
dynamics modeling. The simulation environment provides a 300-degree
field of view at a resolution of 1400 x 1050 pixels, including left, center,
and right rearview mirrors. The supporting software enables customized
scenario design, virtual traffic environment simulation, and road
modeling, facilitating road construction, traffic flow generation, and
traffic control. Additionally, a Tobii Pro Spectrum 1200 mobile glasses-
based eye tracker (1200 Hz, 0.01° precision) was used in a subset of
experiments to support annotate key behavioral events. These annota-
tions supported the temporal alignment of driver reactions with critical
moments such as first fixation, hazard onset, and collision time.

2.3. Experimental design and analysis

To address conflicts among vehicles, environmental factors, and road
users, our experimental design is guided by NHTSA and GES crash sta-
tistics, highlighting the prevalence of rear-end collisions (29 %),
intersection-related events including cut-ins (24 %), and lane-change
incidents (12 %) (NHTSA, 2022; NHTSA-GES, 2022). Based on their
frequency and their representation of distinct risk dimensions, namely
lateral risk (cut-in), longitudinal risk (rear-end), and multi-dimensional
risk (lane change), these three scenarios were selected. These scenarios

Driver’s Risk Cognitive Behavior
Experiment Pllatform

,‘? |

N

Testing Control Terminal

o) Scaner studio driving

® Industrial computer and

simulator hydraulic system

® Multi-industrial computer @
test main control platform

® Image information display ®

@ Logitech G29 steering wheel

® Multi-freedom cockpit

Cockpit motion control
and display screen

Gigabit gatewa
screen EADLL galeway

® Main control program
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virtual server

Fig. 1. Driving simulator platform.
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Table 2
Parameters of decision-making and control behavior in high-risk scenarios.

align with standardized testing protocols in driving simulator studies
(Wang et al., 2020). They are also widely adopted in simulator and
cognitive modeling studies to isolate specific risk types and elicit distinct
driver responses. Each scenario incorporates diverse risk sources and
two stimulus timing conditions (4 s and 8 s). These intervals align with
temporal thresholds for driver hazard perception and response, where 4
s reflects rapid risk assessment and 8 s captures behavioral adaptation to
sustained risk exposure (Markkula et al., 2023; Zgonnikov et al., 2022),

The experimental scenario setting details are as follows. All scenarios
were designed to simulate expressway environments with high-speed
(80-120 km/h) interactions, while certain elements (e.g., static obsta-
cles) were included to mimic complex, multi-risk interactions, ensuring
ecological validity for mixed traffic systems. Each scenario was con-
structed as a two-lane environment where lane changes were permitted,
consistent with driver instructions. Specifically, in the cut-in scenario
(lateral risk source), we consider two vehicles: the ego vehicle A and the
surrounding vehicle B. Vehicle A accelerates to a target cruising speed
that falls within the range of 80 to 120 km/h in the right lane, while B,
20 m away, suddenly cuts in at 120 km/h, forcing A to perform

Parameters High-risk scenarios
Cut-in Rear-end Lane-
collision changing
Frequency 58 58 58
Disturbance occurrence (s) 22.54+0.72 21.20 +£1.93 5.47 + 0.68
Brake reaction time (s) 1.62 + 0.33 1.42 + 0.35 0.73 + 0.48 R R R
Speed adjustment time (s) 0.73+£0.26  0.64 +0.35 1.58 + 0.74 as illustrated in Fig. 2.
Maximum deceleration —8.39 + —7.92 + 2.33 —9.24 £+ 2.01
(m/s?) 1.52
Minimum time to collision 0.92 £ 0.12 0.52 £ 0.14 0.74 = 0.47
)
Braking spatial distance (m) 8.35+1.21 42.15 + 7.62 31.77 + 7.46
Maximum steering angle (')  32.14+9.40  36.74 £ 9.40 39.96 +
12.47
Collision avoidance Brake/Steer Brake/Steer Brake/Steer
measures (54/4) (9/49) (12/46)
Number of accidents 2 18 12
:]-_—l_ | I :]-_—l_ | (N Normal driving (4s)

Experiment preparation
Subjective driver information
collection

Calibration of eye tracker,
driving simulator teslting

In-lab testing [

= -

Stimulus start Driver risk response

Normal driving
\

Normal Traffic disturbance process

Stimqlus end

Post-experiment processing

Behavior screening and annotation

l Reaction time, manipulation behavior feature statistics

Video playback and feature quantification

Y Action Analysis Multi-stage behavior analysis
Normal s
> —
- -

. < . » >

Y
Stimulus-response time window

Fig. 3. The multi-stage driver behavior experiment paradigm.
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emergency evasive actions. This scenario concludes within 5-6 s after
the maneuver. In the rear-end collision scenario (longitudinal risk
source), we involve three vehicles: the ego vehicle A, surrounding
vehicle B, and lead vehicle C. Specifically, vehicle A, driven by a human,
and vehicles B and C, set to a constant speed of 80 km/h by the simu-
lator, are tested. When C abruptly brakes at —8 m/s%, A must decide
quickly whether to change lanes or stop abruptly, as outlined in Table 2.
In the lane-changing scenario (multiple risk sources), the speed details
remain consistent. We consider four vehicles: A, B, C and a stationary
vehicle D. With a static obstacle D ahead, C suddenly changes lanes,
requiring A’s driver to also engage in interactive driving. Notably,
throughout the experiment, the test driver of A was unaware of the
behavior settings of surrounding vehicles, allowing for a more authentic
capture of reaction time, deceleration, and other behavior characteris-
tics under unexpected conditions. Scenarios were presented in a ran-
domized order, other unrelated high-risk scenarios (e.g., pedestrian
crossings, sudden stops) were interleaved between trials to mitigate
learning effects and reduce expectancy bias.

As depicted in Fig. 3, the multi-stage driver behavior experiment,
based on the risk cognition experimental paradigm, consists of three key
phases: (1) Pre-experiment preparation: Includes driver information
collection, eye tracker calibration, and scenario familiarization. (2) In-
lab testing: A structured driving process where drivers transition from
normal driving to stimulus onset, followed by risk response and scenario
conclusion. Fig. 3 illustrates these steps in a stimulus-response time
window, detailing the transition from normal driving (4 s) to risk
stimulus (4 s), followed by the driver’s response (2 s). As introduced
before, the varying stimulus timing conditions (4 s vs. 8 s), selected to
capture both immediate and adaptive driver responses. (3) Post-
experiment processing: Extracts reaction time, steering/braking
behavior, and acceleration/deceleration responses via video playback
and feature quantification. This structured design ensures naturalistic
driver behavior data collection, enabling a quantitative evaluation of
decision-making and evasive maneuvers across different risk scenarios.

2.4. Data processing and key variable extraction

In the cognition process, key variables were extracted to assess driver
reactions in high-risk scenarios. Cognitive Reaction Time (CRT) mea-
sures the time from hazard appearance to driver recognition,

determined via eye-tracking fixation or initial control input (braking/
steering). Brake Reaction Time (BRT) measures the delay from a traffic
disturbance, such as sudden deceleration of the lead vehicle or a cut-in
by another vehicle, to the driver’s initial brake input, defined by brake
pedal depression exceeding a threshold (e.g., 5 %). It reflects emergency
braking responsiveness. Speed Adjustment Time (SAT) captures the in-
terval from brake initiation to maximum deceleration, indicating driver
deceleration strategies. For the decision process, we extracted variables
related to braking and steering strategies. Maximum deceleration eval-
uates braking intensity, while Minimum Time to Collision (TTC) in-
dicates collision risk, with lower values signifying higher danger levels.
Maximum steering angle assesses evasive maneuvering, where larger
angles indicate more aggressive avoidance strategies.

Table 2 summarizes decision-making and control behaviors across
three high-risk scenarios. Cut-in events show longer minimum TTCs
(0.92 £+ 0.12 s) and moderate deceleration (—8.39 + 1.52 m/sz),
indicating lower urgency compared to rear-end collisions (TTC: 0.52 +
0.14 s; deceleration: —7.92 + 3.23 m/s?). Lane-changing requires
stronger responses, with the highest deceleration (—9.24 + 2.01 m/s?)
and longer adjustment times (1.58 &+ 0.74 s), potentially due to their
multi-dimensional risk nature. As shown in Fig. 4, individual cognitive
processing time, such as brake reaction latency, significantly affects
decision-making variability under identical external stimuli, leading to
divergent collision outcomes. These findings underscore the heteroge-
neity in risk perception and control behavior across drivers and
scenarios.

3. Driver risk sensitivity modeling

Driver risk sensitivity characterizes an individual’s response to un-
certain environments and potential risks, influencing their decision-
making and collision avoidance strategies. In this study, risk sensi-
tivity is quantified using vehicle kinematics, focusing on both longitu-
dinal and lateral dynamics. To differentiate risk sensitivity levels among
drivers and across scenarios, we define three sub-models representing
high, medium, and low sensitivity levels: Rs={Rsp,Rsm,Rs,}. These sub-
models are derived from braking initiation velocity vy, longitudinal ac-
celeration ay, and lateral acceleration a,, which reflect a driver’s evasive
response intensity—higher acceleration magnitudes indicate greater
sensitivity and more aggressive actions.
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3.1. Driver risk sensitivity with multivariate Gaussian distribution

To model driver risk sensitivity, we employ a Multivariate Gaussian
Distribution (MGD), which effectively captures variations in risk
cognition and decision-making tendencies. This probabilistic framework
characterizes driver behavior by representing the distribution of colli-
sion avoidance strategies under identical high-risk scenarios.

In driver risk sensitivity modeling, selecting an appropriate proba-
bility density function (PDF) is essential for accurately capturing
decision-making patterns. Skewness and kurtosis, as key statistical
measures, allow for a quantitative evaluation of decision tendencies.
Due to its robustness in modeling behavioral variability, MGD serves as a
reliable framework for describing risk sensitivity, enabling the differ-
entiation between common decision patterns across drivers and indi-
vidualized risk-sensitive behaviors. For a bivariate random variable (e.
g., longitudinal acceleration a, and lateral acceleration ay ), the proba-
bility density function is given by:

_
(2n)"[z|

1 ~
flx) = e 21 Z () o)

where, |Z| represents the determinant of the covariance matrix, and y =
E[x] denotes the mean of the random variable x.

Next, we use maximum likelihood estimation to fit the multivariate
Gaussian model to driving behavior data, estimating parameters for
precise distribution fitting. The likelihood function L(u, ) for n samples
is defined in Eq. (2). By deriving and setting the partial derivatives of u

and ¥ to zero, we obtain the estimates 7 and £. These parameter esti-
mates are detailed in Egs. (3) and (4).

L(, %) = ﬁf(xi§ﬂ72)

Te2e) %z denp( 0 —w"s ) )
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(20) % |2 Zexp ( > ) u))
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Finally, the distribution characteristics of control behavior parame-
ters for different drivers in the same scenario can be accurately repre-
sented using the multivariate Gaussian model.

3.2. Model performance analysis

Fig. 5 displays the driver risk sensitivity model results across various
urgent scenarios, including cut-in, rear-end collision, and lane-changing
high-risk scenarios, capturing variations in driving behavior. (1) Cut-in
scenario (R; impact on longitudinal deceleration): A narrow, high-
peaked distribution along the longitudinal deceleration axis indicates
consistent driver responses, with braking as the primary evasive action.
While most drivers relied on deceleration with minimal lateral input, the
broader lateral spread stems from a small subset of drivers who incor-
porated slight steering corrections during braking, rather than engaging
in steering-dominant maneuvers. (2) Rear-end collision scenario (R;
impact on braking intensity): A broader distribution suggests greater
variability, with some drivers applying strong braking while others
adopt gradual deceleration. (3) Lane-changing scenario (R, impact on
maneuver selection): A flatter, more dispersed distribution reflects
higher variation in longitudinal and lateral accelerations, indicating a
mix of steering and braking maneuvers.

These results align with the expected behavioral patterns: (1) Higher
acceleration in high-risk scenarios: As risk levels increase, drivers
exhibit stronger braking and steering responses, resulting in higher
longitudinal (ay) and lateral (a,) accelerations. This is particularly
evident in rear-end collision and lane-changing scenarios, where prob-
ability distributions are broader, indicating more intense reactions. (2)
Significant individual differences in risk sensitivity: Some drivers
consistently demonstrate higher acceleration values, reflecting a more
aggressive evasive strategy, while others show lower response magni-
tudes, favoring a more conservative avoidance approach. The results
confirm that MGD-based risk sensitivity modeling effectively quantifies
variations in driver decision-making.

These findings are consistent with existing literature and Gaussian-
based driver behavior models (Zhou and Zhong, 2020), while our risk
sensitivity model provides a more refined characterization, accurately
distinguishing behavioral differences across scenarios. Additionally, it
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Fig. 6. The illustration of the drift-diffusion model.

predicts probability distributions under the same urgency level, seg-
menting sub-models for different driver responses in high-risk condi-
tions. This enhances the quantification of decision-making tendencies,
supporting driving behavior prediction, risk assessment, and adaptive
autonomous control.

4. Drift-diffusion decision-making modeling

Given the diverse risk sensitivities among drivers, it is crucial to
explore the mechanisms shaping their decision-making behaviors in
high-risk scenarios with multiple risk sources (Huang et al., 2024). We
introduce the DDM to simulate and articulate these behaviors. It quan-
tifies how the brain accumulates uncertain information until a decision
threshold is reached, integrating cognitive psychology and neuroscience
to explain driver decision-making in complex scenarios (Ratcliff et al.,
2016). Analyzing our dataset with DDM provides insights into partici-
pant behaviors and response times.

4.1. Drift diffusion model

Fig. 6 illustrates the structure of the drift diffusion model (DDM) used
to capture the temporal dynamics of driver decision-making under risk.
In this model, two competing strategies, such as braking (strategy 1)
versus maintaining speed (strategy 2), are represented by decision
boundaries at + C and —C, which define the internal evidence thresholds
required to trigger each choice. The decision process begins at a starting
point (Z), which defaults to 0 without prior bias but may shift toward
one boundary under contextual cues, expectations, or learned
experience.

Drivers accumulate perceptual evidence over time (e.g., time-to-
collision, relative speed), modeled as a stochastic process with drift
rate indicating the speed and direction of evidence integration. A higher
drift rate reflects quicker, more decisive responses; a lower rate suggests
hesitation. Random noise accounts for variability due to distraction or
uncertainty. A decision is made when the accumulated evidence reaches
a boundary, with total reaction time (RT) including both cognitive and
motor delays. Insets show the distribution of momentary evidence and
the probabilistic mapping of strategy selection. Overall, the DDM pro-
vides a psychologically grounded, mathematically tractable framework
to model decision-making under risk, enabling inference of latent driver
traits in safety—critical scenarios.

In the DDM, each strategy has a defined threshold dictating the
necessary information accumulation for a response. Driver uncertainty
introduces variability, influencing the accumulation direction. This
model shows how decisions develop from information gathered over

time. Illustrated in Fig. 6, DDM uses the search phase data and cognitive
reaction times to time the initiation of avoidance actions in decision-
making. This study applies DDM to analyze decision-making in three
typical high-risk scenarios. Specifically, as illustrated in Fig. 2, we focus
on the process that starts when vehicle B (e.g., cut-in vehicle) or vehicle
C (e.g., lead vehicle) initiates an interaction at time t = 0, and ends
when vehicle A (the ego vehicle) decides to either steer or brake in
response. Key components of the DDM in this analysis include drift rate,
boundary settings, initial bias, and non-decision time.

(1) Drift rate.

The drift rate g(t) characterizes the average rate of evidence accu-
mulation over time, capturing both the speed and direction of the
decision-making process. In this study, g(t) is modeled as a function of
the initial speed of the ego vehicle A, and the time headway as well as
the distance between the ego vehicle and other surrounding vehicles and
conflict vehicles. Here, the initial speed refers to the instantaneous ve-
locity of vehicle A at the moment the stimulus is triggered (t = 0),
representing its stable motion state prior to risk onset. Referencing prior
studies that incorporated vehicle kinematics into DDM-based decision
models (Markkula et al., 2023; Mohammad et al., 2024; Zgonnikov
et al., 2022), we formulate the following drift rate expressions for the
three scenarios examined in this study. Initial speed, time headway, and
relative distance are used as key inputs to capture drivers’ dynamic
decision urgency under varying risk conditions.

0

RB(¢) 7 (5)
HC(t) = SAES(I) 6)
hAD(t) — sAjg(t) (7)
g(t) = a(h*®(t) + xs*®(t) +yvy — 0) ®
g(t) = a(R*B(t) + ps*B(t) + ShC(t) + xs"°(t) +yvy — 0) ©
g(t) = a(h*®(t) + s (t) + Sh*P(t) + xs™P(£) + yvj — 0) (10)

Egs. (5)-(7) define the calculations for time headways between the
ego vehicle A and other surrounding vehicles, conflict vehicles, and
stationary vehicles, HB(t), FA¢(t), H*P(t). The time headways are calcu-
lated by dividing the bumper-to-bumper distances, s8, sA¢, sA?, by the
speed of the ego vehicle v4.
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Eq. (8) defines the calculation for the drift rate in the cut-in scenario.
The time headway between ego vehicle A and conflict vehicle B, k5, the
distance between ego vehicle A and conflict vehicle B, s*B(t), and the
initial speed of the ego vehicle A, v‘g, are used in this calculation. a, «, 7, 0
are free parameters to be calibrated.

Eq. (9) defines the calculation for the drift rate in the rear-end
collision scenario. The time headway between ego vehicle A and con-
flict vehicle C, h4¢, the distance between ego vehicle A and conflict
vehicle C, s¢(t), together with h45, s#B(t), and v4 are used in this
calculation. a, B, 6, «, y, 0 are free parameters to calibrate.

Eq. (10) defines the calculation for the drift rate in the lane-changing
scenario. The time headway between ego vehicle A and static vehicle D,
KD, the distance between ego vehicle A and static vehicle D, s*P(t),
together with k48, sAB(t), v4, are used in this calculation. a, 5, 8, x, v, 0 are
free parameters to calibrate.

(2) Boundary.

The boundary b(t) defines the threshold of evidence required for
decision-making. A decision is reached when the accumulated evidence
meets either the upper or lower boundary, favoring the corresponding
choice. Similar to the drift rate formulation, b(t) is modeled as a function
of the initial speed of the ego vehicle A, and the time headway as well as
the distance between ego vehicle A and other surrounding vehicles and
conflict vehicles, but utilizes the SoftMax function.

bo

b() = il + o K(HAP () 458 (0) -+ ~) an

bo
b(t) = il T e—k(h"B(t)+/isAB(t)+5hAC(t)+KsAC(t)+yv‘3—r) 12

bo

b(t) = il + e—k(hAB(t)+/)’sAB(t)+5hAD(t)+stD(t)+yv‘3—(}—r)

(13)

Eq. (11) defines the calculation for the boundary in the cut-in sce-
nario. b, s*B(t), and v4 are used in this calculation. by, «, 7, 7 are free
parameters to be calibrated.

Eq. (12) defines the calculation for the boundary in the rear-end
collision scenario. KB, sAB(t), hAC, sA¢(t), and A v} are used in this
calculation. by, 3, 6, , 7, 7 are free parameters to calibrate.

Eq. (13) defines the calculation for the boundary in the lane-
changing scenario. W8, sA5(t), WP, s"P(t), and V4 are used in this
calculation. by, 3, 6, , 7, 7 are free parameters to calibrate.

(3) Initial bias

The initial bias, denoted as Z represents the starting point of the
evidence accumulation process. A negative value of Z indicates an initial
bias towards the “Brake” decision, while a positive value suggests a bias
towards the “Steer” decision. In this study, Z is modeled as a free
parameter estimated individually for each participant using maximum
likelihood estimation. Its value is constrained within the range [0,1],
where Z = 0.5 denotes no initial preference toward either decision
boundary. Deviations from 0.5 indicate early-stage decision biases, e.g.,
a value closer to 1 suggests a predisposition to steer, while a value closer
to 0 implies a tendency to brake. To capture the influence of driving
context on this bias, particularly the effect of initial vehicle speed, we
further introduce a SoftMax function of the initial speed of ego vehicle A,
v‘g, for the calculation of the initial bias for all three scenarios (Eq. (14)).
by, b, v are free parameters, also estimated via maximum likelihood.

2b,

Z= 1 o (14)

(4) Non-decision time.

The non-decision time t™? represents the time taken by processes that
are not directly related to the decision-making process itself. These
processes include stimulus encoding, motor response execution, and any
other processes that occur before or after the actual evidence accumu-
lation. In this study, we assume a Gaussian distributed non-decision time
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shown in Eq. (15) for all three scenarios. 4P and 6P are free parameters
to be estimated.

" N(u"?, o) (15)

(5) Drift diffusion model formulation

The formulation of the DDM is shown in Eq. (16), where x(t) rep-
resents the evidence at time t, Positive values of x(t) support the decision
to “Steer”, while negative values favor the decision to “Brake”. g(t) is the
drift rate for the evidence accumulation defined in Egs. (8)-(10). &(t) is
the random noise added to the evidence. The drift rate, boundary, initial
bias and non-decision time for cut-in scenario are shown in Eq. (8), (11),
(14), (15). for rear-end collision scenario are shown in Eq. (9), (12),
(14), (15), for lane-changine scenario are shown in Eq. (10), (13), (14),
(15).

O g(0) et as)

4.2. Impact of risk sensitivity on DDM parameters

The driver risk sensitivity model generates sub-models Ry={R; ,Rsm,
R}, representing high, medium, and low sensitivity levels, which are
classified based on the magnitude of drivers’ evasive responses,
measured by their peak longitudinal (a,), and lateral (a,) accelerations
in high-risk scenarios. These metrics are normalized and clustered via k-
means (k = 3), and a Gaussian Mixture Model (GMM) was applied to
automatically cluster the drivers into three distinct groups. Drivers
exhibiting stronger and more immediate acceleration responses were
assigned to the high sensitivity group, while those with moderate or
minimal responses were classified as medium and low sensitivity,
respectively. These sub-models directly influence key DDM parameters,
adapting decision-making dynamics.

The drift rate g(t), representing decision speed, increases with risk
sensitivity. High-risk-sensitive drivers accumulate information faster,
leading to quicker decisions, while low-risk-sensitive drivers have a
slower drift rate, indicating more cautious decision-making. The deci-
sion boundary b(t), defining the required evidence for a decision, is
lower for high-risk-sensitive drivers, allowing them to decide with less
accumulated information, whereas low-risk-sensitive drivers require
more certainty. The initial bias Z reflects decision inclination. Higher
risk sensitivity shifts preference toward lane-changing, while lower
sensitivity favors braking:

¢(0) = g(t) + AR, b() = b(D)e ™, Z(t) = Z+pR, an

where 1 is a scaling factor, 5 controls the degree of adjustment based on
risk sensitivity, p is a tunable parameter determining the effect of risk
sensitivity on initial bias.

By integrating risk sensitivity into DDM, the model dynamically
adjusts decision-making speed, certainty thresholds, and action prefer-
ences, providing a more realistic and adaptive simulation of driver
behavior in high-risk scenarios.

5. Results

In this section, we analyze the modeling results in detail. First, we
identify the free parameters for each DDM and calibrate them to ensure
optimal model performance. The accuracy of the calibrated DDM is then
evaluated to assess its reliability in predicting driver decision-making.
Finally, leveraging the well-fitted models, we interpret drivers’
decision-making processes across the three scenarios from a cognitive
perspective, providing insights into how risk perception and information
accumulation influence their behavioral responses.
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Table 3
Parameters calibration results for the DDM in three scenarios.
Scenario a B bl K 7 [ by k T g oD b, v
Cut-in 0.07 - - 0 0.63 71.97 0.56 1.83 1.50 1.33 0.23 0.12 4.07
Rear-end collision 1.09 0.57 0.00 1.00 1.59 79.75 0.60 0.95 5.43 0.61 0.17 0.09 14.71
Lane-changing 0.04 0.70 0.27 0.34 0.52 23.49 0.50 0.02 3.34 0.92 0.24 0.02 14.93
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Fig. 7. Comparison of cumulative response time probabilities between actual data and predictions from the established DDM in the rear-end collision scenario.

5.1. Model parameters determining

We implement the DDMs using the pyddm library and calibrate them
to the actual data using a differential evolution optimization algorithm.
The Bayesian Information Criterion (BIC) was employed as the loss
function for this optimization process. Table 3 presents the calibration
results of the DDMs for the cut-in scenario, rear-end collision scenario,
and lane-changing scenario.

The accuracy of the DDM is validated by comparing cumulative
response time probabilities between actual data and predictions from
the established DDM. Fig. 7 shows a comparison example from the rear-
end collision scenario. In the actual data, for both steer and brake de-
cisions, the response times generally decrease with increasing initial
speed of ego vehicle A, vA. The response times for v4 of 19.56 m/s and
22.10 m/s are similar, and the response times for v4 of 23.32 m/s and
25.80 m/s are also similar. When v4 is lower, there is no significant
difference in response times between steer and brake decisions. How-
ever, when the initial speed is higher, the response time for brake de-
cisions is notably shorter than for steer decisions. Comparing the
remaining small graphs, it can be observed that the trend in the cumu-
lative probability shown by the established DDM is similar to the trends
in the actual data. This indicates that the established model accurately
represents the original data with high precision.

5.2. Generalized decision-making process

We now interpret the driver’s decision-making process from a
cognitive perspective. The established DDM will be used to simulate
decision-making in the cut-in scenario, rear-end collision scenario, and
lane-changing scenario.

(1) Cut-in scenario.

Our objective is to evaluate whether our models effectively captured
the general trends in participant behavior, rather than explaining indi-
vidual differences, and to use these models to interpret the general
trends of the decision-making process. Thus, we categorize the actual
data into four groups based on the initial speed value of the ego vehicle
A, vg, with median initial speeds of 25.82 m/s, 29.39 m/s, 31.69 m/s,
and 33.85 m/s for each group respectively in cut-in scenario. The
grouping was derived from the empirical distribution of initial speeds
recorded in the driving simulator to reflect realistic driver behavior
patterns. We then configure the DDM simulation conditions to corre-
spond with these four data groups. Given that the DDM model in-
corporates random factors, such as &(t) and P, we conduct 1000
simulations for each initial speed group to mitigate the influence of these
random factors. The simulation results are summarized in Fig. 8.

From the left column of Fig. 8, it could be observed that when faced
with a sudden cut-in by a surrounding vehicle, drivers typically choose
to brake directly rather than steer. The observed data reveals that when
the ego vehicle’s speed V4 is relatively low, 100 % of drivers chose to
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Fig. 8. Drivers’ decision-making analysis in the cut-in scenario at different initial speeds from a cognitive perspective using the predicted DDM. The left
column shows the comparison of brake and steer decision ratios between actual data and DDM-predicted results. The right column illustrates the information
accumulation process for both brake and steer decisions. The blue and green lines represent the accumulation process of evidence x(t) for steer and brake,
respectively. The grey dashed lines represent the boundaries that trigger steer and brake decisions. When the evidence x(t) accumulates to either the steer or brake

boundary, the driver will make the corresponding decision.

brake immediately. At higher ego vehicle speeds, approximately 90 % of
drivers chose to brake, while about 10 % opted to steer, presumably due
to insufficient time to brake effectively. This trend is also reflected in the
established DDM. The developed DDM model predicts that in cut-in
scenarios, 95 % of drivers would choose to brake directly.

From the right column of Fig. 8, it can be seen that the accumulation
of evidence to support the decision-making goes through two stages. (i)
Non-decision period: Receiving information about the sudden cut-in by
a surrounding vehicle, during which the evidence does not change over
time. From the fitting results of t™P, it is known that this process takes
about 1.33 s. Given that Z > 0, drivers may initially be inclined towards
steering rather than braking when faced with this situation. (ii) Evidence
accumulation period: The driver begins to process information about the
sudden cut-in by a surrounding vehicle and determines whether to steer
or brake in response. The decision-making time for drivers doesn’t vary
significantly across different speeds. Although drivers initially lean to-
wards steering, the value of the evidence x supporting the decision
rapidly decreases, quickly reaching the threshold that triggers the
braking decision. From a cognitive perspective, this can be interpreted
as follows: When confronted with a sudden cut-in, drivers initially
consider steering as a potential evasive action. However, as they rapidly
assess the situation, the accumulation of evidence strongly favors
braking.

(2) Rear-end collision scenario.

The actual data is grouped into four groups based on the initial speed
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value of the ego vehicle A, v4, with median initial speeds of 19.56 m/s,
22.10 m/s, 23.32 m/s, and 25.80 m/s for each group respectively in
rear-end collision scenario. The DDM simulation conditions are config-
ured to correspond with these four data groups. 1000 simulations for
each initial speed group are conducted to mitigate the influence of these
random factors. The simulation results are shown in Fig. 9.

From the left column of Fig. 9, when the initial speed is relatively
low, drivers tend to choose to make a brake decision when faced with an
emergency brake by a leading vehicle. As the initial speed increases, the
probability of choosing the brake decision gradually decreases, while
the probability of choosing the steer decision increases. When the initial
speed is relatively high, facing an emergency brake by a leading vehicle,
the time required to reduce the speed of an ego vehicle through braking
is longer. Therefore, drivers will not choose to brake but instead make an
immediate steer decision to respond. It could also be found that the
decision-making probabilities predicted by the established DDM are
close to probabilities from the actual data.

From the right column of Fig. 9, the accumulation of evidence also
goes through two stages when making decisions. (i) Non-decision
period: Receiving information about the emergency brake of the lead-
ing vehicle, during which the evidence does not change over time. From
the fitting results of t"P, it is known that this process takes about 0.6 s.
(ii) Evidence accumulation period: When the initial speed is relatively
low, the response time required for drivers to make steer and brake
decisions is similar. As the speed increases, the response times for both
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Fig. 9. Drivers’ decision-making analysis in the rear-end collision scenario at different initial speeds from a cognitive perspective using the predicted DDM.

steer and brake decisions decrease, but the decrease in brake response
time is more drastic. At this time, the driver will first judge whether
there is a suitable opportunity to reduce the speed by braking. If so, they
will immediately make a brake decision. If not, the driver will choose an
opportunity to make a steer decision.

(3) Lane-changing scenario.

In the rear-end collision scenario, the actual data is also categorized
into four groups based on the initial speed vj of ego vehicle. These
groups have median initial speeds of 20.71 m/s, 23.27 m/s, 24.62 m/s,
and 27.46 m/s respectively. The DDM simulation conditions are
configured to correspond with these four data groups. To mitigate the
influence of random factors, 1000 simulations are conducted for each
initial speed group. Simulation results are presented in Fig. 10.

From the left column of Fig. 10, when faced with a sudden lane
change by the leading vehicle and the appearance of a stationary
obstacle ahead, drivers’ choices between braking and steering to avoid
the obstacle are roughly evenly split. Moreover, the proportion of
drivers choosing to brake versus those to steer shows no significant
variation across different initial speeds of the ego vehicle. This trend is
well captured by the established DDM.

From the right column of Fig. 10, the accumulation of evidence also
goes through two stages as other two scenarios. (i) Non-decision period:
During this initial stage, drivers receive visual and situational informa-
tion regarding the presence of a stationary obstacle ahead. From the
fitting results of t*P, it is known that this process takes about 0.92 s.
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Since that Z < 0, drivers may initially be inclined towards braking rather
than steering, This suggests that braking is perceived as the more im-
mediate and intuitive response before further evidence accumulation
refines the decision-making process. (ii) Evidence accumulation period:
Information supporting both braking and steering accumulates at
similar rates. The accumulated evidence typically reaches the decision-
triggering boundary between 1.25 and 1.5 s. Notably, this process shows
no significant variation across different initial speeds of the ego vehicle.
From a cognitive perspective, this pattern suggests that drivers may
process information for both potential actions, braking and steering,
concurrently and with similar efficiency. The consistent timing of de-
cision boundary attainment, regardless of initial speed, indicates a
relatively stable cognitive processing time for lane-changing scenarios.

5.3. Personalized decision-making process with risk sensitivity

To further investigate the influence of driver risk sensitivity on in-
formation accumulation and decision-making, experiments were con-
ducted across three high-risk scenarios: cut-in, rear-end collision, and
lane change. The analysis focused on decision-triggering moments and
collision avoidance behaviors among drivers with varying risk sensi-
tivity levels, quantifying their impact on the evidence accumulation
process.

As illustrated in Fig. 11, (a)-(c): Evidence accumulation curves for
three high-risk scenarios: cut-in, rear-end, and lane-changing. The
dashed red line marks the average decision threshold fitted via the drift
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Fig. 10. Drivers’ decision-making analysis in the lane-changing scenario at different initial speeds from a cognitive perspective using the predicted DDM.

diffusion model (DDM). Blue triangles indicate individual decision
points; their vertical positions reflect early (below threshold) or late
(above threshold) responses. Red circles highlight trials with accidents
caused by delayed decisions. (d): Example frames of early, average, and
late decisions within the stimulus-response window.

Experimental findings show that driver risk sensitivity plays a crucial
role in shaping the personalized decision-making process. It directly
influences the drift rate (speed of evidence accumulation) and decision
threshold (decision-triggering point), leading to distinct collision
avoidance patterns. Specifically, high-risk sensitivity drivers (Rsz)
exhibit faster evidence accumulation and lower decision thresholds,
allowing them to make quicker avoidance decisions and significantly
reduce collision risk. In contrast, low-risk sensitivity drivers (R;)
demonstrate delayed responses in high-risk situations. For instance, in
rear-end collision and lane-changing scenarios (Fig. 11 (b) and (c)), their
decision-triggering moments occur above the threshold (Late Decision),
requiring greater evidence accumulation before initiating action, mak-
ing them more susceptible to collisions (red markers in Fig. 11).

Moreover, we observe that the average decision threshold varies
across scenarios, reflecting scenario-specific cognitive demands. In rear-
end collisions, drivers exhibit higher thresholds on average, suggesting
greater caution and evidence requirements when closely following a
lead vehicle at high speed. Conversely, lower thresholds in lane-change
scenarios indicate a stronger reliance on rapid, time-constrained de-
cisions due to spatial competition and multiple-agent interactions. This
pattern is consistent with urgency-gated decision frameworks (e.g.,
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Mohammad et al., 2024; Zgonnikov et al., 2022), in which scenario
complexity and perceived control modulate threshold setting. Compared
to conventional driving models, the DDM integrated with risk sensitivity
modeling enables a more accurate representation of individual decision-
making tendencies, allowing for personalized, risk-aware decision
adaptation AVs.

5.4. Comparative experimental analysis

To validate the advantages of the DDM framework for modeling
driver decisions in high-risk scenarios, comparative experiments were
conducted against classical driver models (IDM, MOBIL, and Gipps).
Given that some models only support longitudinal control, the evalua-
tion focused on the cut-in scenario, where most participants adopted
braking responses (Table 2). In contrast, evasive steering dominated in
rear-end and lane-changing scenarios, which these longitudinal driver
models cannot simulate. Thus, focusing on cut-in enables a valid com-
parison of decision accuracy and collision rate.

(1) Experimental setup and parameter calibration

Experiments were conducted under identical high-risk scenarios as
described previously (Section 5.2), with comparative analyses per-
formed across four initial speed conditions (25.82 m/s, 29.39 m/s,
31.69 m/s, and 33.85 m/s). Parameters for IDM and MOBIL were cali-
brated according to standard values from prior studies (Kesting et al.,
2007; Treiber et al., 2006), while Gipps model parameters were opti-
mized based on safe-distance theory (Gipps, 1981). DDM parameters
were fitted from experimental data via Bayesian optimization (Table 3).
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(b) Rear-end collision scenario

Accident happen
4
= Late decision
@S 3 ~
¢ =
g % __Average threshold
2E
=
= Early decision
1 e

0.5

1.0
Time (s)

(d) Stimulus-respcznse time window

1.5 2.0

Accident
happen

Late decision

Fig. 11. Driver risk response and information accumulation process analysis.

Table 4
Parameters calibration results for the DDM under the cut-in scenario.

Initial speed (m/s) Model Decision accuracy (%) Collision rate (%)
25.82 DDM 95.4 0
MOBIL 79.6 0
IDM/ Gipps 100 0
29.39 DDM 95.9 0
MOBIL 83.1 0
IDM/ Gipps 100 0
31.69 DDM 84.65 0
MOBIL 84.4 2.7
IDM 87.5 1.6
33.85 DDM 87.46 0
MOBIL 86.77 1.4
IDM/ Gipps 90.5 2.1

IDM and Gipps modeled only longitudinal decisions, and MOBIL inte-
grated instantaneous lane-change decisions without cognitive accumu-
lation. The DDM, however, incorporated dynamic information
accumulation reflecting drivers’ cognitive evaluation of risks.

Specifically, IDM adjusts acceleration based solely on spacing and
relative speed without cumulative decision time. Gipps adjusts accel-
eration according to safe distance and acceptable speeds, assuming
instantaneous decisions without information accumulation. MOBIL
evaluates lane-changing decisions by maximizing lane-change benefits
while accounting for safety and dynamic factors, but lacks cumulative
decision time.

(2) Evaluation metrics and results analysis.

Decision accuracy measures the agreement percentage between
model predictions (braking/steering) and observed driver behaviors,
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while collision rate indicates the proportion of simulation runs resulting
in collisions. As shown in Table 4, at lower speeds (25.82 m/s and 29.39
m/s), DDM maintained a consistently high accuracy (>95 %) with zero
collision occurrences, comparable to other models. At higher speeds and
elevated risks (31.69 m/s and 33.85 m/s), despite a slight decrease in
accuracy (84.65 % and 87.46 %, respectively), DDM continued to ach-
ieve zero collisions, significantly outperforming MOBIL (collision rates
of 2.7 % and 1.4 %) and IDM/Gipps (collision rates of 1.6 % and 2.1 %).
IDM and Gipps exhibited perfect accuracy (100 %) at lower speeds while
showing reduced accuracy and increased collision rates at higher speeds
due to their inability to model lane-change decisions.

DDM’s superior collision avoidance performance can be attributed to
its adaptive drift rates and decision boundaries, dynamically adjusted
based on driver risk perception. In contrast, MOBIL and IDM/Gipps rely
on fixed thresholds, limiting their responsiveness and accuracy in
detecting and addressing risks under challenging high-speed conditions.

Experimental results demonstrate that the DDM more accurately
predicts driver decisions in cut-in scenarios, effectively capturing
cognitive processes and dynamic decision-making under high-risk con-
ditions. In contrast, IDM and Gipps, lacking lateral decision-making
modules, ensure only safe braking but cannot generate lane-change
maneuvers. Although MOBIL incorporates lane-changing, it relies
solely on instantaneous safety gaps without modeling drivers’ cognitive
accumulation and biases, resulting in notable deviations from observed
behaviors. By dynamically adjusting thresholds through drift rates and
decision boundaries, the DDM accurately captures driver behavior var-
iations across speeds and risk levels. This finding highlights the impor-
tance of integrating cognitive dynamics into autonomous driving
interaction design to enhance human behavior prediction.
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6. Conclusion

This paper presents a cognition-decision framework that integrates
risk sensitivity modeling and cognitive decision-making to enhance the
understanding of driver behavior in high-risk scenarios. The risk sensi-
tivity model, based on a multivariate Gaussian distribution, quantifies
individual differences in risk cognition, capturing variations in how
drivers perceive and respond to traffic risks. The DDM simulates
decision-making by dynamically adjusting drift rate, boundary param-
eters, and initial bias based on driver-specific risk sensitivity, speed, and
relative distance to other vehicles. Experimental validation in a driving
simulator demonstrates that the proposed framework accurately pre-
dicts driver responses in emergency scenarios involving lateral, longi-
tudinal, and multidimensional risk sources. Comparative analysis with
IDM, Gipps, and MOBIL highlights the advantages of the DDM model in
capturing cognitive decision processes and adaptive driving behaviors,
particularly in scenarios requiring complex risk assessment and rapid
decision-making. The results confirm the model’s superior predictive
accuracy and practical applicability in understanding human driver
behavior, which is essential for improving AV-human interaction. The
findings offer theoretical support for human-centered autonomous
driving, enabling safer and more adaptive AV integration into mixed
traffic.

Our findings demonstrate that the risk-sensitive DDM significantly
improves prediction accuracy (e.g., 95 % in cut-in scenarios) by
dynamically adapting to individual cognitive styles, outperforming
traditional models like IDM and MOBIL. This enhancement supports
personalized AV interaction strategies, including real-time hazard alert
calibration, which may reduce collision rates by 12 % to 15 %. While the
reliance on simulator-based data and the imbalanced participant de-
mographics (e.g., limited female representation) may affect generaliz-
ability. Also, although each high-risk scenario was tested in an
independent block and interleaved with unrelated tasks to reduce
sequence learning, residual order effects related to scenario positioning
may still exist. Interestingly, in the rear-end collision scenario, drivers
more often opted for evasive steering over braking, likely due to the
expressway setting and available open lanes, which encouraged lateral
avoidance rather than abrupt deceleration. Future work could imple-
ment fully randomized or counterbalanced scenario scheduling across
participants to minimize potential anticipation bias. Further, adaptive
scenario triggering based on real-time driver state monitoring (e.g., fa-
tigue, workload) may help isolate behavioral variability more precisely
and improve the interpretation of decision processes. Future efforts will
focus on extending the model to naturalistic datasets and integrating
multimodal inputs, including eye-tracking and LiDAR, to improve
ecological validity and real-world applicability.
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