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Abstract
In recent years, there has been a great deal of stud-
ies about the optimisation of generating adversar-
ial examples for Deep Neural Networks (DNNs)
in a black-box environment. The use of gradient-
based techniques to get the adversarial images in
a minimal amount of input-output correspondence
with the attacked model has been extensively stud-
ied. However, existing studies have not been dis-
cussing the effect of different gradient estimation
techniques coherently. In this paper, a new one-
point residual estimate is compared to the known
two-point estimates. The findings in this paper
show that the one-point residual estimate is not a vi-
able option to decrease the number of queries to the
attacked model. The accuracy of the attacks with
the use of an one-point residual estimate maintains
the same for weaker models. For stronger models,
there is a slight decrease in accuracy at identical
distortion levels. All estimates are tested on dif-
ferent PGD attacks on the MNIST and F-MNIST
datasets using a 3-layer convolutional network.

1 Introduction
As Deep Neural Networks (DNNs) are introduced more and
more in our everyday life, their dangers become of greater
interest. Therefore, it is truly important to foresee what kind
of exposure a DNN has and how to train a DNN to overcome
these pitfalls. In the last couple of years, there has been a
lot of research about a specific exposure called adversarial
attacks, specifically in image classifiers. These adversarial
attacks on a DNN provide an image that seems the same for
the human eye but is misclassified by the DNN as another
class (See Figure 1 as an example). This misclassification can
be either a specific class (targeted attack) or any other class
(untargeted attack). The practical dangers of these adversarial
attacks are already widely discovered. For example, it has
been shown that a stop sign can be misclassified to a yield
sign by a DNN [18] or an image classifier phone application
can be fooled with printed images to be misclassified to other
classes [16].

There are numerous methodologies to find such an adver-
sarial image given that the model is known to the attacker [10;

Figure 1: A L2-PGD attack with ϵ = 2.5 on a Deep Neural Net-
work (DNN) using different estimates. In the top left corner of ev-
ery image is the estimated class by the DNN. The first image is the
correctly classified original image and aside from this picture is an
adversarial image made with the white box version of the L2-PGD
attack. The images on the right of the white-box attack are the adver-
sarial images made with the use of different estimates in a black-box
environment. In Appendix A more examples are shown.

16; 3]. These methods are called white-box methods and
give excellent results. However, in practicality, the model
is most of the time not known to the attacker. Only the in-
put image and the output class probabilities are known to
an attacker. Therefore, the question arises of how an at-
tacker can make an adversarial image without knowing the
model. These so-called black-box methods can be divided
into two approaches. With the first method, it’s possible to
train a substitute model using the input and output of the
attacked model and perform a white-box attack on the sub-
stitute model. The second method, as displayed in Figure
2, is a direct attack on the model by estimating the gradi-
ent and performing gradient descent to decrease the prob-
ability of the correct class. In the first case, the problem
emerges that the accuracy of the attack heavily relies on
the transferability between the substitute model and the at-
tacked model [23]. Therefore, this paper mainly focuses
on the second gradient-based attack method. The ZOO [4],
AutoZOOM [24] and other attack algorithms [12; 2; 13;
21] have gradient-descent methods for adversarial attacks
without knowing the true gradient. However, these methods
require a lot of query-result pairs to the attacked model that
take a substantial amount of time and could raise awareness of
the intruder. Hence, this paper will focus on improving such
an attack by reducing the number of queries while maintain-
ing the same accuracy. Granted that this is true, it shows that
we should caution when to use DNNs and further focus on
how to resolve these attacks.
Recently a new paper came out about determining the gradi-
ent with the use of an one-point residual estimate instead of



Figure 2: A global view of a gradient-based black-box adversarial attack on a Deep Neural Network. The attack algorithm receives an image
that is sent to the gradient estimator. The gradient estimator sends multiple identical images with a small perturbation to the attacked model.
It then receives the class probabilities back and calculates the gradient of every pixel with these probabilities. The estimated gradient is sent
back to the attack algorithm and changes the image according to the gradient. This process is repeated multiple times until a misclassified
adversarial image arises.

the known two-point estimates [26]. This paper showed that
with other comparable problems this new estimate remained
relatively the same accuracy. The one-point residual estimate
uses fewer points to determine the gradient, which might re-
sult in a reduction in the overall number of queries. There-
fore, we will answer the following research question in this
empirical study:

Do one-point residual estimates improve untar-
geted gradient-based adversarial attacks in terms
of reducing the number of queries while maintain-
ing accuracy?

In pursuance of the aforementioned research question, our
contributions can be summarised as follows:

• A brief survey about adversarial attacks and different
kinds of gradient estimators.

• A novel algorithm for gradient-based attacks that uses
an one-point residual estimate instead of a two-point es-
timate.

• A new inside in the performance of the one-point resid-
ual estimate compared to the different two-point esti-
mates.

2 Related Work
2.1 White-box attacks
Gradient-based adversarial attacks fall mostly within the
white-box setting. In this white-box setting, the gradient is di-
rectly calculated through the back-propagation of the model.
The first adversarial attack, called Fast Gradient Sign Method
(FGSM) [10], used the gradient of the image to get a quick
and dirty adversarial image. Not long after that, methods like
the Basic Iterative Method (BIM) [16] and Projected Gradi-
ent Descent (PGD) [17] performed this method in an iterative
way to improve accuracy. Others have used a greedy algo-
rithm that modifies pixels one at a time using the gradient as
a saliency map [20]. The authors of [3] incorporated the dis-
tance between the original and the adversarial image in the
gradient function to minimise the perturbation at the same
time. In this paper, we’ll be using the black-box version of
the PGD attack.

2.2 Black-box attacks
Since a couple of years, gradient-based adversarial attacks
are also possible in a black-box environment. Instead of cal-
culating the gradient directly, it’s possible to estimate the gra-
dient using zeroth order (ZO) methods as used in [4] . In
section 3 further explanation about different ZO methods will
be given. These ZO methods use the difference between the
output of the same image but with a small perturbation to
calculate the gradient. This makes it possible to use gradient-
based attacks in a black-box environment. However, as listed
before, the estimation of the gradient is quite inaccurate and
needs a lot of queries to the attacked model. Therefore oth-
ers have tried to enhance this ZO method through the use of
offline or online optimisations. For example, the authors of
[24] used an AutoEncoder to preprocess the adversarial im-
ages before sending them to the attacked model. In terms of
online optimisation techniques researchers have used the mo-
mentum of gradients to decrease the number of queries [7].
The Adam optimiser [15] is a widely known gradient-based
optimiser that has also been used by multiple articles [4;
24]. Another main contribution to improving query efficiency
is the use of random vector-based estimations instead of a
coordinate-wise estimation [24]. A recent study also used
Natural Gradient descent, which uses an estimation of the
second-order derivative to improve accuracy [27].

2.3 Non-gradient-based attacks
Aside from gradient-based attacks, other attacks are also pos-
sible in the black-box scenario. The use of a genetic al-
gorithm as used in [1] seemed to greatly reduce the num-
ber of queries with relatively good accuracy. Random per-
turbation in different directions in the images is also a non-
gradient-based method that is used by the SimBA attack [11].
Another attack in the black-box area is the use of a substi-
tute model instead of attacking the model directly [18; 19;
23].
None of the related work covers the effect of the use of differ-
ent two-point estimations or the use of an one-point residual
estimate of the gradient. The effect of these methods is tested
on the algorithms of the authors of [17].



Estimate name Formula Mini-batch formula Number of
queries to the

attacked model

Two-point central f(xt+βut)−f(xt−βut)
2β ut

1
b

∑b
j=1

f(xt+βutj)−f(xt−βutj)
2β utj 2Tb

Two-point forward f(xt+βut)−f(xt)
β ut

1
b

∑b
j=1

f(xt+βutj)−f(xt)
β utj Tb+ T

Two-point backward f(xt)−f(xt−βut)
β ut

1
b

∑b
j=1

f(xt)−f(xt−βutj)
β utj Tb+ T

One-point residual f(xt+βut)−f(xt−1+βut−1)
β ut

1
b

∑b
j=1

f(xt+βutj)−f(xt−1+βu(t−1)j)

β utj Tb

Table 1: Different gradient estimates with their corresponding formula, mini-batch formula and their total number of queries to the model
that is being attacked. Here T is total amount of iterations.

3 Methodology
3.1 Notation for Deep Neural Networks
Deep Neural Networks are able to classify images into cer-
tain classes through a network of multiple layers of artificial
neurons. A DNN is trained with numerous image-class pairs
and may be thought of as a function Z(x) = y with input
x ∈ [0, 1]d and y ∈ RC . The model Z is also dependent on
some model parameters θ. In our study, the model is fixed,
thus we don’t indicate the dependency on θ for convenience.
d is in this case the number of pixels in the input image x
and the value between 0 and 1 gives the intensity of the pixel.
For example, a colour image contains 3 dimensions of RGB
colours. Therefore, there are d = width ∗ height ∗ 3 number
of pixels. The last layer, which is called the logits, outputs y
and gives a number to the likeliness of the input belonging to
the C classes. This last layer of a DNN is then normalised and
is the only information given in the black-box environment. It
gives all the probabilities of the known classes which are cal-
culated through the cross-entropy function of the logits and
can be stated as:

Prob(x, c) =
exp([Z(x)]c)∑C
i=1 exp([Z(x)]i)

∈ [0, 1] (1)

Where x is the input image, c is a given class in all class
possibilities C and [Z(x)]c gives the output of the logits for
class c. This function will give the probability of x being
class c between 0 and 1.

3.2 Deep Neural Network attacks
The goal of an adversarial attack is to make the attacked
model misclassify the original image by making an imper-
ceptible change for the human eye in the pixels of the image.
Thereby the attack minimises the change between the origi-
nal picture and the adversarial image. As stated by [22], this
comes down to the following constrained optimisation prob-
lem:

f(x) = min(Prob(x, c0))

w.r.t.||xadv − x0||Lp

(2)

c0 is the original class of the image that should be misclas-
sified. Thus, by minimising the chance of c0, other classes
will be the most probable outcome and the adversarial image

xadv will be wrongly classified. x0 is the original image and
is compared to xadv to measure the difference between the
two images. Lp is the distance metric and can be calculated
in multiple ways:

1. L0 distance measures the number of pixels that have
been altered in the image and can be written as:∑d

i x
i
adv ̸= xi

0 for all pixels i ∈ d. This value will
be minimal if only a few pixels are changed. However,
these pixels can be changed by a lot and still receive a
low L0 distance

2. L1 is the Manhatten distance and it measures the abso-
lute distance between two points. This value stays small
if a lot of pixels are changed a little bit and can be written
as:

∑d
i |xi

adv − xi
0| for all pixels i ∈ d.

3. L2 is the Euclidean distance measure and is also known
as the root-mean-square. It measures the squared dis-
tance between the adversarial image and the original im-
age. This value also stays small if a lot of pixels are
changed a little.

4. L∞ measures the maximum distance of all pixels be-
tween the original and adversarial image. This means
all pixels can be changed a slight bit, but there can be no
outliers.

All types of Lp measurements have an effect on the amount
of distortion in the image. Many of these measurements try
to give a number to the human perceptual similarity between
two images. These metrics all have a different effect on for-
mula 2 and therefore give a different adversarial image when
applied. We will use the L2 and L∞ distance measures since
these are the most widely used distance measures for adver-
sarial attacks and also have been used in the articles about the
adversarial attack method we use.

3.3 White-box gradient-based attacks
Most adversarial attacks are based on formula 2. A spe-
cific domain of adversarial attacks is the gradient-based at-
tack. They calculate with backward propagation the gradient
of the loss function and use it with gradient-descent to min-
imise formula 1 as formula 2. FGSM was the first method
to use the sign of the gradient to get an adversarial image
[10]. After that came the iterative versions of FGSM, called



BIM [16] and PGD [17]. The last method is the most effi-
cient of the three and suffices to perform in a black-box en-
vironment. PGD uses the gradient of the image to perform
gradient-descent iteratively and can be stated as:

xt+1 = proj(xt + α ∗ sign(∇f(xt)))

w.r.t.||xt+1 − x0||Lp
≤ ϵ

(3)

∇f(xt) is the gradient vector of the current image xt. The
sign function is then taken from this gradient and is multi-
plied by a learning rate α. This vector is then added to the
image to become xt+1. All pixels in the image change by a
certain amount α in each iteration. However, the pixels must
stay within their [0,1] bound and therefore it’s projected to
keep within these bounds. The Lp distance between the orig-
inal and the distorted image xt+1 can never be bigger than
ϵ. This process is repeated t times. After t iterations it is
not guaranteed that the image will be misclassified by the at-
tacked model.

Although there are other efficient gradient-based tech-
niques in the field, we will mainly focus on gradient esti-
mation with the PGD approach and let other techniques be
covered in later research.

3.4 Gradient estimations in a black-box scenario
To calculate the gradient of the PGD attack in a black-box
environment an estimation needs to be made. These estima-
tions of the gradient are called zeroth-order (ZO) methods.
The first efficient ZO adversarial generator was the ZOO at-
tack and it uses the central finite difference estimation of the
gradient [4]:

∇̃f(xt) =
f(xt + hei)− f(x− hei)

2h
(4)

Here ei is a null-vector of length d with on the ith place
an one. h is a small constant and i is determined stochasti-
cally. In this way, the gradient is determined by a single pixel.
However, a single pixel change has little influence and there-
fore this procedure must be repeated an inefficient amount of
times. The NES-PGD attack introduced another method [12].
This attack uses the natural evolutionary strategy as an esti-
mation with the combination of a projected gradient-descent.
It uses a central difference of a random vector base.

∇̃f(xt) =
f(xt + βut)− f(xt − βut)

2β
ut (5)

Here u is a unit-length vector that is uniformly drawn at ran-
dom from a unit Euclidean sphere and β > 0 is a smoothing
parameter. In this way, all pixels in the image are slightly
changed and the gradient of all pixels is determined at the
same time. The authors of AutoZOOM [24] suggested a for-
ward difference estimate instead of the central difference to
increase query efficiency and can be written as:

∇̃f(x) =
f(xt + βut)− f(xt)

β
ut (6)

To reduce variance, both AutoZOOM and NES-PGD use a
mini-batch version which takes b samples and takes the aver-
age of all current gradients. It can be written as:

g̃(xt) =
1

b

b∑
j=1

∇̃f(xtj) (7)

While the mini-batch version of formula 5 needs 2∗ b queries
to the attacked model to get a single gradient approximation,
the mini-batch version of formula 6 needs to query b + 1
times. b times for all f(xt+βutj) and one time for the f(xt)
query. Since the variance is too big in a non-mini-batch way,
we will focus from hereon solely on the mini-batch versions
of all formulas written as formula 7.

While the finite difference formula 4 is known to be too in-
efficient [4], the difference in terms of accuracy and number
of queries between the forward, central and backward dif-
ference is yet to be discovered for adversarial gradient-based
attacks.

3.5 Proposed one-point residual estimate
In this part, we propose the use of an one-point residual esti-
mate from the authors of [26] instead of the various two-point
estimates. The one-point residual estimate uses the difference
between the perturbed estimation of the last iteration t−1 and
the current iteration t as listed in formula 8.

∇̃f(xt) =
f(xt + βut)− f(xt−1 + βut−1)

β
ut (8)

This version only uses one query to the attacked model per
gradient estimation and b queries for the mini-batch version.
Compared to the two-point central estimate, it would reduce
the queries by half. For the two-point forward and backward
difference, it reduces the number of queries by 1

b . However,
it should be noted that the image between t and t − 1 is
altered and the random vector distribution is also different.
This can result in an inaccurate calculation of the gradient
and thus lead to more variance. Therefore, we will compare
the mini-batch version of formula 8 with the other mini-batch
estimates stated in Table 1 in an empirical way and see if the
one-point residual estimate can make a positive impact in
terms of queries or accuracy.

Figure 3: Different use of β at L∞-PGD attack with ϵ=0.3 and a
learning rate α of 0.025. The number of steps and the number of
samples taken per gradient estimation are both 50. The two-point
backward estimation is dismissed from this graph as it’s highly sim-
ilar to the two-point forward estimate.



4 Experimental Setup and Results
4.1 Hyperparameters
The different estimations as listed in Table 1 are tested in a
mini-batch way. The number of samples drawn for each gra-
dient estimation is 50 and the number of steps the L∞- and
L2-PGD attack are 50 and 100, respectively. The learning
rate is different per distance measure as listed in Appendix
B in Table 3. These hyperparameters are mainly taken from
the authors of the PGD [17] and NES-PGD [12] attacks, who
have argued the reason for these parameters. During our re-
search, we’ve noticed that the one-point residual estimate is
heavenly dependent on the β in formula 8. Therefore we’ve
taken a look at the optimal β in terms of accuracy for one-
point residual estimates and two-point forward and central
estimates in Figure 3. We’ve tested the optimal β for both
L∞- and L2-PGD attacks and received similar results as is
visible in Appendix C. Since β does not affect the perfor-
mance of the two-point estimate and the one-point accuracy
does not increase after 1.5, we have concluded the optimal to
be β = 1.5.

4.2 Setup
The L∞- and L2-PGD attack are tested both on 500 randomly
selected MNIST [6] and Fashion-MNIST (F-MNIST) [25]
images and the attacked model is a 3-layer convolutional net-
work with 99.55% and 90.50% accuracy respectively for each
dataset1. The average is then taken of three runs to reduce the
randomness. The MNIST and F-MNIST dataset both have
the same image format. However, the MNIST images are less
complex than the F-MNIST images, and thus the used model
has a higher prediction accuracy. In that way, we can see if the
accuracy of the attacked model has any effect on the accuracy
of the attack. The one-point residual estimate is compared to
the white-box version and the two-point forward, backward
and central estimates versions of the different PGD-attacks.

4.3 Evaluation metrics
Accuracy:The different estimates are tested on three metrics.
The first metric is the accuracy of the attack. This is the num-
ber of correctly misclassified adversarial images divided by
the total number of images.

Average queries until success: Another metric used, is the
average number of queries until a successful adversarial im-
age is created. At every PGD step, it checks if the attack
has created a misclassified image and adds the number of
queries to the total if it’s not misclassified. The total number
of queries is then divided by the number of images at the end.
The average number of queries until success is only measured
from a higher attack accuracy than 90%. As the total amount
of tests is 500 images, an accuracy lower than 90% will result
in few successful attacks and thus an inaccurate average of
queries until success. To get a broad view of the effect of the
estimates, the attacks are tested on multiple maximum dis-
tortion levels called epsilons. The specific points and further
details about the parameters are listed in Appendix B.

1https://github.com/Joost-Jansen/PGD attack estimators

(a) L∞-PGD attack on MNIST

(b) L2-PGD attack on MNIST

Figure 4: Results of L∞ and L2 PGD attacks on a 3-layer convolu-
tional model with MNIST dataset. On the left y-axis is the accuracy
of the attack and on the right dashed axis is the average number of
queries until a successful adversarial image is made. The x-axis dis-
plays the amount of distortion the adversarial image contains.

Null hypothesis: One of the key question is if the one-point
residual estimate will maintain the same accuracy. Therefore
we’ve proposed the following hypothesis:

H0 : popr == pest

H1 : popr < pest
(9)

Here p is the accuracy of the estimate, opr is the one-point
residual estimate and est is a different estimate. For this one-
tailed test, we’ll be testing the hypothesis with a 95% confi-
dence level. Which results in a critical region of z95% = 1.65.
Therefore the H0 hypothesis will be rejected if the test-
statistic z is |z| > z95%. This means that the one-point resid-
ual estimate does not have statistically the same accuracy. z



can be calculated in the following way:

z =
popr − pest√

popr(1−popr)+pest(1−pest)
n

(10)

Here n is the number of samples tested. We’ll be testing the
H0 hypothesis for ϵ∞ = 0.25 and ϵ2 = 2.5 as at these points
the average accuracy gap between the one-point residual esti-
mate and other estimates is at its maximum.

(a) L∞-PGD attack on F-MNIST

(b) L2-PGD attack on F-MNIST

Figure 5: Results of L∞ and L2 PGD attacks on a 3-layer convo-
lutional model with the F-MNIST dataset. On the left y-axis is the
accuracy of the attack and on the right dashed axis is the average
number of queries until a successful adversarial image is made. The
x-axis displays the amount of distortion the adversarial image con-
tains.

4.4 Results
Our findings on the accuracy and the average number of
queries until success of PGD-attacks with different estimates
are listed in Figure 4 and 5. A more accurate inside in the

results of the estimates at ϵ∞ = 0.25 and ϵ2 = 2.5 are visible
in Table 2.

Maintaining accuracy: The white-box estimate is the opti-
mal accuracy for each PGD-attack. It can be pointed out that
the one-point residual estimate has a slightly lower accuracy
than the other estimates for the MNIST dataset, but performs
relatively the same for the F-MNIST dataset. For the spe-
cific points ϵ∞ = 0.25 and ϵ2 = 2.5 the H0 hypothesis is
rejected for the MNIST dataset. However, it is not rejected
for the F-MNIST dataset compared to the two-point forward
and backward estimates. A reason for maintaining the same
attack accuracy could be that the attacked model has a lower
prediction accuracy for the F-MNIST dataset in general. In
turn, this would mean the attack algorithm needs a less accu-
rate gradient estimator as it can fool the attacked model more
easily.

Fewer queries: The average amount of queries until a suc-
cessful attack is noticeably lower than the two-point central
estimate. However, the two-point backward and forward esti-
mates have a lower query average than the one-point residual
for all tests. This outcome can be deduced by the lower pre-
cision of estimating the gradient with the one-point residual
estimate. Although the one-point residual estimate uses fewer
queries per iteration, the poor precision results in the need for
more iterations to achieve an adversarial image. Therefore,
the average queries of the one-point residual estimate lie con-
siderably higher than for the two-point forward and backward
estimate.

5 Discussion

The results shown in section 4 are limited in some aspects.
In terms of model, datasets and kind of attack, the estimates
could behave differently. Due to the limited computational
power and time, all attacks are only tested on one model. The
estimates could have a different effect on other models. The
same accounts for different datasets.

5.1 Simple datasets:

Currently, we are only testing our attacks on the MNIST
and F-MNIST datasets, which are relatively simple low-
dimensional datasets. Recent research has discovered that
adversarial vulnerability is more likely to be caused by high-
dimensional data [8; 9; 14]. Therefore, testing different es-
timates on more complex datasets could result in closing the
accuracy gap between the two-point and one-point residual
estimates. The two-point central estimate is tested against a
more high-dimensional dataset called Imagenet in [12] and
produces a fairly good outcome. It could therefore be dis-
cussed if one-point residual estimates produce the same out-
come for the Imagenet dataset. The pictures from Imagenet
have far more pixels and are RGB coloured instead of a single
grayscale. This could influence the need for accurate gradi-
ents. As more pixels could be changed, the model will rely
less on specific pixels and therefore could decrease the need
for accurate estimations.



Attack Estimate MNIST F-MNIST
Average queries

until success Accuracy H0

rejection
Average queries

until success Accuracy H0

rejection

L∞-PGD white-box - 99.9% True - 100% True

L∞-PGD two-point
central 2170 89.1% True 789 99.1% True

L∞-PGD two-point
forward 1150 87.5% True 479 98.2% False

L∞-PGD two-point
backward 1150 87.8% True 475 99.9% False

L∞-PGD one-point
residual 1500 76.0% - 543 96.2% -

L2-PGD white-box - 96.7% True - 99.9% True

L2-PGD two-point
central 5670 86.4% True 2630 96.7% True

L2-PGD two-point
forward 3030 83.9% True 1530 93.7% False

L2-PGD two-point
backward 3010 84.6% True 1580 93.4% False

L2-PGD one-point
residual 3680 72.3% - 1520 91.9% -

Table 2: Results for different PGD attacks at ϵ∞ = 0.25 and ϵ2 = 2.5. The average queries until success display the mean number of queries
until a valid adversarial image is made. The H0 hypothesis is rejected (True) when there is a significant difference between the accuracy of
the one-point residual estimate and the estimate of that current row. The hyperparameters of all attacks are listed in section 4.1

5.2 Single attack algorithm:
The effect of an one-point residual estimate could further be
worse or better with the use of other attacks such as ZOO
[4] or AutoZOOM [24]. These attacks use other offline and
online optimisation techniques that could influence the need
for accurate gradient estimations. They also use a different
function to calculate the gradient.

5.3 Distribution and hyperparameters:
For all our estimators we’ve chosen to use the uniform dis-
tribution to add noise to the picture and thereby follow the
article of the NES-PGD attack [12]. Other distributions, such
as the Gaussian distribution, could have an influence on the
performance. On top of that, finding optimal values for the
hyperparameters other than the most influential β could im-
prove the accuracy. Then again, due to insufficient computa-
tional power, this research was limited to finding one optimal
hyperparameter.

Although there are some limitations in different scenarios,
the current results are in line with some of the work of [26].
Here the one-point residual estimate performs slightly worse
than the two-point version.

6 Conclusions and Future Work
6.1 Conclusion
With the results in mind of Figure 4, Figure 5 and Table 2, we
can answer the question of one-point residual estimates im-
proving query efficiency while maintaining accuracy. With
the use of the MNIST dataset, the accuracy of the two-point

estimates outperforms the one-point residual estimate in all
cases significantly. However, the one-point residual estimate
compared to the two-point forward and backward estimate
maintains statistically the same accuracy with the use of the
F-MNIST dataset. This can be deduced to the attacked model
having a lower accuracy on the F-MNIST dataset. In terms
of the number of queries used, the one-point residual esti-
mate outperforms the two-point central estimate. Despite the
fact that it uses fewer queries per iteration, it performs worse
compared to the two-point forward and backward estimate.
Therefore, we can conclude that one-point residual estimates
perform worse in accuracy and number of queries when used
on high-accuracy models. For a model with a lower accuracy
rate, the one-point residual estimate can perform attacks with
relatively the same accuracy. However, it does have a worse
average number of queries until success. Since DNNs are
constantly being improved and high accuracy models are the
norm today, the use of one-point residual estimates will not
be of any use. Be that as it may, it shows that the two-point
forward and backward estimates remain favourite as gradient
estimators for black-box gradient-based adversarial attacks.

6.2 Future work
Although these empirical results implicate the use of one-
point residual estimates will not be significant, further re-
search should be done on the theoretical side of the imple-
mentation of adversarial attacks with one-point residual es-
timates. A theoretical-proven optimal for β could improve
the efficiency to have the same accuracy as two-points esti-
mates. Aside from the empirical view, this research was lim-



ited to PGD attacks and further research could also be done
on other attacks with more complex datasets and models. Fur-
thermore, a grid search could be used to find all optimal hy-
perparameters. At last, more research could be done on the
use of different distributions with the one-point residual esti-
mator.

7 Ethics of adversarial attacks
The effect of studying and improving adversarial attacks is
a controversial topic. Emphasising this subject can lead to
more attention and thereby lead to the use of such algorithms
for misconduct. However, it can also lead to better protec-
tion as users of such DNN can improve their algorithms with
adversarial training. A concept called Ethical Adversarial At-
tacks (EAA) can help mitigate this problem. The authors of
[5] proposed the EAA concept, which is the proposition to
debate and recognise ethical adversarial machine learning. In
turn, this would be used to halt, deceive, or effectively at-
tack adversarial algorithms built for harmful goals and dam-
aging society. Such tools and procedures should be developed
alongside suitable legal and ethical frameworks. With this
kind of framework, attacks could be prevented and rightfully
persecuted when occurred. This paper would like to make a
contribution to these ethical aspects by adding a new inside in
gradient-based black-box adversarial attack and thereby ex-
panding the knowledge about adversarial attacks.
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A Image Examples

(a) L∞-PGD attack with MNIST dataset (b) L2-PGD attack with MNIST dataset

(c) L∞-PGD attack with F-MNIST dataset (d) L2-PGD attack with F-MNIST dataset

Figure 6: L∞- and L2-PGD attack with ϵ∞ = 0.25 and ϵ2 = 2.5 on a 3-layer convolutional network with MNIST and F-MNIST dataset.
OG is the correctly classified original image and WB is an adversarial image made by the white-box version of the L2-PGD attack. TPC,
TPF, and TPB are the black-box attacks with two-point central, forward and backward estimates respectively. OPR is the attack using the
one-point residual estimate.



B Setup details

Model
Model 3-layer convolutional network with max pooling (2,2) and 2 fully con-

nected layers
Activation function ReLu
Datasets MNIST (99.55% accuracy), F-MNIST (90.05% accuracy)
Number of test images 500

L∞ PGD parameters
Number of PGD steps 50 [12]
ϵ tested [0.003, 0.005, 0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1.0]
α 0.025 [12]

L2 PGD parameters
Number of PGD steps 100 [17]
ϵ tested [0.05, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0]
α 2.5∗ϵ

100
[17]
Estimate parameters

Estimates ’white-box’, ’one-point-residual’, ’two-point-forward’, ’two-point-
backward’, ’two-point-central’

Number of samples 50 [12]
Optimal β 1.5

Table 3: Hyperparameters used to get results.

C Hyperparameter tuning

(a) L∞-PGD attack (b) L2-PGD attack

Figure 7: Different use of β at L∞- and L2-PGD attack with ϵ∞=0.3, ϵ2=3 and a learning rate α of 0.025 and 0.0075 respectively. The
number of steps and the number of samples taken per gradient estimation are both 50. We’ve dismissed the two-point backward estimation
from this graph as it’s highly similar to the two-point forward estimate.
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