
Real-Time Chromostereopsis for Arbitrary Three-Dimensional Scenes

Vladislav Gaidoukevitch
Supervisor(s): Petr Kellnhofer, Elmar Eisemann

EEMCS, Delft University of Technology, The Netherlands
24-6-2022

A Dissertation Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering



Abstract
Chromostereopsis is a visual illusion that can produce per-

ceived 3D images through an effect caused by how humans
see different wavelengths. ChromaDepth® glasses may be
worn to exploit this phenomenon and amplify the effect. Rel-
ative to other forms of stereoscopy, chromostereoscopy is
lesser-known and has seen fewer applications. This paper
seeks to address this, by investigating possible solutions to
augment any arbitrary 3D scenes for chromostereopsis. We
present techniques to apply the effect in real-time to 3D
scenes, while maintaining the scene’s original shading, light-
ing, and optionally some degree of original colour. Addi-
tionally, we propose concepts for interfaces that allow user
adjustment to applying the effect in areas where user studies
have shown variance in preferences. These range from curves
that determine varying depth precision, to creating custom
chromostereoscopic colour maps, and modifying the speed at
which the depth-colour mapping changes, for those sensitive
to stereopsis.

1 Introduction
Nowadays, there are a number of methods to achieve a gen-
erated stereoscopic vision, to better visualise the third dimen-
sion for any variety of purposes, on two-dimensional sur-
faces. Whether anaglyph 3D, polarised 3D, or CrystalEyes™
3D [6], multiple options already exist to achieve this effect;
each with their own benefits, costs and limitations. One
of such options that is perhaps lesser-known, is using chro-
mostereopsis to achieve 3D. This is an observed illusion in
human vision whereby different wavelengths of light present
themselves at different depths to the viewer [8]. The com-
pany Chromatek has developed their ChromaDepth® glasses
to further enhance this effect with prismatic lenses [2]. Figure
1 demonstrates this effect.

Figure 1: A demonstration of chromostereopsis with and without
ChromaDepth® glasses.

Besides chromostereopsis, all other mentioned forms of
achieving digital stereopsis have seen popular application in
real-time 3D through, for example, injection into 3D games,
retrofitting them with stereoscopic vision by major hardware
vendors [9]. Existing research on chromostereopsis has ex-
plored some means of displaying this effect in real-time 3D

scenes [2; 16; 4]. However, this paper aims to investigate fur-
ther into what aspects would be necessary, interesting, and
possibly of use in the arbitrary conversion of real-time 3D
scenes to support this visual phenomenon. Potentially, this
will provide real-time 3D graphics with insight into allowing
a new method of presenting general stereopsis. More pre-
cisely, this research aims to answer the question: “What are
effective ways to display chromostereoscopic depth in real-
time 3D scenes?”

In this paper we propose a system to augment 3D scenes
with functional chromostereopsis. This is done in a gener-
alised manner, allowing for the augmenting of potentially ar-
bitrary 3D scenes, with a focus on preserving the original ap-
pearance. This paper describes several techniques to create
and assist with chromostereopsis, along with suggesting ad-
justable parameters for broader flexibility where necessary.
A small user study was conducted to evaluate the efficacy of
each technique and variation in user preferences for them.

2 Related Work
The study of chromostereoscopy began its roots with the first
observation of chromostereopsis’ effects in 1885 [8]. Since
then, the effect has seen use in a variety of applications, such
as topography [20], medicine[17], art [13], and paleontol-
ogy [3].

In real-time 3D visualisations, there has been im-
plementations of chromostereoscopy in Bailey’s [2] and
Schemali’s [16] work. Bailey’s work outlines the basis for
generating a chromostereoscopic effect performantly with
OpenGL. Schemali’s work appended this knowledge with im-
proved rendering for trichromatic displays, as well as explor-
ing some depth techniques to enhance stereo perception.

Our implementation of real-time chromostereopsis aims to
differ from the previous approaches in a few ways. Bailey [2]
noted that the programmer must “place the near and far clip-
ping planes very tightly around the scene” in order to optimise
the depth-colour mapping, as otherwise the depth mapping
may only use a small range of the total colour map and be
inefficient. This is curation that cannot be applied to arbitrary
3D scenes, so our approach alleviates this by developing a
generalised shader that maximises the depth mapping for any
given image.

In Schemali’s research [16], they observe the positive ef-
fects that Lambertian shading with “standard lighting from
the right/left upper quadrant with respect to the view” pro-
vide to the image, giving additional detail and depth per-
ception. We attempt to improve upon this idea by al-
lowing arbitrary shading techniques to be combined with
a chromostereoscopic depth-colour mapping. Specifically
for our testing, we choose for the more modern physically-
based rendering/shading (PBR) [14] approach, which has
seen widespread adoption in recent years, and could there-
fore be a good candidate for testing arbitrary shading mod-
els in 3D scenes. Furthermore, its use of additional maps
for roughness, normals, and added lighting detail through
shadows, specular highlights, and spherical harmonics may
all contribute to more detail that may assist with depth per-
ception. Figure 2 demonstrates an example of this form of



real-time rendering with the scene used for this paper [12;
10]. Additionally, we aim to retain the original lighting posi-
tion(s), out of an interest to preserve the original appearance
of the scene.

Figure 2: A 3D scene rendered with modern PBR shaders and light-
ing; a common standard in current real-time graphics. This is the
testing environment used for this paper.

Toutin and other researchers after him have also noted the
use of linear mapping of depth to colour across the scene [2;
16; 20]. However, perceptually, a viewer typically guides
more of their attention towards objects closer to themselves,
and real-time computer graphics reflect this in how depth pre-
cision is typically calculated with an inverse relation to dis-
tance from the camera [15]. For this reason, we also investi-
gate options for customisation of how colours are mapped to
the depth of the image.

In motion, stereoscopic depth has some history in its abil-
ity to cause nausea and other unpleasant feelings due to con-
fusing the human senses and our perception of depth [7;
11]. Our implementation of depth motion smoothing was cre-
ated to try alleviate some of these.

3 Setup and Results
The setup for the application used in this research consists
of first mapping the scene’s depth to a chromostereoscopic
colour map, in section 3.1, followed by adding additional
lighting and shading details in section 3.2. Options for alter-
ing the scene’s depth precision are then examined in section
3.3, followed by exploring ways to minimise unpleasant, sud-
den depth changes in section 3.4. Finally, in section 3.5 we
add two interfaces to create custom colour maps in the pro-
gram, and custom depth precision maps based on user-drawn
curves.

This setup will assume an existing 3D scene with all ob-
jects, lighting and materials in place. The scene used for
this setup is lit by static, precomputed global illumination
with spherical harmonics. Multiple reflection probes are also
present, although light probes are not, as the scene contains
no dynamic geometry. A global post-processing is applied to
the image for (softer) tone mapping and auto exposure in the
scene.

To first create a chromostereoscopic image, the depth of a
scene must be mapped to colours. The nearest objects are
coloured with longer wavelengths and further objects with

shorter wavelengths. This depth-colour mapping forms the
basis for chromostereopsis.

3.1 Depth-Colour Mapping

Figure 3: A depth map next to two depth-colour mappings.

The basic form of depth-colour mapping is the foundation of
this implementation. A linear depth buffer/texture is obtained
(linear from the near to far clipping planes, as generally is per-
formed in 3D chromostereoscopy [2; 16; 20]). This is com-
bined with a colour map, such as an HSV range from red to
blue where each pixel p samples the colour map, and returns
the position of the depth texture’s intensity for that pixel. In
other words,

p = tex(mc, d)

where tex is a function that takes as input a colour map,
mc, and a depth value in [0, 1] to sample the texture’s UV
position, d. This produces a simple chromostereoscopic im-
age that “colours in” a depth texture. Given that the function
takes in an arbitrary texture as input, it is trivial to substitute
the colour map for another, assuming only that its UV map-
ping is bound by range [0, 1], and the gradient(s) occur in
a uniform direction. Figure 3 demonstrates two valid colour
maps, one using MATLAB’s Jet colour map [18], and the
other using Schemali’s trichromatic mapping [16].

From a simple depth-colour mapping with a linear depth
buffer, an issue is presented that the full colour map may
not be utilised if the minimum and maximum ranges of the
depth are bound by the clipping planes. More usefully, max-
imising the depth range would be preferable if bound to the
minimum and maximum depth of what is immediately visible
on-screen. The minimum and maximum are possible to ob-
tain through a linear search of all pixels per frame, but this is
quite slow for a real-time application (approximately 180ms
per frame at a 1024x1024 resolution). Alternatively (and with
a 35x speedup in our testing scene), this is achievable through
generation of mipmaps [23]. The idea is to create two cus-
tom mip chains, one where each mip level’s pixels are the
maximum of their local neighbours, and the other where the
pixels are the minimum. After the full mip chain is gener-
ated, the highest level (a single 1x1 pixel texture) will present
the respective furthest and nearest point visible. With these
known, the depth texture’s bounds can be remapped from a [0,
1] range to instead use the known minimum and maximum,
using an inverse linear interpolation given by the equation

InvLerp =
(x−min)

(max−min)



which, for an input x will remap to a range from min to
max. This then allows the full use of the colour map to be
visible across each frame, without adjusting clipping bound-
aries.

3.2 Shading

Figure 4: A 3D scene with greyscale shading displayed together with
a depth-colour mapping. In (c), some of the scene’s original colours
are also reintroduced.

With a depth-colour mapping alone, a lot of a 3D scene’s de-
tails may disappear, as texture detail among other factors are
not included in a depth texture. It is possible to reintroduce
these details by converting the original image to greyscale,
and merging its output with the depth-colour result achieved
previously. First, in converting the image to greyscale, for
each pixel p we use the equation

p = 0.2989 ·R+ 0.5870 ·G+ 0.1140 ·B

where R, G, and B are the red, green, and blue channels re-
spectively. This equation is the NTSC standard for converting
colour to black and white[19], based on human perception of
colour. With this, we can add the greyscale image together
with the depth-colour image by multiplying the two together.

It is possible to reintroduce the scene’s original colours
(partially) as well. Using the depth-colour output with
greyscale shading applied, we can merge it together with the
original colour image based on a scaling factor of choice,
such that

p = c · f + s · (1− f)

where c is the scene’s original colour output, s is the depth-
colour shaded output, and f is a blending factor in [0, 1] that
determines how much of the original colour to reintroduce to
the image. This approach does not provide a guaranteed blend
factor that will work for every scene, so this is a modifiable
parameter that should be evaluated per scene, and the colours
the scene has in relation to the colour map, if used. Figure 4
demonstrates an example of this with an f of 0.4 (40% of the
scene’s original colours blended in).

3.3 Depth Precision

Figure 5: Depth precision in the colour mapping using (a) an inverse
1/z relation, (b) linear precision, (c) an average of the two.

With colours assigned to depth values in a scene, it is clear
there are only finite points on a colour map to assign depth
to. Alternative depth mapping techniques may provide more
depth detail in areas that have more use for it. The first real-
time implementation of chromostereopsis [2] states the use
of a linear depth mapping, without a particular motivation for
it. Toutin [20] elaborates by correlating the familiarity of lin-
ear depth with “taking advantage of the viewer’s conceptual
knowledge of the perspective phenomena.” This is certainly
useful in some applications, such as visualising geological
features and topographic maps. However, when viewing a
scene frontally from a virtual camera’s perspective, this is not
necessarily the case. People generally pay more attention to
objects closer to them, and real-time computer graphics re-
flect this in how depth precision is typically calculated with
an inverse relation to distance from the camera [15]. Leverag-
ing this concept, we may want to use more of the depth-colour
map for objects closer as well, to enhance the perception of
depth there. We implement this along with a scalable factor
f between the inverse and linear depth, similar to its imple-
mentation in the coloured shading. An inverse depth buffer
is provided to us with the Unity engine, but its equation is
performed as

d = a · 1
z
+ b

where d is depth (stored as a [0, 1] value), z is world-space
depth, and a and b are the near and far plane’s distances to the
camera. Figure 5 illustrates how different methods of preci-
sion affect the depth-colour mapping.

3.4 Depth Motion Smoothing
During camera motion, the colours created by the depth-
colour map may sometimes change rapidly as an effect of the
adjusting minimum and maximum depth of the view. This ef-
fect may potentially be intense for some users, so we provide
a method to slow down the adjustment of these changes. Per
rendered frame, we store the minimum and maximum depth
of the previous frame. With this, we may perform the equa-
tion

minx = mino · f +minx · (1− f)



where mino is the recorded minimum distance from the
previous frame, and f is a parameter in [0, 1] that determines
how much the depth is adjusted per update/frame. With each
update, the new minimum will gradually converge into the
“true” minimum, until it is changed again. The same equation
can be performed for the maximum depth, with the appropri-
ate parameters exchanged. The result of this calculation is
then forwarded to the shader which will use these values as
its input for minimum and maximum, rather than the “true”
minimum and maximum.

3.5 Additional Tools
To step beyond linear or inverse depth precision, there may
be scenarios where a more complex precision scale may be
necessary. To support a larger range of mappings for this, we
have added the support for the user defining their own preci-
sion function using Bézier curves. In an interactive interface,
the user may define a curve by hand or select presets, and ob-
serve the scene adjust the depth-colour mapping in real-time,
as the adjustments are made. In order to make this operation
performant, the curve is evaluated to a 1-dimensional gradi-
ent texture that is generated and sent to the shader during ev-
ery adjustment. This texture is created by dividing the curve
into 512 points along the X axis, and evaluating each into a
greyscale value that remaps the [0, 1] range of the curve to [0,
255] for colour. In Figure 6, we demonstrate an exaggerated
example with a custom curve function that places all empha-
sis on the bunny in the scene. The depth effect is greatly fo-
cused on the subject. Areas of the curve outside of the range
are clamped within bounds.

Figure 6: A custom depth precision curve (b), designed to emphasize
the subject in scene (a).

Another feature added was a tool for the user to gener-
ate their own colour maps within the program. This would
save the user relying on an external tool for the creation of
these maps and enable customising colours, perhaps in an
application-specific manner, where a colour map may be de-
signed to interfere less with the scene’s original colours. A
demonstration of the interface is provided in Figure 7, which
consists primarily of Unity’s Gradient API. Upon opening the
option to create a gradient, the user is presented with an edi-
tor that previews existing presets, and allows the user to create
and save new ones. By selecting anywhere along the gradi-
ent, they can place and move anchor points that hold a colour

of choice. Any amount of anchors can be placed, and colours
will be blended between them. Alternatively, the mode above
can be changed from “Blend” to “Fixed” to disable any colour
blending between anchors. Selecting “Save Gradient” will
save the gradient as an image file that can be slotted into the
shader’s colour map slot. An overview of all of the features
can be viewed in video as well [22].

Figure 7: A custom colour map defined in the interface on the right
and displayed in the scene.

4 Responsible Research
The research conducted in this paper evaluates methods of
using a proprietary form of stereoscopic vision. Through this
research, some conclusions are drawn about this technology
that are subjective, but the conducting of the research expands
the global knowledge of Chromatek’s ChromaDepth® sys-
tem. This paper was not sponsored, incentivised, or in any
way guided by Chromatek, and was conducted out of own in-
terest in the subject matter. As such, we believe our findings
and conclusions are ethically sound for this research.

Similarly, we find a personal interest in the overall research
field of stereoscopy, and this has been a partial motivation to
create this paper. Stereoscopy itself is a very old concept that
the world has used for a very broad variety of purposes since
its inception, and we do not believe the technology alone can
be perceived as unethical.

The Unity® game engine developed by Unity Technolo-
gies [21] and used for the creation of the program described
in this paper, was chosen primarily out of familiarity with
the engine from past experiences and the efficiency it would
provide for this project. It is a free engine to use non-
commercially, and much of its original code has been pub-
lished openly. Furthermore, it is widely-used in the real-time
rendering industry, and as such, there is value in conducting
research on it that may find use in this field. These were our
factors that we considered when we chose to use it for this re-
search. Our program currently requires the use of this engine
to run, but all aspects of our application can be translated to
other software.

The test scene for this paper, Sponza Atrium [12], is a pop-
ular choice for all manner of graphics research due to its aca-
demic license permitting the use of such. The specific itera-
tion we chose additionally contains updated, modern render-
ing features, such as the appropriate texture maps for PBR

https://youtu.be/ZADyPtfKbVE


rendering, and a level of detail that matches contemporary
3D environments. By using an environment that is commonly
used for similar research, comparisons between other articles
should hopefully be easier to do as well. The environment
shaders in the scene, Filamented [10], were chosen out of
compatibility with the scene and rendering engine, and pro-
vide newer features than the standard shaders from Unity.

We have done our best to include any specific implementa-
tion details that we believe would otherwise change the out-
come of this research, and the rest is explained broadly in ter-
minology that should allow software-agnostic rewriting else-
where. Some aspects of the implementation were omitted for
conciseness, where deemed irrelevant to the topic and imple-
mentation.

5 Evaluation
A small user study was conducted on six people to evalu-
ate the efficacy of the techniques developed. These were
conducted in various locations with differing lighting condi-
tions, but all on a Surface Pro 6 laptop, with ChromaDepth®
glasses. Before any evaluation of features, the users were first
asked if they were able to perceive depth with the glasses on.
All stated they were able to, except one which was only un-
able to with shading disabled. This was important to ask prior
to further questions, to ascertain that they were susceptible to
chromostereopsis at all.

The first feature to be evaluated was the shading technique,
and users were asked with which they observed “more depth,”
where depth was defined as the discrete number of “slices”
along the depth axis in the image that they could percep-
tually distinguish. They examined scenes with no shading
(depth-colour map only), Lambertian shading lit from the
right/left upper quadrant with respect to the view (as noted
in Schemali’s work [16]), and the scene’s original PBR shad-
ing. An example of these is shown in Figure 8. Five out of six
users noted a preference for the PBR shading’s added detail,
specifying that the detail largely contributed to the increase
in depth perception. One user made the observation that with
the PBR shading option, however, some angles would have
less lighting contrast than the other two methods, which ei-
ther had a fixed lighting with respect to the camera (Lamber-
tian), or none. Therefore, those angles were perceived with
less depth than Lambertian for them.

Figure 8: An example of the scenes users viewed to compare shading
techniques.

Users were also asked to evaluate the use of different
colour maps in the scene. For this test, PBR shading was ex-
clusively used and the users were again asked with which op-

tion they perceived “more depth” as defined previously. The
choices were given between a hue shift map (a fully saturated
colour gradient from red to blue, with all colours in between),
MATLAB’s Jet map [18], Schemali’s trichromatic map [16],
and Google’s Turbo map [1]. A comparison of the 4 options is
demonstrated in Figure 9. These pre-existing maps were se-
lected for their compatibility with chromostereopsis and his-
tory of use for other forms of data visualisation. Four out of
six observed preference for the Turbo map, and two users pre-
ferred Jet. All users stated a close match between those two
options, with reasons for Jet stated as its saturated colours,
while Turbo was more pleasing to observe and had more in-
dividually discernible colours.

Figure 9: A demonstrative comparison between pre-existing colour
maps.

After explaining the principles of depth precision in depth-
colour mapping, users were asked for their preference here
as well. When asked to adjust the scaling factor f , which
determines the blend between inverse and linear depth, there
was a wide variance in answers regarding which value users
perceived most depth with. Answers ranged from one user
choosing 0 (fully inverse mapping), and the rest up to 70%
linear-inverse, with none preferring completely linear map-
ping. Most users preferred somewhere midway, but the vari-
ance in such a small sample of users may indicate that it is a
good parameter to leave adjustable to the user.

The ability to blend the original scene’s colours with that
of the depth-colour map was evaluated more subjectively.
It is clear that reducing the colours of the colour map to
any extent will reduce the depth effect, as it is necessary
for chromostereopsis, so the use of this option serves more
for enhancing the scene with auxiliary information unrelated
to depth. One question asked was how far the users could
blend the original colours in, while maintaining a percep-
tion of chromostereoscopic depth. Here, all users answered
an amount between 10-40% of the original colours reintro-
duced, combined with their colour map of preference. Visu-



ally, however, all users preferred this option completely off or
preferably 10% or lower, with the addition of the scene’s “true
colours” being observed as disorienting/jarring with Chro-
maDepth® glasses.

Lastly, depth motion smoothing was evaluated by the users.
With none present, no user reported any discomfort or motion
sickness, but all preferred the setting enabled for less sudden
colour changes.

6 Limitations
With the benefits that the techniques introduced in this pa-
per bring, some limitations and constraints are present, and
bear mentioning. One of such is in the depth-colour map-
ping, which samples the minimum and maximum indiscrim-
inately. This means if situations arise where, for example, a
very small object is present on-screen at a very far distance,
the depth will be stretched to accommodate it, despite its (po-
tential) unimportance to the viewer. Similarly, given that the
sky is usually calculated to be at an infinite distance in many
real-time renderers, this will exhibit the same effect whenever
the sky is visible, and our implementation can be assisted by
clamping the maximum distance to something closer.

Performance for this dynamic min/max depth mapping is a
current bottleneck of this system. While it is enough for real-
time (render time of <5ms per frame on an Nvidia RTX 3080
at 1024x1024 resolution), generating two full mip chains for
every frame is too costly for smaller or portable hardware, to-
gether with its dependant synchronisation on the CPU. This
could be somewhat improved by combining the two mip
chains into one with two colour channels, where each channel
represents the respective min/max. Our implementation also
assumes square image aspect ratios to simplify mipmap gen-
eration, but this could be expanded upon with edge padding
beforehand.

With shading enabled, one limitation of the retaining origi-
nal lighting is the depth-colour map in darker scenes. Our cur-
rent implementation shades these darker scenes at their cor-
rect intensity, which has the side effect of diminishing chro-
mostereopsis if it is too dark.

7 Conclusions and Future Work
This paper has presented and explored a number of ways
to introduce chromostereopsis into arbitrary 3D scenes. We
have shown methods to allow full-range depth-colour maps to
be rendered in real-time, together with arbitrary scene shad-
ing techniques, and modifiable depth precision. We have fur-
ther explored that there are ways to smooth the presentation of
chromostereoscopic depth if desired, and introduced novel in-
terface ideas for adjusting a number of the parameters hereof.
Evaluation of these techniques has shown that they are effec-
tive in displaying chromostereopsis to users wearing Chro-
maDepth® glasses, throughout the scene. The addition of
modern shading to the image was appreciated, as well as the
ability to adjust how depth was mapped, with depth prefer-
ences being mostly unique to each user. Similarly, the ef-
fectiveness of colour maps seemed to vary per user, while
in motion, the smoothing of depth changes was unanimously
preferred.

Beyond the scope of this paper and project, there are a
number of related challenges that may be interesting to ad-
dress in future work. Certain graphical features present in
real-time 3D were not handled in this paper, such as handling
depth for UI overlays, screen-space effects (e.g. bloom, am-
bient occlusion, post-effects that do not present at specific
depths), and skyboxes. For user interfaces, a number of other
ideas could also be explored, such as making the adjustment
sliders for users perceptually linear, rather than the scale cur-
rently used. Additionally, more creative control over depth,
for example through the use of manually selecting objects in
the scene to emphasize, is an idea that has not been explored
yet. Possibly once some of these features are addressed, it
would be very interesting to see the techniques shown in this
paper further applied to an injection tool that can hook into
modern rendering APIs, such as ReShade [5].

We hope that through this paper and the ideas explored
within, we have broadened the knowledge in the field of chro-
mostereoscopy, and have brought some further interest into
this type of stereoscopic vision.

References
[1] Anton Mikhailov. Turbo, an improved

rainbow colormap for visualization, 2019.
https://ai.googleblog.com/2019/08/turbo-improved-
rainbow-colormap-for.html.

[2] Michael Bailey and Dru Clark. Using chromadepth to
obtain inexpensive single-image stereovision for scien-
tific visualization. Journal of Graphics Tools, 3(3):1–9,
1998.

[3] A Boczarowski. Chromo-stereoscopy as a tool in mi-
cropalaeontological investigations: Echinoderms as a
case study. Studia Geologica Polonica, 124:21–35,
2005.

[4] Alan Chu, Wing-Yin Chan, Jixiang Guo, Wai-Man
Pang, and Pheng-Ann Heng. Perception-aware depth
cueing for illustrative vascular visualization. In 2008 In-
ternational Conference on BioMedical Engineering and
Informatics, volume 1, pages 341–346. IEEE, 2008.

[5] crosire. Reshade, 2022. https://reshade.me/.
[6] Carolina Cruz-Neira, Daniel J Sandin, and Thomas A

DeFanti. Surround-screen projection-based virtual re-
ality: the design and implementation of the cave. In
Proceedings of the 20th annual conference on Com-
puter graphics and interactive techniques, pages 135–
142, 1993.

[7] Simon Davis, Keith Nesbitt, and Eugene Nalivaiko. A
systematic review of cybersickness. In Proceedings of
the 2014 conference on interactive entertainment, pages
1–9, 2014.

[8] Willem Einthoven. Stereoscopie durch farbendif-
ferenz. Albrecht von Graefes Archiv für Ophthalmolo-
gie, 31(3):211–238, 1885.

[9] Samuel Gateau. 3d vision technology-develop, design,
play in 3d stereo. Acm Siggraph 2009, 2009.



[10] Romain Guy, Mathias Agopian, and Silent. Fila-
mented standard shader, 2021. https://gitlab.com/s-
ilent/filamented.

[11] Joseph J LaViola Jr. A discussion of cybersickness in
virtual environments. ACM Sigchi Bulletin, 32(1):47–
56, 2000.

[12] Frank Meinl, Katica Putica, Cristiano Siqueria, Timothy
Heath, Justin Prazen, Sebastian Herholz, Bruce Cher-
niak, and Anton Kaplanyan. Intel sample library, 2022.
https://www.intel.com/content/www/us/en/developer/topic-
technology/graphics-processing-research/samples.html.

[13] Jean-Paul Migneco. Reinterpreting colour-field
and landscape artworks: an investigation in multi-
disciplinary ways of creating and experiencing colour
and sculpture. Master’s thesis, University of Malta,
2017.

[14] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Phys-
ically based rendering: From theory to implementation.
Morgan Kaufmann, 2016.

[15] Nathan Reed. Depth precision visualized, 2015.
https://developer.nvidia.com/content/depth-precision-
visualized.

[16] Leila Schemali and Elmar Eisemann. Chromostereo-
scopic rendering for trichromatic displays. In Proceed-
ings of the Workshop on Non-Photorealistic Animation
and Rendering, pages 57–62, 2014.

[17] AmirAli Sharifi. Enhancing visual perception in inter-
active direct volume rendering of medical images. Uni-
versity of Alberta, 2016.

[18] The MathWorks, Inc. jet, 2022.
https://www.mathworks.com/help/matlab/ref/jet.html.

[19] The MathWorks, Inc. rgb2gray, 2022.
https://www.mathworks.com/help/matlab/ref/rgb2gray.html.

[20] Thierry Toutin. Qualitative aspects of chromo-
stereoscopy for depth perception. Photogrammetric En-
gineering and Remote Sensing, 63(2):193–204, 1997.

[21] Unity Engine. Unity, 2022. https://unity.com/.
[22] Vladislav Gaidoukevitch. Features overview, 2022.

https://youtu.be/ZADyPtfKbVE.
[23] Lance Williams. Pyramidal parametrics. In Proceed-

ings of the 10th annual conference on Computer graph-
ics and interactive techniques, pages 1–11, 1983.


	Introduction
	Related Work
	Setup and Results
	Depth-Colour Mapping
	Shading
	Depth Precision
	Depth Motion Smoothing
	Additional Tools

	Responsible Research
	Evaluation
	Limitations
	Conclusions and Future Work

