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“The tall waves were resounding, no one could tell why. Whichever wave you looked
at, each one was trying to rise higher than all the rest and to chase and crush the next
one; after it a third as fierce and hideous flew noisily, with a glint of light on its white
crest. The sea has no sense and no pity.”

Anton Chekhov (1890, Gusev)
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Preface
Before you lies the culmination of this thesis project. Nine months of math-
ematical research and intensive coding have led to this report and the results
presented in it. If Prometheus handed me his fire — a homage to the professors
who’s lectures I have enjoyed over the last couple of years — this project felt
like poring a can of Shell V-power diesel onto that firing, resulting into a burst
of flames.

The story of this thesis project starts a little over one year ago. It was a
sunny autumn day when I was visiting Delft for the weekend, during my stay
at EPFL in Lausanne, Switzerland. I had scheduled an appointment with pro-
fessor Jongbloed to discuss the possibility of writing a thesis on a statistical sub-
ject. Expecting a large pile of project proposals, I was caught of balance when
he said: "Rather than telling you what we have in store, why don’t you tell
me what you are looking for?". Giving the question some thought, I came up
with two preferences to narrow the scope: the subject should be related to ex-
treme value theory and the project should be commissioned by a large engineering
company. As a stroke of fate, Stijn Bierman from Shell’s Statistics and Chemo-
metrics department had recently approached the TU Delft and was willing to
supervise a master project on extreme value theory. I seized the opportunity as
it was a perfect fit to my preferences.

At the offset of the project, I suspected it was going to be challenging. My
background in statistics was limited to the mere basics, and as a civil engineer-
ing graduate this was going to be my first mathematical research project. On
the upside, it created an exciting opportunity to learn a lot of new mathemat-
ics. The lessons I learned and the knowledge I gained during this project have
enriched me personally and made me a more all-round mathematician.

First of all, I would like to express my sincere gratitude to Stijn Bierman,
David Randell and Philip Jonathan from Shell for the amazing opportunity to
work alongside them on cutting edge applied statistics. Their relentless sup-
port was indispensable to address the numerous (coding) challenges through-
out this thesis project. Secondly, I am very grateful to Juan-Juan Cai — my daily
supervisor from the TU Delft — for her support during our (bi-)weekly meet-
ings. Decoding the incomprehensible paper by Heffernan and Tawn (2004) and
her constructive and critical attitude towards assertions in my report have been
a great help. Thirdly, a word of thanks to Pasquale Cirillo and Geurt Jongbloed
for taking on the (non-)enviable task of reviewing my work as members of my
thesis committee. Finally, a brief acknowledgement to my parents, girlfriend
and roommates for their informal support and sticking up with me at times the
project got the better of me.
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Abstract
Multivariate extreme value modeling has gained traction in a wide range of
applications to account for extremal dependence. To accomodate covariates,
Jonathan et al. (2014) presented a generalization of the multivariate extreme
value model proposed by Heffernan and Tawn (2004). Statistical inference and
communicating uncertainty for the generalized Heffernan and Tawn model is
challenging because of the large number of parameters and the non-linear re-
lationship between certain model parameters.

In this thesis, a novel Bayesian approach is presented to address these is-
sues. The manifold Metropolis adjusted Langevin algorithm (mMALA) pro-
posed by Girolami and Calderhead (2011) is adopted as the standard Metropolis-
Hastings algorithm is shown to yield disproportionate (auto)correlation in the
posterior samples. The expected Fisher information matrix for the Heffernan
and Tawn is derived as it defines a suitable metric on the statistical manifold
associated to the parameter space. This metric is exploited by the mMALA to
ensure faster convergence and superior mixing of the Markov chains.

Properties of the negative log-likelihood function and the maximum like-
lihood estimator for the Heffernan and Tawn model parameters are studied.
The leading sources of bias in the maximum likelihood estimator are identi-
fied. The full observed– and expected Fisher information matrix are shown to
be positive semi-definite for only a subspace of the parameter space.

The fact that the Heffernan and Tawn model can accommodate both asymp-
totic dependent– and asymptotic independent data is a distinctive feature com-
pared to other multivariate extreme value models. However, the model as pro-
posed by Heffernan and Tawn (2004) requires a different parameterization for
either class of extremal dependence. A marginal transformation to the Laplace
scale was suggested by Keef et al. (2013) to obtain a unified parameterization.
This transformation is adopted and the proposed Bayesian inference method-
ology is shown to accommodate both classes of extremal dependence.

The contributions set forth in this thesis contribute to an enhanced un-
derstanding of the Heffernan and Tawn model. New and complex applica-
tions of the (generalized) Heffernan and Tawn model open up as the proposed
Bayesian approach provides a natural framework to quantify and communi-
cate uncertainty.
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Chapter 1

Introduction

Extreme events have a severe impact but a small probability of occurring. The
unfathomable impact of catastrophes in the oil and gas industry, such as the
Piper Alpha (1988) and Deep Water Horizon (2010) accidents, led to a high
standard for risk management among offshore engineers. Design criteria for
offshore structures should take extreme events into account as these events
tend to govern structural failure mechanisms. In offshore applications, meto-
cean1 engineers are responsible for the design of offshore structures. Design
criteria for oil rigs or floating structures are based on the return levels of differ-
ent metocean quantities, such as significant wave height, current speed and wind
speed. This thesis project is commissioned by Shell. A team of statisticians
within Shell, led by Philip Jonathan, is continuously improving its multivari-
ate extreme value models to come up with better estimates for design criteria.

When dependence between different metocean quantities is apparent, char-
acterizing the extremes of an entire offshore environment requires a multivari-
ate extreme value model. The aim is to estimate the probability that a multivari-
ate random variable Y with cumulative distribution function FY is extreme, i.e.
Pr (Y ∈ A) for an extreme set A. First of all, this requires models for each of the
marginal distributions. Additional complexity can be introduced by account-
ing for temporal dependence (Chavez-Demoulin and Davison 2012) and spatial
dependence (Davison et al. 2012). A generic methodology to incorporate covari-
ate effects in an univariate extreme value model was proposed by Randell et
al. (2016). A second aspect of a multivariate extreme value model accounts
for extremal dependence. This determines whether extreme events of different
quantities have a tendency to occur together. Financial markets (Tawn et al.
2003), river networks (Davison et al. 2015a) and offshore environments (Johan-
nessen et al. 2002) are practical examples where extremal dependence among

1Metocean: A contraction of meteorological and oceanographic.
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extreme events is acknowledged. A visual representation of a multivariate ex-
treme value model framework is shown in Figure 1.1.

Distributions

Covariates

Parameters

Large scale metocean extremes

Marginal 
distributions

Asymptotic dependence
structure

Generalised Pareto 
distribution

Heffernan & Tawn
model

Body

Poisson rate Normalizing 
functions

Residual 
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Tail

Threshold

Location DirectionSeason

• Mean
• Variance

…

• Shape
• Scale
• Location

FIGURE 1.1: Structure of the large scale metocean extremes model.
The scope of this thesis project is marked by the blue box.

The multivariate extreme value model proposed by Heffernan and Tawn
(2004) is widely used among practitioners to characterize the joint tail of a dis-
tribution. Many results in extreme value theory rely on the assumption that
data is independent and identically distributed. Jonathan et al. (2008) and Raghu-
pathi et al. (2016) show that the identicality assumption in the presence of co-
variate effects leads to biased parameter estimates. The inclusion of additional
information in a model, such that the response variable Y is explained by an
explanatory variable or covariate X, can resolve this issue. Seasonality, direc-
tionality or location are examples of covariates which are commonly used in
extreme value analysis with metocean applications. The response of a floating
structure to the forces exerted by the environment is referred to as weathervan-
ing:

"Weathervaning is the process by which a floating structure passively
varies its heading in response to time-varying environmental actions."

- ISO 19901-7:2013, Petroleum and natural gas industries

Accounting for weathervaning is particularly important as the angle of inci-
dence of a particular metocean quantity relative to the vessel heading signifi-
cantly affects the structural response. The scope of this project is restricted to
the direction covariate X ∈ [−π, π]d because it is regarded to be the dominant
covariate related to weathervaning.
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1.1 Problem statement

Past efforts to account for covariate effects in the extremal dependence struc-
ture rely on binning the data in directional sectors. For each sector, a constant
Heffernan and Tawn model is fitted. Although this approach works in prac-
tice, it has several downsides. First of all, defining appropriate sectors is not
obvious. Secondly, the assumption that a model is constant within a particular
sector can lead to biased parameter estimates. Thirdly, by construction, the pa-
rameters will be step functions with respect to the covariates, while it would
be more natural to consider smooth functions.

To address these issues, Jonathan et al. (2014) propose a spline parameter-
ization to generalize the Heffernan and Tawn model in order to accomodate
covariates. Statistical inference for the model is a tedious job that requires cross
validating the entire model to obtain an optimal smooth model. In addition, it
is very time consuming to quantify uncertainty regarding the parameter esti-
mates, as the proposed methodology relies on re-sampling from the data and
refitting the model for each new sample. These issues motivate the develop-
ment of a new methodology for statistical inference for the generalized Heffer-
nan and Tawn model proposed by Jonathan et al. (2014).

The research question for this project is:

How to estimate the parameters of the generalized Heffernan and Tawn model, such
that the methodology is both robust and easy to fit?

To narrow the scope of the project the multivariate extreme value model pro-
posed by Heffernan and Tawn (2004) — which will be referred to as the Hef-
fernan and Tawn model — is adopted. In addition, a directional covariate is
considered. Without going into too much detail, a glimpse of the statistical
challenge is revealed. The model proposed by Heffernan and Tawn (2004)
is a semi-parametric regression model that regresses on a conditioning vari-
able TL (Yi) being extreme, where TL denotes a marginal transformation to the
Laplace scale. Estimating Pr {TL (Y) ∈ A | X = x} under the Heffernan and
Tawn model when the parameters of the model are assumed to be a smooth
function of a covariate X, requires fitting, for each i = 1, . . . , d:

TL (Y−i) | TL (Yi) = y,X = x ∼ N
{
α|i (x) y + yβ|i(x)µ|i (x) , y2β|i(x)ψ2

|i (x)
}
.

Constraints that ensure a stochastic ordering of the conditional quantiles under
the Heffernan and Tawn model have been proposed by Keef et al. (2013). These
constraints in conjunction with both the constant– and generalized Heffernan
and Tawn model, define the four different models shown in Figure 1.2.
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𝑌2|𝑌1 = 𝑦~𝐺|𝑖 𝑦

𝑌2|𝑌1 = 𝑦, 𝑋1 = 𝑥~𝐺|𝑖 𝑦, 𝑥

𝜽 ∈ Ω𝜽 𝜽 ∈ Ω𝜽Keef

Constant 
HT model

Heffernan & Tawn
(2004)

Generalized
HT model

Jonathan et al.
(2014)

Constrained
HT model
Keef et al.

(2013)

Generalized
constrained
HT model

FIGURE 1.2: Roadmap to a generic and mathematically sound
multivariate extreme value model.

1.2 Research contributions

The knowledge gap that is identified is shown in Figure 1.3. The methodology
presented in this thesis addresses the knowledge gap. The developed Matlab
routines can be implemented by Shell into the all encompassing large scale
metocean extremes model, shown in Figure 1.1.

Multivariate extreme 
value model

Bayesian inference

Heffernan & Tawn
(2004)

Girolami & Calderhead
(2011)

Splines, knots & penalties
Eilers & Marx
(2010)

Jonathan et al.
(2014)

Cheng et al.
(2014)

Lang & Brezger
(2004)

FIGURE 1.3: Indication of the knowledge gap that this thesis
project addresses (F), in relationship to the relevant mathemat-

ical concepts and key references.

The main contributions of this project are:

1. Study the finite sample properties of the maximum likelihood estima-
tor the Heffernan and Tawn model.
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The influence of threshold selection and sample size are two key sources
of uncertainty in extreme value theory, both of which remain unaddressed
in the literature. The results of a simulation study to asses the sensitivity
of parameter estimates with respect to sample size, threshold selection
and strength of dependence in the simulated data, are presented to pro-
vide a better understanding of the likelihood function of the Heffernan
and Tawn model.

2. Present a Bayesian inference framework to estimate the parameters of
the Heffernan and Tawn model.
Quantifying uncertainty — in particular for the generalized Heffernan
and Tawn model proposed by Jonathan et al. (2014) — is not trivial. This
calls for a Bayesian inference framework. The Bayesian model proposed
by Cheng et al. (2014) is unsatisfactory as it requires strong prior informa-
tion and requires an undesirable adjustment to the likelihood function. A
full Bayesian inference framework that addresses both issues is presented
to jointly estimate the parameters of the Heffernan and Tawn model. A lo-
gistic transformation of the parameters of the Heffernan and Tawn model
is proposed to accommodate asymptotically dependent data.

3. Extend the proposed Bayesian inference framework such that covariate
effects can be accounted for.
Under the assumption that the parameters of the Heffernan and Tawn
model are smooth functions of covariates, penalized basis splines can
accommodate covariate effects in the parameterization of the Heffernan
and Tawn model. Bayesian inference on the semi-parametric P-splines
model follows Lang and Brezger (2004).

1.3 Thesis outline

A brief introduction to extreme value theory is presented in Chapter 2. Uni-
variate extreme value models are introduced in Section 2.1, and multivariate
models are introduced in Section 2.2. The aim of this chapter is to introduce
the mathematical context of this thesis. Chapter 3 is dedicated to the model
proposed by Heffernan and Tawn (2004). A description of the Heffernan and
Tawn model is presented in Section 3.1. Issues regarding statistical inference
for the model when the sample size is finite, are addressed in Section 3.2.

The answer to the research question is presented in Chapter 4. The most
significant academic contribution of this project is the implementation of a
Bayesian inference framework for the generalized Heffernan and Tawn model
proposed by Jonathan et al. (2014). Bayesian statistics is briefly introduced in
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Section 4.1. The proposed framework is demonstrated for the cases shown in
Figure 1.2:

1. Constant Heffernan and Tawn model, see Section 4.2,

2. Constrained Heffernan and Tawn model, see Section 4.3,

3. Generalized Heffernan and Tawn model, see Section 4.4.

Inference on the generalized constrained Heffernan and Tawn model is omitted
because of unresolved challenges related to inference on the aforementioned
models. The simulation study considers both asymptotic independent– and
asymptotic dependent data.

Finally, concluding remarks, a brief discussion on the methodology and
several recommendations are presented in Chapter 5. The outline of this thesis
is summarized in Figure 1.4. The literature review in Chapter 2 and Section 3.1
solely relies on the work of others. Although the constant Heffernan and Tawn
model (Heffernan and Tawn 2004), constrained Heffernan and Tawn model
(Keef et al. 2013) and generalized Heffernan and Tawn model (Jonathan et al.
2014) have been introduced by others, the results presented in Section 3.2 and
Chapter 4 are new and reflect my own work.
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Literature review
Chapter 2

Methodology: Statistical inference

Concluding remarks
Chapter 5

DiscussionConclusion Recommendations

Introduction
Chapter 1

Problem statementContext Thesis outline

Univariate EVT models Multivariate EVT models

Chapter 3
Heffernan and Tawn model

Chapter 3
Likelihood based inference

Chapter 4
Bayesian inference

FIGURE 1.4: Outline of this thesis report.
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Chapter 2

Extreme Value Theory: an
Introduction

As far as the laws of mathematics refer
to reality, they are not certain, and as
far as they are certain, they do not
refer to reality.

— Albert Einstein

Extreme events have a small probability of occurring, but their impact is an
order of magnitude larger than what is typically observed. The combination of
spring tide and extreme wind gusts that led to the 1953 flooding of the Nether-
lands is an example of the severe consequences of extreme metocean events and
motivates why thorough understanding of the distribution of extreme events
is a necessity.

Over the last couple of decades, extreme value theory (EVT) has received a
lot of attention from both academia and practitioners. Applications of extreme
value statistics range from environmental catastrophe modeling to financial
stress testing. Regardless the application, the central challenge usually con-
cerns the estimation of probabilities associated to events far worse than any-
thing that has ever been recorded, with an associated return period1 that is much
larger than the time span for which data is available, i.e. estimate the 100-year
return level when only 10 years worth of data is available.

Extrapolation beyond the observed data is a non-trivial task. There are
four key-issues related to the statistical analysis of extremes, which will we
addressed in this thesis. These issues being:

1. Parameter estimation for extreme value models,
1See Section 2.1.1 for a formal definition.
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2. Quantifying and communicating uncertainty regarding parameter esti-
mates or return levels,

3. Model diagnostics and goodness-of-fit, and,

4. How to use the available data optimally, such that model uncertainty can
be reduced.

This chapter provides an introduction to extreme value theory. The goal of
this chapter is to provide the reader with the relevant concepts from extreme
value theory, on which the subsequent chapters are based. Univariate extreme
value models are introduced in Section 2.1. Section 2.2 provides an overview
of the higher dimensional extensions of the univariate paradigms introduced
in Section 2.1.

Relevant definitions and theorems are provided throughout this chapter,
but full proofs are omitted. The works by Galambos (1978), Resnick (1987),
Beirlant et al. (2004), De Haan and Ferreira (2006), and Reiss and Thomas (2007)
provide full coverage of the fundamentals of extreme value theory and the
proofs of the theorems presented in this chapter. The book by Coles (2001)
is particularly accessible for inexperienced readers. Unless specifically stated
otherwise, the introduction to the main concepts of extreme value theory pre-
sented in this chapter follow Coles (2001) and De Haan and Ferreira (2006).

The outline of this chapter is summarized in Figure 2.1.

Chapter 2:
Extreme value theory

Section 2.1:
Univariate extreme value theory

Section 2.2:
Multivariate extreme value theory

Section 2.1.1:
Mathematical framework

Section 2.2.1:
Mathematical framework

Section 2.2.2:
Marginal transformations

Section 2.2.5:
Threshold exceedance approach

Section 2.2.3:
Extreme sets

Section 2.2.4:
Componentwise maxima approach

Section 2.1.2:
Block maxima approach

Section 2.1.3:
Peaks over threshold approach

Section 2.2.5:
Extremal Dependence

FIGURE 2.1: Outline of Chapter 2.



2.1. Univariate extreme value theory 11

2.1 Univariate extreme value theory

Extreme events have a small probability of occurring. These events stand out
from the bulk of the observations, because they are either much smaller or
much larger in magnitude than what is typically observed. Attention is re-
stricted to maxima as minima of metocean extremes do not affect design crite-
ria. The theorems presented in in this chapter apply equally well to minima.

There is no universal rule to characterize extreme events, but two different
paradigms are commonly used in practice to define extreme events:

1. Block Maxima approach, and,

2. Peaks Over Threshold approach.

See Figure 2.2 for an intuitive definition of both approaches. The red dots in
Figure 2.2(A) form the set of block maxima, where the different blocks are sep-
arated by the green lines. On the other hand, the red dots in Figure 2.2(B) are
the set of threshold exceedances, where the green line defines the threshold.
Both paradigms provide a rich framework for characterizing extremes. It turns
out that both approaches have a strong connection, although they seem very
different at first sight. Section 2.1.2 and 2.1.3 provide a formal mathematical in-
troduction to the Block Maxima approach and Peaks Over Threshold approach
respectively, and serve as a proper starting point for the more advanced con-
cepts introduced in subsequent chapters.
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(A) Block maxima approach
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(B) Peaks over threshold approach

FIGURE 2.2: Two different approaches to define extreme events
for an arbitrary sequence of observations.

2.1.1 Mathematical framework

Let Y be a random variable with cumulative distribution function FY . Unless
specifically stated otherwise, throughout this thesis, the random variable Y is
assumed to be continuous. Continuity of Y guarantees that the probability
density function fY exists and is defined for all continuity points of FY .
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A formal definition of the random variable Y states that Y : Ω → E is a
(F , E)-measurable function for a generic probability space (Ω,F ,Pr) and mea-
surable space (E, E). Within the context of this thesis, E = R the set of all real
numbers and E is the Borel σ-algebra of E, which is a trivial framework for
many probabilistic and statistical applications.

A sequence Y1, . . . , Yn is denoted by {Yl}1≤l≤n, where n ∈ N denotes the
sample size. Throughout this report, the index lwill always refer to the index of
a particular element of a sample. For the time being, assume that the sequence
of random variables Y1, . . . , Yn are identically distributed, such that Yl has the
same cumulative distribution function FY for each l = 1, . . . , n. Furthermore,
assume that the random variables Y1, . . . , Yn are independent.

Define the right endpoint of FY by yF := sup {y : FY (y) < 1}. Then

max(Y1, . . . , Yn)
p→ yF, as n→∞.

The left-continuous inverse of the cumulative distribution function FY is defined
by F←Y (y) := inf {t : FY (t) ≥ y}. The quantile function U associated to the re-
turn period tY is defined by

U (tY ) := F←Y

(
1− 1

tY

)
, for tY > 1.

Define the non-exceedance probability for the return period tY by p := Pr (Y ≤ y) =

1− 1/tY .
Assuming that the data are identically distributed is a common starting

point in order to constrain a problem and obtain practical results. The concept
of weakly identically distributed data is introduced to provide a formal frame-
work to characterize random variables when covariate effects are apparent. A
random variable is said to exhibit covariate effects if the associated probability
distribution is a function of explanatory variables or covariates. Observations
from random variables that are weakly identically distributed can still be as-
sumed to admit the same parametric probability distribution, but the param-
eterization of the probability density function is no longer assumed to be con-
stant. Under the assumption that the model parameters are smooth functions
of the covariate X , additional information can be incorporated in the model.
This resolves the issue of biased parameter estimates when covariate effects
are wrongly neglected, as pointed out by Jonathan et al. (2008) and Raghupathi
et al. (2016).

Definition 2.1.1 (Weakly identically distributed).
LetX denote a covariate, and Y a random response variable. Let a sequence Y1, . . . , Yn

of random variables with distribution functionsF1, . . . , Fn be parameterized by θ (X1) , . . . ,θ (Xn),
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where θ is a smooth function of a covariate X . A random variable is said to be weakly
identically distributed if for any x ∈ ΩX , and i, j ∈ {1, . . . , n}, Fi {yi | θ (x)} =

Fj {yj | θ (x)} holds.

2.1.2 Block maxima approach

A natural starting point for this introduction to extreme value theory, is to con-
sider the paradigm proposed by Fisher and Tippett (1928). The mathemati-
cal framework introduced in the previous section serves as a starting point.
Let Mn denote the partial maximum of a sequence of random variables, i.e.
Mn = max {Y1, . . . , Yn}, where Mn is referred to as the block maximum. Under
the assumption that Y1, . . . , Yn are independent, the limiting distribution ofMn

is degenerate, since

Pr(Mn ≤ y) = Pr (Y1 ≤ y, . . . , Yn ≤ y) = FnY (y) , (2.1)

which converges to either 0 or 1 as n tends to infinity, for y < yF and y ≥ yF re-
spectively. Luckily, studying maxima does not stop here, because similar to the
the central limit theorem which states that normalizing partial sums yields the
non-degenerate Gaussian distribution in the limit, normalizing maxima turns
out to resolve the degeneracy issue as well.

Assume that there exist proper normalizing constants an ∈ R and bn > 0 for
n ∈ N, referred to as the location normalizing constant and the scale normalizing
constant respectively. Suppose that (Mn − an) /bn has a limit distribution G.
That means Pr{(Mn − an)/bn ≤ y} ≈ G (y) for large n and similarly Pr(Mn ≤
y) ≈ G {(y − an) /bn}. Now, for any k ∈ N, the independence assumption
yields

Pr(Mn·k ≤ y) = Pr (Mn ≤ y)k ≈ Gk
(
y − an
bn

)
≈ G

(
y − an·k
bn·k

)
,

which shows that Gk(·) ≈ G(·) up to re-scaling y by proper normalizing con-
stants.

The limit distribution functionG is said to be max-stable, ifGk (x) = G (bkx+ ak)

for k ∈ N and normalizing constants ak ∈ R and bk > 0. It can be shown that if
the limit distribution G of the normalized partial maxima (Mn − an) /bn exists,
G must be max-stable. In addition, distribution functions G and G∗ are of the
same type if there exist constants a ∈ R and b > 0 such that G∗ (by + a) = G (y)

for all y ∈ R.
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For proper normalizing constants, the normalized partial maxima (Mn − an) /bn

have a non-degenerate limit distribution G, i.e.

lim
n→∞

FnY (bny + an) = G(y). (2.2)

If (2.2) holds, the cumulative distribution function FY is said to be in the domain
of attraction of G, which is denoted by FY ∈ D (G). The limit distribution G

encompasses a broad family of distributions which is referred to as the family
of extreme value distributions, a proposed by Fréchet (1927). Fisher and Tippett
(1928) and Gnedenko (1943) formalized these concepts and are accredited for
the Extremal Type Theorem, which provides a parametric expression for the
limit distribution G, see Theorem 2.1.2. Von Mises (1936) and Jenkinson (1955)
proposed improvements regarding the parameterization of the extreme value
distribution.

Theorem 2.1.2 (Extremal types theorem (Fisher and Tippett 1928; Gnedenko
1943)).
If there exist sequences of constants {an}n∈N and {bn}n∈N such that an ∈ R bn > 0

for all n ∈ N, and as n→∞,

Pr

(
Mn − an

bn
≤ y
)

d→ G (y) (2.3)

for some non-degenerate limit distribution G, then G is said to be of the same type as
the generalized extreme value distribution Gξ, defined by

Gξ(y) = exp

{
−
(

1 + ξ
y − τ
σ

)−1/ξ

+

}
, (2.4)

for some τ, ξ ∈ R and σ > 0, defined for all x in the set {x : 1 + ξ(x − τ)/σ >

0}. The parameters ξ, τ, σ are referred to as the shape–, location– and scale parameter
respectively. The convention (·)+ = max{·, 0} is used. The special case where ξ = 0,
is interpreted as the limit of ξ → 0.

Conversely, each of these distributions G may appear as the limit for the distribu-
tion of (Mn − an) /bn and does so when G itself is the distribution of Y .

A strong implication of Theorem 2.1.2 is that a distribution belongs to the
family of extreme value distributions if and only if the distribution is max-
stable (Coles 2001).

Although Theorem 2.1.2 yields a very rich framework, it has some limita-
tions. First of all, not every sequence of properly normalized partial maxima
yields a limit distribution G that exists. Consider for example the partial max-
ima of a sequence of Poisson distributed random variables. Secondly, as shown
in (2.2), the speed of convergence ofMn to the limiting distribution depends on



2.1. Univariate extreme value theory 15

the cumulative distribution function FY . For certain distributions, such as the
Gaussian distribution, convergence is slow. This raises some concerns about
the validity of Theorem 2.1.2 for small samples.

Three sub-classes of the family of extreme value distributions arise natu-
rally by considering ξ > 0, ξ = 0 and ξ < 0 in (2.4), and are given by (2.5), (2.6)
and (2.7). Properties and examples for each of the three different classes are
provided below.

• ξ > 0 : Fréchet class of distributions.
For ξ > 0, it follows that Gξ (y) < 1 for all y ∈ R, and hence the right
endpoint yF of the distribution is infinity. In addition, the distribution has
a heavy right tail that admits a power law, since, for y → ∞, it follows
that 1−Gξ (y) ∼ (ξy)−1/ξ. Consequently, the moments of the distribution
of order greater than 1/ξ do not exist. For example the Cauchy and Pareto
distribution are both in the Fréchet class.

Gξ(y) :=

0 if y ≤ τ − σ/ξ,

exp
{
−
(y−τ

σ

)−1/ξ
}

if y > τ − σ/ξ.
(2.5)

• ξ = 0 : Gumbel class of distributions.
Distributions in the Gumbel class are regarded to be light-tailed, since
1−Gξ (y) ∼ exp (−y) as y →∞ and all moments exist. The right endpoint
yF of the distribution is either finite or infinite. For example the Gaussian
and Gamma distribution are both in the Gumbel class.

Gξ(y) := exp

{
− exp

(
−y − τ

σ

)}
, ∀y ∈ R (2.6)

• ξ < 0 : reverse-Weibull class of distributions.
The right endpoint is given by yF = −1/ξ. Since yF is finite, the dis-
tribution is said to be short-tailed. For example the Uniform and Beta
distribution are both in the reverse-Weibull class.

Gξ(y) :=

exp
{
−
(
−y−τ

σ

)−1/ξ
}

if y < τ − σ/ξ,

1 if y ≥ τ − σ/ξ.
(2.7)

These three classes are also referred to as the Fréchet–, Gumbel– and reverse-
Weibull– domain of attraction. For example, FY ∈ D(Gξ>0) means that for
the normalized maxima (Mn − an) /bn, the limit distribution G in (2.2) is the
Fréchet distribution. Figure 2.3 shows the probability densities for each of
the three different classes of the generalized extreme value distributions, for
τ = 0. The edge of the support of the Fréchet and reverse-Weibull distribution
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are marked by small triangles, and decrease and increase respectively, as σ in-
creases. A sufficient, but not necessary, condition for FY to belong to either one

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

x

G
ξ
>
0
(
x
)

 

 

σ = 1
σ = 2
σ = 3

(A) Fréchet

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

x

G
0
(
x
)

 

 

σ = 1
σ = 2
σ = 3

(B) Gumbel

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

x

G
ξ
<
0
(
x
)

 

 

σ = 1
σ = 2
σ = 3

(C) reverse-Weibull

FIGURE 2.3: Probability densities for the three different classes
within the family of generalized extreme value distribution.

of the three maximum domains of attraction was proved by Von Mises (1936).
The condition is commonly referred to as the von Mises condition, see Theorem
2.1.3.

Theorem 2.1.3 (von Mises condition (Von Mises 1936)).
Let FY be a distribution function and yF its right endpoint. Suppose the second deriva-
tive F ′′Y (y) exists and the first derivative F ′Y (y) is positive for all y in some left neigh-
borhood of yF. If

lim
y↑yF

(
1− FY
F ′Y

)′
(y) = lim

y↑yF
r′ (y) = ξ, (2.8)

or equivalently,

lim
y↑yF

{1− FY (y)}F ′′Y (y){
F ′Y (y)

}2 = −ξ − 1, (2.9)

then FY is in the maximum domain of attraction of the generalized extreme value
distribution.

where r (y) := {1− FY (y)} /fY (y) in (2.8) is referred to as the reciprocal
hazard function. Applying (2.2) to Theorem 2.1.3, for a sufficiently smooth cu-
mulative distribution function FY , with right endpoint yF, for

an = F−1 (1− 1/n) , bn = r (bn) and ξ = lim
y→yF

r′ (x) ,

results in the limit distribution of (Mn − an) /bn being the generalized extreme
value (GEV) distribution with shape parameter ξ.

The Von Mises condition stated in Theorem 2.1.3 provides explicit expres-
sions for an, bn and ξ if the cumulative distribution FY is known, see Table 2.1
for some examples. Since the cumulative distribution FY is generally unknown
in practice, the ramifications of Theorem 2.1.3 are limited to theoretical appli-
cations. A stronger result than the Von Mises condition is given by Theorem
2.1.4, which provides a sufficient and necessary condition for the cumulative
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TABLE 2.1: Explicit expressions for the normalizing constants
an, bn and shape parameter ξ, for different probability distribu-

tions.

Distribution an bn ξ D(·)

Fréchet n n 1 Fréchet
Exponential log(n) 1 0 Gumbel
Gaussian § 1√

2 log(n)
0 Gumbel

Uniform 1− 1/n 1/n −1 rev.-Weibull

§ :
√

2 log(n)− 1
2

1√
2 log(n)

[log{log(n)}+ log(4π)]

distribution function FY to belong to the domain of attraction of the general-
ized extreme value distribution.

Theorem 2.1.4 (De Haan and Ferreira (2006)).
The distribution function FY is in the domain of attraction of the extreme value dis-

tribution Gξ if and only if

1. for ξ > 0:

lim
t→∞

1− FY (ty)

1− FY (t)
= y−1/ξ, ∀y > 0 and yF =∞.

2. for ξ = 0:

lim
t↑yF

1− FY {t+ yfY (t)}
1− FY (t)

= e−y, ∀y ∈ R, (2.10)

for a suitable positive function fY . If (2.10) holds for some function fY , then

∫ yF

t
1− FY (s)ds <∞ for t < yF and fY (t) :=

∫ yF

t 1− FY (s) ds

1− FY (t)
.

3. for ξ < 0:

lim
t→∞

1− FY (yF − ty)

1− FY (yF − t)
= y−1/ξ, ∀y > 0, and yF <∞.

Relaxing the identicality assumption affects the limiting result (2.3) in The-
orem 2.1.2. Very little has been published on the subject of non-identically dis-
tributed extremes. A result by Mejzler (1956) shows how convexity of the limit
distributionG in (2.3) holds even when the identicality assumption in Theorem
2.1.2 is relaxed.

Theorem 2.1.5 (Mejzler (1956)).
Suppose Y1, . . . , Yn are independent random variables with distribution functionsF1, . . . , Fn

respectively. Suppose there exist sequences an ∈ R and bn > 0 for n ∈ N such that the
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normalized partial maxima (Mn − an) /bn have a non-degenerate limit distribution,
which we call G. Suppose that as n→∞,

|log an|+ |bn| → ∞

and both

bn+1

bn
→ 1, and

an+1 − an
bn

→ 0.

Then
− logG (y) is convex if yF =∞, (2.11)

and
logG

{
yF − exp (−y)

}
is convex if yF <∞, (2.12)

Conversely, any distribution function G satisfying (2.11) and (2.12) occurs as a limit
in the given set-up.

As Kourbatov (2014) points out, “Mejzler’s theorem states that the limit-
ing distribution of properly normalized non-identically distributed indepen-
dent random variables, if the limiting distribution exists at all, can be any
distribution with a log-concave cumulative distribution function”. See Bag-
noli and Bergstrom (1989) for an overview of log-concave cumulative distribu-
tions functions and Dümbgen and Rufibach (2009) for an elaborate study on
the properties of log-concave densities.

2.1.3 Peaks over threshold approach

The Peaks Over Threshold approach offers an alternative methodology to mod-
eling extremes. As the name of this approach suggests, rather than looking
at the block maxima, this approach focuses on the stochastic behavior of ex-
ceedances of a high threshold u. Theorem 2.1.6 provides the connection be-
tween the concepts introduced in the previous section and the Peaks Over
Threshold approach.

Theorem 2.1.6 (Balkema and De Haan (1974) and Pickands (1975)).
For ξ ∈ R the following statements are equivalent:

1. There exist normalizing constants an ∈ R and bn > 0 such that

lim
n→∞

FnY (bny + an) = Gξ (y) ,

with Gξ (y) defined as in Theorem 2.1.2.
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2. There is a positive function f such that

lim
u↑yF

1− FY {u+ yf (u)}
1− FY (u)

=

(
1 + ξ

y

σu

)−1/ξ

+

(2.13)

for all y > 0 in the set {y : 1 + ξ(y − τ)/σ > 0} and σu := σ + ξ(u− τ) > 0.

For a random variable Y with cumulative distribution functionFY ∈ D(Gξ),
the distribution of the independent threshold exceedances Y1 − u, . . . , Yn − u
of Y for a high threshold u, conditional on Y exceeding u, is given by (2.14).
This distribution is referred to as the generalized Pareto (GP) distribution, and
is given by

Gu (y) := lim
u↑yF

Pr

(
Y − u
f (u)

≤ y
∣∣∣∣Y > u

)
= 1−

(
1 + ξ

y

σu

)−1/ξ

+

, for y > 0,

(2.14)
Beware that Gu refers to the generalized Pareto distribution, while Gξ refers to
the generalized extreme value distribution.

The limit distribution Gu (y) does not fully characterize the stochastic be-
havior of the threshold exceedances. The arrival times of threshold exceedances
is itself a random process. Modeling the exceedances as observations from a
point process perspective, such that the distribution of each observations is
Gu, has advantages compared to the block maxima approach introduced in
the previous section. The most apparent advantages is that this model utilizes
the information regarding all threshold exceedances, rather than just the block
maxima.

Using a representation proposed by Rényi (1953), the homogeneous Pois-
son process arises as the limit of the distribution of the extreme-order statis-
tics, i.e. the sequence of observations ordered in descending order. Let the
exceedance probability

p̄ =

(
1 + ξ

u− τ
σ

)−1/ξ

=
(σu
σ

)−1/ξ
,

define the rate of the Poisson process. Homogeneity of the Poisson process
is guaranteed because p̄ is constant for given parameters ξ, τ and σ. There is a
strong relationship between the generalized extreme value distribution and the
point process representation introduced in this section, see Derivation 2.1.7.

Derivation 2.1.7 (The link between the generalized extreme value distribution
and the generalized Pareto distribution.).
Let N be a Poisson random variable with rate parameter p̄, and let Y1, . . . , YN be

generalized Pareto distributed. The generalized extreme value distribution arises as
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the distribution of normalized partial maxima MN := max {Y1, . . . , YN}, since

Pr (MN ≤ y) =
∞∑
n=1

Pr (N = n) · Pr (Y1 ≤ y, . . . , Yn ≤ y) ,

= exp

{
−
(

1 + ξ
y + u− τ

σ

)−1/ξ

+

}
,

= Gξ (y + u)

See Appendix A.1 for the intermediate steps of this derivation.

Intuitively, the high threshold u marks the transition from the body to the
tail of the distribution. The question remains how to properly choose the thresh-
old u. Determining what an appropriate choice for u is, is not straightforward,
but a combination of heuristics provide a satisfactory framework for threshold
selection. Two common heuristics for threshold selection focus on finding a
quantile u associated to the non-exceedance probability p, such that:

1. The parameters of the generalized Pareto distribution show stability, and,

2. The mean residual life is linear in u with slope ξ/(1− ξ),

where the mean residual life of Y is defined as

E [Y − u | Y > u] =
σ + ξu

1− ξ
, for ξ < 1. (2.15)
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2.2 Multivariate extreme value theory

Studying the interaction between different random variables might reveal fea-
tures of the data that would remain concealed if the variables are modeled in-
dependently. Characterizing dependence is particularly important in systems
with an exposure to high dimensional random phenomena, such as a portfolio
of financial assets (Tawn et al. 2003), or a complex river network (Davison et al.
2015a). Univariate extreme value models are unsatisfactory when the data ex-
hibits extremal dependence, which means that extreme observations in different
variables tend to occur simultaneously. See Section 2.2.6 for a formal introduc-
tion to the concept of extremal dependence.

The concepts presented in Section 2.2.1 aim at providing a proper mathe-
matical framework for the univariate paradigms introduced in Section 2.1 to
be extend to higher dimensions. The extensions of the block maxima approach
and the threshold exceedance approach to higher dimensions are introduced in
Section 2.2.4 and 2.2.5 respectively. An intuitive definition of both approaches
is presented in Figure 2.4.

There are two additional characterizations of multivariate extremes. A third
approach relies on transforming the data to pseudo-polar coordinates and mod-
eling the resulting data as a point process, which is briefly introduced in 2.2.5
and viewed here as a special case of the threshold exceedance approach.

Heffernan and Tawn (2004) proposed a fourth approach which plays a cen-
tral role in this thesis project. The idea evolves around assuming a semi-parametric
model for different conditional probability distributions, that together define
the joint distribution of a multivariate extreme value model. Rather than only
considering observations that are extreme in all components of a random vec-
tor, observations with at least one component being extreme can be considered
as well. As shown in Figure 2.4(C) by the red dots, this can yield a consider-
able gain in the number of observations that are considered to be extreme. See
Chapter 3 for a formal introduction to the Heffernan and Tawn model. A sim-
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FIGURE 2.4: Two dimensional equivalent of the univariate ex-
tremes paradigms. The red dots indicate extreme events under

the different models.
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ulation study to compare the performance of the different methods in return
level estimation was presented by Zheng et al. (2014). Summarizing, the three
different approaches to modeling multivariate extremes are:

1. Componentwise Maxima approach, see Section 2.2.4,

2. Threshold Exceedance approach, see Section 2.2.5,

3. Heffernan and Tawn approach, see Chapter 3.

2.2.1 Mathematical framework

Before introducing the different approaches to modeling multivariate extremes,
some additional concepts need to be introduced to serve as a common frame-
work. Let Y = (Y1, . . . , Yd) ∈ Rd for d ≥ 2 denote a finite dimensional ran-
dom variable with cumulative distribution function FY. Define the index set
I := {i : 1 ≤ i ≤ d}. Throughout this report, the index i is the primary index to
refer to a particular component of a vector.

A sequence of length n of random vectors Y is denoted by

Y1, . . . ,Yn = (Y11, . . . , Yd1) , . . . , (Y1n, . . . , Ydn) ,

in accordance with the univariate notation. From here onward, the first index
always refers to a particular component of Y, and the second index refers to
sample index.

The marginal distribution for each element of Y is denoted by FYi , which
will be abbreviated to Fi if it is clear from the context that Fi is the cumulative
distribution function of Yi.

In general, bold capital letters such as Y are used to denote random vectors,
while lowercase bold letters such as y are realizations of the associated ran-
dom vector. Following the vector notation proposed by Heffernan and Resnick
(2007, Appendix 1), operators are assumed to apply component-wise.

2.2.2 Marginal transformations

It is beneficial to ensure that the marginal distributions of a multivariate ran-
dom variable are similar when studying multivariate extremes. The probability
integral transform is a two-step transformation that allows data from any arbi-
trary distribution to be transformed to any desirable scale. First, the random
variable Y with cumulative distribution function FY is transformed to the uni-
form scale by FY (Y ). Secondly, the uniform data can be transformed to an ar-
bitrary scale by any monotone increasing transformation T (Y ). An important
feature of the probability integral transform is that the dependence structure is
unaffected by the marginal transformations.
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If the marginal distribution of Y is explicitly known and the transforma-
tion is monotone increasing, the probability integral transform is a bijection
between the data on the original scale and the data on the new scale. For the
simulated data used in this thesis, the cumulative distributions functions are
specified. Hence data will be transformed based on the true cumulative prob-
ability distribution.

If on the other hand, the marginal distribution is unknown or the parame-
ters that define the distribution have to be estimated, the empirical distribution
function with Pareto tail F̆ proposed by Coles and Tawn (1994) can be used.
Under the assumption that the tail of a distribution is well approximated by
the generalized Pareto distribution, the cumulative distribution function FY is
well approximated by

F̆Y (y) :=

F̃Y (y) for y ≤ u

1−
{

1− F̃Y (u)
}
{1−Gu (y − u)} for y > u

, (2.16)

where the function F̃ denotes the empirical cumulative distribution function.
The generalized Pareto distributionGu defined by (2.14) can be evaluated based
on the maximum likelihood estimates ξ̂ and σ̂u.

Substituting the tail of the empirical cumulative distribution function F̃

with a continuous Pareto tail, allows F̆Y to be inverted such that the aforemen-
tioned bijectional property is preserved. The empirical cumulative distribution
function F̃Y is a step function by construction, and since the number of ob-
servations in the tail of the distribution is small, F̃← : T (Y ) → Y becomes a
surjective mapping.

The Gumbel–, Laplace–, Fréchet– and Pareto scale are commonly used in
the context of extreme value analysis to ensure that the marginal distributions
of a multivariate random variable share a common scale. The transformations
are to the unit scale of a particular distribution.

• Gumbel scale
Heffernan and Tawn (2004) propose to work on the Gumbel scale because
they exploit the property that TG (Y ) has an exponential upper tail. The
transformation TG is defined by the inverse of (2.6), i.e.:

TG (Y ) := − log
[
− log

{
F̆Y (Y )

}]
. (2.17)

• Laplace scale
Transforming marginals to the Laplace scale — rather than the Gumbel
scale — was proposed by Keef et al. (2013). An important advantage of
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the Laplace distribution is the fact that it is symmetric and has exponen-
tially decaying tails. In addition, symmetry allows the parameterization
of the Heffernan and Tawn model for both positive and negative extremal
dependence2 to be unified. The transformation to the Laplace scale is given
by:

TL (Y ) :=

log
{

2F̆Y (Y )
}
, Y ≤ F̆−1

Y (1/2) ,

− log
[
2
{

1− F̆Y (Y )
}]

, Y > F̆−1
Y (1/2) ;

. (2.18)

• Fréchet scale
The Fréchet transformation is commonly used in theoretical applications,
see for example Coles (2001). The limiting joint distribution of the ex-
tremes of a multivariate random variable with Fréchet marginal distribu-
tions, gives rise to the family of multivariate extreme value distributions.
The data is transformed to the Fréchet scale by the inverse of (2.5), i.e.:

TF (Y ) :=
1

− log
{
F̆Y (Y )

} . (2.19)

• Pareto scale
Das and Resnick (2011) and Mitra and Resnick (2013) work on the Pareto
scale because “it facilitates the use of tools from standard regular varia-
tion theory”, (Das and Resnick 2011). The transformation to the Pareto
scale is given by:

TP (Y ) :=
1

1− F̆Y (Y )
. (2.20)

2.2.3 Extreme sets

The threshold u marks the beginning of the tail of a distribution, such that
observations that fall in the set {y ∈ R : y > u} are regarded to be extreme. This
provides a useful framework for univariate extreme value models, but for high
dimensional problems this definition no longer suffices. Defining an extreme set
A allows observations y of a multivariate random variable Y to be regarded as
extreme if y ∈ A.

Definition 2.2.1 (Extreme set (Heffernan and Tawn 2004)).
Let the setA ⊂ Rd be an extreme set such that at least one component of y : {y1, . . . , yd}
is extreme. The set A can be partitioned into subsets Ai, such that A :=

⋃d
i=1Ai and

for any i ∈ {1, . . . , d} the Ai is the subset of A for which component yi is largest on

2Extremal dependence is introduced in Section 2.2.6.
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quantile scale, i.e.

Ai := A ∩
{
y ∈ Rd : Fi (yi) > Fj (yj) for all j ∈ I, j 6= i

}
, ∀i ∈ I.

See Figure 2.5 for two practical examples of an extreme set A in a bivariate
setting, and how A1 and A2 make up for A. The nature of the data considered
in Figure 2.5 is formally introduced in Section 3.2.1.
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FIGURE 2.5: Examples of extreme sets A in a bivariate setting.
The data is bivariate Gaussian (A) and generalized extreme
value distributed with symmetric logistic dependence function
(B), both transformed to the Gumbel scale. The threshold u is

equal to the 95% marginal quantile.

2.2.4 Componentwise maxima approach

Similar to the univariate case, stochastic properties of extremes in a multivari-
ate setting rely on the limiting distribution of component wise maxima. How-
ever, defining block maxima for random vectors is not trivial. One variable
being extreme does not require the other variable(s) to be extreme as well, as
shown in Figure 2.4(A).

Without loss of generality, the concepts introduced in the section focus on
a bivariate setting because in higher dimensions the expressions become un-
wieldy. Let Y be a bivariate random vector in accordance with the properties
and notation presented in Section 2.2.1, such that I = {1, 2}.

The definition for partial maxima is understood component wise, i.e.

Min := max (Yi1, . . . , Yin) for i ∈ I,

The vector of component wise maxima is defined as Mn = (M1n,M2n). The central
challenge at this point is to characterize non-degenerate limiting distributions
of re-scaled pairs (Y11, Y21) , . . . , (Y1n, Y2n), if they exist at all. The following
steps should provide a rigorous answer to this challenge:
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1. Re-scale the marginal distributions to the Fréchet scale.

2. Show that if a non-degenerate joint limiting distribution exists, then it
must be max-stable.

3. Identify a functional for the family of max-stable distributions.

Start with transforming the data to the Fréchet scale by TF(Y) such that Fi ∈
D (Gξ) for all i ∈ I . The generalized extreme value distribution stated in (2.4),
reduces to the unit Fréchet distribution if ξ = 1, τ = 1 and σ = 1. This
guarantees max-stability of the marginal distributions, as mentioned in Section
2.1.2. Max stability of the marginal distributions is desirable because it guar-
antees that the bivariate limit distribution of the partial maxima Min scaled by
n is also max stable. Tawn (1988) shows that the limiting joint distribution of
(M1n/n,M2n/n) as n → ∞ gives rise to the bivariate extreme value distribution,
see Definition 2.2.2.

Definition 2.2.2 (Bivariate extreme value distribution (Resnick 1987; Tawn 1988)).

To define the bivariate extreme value distribution, consider random vectors (Y1l, Y2l)

for l ∈ {1, . . . , n}, with standard Fréchet marginal distributions. Then

Pr (M1n/n ≤ y1,M2n/n ≤ y2)
d→ G (y1, y2) , (2.21)

where G is a non-degenerate distribution functions, and G has the form

Gξ (y1, y2) = exp {−V (y1, y2)} , for y1, y2 > 0, (2.22)

where V (y1, y2) is called the exponent measure and is defined by

V (y1, y2) = 2

∫ 1

0
max

(
w

y1
,
1− w
y2

)
dH (w) (2.23)

and H is a spectral distribution function on [0, 1] satisfying the mean constraint∫ 1

0
wdH(w) = 1/2. (2.24)

Mind the subtle difference in notation, as Gξ refers to the univariate gen-
eralized extreme value distribution defined by (2.4), and Gξ defined by (2.22)
denotes its bivariate counterpart. Definition 2.2.2 can be generalized for d ≥ 2

dimensions, see De Haan and Ferreira (2006).
The exponent measure V is said to be homogeneous of order -1, which means

that for any constant c > 0 the equality V (c−1y1, c
−1y2) = cV (y1, y2) holds.

This is particularly useful because max-stability of the bivariate extreme value
distribution is guaranteed since Gn(y1, y2) = G

(
n−1y1, n

−1y2

)
.
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Asymptotic independence arises for the discrete spectral measure H = 0.5

for w = 0 and w = 1. This yields the exponent measure V (y1, y2) = y−1
1 + y−1

2 ,
which leads to the bivariate extreme value distribution being defined by

Gξ(y1, y2) = exp
{
−
(
y−1

1 + y−1
2

)}
, y1, y2 > 0.

Exact dependence on the other hand, arises when H = 1 for w = 0.5. In that
case, the exponent measure V (y1, y2) = max

(
y−1

1 , y−1
2

)
, such that the bivariate

extreme value distribution is given by

Gξ(y1, y2) = exp{−max(y−1
1 , y−1

2 )}, for y1, y2 > 0.

Although Gξ in (2.22) characterizes the non-degenerate limit distributions,
this class is still very broad. The only constraint on the exponent measure
V (y1, y2) is given by (2.23) and (2.24). Characterizing the entire family of lim-
iting distributions G with a single parametric model, just like (2.4) for the uni-
variate case, is impossible.

An implication of Theorem 2.2.2 is that Gξ in (2.4) has a bijectional relation-
ship with the class of spectral distribution functions H that satisfy (2.24). This
motivated the development of parametric models that cover sub-families of
Gξ. The bijectional relationship between Gξ and H ensures that it is sufficient
to characterize H . Several parametric families for H have been proposed, such
as the model by Hüsler and Reiss (1989), the bilogistic model by Joe et al. (1992)
or the Dirichlet model by Coles et al. (1991). See Appendix A.2 for additional
information regarding these models.

2.2.5 Threshold exceedance approach

The threshold exceedance approach is a high dimensional extension of the Peaks
Over Threshold paradigm. It allows the utilization of available data to be im-
proved. In addition, the issue that componentwise maxima might not corre-
spond to actual observations was neglected so far. This is resolved by con-
sidering threshold exceedances rather than block maxima, as shown in Figure
2.4(B) all threshold exceedances are proper extreme events.

Start with the familiar set-up. For a bivariate random variable Y with cu-
mulative distribution function FY and marginal distributions F1 and F2. As-
sume that the tail of each of the marginal distributions above the high thresh-
olds u1 and u2 can be approximated by the generalized Pareto distribution.
Transform each of the marginal distributions to the Fréchet scale. For y1 > u1

and y2 > u2 the joint tail of TF (Y) is well approximated by the bivariate ex-
treme value distribution defined by (2.22).
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The thresholds u1 and u2 partition R2 into four quadrants. A disadvantage
of the threshold exceedance approach is that the model is only valid in the
region [u1,∞) × [u2,∞) where both Y1 and Y2 are extreme. Fitting a model
to the joint tail of a distribution can be difficult due to sparse data . Censored
likelihood functions have been proposed to address this issue.

The point process approach is an alternative characterization of the thresh-
old exceedance approach. For a bivariate random variable, the transformed
variables TF (Y1) and TF (Y2) have Fréchet marginal distributions. Define a se-
quence of point processes by

Pn :=

{(
TL (Y1)

n
,
TL (Y2)

n

)
: i ∈ I

}
, n ∈ N.

Under the conditions for convergence of the componentwise maxima, stated
in Section 2.2.4, it can be shown that Pn converges to a Poisson process P as
n→∞. Define the pseudo-polar coordinates (r, w) by

r = TF (Y1) + TF (Y2) and w =
TF (Y1)

TF (Y1) + TF (Y2)
.

The intensity function Λ that defines the Poisson process P is given by

Λ (dr, dw) =
dr

r2
× 2Q (dw) .

A major advantage of this approach is that it allows the probability of an ex-
treme set to be estimated when the intersection between the extreme set A and
the set of threshold exceedances is void. If the extreme setA ⊂ [u1,∞)×[u2,∞),
for u1 and u2 sufficiently large, then for some constant c > 0,

Pr {TF (Y) ∈ cA) ≈ 1

c
Pr (Y ∈ A)

and

Pr {TG (Y) ∈ c+A) ≈ exp (−c) Pr (Y ∈ A) .

2.2.6 Extremal dependence

Dependence governs the joint behavior of a multivariate random variable. A
similar concept is introduced to characterize dependence among extreme events.
There are two different classes of extremal dependence:

1. Asymptotic dependence, and,

2. Asymptotic independence.
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As Davison et al. (2015b) state, “it is important to detect the appropriate depen-
dence class because most models for bivariate extremes encompass one type of
dependence, or the other, but not both”. A measure for the extremal depen-
dence among the different components of a random vector Y is given by the
limit of χ(p) for non-exceedance probability p→ 1, where for any i, j ∈ I such
that i 6= j,

χ (p) := Pr {Fi (Yi) > p | Fj (Yj) > p} . (2.25)

Provided that the limit χ := limp→1 χ (p) exists, χ ∈ [0, 1] defines a measure for
the extremal dependence. If χ = 0, the random variables Yi and Yj are said to
be asymptotically independent and if χ > 0 they are asymptotically dependent.

For asymptotic independence χ = 0. The rate at which the limit limp→1 χ (p)

converges to 0 is not an appropriate measure for the strength of asymptotic
independence. Hence a measure for extremal independence is defined by χ̄ :=

limp→1 χ̄ (p) ∈ (−1, 1], where

χ̄(p) :=
2 log (1− p)

log Pr {Fi (Yi) > p, Fj (Yj) > p}
− 1, (2.26)

provided that the limit exists. A summary of the properties of χ and χ̄ is pre-
sented in Table 2.2. To extend the applicability of these concepts to practical

Asymptotic Dependence
• 𝜒 ≠ 0
• 𝜒̅ = 1

Asymptotic Independence
• 𝜒 = 0
• 𝜒̅ ≠ 0

Negative 
association
• 𝜒̅ < 0

Exact
Independence
• 𝜒̅ = 0

Positive 
association
• 𝜒̅ > 0

TABLE 2.2: Relationship between different classes of extremal
dependence.

applications, estimators for χ and χ̄ have been developed. Define a bivariate
copula function by

C (p, p) := FY

{
F−1
i (p) , F−1

j (p)
}
, for 0 < p < 1. (2.27)

The joint survival distribution in terms of the associated bivariate copula is
given by

C̄ (p, p) := Pr {Fi (Yi) > p, Fj (Yj) > p} = 1− 2p+ C (p, p) . (2.28)

The estimators χ̂ and ˆ̄χ rely on the empirical copula function Ĉ defined by
(2.29). The copula function C (p, p) defined by (2.27) can be approximated by
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the empirical copula function, see AghaKouchak et al. (2013), defined by

Ĉ (p, p) :=
1

n+ 1

n∑
l=1

1max{rnk(yil),rnk(yjl)}≤np (2.29)

for n independent observations (yi1, yj1) , . . . , (yin, yjn) of Y = (Yi, Yj). The
function rnk(·) denotes the rank of the observation relative to its peers, and
n · p is the fraction of the observations below the threshold u.

Combing both (2.25) and (2.27), as well as (2.26) and (2.28) yields, for 0 <

p < 1,

χ (p) = 2− log C (p, p)

log p
and χ̄ (p) =

2 log (1− p)
log C̄ (p, p)

.

The estimator χ̂ := limp→1 χ̂(p) and ˆ̄χ := limp→1 ˆ̄χ (p) follow from approxi-
mating C by Ĉ, which yields

χ̂(p) = 2− log Ĉ (p, p)

log p
and ˆ̄χ(p) =

2 log (1− p)
log ˆ̄C (p, p)

− 1.

Tawn and Ledford (1996) derive what the true parameters that characterize
extremal dependence ought to be, for different parametric distributions. Two
additional concepts that characterize extremal dependence are introduced in
order to link the results presented by Tawn and Ledford (1996) to χ and χ̄. For
two random variables with Fréchet marginal distributions, TF (Y1) and TF (Y2),
under broad conditions, the joint probability

Pr {TF (Y1) > y, TF (Y2) > y} ∼ L (y) Pr {TF (Y1) > y}1/η , as y →∞.

The parameter η ∈ (0, 1] is called the coefficient of tail dependence. By definition,
χ̄ := 2η−1. The function L can be any arbitrary function that is slowly varying
at infinity. A function is said to be slowly varying at infinity if, for any t fixed,
limy→∞ L (ty) /L (y) = 1. For asymptotically dependent random variables, i.e.
η = 1, as the function L (y) converges to a constant c as y →∞, it follows that

χ = lim
p→1

C̄ (p, p)

1− p
= c.

The true value for χ and χ̄ can be derived for random variables with continu-
ous cumulative distributions functions. A derivation of χ and χ̄ for the multi-
variate Gaussian distribution is provided in Property 2.2.3. It follows that the
multivariate Gaussian distribution is asymptotically independent, since χ = 0

and χ̄ = ρ, where ρ denotes the correlation between Yi and Yj .

Property 2.2.3 (χ and χ̄ for a bivariate Gaussian random variable).
If Y ∼ N (0,Σ) where σi = σj = 1 and ρ 6= 0, then χ = 0 and χ̄ = ρ.
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Proof. As shown by Tawn and Ledford (1996), the coefficient of tail depen-
dence is given by η = (1 + ρ) /2. It follows directly that χ̄ = ρ. As L (y) =

cρ (log y)
− ρ

1+ρ tends to 0 as y →∞, it follows that χ = 0.

The generalized extreme value distribution with symmetric logistic depen-
dence function yields asymptotically dependent data as χ = ρ and χ̄ = 1, see
Property 2.2.4.

Property 2.2.4 (χ and χ̄ for the bivariate generalized extreme value distribution
with symmetric logistic dependence function3 with parameter 0 < ρ < 1).

Proof. For asymptotic dependence, η = 1 and hence χ̄ = 1. Since L (y) = 2−2ρ,
it follows that χ = 2− 2ρ.

Since the exact values of χ and χ̄ are known for the aforementioned distri-
butions, the performance of χ̂ and ˆ̄χ can be assessed. Diagnostic plots for the χ
and χ̄ are shown in Figure 2.6. These figures suggest that the estimators χ̂ and
ˆ̄χ behave as expected. There is a certain degree of bias in ˆ̄χ, as shown by Figure
2.6(B) and Figure 2.6(D).

The concepts of asymptotic dependence and asymptotic independence can
be extended to higher dimensions. A formal definition of extremal indepen-
dence is presented in Theorem 2.2.5.

Definition 2.2.5 (Pairwise asymptotic independence (De Haan and Ferreira
2006)).
Let FY : Rd → R+ be a probability distribution function. Suppose that its marginal

distribution functions Fi : R→ R+ satisfy

lim
n→∞

Fni (bny + an) = exp
{
− (1 + ξiy)−1/ξi

}
, ∀i ∈ I,

and for all y such that 1 + ξiy > 0. Where

an := {a1n, . . . , adn} ∈ Rd and bn := {b1n, . . . , bdn} > 0.

Let Y = (Y1, . . . , Yd) be an random vector with distribution function FY. If

lim
t→∞

Pr {Yi > Ui(t), Yj > Uj(t)}
Pr {Yi > Ui(t)}

= 0

for all 1 ≤ i < j ≤ d, then

lim
t→∞

FnY (bny + an) = exp

{
−

d∑
i=1

(1 + ξiyi)
−1/ξi

}
3This distribution is used extensively in this thesis, and is formally introduced in Section 3.2.1.
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(C) χ for GEV data with symmetric logis-
tic dependence function data.
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(D) χ̄ for GEV data with symmetric logis-
tic dependence function data.

FIGURE 2.6: The sampling distribution of the χ̂ and ˆ̄χ esti-
mators (—) as a function of the non-exceedance probability p.
Computation of the estimators is repeated nB = 103 times, each
time with a new sample of n = 104 realizations from the bivari-
ate Gaussian distribution and the generalized extreme value
distribution with symmetric logistic dependence function, both
with dependence parameter ρ = 0.5. The 95% confidence inter-
vals (- - -) are based on the 2.5% and 97.5% empirical quantiles
of the obtained sample of χ̂ and ˆ̄χ estimates. The true value (- -

-) is obtained through Property 2.2.3 and 2.2.4.

for 1 + ξiyi > 0 and i ∈ I . Hence the components of the random vector (Y1, . . . , Yd)

are asymptotically independent.

Definition 2.2.5 extents the bivariate definitions of χ and χ̄ to higher dimen-
sions in a pairwise sense. However, it would be preferred to jointly characterize
tail dependence for multiple components of a random vector. For Y ∈ Rd and
any i ∈ I , Wadsworth and Tawn (2013) define the measure of d-dimensional joint
tail dependence by

χ := lim
p→1

Pr {Fj(Yj) > p : ∀j ∈ I, j 6= i | Fi(Yi) > p} , (2.30)

If χ > 0, the vector X is said to exhibit strong joint tail dependence and if χ = 0,
X is said to exhibits weak joint tail dependence. See Wadsworth and Tawn (2013)
for further reference.



33

Chapter 3

Heffernan and Tawn Model

Essentially, all models are wrong, but
some are useful.

— George Box

The Heffernan and Tawn (2004) model was proposed to address the deficien-
cies of the multivariate extreme value models introduced in Section 2.2. First
of all, these models are appropriate for either asymptotically dependent– or
asymptotically independent random variables, but not both. There is no ex-
plicit all-embracing parametric model for the two different classes of extremal
dependence structures. Secondly, statistical inference for these models is sub-
ject to the curse of dimensionality. Fitting models to high dimensional prob-
lems is very challenging when data is sparse, and can lead to severe model
misspecification.

A description of the Heffernan and Tawn model is provided in Section 3.1,
which follows Heffernan and Tawn (2004) closely. Statistical inference for the
Heffernan and Tawn model is demonstrated based on a simulation study, the
results of which are presented in Section 3.2. Retrieving the true parameter val-
ues by minimizing the negative log-likelihood function has proven to be very
challenging. This motivated contemplation of the model to identify the leading
sources of bias and variance in the maximum likelihood estimator. In particu-
lar, the influence of changing the sample size, non-exceedance probability and
dependence in the data sample is studied.
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3.1 An introduction to the Heffernan and Tawn model

The model proposed by Heffernan and Tawn (2004) is introduced in this sec-
tion. The mathematical framework is introduced in Section 3.1.1. The Heffer-
nan and Tawn model is introduced in Section 3.1.2. The first step towards an
operational model is to make and explicit assumption on the normalizing func-
tions, see Section 3.1.3. Constraints on these normalizing functions that ensure
stochastic ordering of the conditional quantiles were proposed by Keef et al.
(2013), and are presented in Section 3.1.3. The second step to fully characterize
the Heffernan and Tawn model is to assume a parametric limit distribution, see
Section 3.1.5. Finally, a fundamental issue of the Heffernan and Tawn model is
briefly introduced in Section 3.1.6.

3.1.1 Mathematical framework

The rationale behind the Heffernan and Tawn model is deceptively simple. De-
fine a d-dimensional random variable by Y ∈ Rd alongside the mathematical
framework introduced in Section 2.2.1. For an extreme set A, see Definition
2.2.1, the objective is to estimate the probability Pr (Y ∈ A). Start with the ob-
servation that Pr (Y ∈ A) can be expressed as

Pr (Y ∈ A) =
d∑
i=1

Pr (Y ∈ Ai) ,

=
d∑
i=1

Pr (Y ∈ Ai | Yi > vi) Pr (Yi > vi) ,

for an arbitrary high quantile vi associated to Yi and Ai. The high quantile vi is
not to be confused with the threshold ui defined in Section 2.1.3. Without loss
of generality, define vi := inf {yi : y ∈ Ai}. For each i ∈ I , the problem now
reduces to estimating both the marginal probability Pr (Yi > vi) and the con-
ditional probability Pr (Y ∈ Ai | Yi > vi). However, estimating the conditional
probability Pr (Y ∈ Ai | Yi > vi) is not trivial. By definition,

Pr (Y ∈ Ai | Yi > vi) =

∫ yFi

vi

Pr (Y ∈ Ai | Yi = y)
dFi (y)

1− Fi (vi)
. (3.1)

Under the assumption that Fi ∈ D(Gξ), estimating the marginal probability
is straightforward and, as Heffernan and Tawn (2004) state, “the derivative
of Fi(y)/ {1− Fi (vi)} in (3.1) is the generalized Pareto density function”. The
problem is now reduced to defining a model for Pr (Y ∈ Ai | Yi = y), where Yi
is referred to as the conditioning variable.
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The integrand in (3.1) is usually not evaluated on the original scale, but
rather on the Gumbel scale (Heffernan and Tawn 2004) or the Laplace scale
(Keef et al. 2013; Lugrin et al. 2016) to ensure that the marginal distributions of
the transformed random variable T (Y) are equivalent. Here and throughout,
the Laplace scale is adopted because of the similar parameterization for both
positive– and negative dependent variables.

3.1.2 Model description

In similar fashion as the normalization of component wise maxima discussed
in Section 2.1.2, assume the existence of normalizing functions a|i (y) ∈ Rd−1

and b|i (y) ∈ (0,∞]d−1, where

a|i (y) :=
{
a|1 (y) , . . . , a|d (y)

}
and b|i (y) :=

{
b|1 (y) , . . . , b|d (y)

}
.

Define the residual Zj|i as the normalization of TL (Yj) conditional on TL (Yi) = y

by normalizing functions aj|i (y) and bj|i (y). If vi > ui, then y > ui as well. The
indexing j | i refers to the j-th component of a particular vector, when i is
the index of the conditioning variable Yi. Throughout this thesis report, bold
symbols or numbers refer to vectors of appropriate dimension. For example,
a|i (y) = 1 refers to a d − 1 dimensional vector of ones. In vector notation,
conditional on TL (Yi) = y, the residual Z|i is defined by

Z|i :=
TL (Y−i)− a|i (y)

b|i (y)
, (3.2)

where for all i ∈ I ,

TL (Y−i) := TL (Y) \ TL (Yi) = {TL (Y1) , . . . , TL (Yi−1) , TL (Yi+1) , . . . , TL (Yd)} .

Let G|i — which is not to be confused with Gξ and Gu — denote the limiting
distribution of the residuals Z|i. The marginal distributions of G|i are non-
degenerate as long as the marginal distributions of FY are non-degenerate. In
addition, the marginal transformation TL ensures that the marginal distribu-
tions of the limiting distribution G|i are the same. Different marginal distribu-
tions would complicate the formulation of a generic model for the conditional
distribution of TL (Y−i) conditional on the conditioning variable TL (Yi) > ui.
Define the limit distribution G|i, for ui → yFi , by

Pr

{
TL (Y−i)− a|i (y)

b|i (y)
≤ z|i

∣∣∣∣TL (Yi) > ui

}
d→ G|i

(
z|i
)
. (3.3)
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Under the assumption that Fi ∈ D (Gξ), the re-scaled threshold exceedances of
the conditioning variable (Yi − ui) /f (ui) are generalized Pareto distributed.
As Heffernan and Tawn (2004) point out, that implies that “the re-scaled con-
ditioning variable is asymptotically conditionally independent of the residual Z|i,
given that Yi > ui, as ui → yFi”. Lugrin et al. (2016) provide an alternative for-
mulation of the limiting argument presented by Heffernan and Tawn (2004),
which states

Pr

(
Z|i ≤ z|i,

TL (Yi)− ui
f (ui)

> yi

∣∣∣∣TL (Yi) > ui

)
= Pr

(
Z|i ≤ z|i

∣∣∣∣ TL (Yi)− ui
f (ui)

> yi

)
Pr

(
TL (Yi)− ui
f (ui)

> yi

∣∣∣∣TL (Yi) > ui

)
d→ G|i

(
z|i
)
{1−Gui (y)} , as ui → yFi .

(3.4)

Two properties of G|i are discussed before appropriate candidate limit distri-
butions are considered.

First of all, if d ≥ 3, the limit distribution G|i is itself a joint distribution.
That means that the problem of estimating Pr (Y ∈ A) is reduced from fitting
the a model fro the joint tail distribution of a d dimensional random variable, to
fitting d different joint distributions for d− 1 dimensional residuals defined by
(3.2). To simplify statistical inference for the Heffernan and Tawn model, the
marginal distributions of G|i are assumed to be asymptotically conditionally
independent. The residual Z|i is said to be mutually asymptotically conditionally
independent of the conditioning variable Yi if, conditional on Yi = y,

G|i
(
z|i
)

=

d∏
j=1
j 6=i

Gj|i
(
zj|i
)
. (3.5)

Very few distributions exhibit this property. Among several distributions con-
sidered in the original paper by Heffernan and Tawn (2004), only the inverted
multivariate extreme value distribution with symmetric logistic dependence
function is asymptotically conditionally independent.

Secondly, the resulting limit distribution G|i in (3.3) is unique up to type. As
Heffernan and Tawn (2004) explain, that implies that “if the normalizing func-
tions a|i (y) and b|i (y) give a non-degenerate limit distribution G|i

(
z|i
)
, then

for vector constants ca ∈ Rd−1 and cb ∈ (0,∞]d−1, the normalizing functions

a∗|i (y) := a|i (y) + cab|i (y) and b∗|i := cbb|i (y) (3.6)

provide a non-degenerate limit distribution G|i
(
cbz|i + ca

)
”. Hence the limit

distribution G|i
(
z|i
)

and G|i
(
cbz|i + ca

)
are unique up to type, for all z|i ∈ Rd−1
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and “the normalizing functions a|i (y) and b|i (y) can only be identified up to
constants ca and cb” in (3.6).

Now that the residual Z|i and the limit distribution G|i are introduced, con-
ditional on TL (Yi) = y, the extremal dependence model proposed by Heffernan
and Tawn (2004) reduces to the semi-parametric regression model:

TL (Y−i) = a|i (y) + b|i (y) Z|i. (3.7)

Implementation of the model requires two explicit choices:

1. Functions for the normalizing functions a|i and b|i, see Section 3.1.3, and,

2. A probability distribution for the limit distribution G|i, see Section 3.1.5.

3.1.3 Explicit expressions for the normalizing functions

The growth of TL (Y−i) | TL (Yi) = y is governed by the dependence between
Yj and Yi for each j ∈ I \ {i}. Perfect positive dependence and perfect negative
dependence provide bounds on the normalizing functions a|i (y) and b|i (y),
albeit the degeneracy of the limiting distribution G|i in those cases.

Under perfect dependence, the normalizing functions are given by b|i (y) =

1, as well as a|i (y) = y for positive perfect dependence and a|i (y) = −y for
negative perfect dependence. For independent random variables, a|i (y) = 0

and b|i (y) = 1. Heffernan and Tawn (2004) derive the true normalizing func-
tions for different probability distributions, some of which are shown in Table
3.1.

The examples provided in Table 3.1 suggest that the parametric family

a|i (y) = α|iy and b|i (y) = yβ|i , (3.8)

summarizes the normalizing functions. If (3.8) is considered, conditional on
TL (Yi) = y, the residual Z|i is defined by

Z|i =
TL (Y−i)−α|iy

yβ|i
. (3.9)

Based on (3.6), it is apparent that parameterization (3.8) is unique, i.e. a∗|i (y) =

a|i (y) and b∗|i (y) = b|i (y) if and only if ca = 0 and cb = 1.
If the marginal distributions of Y are transformed to the Laplace scale, the

parameter space for the parameters of the Heffernan and Tawn model is given
by

Ωα|i×β|i ⊆ [−1, 1]d−1 × (−∞, 1]d−1 . (3.10)

The boundary of the parameter space is denoted by ∂Ωα|i×β|i .
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TABLE 3.1: Normalizing functions a|i (y) and b|i (y) for differ-
ent probability distributions of Y and their true limiting dis-
tribution G|i. Whether or not G|i is asymptotically condition-
ally independent (abbreviated to ACI), is also indicated. Source:

Heffernan and Tawn (2004, Table 1).

Distribution Gumbel Scale Laplace Scale G|i ACI
a|i (y) b|i (y) a|i (y) b|i (y)

Perfect
positive
dependence

y 1 y 1 Degenerate NA

Independence 0 1 0 1 Marginal Yes

Multivariate
Gaussian
(ρ > 0)

ρ2y y1/2 sign (ρ)ρ2y y1/2 Gaussian No

Multivariate
Gaussian
(ρ < 0)

− log
(
ρ2y

)
y−1/2 sign (ρ)ρ2y y1/2 Gaussian No

Multivariate
extreme
value
distribution

y 1 y 1 § No

Perfect
negative
dependence

− log y 1 −y 1 Degenerate NA

§ : G|i depends on the dependence function.

The relationship between the (in)dependence properties of TL (Y−i) and the
normalizing functions a|i (y) and b|i (y) naturally extends to the Heffernan and
Tawn parameters α|i and β|i, as shown in Table 3.2.

Asymptotic Dependence
• 𝜒 ≠ 0
• 𝜒̅ = 1

• 𝛼 = 1
• 𝛽 = 0

Asymptotic Independence
• 𝜒 = 0
• 𝜒̅ ≠ 0

Negative 
Association
• 𝜒̅ < 0
• 𝛼 < 0

Exact
Independence
• 𝜒̅ = 0
• 𝛼 = 0
• 𝛽 = 0

Positive 
Association
• 𝜒̅ > 0
• 𝛼 > 0

TABLE 3.2: Relationship between different classes of extremal
dependence with respect to the parameters of the Heffernan

and Tawn model.

The residual defined in (3.9) defines the semi-parametric non-linear regres-
sion model

TL (Y−i) = α|iy + yβ|iZ|i. (3.11)

The first term on the right hand side of (3.11), is basically a linear trend line with
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slopeα|i, analogous to linear regression. The β|i parameter in (3.11) introduces
non-linear scaling to the residual Z|i. The β|i parameter governs whether the
conditional quantiles of the different components of Y−i either converge or
diverge. As Lugrin et al. (2016) point out, when the scale parameter βj|i < 0,
“all the conditional quantiles for Yj converge to the same value as Yi increases,
which is unlikely in most environmental contexts”. A schematic overview of
how changing α|i and β|i affects (3.11) is shown in Figure 3.1 for a bivariate
setting. The distribution of the residual Z|i is left unspecified at the moment.
See Section 3.1.5 for the discussion on appropriate distributions for Z|i.

𝛼 < 0 𝛼 = 0

𝛽 < 0 𝛽 > 0

𝛽 < 0

𝛽 < 0 𝛽 > 0

𝛽 > 0 𝛽 < 0

𝛼 > 0

𝛽 > 0 𝛽 < 0

𝛽 < 0 𝛽 > 0

𝛽 = 0

𝛽 = 0

𝛽 = 0

𝛽 > 0

y y y

𝑇) 𝑌+ 𝑇) 𝑌+ 𝑇) 𝑌+

FIGURE 3.1: Overview of how the parameters α and β of the
Heffernan and Tawn model in a bivariate context affect the
semi-parametric model Y2 | Y1 = y ∼ αy + yβ . This is a de-
terministic equivalent of (3.11). The special case when β = 0
yields a linear curve with slope α. For β < 0 (- - -) and β > 0 (- ·
-), the yellow arrows indicate how the lines shift as β decreases

for β < 0 and increases for β > 0.

3.1.4 Constrained Heffernan and Tawn model

A flaw in the Heffernan and Tawn model parameterization was identified by
Keef et al. (2013). It turns out that by adopting (3.8), the joint probability of
two events estimated under the Heffernan and Tawn model can be higher than
the marginal probability of both events. Mathematically speaking, for a bivari-
ate random variable Y = (Y1, Y2), and return periods t1, t2 > 1, it is possible
that under the Heffernan and Tawn model the estimated joint probability can
exceed the marginal probabilities, i.e.

P̂r {Y1 > U1 (t1) , Y2 > U2 (t2)} > {min (t1, t2)}−1 . (3.12)

In order to resolve this issue, Keef et al. (2013) propose constraints on the
parameter space Ωα×β to ensure that “conditional quantiles for any form of
asymptotic independence cannot be larger than under asymptotic positive de-
pendence, nor can they be smaller than under asymptotic negative depen-
dence”. The proposed conditions are presented in Theorem 3.1.1. Imposing
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the constraints on (3.8) is referred to as the constrained Heffernan and Tawn model.
The constrained parameter space is denoted by ΩKEEF

α|i×β|i .
The following definitions enhance the formulation of Theorem 3.1.1. The

empirical quantile function of the residuals defined by (3.9) is denoted by Ũ . In
addition, define the residuals

Z−j|i := TL (Yj) + TL (Yi) and Z+
j|i := TL (Yj)− TL (Yi) .

For t ∈ (1,∞), the empirical quantile functions associated to Z−j|i and Z+
j|i are

Ũ− (t) := F̃←
Z−
j|i

(
1− 1

t

)
and Ũ+ (t) := F̃←

Z+
j|i

(
1− 1

t

)
.

The derivation of Theorem 3.1.1 considers a bivariate random variable. For
higher dimensional random variables, the conditions should be satisfied for
each j ∈ I\{i}when Yi is the conditioning variable. The impact of imposing the
constraints presented in Theorem 3.1.1 on statistical inference for the Heffernan
and Tawn model is discussed in Section 3.2 and 4.3.

Theorem 3.1.1 (Keef et al. (2013)).
For υi > ui — where υi is not to be confused with vi — conditional on Yi = y, the

stochastic ordering constraint

−y + Ũ− (t) ≤ Ũ (t) ≤ y + Ũ+ (t)

holds for all y > υi and for all t ∈ (1,∞), if and only if, both Case I and Case II hold.

• Case I: Either

αj|i ≤ min

{
1, 1− βj|iŨ (t) υ

βj|i−1

i , 1− υβj|ii Ũ (t) +
1

υi
Ũ+ (t)

}

or, 1− βj|iŨ (t) υ
βj|i−1

i < αj|i ≤ 1 and

Ũ+ (t) +

(
1− 1

βj|i

){
βj|iŨ (t)(

1− αj|i
)βj|i

}1/(1−βj|i)

> 0.

• Case II: Either

−αj|i ≤ min

{
1, 1 + βj|iŨ (t) υ

βj|i−1

i , 1 + υ
βj|i
i Ũ (t)− 1

υi
Ũ− (t)

}
,
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or, 1 + βj|iŨ (t) υ
βj|i−1

i < −αj|i ≤ 1 and

−Ũ− (t) +

(
1− 1

βj|i

){
−

βj|iŨ (t)(
1 + αj|i

)βj|i
}1/(1−βj|i)

> 0.

Apart from α, β and the data, the constraints defined by 3.1.1 are a function
of both υi and t. As Keef et al. (2013) point out, it suffices to evaluate the
constraints for t → 1 and t → ∞, as a simulation study performed by the
authors showed that the constraints are satisfied for all t ∈ (1,∞) if they are
satisfied for these two limiting cases.

Choosing υi is not trivial. Keef et al. (2013) only point out that “to give
the greatest flexibility to the fits, the constraints are only imposed on extrap-
olations [beyond the observed data]”. Thus υi is assigned an arbitrary value
“above the maximum observed value of Yi”. Throughout this thesis, υi =

sup {y : y = yi1, . . . , yin}+ ε and ε = 1. The constraints show little sensitivity to
the choice of ε. However, as Keef et al. (2013) point out, “in contrast, when υi
was smaller [than the maximum observed value of Yi] the fit of the resulting
constrained model was poor”.

Throughout this thesis, the constraints presented in Theorem 3.1.1 are im-
posed implicitly. For any proposal θ∗ ∈ Ωθ, the constraints evaluated. An arbi-
trary large number is returned for the negative log-likelihood if the constraints
are not satisfied.

3.1.5 Explicit choice on the limit distribution

The aim of this section is to choose a suitable distribution for the residuals Z|i

to define the semi-parametric regression model defined by (3.11). The Gaus-
sian distribution and the parsimonious empirical distribution are briefly in-
troduced. Although any parametric distribution would suffice, the Gaussian
distribution is adopted to define the likelihood function for the Heffernan and
Tawn model. As Heffernan and Tawn (2004) point out, “we have considered
a range of parametric distributions for the marginals of Z|i and selected the
Gaussian distribution for its simplicity and superior performance in a simula-
tion study”. A recent work by Lugrin et al. (2016) considers a Dirichlet pro-
cess, which the authors show to yield greater flexibility. This is a promising
development as the two alternatives discussed in this section each have their
deficiencies.
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Gaussian distribution

If the limiting distributionG|i is assumed to be Gaussian with parameters µ|i ∈
Rd−1 and ψ2

|i > 0, the Heffernan and Tawn model is given by

TL (Y−i) | TL (Yi) = y ∼ N
(
α|iy + yβ|iµ|i, y

2β|iψ2
|i

)
, ∀i ∈ I. (3.13)

The parametersµ|i andψ2
|i are referred to as nuisance parameters because these

parameters govern the random noise in the regression model formulation (3.7).
The Gaussian distribution is shown to be true true limit distribution if the data
under scrutiny is itself Gaussian distributed. For simulating purposes, prac-
titioners often turn to the empirical distribution as residuals typically show a
poor fit to the Gaussian distribution. The parameter space for the nuisance
parameters µ|i and ψ2

|i is given by

Ωµ|i×ψ2
|i
⊆ Rd−1 × [0,∞)d−1 . (3.14)

Define θ :=
{
α,β,µ,ψ2

}
, such that Ωθ := Ωα×β × Ωµ×ψ2 .

Empirical distribution

Once the parameters of the Heffernan and Tawn model have been estimated,
plugging these estimates in (3.2) yields a vector of residuals Ẑ|i. Rather than
simulating residuals from a parametric distribution, instead sample from Ẑ|i,
which is defined by

Ẑ|i :=
TL (Y−i)− α̂|iy

yβ̂|i
. (3.15)

This pragmatic approach address possible non-Gaussian features in the data
that would have been ignored if the residuals would have been sampled from
a Gaussian distribution with parameters µ̂|i and ψ̂2. In this sense, sampling
from the empirical distribution reduces the risk of model misspecification due
to a poor choice of the limit distribution.

However, if the data sample to which the model is fitted is small, the num-
ber of residuals is also small. In that case, simulations under the Heffernan
and Tawn model based on the empirical residuals Ẑ|i will yield ray-like re-
sults, since each residual is sampled very often. It stands to reason that these
simulations are not truly random and are possibly severely biased. Albeit this
issue, the empirical distribution is widely used in practice.
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3.1.6 Exchangeability and self consistency

By assumption asymptotic conditional independence, there is no guarantee
that the different conditional distributions estimated under the Heffernan and
Tawn model agree on the joint distribution. The problem is briefly discussed
in this section to raise awareness for the issue.

A d-dimensional multivariate random variable Y is said to be pairwise ex-
changeable if for any i, j = 1, . . . , d such that i 6= j, the dependence of Yi on Yj
is equivalent to the dependence of Yj on Yi. To be more specific, following the
definitions presented by Heffernan and Tawn (2004), “the random variables
Yi and Yj exhibit weak pairwise extremal exchangebility if θj|i = θi|j and strong
pairwise extremal exchangebility if in addition Gi|j = Gj|i.

In theory, the joint distribution FY of Y governs each of the different con-
ditional distributions TL (Y−i) | TL (Yi) = y, for i = 1, . . . , d. The conditional
distributions are said to be self consistent if they agree on the joint distribution.
Mathematically speaking, for a bivariate random variable, the self consistency
property holds if and only if

d

dyj
Pr {TL (Yj) ≤ yj | TL (Yi) = yi} fi (yi)

=
d

dyi
Pr {TL (Yi) ≤ yi | TL (Yj) = yj} fj (yj) . (3.16)

Imposing (3.16) on asymptotically independent random variables is too com-
plex in practice. For asymptotically dependent data on the other hand, if either
αj|i = 1 and/or αi|j = 1, (3.16) is trivially satisfied.

See Heffernan and Tawn (2004) and in particular Liu and Tawn (2014) for
a more thorough description of the self consistency problem. In practice, the
different models for each of the conditional distributions Y−i | Yi = y are as-
sumed to be independent. This assumption justifies neglecting the constraints
related to exchangeability and self consistency and ensures that the model is
practically relevant.

The possibility of imposing constraints such that self consistency holds in
a subspace of the joint tail region is considered by Liu and Tawn (2014). The
authors derive alternative expressions for the residual distribution such that
self consistency holds. Although their results extend to higher dimensional
problems, in practice the constraints can only be imposed for bivariate prob-
lems. The exchangeability and self consistency issue is still an active field of
research.
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3.2 Statistical inference

The pragmatic assumption that the limit distribution G|i in (3.4) is Gaussian
defines a likelihood function for the Heffernan and Tawn model. The goal of
this section is to discuss statistical inference based on negative log-likelihood
minimization. In general, statisticians distinguish Bayesian inference and fre-
quentist methods.

Bayesians start with the observation that as the data is observed, it is in-
herently certain. Parameters, on the other hand, are assumed to be random
objects with a probability distribution that characterizes them. See Chapter 4
for an elaborate introduction to Bayesian statistics and Bayesian inference for
the Heffernan and Tawn model parameters.

Frequentist methods are based on the paradigm that unknown model pa-
rameters are deterministic, while the data is random. Maximizing the like-
lihood of observing the data over the parameter space Ωθ is a widely used
method for statistical inference. A description of the methodology, as well as
maximum likelihood estimates for the Heffernan and Tawn model parameters
are presented in this section.

Two different data sets, referred to as Case 1 and Case 2 data, are consid-
ered in a simulation study. See Section 3.2.1 for an introduction to the data.
The likelihood function for the Heffernan and Tawn model is derived in Sec-
tion 3.2.2. The gradient and Hessian matrix of the likelihood function and the
expected Fisher information matrix are derived in Section 3.2.3. Identifiability
of the Heffernan and Tawn model parameters is questioned in Section 3.2.4,
and it is shown that the observed– and expected Fisher information matrix
are non-invertible unless µ = 0. Bias and variance of the maximum likeli-
hood estimator for the Heffernan and Tawn model parameters is discussed in
Section 3.2.6. Bootstrapping provides a pragmatic means of quantifying uncer-
tainty when asymptotic normality of the maximum likelihood estimator does
not hold. It is briefly discussed in Section 3.2.7.

3.2.1 Data for simulation study

Two different data samples, referred to as Case 1 and Case 2, are introduced.
The main objective of this section is to emphasize key features of the data. Thor-
ough knowledge of the data helps to correctly interpret results of the simula-
tion studies presented in subsequent sections and Chapter 4.

Attention is restricted to bivarate distributions as it is a natural starting
point and communicating results is straightforward. Symmetric distributions
are considered such that it suffices to present the results for Y2 given Y1 > u,
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and the exchangeability issue discussed in Section 3.1.6 is avoided. The two
different cases that are considered are:

• Case 1: bivariate Gaussian distribution, see Section 3.2.1 and,

• Case 2: bivariate generalized extreme value distribution with symmetric
logistic dependence function, see Section 3.2.1.

These particular distributions are chosen as they cover both asymptotic inde-
pendence and asymptotic dependence, as shown in Section 2.2.6.

As discussed in Section 2.1.3, extreme value analysis requires defining a
threshold. The 95%-quantile of the marginal distributions is assumed to be an
appropriate choice for the threshold u. This claim is substantiated by Figure
3.2 and 3.3 for Case 1 and Case 2 respectively. A high threshold is preferred to
reduce bias in parameter estimates. The total sample size nT = 3 · 104 is chosen
such that the extreme set A will contain n = 1500 threshold exceedances. This
sample size is assumed to be sufficiently large to mitigate bias and variance in
the maximum likelihood estimator related to the sampling error.

Independent and identically distributed samples are considered in this chap-
ter. Data is transformed such that each of the marginal distributions is equal to
the unit Laplace scale, defined by (2.18).

Case 1: the Gaussian distribution

Let the random variable Y = (Y1, Y2) be bivariate Gaussian distributed with
zero mean and unit variance, i.e.

Y ∼ N (0,Σ) , where Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
.

Let ρ = 1/2 such that Y1 and Y2 are positively dependent. Table 3.1 shows that
for Gaussian data αT = ρ2 and βT = 1/2. In order to compare the performance
of different inferential methods for the Heffernan and Tawn model, take σ1 =

σ2 = 1, such that α̂MLE is expected to be equal to ρ2 = 1/4. Simulation from the
multivariate Gaussian distribution is straightforward.

Figure 3.2 provides weak evidence that the 95% quantile is an appropriate
choice for the threshold u. From the threshold u onward, the generalized Pareto
shape parameter ξ̂ should show stable behavior. Although a straight line could
be drawn trough the 95% confidence interval from the 95% quantile onward,
the median of the sampling distribution of ξ̂MLE does certainly not show stabil-
ity, as shown in Figure 3.2(A). Uncertainty regarding the maximum likelihood
estimate for p = 0.95 is visualized in Figure 3.2(B). This plot can be inter-
preted as a cross section of the sampling distribution shown in Figure 3.2(A) at
p = 0.95 . As reported in Table 2.1, the true value of the shape parameter ξT
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for the Gaussian distribution is equal to 0. Figure 3.2(B) shows the maximum
likelihood estimate ξ̂MLE is significantly different from 0. Both figures confirm
that convergence of ξ̂ to ξT is slow, in accordance with the statement in Section
2.1.2.

The quantile-quantile plot against theoretical quantiles of the generalized
Pareto distribution, shown in Figure 3.2(C), suggest that when the tail of distri-
bution is assumed to start at the 95% quantile, it is well approximated by the
generalized Pareto distribution with parameters ξ̂MLE = −0.14[−0.19,−0.09] and
σ̂u,MLE = 0.48[0.45,0.52].
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FIGURE 3.2: Diagnostic plots which support the claim that the
95% quantile is an appropriate choice for the threshold u for
Case 1 data. The sampling distribution of ξ̂MLE is shown in Fig-
ure 3.2(A) and is summarized by its median (—) and 95% sym-
metric confidence interval (- · -), based on the estimated vari-
ance of the estimator. The intersection between the exact profile
likelihood (—) and (· · · ) shown in Figure 3.2(B), as well as the
intersection of (· · · ) and the Taylor series expansion around the
maximum likelihood estimate for the scale parameter as a func-
tion of shape parameter (—) yield two different 95% confidence
intervals for ξ̂MLE. A quantile-quantile plot against theoretical
quantiles of the generalized Pareto distribution is shown in Fig-

ure 3.3(C).

Case 2: the GEV distribution with symmetric logistic dependence function

The generalized extreme value distribution with symmetric logistic dependence
function was proposed by Coles et al. (1991). In a bivariate context, the expo-
nent measure for the symmetric logistic dependence function is given by

V (y1, y2) =
(
y
−1/ρ
1 + y

−1/ρ
2

)ρ
.

The spectral distribution function H (dw) defined by (2.23), for the symmetric
logistic dependence function is differentiable, such that for 0 < w < 1 and
0 < ρ < 1, h (w) is given by

h (w) :=
ρ−1 − 1

2
{w (1− w)}−

1+ρ
ρ

{
w−1/ρ + (1− w)−1/ρ

}ρ−2
.
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This model yields independence and perfect dependence between Y1 and Y2

when ρ ↑ 1 and ρ ↓ 0 respectively. Let ρ = 1/2 such that Y1 and Y2 are positive
asymptotically dependent. Recall from Table 3.1 that for the multivariate ex-
treme value distribution with symmetric logistic dependence function, αT = 1

and βT = 0. The methodology proposed by Stephenson (2003) is used to simu-
late the data.

Figure 3.3 provides diagnostic plots in favor of the claim that the 95% quan-
tile is an appropriate choice for the high threshold u for Case 2 data. Fig-
ure 3.3(A) shows that ξ̂MLE is stable at the 95% quantile. The profile likeli-
hood shown in Figure 3.3(B) suggests that ξ̂MLE is close to ξT = 1. The max-
imum likelihood estimates and associated confidence intervals are given by
ξ̂MLE = 1.06[0.96,1.16] and σ̂uMLE = 19.6[17.7,21.7]. These arguments provide suffi-
cient evidence to legitimize the assumption that the 95% marginal quantile is a
decent choice for the threshold u. The quantile-quantile plot shown in Figure
3.3(C) shows the generalized Pareto distribution does not fit the data particu-
larly very well.
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FIGURE 3.3: Diagnostic plots which support the claim that the
95% quantile is an appropriate choice for the threshold u for
Case 2 data. The sampling distribution of ξ̂MLE is shown in Fig-
ure 3.3(A) and is summarized by its median (—) and 95% sym-
metric confidence interval (- · -), based on the estimated vari-
ance of the estimator. The intersection between the exact profile
likelihood (—) and (· · · ) shown in Figure 3.3(B), as well as the
intersection of (· · · ) and the Taylor series expansion around the
maximum likelihood estimate for the scale parameter as a func-
tion of shape parameter (—) yield two different 95% confidence
intervals for ξ̂MLE. A quantile-quantile plot against theoretical
quantiles of the generalized Pareto distribution is shown in Fig-

ure 3.3(C).

3.2.2 Likelihood function for the Heffernan and Tawn model

The purpose of maximum likelihood methods is to estimate model parame-
ters given the observed data. The likelihood function for the Heffernan and
Tawn model with Gaussian residual distribution is derived. Maximum likeli-
hood estimates for the parameters of the Heffernan and Tawn model for both
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Case 1 and Case 2 are presented. Peculiarities of the likelihood function and
maximum likelihood estimator are discussed.

It is natural to compare the performance of an estimator relative to the true
value. Given the distribution of the data under scrutiny, the true parameter
values θT are known from Table 3.1. A schematic overview is shown in Figure
3.4. For the Heffernan and Tawn model being specified by (3.13), the probabil-
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FIGURE 3.4: Different steps in the inference methodology, and
how the true parameters θT can be compared to the maximum

likelihood estimates θ̂MLE.

ity density function of Y2 conditional on Y1 = y, where y > u to ensure that Y1

is extreme, is given by

fY2|Y1=y1
(y2 | θ, y1) =

1√
2πy2β

1 ψ2

exp

−1

2

(
y2 − αy1 − yβ1µ

)2

y2β
1 ψ2

 .

The subscripts of the parameters are left out as these are clear from the context,
i.e. θ := θ2|1. The likelihood function L : θ → [0,∞) is a measure of the like-
lihood of observing a sample y of Y, given the parameters θ =

{
α, β, µ, ψ2

}
.

The likelihood function is defined by

LHT (θ | y) :=

n∏
l=1

fY2|Y1=y1
(y2l | θl, y1l) (3.17)
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The negative log-likelihood function of the Heffernan and Tawn model speci-
fied by (3.13) is given by

¯̀
HT(θ | y) = −

n∑
l=1

log fY2|Y1=y1
(y2l | θl, y1l) ,

=
n

2
log(2π) +

n

2
log
(
ψ2
)

+ β

n∑
l=1

log (y1l)

+
1

2

n∑
l=1

(
y2l − αy1l − yβ1lµ

)2

y2β
1l ψ

2
.

(3.18)

Minimizing the negative log-likelihood (3.18) is equivalent to maximizing (3.17)
as the logarithm is a monotonic transformation. The former method is pre-
ferred as it is superior in terms of numerical stability. Let θ̂MLE denote the max-
imum likelihood estimate of the parameters θ, which is defined by

θ̂MLE := arg max
θ

LHT (θ | y) = arg min
θ

¯̀
HT (θ | y) .

The maximum likelihood estimator is known to exhibit certain asymptotic prop-
erties. First of all, the maximum likelihood estimator is consistent, i.e. θ̂MLE

p→
θT, where θT denotes the true parameter values. Secondly, the asymptotic nor-
mality property states that the maximum likelihood estimator converges to the
true parameter value, i.e.

√
n
(
θ̂MLE − θT

)
d→ N {0, I (θT)} , as n→∞, (3.19)

where I (θ) denotes the expected Fisher information matrix1. These properties
are discussed in more detail in Section 3.2.4 and 3.2.6.

Thorough understanding of the likelihood function is important to under-
stand to what extend the aforementioned properties apply to the likelihood
function of the Heffernan and Tawn model. Visual exploration of the four di-
mensional parameter space Ωθ is not straightforward. Pairwise profile likeli-
hood contours are shown in Figure 3.5 and 3.6. These contours are obtained by
fixing two parameters to their respective maximum likelihood estimate, while
varying the other variables. This approach provides a rough idea of the ge-
ometry of the parameter space and the likelihood function in the vicinity of
the maximum likelihood estimates. On the contrary, if the parameters being
fixed are not equal their maximum likelihood estimates, the geometry of the
parameter space can deviate significantly. See Figure 3.5 and 3.6, left of the di-
agonal, for the profile negative log-likelihood contours for Case 1 and Case 2

1The expected Fisher information matrix is formally introduced in Section 3.2.3
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respectively.
The impact of imposing the constraints which are introduced in Section

3.1.4, is shown by the plots right of the diagonal. The colored surfaces indicate
for what subspace of Ωθ the profile likelihood function is defined when the
constraints are imposed. Several features of the likelihood function that stand
out in Figure 3.5 and 3.6 are briefly summarized.

1. The range of the likelihood function shown on the vertical axis of the
plots on the diagonal, reveals that changes in α̂ and β̂ have an order of
magnitude bigger impact on the negative log-likelihood function than
similar changes in µ̂ or ψ̂2.

2. The likelihood is virtually flat along a ridge in the unrestricted likelihood
contour plots for α̂ – µ̂ and β̂ – ψ̂2.

3. The color of the contour lines and the distance between likelihood con-
tours suggest the curvature of the parameter space Ωθ is non-constant.

4. The geometry of the profile likelihood surfaces for Case 1 and Case 2 are
similar, up to a shift towards the boundary of the parameter space for the
latter case.

5. Maximum likelihood estimates for asymptotically independent data are
in the interior of the parameter space Ωθ. For asymptotically dependent
data, the maximum likelihood estimates are on the boundary of the pa-
rameter space.

The observations for the unconstrained profile likelihood contours also apply
to the plots shown right of the diagonal. Some additional properties for the
constrained likelihood surfaces are listed below.

1. Maximum likelihood estimates are not affected by imposing the Keef con-
straints for asymptotically independent data.

2. The constrained maximum likelihood estimates are on — or very close to
— the boundary of the feasible parameter space for both asymptotically
dependent data and asymptotically independent data.

3. The curvature is unaffected.

4. The nuisance parameter space Ωµ×ψ2 is unaffected by the constraints.

5. The scale of the vertical axis in the µ̂ – β̂ and ψ̂2 – β̂ plots is incredibly
small, which is related to the maximum likelihood estimate being in a
corner of the parameter space, as shown in the β̂ – α̂ plot. By fixing α̂ =

α̂MLE, any change in β̂ will move β̂ outside the feasible parameter space.
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FIGURE 3.5: Profile negative log-likelihood contours around
the maximum likelihood estimates (�) for the parameters of the
Heffernan and Tawn model for Case 1. The unconstrained like-
lihood contours (shown left of the diagonal) are spaced such
that each contour marks a 250 unit increase in negative log like-
lihood. The profile negative log-likelihood surfaces on the right
of the diagonal show the impact of imposing the conditions pro-
posed by Keef et al. (2013) on the parameter space as well as the

feasible maximum likelihood estimates (�).
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FIGURE 3.6: Profile negative log-likelihood contours around
the maximum likelihood estimates (�) for the parameters of the
Heffernan and Tawn model for Case 2. The unconstrained like-
lihood contours (shown left of the diagonal) are spaced such
that each contour marks a 250 unit increase in negative log like-
lihood. The profile negative log-likelihood surfaces on the right
of the diagonal show the impact of imposing the conditions pro-
posed by Keef et al. (2013) on the parameter space and the max-

imum likelihood estimates (�).
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3.2.3 Curvature of the likelihood surface

The curvature of the negative log-likelihood function exhibits several interest-
ing features. The gradient of (3.18) is defined by

∇θ ¯̀
HT :=

(
∂ ¯̀

HT

∂α

∂ ¯̀
HT

∂β

∂ ¯̀
HT

∂µ

∂ ¯̀
HT

∂ψ2

)ᵀ
, (3.20)

where ¯̀
HT := ¯̀

HT (θ | y). The Hessian matrix of (3.18) defines the observed Fisher
information matrix

J (θ) := ∇∇ᵀ ¯̀HT =


∂2 ¯̀

HT

∂α2
∂2 ¯̀

HT
∂α∂β

∂2 ¯̀
HT

∂α∂µ
∂2 ¯̀

HT

∂α∂ψ2

∂2 ¯̀
HT

∂α∂β
∂2 ¯̀

HT

∂β2
∂2 ¯̀

HT
∂β∂µ

∂2 ¯̀
HT

∂β∂ψ2

∂2 ¯̀
HT

∂α∂µ
∂2 ¯̀

HT
∂β∂β

∂2 ¯̀
HT

∂µ2
∂2 ¯̀

HT

∂µ∂ψ2

∂2 ¯̀
HT

∂α∂ψ2
∂2 ¯̀

HT

∂β∂ψ2
∂2 ¯̀

HT

∂µ∂ψ2
∂2 ¯̀

HT

∂ψ2∂ψ2

 . (3.21)

The expected Fisher information is defined as I (θ) := E {J (θ)}. For the likeli-
hood function of Y2 conditional on Y1 = y, given by (3.18), the entries of the
expected Fisher information matrix are given by

I (θ)ij = E

[(
∂

∂θi
¯̀

HT

)(
∂

∂θj
¯̀

HT

)∣∣∣∣θ, y] . (3.22)

The explicit expressions for the gradient, observed– and expected Fisher infor-
mation matrix are presented in Appendix A.4 and A.5. If the expected Fisher
information is available, it is preferred over the observed Fisher information as
it is more stable. In addition, Cao (2013) shows that “the inverse of the expected
Fisher information evaluated at θ̂MLE, outperforms the inverse of the observed
Fisher information matrix under a mean squared error criterion”.

The gradient and expected Fisher information matrix for the Heffernan and
Tawn model likelihood function exhibit special properties when evaluated at
the maximum likelihood estimate θ̂MLE. A necessary condition for θ̂MLE to be
a proper maximum likelihood estimate states that if θ̂MLE lies in the interior of
Ωθ, then

• ∇θ ¯̀
HT

(
θ̂MLE

∣∣∣y) = 0, and,

• I
(
θ̂MLE

)
is a positive semi-definite matrix.

The former property enables the highly efficient Newton-Raphson method to
find the roots of (3.18). Semi-positive definiteness is particularly useful because
it ensures invertibility of the expected Fisher information matrix. The asymp-
totic normality property then states that the inverse of the expected Fisher in-
formation matrix defines an appropriate approximation to a covariance matrix
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that summarizes the uncertainty regarding the maximum likelihood estimator
θMLE.

If, on the contrary, θ̂MLE ∈ ∂Ωθ, which is the case for asymptotically depen-
dent random variables as α = 1, or when the constraints proposed by Keef
et al. (2013) are imposed, as shown in Figure 3.5 and 3.6. As long as the un-
constrained maximum likelihood estimate is feasible under the constraints, the
gradient of the likelihood surface will still be equal to zero when evaluated at
θ̂MLE. However, as shown in Figure 3.6, this is not the case for asymptotically
dependent data.

The expected Fisher information matrix can be evaluated on the boundary
of the parameter space, as long as the second derivatives of the likelihood func-
tion are defined on the boundary of the parameter space. However, symmetric
confidence intervals based on inverting the expected Fisher information ma-
trix are clearly not an appropriate way of quantifying uncertainty. Least of all
because half the confidence interval will fall outside the parameter space.

Minimizing functions near the boundary of the parameter space is also
tricky from a numerical perspective. Algorithms typically fail to identify a
maximum or minimum exactly on the boundary of the parameter space be-
cause of convergence criteria. This will introduce bias in the maximum likeli-
hood estimates, although for well-behaved functions this bias will typically be
small in magnitude. The implications of maximum likelihood estimates being
on the boundary of the parameter space on negative log-likelihood minimiza-
tion are discussed by Self and Liang (1987) and Feng and McCulloch (1992).
The authors propose slack constraints and reparameterizations to address the
issue. In Chapter 4 the issue will be revisited when encountered in Bayesian
inference.

3.2.4 Identifiability of the model parameters

The generic definition of parameter identifiability states that the parameters of
the Heffernan and Tawn model are identifiable, if for all θ ∈ Ωθ,

θ 6= θ̂MLE ⇔ fY2|Y1=y (y2 | θ, y1) 6= fY2|Y1=y

(
y2 | θ̂MLE, y1

)
. (3.23)

Issues regarding the identifiability of β have been raised by Cheng et al. (2014),
who postulate that β can not be identified from µ or ψ2.

Identifiability of the parameters of the Heffernan and Tawn model is re-
lated to the parameter interactions in (3.18). These interactions are induced by
the normalizing functions (3.8). Under the assumption that the residual Z2|1

defined by (3.9) is Gaussian, the first two moments of Y2 given Y1 = y, which



3.2. Statistical inference 55

define the Gaussian distribution of the residuals, are given by

E {TL (Y2) | TL (Y1) = y} = αy+yβµ and var {TL (Y2) | TL (Y1) = y} = y2βψ2.

(3.24)
It is clear from (3.24) that if µ = 0, the interaction between α and β as well as α
and µ is broken. On the other hand, if β ≈ 1, then α can not be distinguished
from µ.

The strong interaction between α and µ, as well as β and ψ2, results in a
diagonal ridge in the profile likelihood contours shown in Figure 3.5 and 3.6.
The likelihood function is approximately constant along this ridge.

This suggests non-identifiability or parameter redundancy — i.e. the prob-
lem can be fully parameterized by a subset of θ — of the Heffernan and Tawn
model parameters. If the rank of the expected Fisher information matrix is less
than the number of model parameters, then the model is parameter redundant.
Catchpole and Morgan (1997) show that “if a model is parameter redundant,
then it is not locally identifiable”, and Rothenberg (1971) proves that under
mild conditions, a model is locally identifiable in a neighborhood of θ, if and
only if the expected Fisher information matrix I (θ) is invertible. Although
the converse of this statement does not hold, noninvertibility of the expected
Fisher information indicates some defect in the parameterization of the Hef-
fernan and Tawn model. Noninvertibility of the expected Fisher information
matrix is discussed in Section 3.2.5. It is apparent from (3.24) that the only case
when the model is truly parameter redundant is when β = 1. This case will not
be encountered in practice as this might only happen for perfect dependence
for which the limit distribution G|i is degenerate anyway. It is concluded that
the Heffernan and Tawn model is not parameter redundant.

3.2.5 Noninvertibility of the Fisher information matrix

The expected Fisher information matrix has many useful applications when
it is invertible and positive definite. In practice, two different problems can
arise. First of all, the matrix can be singular, which means that its inverse does
not exist. Secondly, the matrix can be non-positive definite, which means that
although the inverse of a matrix may exist, it does not define a proper covari-
ance matrix. A matrix that is positive definite is non-singular, but the converse
is not necessarily true. Hence in this context, it suffices to study whether the
observed– and expected Fisher information matrix is non-positive definite.

A d × d matrix G is said to positive semi-definite if xᵀGx ≥ 0, for all x ∈
Rd. There are several properties of positive semi-definite matrices that can be
verified in order to establish whether the expected Fisher information matrix is
positive definite. A matrix G is said to be positive semi-definite, if and only if:
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1. All eigenvalues of the matrix G are non-negative,

2. All its leading principal minors are non-negative, where the n-leading princi-
pal minor is defined as the determinant of the upper left n×n sub-matrix,
and,

3. There exists a unique Cholesky decomposition of the form G = LLᵀ, where
L is a lower-triangular matrix.

The first property can be easily tested. Figure 3.7 shows what values of θ yield
negative eigenvalues for the observed Fisher information matrix for Case 1 and
Case 2. The subspace of Ωθ that yields non-negative eigenvalues is marked by
the cyan colored surfaces. A similar plot for the expected Fisher information
matrix is included in Appendix B in Figure B.2.

The narrow ridges in the α – µ plots in both Figure 3.7(A)-(B) resemble the
ridge in the α – µ plot in Figure 3.5, and indicate that all eigenvalues are pos-
itive along this ridge. For negative eigenvalues, moving along an eigenvector
associated to a negative eigenvalue should further decrease the negative log-
likelihood. Conversely, as all eigenvalues are positive along the narrow cyan
colored ridge, this supports the observation in Section 3.2.2 that the negative
log-likelihood is flat along the ridge in the α – µ plot in Figure 3.7(A). As a
consequence, because negative eigenvalues in the observed Fisher informa-
tion matrix imply non-positive semi-definiteness, which in turn implies non-
invertibility, only the confined subspace of Ωθ indicated by the cyan colored
ridge in Figure 3.7 yields an invertible observed Fisher information matrix.
The issue is even more profound for the expected Fisher information matrix,
as shown in Figure B.2.

Negative eigenvalues for the observed Fisher information matrix are re-
lated to the determinant being negative. Positive definiteness can be forced
upon the observed Fisher information matrix by forcing off-diagonal elements
to zero, such that each of the leading principal minors are non-negative. In or-
der to preserve the strong interaction between the pairs α– µ and β – ψ2, set all
non-diagonal elements in the observed Fisher information matrix to zero, ex-
cept for the entries associated to these pairs. The resulting matrix is referred to
as the restrained observed Fisher information matrix and is denoted by J R (θ).
The union of the blue and cyan colored areas indicates what subspace of Ωθ

yields a positive semi-definite restrained observed Fisher information matrix.
It is remarkable that for certain values of θ, neither the full– nor the restrained
observed Fisher information matrix is positive semi-definite. As shown in Fig-
ure B.2 the restrained expected Fisher information matrix is stable for each
θ ∈ Ωθ.
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(A) Case 1: Asymptotically independent data.
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(B) Case 2: Asymptotically dependent data.

FIGURE 3.7: Subspace of Ωθ that yields non-negative eigen-
values for the observed Fisher information matrix J (θ) (cyan)
and restrained observed Fisher information matrix J R (θ)
(blue+cyan). The area where neither matrix is semi-positive
definite (red) and the maximum likelihood estimates (�) are

also indicated.
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3.2.6 Bias and variance of the maximum likelihood estimator

Thorough understanding of the factors that influence bias and uncertainty of
the maximum likelihood estimator is import for meaningful statistical infer-
ence. Three parameters which govern the bias and variance of the maximum
likelihood estimator are identified.

1. Sample size nT,

2. Dependence in the data sample, determined by ρ, and,

3. Non-exceedance probability p.

A simulation study is performed to establish a relationship between these pa-
rameters and the sampling distribution of the maximum likelihood estimator
for the Heffernan and Tawn model parameters.

First of all, the influence of the sample size on the maximum likelihood
estimator is studied. This relationship is governed by the asymptotic normality
property of the maximum likelihood estimator given by (3.19). As long as the
maximum likelihood estimate lies in the interior of the parameters space, the
variance deflates at a rate 1/

√
nT. In theory, all else being equal, increasing the

total sample size deflates the variance of the maximum likelihood estimator
and does not affect the bias.

Whether reality sticks to the truth is shown by the results presented in Ap-
pendix B in Figure B.3. These results confirm that for Case 1 data, the variance
of the maximum likelihood estimator decreases at a rate 1/

√
nT. The estimator

is biased as the median of the sampling distribution is approximately constant
and does not converge to the true parameter values. This confirms that increas-
ing the sample size leads to a decreases the uncertainty and does not affect the
bias. For Case 2 data, θT ∈ ∂Ωθ as αT = 1. Although the median of the sam-
pling distribution approaches 1 as n→∞ it will not truly converge to 1. Hence
θT ∈ ∂Ωθ for Case 2 data is identified as a source of bias in the maximum like-
lihood estimator.

Secondly, the relationship between the strength of dependence in the data
sample and the sampling distribution of the maximum likelihood estimator
is studied. In Section 2.2.6 and Table 3.1, a relationship between regular de-
pendence in the original data sample, extremal dependence among threshold
exceedances and the Heffernan and Tawn model parameters was established.
The results are shown in Figure 3.8. All else being equal, i.e. the total sample
size (nT = 105) and non-exceedance probability (p = 0.95) are fixed, the rela-
tionship between the sampling distribution and ρ is non-trivial. In the limit
n → ∞ and p → 1, the sampling distribution of α̂MLE and β̂MLE converges to
their true values and the variance will deflate. However, finite data samples
should be expected to exhibit features similar to those shown in Figure 3.8.
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FIGURE 3.8: Influence of the strength of dependence ρ in
the data on the sampling distribution of the maximum likeli-
hood estimator θ̂MLE for parameters of the Heffernan and Tawn
model. The sample size is 105 and the non-exceedance probabil-
ity is 0.95. The median (—), 2.5% and 97.5% empirical quantile
(- · -) and true values αT and βT according to Table 3.1 (· · · ) are

presented.
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Directly observing bias is often not possible. However, it is implicitly de-
fined by the mean squared error and the sample variance. The mean squared
error is defined as

MSE
(
θ̂MLE

)
:= E

[(
θ̂MLE − θT

)2
]

= var
(
θ̂MLE

)
+ Bias2

(
θ̂MLE, θT

)
.

As the true parameter θT must be known to calculate the mean squared error,
the bias can only be determined for α and β. The sample variance of a sample of
maximum likelihood estimates can be calculated, and the mean squared error
is computed by

MSE
(
θ̂MLE

)
=

nB∑
l=1

(
θ̂

(l)
MLE − θT

)2
.

For Case 1 data, variance of the maximum likelihood estimators α̂MLE, β̂MLE

and µ̂MLE is approximately constant. A small bias in α̂MLE is observed when
−1/2 < ρ < 1/2. This is shown explicitly by the mean squared error α̂MLE and
squared bias in Appendix B in Figure B.5(A). For β on the contrary, the maxi-
mum likelihood estimator β̂MLE is severely biased, and the bias is non-constant
as a function of ρ, see Figure B.5(C) in Appendix B. Comparing Figure 3.8(C)
to Figure 3.8(G) suggests the identifiability issue between β and ψ2 manifests
itself through a significant bias in β̂MLE. Features of the sampling distribution
are symmetric around ρ = 0 as the Gaussian distribution used for simulating
Case 1 data is symmetric.

For case 2 data, the sampling distribution behaves as expected for 0 < ρ <

1/2 which corresponds to strong dependence. As ρ → 1, there is increasingly
less evidence in favor of asymptotic dependence. So rather than jumping from
α = 1 to α = 0 when ρ is equal to one, there is a gradual decrease in α̂MLE as
shown in Figure 3.9(B). This also affects µ̂MLE because of the strong interaction
between these parameters.

The maximum likelihood estimator for either independence and perfect de-
pendence in Case 1 and Case 2 data should agree with each other. Indepen-
dence arises for Case 1 data if ρ = 0, and for Case 2 data if ρ = 1. The median
of the sampling distribution for both cases agrees on α̂MLE = β̂MLE = µ̂MLE = 0

and ψ̂2
MLE ≈ 2. Similarly, for perfect dependence, i.e. ρ = 1 for Case 1 data and

ρ = 0 for Case 2 data, α̂MLE = 1 and β̂MLE = µ̂MLE = ψ̂2
MLE = 0 as expected.

Summarizing, certain values of ρ lead to significant bias in the maximum
likelihood estimator for β for Case 1 data, and both α and β for Case 2 data.
Bias in α̂MLE for Case 1 data is small in magnitude but not negligible. Variance
of the maximum likelihood estimator is constant with respect to ρ for most
parameters, except for ψ̂2

MLE for Case 1 data and µ̂MLE for Case 2 data.
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Thirdly, the influence of the non-exceedance probability p on the maximum
likelihood estimator is assessed. In theory, bias should decrease and the vari-
ance should increase as p → 1. A decomposition of the mean squared error in
bias and variance for the maximum likelihood estimator of α and β is shown
in Figure 3.9, as a function of p. As expected, bias decreases and the variance
increases as p → 1. The presented statistics are not robust, which causes the
spikes in the sample variance shown in Figure 3.9(A)-(B). Remarkably, the
mean squared error of the maximum likelihood estimator is minimized for
p ≈ 0.95.
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FIGURE 3.9: Mean squared error of the maximum likelihood
estimator for the Heffernan and Tawn model parameters. For
each value of p ∈ [0.8, 0.98], a sample of 103 maximum like-
lihood estimates is obtained by repeatedly generating 105 ob-
servations from either the Gaussian distribution (Case 1) or the
generalized extreme value distribution with symmetric logis-
tic dependence function (Case 2) and fitting the Heffernan and
Tawn model. Variance (- - -), squared bias (- · -) and the mean

squared error (—) are shown.
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3.2.7 Bootstrapping the maximum likelihood estimator

Rather than relying on the asymptotic properties of the maximum likelihood
estimator, bootstrapping offers an alternative approach to quantify uncertainty
regarding parameter estimates. A bootstrap sample is obtained by repeatedly
sampling with replacement from observed data and recomputing the maxi-
mum likelihood estimate θ̂MLE for each sample. The empirical 2.5% and 97.5%
quantile of the bootstrap sample define a 95% confidence interval for θ̂MLE.
This approach is referred to as percentile bootstrap, and is adopted in this sec-
tion. There are more advanced bootstrap methods available, such as the bias-
corrected and accelerated bootstrap proposed by Efron (1987). These methods
can also address bias related to the sampling error or non-Gaussian features in
the sampling distribution.

The aim of this section is to demonstrate how to quantify uncertainty re-
garding a parameter estimate based on bootstrapping maximum likelihood es-
timates. Both Case 1 and Case 2 data are considered, both with– and without
the constraints proposed by Keef et al. (2013) being imposed. The results are
presented in Figure 3.10.

First of all, the results for Case 1 shown in Figure 3.10(A) are briefly dis-
cussed. The highly correlated bootstrap samples for α̂− µ̂ and β−ψ2 stand out,
in accordance with the strong interaction between these variables discussed
in Section 3.2.4. The histograms shown on the diagonal of Figure 3.10(A) re-
semble a Gaussian distribution. This is expected as the asymptotic normality
property holds for Case 1 data. When the constrained Heffernan and Tawn
model is considered, the histogram for β and ψ2 shows skewness. As the max-
imum likelihood estimates that are feasible under the constraints are close to
the boundary of the constrained parameter space, as shown in Figure 3.5, the
asymptotic normality assumption is no longer appropriate.

Secondly, consider the results for Case 2 data, shown in Figure 3.10(B). No-
tice the strong negative correlation between α̂− µ̂, β̂− ψ̂2 and µ̂− ψ̂2, as well as
the strong positive correlation in the β̂ − µ̂ bootstrap samples. The constrained
samples show even stronger correlation due to the maximum likelihood esti-
mate being pushed into a corner of the parameter space, as shown in Figure
3.6.
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(A) Case 1: Asymptotically independent data.

(B) Case 2: Asymptotically dependent data.

FIGURE 3.10: Scatterplot matrix for nB = 1000 bootstrapped
maximum likelihood estimates of the Heffernan and Tawn
model parameters, with (cyan) and without (blue) the con-
straints proposed by Keef et al. (2013) being imposed. The (fea-
sible) maximum likelihood estimate for the original data sam-

ple (�) is also shown.
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There is a fundamental conflict between the constraints proposed by Keef
et al. (2013) and quantifying uncertainty through bootstrapped maximum like-
lihood estimates when the maximum likelihood estimate is close to boundary
of the parameter space. Since the feasible parameter space under the Keef et
al. (2013) conditions depends on the data, resampling will affect the parameter
space. It is not trivial how to interpret bootstrap samples that are not feasi-
ble under the constraints for the original data sample. The issue is raised in
the discussion in Chapter 5. The influence of this discrepancy on higher-level
statistics, such as return levels, is expected to be small.

The mean squared error for a bootstrapped sample of maximum likelihood
estimates is compared to the mean squared error obtained by generating an
entirely new data sample at each iteration, see Figure B.6 in Appendix B. For
large non-exceedance probabilities, p > 0.95, the variance dominates the mean
squared error, and bootstrapping and regenerating data perform similar. Sur-
prisingly, for small non-exceedance probabilities, p < 0.9, it differs between
Case 1 and Case 2, and between the parameter α and β which method outper-
forms the other in a mean squared error sense.

All in all, bootstrap methods provide a pragmatic approach to quantify un-
certainty when the asymptotic properties of the maximum likelihood estimator
fail to provide valid confidence intervals. However, bootstrapping a small sam-
ple can lead to severe under- or overestimation of uncertainty regarding the
parameter estimates. Furthermore, as bootstrap methods require a reasonably
large number of bootstrap samples, these methods become impractical when
fitting a computationally expensive model or when are very large number of
random variables is considered.
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Chapter 4

Bayesian inference on the
Heffernan and Tawn models

Statisticians, like artists, have the bad
habit of falling in love with their own
models.

— George Box

Conventional methods for statistical inference rely on the assumption that data
is identically distributed. Allowing the parameters of a model to be non-constant
yields greater flexibility and can enhance the goodness of fit. As Eastoe and
Tawn (2009) and Jonathan et al. (2014) show, incorporating covariate effects
through non-constant parameterizations can resolve issues such as inefficiency
or bias of estimators. Under the assumption of weak identicality, the parame-
ters of the Heffernan and Tawn model model are assumed to be smooth func-
tions with respect to a directional covariate. The aim of this chapter is to present
the generalized Heffernan and Tawn model proposed by Jonathan et al. (2014)
and demonstrate the proposed Bayesian inference framework.

Bayesian inference is introduced and demonstrated in Section 4.1. Follow-
ing the roadmap shown in Figure 1.2, the proposed Bayesian inference frame-
work is demonstrated for the following cases in consecutive order,

1. Constant Heffernan and Tawn model, see Section 4.2,

2. Constrained Heffernan and Tawn model, see Section 4.3,

3. Generalized Heffernan and Tawn model, see Section 4.4.

Rather than jumping to Bayesian inference for the generalized Heffernan and
Tawn model immediately, treating these models separately allows fundamen-
tal issues to be identified as soon as they manifest themselves. Inference on the
generalized constrained Heffernan and Tawn model is omitted because addi-
tional research regarding the aforementioned models is required.



66 Chapter 4. Bayesian inference on the Heffernan and Tawn models

Discussion of the results for the different models and types of data relies
heavily on visuals such as trace- and diagnostic plots. The majority of these
figures are moved to the appendix to prevent congestion of the report. See
Appendix C for the results of the constant Heffernan and Tawn model. A
reparameterization is introduced in Appendix D to map the parameters space
Ωθ → R4. Inference for the reparameterized constant Heffernan and Tawn
model is demonstrated, but because inference on the reparameterized model
has some fundamental issues it is disregarded throughout this chapter. Results
regarding Bayesian inference for the constrained Heffernan and Tawn model
are enclosed in Appendix E. Finally, results for the Bayesian implementation of
the generalized Heffernan and Tawn model are presented in Appendix F.

4.1 Bayesian statistics: an introduction

A Bayesian approach to statistical inference for the generalized Heffernan and
Tawn model is introduced. The deficiencies of negative log-likelihood mini-
mization, discussed in Section 3.2.6 and 3.2.7, become prohibitive when applied
to the generalized Heffernan and Tawn model. Bayesian inference addresses
these issues and provides a natural framework to communicate uncertainty
regarding the parameter estimates.

Basic concepts of Bayesian statistics are introduced in Section 4.1.1. Sam-
pling algorithms and proposal mechanisms are discussed in Section 4.1.2 and
4.1.3. Summary statistics to assess convergence and mixing of posterior sam-
ples are introduced in Section 4.1.4.

4.1.1 Mathematical framework

The first step in Bayesian inference is to specify prior distributions for each of
the model parameters. Let θ =

{
α, β, µ, ψ2

}
denote the set of model param-

eters, and nθ the number of model parameters to be estimated. The first step
in setting up a Bayesian model is to specify prior distributions fΘ (θ | η) for
each of the model parameters. Parameters that define a prior distribution are
referred to as hyper parameters and the set of hyper-parameters is denoted by
η. It is important that the support of the prior distributions is equivalent to the
parameter space Ωθ.

The second stage revisits the likelihood function L (θ | Y) = fY|Θ (Y | θ)

as defined in (3.17). The likelihood measures how likely it is to observe a par-
ticular sample, given the model and its parameters θ.

Finally, the posterior distribution refers to the distribution of θ when the data
is taken into account. The posterior distribution is defined through Bayes’ rule,
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as the conditional probability

fΘ|Y (θ | Y,η) =
fY|Θ (y | θ) fΘ (θ | η)

fY (y | η)
∝ fY|Θ (y | θ) fΘ (θ | η) . (4.1)

In practice, it suffices to determine the posterior distribution up to proportion-
ality. This is crucial to the practical applicability of Bayesian methods, since the
marginal likelihood

fY (y | η) =

∫
Ωθ

fY|θ (y | θ) fΘ (θ | η) dθ

is intractable in most applications. The maximum a posteriori probability estimate
(MAP) is the Bayesian equivalent of the maximum likelihood estimator for neg-
ative log-likelihood minimization. It is defined as the mode of the posterior
distribution, i.e.

θ̂MAP := arg max
θ

fΘ|Y (θ | y,η) . (4.2)

If the prior distribution is uniform or has an approximately flat probability
density function, then by substituting (4.1) in (4.2), it follows that θ̂MAP = θ̂MLE.

4.1.2 Sampling algorithms

Markov chain Monte Carlo methods, often abbreviated to MCMC, allow sam-
pling from the posterior distribution fΘ|Y (θ | Y,η). These methods rely on
constructing Markov chains such that the ergodic theorem is satisfied. Under
certain conditions, the ergodic theorem — see Theorem 4.1.1 — guarantees that
a Markov chain converges in distribution to a stationary limit distribution. See
Gelman et al. (2014) for a full description of the mathematical foundation of
Markov chain Monte Carlo methods.

Theorem 4.1.1. Ergodic theorem
Let θ(1), . . . ,θ(n) be n realizations from an MCMC sampler, that constitute a Markov
chain that is aperiodic, irreducable and positive recurrent. Then, for an arbitrary
function g such that E {g (θ)} <∞ holds, as n→∞,

1

n

n∑
l=1

g
{
θ(l)
}
a.s.→
∫

Ωθ

g (θ) Pr (θ | η) dθ.

The first Markov chain Monte Carlo algorithm was proposed by Metropolis
et al. (1953), and later improved by Hastings (1970). The Metropolis-Hastings
algorithm is as elegant as it is powerful and is deemed by many to be the most
influential mathematical invention of the twentieth century. The pseudo code
is provided in Algorithm 1. A pragmatic way of choosing feasible starting
values is provided in Appendix A.8 where Algorithm 5 is introduced. The
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Algorithm 1 Metropolis-Hastings algorithm

Provide a feasible starting value θ(0) based on Algorithm 5.
for l = 0 to lMAX do
θ∗ ∼ q

(
θ∗ | θ(l)

)
u ∼ U[0,1]

if u ≤ min

{
1, fΘ(θ∗)

fΘ(θ(l))
q(θ(l)|θ∗)
q(θ∗|θ(l))

}
then

θ(l+1) = θ∗

else
θ(l+1) = θ(l)

end if
end for

original Metropolis-Hasting algorithm relies on a multi-dimensional random
walk to explore the parameter space Ωθ. The transition kernel q

(
θ∗ | θ(l)

)
in

that case is a multivariate Gaussian distribution. See Section 4.1.3 for an in-
troduction to different proposal mechanisms. The proposed parameters θ∗ are
evaluated under the specified prior distributions. If the transition kernel is
symmetric, and the ratio fΘ (θ∗) /fΘ

(
θ(l)
)
≥ 1, the proposal θ∗ will be ac-

cepted. If fΘ (θ∗) /fΘ

(
θ(l)
)
< 1, the proposal θ∗ can be either accepted or re-

jected, depending on whether the ratio is greater than some quantity u which
is uniformly distributed on [0, 1].

When full conditional distributions for the each of the parameters are known
explicitly, Gibbs sampling offers an alternative to the rejection sampler defined
by Algorithm 1. As Gibbs samplers sample directly from the posterior distri-
bution, they do not require an accept or reject mechanism. Gibbs sampling is
particularly useful in hierarchical Bayesian models that are defined by condi-
tional probability distributions, or when the posterior distribution is explicitly
known. On the downside, if the model is ill specified, convergence to a station-
ary limit distribution can be very slow. See Algorithm 2 for the pseudo code of
a Gibbs sampler.

Algorithm 2 Gibbs Sampling algorithm

Provide a feasible starting value θ(0) based on Algorithm 5.
for l = 0 to lMAX do
θ

(l+1)
1 ∼ q

(
θ1

∣∣∣ θ(l)
2 , θ

(l)
3 , . . . , θ

(l)
nθ

)
θ

(l+1)
2 ∼ q

(
θ2

∣∣∣ θ(l)
1 , θ

(l)
3 , . . . , θ

(l)
nθ

)
...
θ

(l+1)
nθ ∼ q

(
θd | θ

(l)
1 , θ

(l)
2 , . . . , θ

(l)
nθ−1

)
end for
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4.1.3 Transition kernels for the Metropolis-Hastings algorithm

Proposal mechanisms are at the heart of the Metropolis-Hastings algorithm.
They should ensure that the likelihood surface is decently explored and the
Markov chain mixes well. Each of the transition kernels presented in this sec-
tion yield proper samples from the posterior distribution according to Theorem
4.1.1. However, when the number of parameters to be estimated is large, the
geometry of the negative log-likelihood surface is confined or when the model
is misspecified, ignorant proposals lead to very low acceptance rates, poor mix-
ing or high autocorrelation in posterior samples.

Four different proposal mechanisms are introduced in this section. A transi-
tion kernel based on a random walk is the default case. The manifold Metropo-
lis adjusted Langevin algorithm proposed by Girolami and Calderhead (2011)
and its simplified siblings MALA and smMALA are introduced. The authors
provide an elaborate description and comparison of the different algorithms.
The most important features of the different transition kernels are briefly sum-
marized in this section.

Random walk (R-W)

The original Metropolis-Hastings algorithm considers a random walk to ex-
plore the parameter space. The transition kernel for a Markov chain based on
a random walk is given by

q
(
θ∗ | θ(l)

)
∼ N

{
ν
(
θ(l), ε

)
, ε2Inθ×nθ

}
,

where
ν
(
θ(l), ε

)
= θ(l). (4.3)

The matrix Inθ×nθ denotes a nθ × nθ identity matrix. This transition kernel
leads to the q

(
θ(l) | θ∗

)
/q
(
θ∗ | θ(l)

)
term in Algorithm 1 being equal to 1 as it

is trivially reversible, i.e. q
(
θ(l) | θ∗

)
= q

(
θ∗ | θ(l)

)
.

The continuous time equivalent of this proposal mechanism is a multivari-
ate Wiener-process Wt for t ≥ 0, which is defined by the stochastic differential
equation dθ (t) = dW (t).

Simplicity of the random walk transition kernel is both a blessing and a
curse. On the one hand, it is very fast to evaluate, but on the other hand, for
irregular– or high-dimensional parameter spaces, convergence of the Markov
chains generated by Algorithm 1 can be prohibitively slow due to significant
autocorrelation.
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Manifold Metropolis adjusted Langevin algorithm (mMALA)

More advanced transition kernels for the Metropolis-Hasting algorithm have
been proposed by Girolami and Calderhead (2011). As the authors point out,
“the parameter space of a statistical model is a Riemann manifold. Therefore,
the natural geometric structure of [the parameter space] is defined by the Rie-
mann manifold and associated metric tensor”. Exploiting this geometric struc-
ture in the proposal mechanism in Algorithm 1 yields faster convergence of the
Markov chains.

Rather than a standard Wiener process, Girolami and Calderhead (2011)
consider a Langevin diffusion and use the drift term to ensure faster conver-
gence and a reduction in autocorrelation in the posterior samples. The stochas-
tic differential equation for Langevin diffusion is given by

dθ (t) = −1
2G−1 {θ (t) ,y}∇θ ¯̀

HT {θ (t) | y} dt+ dW̃ (t) . (4.4)

In order to exploit the geometry of the parameter space, the preconditioning
matrix G {θ (t) ,y} should define a metric tensor on the Riemann manifold asso-
ciated to the parameter space Ωθ. More information on G {θ (t) ,y} is provided
below.

First, consider the relationship between the increment dW̃ (t) on the Rie-
mann manifold and its counterpart dW (t) defined on a standard Euclidean
space, which for i = 1, . . . , nθ is given by

dW̃i (t) :=
1√

det
∣∣∣G {θ (t) ,y}

∣∣∣
nθ∑
j=1

∂

∂θj

[
G−1
ij {θ (t) ,y}

√
det
∣∣∣G {θ (t) ,y}

∣∣∣] dt

+

√
G−1
i {θ (t) ,y}dWi (t) . (4.5)

Girolami and Calderhead (2011) explain that “the first term on the right hand
side of (4.5) relates to changes in local curvature of the manifold and reduces to
0 if curvature is everywhere constant. The second term provides a position-
specific axis alignment of the Wiener process based on the local metric, by
transformation of the independent Wiener process W (t)”.

As Girolami and Calderhead (2011) show, substituting (4.5) in (4.4) and ap-
plying the Euler-Maruyama discretization yields the transition kernel for the
manifold Metropolis adjusted Langevin algorithm given by

q
(
θ∗ | θ(l)

)
∼ N

{
ν
(
θ(l), ε

)
, ε2G−1

(
θ(l),y

)}
, (4.6)
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where

ν
(
θ

(l)
i , ε

)
= θ

(l)
i −

ε2

2

[
G−1

(
θ(l),y

)
∇θ ¯̀

HT

(
θ(l) | y

)]
i

− ε2
nθ∑
i=1

[
G−1

(
θ(l),y

) ∂G
(
θ(l),y

)
∂θi

G−1
(
θ(l),y

)]
ij

+
ε2

2

nθ∑
i=1

[
G−1
ij

(
θ(l),y

)
tr

{
G−1

(
θ(l),y

) ∂G−1
(
θ(l),y

)
∂θi

}]
. (4.7)

At this point an explicit definition for the matrix G
(
θ(l),y

)
is required. It

was shown by Rao (1945) that the expected Fisher information matrix defined
by (3.22) provides a measure of distance between two parameterized proba-
bility density functions. Without going into too much detail, this implies the
expected Fisher information endows an appropriate metric tensor on the Rie-
mann manifold of the parameter space. Intuitively, proposals target regions of
high probability density and the step size is scaled such that steps are small
when the current state is in the vicinity of the maximum likelihood estimate,
and steps are large when the maximum likelihood estimate is still relatively
far away from the current state. The metric tensor proposed by Girolami and
Calderhead (2011) is given by

G (θ,y) = −E

[
∂2

∂θ2
log fY,Θ (θ,y)

]
,

= I (θ) + HΘ (θ) ,

where I (θ) denotes the expected Fisher information matrix and HΘ (θ) de-
notes the Hessian of the log-prior, provided in Appendix A.7 for the Gaussian–
and Gamma distribution. If uninformative prior distributions are adopted,
then HΘ (θ) = 0. Hence from here onward, assume G

{
θ(l),y

}
= IR

{
θ(l),y

}
,

where the restrained rather than the full expected Fisher information matrix
is adopted to address non-invertibility of the full expected Fisher information,
discussed in Section 3.2.5.

In addition to the full mMALA, two additional proposal mechanisms can be
defined by strong assumptions on G

{
θ(l),y

}
, see Figure 4.1 for an overview.

These proposal mechanism are formally introduced in Section 4.1.3 and 4.1.3.

Metropolis adjusted Langevin algorithm (MALA)

Under the simplifying assumption G
{
θ(l),y

}
= Inθ×nθ mMALA reduces to

MALA. Evaluating MALA is computationally less expensive and can be pre-
ferred when G

{
θ(l),y

}
is large and not sparse, such that its inversion takes a

lot of time.
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Random walk
• d𝜽 𝑡 = d𝐖 𝑡

mMALA
• d𝜽 𝑡 = 1

2
𝐆−1 𝜽 𝑡 , 𝒚 ∇𝜽ℓ.HT 𝜽 𝑡 |𝒚 d𝑡 + d𝐖3 𝑡

MALA
• Assumption: 𝐆 𝜽 𝑡 , 𝒚 = I𝑛𝜃×𝑛𝜃

• d𝜽 𝑡 = 1
2
∇𝜽ℓ.HT 𝜽 𝑡 |𝒚 d𝑡 + d𝐖 𝑡

smMALA
• Assumption: ∇𝜽𝐆 𝜽 𝑡 , 𝒚 = 𝟎

• d𝜽 𝑡 = 1
2
𝐆−1 𝜽 𝑡 , 𝒚 ∇𝜽ℓ.HT 𝜽 𝑡 |𝒚 d𝑡 + 𝐆−1 𝜽 𝑡 , 𝒚� d𝐖 𝑡

FIGURE 4.1: Relationship between the different proposal mech-
anisms considered in this chapter.

The transition kernel for MALA is given by

q
(
θ∗ | θ(l)

)
∼ N

{
ν
(
θ(l), ε

)
, ε2Inθ×nθ

}
. (4.8)

Where,

ν
(
θ(l), ε

)
= θ(l) − ε2

2
∇θ ¯̀

HT

(
θ(l) | y

)
. (4.9)

Comparing (4.9) to (4.3) shows the only difference between the random walk
proposal mechanism and MALA is the gradient term on the right hand side of
(4.9), which defines the direction in which proposals are made.

The q
(
θ(l) | θ∗

)
/q
(
θ∗ | θ(l)

)
term in Algorithm 1 can no longer be ignored

as Markov chains based on MALA are no longer reversible. An appropriate
expression for q

(
θ(l) | θ∗

)
follows from interchanging θ∗ and θ(l) in (4.8).

Simplified manifold Metropolis adjusted Langevin algorithm (smMALA)

As Girolami and Calderhead (2011) point out, “the MALA can be inefficient
for highly correlated variables with widely differing variances forcing the step
size to accommodate the smallest variance”. As discussed in detail in Section
3.2, the interaction between α and µ, as well as the β and ψ2, is apparent and
will lead to highly correlated samples from the posterior distribution.

The simplified manifold Metrolopolis adjusted Langevin algorithm (sm-
MALA) arises from (4.4) by assuming ∇θIR

{
θ(l),y

}
= 0. This is a weak

assumption as even many of the elements of ∇θI
{
θ(l),y

}
are zero anyway,

as shown in Appendix A.6. Moreover, several of the non-zero entries will be
close to zero if µ ≈ 0. Even if “the curvature of the manifold is not constant”
and ∇θIR

{
θ(l),y

}
= 0 does not hold, “the above simplified proposal mech-

anism, used in conjunction with the acceptance probability, will still define a
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correct MCMC method that converges to the target measure”, see Girolami
and Calderhead (2011) for the proof of this statement.

The transition kernel for the simplified manifold Metropolis adjusted Langevin
algorithm is given by

q
(
θ∗ | θ(l)

)
∼ N

{
ν
(
θ(l), ε

)
, ε2IR

{
θ(l),y

}−1
}
, (4.10)

where

ν
(
θ(l), ε

)
= θ(l) − ε2

2
IR
{
θ(l),y

}−1
∇θ ¯̀

HT

(
θ(l) | y

)
. (4.11)

4.1.4 Convergence diagnostics and statistics

Theorem 4.1.1 guarantees that a properly sampled Markov chain will converge
in distribution to the true posterior distribution. However, it does not guaran-
tee that the Markov chain will converge in a finite number of iterations. As-
sessing whether a Markov chain has converged is a crucial but non-trivial step
in Bayesian inference. Different heuristics and statistics are introduced to asses
convergence of the posterior samples.

The step size ε is reported and unless explicitly stated otherwise, a com-
mon step size is adopted for each of the parameters of the Heffernan and Tawn
model. Performance of Algorithm 1 might be improved if a separate step size is
considered for each parameter. However, as tuning four different step sizes is
a tedious job and the simplified mMALA addresses the issue by appropriately
scaling proposals, the issues is put aside for now. One of the recommendations
presented in Chapter 5 address this issue.

The acceptance rate (AR) is defined as the fraction of post-burnin samples
that is accepted. An acceptance rate of approximately 40% is regarded to be
optimal. An acceptance rate that is too low indicates that the chain does not mix
well and will fail to effectively explore the parameter space. On the contrary,
an acceptance rate that is too high might indicate that the step size is too small
and the chain traverses the parameter space very slowly.

Posterior samples are summarized by the median (MED) and a 95% con-
fidence interval (CI95%). The confidence intervals are based on the 2.5% and
97.5% empirical quantiles. Properly converged posterior samples for parame-
ters that are not on the boundary of their support are expected to be symmetric
and resemble a Gaussian distribution.

Consider different posterior samples generated in parallel, the initial positive
sequence estimator for the effective sample size (ESS) as proposed by Geyer (1992),
is defined by

ESS :=
nS

1 + 2
∑nS

l=1 %l1%l+%l−1<0
, (4.12)
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where %l denotes the autocorrelation at lag l. The summation in (4.12) must
be truncated, because as Hassani (2010) points out, the sample auto correlation
will sum up to −1/2. The effective sample size is self-explaining, as it pro-
vides a measure for the number of samples that is effectively sampled from the
posterior distribution.

Advanced transition kernels, such as MALA or simplified mMALA, are
expected to yield higher effective sample sizes. It is not fair to judge the per-
formance of a particular proposal mechanism solely on the effective sample
size as this does not penalize the additional computational burden. The effec-
tive sample size per second (ESS/s) is reported to address this issue. Even though
the MALA or smMALA might have a higher effective sample size, the ran-
dom walk transition kernel might still be preferred if it outperforms the other
proposal mechanism in terms of effective sample size per second.

If several Markov chains are considered, the Gelman-Rubin statistic mea-
sures whether the within-chain variance is significantly different from the be-
tween chain covariance. Let nC denote the number of different Markov chains
and nS the posterior sample size. Let the within chain variance Ŵ is be defined
by

Ŵ :=
1

nC

nC∑
i=1

s2
i , where s2

i :=
1

nS − 1

nS∑
l=1

(
θ̂il − θ̂SM

i

)
,

where θ̂SM
i denotes the sample mean of the posterior sample for the parameter

θ. The between chain variance B̂ is defined by

B̂ :=
1

nC

nC∑
i=1

(
θ̂SM
i − θ̂ASM

)2
, where θ̂ASM :=

1

nC

nC∑
i=1

θ̂SM
i .

The scale reduction factor, also referred to as the Gelman-Rubin statistic, is
defined as

R̂ :=

√(
1− 1

n

)
W + 1

nB

W
.

If the scale reduction factor is close to 1, then this indicates that the different
Markov chains have converged in distribution to the same stationary posterior
distribution. On the contrary, if R̂ is larger than 1.1–1.2, this indicates the burn-
in period was insufficient to ensure convergence.

In addition to the figures and tables presented in this chapter, traceplots of
the posterior samples and several other diagnostic plots for the sample likeli-
hood are presented in Appendix C-F. These diagnostic plots are introduced at
the start of each appendix.
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4.2 Bayesian inference for the constant Heffernan and
Tawn model

Bayesian inference for the model proposed by Heffernan and Tawn (2004) has
received little attention in the literature. Only the works by Cheng et al. (2014)
and Lugrin et al. (2016) consider Bayesian inference on the constant Heffernan
and Tawn model. However, as Lugrin et al. (2016) point out, the approach pro-
posed by Cheng et al. (2014) relies on “changes in the structure of the model
and adding a noise term in the likelihood function, thereby allowing the like-
lihood term to be split appropriately”. In addition, the model requires strong
prior information, which is obtained by negative log-likelihood minimization.
The Bayesian inference framework proposed in this section addresses both de-
ficiencies of the methodology proposed by Cheng et al. (2014).

Matrix inversion — as required for the MALA and simplified mMALA — is
computationally expensive and can lead to numerical instabilities. Backward
substitution rather than matrix inversion is adopted. Secondly, for a positive
definite matrix, matrix inversion can be avoided since

log
(

det
∣∣∣ε2G−1

∣∣∣) = 2nθ log (ε)− log
(

det
∣∣∣G∣∣∣)

Furthermore, for a positive definite matrix G with Cholesky decomposition
G = LLᵀ, adopting

log
{

det
∣∣∣G∣∣∣} = 2tr {log (L)} ,

improves the numerical stability. These adjustments to the standard Metropolis-
Hastings algorithm are incorporated in Algorithm 3.

Algorithm 3 Metropolis-Hastings algorithm for the Heffernan and Tawn model

Initialize θ(0) based on Algorithm 5.
for l = −lB to lMAX do
θ∗ ∼ q

(
θ∗ | θ(l)

)
u ∼ log

(
U[0,1]

)
L∗TOT = −¯̀

HT (θ∗) + log {fΘ (θ∗ | η)}+ log
{
q
(
θ∗ | θ(l)

)}
L

(l)
TOT = −¯̀

HT

(
θ(l)
)

+ log
{
fΘ

(
θ(l) | η

)}
+ log

{
q
(
θ(l) | θ∗

)}
if u ≤ min

{
0, L∗TOT − L

(l)
TOT

}
then

θ(l+1) = θ∗

else
θ(l+1) = θ(l)

end if
end for
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The results presented in this section show that adopting MALA or simpli-
fied mMALA will significantly improve performance of Bayesian inference on
the constant Heffernan and Tawn model. Case 1 and Case 2 data introduced in
Section 3.2.1 is considered for the simulation study.

This section is structured as follows. Prior distributions are discussed in
Section 4.2.1. Inference on the parameters of the constant Heffernan and Tawn
model is demonstrated for Case 1 data and Case 2 data in Section 4.2.2 and
4.2.2 respectively. In both cases, the performance of Algorithm 3 is demon-
strated by estimating only the α and β parameter while fixing µ(l) = µ̂MLE and
ψ2(l) = ψ̂2

MLE for all l = 1, . . . , nS, before addressing joint estimation of all four
parameters of the Heffernan and Tawn model. In the two parameter estima-
tion case, the first nB = 102 samples are regarded as burn-in, while in the four
parameters estimation case, the first nB = 103 samples are regarded as burn-
in. In both cases, the nS = 104 samples following the burn-in are regarded as
proper samples from the posterior distribution. Throughout this section, the
constraints proposed by Keef et al. (2013) are not imposed, as these are treated
separately in Section 4.3.

4.2.1 Prior distributions

A Bayesian framework requires assumptions on the prior distributions of the
model parameters. Although there is a lot of flexibility in choosing appropri-
ate prior distributions, there are certain constraints that need to be taken into
account.

First of all, the support of the prior distributions should be in accordance
with the parameter space. Rather than choosing prior distributions with ap-
propriate support, the support of the Heffernan and Tawn model parameters
is incorporated implicitly by assigning an arbitrary large number to the nega-
tive log-likelihood function if a proposal does not comply with the parameter
support.

Secondly, in order to establish a generic framework that accommodates
both asymptotic independent data, as well as asymptotic dependent data, it
is desirable to assume uninformative prior distributions. A uniform prior dis-
tribution U[−1,1] for α is considered, and an improper uniform prior U(−∞,1] for

β. Assume a Gaussian prior distribution N
(
ηµµ, ησ

2

µ

)
for the nuisance parame-

ter µ, and let ηµµ = 0 and ησ
2

µ = 100 such that the density is approximately flat.
A Gamma prior G (ηa, ηb) is assumed for ψ2, which — as required — is defined
only on the positive real line. Choose the shape parameter ηaψ2 = 10−4 and the
scale ηbψ2 = 104. Practitioners often adopt this prior distribution as the density
function is approximately flat for all values on the positive real line away from
0 and is hence uninformative.
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4.2.2 Results for Case 1

The aim of this section is to show that the proposed Bayesian framework is an
appropriate way to estimate the parameters of the Heffernan and Tawn model
and quantify the associated uncertainty. The three different transition kernels
for the Metropolis-Hasting algorithm introduced in Section refsec:propmech
are considered. Convergence and mixing of the obtained Markov chains is
discussed based on the statistics presented in this section and diagnostic plots
shown in Appendix C.

Maximum likelihood estimates for the parameters of the Heffernan and
Tawn model for Case 1 data, based on minimizing the negative log-likelihood
function, are given by

α̂MLE = 0.23, β̂MLE = 0.45, µ̂MLE = 0.39 and ψ̂2
MLE = 0.73. (4.13)

As uninformative priors are adopted, the posterior samples for each of the pa-
rameters are supposed to converge to the associated maximum likelihood esti-
mate, rather than the true values reported in Table 3.1 because of the different
sources of bias discussed in Section 3.2.6. First consider the challenge of esti-
mating the α and β parameter of the Heffernan and Tawn model while fixing
µ(l) = µ̂MLE and ψ(l) = ψ̂2

MLE for all l = 1, . . . , nB + nS which provides a proof of
concept.

Four different chains are started from dispersed starting values. Each of
the chains, for each of the transition kernels, converges to the minimum of the
negative log-likelihood surface within the first 100 iterations as shown in Fig-
ure 4.2. The rate at which the chains converge increases as the sophistication
of the transition kernels increases. Markov chains based on a random walk
move around the parameter space relatively slowly, as shown in Figure 4.2(A).
For the MALA, the chains converge in only two or three steps, but there is
a significant overshoot as the steps are not scaled appropriately. The simpli-
fied mMALA restrains the proposals by scaling the step size appropriately and
shows rapid convergence.

Several statistics presented in Table 4.1 provide reassurance that the Markov
chains have converged. The median and 95% confidence intervals of the pos-
terior samples are nearly identical for any of the transition kernels, and the
Gelman-Rubin statistics provide strong evidence in favor of convergence. Ad-
ditional diagnostic plots are shown in Appendix C in Figure C.1. Traceplots
of the posterior sample for α and β, see Figure C.1(A)-(F), show convergence
to the maximum likelihood estimates. In addition, the running mean of the
sample likelihood for each of the four different chains converges to a common
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FIGURE 4.2: The first 250 burn-in samples for α and β for Case 1
data, based on three different transition kernels: random walk,
Metropolis adjusted Langevin algorithm and simplified man-
ifold Metropolis adjusted Langevin algorithm. The top row
shows results when only α and β are estimated and µ = µ̂MLE

and ψ = ψ̂2
MLE, while all four parameters of the Heffernan and

Tawn model are estimated jointly for the figures in the bottom
row.

negative log-likelihood level, as shown in Figure C.1(M)-(M), which also indi-
cates convergence. These results are deemed to be sufficient evidence in favor
of convergence of the Markov chains.

In addition to convergence, the Markov chains should mix well. The trace-
plots shown in Figure C.1(A)-(F) suggest the chain mixes well. Markov chains
based on the MALA and simplified mMALA show little autocorrelation. This
is confirmed by the difference in effective sample size shown in Table 4.1. How-
ever, the random walk transition kernel outperforms MALA and smMALA in
terms of effective sample size per second.

Now that the Bayesian inference methodology has been demonstrated for
the two parameter case, consider joint estimation of all four parameters. Burn-
in samples are shown in Figure 4.2(D)-(F). Comparing Figure 4.2(D)-(E) to
4.2(F) suggests that the Markov chains based on the random walk transition
kernel and MALA struggle to converge to the minimum of the negative log-
likelihood surface.

Poor convergence of the first burn-in samples does not imply poor conver-
gence of the entire posterior sample. At the start of the posterior sample, the
Markov chains for each of the parameters and for each of the different transi-
tion kernels moves around in the vicinity of the maximum likelihood estimates,
as shown in Figure C.2. The median of the posterior sample has converged to
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TABLE 4.1: Summary statistics for the posterior samples of
the Heffernan and Tawn model parameter estimates for Case
1 data. Different proposal mechanisms are considered: ran-
dom walk, Metropolis adjusted Langevin algorithm and the
simplified manifold Metropolis adjusted Langevin algorithm.
Statistics are based on nS = 104 posterior samples. The maxi-
mum likelihood estimates are given by: α̂MLE = 0.23, β̂MLE =

0.45, µ̂MLE = 0.39 and ψ̂2
MLE = 0.73.

Two parameter estimation Four parameter estimation
R-W MALA smMALA R-W MALA smMALA

ε 0.0175 0.0175 1 0.02 0.015 0.8
AR 0.45 0.42 0.52 0.35 0.43 0.46

α̂

MED 0.23 0.23 0.23 0.23 0.21 0.24
CI95% [0.21, 0.26] [0.22, 0.25] [0.22, 0.25] [0.03, 0.40] [0.14, 0.30] [0.14, 0.33]

ESS 750 2640 1690 6 15 740
ESS/s 35 18 12 0.3 0.1 5.1
R̂ 1 1 1 1.04 1.04 1

β̂

MED 0.45 0.45 0.45 0.46 0.47 0.46
CI95% [0.42, 0.48] [0.43, 0.47] [0.43, 0.47] [0.33, 0.61] [0.40, 0.55] [0.38, 0.55]

ESS 542 1760 1660 12 25 240
ESS/s 26 12 12 0.5 0.2 1.6
R̂ 1 1 1 1.01 1.04 1

µ̂

MED 0.40 0.42 0.38
CI95% [0.07, 0.67] [0.26, 0.55] [0.20, 0.56]

ESS 7 15 1080
ESS/s 0.3 0.1 7.4
R̂ 1.04 1.03 1

ψ̂2

MED 0.72 0.70 0.70
CI95% [0.51, 0.98] [0.59, 0.81] [0.57, 0.85]

ESS 11 24 250
ESS/s 0.5 0.2 1.7
R̂ 1.01 1.04 1.05

the maximum likelihood estimates given by (4.13) for each proposal mecha-
nism. Confidence intervals for the MALA and smMALA appear to have con-
verged faster than those based on random walk proposals. Which indicates
the nB = 103 burn-in sample was insufficient for the random walk proposal
mechanism to yield properly converged posterior samples.

The trace-plots and autocorrelation function plots shown in Appendix C
in Figure C.3, show significant and persistent autocorrelation in the Markov
chains based on the random walk and MALA proposal mechanisms. This is
also reflected in the effective sample size reported in Table 4.1, which is pro-
hibitively small for the random walk and MALA transition kernel. The simpli-
fied mMALA outperforms its peers in terms of effective sample per second by
a factor 3-5 for the β and ψ2 parameter, and even a factor 15-75 for the α and µ
parameter. This asymmetry suggests that adopting a separate stepsize for α, µ
and β, ψ2 might further improve mixing.
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Summarizing, any of the transition kernels discussed in Section 4.1.3 yields
Markov chains that properly converge in distribution to the true posterior dis-
tribution. The simplified mMALA outperforms the other two proposal mech-
anisms in terms of autocorrelation and mixing, even when the additional com-
putational burden is taken into account.

4.2.3 Results for Case 2

Bayesian inference is demonstrated for Case 2 data in this section. The results
will be presented in similar fashion as those for Case 1 in Section 4.2.2. The data
considered in Case 2 is asymptotically dependent, and hence αT = 1, which
implies θT ∈ ∂Ωθ. Maximum likelihood estimates for the parameters of the
Heffernan and Tawn model for Case 2 data, based on minimizing the negative
log-likelihood function, are given by

α̂MLE = 1-, β̂MLE = 0.10, µ̂MLE = -0.57 and ψ̂2
MLE = 1.02, (4.14)

where the superscript in 1- is used to indicate a very small deviation from 1.
The first 200 burn-in samples suggest convergence for each proposal mech-

anism, as shown in Figure 4.3. However, once the chain approaches the maxi-
mum likelihood estimate, the boundary of the parameter space starts to mani-
fest itself.

Summary statistics for the posterior samples are provided in Table 4.2. When
the parameters are sampled on the original scale, the step size for the random
walk transition kernel and MALA must be very small, in order to approach
the boundary of the parameter space. The results presented in Table 4.2 are in
line with previous remarks on the performance of the different transition ker-
nels for Case 1 data. The effective sample size increases when the proposals
become more sophisticated. When only two parameters are estimated, the ad-
ditional computational burden outweighs the positive impact on the effective
sample size, as the effective sample size per second for the random walk is
much better. The Gelman-Rubin statistic indicates convergence for any of the
proposal mechanisms.

The results shown in Table 4.2 and Figure 4.3 conceal the fundamental is-
sue of estimating a parameter on the boundary of the parameter space. The
trace-plots shown in Appendix C in Figure C.8 reveal the posterior sample for
α gets close to the boundary, but fails to put any probability mass on the ac-
tual boundary. The proposals literally hit a wall and bounce off. Due to the
strong correlation between the posterior samples of α and µ, the bias will also
be apparent in the posterior sample for µ. By further reducing the step size, the
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FIGURE 4.3: The first 250 burn-in samples for α and β for Case 2
data, based on three different transition kernels: random walk,
Metropolis adjusted Langevin algorithm and simplified man-
ifold Metropolis adjusted Langevin algorithm. The top row
shows results when only α and β are estimated and µ = µ̂MLE

and ψ = ψ̂2
MLE, while all four parameters of the Heffernan and

Tawn model are estimated jointly for the figures in the bottom
row.

Markov chains will be able to get even closer to the boundary, but the problem
will persist.

The fundamental issues raised for inference on α and β apply equally well
to the four parameter estimation problem. Figure 4.3(D)-(F) suggests the ran-
dom walk has considerable difficulty to reach the maximum likelihood esti-
mate and tends to get stuck. This is supported by the Gelman-Rubin statistic
which provides evidence against convergence of the posterior samples of β and
ψ2 for the random walk transition kernal.

Summarizing, as the true value αT for asymptotic dependent data lies on
the boundary of the parameter space, conventional inference will result in bi-
ased parameter estimates and unreliable confidence intervals. It stands to rea-
son the bias is sufficiently small and does not have a significantly affect sim-
ulations from the Heffernan and Tawn model based on these parameters esti-
mates. In addition, the interaction between α and µ counteracts the bias, as a
decrease in α leads to an increase in µ and both parameters have the same ex-
planatory effect, to a certain extend. It would be interesting to see whether this
hypothesis holds, and it presented as a recommendation for further research in
Chapter 5.
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TABLE 4.2: Summary statistics for the posterior samples of
the Heffernan and Tawn model parameter estimates for Case
2 data. Different proposal mechanisms are considered: ran-
dom walk, Metropolis adjusted Langevin algorithm and the
simplified manifold Metropolis adjusted Langevin algorithm.
Statistics are based on nS = 104 posterior samples. The max-
imum likelihood estimates are given by: α̂MLE = 1-, β̂MLE =

0.10, µ̂MLE = -0.57 and ψ̂2
MLE = 1.02.

Two parameter estimation Four parameter estimation
R-W MALA smMALA R-W MALA smMALA

ε 0.01 0.007 0.7 0.013 0.0125 0.6
AR 0.41 0.42 0.44 0.42 0.39 0.46

α̂

MED 0.99 1- 1- 0.98 0.99 0.99
CI95% [0.98, 1] [0.99, 1] [0.99, 1] [0.94, 1-] [0.96, 1-] [0.96, 1-]

ESS 600 1090 970 20 65 740
ESS/s 32 8 7 1 0.5 6
R̂ 1 1 1 1.02 1.01 1

β̂

MED 0.1 0.1 0.1 0.06 0.08 0.1
CI95% [0.07, 0.13] [0.08, 0.12] [0.08, 0.12] [-0.08, 0.21] [0, 0.17] [0.02, 0.18]

ESS 210 340 710 5 9 100
ESS/s 11 3 5 0.2 0.1 0.7
R̂ 1 1 1 1.11 1.04 1

µ̂

MED -0.53 -0.54 -0.53
CI95% [-0.65, -0.40] [-0.62, -0.44] [-0.60, -0.43]

ESS 10 16 210
ESS/s 0.4 0.1 1.5
R̂ 1.02 1 1

ψ̂2

MED 1.13 1.08 1.01
CI95% [0.78, 1.60] [0.87, 1.30] [0.84, 1.23]

ESS 5 10 100
ESS/s 0.2 0.1 0.7
R̂ 1.13 1.04 1

A reparameterization is proposed to resolve the issues set-forth in this sec-
tion. The idea is that the reparameterization θ∗ : Ωθ → R4 can get arbitrar-
ily close to the boundary of the parameter space on the original scale. This
is shown by the traceplots for α when estimated using the reparameterization.
The results are presented in Appendix D. Reparameterization (D.1) — in partic-
ular the logistic transformation of α— resolve the boundary issue, but shift the
true value α∗T to infinity on the reparameterized scale. The simplified mMALA
breaks down as the expected Fisher information matrix is singular. In addition,
tuning the algorithms is more difficult as the step size for the α Markov chains
must be significantly bigger to effectively explore the parameter space under
the reparameterization. Albeit the bias in the posterior samples for α and µ

when the parameters are evaluated on the original scale, the reparameteriza-
tion proposed in Appendix D is disregarded as its benefits do not weigh up its
disadvantages.
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Although the reparameterization provides a sound way to quantify uncer-
tainty for parameter estimates, it would be even better to restrict the Markov
chain samplers to a subspace of Ωθ by fixing α = 1. This can be achieved
through a reversible jump algorithm as proposed by Green (1995). An alterna-
tive would be to compute the χ and χ̄ statistic introduced in Section 2.2.6 for
each random variable, and asses whether the data is asymptotically dependent
or not. In case there is sufficient evidence in favor of asymptotic dependence,
fix α to 1.
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4.3 Bayesian inference for the constrained Heffernan and
Tawn model

The aim of this section is to show that the Bayesian inference methodology
introduced in Section 4.2 can also be applied to the constrained Heffernan and
Tawn model which was introduced in Section 3.1.4. Exploring the confined
parameter space poses a challenge to the deployed Markov chain Monte Carlo
algorithms. The issues raised in Section 4.2 are expected to manifest themselves
in this case as well.

4.3.1 Prior distributions

As inference for the constrained Heffernan and Tawn model is inherently sim-
ilar to inference for the regular Heffernan and Tawn model, the uninformative
prior distributions specified in Section 4.2.1 are adopted. However, the impact
of the constraints on the support of α and β should be accounted for. Impos-
ing the constraints through defining prior distributions with feasible support
is not possible, as a closed form expression for the constraints on either α or β
does not exist. Hence the constraints are imposed implicitly through the like-
lihood function, which returns an arbitrary high number if the constraints are
not satisfied. An alternative approach to imposing the constraints is discussed
in Chapter 5 as a recommendation for further research.

4.3.2 Results Case 1

For asymptotic independent data, the maximum likelihood estimates (4.13) are
still feasible under the constraints proposed by Keef et al. (2013). However, as
shown in Figure 3.5, the maximum likelihood estimate are close to the bound-
ary of the feasible parameter space. The same issues as those raised in Sec-
tion 4.2.3 — concerning uncertainty quantification when a parameter is on the
boundary of the parameter space — will apply to statistical inference for the
constrained Heffernan and Tawn model as well. Similar to Section 4.2, first the
two parameter estimation problem will be discussed, before turning to infer-
ence for the full Heffernan and Tawn model.

Burn-in samples obtained when only α and β are estimated are shown in
Figure 4.4(A)-(C). All four chains converge for each of the considered tran-
sition kernels. Summary statistics for the two parameter estimation case are
presented in Table E.1, and additional diagnostic plots are provided in Ap-
pendix E in Figure E.1. These are not discussed separately, as results for jointly
estimating all four parameters are more informative.
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Several trials for different starting values — the results of which are not in-
cluded — showed the MALA does not converge if both starting values α0, β0 <

0. Although this region of the parameter space is feasible under the constraints,
gradients of the negative log-likelihood function are so large the MALA will
keep making proposals outside the feasible parameter space. Thus prevent-
ing the Markov chains from moving around. Comparing Figure 4.4(D)-(E) to

(A) R-W (B) MALA (C) smMALA

(D) R-W (E) MALA (F) smMALA

FIGURE 4.4: The first 200 burn-in samples for the two param-
eter estimation problem for Case 1 data, shown in (A)-(C), as
well as the first 500 burn-in samples for the four parameter es-
timation of the constrained Heffernan and Tawn model, shown
in (D)-(F). The constrained maximum likelihood estimates (�)

are also indicated.

Figure 4.4(F) suggests the simplified mMALA converges, while the random
walk transition kernel and MALA struggle to converge during burn-in. It is
remarkable that even for proper starting values, MALA yields poorer results
compared to the constant Heffernan and Tawn model even for proper starting
values, as shown in Figure 4.2(D).

The trace-plots shown in Appendix E in Figure E.1(A)-(F) for inference on
α, β, and Figure E.2 for inference on all four parameters, suggest convergence
of the posterior samples for each of the estimated parameters for all three pro-
posal mechanisms. The posterior samples for β shown in Figure E.2(D)-(F)
appear to be biased. The scatterplot matrix shown in Figure E.4-E.6 suggests
that the bias is introduced because the maximum likelihood estimate β̂MLE is
very close to the boundary of the constrained parameter space. The strong cor-
relation in the posterior samples of β and ψ2 induces the bias in the posterior
sample for β onto the posterior sample for ψ2.

The summary statistics presented in Table E.1 show great resemblance to
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the results for the constant Heffernan and Tawn model for Case 1 data, pre-
sented in Section 4.2.2. The Gelman-Rubin statistic confirms convergence of
the posterior samples. The different proposal mechanisms perform equally
well for the two parameter estimation problem, while the simplified mMALA
outperforms its peers for the four parameter estimation problem in terms of
effective sample size and effective sample size per second.

As the maximum likelihood estimates are close to the boundary and the
constraints are imposed implicitly, the proposal mechanisms can not sense the
presence of the boundary of the constrained parameter space. Consequently, a
considerable number of proposals will be rejected. Hence a smaller step size
is required to guarantee acceptable acceptance rates. It is not trivial how to
address this issue. As previously stated, incorporating the constraints in the
support of the prior distributions explicitly is not possible. An alternative ap-
proach would be to incorporate the constraints directly in the proposal dis-
tribution, by sampling from a truncated multivariate Gaussian distribution.
This possibility is raised as a promising recommendation for further research
in Chapter 5.

4.3.3 Results Case 2

Issues related to inference on the constrained Heffernan and Tawn model for
asymptotically dependent data have been addressed in Section 4.2.3 and issues
related to imposing the constraints have been discussed in Section 4.3.2. Hence
it suffices to only briefly discuss the results presented in this section, as many
of the previously discussed issues will be apparent in this case as well.

The unconstrained maximum likelihood estimates are not feasible under
the constraints. Maximum likelihood estimates obtained by minimizing the
negative log-likelihood function subject to the constraints for Case 2 data are
given by

α̂MLE = 1-, β̂MLE = 0.00, µ̂MLE = -0.63 and ψ̂2
MLE = 1.28. (4.15)

Remarkably, imposing the constraints leads to α̂MLE ≈ αT and β̂MLE ≈ βT.
The first thing that stands out in Figure 4.5 is the confined geometry of the

parameter space Ωα×β . The maximum likelihood estimates (4.15) are located in
the corner of the profile-likelihood surface, as shown in Figure 4.5. Hence forc-
ing the Markov chains to squeeze through the funnel shaped parameter space.
Effectively exploring the confined parameter space is challenging and the step
size of both the random walk proposal mechanism and MALA need to be re-
duced to ensure acceptable acceptance rates. As if inference on a parameter on
the boundary of the parameter space was not challenging enough, the funnel
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shaped parameter space makes it virtually impossible for the Markov chains to
mix well.

Albeit the geometry of the parameter space, each of the Markov chains
shown in Figure 4.5 appears to converge to the maximum likelihood estimate.
However, for the four parameter estimation problem, both MALA and the
random walk proposal mechanism struggle considerably to converge during
burn-in. The step size for MALA is forced to be small in order to ensure feasi-
ble proposals. This leads to severe autocorrelation and very slow convergence.
Given the bias associated to α̂MLE ∈ ∂Ωθ, the Gelman-Rubin statistics presented
in Table E.2 suggest convergence towards a stationary limit distribution. For
the simplified mMALA, the effective sample size is even decent.

The traceplots shown in Figure E.8 reveal significant bias in the parame-
ter estimates. The bias which was already apparent in the results presented
in Section 4.2.3 is amplified by the funnel shaped geometry of the parameter
space.

(A) R-W (B) MALA (C) smMALA

(D) R-W (E) MALA (F) smMALA

FIGURE 4.5: The first 200 burn-in samples for the two param-
eter estimation problem for Case 2 data, shown in (A)-(C), as
well as the first 500 burn-in samples for the four parameter es-
timation of the constrained Heffernan and Tawn model, shown
in (D)-(F). The constrained maximum likelihood estimates (�)

are also indicated.
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4.4 Bayesian inference for the generalized Heffernan and
Tawn model

Bayesian inference for a generalization of the Heffernan and Tawn model is the
magnum opus of this thesis project. The aim of this section is to describe and
demonstrate Bayesian inference for a generalization of the Heffernan and Tawn
model proposed by Jonathan et al. (2014). Consider the bivariate Heffernan
and Tawn model defined by (3.18), and assume the model parameters to be
smooth functions with respect to a directional covariate X1 ∈ [−π, π] which
is associated to the conditioning variable. See section 4.4.1 for an introduction
to P-spline curves. Under the assumption that the limit distribution G2|1 is
Gaussian, the generalized Heffernan and Tawn model is given by

TL (Y2) | TL (Y1) = y,X1 = x ∼ N
{
α (x) y + yβ(x)µ (x) , y2β(x)ψ2 (x)

}
. (4.16)

Two different extremal dependence structures — both in the asymptotic inde-
pendence class — are considered, to demonstrate the flexibility of the proposed
model. The data is introduced in Section 4.4.2. Asymptotic dependent data and
the constraints proposed by Keef et al. (2013) are disregarded because of the
fundamental issues raised in Section 4.2 and 4.3. Although the implemented
Bayesian inference framework could treat these cases, it does not make sense to
demonstrate inference as long as the fundamental issues raised in Section 4.2.3
and 4.3 have been addressed. Prior distributions in relation to the proposed
hierarchical Bayesian model are discussed in Section 4.4.3. By choosing a spe-
cific pair of prior distributions, a blend of the Metropolis-Hastings and Gibbs
sampler can be adopted, see Section 4.4.4. Results for the two different types of
data are presented in Section 4.4.5 and 4.4.6.

The discussion on the results focuses on convergence and mixing of the
posterior samples presented in Appendix F. The results provided in Appendix
F cover an example of uninformative– and informative prior distributions. The
discussion in this section is primarily based on the results for uninformative
priors, as it has greater practical significance.

4.4.1 Mathematical framework

The aim of this section is to introduce the generalized parameterization for
the Heffernan and Tawn model proposed by Jonathan et al. (2014). The pri-
mary objective of the generalized parameterization is to accommodate weakly-
identically distributed data and account for directional covariate effects in the
extremal dependence structure. Parameters of the Heffernan and Tawn model
are assumed to be smooth 2π periodic functions with respect to the directional
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covariate Xi, which is related to the conditioning variable Yi. Although higher
dimensional covariates can be considered, the aim of this thesis is to provide a
minimum working example based on a single covariate.

Statisticians distinguish parametric and non-parametric models. The for-
mer requires prohibitively strong assumptions on an appropriate functional
form, while the latter class generally lacks structure. Combining the best of
both yields a third class, referred to as semi-parametric models. Let θ (x) ∈{
α (x) , β (x) , µ (x) , ψ2 (x)

}
denote an arbitrary parameter of the Heffernan and

Tawn model. Following Jonathan et al. (2014), the semi-parametric model
adopted in this thesis is defined by a matrix of basis functions Bθ and a vector
of weights ζθ, such that θ (x) = Bθ (x) ζθ. Smoothness of the resulting func-
tion is controlled through a roughness penalty R. Hence the parameters of the
Heffernan and Tawn model can be expressed as

α (x) = Bα (x) ζα,

β (x) = Bβ (x) ζβ,

µ (x) = Bµ (x) ζµ, and,

ψ2 (x) = Bψ2 (x) ζψ2 .

To explicitly define the model, an appropriate choice for the matrix of ba-
sis functions is required. Several suitable semi-parametric methods exist, e.g.
Fourier– or wavelet transforms, but following Jonathan et al. (2014) the pe-
nalized basis spline (P-spline) curve parameterization proposed by Eilers and
Marx (1996) is adopted. A brief introduction to spline curves is provided in
Section 4.4.1 and 4.4.1.

B-Spline curves

A brief introduction to the basic concepts of basis spline functions is provided
in this section. See the standard work by De Boor (1978) for more in-depth
discussion on the subject. The starting point for the definition of spline curves
is a sequence of knots or control points, denoted by k0, . . . , knK . Partition the
covariate space ΩX in nK non-overlapping sub-intervals, such that

inf {x : x ∈ ΩX} := k0 < k1 < · · · < knK−1 < knK
:= sup {x : x ∈ ΩX} ,

Sub-intervals of equal length are usually adopted, but non-equidistant parti-
tions can be considered as well. Given the knot vector k := {k0, . . . , knK}, a
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spline basis functions (B-spline) of order r is defined by

Bi,1 (x) :=

1 if ki ≤ x < ki+1

0 otherwise
,

for a polynomial of degree r = 1. For r > 1, the B-spline function is given by

Bi,r (x) :=

 x−ki
ki+r−1−kiBi,r−1 (x) + ki+r−x

ki+r−ki+1
Bi+1,r−1 (x) if ki ≤ x < ki+r

0 otherwise
.

In matrix notation, for each θ ∈
{
α, β, µ, ψ2

}
, the vector of basis functions is

given by

Bθ (x) := {B1,r (x) , . . . , BnK,r (x)} .

A B-spline curve S is a piece-wise polynomial function. Given a knot vector k,
a B-spline curve is uniquely defined by a linear combination of weights ζ and
B-spline basis functions of degree r, i.e. for nK ≥ r − 1,

S (x) :=

nK∑
i=0

ζiBi,r, ∀x ∈ [kr−1, knK ] .

A recursion scheme proposed by De Boor et al. (1976) is implemented to gen-
erate appropriate spline bases.

P-spline curves

The flexibility of a B-spline curve is both a blessing and a curse. On the one
hand, these curves allow arbitrary functions to be well approximated. On the
contrary, it is not obvious how to come up with an optimal spacing of the knots
and there is a fundamental trade-off between fidelity to the data and smooth-
ness of the spline curve. As Lang and Brezger (2004) state, “a small number
of knots may result in a function space which is not flexible enough to capture
the variability of the data, while a large number of knots may lead to seri-
ous over-fitting”. To address these issues, Eilers and Marx (1996) propose to
impose a roughness penalty to control the smoothness of the B-spline curve,
where they penalize “(higher-order) finite differences of the coefficients of ad-
jacent B-splines”. Although higher order difference matrices can be considered,
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the first order difference matrix D is adopted and given by

D =


−1 1 · · · 0

−1 1
...

. . . . . .
...

1 · · · −1 1


The lower-left entry being equal to 1 ensures periodicity. Setting it to zero resets
this option. The nK × nK penalty matrix is then defined as P := DᵀD, which
yields

P =



2 −1 · · · −1 1

−1 2 −1
...

. . . . . . . . .
...

−1 −1

1 · · · −1 2


.

Penalized B-spline curves are also referred to as P-spline curves. Smoothness
of the P-spline curve is controlled through the roughness coefficient λθ. The
roughness penalty Rθ is defined as

Rθ := 1
2λθζ

ᵀ
θPζθ.

4.4.2 Data for simulation study

Bayesian inference for the generalized Heffernan and Tawn is demonstrated
through a simulation study for two different types of data, referred to as Case
1.1 and Case 1.2. Consider a bivariate Gaussian random variable TL (Y) with
mean 0 and covariance matrix defined in Section 4.4.2 and 4.4.2. Define TL (Y1)

to be the conditioning variable. A sample y1, . . . ,yn is considered, where the
sample size is chosen differently for both cases.

Without loss of generality, let the covariate X1 ∼ U[−π,π]. The results pre-
sented here are based on a one dimensional covariate, as visualizing the results
in this case is more natural and it suffices as a minimum working example. The
two different cases are briefly introduced.

Compute the 95% empirical quantile u1 = F̆←TL(Y1) (0.95) on the Laplace
scale. As symmetric distributions are considered it suffices to demonstrate
Bayesian inference on the observations {y : y1 > u1}. Recall from Section 2.1.3
that a homogeneous Poisson process governs the rate at which threshold ex-
ceedances for the conditioning variable arrive. This guarantees that the distri-
bution of the covariate values associated to the threshold exceedances is still
uniform.
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The assumption of homogeneity of the Poisson process seldomly holds in
practice. Hence also affecting the distribution of the covariate values associ-
ated to the threshold exceedances. The issue is discussed by Jonathan et al.
(2014) who adopt non-crossing quantile regression “for transformation of non-
stationary marginal distributions to standard stationary form”. Ensuring that
the transfromed marginal distributions are stationary is important to guarantee
that the limit distribution in (3.4) has equivalent marginal distributions. This
will not be a problem for the two dimensional random variable and one dimen-
sional covariate considered in this section, but should be taken into account in
higher dimensional applications.

Dependence structure for Case 1.1

The first case concerns an extremal dependence structure that is itself a smooth
and periodic function of the covariate Xi. Data is sampled from a multivariate
Gaussian distribution with zero mean and unit variance. The correlation is
defined by

ρ2 (x) = 0.5 + 0.2 sin (x) ∈ [0.3, 0.7], ∀x ∈ [−π, π]. (4.17)

Draw a sample x1, . . . , xn ofX ∼ U[−π,π] with sample size nT = 3 ·104 and com-
pute ρ2 (x). For each x1, . . . , xn, generate a bivariate Gaussian random number
where the covariance matrix is defined by (4.17).

Maximum likelihood estimates for the spline curves based on minimizing
the negative log-likelihood functions and cross-validating the model to de-
termine the optimal roughness coefficient, are not provided due to time con-
straints. See Jonathan et al. (2014) for related results. Given that (4.17) governs
the extremal dependence structure, convergence of the fitted spline curve is as-
sessed by comparing the results to to the true value αT (x) = ρ2(x), which is
defined by (4.17), and βT (x) = 1/2.

Dependence structure for Case 1.2

Following the simulation study presented by Jonathan et al. (2014), a mixture
of Gaussian distributions is considered. This is interesting because approxi-
mating a piece-wise constant function by a smooth spline curve is challenging.

Consider six equidistantly space sectors over the domain [−π, π]. Generate
a sample, with sample size nT/6 = 3 · 104 for each sector from a bivariate Gaus-
sian distribution with zero mean, unit variance and correlation for each sector
defined by

ρ (x) ∈
{√

0.6,
√

0.8,
√

0.2,−
√

0.7,−
√

0.3,
√

0.4
}

(4.18)
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Considering a mixture of both positively– and negatively correlated samples
demonstrates that the proposed Bayesian inference framework is able to ac-
commodate both, thanks to the unified parameterization arising from the Laplace
marginal transformation. This can be regarded as a further generalization with
respect to original model proposed by Heffernan and Tawn (2004) and the gen-
eralization proposed by Jonathan et al. (2014).

As for Case 1.1, the maximum likelihood estimate of the spline curve is not
provided for aforementioned reasons. However, as the data for Case 1.2 is a
mixture of Gaussian distributions with different extremal dependence struc-
tures governed by (4.18), the maximum likelihood estimates and true values
for each different sector are shown when the results are reported in Section
4.4.6.

4.4.3 Prior distributions

Rather than directly estimating the parameters of the Heffernan and Tawn
model, the weights ζθ and roughness coefficient λθ are the parameters to be
estimated. Let η the set of hyper-prior parameters. The joint posterior distri-
bution is given by

fΘ|Y (ζθ, λθ : θ (x) ∈ θ (x) | y, x) ∝ fY|Θ (y2 | y1, x,θ (x))
∏
θ∈θ

fΘ (ζθ | λθ) fΘ (λθ | ηθ) .

The Bayesian inference scheme for the generalized Heffernan and Tawn model
can be represented as a directed acyclical graph, shown in Figure 4.6. Assume

𝑌2|𝑌1 = 𝑦, 𝑋1 = 𝑥Data

𝜁𝛼 𝜁𝛽

𝜆𝛼 𝜆𝛽

Weights

Roughness 
penalty

𝜂𝛼𝑎 𝜂𝛼𝑏Hyper 
prior

𝜂𝛽𝑎 𝜂𝛽𝑏

𝜁1 𝜁23

𝜆1 𝜆23

𝜂1𝑎 𝜂1𝑏 𝜂23
𝑎 𝜂23

𝑏

Normalizing functions Nuisance parameters

FIGURE 4.6: Hierarchical Bayesian model for the generalized
Heffernan and Tawn model.

a Gaussian prior for the distribution of ζθ | λθ,

fΘ (ζθ | λθ) ∝ λ
1/2
θ exp

(
−1

2
λθζ

ᵀ
θPζθ

)
.
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In this set-up, the roughness coefficient λθ can be interpreted as the parameter
precision for the weight vector ζθ. A gamma prior distribution is adopted for
λθ ∼ G

(
ηaθ , η

b
θ

)
, which is a common choice for parameters that serve as parame-

ter precision. As the Gamma distribution is conjugate to a Gaussian likelihood,
the full conditional distributions for λθ | ζθ are explicitly known, i.e.

λθ | ζθ ∼ G
(
ηaθ +

nK

2
, ηbθ +

1

2
ζᵀθPζθ

)
.

Both uninformative– and informative priors are considered to show how prior
knowledge can affect the results. For each θ ∈ θ, uninformative prior distri-
butions are obtained by ηaθ = 10−4 and ηbθ = 104. The informative priors are
chosen as

ηaα = 10−4, ηbα = 104,

ηaβ = 10, ηbβ = 20,

ηaµ = 3, ηbµ = 4,

ηaψ2 = 7, ηbψ2 = 15.

4.4.4 Gibbs within Metropolis-Hastings algorithm

A sampling algorithm for the generalized Heffernan and Tawn model is intro-
duced in this section. As the full posterior distribution of ζθ and λ)θ is analyt-
ically intractable, a Metropolis-Hastings sampler rather than a Gibbs sampler
is adopted. However, simultaneous updating of both weights and roughness
coefficients will affect the effectiveness of the Metropolis-Hastings sampler.

Luckily, conjugacy of the gamma prior distribution with a Gaussian likeli-
hood permits sampling directly from the conditional distribution of λθ | ζθ by
Gibbs sampling through Algorithm 2. The resulting Gibbs within Metropolis-
Hastings algorithm is presented in Algorithm 4.

Choosing appropriate starting values for ζ(0)
θ has proven to be non-trivial,

as the resulting spline curves θ(l) = Bθζ
(0)
θ will have to agree with the parame-

ter space Ωθ. The current implementation proposes ζ(0)
θ at random untill these

constraints are satisfied.

4.4.5 Results for Case 1.1

Results for the Case 1.1 data are presented and discussed in this section. All
four parameters of the Heffernan and Tawn model are jointly estimated. The
number of spline knots is fixed to 10 for each of the four parameters of the
Heffernan and Tawn model. A third degree spline function is considered. The
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Algorithm 4 Gibbs within Metropolis-Hastings algorithm for the generalized
Heffernan and Tawn model

Initialize ζ(0)
θ and compute θ(l) = Bθζ

(0)
θ .

for l = −lB to lMAX do
for θ ∈ θ do
λθ | ζθ ∼ G

(
ηaθ + nK

2 , η
b
θ + 1

2ζ
ᵀ
θPζθ

)
.

ζ∗ ∼ q
(
ζ∗ | ζ(l)

)
R∗θ = 1

2λθζ
∗ᵀ
θ Pζ∗θ

R
(l)
θ = 1

2λθζ
(l)ᵀ
θ Pζ

(l)
θ

θ∗ (x) = Bθζ
∗
θ .

end for
u ∼ log

(
U[0,1]

)
L∗TOT = −¯̀

HT (θ∗ (x)|y,x) + log {fΘ (θ∗ (x) | x,η)}
+ log

{
q
(
θ∗ (x) | θ(l) (x)

)}
+R∗θ

L
(l)
TOT = −¯̀

HT

(
θ(l) (x)

∣∣y,x)+ log
{
fΘ

(
θ(l) (x) | x,η

)}
+ log

{
q
(
θ(l) (x) | θ∗ (x)

)}
+R

(l)
θ

if u ≤ min
{

0, L∗TOT − L
(l)
TOT

}
then

θ(l+1) = θ∗

else
θ(l+1) = θ(l)

end if
end for

first nB = 2 · 104 are regarded as burn-in, and the next nS = 104 realizations are
assumed to be proper samples from the posterior distribution.

Presenting summary statistics and diagnostic plots for the generalized Hef-
fernan and Tawn model is challenging as the total number of model parameters
is large; 4·10 weights and 4 roughness coefficients in this case. Statistics and di-
agnostics plots concerning the Markov chains for the weights, are presented in
Appendix F. Traceplots of the posterior samples for the weights, as well as the
Gelman-Rubin statistic and effective sample size, are an average of the statistics
computed for individual weights ζθ. Medians and confidence intervals based
on the posterior sample of a single weight coefficient are not provided as their
scale has no trivial interpretation. Traceplots and other diagnostic plots for the
roughness coefficients are also presented in Appendix F. See the introduction
to Appendix F for a more elaborate introduction to the presented results.

The median and 95% confidence interval for the posterior spline curves for
α and β are shown in Figure 4.7. These summary statistics are computed by
taking the median and 2.5% and 97.5% quantile of the posterior sample for each
weight coefficient, and multiplying these results by the spline basis matrix Bθ.
As shown in Figure 4.7(B)-(C), the median and 95% confidence interval for the
α spline curve successfully converge to their true value. Figure 4.7(F) suggests
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over-fitting in the spline curve for β based on the simplified mMALA, while
for MALA, the curve seems biased, as shown in Figure 4.7(E).

The results for the random walk look suspicious and suggest the chains
might not have converged yet. This statement is confirmed by the running
mean of the likelihood for four different chains started at different starting
values shown in Appendix F in Figure F.2(D). It is immediately clear that
the Markov chains based on a random walk transitional kernel do not move
around. Although the likelihood and autocorrelation for a single chain looks
decent and, as shown in Figure F.2(A)-(G), the results for the random walk tran-
sition kernel are indeed not to be trusted. It is concluded that Bayesian infer-
ence for the generalized Heffernan and Tawn model based on a random walk
transition kernel is not viable, as convergence of the chains is prohibitively
slow. The diagnostic plots for the random walk will be provided for complete-
ness, but a discussion of the results is omitted.
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FIGURE 4.7: Summary statistics of the spline curves based on
the posterior samples for the weight coefficients ζα and ζβ for
Case 1.1 data. The median and 2.5% and 97.5% quantiles are
computed for the posterior samples of each single weight co-
efficient. The resulting smooth spline curves are obtained by

multiplying these statistics with the basis matrix Bθ.

The running mean of the likelihood and the trace-plots of posterior sam-
ples for selected weights ζθ for the MALA and simplified mMALA, shown in
Appendix F in Figure F.2(E)-(E) and Figure F.3 respectively, provide sufficient
evidence that each of the chains — which are started at different starting val-
ues — have converged in distribution to the same stationary target distribution.
However, these trace-plots reveal that chains based on the simplified mMALA
show much better mixing compared to MALA. Figure F.3(K) even suggests that



4.4. Bayesian inference for the generalized Heffernan and Tawn model 97

certain chains for MALA get stuck for a considerable number of iterations.
If posterior samples are constant for certain ranges, this induces high corre-

lation between these samples. The heatmap of the correlation matrices shown
in Figure F.2(K)-(L) shows the pairwise correlation between the posterior sam-
ples of different weight coefficients for each of the four Heffernan and Tawn
model parameters. For the simplified mMALA, the correlation matrix resem-
bles the structure imposed by the restrained expected Fisher information ma-
trix. For MALA on the contrary, there is significant correlation between certain
posterior samples while there is not supposed to be any.

A closer look at the roughness penalties reveals why the β spline curve in
Figure 4.7(F) appears to be over-fitting the data. The trace-plots and histograms
shown in Figure F.4 and F.5 reveal the roughness coefficients λβ and λψ2 are
close to 0 for the simplified mMALA, allowing the spline curves for β and
ψ2 to vary wildly. It indicates there is insufficient information in the data to
control the smoothness of the spline curves for these parameters. Assuming a
common step-size ε might also contribute to the problem, as the magnitude of
the proposals might overrule the scale at which the roughness coefficient tries
to enforce smoothness.

Adopting informative prior distributions for the roughness coefficient is an
obvious way to address this issue. The spline curves shown in Figure F.6 in-
deed show greater smoothness. Figure F.7(K) shows a significant reduction in
correlation for the off-diagonal entries in the correlation matrix of the poste-
rior samples generated with MALA. The increase in correlation for simplified
mMALA in the β − β, ψ2 − ψ2 and β − ψ2 entries, as shown in Figure F.7(K),
arises because the Hessian of the log-prior was assumed to be equal to zero,
which is clearly no longer true and is not accounted for. It is suspicious that
the histogram of the posterior sample for λβ, λµ and λψ2 shows nearly perfect
resemblance with the prior densities, as shown in Figure F.9. This reassures
that there is little information in the data to force a constant spline curve β (x).

Summarizing, the random walk transition kernel is an inappropriate pro-
posal mechanism for the generalized Heffernan and Tawn model. For uninfor-
mative prior distributions, both MALA and simplified mMALA yield satisfac-
tory results, up to a certain degree of over-fitting in the spline curves for β (x)

and ψ2 (x). Adopting informative priors ηβ and ηψ2 is a natural way to address
this issue.
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4.4.6 Results for Case 1.2

Now that Bayesian inference for the generalized Heffernan and Tawn model
has been demonstrated for Case 1.1, the more challenging Case 1.2 is consid-
ered. Several of the issues raised in Section 4.4.5 are expected to manifest them-
selves in this case as well. Summary statistics for the spline curves for α and β
are presented in Figure 4.8, based on the median and 95% empirical quantiles
of the posterior sample for the weight coefficients.

The random walk transition kernel — again — has failed to converge. This
is confirmed by the running mean of the likelihood for four different chains,
which do not converge to a common negative log-likelihood level, as shown
in Figure F.12(D). By increasing the number of burn-in samples and applying
thinning to the posterior samples, converged and properly mixing posterior
samples should be obtained, as Theorem 4.1.1 dictates. However, these results
suggest it will require an impractical number of burn-in iterations. Since the
MALA and simplified mMALA yield properly converged posterior samples,
no further attempts are made to tune the step size, number of iterations and
hyper-prior parameters to end up with properly converged posterior samples
for the random walk transition kernel. Hence the results, although included,
are disregarded from further discussion in this section.

A first impression based on the results shown in Figure 4.8 suggest the
model is an appropriate fit to the data. The spline curves retrieve the imposed
extremal dependence structure very well. The confidence bounds for the sim-
plified mMALA even cover the true values entirely.

Discontinuities at the boundary between sectors pose a significant chal-
lenge for the spline curves, as is clearly shown in Figure 4.8(E)-(F). The model
struggles to be piece-wise constant within the sectors, but at the same time cope
with the discontinuities at the boundaries between the sectors. Smoothness of
the spline curves is controlled by a single roughness coefficient that has to find
a balance to cope with these two features in the extremal dependence structure.

The overshoot at the discontinuities persists if informative priors are adopted,
as shown by comparing Figure F.11 to F.16 in Appendix F. One way to address
this issue is to locally increase the number of knots in order to provide greater
control of the spline curve, as proposed by Eck and Hadenfeld (1995). Adding
and removing spline knots is deemed to be a promising improvement to the
methodology proposed in Section 4.4.

Markov chains based on MALA or simplified mMALA successfully con-
verge in only 100-200 burn-in iterations, as shown in Figure F.12(E)-(F). Trace-
plots of the likelihood for the posterior sample suggest proper mixing and only
a small degree of autocorrelation. However, the autocorrelation function itself
shows significant and persistent autocorrelation in the posterior samples.
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FIGURE 4.8: Summary statistics of the spline curves based on
the posterior samples for the weight coefficients ζα and ζβ for
Case 1.2 data. The median and 2.5% and 97.5% quantiles are
computed for the posterior samples of each single weight co-
efficient. The resulting smooth spline curves are obtained by

multiplying these statistics with the basis matrix Bθ.

Trace-plots for a selection of the weight coefficients shows the simplified
mMALA yields faster convergence and better mixing of the posterior samples,
see Figure F.1. The correlation matrix for MALA reveals significant correlation
between many posterior samples, while there is not supposed to be any. This
incidates the simplified mMALA is superior to MALA in terms of mixing and
autocorrelation. Even if the number of knots is increased, the result of which
are not reported, the simplified mMALA proves to be reliable, while posterior
samples based on MALA fail to converge or exhibit extensive autocorrelation.

Overfitting related to the discontinuities has already been discussed, but
similar to Case 1.1, the splines curves also show overfitting in general. Trace-
plots and histograms of the roughness coefficients are shown in Figure F.4 and
F.15. The roughness coefficient is very close to zero for each parameter, for
both MALA and simplified mMALA. Adopting informative priors to address
this issue is surprisingly ineffective. Comparing Figure F.15 to F.20 reveals the
posterior distributions of the roughness coefficients have a lot of probability
mass close to zero, albeit the informative priors in favor of higher roughness
penalties. This suggests there is strong information in the data in favor of small
roughness penalties and wildly varying spline curves. Accommodating dis-
continuities in the spline curve takes a hefty toll on the smoothness.

Summarizing, the MALA and simplified mMALA successfully retrieve the
imposed extremal dependence structure. Both algorithms yield convergent
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posterior samples, and the simplified mMALA shows superior mixing of the
Markov chains. Fitting a smooth spline curve to a piece-wise constant func-
tion is shown to be challenging, as the global roughness coefficient has to bal-
ance the extremal dependence function being constant within each sector, and
discontinuous at the boundary between two sectors. Even strong informative
priors are not an effective measure to address this issue.
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Chapter 5

Conclusion and Discussion

The aim of this thesis project was to propose a robust methodology to quantify
uncertainty regarding the parameters of the generalized Heffernan and Tawn
model, which was proposed by Jonathan et al. (2014). This generalization as-
sumes the parameters of the the Heffernan and Tawn model to be smooth func-
tions with respect a covariate, by adopting penalized basis spline functions as
introduced by Eilers and Marx (1996). Inference demonstrated by Jonathan
et al. (2014), relies on likelihood minimization and cross-validating the entire
model to obtain an optimal roughness coefficient. Sampling with replacement
from the data and repeating the entire procedure was required to quantify un-
certainty regarding the model parameters. This is very time consuming, te-
dious and puts practical constraints on the number of random variables that
can be taken into account.

Bayesian inference arose as a natural candidate to address these issues. A
novel Bayesian model was developed and demonstrated for the different mod-
els presented in the road map shown in Figure 1.2. By adopting the simpli-
fied manifold Metropolis adjusted Langevin algorithm (smMALA) proposed
by Girolami and Calderhead (2011), the methodology presented in this thesis is
concluded to be successful, easy to fit and robust. Even when a large number of
knots is considered and the number of dimensions of the associated parameter
space is large. As the main advantages are practical in nature, quantifying or
proving superior performance compared to frequentist inference was omitted.
The most important issues encountered along the way, as well as recommen-
dations to address these issues, are discussed in this chapter. By adopting the
proposed recommendations, the methodology proposed in this thesis can ulti-
mately be adopted for inference on the generalized constrained Heffernan and
Tawn model.

First, Bayesian inference on the constant Heffernan and Tawn model was
demonstrated. Exploring the parameter space based on a random walk pro-
posal mechanism results in highly correlated posterior samples. This issue was
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addressed by adopting the simplified manifold Metropolis adjusted Langevin
algorithm (smMALA) proposed by Girolami and Calderhead (2011). As the
gradient of the likelihood function and the expected Fisher information matrix
characterize the geometry of the parameter space, exploiting this information
yields more sophisticated proposals. The smMALA is shown to outperform the
other proposal mechanisms, even if the additional computation time is taken
into account. Uninformative prior distributions proved to be sufficient to ob-
tain satisfactory results.

For asymptotically dependent data, the maximum likelihood estimates for
the parameters the Heffernan and Tawn model lie on the boundary of the the
parameter space. Conventional methods fail to quantifying uncertainty in this
case as asymptotic normality of the maximum likelihood estimator does not
hold. In a Bayesian setting, Markov chain Monte Carlo algorithms will also fail
to put probability mass on the boundary of the parameter space. A reparam-
eterization was considered to address this issue. Adopting the reparameteri-
zation annihilates the resulting bias in the posterior samples. On the contrary,
ensuring convergence of the Markov chains is much more challenging and the
simplified mMALA even breaks down as the expected Fisher information ma-
trix is non-invertible. Hence an alternative solution to inference on the Heffer-
nan and Tawn model for asymptotic dependent data is required. One solution
would be to fix α = 1 when there is strong evidence in favor of the data being
asymptotically dependent. Adopting the reversible jump Markov chain Monte
Carlo algorithm proposed by Green (1995) can reduce the number of dimen-
sions of the parameter space by fixing α = 1. In similar fashion, the case where
β = 1 could be accommodated. Implementing a reversible jump algorithm is
recommended as it ensures that both classes of extremal dependence can be
accommodated by a single algorithm. This is valuable as accommodating both
asymptotic independent– and asymptotic dependent data is a distinguishing
feature of the Heffernan and Tawn model, compared to other multivariate ex-
treme value models. This recommendation was also raised by Lugrin et al.
(2016).

Secondly, the indispensable constraints on the parameters of the Heffernan
and Tawn model proposed by Keef et al. (2013) were taken into consideration.
These constraints ensure a stochastic ordering on conditional quantiles under
the Heffernan and Tawn model. Inference on the constrained Heffernan and
Tawn model is challenging as the parameter space is severely confined, in par-
ticular for asymptotic dependent data. Previously raised issues regarding un-
certainty quantification for the maximum likelihood estimator for asymptotic
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dependent data, now apply to both classes of extremal dependence. In addi-
tion, as the constraints are currently imposed implicitly, the proposal mecha-
nism will keep on making unfeasible proposals affecting the efficiency of the
sampler. Simulating from a truncated multivariate Gaussian distribution is rec-
ommended to address this issue. However, as Botev (2016) points out, “simula-
tion from the truncated multivariate Gaussian distribution in high dimensions
is a recurrent problem in statistical computing and is typically only feasible by
using approximate Markov chain Monte Carlo sampling”. As the truncated
multivariate Gaussian density should be determined at each iteration of the
MALA or simplified mMALA, imposing the constraints this way is extremely
computationally expensive. Botev (2016) proposes a “minimax tilting method
for [. . . ] generating samples from the truncated multivariate Gaussian distribu-
tion” which yields a promising approach to impose the constraints explicitly.

Finally, inference on the generalized Heffernan and Tawn model was demon-
strated. When setting up the model, the number of knots and their spacing
need to be defined. As it is not obvious beforehand how to choose these pa-
rameters, appropriate values are obtained by trial and error. Misspecification
of these parameters can lead to serious over– or under-fitting. Moreover, dis-
continuities and local data sparsity can have a profound impact on the good-
ness of fit by overruling the roughness penalty that ensures smoothness of the
spline curve. A method to add– or remove knots during burn-in of the Markov
chains was proposed by Eck and Hadenfeld (1995). Implementing this method
will save time when setting up the model and yields greater flexibility, as it is
unfeasible to tune the number of knots and the knot spacing for each of the
different parameters of the Heffernan and Tawn model.

Bayesian inference for the generalization of the Heffernan and Tawn model
proposed by Jonathan et al. (2014) is the magnum opus of this thesis. A sim-
ulation study concerning asymptotically independent data for two distinct ex-
tremal dependence structures, shows the simplified mMALA yields posterior
samples that converge and mix well. The proposed Bayesian inference frame-
work was particularly successful for certain parameters of the generalized Hef-
fernan and Tawn model, while it proved difficult to control overfitting for
other parameters. The posterior samples of the roughness coefficient reveal
that for other parameters there is little information in the data to control the
smoothness of the spline curve. Strong informative priors can address this is-
sue, but choosing appropriate prior distributions is not trivial. Considering
higher order difference matrices or higher order spline functions will provide
greater control and might improve the goodness of fit of the resulting spline
curves. After discussing the results and performance of the algorithm with
Philip Jonathan and David Randell, it is concluded that the proposed Bayesian
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inference methodology is a superior alternative to the methodology adopted
by Jonathan et al. (2014).

In addition to the results for the demonstrated Bayesian inference, several
properties of the likelihood function of the Heffernan and Tawn model have
been studied. The results of a simulation study suggest that the model pa-
rameters are nearly unidentifiable along a ridge in the likelihood function. What
can be concluded with certainty, is that the parameters are unidentifiable if
β = 1, and they are identifiable if µ = 0. These issues stem from the Gaus-
sianity assumption on the limit distribution for the residuals, which leads to
non-linear relationships between certain model parameters. Closely related,
the full observed– and expected Fisher information matrix have been shown
to be non-positive definite unless the mean of the residual distribution is ap-
proximately equal to zero. The restrained expected Fisher information matrix
was introduced to guarantee for the entire parameter space. Further research
might focus on formalizing the assertions on identifiability of the Heffernan
and Tawn model parameters.

The influence of sample size, dependence in the original data sample and
the non-exceedance probability on the sampling distribution of the maximum
likelihood estimator have been studied. For weakly dependent data, the max-
imum likelihood estimator was shown to be severely biased. All else being
equal, adopting the non-exceedance probability p = 0.95 was shown to min-
imize the mean squared error of the maximum likelihood estimator for the
parameters of the Heffernan and Tawn model.

Miscellaneous concluding remarks

The simulation studies performed within the context of this thesis only con-
sider the Gaussian distribution and the generalized extreme value distribution
with symmetric logistic dependence function. Throughout this thesis, these
two distributions are deemed to be representative for their respective class of
extremal dependence. It is possible that by considering other distributions or
real world data, remarks regarding the performance of the proposed Bayesian
inference methodology for a particular class of extremal dependence no longer
holds.

Some of the issues raised in Chapter 3 and 4 might be less profound on
an aggregate level. For example, bias in posterior samples for α and µ for
asymptotically dependent data is significant, but the impact on return level
estimation under the posterior sample might be negligible. As time constraints
did not permit to address return level estimation, it would be interesting to
perform these analyses.
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Large sample sizes were adopted in the simulation studies to reduce the
impact of sampling errors on the results. The availability of large samples is
a luxury not often encountered in real world applications. Considering small
samples introduces a lot of uncertainty regarding the parameter estimates for
the constant Heffernan and Tawn model, as shown in Section 3.2.6. For the
generalized Heffernan and Tawn model, this issue will be even more profound.
In addition, even if the total sample size is large, but data is locally sparse,
parameter estimates for the generalized Heffernan and Tawn model have a
significant exposure to sampling errors.

The constraints proposed by Keef et al. (2013) are a function of the threshold
exceedances of the conditioning variable. This leads to an interesting conjunc-
tion where Bayesians and frequentists will part. Consider uncertainty quantifi-
cation based on resampling data with replacement and computing maximum
likelihood estimates for each sample. As the data affects the feasible parameter
space, for each sample, the negative log-likelihood function will be minimized
over a slightly different parameter space. This leads to strange structure in the
bootstrap sample, in particular when the data sample is small. On the contrary,
as the Bayesian paradigm assumes the observed data to be fixed, a single con-
strained parameter space is taken into consideration and hence the boundary
of the parameter space is fixed as well.
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Appendix A

Derivations and Proofs

A.1 The link between the GEV and GP distribution

Let N be a Poisson random variable with rate parameter p̄, and let Y1, . . . , YN

be generalized Pareto distributed. The generalized extreme value distribution
arises as the distribution of normalized partial maximaMN := max {Y1, . . . , YN},
since

Pr(MN ≤ x) =

∞∑
n=0

Pr(N = n) · Pr (Y1 ≤ y, . . . , Yn ≤ y) ,

=

∞∑
n=0

e−p̄
p̄n

n!
·

{
1−

(
1 + ξ

y
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+

}n
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+
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+
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,

= Gξ (y + u) .
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A.2 Bivariate Distributions

• Bilogistic Model
By Joe et al. (1992).

h(x; a, b) =
1

2

(1− a)(1− u)u1−a

{a(1− u) + bu}(1− x)x2
(A.1)

where 0 < x < 1 and 0 < a, b < 1. The scalar u = u(x, a, b) is given by the
solution of

(1− a)(1− w)(1− u)b − (1− a)wub = 0 (A.2)

• Dirichlet Model
By Coles et al. (1991).

h(x; a, b) =
ab

2

Γ(a+ b+ 1)

Γ(a)Γ(b)

(aw)a−1{b(1− w)}b−1

{aw + b(1− w)}a+b+1
(A.3)
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A.3 Deriving the negative log-Likelihood function

The likelihood function is defined by

LHT(θ | y) =
n∏
l=1

fHT (y2l | θ, y1l) . (A.4)

In a bivariate setting, the density function for the Heffernan and Tawn model
for a Gaussian residual distribution is given by

fHT (y2l | θ, y1l) :=
1√

2πy2β
1l ψ

2

exp

−1

2

(
y2l − αy1l − yβ1lµ

)2

y2β
1l ψ

2

 . (A.5)

The negative log-likelihood is defined by ¯̀(θ | y) := − logL (θ | y). After sub-
stitution, this yields

¯̀
HT(θ | y) = − log LHT (θ | y) ,

= − log

{
n∏
l=1

fHT (y2l | θ, y1j)

}
,

= −
n∑
l=1

log fHT (y2l | θ, y1l) .

Which is equivalent to

¯̀
HT(θ | y) =

n

2
log(2π) +

n

2
logψ2 + β

1

2

n∑
l=1

log y1j

+
1

2

n∑
l=1

(
y2j − αy1j − yβ1jµ

)2

y2β
1j ψ

2
.

(A.6)
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A.4 Derivatives of the likelihood function

As derived in Appendix A.3, the negative log-likelihood for the bivariate Hef-
fernan and Tawn model, when Y1 is the conditioning variable, is given by (A.6).

First order derivatives

∂ ¯̀

∂α
= − 1

ψ2

n∑
l=1

y2l − αy1l − yβ1lµ
y2β−1

1l

,

∂ ¯̀

∂β
= − 1

ψ2

n∑
l=1

log (y1l)

(y2l − αy1l)

(
y2l − αy1l − yβ1lµ

)
y2β

1l

+ ψ2

 ,

∂ ¯̀

∂µ
= − 1

ψ2

n∑
l=1

y2l − αy1l − yβ1lµ
yβ1l

,

∂ ¯̀

∂ψ2
= − 1

ψ2

n∑
l=1

1

2

(
y2l − αy1l − yβ1lµ

)2
− y2β

1l

y2β
1l ψ

2
.

Second order derivatives

∂2 ¯̀

∂α2
=

1

ψ2

n∑
l=1

y2−2β
1l ,

∂2 ¯̀

∂β2
=

1

ψ2

n∑
l=1

log2 (y1l) (y2l − αy1l)
2y2l − 2αy1l − yβ1lµ

y2β
1l

,

∂2 ¯̀

∂µ2
=

n

ψ2
,

∂2 ¯̀

∂ψ2∂ψ2
=

1

ψ2

n∑
l=1

1

ψ4

(
y2l − αy1l − yβ1lµ

)2
− y2β

1l

y2β
1l ψ

2
.
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Mixed derivatives

∂2 ¯̀

∂α∂β
=

1

ψ2

n∑
l=1

log (y1l)
2y2l − 2αy1l − yβ1lµ

y2β−1
1l

,

∂2 ¯̀

∂α∂µ
=

1

ψ2

n∑
l=1

y1−β
1l ,

∂2 ¯̀

∂α∂ψ2
=

1

ψ4

n∑
l=1

y2l − αy1l − yβ1lµ
y2β−1

1l

,

∂2 ¯̀

∂β∂µ
=

1

ψ2

n∑
l=1

log (y1l)
y2l − αy1l

yβ1l
,

∂2 ¯̀

∂β∂ψ2
=

1

ψ4

n∑
l=1

log (y1l) (y2l − αy1l)
y2l − αy1l − yβ1lµ

y2β
1l

,

∂2 ¯̀

∂µ∂ψ2
=

1

ψ4

n∑
l=1

y2l − αy1l − yβ1lµ
yβ1l

.
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A.5 Expected Fisher information matrix for the Heffer-
nan and Tawn model

The expected Fisher information can be determined based on the derivatives
presented in Appendix A.4. If the Heffernan and Tawn model with Gaussian
residual distribution is specified by

TL (Y2) | TL (Y1) = y ∼ N
(
αy + yβµ, y2βψ2

)
, (A.7)

taking the expectation with respect Y2 given Y1 = y, for each of the second
derivatives, yields the entries of the Fisher information matrix.

First order derivatives

E

(
∂ ¯̀

∂α

)
= 0,

E

(
∂ ¯̀

∂β

)
= 0,

E

(
∂ ¯̀

∂µ

)
= 0,

E

(
∂ ¯̀

∂ψ2

)
= 0.

Second order derivatives

E

(
∂2 ¯̀

∂α2

)
=

1

ψ2

n∑
l=1

y2−2β
1l , (A.8)

E

(
∂2 ¯̀

∂β2

)
=

(
2 +

µ2

ψ2

) n∑
l=1

log2 (y1) , (A.9)

E

(
∂2 ¯̀

∂µ2

)
=

n

ψ2
, (A.10)

E

(
∂2 ¯̀

∂ψ2∂ψ2

)
=

n

2ψ4
. (A.11)
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Mixed derivatives

E

(
∂2 ¯̀

∂α∂β

)
=

1

ψ2
µ

n∑
l=1

log (y1l) y
2−2β
1l ,

E

(
∂2 ¯̀

∂α∂µ

)
=

1

ψ2

n∑
l=1

y1−β
1l ,

E

(
∂2 ¯̀

∂α∂ψ2

)
= 0,

E

(
∂2 ¯̀

∂β∂µ

)
=

1

ψ2
µ

n∑
l=1

log (y1l) ,

E

(
∂2 ¯̀

∂β∂ψ2

)
=

1

ψ2

n∑
l=1

log (y1l) ,

E

(
∂2 ¯̀

∂µ∂ψ2

)
= 0.
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A.6 Derivatives under the the reparameterization

The reparameterization of the Heffernan and Tawn model introduced in Sec-
tion 4.2 is given by

α∗ := log

(
1 + α

1− α

)
, β∗ := − log (1− β) and ψ2∗ := log

(
ψ2
)
.

This requires an appropriate scaling of the first and second derivatives.

First order derivatives

The first order derivatives for the likelihood function of the reparameterized
Heffernan and Tawn model can be derived through the chain rule. Since, for
θ ∈

{
α, β, ψ2

}
, and θ∗ ∈

{
α∗, β∗, ψ2∗}, the first derivatives are given by

∂ ¯̀

∂θ∗
=

dθ

dθ∗
∂ ¯̀

∂θ
, (A.12)

where each the first derivatives with respect to θ are presented in Appendix
A.4. The first order derivatives of functions that the define the reparameteriza-
tion are given by

dα

dα∗
=

1

2
sech

(
α∗

2

)
, (A.13)

dβ

dβ∗
= exp (−β∗) , (A.14)

dψ2

dψ2∗ = exp
(
ψ2∗) , (A.15)

where sech denotes the hyperbolic secant function. As the mixed partial deriva-
tives are all zero, the Jacobian matrix JRP of the reparameterization is given by

JRP :=


1
2sech

(
α∗

2

)
0 0 0

0 exp (−β∗) 0 0

0 0 0 0

0 0 0 exp
(
ψ2∗)

 . (A.16)
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Second order derivatives

∂2 ¯̀

∂θ∗
=

∂

∂θ∗

(
dθ

dθ∗
∂ ¯̀

∂θ

)
,

=
∂ ¯̀

∂θ

(
d

dθ∗
dθ

dθ∗

)
+

dθ

dθ∗

(
∂

∂θ∗
∂ ¯̀

∂θ

)
,

=
∂ ¯̀

∂θ

d2θ

dθ∗2
+

(
dθ

dθ∗

)2 ∂2 ¯̀

∂θ2

The Hessian matrix HRP of the reparameterization is given by

HRP :=


−4sinh

(
α∗

2

)
csch (α∗) 0 0 0

0 − exp (−β∗) 0 0

0 0 0 0

0 0 0 exp
(
ψ2∗)

 ,

where sinh denotes the hyperbolic sinus function and csch denotes the hyper-
bolic cosecant function.

Expected Fisher information matrix

E

(
∂2 ¯̀

∂θ∗

)
=

d2θ

dθ∗2
E

(
∂ ¯̀

∂θ

)
+

(
dθ

dθ∗

)2

E

(
∂2 ¯̀

∂θ2

)
(A.17)

The first term on the right hand side in (A.17) drops out as the expectation of
the first order derivative is zero for each θ ∈

{
α, β, ψ2

}
, as shown in Appendix

A.5. Hence, the expectation of the second derivatives for the likelihood func-
tion of the reparameterized Heffernan and Tawn model, is defined by scaling
each expression in (A.8) by the squared first derivatives defined by (A.13).

Because the off diagonal elements of the Jacobian matrix in (A.16) are all
zero, the mixed derivatives are directly defined by scaling the mixed deriva-
tives presented in Appendix A.5. For θ1, θ2 ∈

{
α, β, ψ2

}
such that θ1 6= θ2, the

mixed derivative is defined by

E

(
∂2 ¯̀

∂θ∗1∂θ
∗
2

)
=

dθ1

dθ∗1

dθ2

dθ∗2
E

(
∂2 ¯̀

∂θ1∂θ2

)
.
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Gradient of the metric tensor

Contrary to the simplified mMALA which assumes constant curvature of the
parameter space manifold, full mMALA requires computing the metric tensor
that defines the curvature of the manifold. The metric tensor is defined by the
Jacobian matrix of the expected Fisher information matrix, who’s entries are
provided below.

Second Order Derivatives

∇θE
(
∂2 ¯̀

∂α2

)
=

{
0 − 2

ψ2
y2−2β

1 log (y1) 0 − 1

ψ4
y2−2β

1

}ᵀ
,

∇θE
(
∂2 ¯̀

∂β2

)
=

{
0 0

2

ψ2
µ log2 (y1) − 1

ψ4
µ2 log2 (y1)

}ᵀ
,

∇θE
(
∂2 ¯̀

∂µ2

)
=

{
0 0 0 − 1

ψ4

}ᵀ
,

∇θE
(

∂2 ¯̀

∂ψ2∂ψ2

)
=

{
0 0 0 − 1

ψ6

}ᵀ
.

Mixed Derivatives

∇θE
(

∂2 ¯̀

∂α∂β

)
= − 1

ψ2

log (y1)

y2β−2
1

{0 2µ log (y1) − 1 µ}ᵀ ,

∇θE
(

∂2 ¯̀

∂α∂µ

)
= − 1

ψ2
y1−β

1

{
0 log (y1) 0

1

ψ2

}ᵀ
,

∇θE
(

∂2 ¯̀

∂α∂ψ2

)
= {0 0 0 0}ᵀ ,

∇θE
(

∂2 ¯̀

∂β∂µ

)
= − 1

ψ2
log (y1) {0 0 − 1 µ}ᵀ ,

∇θE
(
∂2 ¯̀

∂βψ2

)
= − 1

ψ2

{
0 0 0

1

ψ2
log (y1)

}ᵀ
,

∇θE
(

∂2 ¯̀

∂µ∂ψ2

)
= {0 0 0 0}ᵀ .
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A.7 Derivatives for the log-prior distributions

The gradient and Hessian for the log-prior distributions used in Chapter 4 are
derived in this section. If informative prior distributions are considered the
Hessian of the log-prior distributions should be subtracted from the expected
Fisher information matrix.

Gaussian prior distribution

First, consider the Gaussian distribution is chosen as a prior distribution for the
parameter θ. Let ηθ =

(
ηµθ , η

σ2

θ

)
denote the hyper parameters. The probability

density function of the Gaussian distribution is given by

fΘ (θ | ηµ, ησ2) =
1√

2πησ
2

θ

exp

{
−
(
θ − ηµθ

)2
2ησ

2

θ

}
,

such that

− log fΘ =
1

2
log 2π +

1

2
log ησ

2

θ +
(θ − ηµ)2

2ησ2

The gradient is given by

−∇η log fΘ (θ) =


θ−ηµ
ησ2

1

2ησ
2
θ

− (θ−ηµθ )
2

2
(
ησ

2
θ

)2


The Hessian matrix is given by

H = − ∂
2

∂η
log fΘ (θ) =


1

ησ
2
θ

θ−ηµθ(
ησ

2
θ

)2

θ−ηµθ(
ησ

2
θ

)2

(θ−ηµθ )
2(

ησ
2
θ

)3 − 1

2
(
ησ

2
θ

)2


Gamma prior distribution

For the Gamma distribution, let ηθ =
(
ηaθ , η

b
θ

)
denote the hyper parameters.

The probability density function of the Gamma distribution is given by

fΘ

(
θ | ηaθ , ηbθ

)
=

1

Γ
(
ηaθ
) (
ηbθ
)ηaθ θηaθ−1 exp

(
− θ

ηbθ

)
,

such that

− log fΘ = − log {Γ (ηaθ )} − ηaθ log ηbθ + (ηaθ − 1) log θ − θ

ηbθ
.
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The gradient is given by

∇η − log fΘ (θ) =

diΓ(0) (ηaθ ) + log ηbθ − log θ
ηaθ η

b
θ−θ

(ηbθ)
2


where diΓ(k) denotes the k-th derivative of the di-Gamma function. The Hes-
sian matrix is given by

H =
∂2

∂η
− log fΘ (θ) =

diΓ(1) (ηaθ )
2θ−ηaθ η

b
θ

(ηbθ)
3

2θ−ηaθ η
b
θ

(ηbθ)
3

1
ηbθ


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A.8 Feasible starting values for minimization algorithm

Maximum likelihood estimates are obtained by minimizing (3.18) with the sim-
plex search algorithm proposed by Reeds et al. (1998). The algorithm requires
feasible starting values in order to converge. Proposing feasible starting values,
in particular when the constraints proposed by Keef et al. (2013) are imposed,
is not trivial. In particular since the constraints itself depend on the data sam-
ple. Algorithm 5 addresses this issues by proposing random starting values in
the unconstrained parameter space. The proposed starting value θ0 is either
accepted or rejected based on whether the constraints are satisfied. Once the
first feasible starting value is found, an arbitrary but small number of addi-
tional feasible starting values are identified. The proposed starting value with
the smallest associated negative log-likelihood value is chosen as a relative op-
timal starting value. The pseudo code for this routine is provided in Algorithm
5. The boundaries of the unconstrained parameter space, and prior knowledge

Algorithm 5 Feasible starting value algorithm

Define iMAX and jMAX. Initialize i, j = 1.
while i ≤ iMAX and j ≤ jMAX do

Sample θ∗0 from appropriate prior distributions.
if θ0 is feasible under the Keef et al. (2013) conditions. then
θ

(i)
0 ← θ∗0
i← i+ 1

end if
j ← j + 1.

end while
i0 ← arg max1≤i≤iMAX

¯̀
HT

(
θ

(i)
0 | y

)
return θ0 ← θ

(i0)
0

of the true parameter values for Case 1 and Case 2 can be incorporated in the
proposal distributions. For Case 1, let

α0 ∼ B (2, 5) , β0 ∼ 1−W (2, 2.5) , µ0 ∼ N (0.5, 1) and ψ2
0 ∼ W (1, 1.5) .

These distributions reflect strong prior knowledge of starting values that are
likely to be feasible. For Case 2, the distribution for µ0 and ψ2

0 is similar, but

α0 ∼ B (10, 2) and β0 ∼ 1−W (1, 3.5) .

The proposed methodology is practical yet certainly not optimal. The algo-
rithm may not converge if the prior distributions are misspecified.
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FIGURE B.1: Histogram of the bootstrapped maximum likeli-
hood estimates for the parameters of the Heffernan and Tawn
model for both Case 1 and Case 2 data. Maximum likelihood
estimates (- · -) and 95% confidence bounds (- - -) obtained by
computing the 2.5% and 97.5% quantiles of sample of maxi-
mum likelihood estimates. The bootstrap sample is obtained
by sampling nB = 103 times with replacement from the origi-
nal data, while estimating the maximum likelihood estimates at

each iteration.

(A) Case 1: α̂2|1. (B) Case 2: α̂2|1.

(C) Case 1: β̂2|1. (D) Case 2: β̂2|1.

(E) Case 1: µ̂ (F) Case 2: µ̂

(G) Case 1: ψ̂2 (H) Case 2: ψ̂2
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FIGURE B.2: Subspace of Ωθ that yields non-negative eigen-
values for the expected Fisher information matrix I (θ) (cyan))
and restrained expected Fisher information matrix IR (θ)
(blue+cyan). The maximum likelihood estimates (�) are also

indicated.
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FIGURE B.3: Influence of sample size nT of the maximum likeli-
hood estimator for the Heffernan and Tawn model parameters.
The non-exceedance probability p = 0.95. The median (—) and
95% confidence interval (- - -) of the sampling distribution are
shown, as well as the median (—) and 95% confidence interval
(- - -) of the sample of maximum likelihood estimates obtained
by resampling with replacement from the data and estimating

the maximum likelihood estimates for each iteration.
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FIGURE B.4: Influence of threshold uncertainty of the maxi-
mum likelihood estimator for the Heffernan and Tawn model
parameters. The median (—) and 95% confidence interval (- - -)
of the sampling distribution are shown, as well as the median
(—) and 95% confidence interval (- - -) of bootstrapped maxi-

mum likelihood estimates.
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FIGURE B.5: Mean squared error (—) for the maximum likeli-
hood estimator for the Heffernan and Tawn model parameters,
as a function of ρ. The squared bias (- · -) and variance (- - -
) are also shown. A sample of maximum likelihood estimates
θ̂MLE is obtained by generating a new data sample (nT = 105 and
p = 0.95) at each iteration, and fitting the Heffernan and Tawn

model to that sample.
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FIGURE B.6: Mean squared error for the maximum likelihood
estimator for the Heffernan and Tawn model parameters, as a
function of p ∈ [0.8, 0.98]. Samples with maximum likelihood
estimates are obtained in two different ways. The first approach
(—) relies on resampling with replacement, i.e. bootstrapping,
from a single data sample. The second approach (—) approx-
imates the sampling distribution of θ̂MLE by generating a new
data sample at each iteration, and fitting the Heffernan and

Tawn model to that sample.
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Appendix C

Diagnostic plots: constant
Heffernan and Tawn model

Diagnostic plots for the Bayesian analysis discussed in Section 4.2 are presented
in this appendix. Both the asymptotic independent Case 1 data and asymptotic
dependent Case 2 data are considered. The results are presented in consecutive
order:

1. Case 1: α, β, see Figure C.1,

2. Case 1: All four parameters α, β, µ, ψ2, see Figure C.2 and C.3,

3. Case 2: α, β, see Figure C.7,

4. Case 2: All four parameters α, β, µ, ψ2, see Figure C.8 and C.9.

For each of the aforementioned cases, the following diagnostic plots are pre-
sented).

• Trace-plots of the posterior samples of the parameters to be estimated
(—) with the maximum likelihood estimate (- · -) as a reference. A con-
verged and properly mixing posterior sample should resemble a white
noise process around the maximum likelihood estimate.

• Trace-plot of the likelihood. The absence of a trend and autoregressive
features, as well as constant variability, indicate the Markov chain has
converged to a stationary limit distribution.

• Autocorrelation function of the sample likelihood. The faster the auto-
correlation decreases, the better.

• Running mean of the sample likelihood for four different chains with dif-
ferent starting values. If the running mean of the likelihood for each sin-
gle chain converges to the same value, this suggests the Markov chains
have converged to a global minimum in the negative log-likelihood func-
tion.
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• The generated Markov chains, when all four parameters are estimated si-
multaneously, are summarized in scatterplot matrices. Burn-in is shown
left of the diagonal, and the posterior samples are shown right of the di-
agonal with maximum likelihood estimates (�). The histograms on the
diagonal show the median (· · · ) and 95% confidence interval (- - -) based
on the 2.5% and 97.5% quantile as well as the maximum likelihood esti-
mate (- · -).
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FIGURE C.1: Case 1 (α, β): Traceplots of the posterior samples
and maximum likelihood estimates (- - -), as well as diagnos-
tic plots for the sample likelihood when α and β are estimated

simultaneously.
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FIGURE C.2: Case 1
(
α, β, µ, ψ2

)
: Traceplots of the posterior

samples and maximum likelihood estimates (- - -) when all four
parameters of the Heffernan and Tawn model are estimated si-

multaneously.
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FIGURE C.3: Case 1
(
α, β, µ, ψ2

)
: Diagnostic plots of the sample

likelihood when all four parameters of the Heffernan and Tawn
model are estimated simultaneously.
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FIGURE C.4: Case 1
(
α, β, µ, ψ2

)
: Scatterplot matrix of the burn-

in sample (left of diagonal) and posterior sample (right of diag-
onal) based on the random walk transition kernel.
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)
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in (left of diagonal) and posterior sample (right of diagonal)
based on the simplified mMALA.
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FIGURE C.7: Case 2 (α, β): Traceplots of the posterior samples
and maximum likelihood estimates (- - -), as well as diagnos-
tic plots for the sample likelihood when α and β are estimated

simultaneously.
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FIGURE C.8: Case 2
(
α, β, µ, ψ2

)
: Traceplots of the posterior

samples and maximum likelihood estimates (- - -) when all four
parameters of the Heffernan and Tawn model are estimated si-

multaneously.
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FIGURE C.9: Case 2
(
α, β, µ, ψ2

)
: Diagnostic plots of the sample

likelihood when all four parameters of the Heffernan and Tawn
model are estimated simultaneously.
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FIGURE C.10: Case 2
(
α, β, µ, ψ2

)
: Scatterplot matrix of the

burn-in sample (left of diagonal) and posterior sample (right
of diagonal) based on the random walk transition kernel.

0.9 0.95 1
0

1000

2000

α̂

0 0.1 0.2
0.94

0.96

0.98

1

−0.8 −0.6 −0.4
0.94

0.96

0.98

1

0.5 1 1.5
0.94

0.96

0.98

1

β̂

0.6 0.8

−0.2
0

0.2
0.4
0.6

0 0.1 0.2
0

500

1000

−0.8 −0.6 −0.4
0

0.1

0.2

0.5 1 1.5
0

0.1

0.2

µ̂

0.6 0.8
−1

−0.8
−0.6
−0.4
−0.2

−0.2 0 0.2 0.4 0.6
−1

−0.8
−0.6
−0.4
−0.2

−0.8 −0.6 −0.4
0

1000

2000

0.5 1 1.5
−0.8

−0.6

−0.4

ψ̂
2

α̂
0.6 0.8

0.6
0.8

1
1.2
1.4

β̂

−0.2 0 0.2 0.4 0.6
0.6
0.8

1
1.2
1.4

µ̂
−1 −0.8−0.6−0.4−0.2

0.6
0.8

1
1.2
1.4

0.5 1 1.5
0

500

1000

ψ̂2

FIGURE C.11: Case 2
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)
: Scatterplot matrix of the

burn-in (left of diagonal) and posterior sample (right of diag-
onal) based on the MALA.



36 Appendix C. Diagnostic plots: constant Heffernan and Tawn model

0.9 0.95 1
0

1000

2000

α̂

−0.5 0 0.5
0.9

0.95

1

−1 −0.5 0
0.9

0.95

1

0.5 1 1.5
0.9

0.95

1

β̂

0.6 0.8

−0.2
0

0.2
0.4
0.6

−0.5 0 0.5
0

1000

2000

−1 −0.5 0
−0.5

0

0.5

0.5 1 1.5
−0.5

0

0.5

µ̂

0.6 0.8
−1

−0.8
−0.6
−0.4
−0.2

−0.2 0 0.2 0.4 0.6
−1

−0.8
−0.6
−0.4
−0.2

−1 −0.5 0
0

1000

2000

0.5 1 1.5
−1

−0.5

0

ψ̂
2

α̂
0.6 0.8

0.6
0.8

1
1.2
1.4

β̂

−0.2 0 0.2 0.4 0.6
0.6
0.8

1
1.2
1.4

µ̂
−1 −0.8−0.6−0.4−0.2

0.6
0.8

1
1.2
1.4

0.5 1 1.5
0

1000

2000

ψ̂2

FIGURE C.12: Case 2
(
α, β, µ, ψ2

)
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onal) based on the simplified mMALA.
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Appendix D

Diagnostic plots:
reparameterized Heffernan and
Tawn model

A reparameterization is proposed to map Ωθ to R4. Consider

α∗ := log

(
1 + α

1− α

)
, β∗ := − log (1− β) and ψ2∗ := log

(
ψ2
)
. (D.1)

Although α∗ →∞ as α→ 1 for asymptotic dependent data, the transformation
will work in practice as α̂MLE might be arbitrarily close to 1, but will never be
exactly equal to 1 for finite data samples. The reparameterization functions in
(D.1) are presented in Figure D.1. If α or β is close to zero or when ψ2 is close
to 1, then the mapping θ∗ : θ → R is approximately linear.
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FIGURE D.1: Reparameterization of the parameters of the Hef-
fernan and Tawn model..

Both the asymptotic independent Case 1 data and asymptotic dependent
Case 2 data are considered. The results are presented in consecutive order:

1. Case 1: α∗, β∗, see Figure D.3,

2. Case 1: All four parameters α∗, β∗, µ, ψ2∗, see Figure D.4 and D.5,

3. Case 2: α∗, β∗, see Figure D.11.
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4. Case 2: All four parameters α∗, β∗, µ, ψ2∗, see Figure D.12 and D.13.

For each of the aforementioned cases, the following diagnostic plots are pre-
sented).

• Trace-plots of the posterior samples of the parameters to be estimated
(—) with the maximum likelihood estimate (- · -) as a reference. A con-
verged and properly mixing posterior sample should resemble a white
noise process around the maximum likelihood estimate.

• Trace-plot of the likelihood. The absence of a trend and autoregressive
features, as well as constant variability, indicate the Markov chain has
converged to a stationary limit distribution.

• Autocorrelation function of the sample likelihood. The faster the auto-
correlation decreases, the better.

• Running mean of the sample likelihood for four different chains with dif-
ferent starting values. If the running mean of the likelihood for each sin-
gle chain converges to the same value, this suggests the Markov chains
have converged to a global minimum in the negative log-likelihood func-
tion.

• The generated Markov chains, when all four parameters are estimated si-
multaneously, are summarized in scatterplot matrices. Burn-in is shown
left of the diagonal, and the posterior samples are shown right of the di-
agonal with maximum likelihood estimates (�). The histograms on the
diagonal show the median (· · · ) and 95% confidence interval (- - -) based
on the 2.5% and 97.5% quantile as well as the maximum likelihood esti-
mate (- · -).

Comparing Figure 4.2(A)-(C) with Figure D.2(A)-(C) suggests the reparame-
terization does not affect the results. This is confirmed by the results presented
in Table D.1 and the resemblance between the trace– and diagnostic plots for
both cases, shown in Figure C.1 and D.3. The only remarkable difference is
that the reparameterization allows the stepsize to be increased to obtain a sim-
ilar acceptance rate.
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FIGURE D.2: The first 250 burn-in samples for α∗ and β∗ for
Case 2 data, based on three different transition kernels: random
walk, Metropolis adjusted Langevin algorithm and simplified
manifold Metropolis adjusted Langevin algorithm. Results are
presented on the original scale. The top row shows results when
only α and β are estimated and µ = µ̂MLE and ψ = ψ̂2

MLE, while
all four parameters of the Heffernan and Tawn model are esti-

mated jointly for the figures in the bottom row.
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TABLE D.1: Summary statistics for the posterior samples of the
Heffernan and Tawn model parameter estimates evaluated on
the reparamterized scale, for Case 1 data. Different proposal
mechanisms are considered: random walk, Metropolis adjusted
Langevin algorithm and the simplified manifold Metropolis ad-

justed Langevin algorithm.

Two parameter estimation Four parameter estimation
RW MALA smMALA RW MALA smMALA

ε 0.035 0.03 1 0.025 0.025 0.8
AR 0.44 0.46 0.52 0.44 0.42 0.45

α̂

MED 0.23 0.23 0.23 0.24 0.24 0.23
CI95% [0.21, 0.26] [0.22, 0.25] [0.22, 0.25] [0.11, 0.42] [0.12, 0.32] [0.14, 0.33]

ESS 780 1870 1780 4 19 830
ESS/s 34 13 12 0.2 0.1 5.6
R̂ 1 1 1 1.15 1.04 1

β̂

MED 0.45 0.45 0.45 0.46 0.46 0.45
CI95% [0.42, 0.48] [0.43, 0.47] [0.43, 0.47] [0.32, 0.58] [0.37, 0.54] [0.38, 0.55]

ESS 580 1720 1690 10 25 200
ESS/s 26 12 12 0.4 0.2 1.3
R̂ 1 1 1 1.05 1 1

µ̂

MED 0.38 0.37 0.45
CI95% [0.02, 0.62] [0.22, 0.58] [0.20, 0.54]

ESS 5 20 1060
ESS/s 0.2 0.1 7.1
R̂ 1.12 1.04 1

ψ̂2

MED 0.72 0.71 0.45
CI95% [0.54, 0.99] [0.59, 0.87] [0.58, 0.86]

ESS 11 24 210
ESS/s 0.4 0.2 1.4
R̂ 1 1 1
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FIGURE D.3: Case 1 (α∗, β∗): Traceplots of the posterior sam-
ples and maximum likelihood estimates (- - -), as well as di-
agnostic plots for the sample likelihood when α and β are es-
timated simultaneously. Results are presented on the original

scale.
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FIGURE D.4: Case 1
(
α∗, β∗, µ, ψ2∗): Traceplots of the posterior

samples and maximum likelihood estimates (- - -) when all four
parameters of the Heffernan and Tawn model are estimated si-

multaneously. Results are presented on the original scale.

0 2000 4000 6000 8000 10000
−0.1

0

0.1

0.2

0.3

0.4

α̂

Iteration

(A) R-W: α̂

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

α̂
Iteration

(B) MALA: α̂

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

α̂

Iteration

(C) smMALA: α̂

0 2000 4000 6000 8000 10000
0.2

0.3

0.4

0.5

0.6

0.7

β̂

Iteration

(D) R-W: β̂

0 2000 4000 6000 8000 10000

0.4

0.5

0.6

0.7

β̂

Iteration

(E) MALA: β̂

0 2000 4000 6000 8000 10000
0.2

0.3

0.4

0.5

0.6

0.7

β̂

Iteration

(F) smMALA: β̂

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

µ̂

Iteration

(G) R-W: µ̂

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

µ̂

Iteration

(H) MALA: µ̂

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

µ̂

Iteration

(I) smMALA: µ̂

0 2000 4000 6000 8000 10000
0.4

0.6

0.8

1

1.2

1.4

ψ̂
2

Iteration

(J) R-W: ψ̂2

0 2000 4000 6000 8000 10000
0.5

0.6

0.7

0.8

0.9

1

ψ̂
2

Iteration

(K) MALA: ψ̂2

0 2000 4000 6000 8000 10000
0.4

0.6

0.8

1

1.2

1.4

ψ̂
2

Iteration

(L) smMALA: ψ̂2



Appendix D. Diagnostic plots: reparameterized Heffernan and Tawn model43

FIGURE D.5: Case 1
(
α∗, β∗, µ, ψ2∗): Diagnostic plots of the

sample likelihood when all four parameters of the Heffernan
and Tawn model are estimated simultaneously.
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FIGURE D.6: Case 1
(
α∗, β∗, µ, ψ2∗): Scatterplot matrix of the

burn-in sample (left of diagonal) and posterior sample (right of
diagonal) based on the random walk transition kernel.
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FIGURE D.7: Case 1
(
α∗, β∗, µ, ψ2∗): Scatterplot matrix of the

burn-in sample (left of diagonal) and posterior sample (right of
diagonal) based on the MALA.
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FIGURE D.8: Case 1
(
α∗, β∗, µ, ψ2∗): Scatterplot matrix of the

burn-in sample (left of diagonal) and posterior sample (right of
diagonal) based on the smMALA.
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TABLE D.2: Summary statistics for the posterior samples of the
Heffernan and Tawn model parameter estimates evaluated on
the reparameterized scale, for Case 2 data. Different proposal
mechanisms are considered: random walk, Metropolis adjusted
Langevin algorithm and the simplified manifold Metropolis ad-

justed Langevin algorithm.

Two parameter estimation Four parameter estimation
R-W MALA R-W MALA

ε 0.04 0.01 0.02 0.015
εα 1 2 1 2
AR 0.42 0.78 0.51 0.58

α̂

MED 1 1 1 1
CI95% [1-, 1] [1-, 1] [0.99, 1] [1-, 1]

ESS 140 820 60 7580
ESS/s 7 6 2.6 53.1
R̂ 1.04 1 1.03 1

β̂

MED 0.1 0.1 0.09 0.11
CI95% [0.07, 0.13] [0.08, 0.12] [-0.01, 0.19] [0.03, 0.19]

ESS 1380 1200 11 16
ESS/s 65 9 0.5 0.1
R̂ 1 1 1.02 1

µ̂

MED -0.57 -0.56
CI95% [-0.67, -0.50] [-0.62, -0.5]

ESS 13 22
ESS/s 0.6 0.2
R̂ 1.04 1.04

ψ̂2

MED 1.03 0.99
CI95% [0.83, 1.34] [0.82, 1.22]

ESS 10 15
ESS/s 0.5 0.1
R̂ 1.02 1
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FIGURE D.9: The first 250 burn-in samples for α∗ and β∗ for
Case 2 data presented on the original scale. Only α∗ and β∗ are
estimated and µ = µ̂MLE and ψ = ψ̂2

MLE are fixed. Three different
transition kernels are considered: random walk, Metropolis ad-
justed Langevin algorithm and simplified manifold Metropolis
adjusted Langevin algorithm. Results on the original scale are
shown on the top row, while the the results on the reparameter-

ized scale are shown on the bottom row.
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FIGURE D.10: The first 250 burn-in samples for α∗ and β∗ for
Case 2 data presented on the original scale. All four repa-
rameterized parameters are estimated jointly. Three different
transition kernels are considered: random walk, Metropolis ad-
justed Langevin algorithm and simplified manifold Metropolis
adjusted Langevin algorithm. Results on the original scale are
shown on the top row, while the the results on the reparameter-

ized scale are shown on the bottom row.
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FIGURE D.11: Case 2 (α∗, β∗): Traceplots of the posterior sam-
ples and maximum likelihood estimates (- - -), as well as di-
agnostic plots for the sample likelihood when α and β are es-
timated simultaneously. Results are presented on the original

scale.
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FIGURE D.12: Case 2
(
α∗, β∗, µ, ψ2∗): Traceplots of the poste-

rior samples and maximum likelihood estimates (- - -) when
all four parameters of the Heffernan and Tawn model are es-
timated simultaneously. Results are presented on the original

scale.
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FIGURE D.13: Case 2
(
α∗, β∗, µ, ψ2∗): Diagnostic plots of the

likelihood when all four reparameterized parameters of the
Heffernan and Tawn model are estimated simultaneously. Re-

sults are shown on the original scale.
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FIGURE D.14: Case 1
(
α∗, β∗, µ, ψ2∗): Scatterplot matrix of the

burn-in sample (left of diagonal) and posterior sample (right of
diagonal) based on the random walk transition kernel.
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FIGURE D.15: Case 1
(
α∗, β∗, µ, ψ2∗): Scatterplot matrix of the

burn-in sample (left of diagonal) and posterior sample (right of
diagonal) based on the MALA.
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Appendix E

Diagnostic plots: constrained
Heffernan and Tawn model

Diagnostic plots for the Bayesian analysis of the Heffernan and Tawn model
subject to the constraints proposed by Keef et al. (2013), discussed in Section
4.3 are presented in this appendix. In consecutive order, the following cases
are presented.:

1. Case 1: α, β, see Figure E.1.

2. Case 1: All four parameters α, β, µ, ψ2, see Figure E.2 and E.3.

3. Case 2: α, β, see Figure E.7.

4. Case 2: All four parameters α, β, µ, ψ2, see Figure E.8 and E.9.

See the introduction to Appendix C for an explanation on how to interpret the
diagnostic plots presented in this appendix.

The burn-in samples in the scatterplot matrices are drawn on top of a profile
likelihood surface. For the four parameter estimation problem, these surfaces
are deceiving and suggest certain samples fall outside the feasible parameter
space. This is related to the fact the the profile likelihood surfaces are generated
by fixing two parameters to their maximum likelihood estimate. The burn-in
samples can attain other values than the maximum likelihood estimates, such
that they are still feasible under the constrains but fall outside the profile like-
lihood surface.
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TABLE E.1: Statistics introduced in Section 4.1.4 of the poste-
rior samples for all four parameters of the constrained Hef-
fernan and Tawn model for Case 1 data, obtained with dif-
ferent transition kernels: random walk, Metropolis adjusted
Langevin algorithm and the simplified manifold Metropolis ad-

justed Langevin algorithm.

Two parameter estimation Four parameter estimation
RW MALA smMALA RW MALA smMALA

ε 0.0175 0.01 0.7 0.02 0.012 0.65
AR 0.41 0.59 0.61 0.32 0.48 0.43

α̂

MED 0.24 0.23 0.23 0.23 0.25 0.23
CI95% [0.21, 0.26] [0.22, 0.25] [0.22, 0.25] [0.13, 0.32] [0.15, 0.32] [0.14, 0.33]

ESS 690 1430 1010 10 15 380
ESS/s 7.4 6.8 4.7 0.1 0.1 1.7
R̂ 1 1 1 1.05 1.01 1

β̂

MED 0.45 0.45 0.45 0.42 0.43 0.44
CI95% [0.42, 0.47] [0.43, 0.47] [0.43, 0.47] [0.37, 0.48] [0.37, 0.48] [0.38, 0.55]

ESS 580 1010 1020 10 20 350
ESS/s 6.2 4.8 5.3 0.1 0.1 1.1
R̂ 1 1 1 1.04 1 1

µ̂

MED 0.42 0.37 0.39
CI95% [0.23, 0.66] [0.23, 0.55] [0.20, 0.54]

ESS 10 15 490
ESS/s 0.1 0.1 2.3
R̂ 1.05 1.01 1

ψ̂2

MED 0.79 0.76 0.75
CI95% [0.65, 1.07] [0.67, 0.88] [0.58, 0.86]

ESS 10 20 260
ESS/s 0.1 0.1 1.2
R̂ 1.04 1 1
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FIGURE E.1: Case 1 (α, β): Traceplots of the posterior samples
and maximum likelihood estimates (- - -), as well as diagnostic
plots for the sample likelihood when the constrained parame-

ters α and β are estimated simultaneously.

0 2000 4000 6000 8000 10000

0.2

0.25

0.3

0.35

α̂

Iteration

(A) R-W: α̂

0 2000 4000 6000 8000 10000
0.2

0.22

0.24

0.26

α̂

Iteration

(B) MALA: α̂

0 2000 4000 6000 8000 10000
0.2

0.25

0.3

0.35

0.4

α̂

Iteration

(C) smMALA: α̂

0 2000 4000 6000 8000 10000
0.38

0.4

0.42

0.44

0.46

0.48

β̂

Iteration

(D) R-W: β̂

0 2000 4000 6000 8000 10000
0.4

0.42

0.44

0.46

0.48

0.5

β̂

Iteration

(E) MALA: β̂

0 2000 4000 6000 8000 10000
0.4

0.42

0.44

0.46

0.48

0.5

β̂

Iteration

(F) smMALA: β̂

0 5000 10000
2662

2664

2666

2668

2670

L
ik
e
li
h
o
o
d

Iteration

(G) R-W: Likelihood

0 5000 10000
2662

2663

2664

2665

2666

L
ik
e
li
h
o
o
d

Iteration

(H) MALA: Likelihood

0 5000 10000
2662

2663

2664

2665

2666

2667
L
ik
e
li
h
o
o
d

Iteration

(I) smMALA: Likelihood

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

A
C
F

Lag

(J) R-W: ACF

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

A
C
F

Lag

(K) MALA: ACF

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

A
C
F

Lag

(L) smMALA: ACF

10
2

10
42600

2700

2800

2900

3000

Iteration

R
u
n
n
in
g
M
e
a
n

(M) R-W: Running Mean

10
2

10
42660

2665

2670

2675

2680

Iteration

R
u
n
n
in
g
M
e
a
n

(N) MALA: Running Mean

10
2

10
42660

2665

2670

2675

2680

Iteration

R
u
n
n
in
g
M
e
a
n

(O) smMALA: Running
Mean



56 Appendix E. Diagnostic plots: constrained Heffernan and Tawn model

FIGURE E.2: Case 1
(
α, β, µ, ψ2

)
: Traceplots of the posterior

samples and maximum likelihood estimates (- - -) when all four
parameters of the constrained Heffernan and Tawn model are

estimated simultaneously.
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FIGURE E.3: Case 1
(
α, β, µ, ψ2

)
: Diagnostic plots of the sample

likelihood when all four parameters of the constrained Heffer-
nan and Tawn model are estimated simultaneously.
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FIGURE E.4: Case 1
(
α, β, µ, ψ2

)
: Scatterplot matrix of the burn-

in sample (left of diagonal) and posterior sample (right of diag-
onal) based on the random walk transition kernel.

FIGURE E.5: Case 1
(
α, β, µ, ψ2

)
: Scatterplot matrix of the burn-

in sample (left of diagonal) and posterior sample (right of diag-
onal) based on the MALA.
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FIGURE E.6: Case 1
(
α, β, µ, ψ2

)
: Scatterplot matrix of the burn-

in sample (left of diagonal) and posterior sample (right of diag-
onal) based on the smMALA.
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TABLE E.2: Statistics introduced in Section 4.1.4 of the poste-
rior samples for all four parameters of the constrained Hef-
fernan and Tawn model for Case 2 data, obtained with dif-
ferent transition kernels: random walk, Metropolis adjusted
Langevin algorithm and the simplified manifold Metropolis ad-

justed Langevin algorithm.

Two parameter estimation Four parameter estimation
RW MALA smMALA RW MALA smMALA

ε 0.005 0.0018 0.5 0.013 0.003 0.55
AR 0.52 0.73 0.39 0.39 0.68 0.35

α̂

MED 0.99 0.99 0.99 0.96 0.97 0.97
CI95% [0.97, 1-] [0.97, 1-] [0.99, 1-] [0.91, 0.99] [0.87, 0.99] [0.93, 0.99]

ESS 70 85 570 15 5 155
ESS/s 0.8 0.4 2.8 0.2 0.02 0.7
R̂ 1 1.01 1 1.01 1.07 1.01

β̂

MED 0.00 0.00 0.00 0.04 0.03 0.04
CI95% [-0.01, 0.03] [-0.01, 0.06] [-0.01, 0.01] [-0.01, 0.10] [-0.07, 0.06] [-0.01, 0.10]

ESS 85 65 860 10 5 115
ESS/s 1.0 0.3 4.2 0.1 0.01 0.6
R̂ 1.01 1.01 1 1.01 1.24 1.01

µ̂

MED -0.47 -0.51 -0.50
CI95% [-0.62, -0.33] [-0.59, -0.22] [-0.60, 0.36]

ESS 10 5 110
ESS/s 0.1 0.02 0.5
R̂ 1.01 1.10 1.01

ψ̂2

MED 1.19 1.19 1.16
CI95% [1.01, 1.36] [1.11, 1.73] [1.02, 1.30]

ESS 10 5 125
ESS/s 0.1 0.01 0.6
R̂ 1.01 1.18 1.01
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FIGURE E.7: Case 2 (α, β): Traceplots of the posterior samples
and maximum likelihood estimates (- - -), as well as diagnos-
tic plots for the sample likelihood when α and β are estimated

simultaneously.
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FIGURE E.8: Case 2
(
α, β, µ, ψ2

)
: Traceplots of the posterior

samples and maximum likelihood estimates (- - -) when all four
parameters of the Heffernan and Tawn model are estimated si-

multaneously.
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FIGURE E.9: Case 2
(
α, β, µ, ψ2

)
: Diagnostic plots of the sample

likelihood when all four parameters of the Heffernan and Tawn
model are estimated simultaneously.
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FIGURE E.10: Case 2
(
α, β, µ, ψ2

)
: Scatterplot matrix of the

burn-in sample (left of diagonal) and posterior sample (right
of diagonal) based on the random walk transition kernel.

FIGURE E.11: Case 2
(
α, β, µ, ψ2

)
: Scatterplot matrix of the

burn-in sample (left of diagonal) and posterior sample (right
of diagonal) based on the MALA.
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FIGURE E.12: Case 2
(
α, β, µ, ψ2

)
: Scatterplot matrix of the

burn-in sample (left of diagonal) and posterior sample (right
of diagonal) based on the smMALA.
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Appendix F

Diagnostic plots: generalized
Heffernan and Tawn model

Diagnostic plots for the Bayesian analysis of the generalized Heffernan and
Tawn model, discussed in Section 4.4. In consecutive order, the following cases
are presented:

1. Case 1.1 with uninformative prior distributions, see Figure F.1–F.5.

2. Case 1.1 with informative prior distributions, see Figure F.6–F.10.

3. Case 1.2 with uninformative prior distributions, see Figure F.11–F.15.

4. Case 1.2 with informative prior distributions, see Figure F.16–F.20.

For each of the aforementioned cases, the following diagnostic plots are pre-
sented).

• Median (—) and 95% confidence interval (- - -) of the posterior sample
of the spline curves for all four parameters of the Heffernan and Tawn
model, as a function of the covariate. The true values for α (x) and β (x)

(· · · ) and maximum likelihood estimates (- · -) are provided if they are
available. The starting values (· · · ) are intentionally poorly visible, such
that they do not attract to much attention.

• Several diagnostic plots for the sample likelihood. Including a trace-
plot of the likelihood for the posterior sample, the likelihood for multiple
chains during burn-in and the autocorrelation function of the likelihood
of the posterior sample.

• Correlation matrix which shows the correlation between the posterior
samples of each of the weight coefficients. There should be no significant
correlation other than on the leading diagonals of the correlation matrix.

• Trace-plots for the posterior samples of the weight coefficients ζθ. A con-
verged and properly mixing posterior sample should resemble a white
noise process around the maximum likelihood estimate.
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• Trace-plots for the roughness coefficient λθ. The absence of a trend and
auto-regressive features, as well as constant variability, indicate the Markov
chain has converged to a stationary limit distribution.

• Prior density and histogram of the posterior sample of the roughness co-
efficient λθ. If the histogram resembles the prior density line (—) the
model is extremely sensitive to the specified prior distributions.

Several summary statistics are presented in Table F.1 and F.2.

TABLE F.1: Summary statistics for the posterior samples of the
weight coefficients. The presented statistics are averages of the
the values obtained for individual posterior samples. A burn-
in of nB = 2 · 104 is considered, and the following nS = 104

samples are assumed to be valid observations from the pos-
terior distribution. Three different proposal mechanisms are
considered: random walk, Metropolis adjusted Langevin algo-
rithm and simplified manifold Metropolis adjusted Langevin

algorithm.

Uninformative priors Informative priors
RW MALA smMALA RW MALA smMALA

ε 0.02 0.015 0.275 0.025 0.015 0.275
AR 0.01 0.12 0.46 0.17 0.34 0.36

α̂

ESS 5 8 50 6 7 47
ESS/s 0.4 0.1 0.1 0.4 0.2 0.1
R̂ 7.8 8.7 14.3 37.6 21.7 17.2

β̂

ESS 8 5 53 5 8 36
ESS/s 0.6 0.1 0.1 0.3 0.2 0.1
R̂ 18.6 12.2 33.3 66.8 34.6 46.8

µ̂

ESS 3 3 47 4 6 44.4
ESS/s 0.2 0.1 0.1 0.3 0.1 12
R̂ 126.6 95.2 37.1 34.5 43.2 40.6

ψ̂

ESS 3 4 47 4 6 35.7
ESS/s 0.3 0.1 0.1 0.3 0.1 12
R̂ 36.2 7.7 23.0 64.3 33.7 37.0
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FIGURE F.1: Case 1.1 with uninformative priors: Median and
95% confidence interval of the posterior sample of the spline

curves.
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FIGURE F.2: Case 1.1 with uninformative priors: Diagnostic
plots of the sample likelihood.

2.2 2.4 2.6 2.8 3
x 10

4

4540

4550

4560

4570

4580

Iteration

L
ik
e
li
h
o
o
d

(A) R-W: Likelihood

2.2 2.4 2.6 2.8 3
x 10

4

2570

2580

2590

2600

2610

Iteration

L
ik
e
li
h
o
o
d

(B) MALA: Likelihood

2.2 2.4 2.6 2.8 3
x 10

4

2550

2560

2570

2580

2590

2600

Iteration

L
ik
e
li
h
o
o
d

(C) smMALA: Likelihood

0.5 1 1.5 2
x 10

4

3000

3500

4000

4500

5000

Iteration

L
ik
e
li
h
o
o
d

(D) R-W: Likelihood

0.5 1 1.5 2
x 10

4

2500

3000

3500

4000

4500

Iteration

L
ik
e
li
h
o
o
d

(E) MALA: Likelihood

0.5 1 1.5 2
x 10

4

0

5

10

15x 10
9

Iteration

L
ik
e
li
h
o
o
d

(F) smMALA: Likelihood

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

A
C
F

Lag

(G) R-W: ACF

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

A
C
F

Lag

(H) MALA: ACF

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

A
C
F

Lag

(I) smMALA: ACF

 

 

10 20 30 40

10

20

30

40

−0.5

0

0.5

1

(J) R-W: Correlation

 

 

10 20 30 40

10

20

30

40

−0.5

0

0.5

1

(K) MALA: Correlation

 

 

10 20 30 40

10

20

30

40

−0.5

0

0.5

1

(L) smMALA: Correlation



Appendix F. Diagnostic plots: generalized Heffernan and Tawn model 71

FIGURE F.3: Case 1.1 with uninformative priors: Traceplots of
the posterior sample of a selection of the weight coefficients.
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FIGURE F.4: Case 1.1 with uninformative priors: Traceplots for
the roughness coefficient λθ.
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FIGURE F.5: Case 1.1 with uninformative priors: Prior density
and histogram of the posterior sample for the roughness coeffi-

cient λθ.
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FIGURE F.6: Case 1.1 with informative priors: Median and 95%
confidence interval of the posterior sample of the spline curves.
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FIGURE F.7: Case 1.1 with informative priors: Diagnostic plots
of the sample likelihood.
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FIGURE F.8: Case 1.1 with informative priors: Traceplots of the
posterior sample of a selection of the weight coefficients.
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FIGURE F.9: Case 1.1 with informative priors: Traceplots for
the roughness coefficient λθ.
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FIGURE F.10: Case 1.1 with informative priors: Prior density
and histogram of the posterior sample for the roughness coeffi-

cient λθ.
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TABLE F.2: Summary statistics for the posterior samples of the
weight coefficients. The presented statistics are averages of the
the values obtained for individual posterior samples. A burn-
in of nB = 2 · 104 is considered, and the following nS = 104

samples are assumed to be valid observations from the pos-
terior distribution. Three different proposal mechanisms are
considered: random walk, Metropolis adjusted Langevin algo-
rithm and simplified manifold Metropolis adjusted Langevin

algorithm.

Uninformative priors Informative priors
RW MALA smMALA RW MALA smMALA

ε 0.025 0.0075 0.1 0.01 0.01 0.125
AR 0.13 0.26 0.52 0.47 0.13 0.33

α̂

ESS 3 4 10 4 5 13
ESS/s 0.2 0.04 0.03 0.2 0.06 0.04
R̂ 4.9 3.2 4.3 13.1 2.4 5.7

β̂

ESS 5 4 11 4 8 8
ESS/s 0.3 0.04 0.04 0.3 0.04 0.03
R̂ 13.6 4.4 5.5 24.9 4.4 5.2

µ̂

ESS 3 3 11 4 6 11
ESS/s 0.2 0.03 0.04 0.1 0.04 0.04
R̂ 14.5 4.3 5.8 7.1 3.4 6.0

ψ̂

ESS 4 2 9 3 6 9
ESS/s 0.2 0.03 0.03 0.3 0.04 0.03
R̂ 51.7 2.1 7.4 28.3 2.9 6.0
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FIGURE F.11: Case 1.2 with uninformative priors: Median and
95% confidence interval of the posterior sample of the spline

curves.
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FIGURE F.12: Case 1.2 with uninformative priors: Diagnostic
plots of the sample likelihood.
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FIGURE F.13: Case 1.2 with uninformative priors: Traceplots
of the posterior sample of a selection of the weight coefficients.
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FIGURE F.14: Case 1.2 with uninformative priors: Traceplots
for the roughness coefficient λθ.
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FIGURE F.15: Case 1.2 with uninformative priors: Prior den-
sity and histogram of the posterior sample for the roughness

coefficient λθ.
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FIGURE F.16: Case 1.2 with informative priors: Median and
95% confidence interval of the posterior sample of the spline

curves.
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FIGURE F.17: Case 1.2 with informative priors: Diagnostic
plots of the sample likelihood.
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FIGURE F.18: Case 1.2 with informative priors: Traceplots of
the posterior sample of a selection of the weight coefficients.
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FIGURE F.19: Case 1.2 with informative priors: Traceplots for
the roughness coefficient λθ.
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FIGURE F.20: Case 1.2 with informative priors: Prior density
and histogram of the posterior sample for the roughness coeffi-

cient λθ.

0 500 1000 1500
0

0.002

0.004

0.006

0.008

0.01

λ̂α

D
e
n
s
it
y

(A) R-W: λ̂α

0 20 40 60
0

0.02

0.04

0.06

0.08

λ̂α

D
e
n
s
it
y

(B) MALA: λ̂α

0 2 4 6 8
0

0.2

0.4

0.6

0.8

λ̂α

D
e
n
s
it
y

(C) smMALA: λ̂α

0 200 400 600
0

2

4

6

8x 10
−3

λ̂β

D
e
n
s
it
y

(D) R-W: λ̂β

0 200 400 600
0

0.05

0.1

0.15

0.2

0.25

λ̂β

D
e
n
s
it
y

(E) MALA: λ̂β

0 200 400 600
0

0.1

0.2

0.3

0.4

0.5

λ̂β

D
e
n
s
it
y

(F) smMALA: λ̂β

0 20 40 60 80
0

0.02

0.04

0.06

0.08

λ̂µ

D
e
n
s
it
y

(G) R-W: λ̂µ

0 20 40 60 80
0

0.5

1

1.5

λ̂µ

D
e
n
s
it
y

(H) MALA: λ̂µ

0 20 40 60 80
0

1

2

3

λ̂µ

D
e
n
s
it
y

(I) smMALA: λ̂µ

0 100 200 300 400
0

0.005

0.01

0.015

λ̂ψ2

D
e
n
s
it
y

(J) R-W: λ̂ψ2

0 100 200 300 400
0

0.05

0.1

0.15

0.2

λ̂ψ2

D
e
n
s
it
y

(K) MALA: λ̂ψ2

0 100 200 300 400
0

0.2

0.4

0.6

0.8

λ̂ψ2

D
e
n
s
it
y

(L) smMALA: λ̂ψ2





91

Bibliography

AghaKouchak, Amir, David Easterling, Kuolin Hsu, Siegfried Schubert, and
Soroosh Sorooshian (2013). Extremes in a changing climate. Detection, Analysis
and Uncertainty, p. 423 (cit. on p. 30).

Bagnoli, Mark and Ted Bergstrom (1989). “Log-Concave Probability and Its Ap-
plications by” (cit. on p. 18).

Balkema, A. A. and Laurens De Haan (1974). “Residual Life Time at Great
Age”. In: The Annals of Probability 2.5, pp. 792–804 (cit. on p. 18).

Beirlant, Jan, Yuri Goegebeur, Johan Segers, and Jozef Teugels (2004). Statistics
of Extremes: Theory and Applications. Ed. by Daniel De Waal and Chris Ferro.
Wiley New York (cit. on p. 10).

Botev, Z. I. (2016). “The normal law under linear restrictions: Simulation and
estimation via minimax tilting”. In: Journal of the Royal Statistical Society.
Series B: Statistical Methodology (cit. on p. 103).

Cao, Xumeng (2013). “Relative Performance of Expected and Observed Fisher
Information in Covariance Estimation for Maximum Likelihood Estima-
tors”. Dissertation for the degree of Doctor of Philospohy. Johns Hopkins
University (cit. on p. 53).

Catchpole, E. A. and B. J. T. Morgan (1997). “Detecting Parameter Redundancy”.
In: Biometrika 84.1, pp. 187–192 (cit. on p. 55).

Chavez-Demoulin, Valerie and Anthony C. Davison (2012). “Modelling time
series extremes”. In: Revstat Statistical Journal 10.1, pp. 109–133 (cit. on p. 1).

Cheng, Linyin, Eric Gilleland, Matthew J. Heaton, and Amir Aghakouchak
(2014). “Empirical Bayes estimation for the conditional extreme value model”.
In: Stat 3.1, pp. 391–406 (cit. on pp. 5, 54, 75).

Coles, Stuart G. (2001). An Introduction to Statistical Modeling of Extreme Values.
Springer (cit. on pp. 10, 14, 24).

Coles, Stuart G. and Jonathan A. Tawn (1994). “Statistical Methods for Mul-
tivariate Extremes: an Application to Structural Design”. In: Journal of the
Royal Statistical Society. Series C: Applied Statistics 43.1, pp. 1–48 (cit. on p. 23).

Coles, Stuart G., Jonathan A. Tawn, and Stuart G. Coles (1991). “Modelling Ex-
treme Multivariate Events”. In: Journal of the Royal Statistical Society. Series
B: Statistical Methodology 53.2, pp. 377–392 (cit. on pp. 27, 46, 4).



92 BIBLIOGRAPHY

Das, Bikramjit and Sidney I. Resnick (2011). “Conditioning on an extreme com-
ponent: Model consistency with regular variation on cones”. In: Bernoulli
17.1, pp. 226–252 (cit. on p. 24).

Davison, Anthony C., S. A. Padoan, and M. Ribatet (2012). “Statistical Model-
ing of Spatial Extremes”. In: Statistical Science 27.2, pp. 161–186 (cit. on p. 1).

Davison, Anthony C., Peiman Asadi, and Sebastian Engelke (2015a). “Extremes
on river networks”. In: Annals of Applied Statistics 9.4, pp. 2023–2050 (cit. on
pp. 1, 21).

Davison, Anthony C., Jennifer L. Wadsworth, Jonathan A. Tawn, and Daniel El-
ton (2015b). “Modelling across extremal dependence classes” (cit. on p. 29).

De Boor, C. (1978). A Practical Guide to Splines. Springer (cit. on p. 89).
De Boor, C., Tom Lyche, and Larry Schumaker (1976). Numerische Methoden der

Approximationstheorie/Numerical Methods of Approximation Theory. Springer,
pp. 123–146 (cit. on p. 90).

De Haan, Laurens and Ana Ferreira (2006). Extreme Value Theory: An Introduc-
tion. Ed. by Thomas V. Mikosch, Sidney I. Resnick, and Stephen M. Robin-
son. Springer (cit. on pp. 10, 17, 26, 31).

Dümbgen, Lutz and Kaspar Rufibach (2009). “Maximum likelihood estimation
of a log-concave density and its distribution function: Basic properties and
uniform consistency”. In: Bernoulli 15.1, pp. 40–68 (cit. on p. 18).

Eastoe, Emma F. and Jonathan A. Tawn (2009). “Modelling non-stationary ex-
tremes with application to surface level ozone”. In: Journal of the Royal Sta-
tistical Society. Series C: Applied Statistics 58.1, pp. 25–45 (cit. on p. 65).

Eck, Matthias and Jan Hadenfeld (1995). “Knot removal for B-spline curves”.
In: Computer Aided Geometric Design 12.3, pp. 259–282 (cit. on pp. 98, 103).

Efron, Bradley (1987). “Better Bootstrap Confidence Intervals”. In: Journal of the
American Statistical Association 82.397, pp. 171–185 (cit. on p. 62).

Eilers, Paul H. C. and Brian D. Marx (1996). “Flexible Smoothing with B-splines
and Penalties”. In: Statistical Science 11.2, pp. 89–102 (cit. on pp. 89, 90, 101).

Feng, Ziding and Charles E. McCulloch (1992). “Statistical inference using max-
imum likelihood estimation and the generalized likelihood ratio when the
true parameter is on the boundary of the parameter space”. In: Statistics and
Probability Letters 13, pp. 325–332 (cit. on p. 54).

Fisher, R. A. and L. H. C. Tippett (1928). “Limiting forms of the frequency dis-
tribution of the large sample”. In: Mathematical Proceedings of the Cambridge
Philosophical Society 24.2, pp. 180–190 (cit. on pp. 13, 14).

Fréchet, Maurice René (1927). “A review of mathematical functions for the
analysis of growth in poultry”. In: Annales de la Société Polonaise de Math-
ematique 6, pp. 93–116 (cit. on p. 14).



BIBLIOGRAPHY 93

Galambos, Janos (1978). The asymptotic theory of extreme order statistics. Wiley
New York (cit. on p. 10).

Gelman, Andrew, John B. Carlin, Hal S. Stern, and Donald B. Rubin (2014).
Bayesian data analysis. 2nd. Taylor and Francis (cit. on p. 67).

Geyer, Charles J. (1992). “Practical Markov Chain Monte Carlo”. In: Statistical
Science 7.4, pp. 473–483 (cit. on p. 73).

Girolami, Mark and Ben Calderhead (2011). “Riemann manifold Langevin and
Hamiltonian Monte Carlo methods”. In: Journal of the Royal Statistical Soci-
ety. Series B: Statistical Methodology 73.2, pp. 123–214 (cit. on pp. iii, 69–73,
101, 102).

Gnedenko, Boris (1943). “Sur la distribution limite du terme maximum d’une
serie aleatoire”. In: Annals of Mathematics 44.3, pp. 423–453 (cit. on p. 14).

Green, Peter J. (1995). “Reversible jump Markov chain Monte Carlo computa-
tion and Bayesian model determination”. In: Biometrika 82.4, pp. 711–732
(cit. on pp. 83, 102).

Hassani, Hossein (2010). “A note on the sum of the first n primes”. In: Quarterly
Journal of Mathematics 61.1, pp. 109–115 (cit. on p. 74).

Hastings, W K (1970). “Monte Carlo sampling methods using Markov chains
and their applications”. In: Biometrika 57.1, pp. 97–109 (cit. on p. 67).

Heffernan, Janet E. and Sidney I. Resnick (2007). “Limit laws for random vec-
tors with an extreme component”. In: Annals of Applied Probability 17.2, pp. 537–
571 (cit. on p. 22).

Heffernan, Janet E. and Jonathan A. Tawn (2004). “A conditional approach to
modelling multivariate extreme values”. In: Journal of the Royal Statistical
Society. Series B: Statistical Methodology 66.3, pp. 497–546 (cit. on pp. i, iii, 2,
3, 5, 6, 21, 23, 24, 33–38, 41, 43, 75, 93).

Hüsler, Jürg and Rolf Dieter Reiss (1989). “Maxima of bivariate random vec-
tors: Between independence and complete dependence”. In: Statistics and
Probability Letters 7, pp. 283–286 (cit. on p. 27).

Jenkinson, A. F. (1955). “The frequency distribution of the annual maximum
(or minimum) values of meteorological elements”. In: Journal of the Royal
Meteorological Society 81.348, pp. 158–171 (cit. on p. 14).

Joe, Harry, R.J. Smith, and Ishay Weissman (1992). “Bivariate Threshold Meth-
ods for Extremes”. In: Journal of the Royal Statistical Society. Series B: Statistical
Methodology 54.1, pp. 171–183 (cit. on pp. 27, 4).

Johannessen, Kenneth, Trond Stokka Meling, and Sverre Haver (2002). “Joint
Distribution for Wind and Waves in the Northern North Sea”. In: Journal of
Offshore and Polar Engineering 12.1, pp. 1–8 (cit. on p. 1).

Jonathan, Philip, Kevin C. Ewans, and George Z. Forristall (2008). “Statistical
estimation of extreme ocean environments: The requirement for modelling



94 BIBLIOGRAPHY

directionality and other covariate effects”. In: Ocean Engineering 35.11-12,
pp. 1211–1225 (cit. on pp. 2, 12).

Jonathan, Philip, Kevin C. Ewans, and David Randell (2014). “Non-stationary
conditional extremes of northern North Sea storm characteristics”. In: Envi-
ronmetrics 25.3, pp. 172–188 (cit. on pp. iii, 3, 5, 6, 65, 88, 89, 92, 93, 101, 103,
104).

Keef, Caroline, Ioannis Papastathopoulos, and Jonathan A. Tawn (2013). “Esti-
mation of the conditional distribution of a multivariate variable given that
one of its components is large: Additional constraints for the Heffernan and
Tawn model”. In: Journal of Multivariate Analysis 115, pp. 396–404 (cit. on
pp. iii, 3, 6, 23, 34, 35, 39–41, 51, 52, 54, 62–64, 76, 84, 88, 102, 105, 15, 53).

Kourbatov, Alexei (2014). “The distribution of maximal prime gaps in Cramer’s
probabilistic model of primes”. In: arXiv.org 3.2, pp. 18–29 (cit. on p. 18).

Lang, Stefan and Andreas Brezger (2004). Bayesian P-Splines. Vol. 13. 1. Institute
of Mathematical Statistics, pp. 183–212 (cit. on pp. 5, 90).

Liu, Y. and Jonathan A. Tawn (2014). “Self-consistent estimation of conditional
multivariate extreme value distributions”. In: Journal of Multivariate Analysis
127, pp. 19–35 (cit. on p. 43).

Lugrin, T., Anthony C. Davison, and Jonathan A. Tawn (2016). “Bayesian Un-
certainty Management in Temporal Dependence of Extremes”. In: Extremes
19.3, pp. 491–515 (cit. on pp. 35, 36, 39, 41, 75, 102).

Mejzler, D. G. (1956). “On the problem of the limit distribution for the maximal
term of a variational series”. In: Lvov Politechn. Inst. Naucn. Zap. Ser. Fiz.-Mat
38.1, pp. 90–109 (cit. on p. 17).

Metropolis, Nicholas, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Au-
gusta H. Teller, and Edward Teller (1953). “Equation of state calculations
by fast computing machines”. In: Journal Chemical Physics 21.6, pp. 1087–
1092 (cit. on p. 67).

Mitra, Abhimanyu and Sidney I. Resnick (2013). “Modeling multiple risks:
Hidden domain of attraction”. In: Extremes 16.4, pp. 507–538 (cit. on p. 24).

Pickands, James (1975). “Statistical Inference using Extreme Order Statistics”.
In: The Annals of Statistics 3.1, pp. 119–131 (cit. on p. 18).

Raghupathi, Laks, David Randell, and Kevin C. Ewans (2016). “Consistent De-
sign Criteria for South China Sea with a Large-Scale Extreme Value Model”.
In: Offshore Technology Conference. Kuala Lumpur (cit. on pp. 2, 12).

Randell, David, Kathryn Turnbull, Kevin C. Ewans, and Philip Jonathan (2016).
“Bayesian inference for non-stationary marginal extremes”. In: Environmetrics
27.1, pp. 439–450 (cit. on p. 1).



BIBLIOGRAPHY 95

Rao, C. Radhakrishna (1945). “Information and Accuracy Attainable in the Esti-
mation of Statistical Parameters”. In: Bulletin of Calcutta Mathematical Society
37, pp. 81–91 (cit. on p. 71).

Reeds, James A., Jeffrey C. Lagarias, Margaret H. Wright, and Paul E. Wright
(1998). “Convergence Properties of the Nelder–Mead Simplex Method in
Low Dimensions”. In: SIAM Journal on Optimization 9.1, pp. 112–147 (cit. on
p. 15).

Reiss, Rolf Dieter and Michael Thomas (2007). Statistical Analysis of Extreme Val-
ues. Birkhäuser (cit. on p. 10).

Rényi, Alfréd (1953). “On the Theory of Order Statistics”. In: Acta Mathematica
Hungarica 4.3-4, pp. 191–231 (cit. on p. 19).

Resnick, Sidney I. (1987). Extreme Values, Regular Variation and Point Processes.
Springer (cit. on pp. 10, 26).

Rothenberg, Thomas J . (1971). “Identification in Parametric Models”. In: Econo-
metrica 39.3, pp. 577–591 (cit. on p. 55).

Self, Steven G and Kung-yee Liang (1987). “Asymptotic Properlies of Maxi-
mum Likelihood Estimators and Likelihood Ratio Tests Under Nonstan-
dard Conditions”. In: Journal of the Amer 82.398, pp. 605–610 (cit. on p. 54).

Stephenson, Alec G. (2003). “Simulating Multivariate Extreme Value Distribu-
tions of Logistic Type”. In: Extremes 6.1, pp. 49–59 (cit. on p. 47).

Tawn, Jonathan A. (1988). “Bivariate extreme value theory: Models and estima-
tion”. In: Biometrika 75.3, pp. 397–415 (cit. on p. 26).

Tawn, Jonathan A. and A. W. Ledford (1996). “Statistics for Near Independence
in Multivariate Extreme Values”. In: Biometrika 83.1, pp. 169–187 (cit. on
pp. 30, 31).

Tawn, Jonathan A., Ser-Huang Poon, and Michael Rockinger (2003). “Mod-
elling Extreme-Value Dependence in International Stock Markets”. In: Sta-
tistica Sinica 13.4, pp. 929–953 (cit. on pp. 1, 21).

Von Mises, Richard (1936). “La distribution de la plus grande n valeurs”. In: Re-
view of the Mathematical Union Interbalcanique 1.1, pp. 141–160 (cit. on pp. 14,
16).

Wadsworth, Jennifer L. and Jonathan A. Tawn (2013). “A new representation
for multivariate tail probabilities”. In: Bernoulli 19.5B, pp. 2689–2714 (cit. on
p. 32).

Zheng, Feifei, Seth Westra, Michael Leonard, and Scott A. Sisson (2014). “Mod-
eling dependence between extreme rainfall and storm surge to estimate
coastal flooding risk”. In: Water Resources Research 50.1, pp. 2050–2071 (cit.
on p. 22).


	Preface
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Problem statement
	Research contributions
	Thesis outline

	Extreme Value Theory: an Introduction
	Univariate extreme value theory
	Mathematical framework
	Block maxima approach
	Peaks over threshold approach

	Multivariate extreme value theory
	Mathematical framework
	Marginal transformations
	Extreme sets
	Componentwise maxima approach
	Threshold exceedance approach
	Extremal dependence


	Heffernan and Tawn Model
	An introduction to the Heffernan and Tawn model
	Mathematical framework
	Model description
	Explicit expressions for the normalizing functions
	Constrained Heffernan and Tawn model
	Explicit choice on the limit distribution
	Exchangeability and self consistency

	Statistical inference
	Data for simulation study
	Likelihood function for the Heffernan and Tawn model
	Curvature of the likelihood surface
	Identifiability of the model parameters
	Noninvertibility of the Fisher information matrix
	Bias and variance of the maximum likelihood estimator
	Bootstrapping the maximum likelihood estimator


	Bayesian inference on the Heffernan and Tawn models
	Bayesian statistics: an introduction
	Mathematical framework
	Sampling algorithms
	Transition kernels for the Metropolis-Hastings algorithm
	Convergence diagnostics and statistics

	Bayesian inference for the constant Heffernan and Tawn model
	Prior distributions
	Results for Case 1
	Results for Case 2

	Bayesian inference for the constrained Heffernan and Tawn model
	Prior distributions
	Results Case 1
	Results Case 2

	Bayesian inference for the generalized Heffernan and Tawn model
	Mathematical framework
	Data for simulation study
	Prior distributions
	Gibbs within Metropolis-Hastings algorithm
	Results for Case 1.1
	Results for Case 1.2


	Conclusion and Discussion
	Derivations and Proofs
	The link between the GEV and GP distribution
	Bivariate Distributions
	Deriving the negative log-Likelihood function
	Derivatives of the likelihood function
	Expected Fisher information matrix for the Heffernan and Tawn model
	Derivatives under the the reparameterization
	Derivatives for the log-prior distributions
	Feasible starting values for minimization algorithm

	Additional figures Chapter 3
	Diagnostic plots: constant Heffernan and Tawn model
	Diagnostic plots: reparameterized Heffernan and Tawn model
	Diagnostic plots: constrained Heffernan and Tawn model
	Diagnostic plots: generalized Heffernan and Tawn model
	Bibliography

