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Abstract

With the increasing number of electric vehicles on
the road, the routing problem has become more
complex. As charging electric vehicles takes longer
than fueling non-electric vehicles, congestion can
occur at charging stations. This might lead to the
shortest route not being the fastest route, due to
long waiting times at the stations. By commu-
nicating the intentions of each vehicle, they can
spread out over multiple stations. This paper in-
vestigates the effect of such a routing system on the
profitability of charging stations in comparison to
a more simple shortest-path algorithm. In particu-
lar, the influence of a charging station’s location on
its profitability has been researched for both rout-
ing algorithms. In order to do this, a pricing model
has been developed to extend the routing mod-
els used for both the shortest-path algorithm and
the intention-based routing algorithm. Through-
out several simulations, it became clear that for the
shortest-path algorithm, more centralised stations
obtain a higher profit, whereas for the intention-
based routing algorithm there were no significant
differences in profitability between the more cen-
tral stations, and the ones on longer routes.

1 Introduction

In the past years, the number of electric cars has significantly
increased with increases of 40% in 2019, 63% in 2018
and 58% in 2017 [1]. With this increasing number, new
challenges arise. One of the drawbacks of electric vehicles
over non-electric vehicles is the long charging time. This
can cause long waiting times at charging stations if multiple
vehicles go to the same station. In order to overcome this
issue, de Weerdt et al.[2] have proposed a way of routing
electric vehicles such that they take into account the waiting
times at charging stations. This solution, called Intention-
Aware Routing, keeps track of the intentions of each vehicle
connected to the system. These vehicles can then retrieve the
expected waiting times at each station from the system, and
calculate their fastest route.

This, however, is only one way of looking at the elec-
tric vehicle routing problem. In other work that has been
done so far, different approaches are considered, such as
routing with minimal energy consumption [3] or routing
based only on the competition in price between buyer and
consumer, without taking into account route lengths [4].
What most of these papers have in common, is that they look
at the perspective of the vehicles. But, optimizing the road
network itself can also improve the efficiency of routing and
charging those vehicles. Also, looking at the perspective of a
charging station can give insights in how a charging station
can raise its profits, or whether multiple charging stations can
change their prices, capacity or queuing policies to reduce
congestion.

In this paper, the relation between the location of a
charging station and its profitability is described. In other
words, given a road network with charging stations, we will
find out which charging stations are more profitable than
others. In order to do this, we extend the model of de Weerdt
et al. with a pricing model. This model is then simulated
using various graph topologies to obtain a relation between
the location of a station and its profit. In doing so, we
will compare the performance of a shortest-path algorithm
(MAX) and the intention-based routing algorithm (IARS).

The research question that will be answered is

How does the location of a charging station for electric
vehicles, within a road network modelled as a graph, affect
its profitability?

This question is divided into three sub-questions, which are:

1. Inasituation where prices are not taken into account (i.e.
prices are equal in all stations), how does the location
of a charging station influence the number of times it is
visited?

2. How can we add the possibility to charge different prices
into the model?

3. What is the effect of charging different prices based on
the location of a charging station?

The paper is structured in the following manner. Section 2
contains a description of the problem this paper intends to
solve. Section 3 describes the main ideas related to how we



can find the profitability of a station based on its location. In
Section 4, the setup of the simulations and the results of each
sub-question are presented. Section 5 contains an analysis of
the reproducibility and integrity of this research. A discussion
of the results is given in Section 6. Finally, Section 7 contains
the conclusions taken from this research and suggestions for
future work.

2 Profitable location problem

From the perspective of a charging station owner, even more
for someone willing to build a new charging station, it is very
useful to know which locations are the most profitable. Not
only can this be used for determining the location of the new
station, but if one knows the expected number of visits, the
owner can also decide its charging capacity or its price on
this.

The problem that this research thus tries to solve, is to
find a pattern between the location of a charging station and
its profit. By location, we mean the vertex within a graph
where a station is located. The mathematical model that we
will use to model such a road network is obtained from the
paper by de Weerdt et al.[2] and will be discussed in more
depth in Section 4.1. This research will focus on the number
of visits of charging stations and compares two different
algorithms. The first algorithm is the MAX algorithm, which
always maximises the expected utility without taking into
account waiting times. In the paper by de Weerdt et al., this
was called the MIN algorithm because it minimises the ex-
pected journey time. But, because we will update the utility
function to also include price, we renamed it to the MAX
algorithm. The second algorithm is the IARS algorithm,
which also maximises the expected utility, but does take into
account waiting time, by registering the intentions of each
vehicle.

Since the model we are using does not include pricing
in the first place, the first part of the problem consists solely
of finding out whether there is a relation between the location
of a station and the number of times it is visited. In graph
theory, centrality measures can often be used to extract some
information on locations in graph. There are a lot of such
measures, such as betweenness centrality or degree centrality
[5]. It has been found that betweenness centrality can play a
role in finding congestion in road networks, i.e. nodes with a
higher betweenness centrality are often more congested [6].
The objective is to find out whether this relation also holds
for charging stations, and if not, whether there is another
alternative pattern between locations and the number of
visits. This will be found out by running several simulations
on different graph topologies.

The next step in answering the research question is
adding variable pricing to the model. In order to do this,
each vehicle in the model should have a variable indicating
the amount of money that has been spent, while the stations
should have a price value indicating the price per unit of
charge. Moreover, the utility function has to be updated

so that each vehicle has a price/time-tradeoff. When we
have obtained a suitable pricing extension, we can run new
simulations to see whether stations located, such that they
obtain more visits, can charge higher prices to increase their
profit.

3 Variable pricing and location-based profit
analysis

The contribution of this research to the field of routing
electric vehicles is two-fold. This paper namely extends the
model by de Weerdt et al.[2] with a pricing model, and also
analyses the influence of a charging station’s location on its
profitability.

The first contribution makes it possible to take into ac-
count different charging costs at different stations. Each
station can charge its own price, and vehicles can base their
routing decisions upon these prices as well. Each driver
can namely indicate its preference for price and time. In
order to do this, the parameter ~ is used, which is a value
between 0 and 1. ~+ = O indicates that the driver fully
prefers to minimise price, while v = 1 indicates that the
driver fully prefers to minimise time. This  is then used
in the utility function. The utility function is a weighted
average between the normalised time and normalised price
of a vehicle, and the goal is to maximise the utility function.
The pricing model and utility function can be used by
multiple algorithms such as MAX, which maximises the
expected utility assuming zero waiting times, and IARS,
which maximises the expected utility using the intentions of
each vehicle to predict waiting times. The pricing extension
has been developed in collaboration with two other students
for a bachelor project.

The second contribution is less theoretical and more
experimental. By running several simulations with both
the original model and the extended pricing model, a lot of
conclusions could be made about the influence of a charging
station’s location on its profitability. These simulations had
the goal to develop a relation between the centrality of a
station and the number of visits, but also other factors were
investigated. For the MAX algorithm there is a clear pattern
between the number of visits of a station and the betweenness
centrality. For the IARS algorithm, however, centrality seems
to have a much smaller effect, and the cars spread out over
all stations. Also, both the price of a charging station and the
capacity seem to have a significant effect on the number of
visits.

4 Experimental Setup and Results

This research uses the model formulated by de Weerdt et al.
[2] to investigate whether there is a relation between the loca-
tion of a charging station and its profitability. In Subsection
4.1, we introduce the mathematical formulation of this model,
so that we can refer to the model and extend it. Subsection
4.2 uses the model to find a relation between the location of
a charging station and the number of times it is visited for
both the MAX and the IARS algorithms. The model is then



extended by adding variable pricing in Subsection 4.3, after
which it is used to investigate the effect of changing prices on
the profitability in Subsection 4.4.

4.1 Routing model

In this subsection we will formulate the mathematical model
by de Weerdt et al. [2], which will be referred to throughout
the rest of this paper. The domain for this model is described
by (V,E, T, P,S,C). The road network is represented as a
graph with vertices v € V' and edges e = (v;,v;) € E. Both
the roads, as well as the charging stations are represented as
edges, where a charging station is represented as a loop from
a vertex to itself. Furthermore, T = 1, ..., {42 1S the set
of discrete time points considered, and P is a probabilistic
function indicating the driving or charging time for a certain
edge. Finally, S = 0, ..., Smaz and C represent the current
charge and a function which gives the charging cost for each
edge, respectively.

The decision of a vehicle is determined by a routing
policy 7 : V. x T x § — V. The policy determines, given a
current vertex, time and charging state, which vertex to go to,
by maximising the expected utility function. This function is
given by

EU(ec = (v, w), te, Se|m) =

if s <0

—00,
ZAtET P(Aﬂec’ tc) . U(tc + At7 5/) ifw = Vdest

ZAteT P(Atlec, tc):

EU((w,m(w,t. + At, s'),t. + At, s'|w) otherwise
where s’ is the state of charge after taking the edge e, and
Ul(te,s.) = —oo if s, < 0 and —t. otherwise. In other
words, the goal of the utility function is to minimise the
travel time.

Both MAX and IARS try to maximise the expected
utility, but IARS takes into account waiting times based
on other vehicles’ intentions, while MAX assumes waiting
times are zero.

4.2 Most visited station

This subsection describes the relation between the location
of a charging station within a road network and the number
of times it is visited, in a situation where price is not taken
into account, for both MAX and IARS. This situation can be
seen as the situation that all charging stations charge equal
prices, because then the price does not influence the decision
of a single vehicle. In order to develop a relation between
the location and the number of visits, we explore three
different graph topologies and try to find a pattern between
the location of a charging station and the number of times it
is visited. For each graph topology, we also determine the
betweenness centrality of the stations and see whether this
reflects the results from the simulation.

The betweenness centrality of a node reflects the num-
ber of shortest paths going through that node and is given

by:

o) = 3 2,
s#Et#v st
where o4, is the total number of shortest paths between s and
t, and o4 (v) is the number of shortest paths between s and ¢
going through v.

The first graph that is used for the simulations is a sim-
ple bottleneck graph with four charging stations, and is
shown in Figure 1. This graph consists of four routes
from a starting point to an ending point, with each route
encountering exactly one station.

Figure 1: Bottleneck graph with four charging stations

For our first simulation, we consider that all edges take 1
unit of time to travel along them, so each route from start to
finish takes 2 units of driving time. We also made sure every
car has to charge on its route. In this case, each node has a
betweenness centrality of 1. We run a simulation with 500
cars and a capacity of 2 for each charging station for both the
MAX algorithm and the IARS algorithm. This gave the fol-
lowing distribution over the stations (Figure 2). The stations
are numbered from top to bottom.

I

Figure 2: Station visits for bottleneck graph with equal edge lengths

Station | Number of visits (MAX) | Number of visits (IARS)
1 500 125
2 0 125
3 0 125
4 0 125

We observe that with the MAX algorithm all cars go to the
first station, as they do not take into account what the other
vehicles do, whereas for IARS the vehicles equally divide
over the stations.

It is more interesting to see what happens when some
nodes have a higher betweenness than others. For the
bottleneck graph, we can investigate this by having different
edge lengths. For the following simulation, we again have



500 vehicles and a capacity of 2 vehicles per charging station.
This time, however, we have different edge lengths for each
edge, which are random lengths between 1 and 10 time units.
The following table (Figure 3) shows the number of visits
per station for a single simulation, for both the MAX and the
IARS algorithms. Also, the route length indicates the sum of
the driving time if you take the two roads that make you go
through that station.

Figure 3: Station visits for bottleneck graph with different edge
lengths

Station | Route length | Visits (MAX) | Visits (IARS)
1 10 0 138
2 18 0 55
3 9 500 169
4 10 0 138

From the route lengths we can conclude that station 3
has a betweenness centrality of 1, while the other stations
have a betweenness centrality of 0. It is also obvious that
all vehicles using the MAX algorithm charge at station 3.
For the IARS algorithm, however, not all vehicles go to the
station with the highest betweenness. The reason for this is
the fact that congestion will occur at station 3 if all vehicles
go to that station. So in order to reduce their waiting time,
and thus their total travel time, several vehicles also charge
at another station. The influence of the waiting times thus
reduces the number of visits for the station on the shorter
route.

This relation can be investigated a bit further by chang-
ing the capacities of the charging stations. A higher capacity
should result in more visits for the station on the shortest
route. By running the same simulation as before, but with
different capacities, we get the following results (Figure 4)
for the IARS algorithm. The x-axis shows the capacity at
each station, whereas the y-axis shows the number of visits
per station.
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Figure 4: Results for simulations on bottleneck graph with different
station capacities

These results clearly support the fact that waiting time

has a large influence on the decisions taken by the vehicles
using IARS. The general trend in these results is that with
a bigger capacity, the stations on shorter routes get visited
more often, until only the station on the shortest route
is being visited. This indicates that stations on a shorter
route benefit from expanding their capacity, whereas for
stations on a longer route, this would only increase their costs.

We can investigate the relation between the route lengths and
number of visits even further by running multiple simulations
with different edge lengths. We use the same settings as
before, so 500 vehicles and a charging capacity of 2, and we
combine the results of all 5 simulations in one graph (each
one in a different colour). This graph (Figure 5) shows the
route length through a certain station divided by the sum of
all route lengths in the graph on the x-axis. On the y-axis, the
number of visits of that station divided by the total number
of visits for that simulation is displayed. The total number
of visits is always 500 as every car has to charge to reach the
goal.
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Figure 5: Results for simulations on bottleneck graph with different
edge lengths

The graph in Figure 5 shows a clear downward trend,
which means that a station on a longer route is visited less
often. Even throughout different simulations, this trend is
still clearly visible. This is as expected, but it does show
that although charging capacity is a major blocking factor,
with 500 cars and only 2 charging spots per station, the route
length still has a big influence on the number of visits per
station.

The bottleneck graph gave us some clear insights in the
relation between route lengths and the number of visits of a
station, but it is more insightful to look into more complex
graph topologies. We will now look at a graph with a
grid topology, with four rows and four columns. The two
middle columns contain four stations, whereas the other two
columns contain the source nodes and the destination nodes.
So each vehicle starts at a random source node and ends
at a random destination node. Also all nodes in a column
have edges to the nodes in the next column that are one row
higher, in the same row, or one row lower. An illustration of



this type of graph is shown in Figure 6.

End

Figure 6: Grid graph with two columns of four stations

Because not every node is connected to a node in the next
column, for some routes there are more possibilities than for
others. For example, the route from top left to bottom right
has only one possibility, whereas the route from one of the
middle starting nodes to one of the middle destination nodes
has multiple possibilities. Also, more routes go through
one of the middle stations than through one of the top or
bottom stations. So, when running multiple simulations with
different edge lengths, one would expect that the middle
stations are visited more often than the top or bottom stations.

We run multiple simulations with different edge lengths
for this graph. For each simulation, all other factors stay the
same, and are as before. So, the number of cars is 500 and the
charging capacity of a station is 2. Each vehicle starts driving
at the same time, but starts at a random starting node, and is
assigned a random destination node. For each simulation, we
determine the betweenness centrality of each station and then
compare the results for the IARS algorithm and the MAX
algorithm. As each simulation gave a similar result, we
show the result of a single simulation in the following graph
(Figure 7). The stations are numbered from top to bottom,
from left to right (i.e. station 4 is the bottom left station)

IARS and MAX Betweenness vs. Number of visits

400 0,80
350 0,70
£ 300 ‘ 060 o
2 «
> 250 0,50 &
o c
5 200 040 8
2 150 030 2
5 @
2 100 0,20

50 N I n I I 0,10
o M ] [ | | 0,00
1 2 3 4 5 6 7 8
Station number
. (ARS MAX Betweenness

Figure 7: Comparison in number of visits between MAX and IARS
for grid topology

From these results, it becomes clear that the MAX algo-
rithm only charges at the first column of stations. As MAX
assumes zero waiting times, it just charges at the first station
on its route. However, we do see a clear pattern for which
station in the first column is visited. A higher betweenness
centrality namely results in a higher number of visits. For the
IARS algorithm, however, this is not the case. The vehicles
still tend to spread out over all stations to reduce their
waiting times, and even if there is a slight difference between
the number of visits of different stations, this difference is
not necessarily in line with the difference in betweenness
centrality. Thus, we can conclude, that for this type of graph
topology, the centrality of a station does not really influence
the number of times it is visited a lot for IARS.

In the previous two graph topologies, the bottleneck
and the grid graph, there were some differences in centrality
between different nodes, but there was not one node that got
visited way more often than others for, especially for IARS.
We will now try to find out if such clear difference can occur
when using the IARS algorithm, by using a graph topology
that has one node which is significantly more central than all
other nodes (this will be called the centre topology).
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Figure 8: Graph topology with one station that is always on the route

The graph shown in Figure 8 has one station with a be-
tweenness centrality of 1. Every vehicle has to go past that
station on its route, so one would expect that this station has
the highest number of visits. We again run different simula-
tions for different edge lengths on this graph, and the param-
eters are the same. Each simulation is run with 500 vehicles
that are randomly split over the four starting points and need
to go to one of the destination nodes. The average results over
5 runs with different edge lengths are given in the following
graph (Figure 9).
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Figure 9: Comparison in number of visits between MAX and IARS
for the centre topology

For the MAX algorithm, now all cars charge at the first sta-
tion, because this is the first station on every route. For [ARS,
on the other hand, in all simulations the vehicles were nicely
divided over all 5 stations. From this we can conclude that
the MAX algorithm can cause a lot of congestion in situa-
tions where a charging station has a very high betweenness,
whereas vehicles using IARS nicely spread over the stations
to reduce congestion.

4.3 Pricing extension

We now extend the model by de Weerdt et al. [2] with a
pricing model, so that we can investigate whether charging a
different price based on the location of a charging station is
effective. In order to extend the model with a pricing scheme
a value has to be added to the state of a single electric vehicle
and the utility function has to be changed. In the existing
model, the state was described by (ve, te, s¢) € (V x T x S).
We extend this to (v, tc, s, me) € (V X T xS x M), where
me € {1,2,...,Mymqs} indicates the amount of money an
electric vehicle has spent. The cost of charging at a charging
station is determined by

M(e) = {

where m, is a fixed price which is determined by the station.
Note that m. can easily be replaced by a function of time to
represent a dynamic pricing system, but for simplicity we
only consider static prices.

0, foralle € E,ouds
me, forall e € Fgations

For updating the utility function of a single vehicle to
incorporate the effect of pricing, three approaches are con-
sidered. The first approach is that every vehicle determines
its budget for the journey, and time is minimised as long as
you stay within that budget. The second approach uses a
time deadline, and as long as the arrival is earlier than the
deadline, the cost is minimised. The third approach models
a trade-off between time and money, so every vehicle has
a certain preference on whether they give more importance
to time or to price and the utility is based upon that. This
last option seems to fit the model best, as the other two
approaches have significant drawbacks. The first approach,

for instance, can spend all of the budget for a very small
time benefit, whereas for the second approach it is hard to
determine what to do when it is not possible to meet the
deadline.

The time/money trade-off is modelled using the follow-
ing utility function which has to be maximised:

U(tC7 SC? mc) =
—00, if s, <0
Trmaz—te _ Mgz —mc H
VH Tty T (L= ) x g e otherwise

In this function, v represents the weights for price and travel
time. y equal to one indicates that the driver only cares about
time, whereas ~ equal to zero indicates a full preference for
price. My, and M, 4, are the minimum and maximum pos-
sible cost of the journey, respectively. The maximum possible
cost could also be replaced by opportunity costs to obtain a
more realistic value. T},,;, and T}, 4, are the minimum possi-
ble journey time and the maximum arrival time, respectively.
Both M,,,;,, and M,,,., as well as T,,;, and T,,,, are nor-
malisation factors. By normalising both the time and money
spent, they are of equal importance. One could, therefore, see
v as a percentage of how much one favours time over price.

4.4 Most profitable station

Using the pricing extension from Subsection 4.3, we can
run more simulations to determine the effect of changing a
charging station’s price based on its location. In order to only
consider one factor, v = 0.5 for all simulations. This means
that every driver has an equal preference for both price and
time.

Again, we first look at the bottleneck graph. We will
use the same seed as in Figure 3, as this seed has two stations
with equal distances, one station with a longer route length,
and one station with a shorter route length. We will then
start with each station having a price of 50, and observe the
difference when lowering the price of the station on the long
route and increasing the price of the station on the shortest
route.

For the MAX algorithm this does not give very inter-
esting results, as all vehicles go to the same station.
Increasing or decreasing the price of a station just makes
them all avoid or go to that station, respectively. For IARS
we got the following results when increasing the price of the
station on the shortest route.
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Figure 10: Increasing the price of the station on the shortest route

It can be seen that only a small increase in price, leads to a
strong decrease in number of visits. Decreasing the price of
the station on the longest route gives the following results.

Decreasing the price of station 2
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Figure 11: Decreasing the price of the station on the longest route

Again, we see a strong increase in number of visits for a
small decrease in the price. So, for a station on a long route,
it can be beneficial to lower the price to generate a higher
profit, while a station on a short route does not benefit as
much from setting a higher price.

For the grid topology, no clear relation between location and
number of visits was obtained for IARS in Subsection 4.2.
Therefore, increasing the price does not make any sense for
any of the charging stations, as they are all equally preferred
by the vehicles. Just like for the bottleneck graph, increasing
the price of a random charging station did not lead to higher
profits. For the MAX algorithm, increasing the price is also
not beneficial, as all vehicles encounter at least one other
station on their route, and zero charging times are assumed.
Therefore, all vehicles avoid the station with the higher price.

The same conclusions can be applied to the centre topology.
For MAX, an increase in price for the first station leads to
all vehicles avoiding that station. This is as expected, since,
again, all vehicles encounter at least one other station on

their route. For IARS, none of the stations were visited more
often when pricing was not taken into account. Therefore
increasing the price is again not beneficial, and similar results
as for the bottleneck graph are obtained.

5 Responsible Research

This section reflects on the research process of this project
in the context of responsible research. Responsible research
consists of both the integrity as well as the reproducibility of
the research, which are both important for the credibility of
this paper’s results and conclusions.

Integrity is not only of importance for the reliability of
the researcher, but also necessary for the results to be valid.
An obvious part of integrity is making sure that the text
written is the writer’s own or well referenced. Another aspect
of integrity is correctly handling the data that is used. This is
especially relevant in the context of this paper. As this paper
presents the data of a lot of simulations, extra care should be
taken to ensure that the results are valid. While this research,
of course, does not use fabricated data or a manipulated
process, more simulations have been run than only those that
end up in this paper. It is of importance, however, that the
reason for leaving out data is not the fact that the data does
not support the desired results. For this paper, we tried to
overcome this by keeping a log of all simulations that have
been run, and by always clearly specifying which data has
been used and for what reason. Also, for the cases in which
there were unexpected results, these results were not left out,
but these will be referred to in the discussion of the results.

For this research, making sure that the research is re-
producible takes more effort.  Especially because of
randomness in the simulations, it is harder to make this
research reproducible. We solve this with the use of random
seeds. This means that, when running a simulation, you
do have random parameters, but those are based on the
seed number. So, if you run the simulation with the same
random seed, you will get the exact same results. A log has
been created with all seeds for all simulations to supply to
people willing to reproduce these results. Another issue for
reproducibility is the fact that the reproducers have to rewrite
the code. In this research, code was obtained from de Weerdt
et al.[2] to extend on their work. This, however, could be
even simplified by making the code open-source. In that
case, the source code would be available to anyone willing to
reproduce this research.

All in all, this research does not face too many big is-
sues with integrity or reproducibility. Reproducibility was
potentially a bigger problem, but with random seeds and
open-source code, anyone should be able to reproduce or
extend on this work.



6 Discussion

The most apparent result obtained from all simulations is
that by using IARS the vehicles spread over the stations,
whereas for MAX this is not the case. When putting this
into the context of the results by de Weerdt et al. [2], this
appears to be a logical result, as they showed that IARS gives
a significantly lower journey time than MAX, for which
spreading out over all stations could be an explanation, as
less congestion will occur.

When considering the MAX algorithm only, we have
seen that the number of visits per station had a clear relation-
ship with the betweenness centrality of a station. Stations
with a higher betweenness are visited more often, as long as
they are the first station that occurs on a route from start to
end. Theoretically, this result makes sense since the MAX
algorithm, when not taking price into account, just finds
the shortest path to the destination, while the betweenness
centrality counts the number of shortest paths going through
each station. So, it seems logical that a higher betweenness
leads to a higher number of visits.

For IARS, on the other hand, no clear relation between
number of visits and betweenness centrality was found.
However, it cannot be concluded already that such a relation
does not exist. While the grid topology and the centre
topology did not show any differences between stations,
the bottleneck graph did. This indicates that, in certain
situations, stations can get more visits than others.

When applying the formulated pricing extension to both
algorithms, we found that price had a huge effect on the
station choice, even if the drivers equally valued price and
time. This indicates that a station’s location has a lower
influence than its price, but care needs to be taken when
concluding this. Especially the influence of the normalisation
factors in the pricing model has to be taken into account.
Since these normalisation factors are based on the road
network itself(i.e. M,,q, is the maximum possible price
to pay on the route), a change in a station not on the route
could change the utility of a vehicle. For instance, when a
station that is not used by any of the vehicles increases its
price significantly, the vehicles might start to value time a
bit more due to the fact that the price factor is divided by a
larger M, 4... Therefore, the influence of these normalisation
parameters should be researched more in order to verify the
conclusions on the effect of price in this paper.

7 Conclusions and Future Work

This paper has two main contributions to the field of routing
electric vehicles. The first contribution is a pricing extension
to the model used by de Weerdt et al.[2]. The extension
gives drivers the possibility to set their preferred trade-off
between time spent and money spent for their trip. The
second contribution is the analysis of the relation between
the location of a charging station and its profitability for both
the MAX and IARS algorithms.

The pricing extension is not only a useful addition for
several routing algorithms, but also opens opportunities for
new research. We have already seen the extension being
used for two different algorithms, but it could also be used
for alternative routing algorithms. It could be interesting to
compare how different routing algorithms are influenced by
changes in price. Also, many more relations could be inves-
tigated, such as the influence of the price/money trade-off
parameter -y, or even the possibility to reduce congestion by
setting different prices at different stations. Also, the pricing
model could easily be improved to add the possibility of
dynamic pricing based on time of day or current number of
vehicles at a station.

The analysis of the profitability of charging stations in
the context of their location has led to several conclusions.
First of all, it has become clear that IARS performs way
better in spreading out vehicles over multiple stations. When
the MAX algorithm was used, it was easy to predict where
the vehicles would go to based on the betweenness centrality
of the stations. Therefore, when all vehicles use the MAX
algorithm, some stations have a significant advantage over
other stations. For IARS, such a difference was only visible
for the bottleneck graph, so it might be interesting to do
further research on the reasons for these differences. In
general, extending this research to more complex graphs or
even real road networks could give more insights in the effect
of the location for the IARS algorithm. Another interesting
extension would be to find the best location to build a new
charging station. This is especially relevant for the MAX
algorithm, and could be done using the facility location
problem [7].

Two other conclusions obtained are the fact that increasing
the capacity of the charging stations benefits stations on a
shorter route, and that increasing the price of a station on
a shorter route did not increase its profitability. These two
conclusions, however, could be researched more extensively
by varying the according parameters, such as 7y, more than
is done is this paper. Also, running simulations on different
graph topologies would give more insight in the influence of
pricing and capacity.
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