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ABSTRACT

Predicting extreme values of strongly non-linear hydrodynamic responses (such as wave impact loads) is crucial
for ensuring the safety and reliability of marine and coastal structures. However, this task is challenging due to
the complexity and rarity of these responses. Existing methods are often limited to weakly non-linear responses
or are very computationally expensive. This paper presents a new multi-fidelity method called ‘Adaptive
Screening’, designed to efficiently predict extreme values of strongly non-linear wave-induced responses. These
values are critical inputs for structural design and reliability analysis. Adaptive Screening combines elements
of screening, multi-fidelity Gaussian Process Regression, and adaptive sampling. We validate its effectiveness
through three applications: predicting the most probable maxima of second-order wave crests, vertical bending
moments on a ferry, and green water impact loads on a containership. Our results demonstrate that Adaptive
Screening outperforms conventional brute-force methods, achieving comparable accuracy in predicting extreme
values while significantly reducing high-fidelity simulation times (especially for the most non-linear cases). Like
many alternative methods, Adaptive Screening relies on a response-dependent low-fidelity indicator variable.
We also show that the method performs well with realistic indicators for a range of applications. The test cases
indicate that Adaptive Screening is very promising for the strongly non-linear responses it was designed for.

1. Introduction and objectives
1.1. Wave impacts

Impulsive ‘wave impacts’ may occur when a structure is hit by
large and steep waves, when a floating structure experiences large
wave-induced motions, or a combination of both. The resulting loads
can cause significant damage, endanger crew or inhabitants, or de-
crease performance of the structure. Severe wave impact accidents are
documented on e.g., production ships [1], a bulk carrier [2], semi-
submersibles [3,4], a drilling rig [5], cruise ships [6,7] and several
other ships [8]. Wave impacts also affect the structural reliability of
various coastal structures such as breakwaters (e.g., [9,10]), light-
houses (e.g., [11]), bridges (e.g., [12]), complete ports (e.g., [13])
and offshore wind turbines (e.g., [14]). These accidents and studies
illustrate that it is still relevant to improve the prediction of wave im-
pact loads and their probability. In this context, we consider stochastic
phenomena such as green water and slamming on ships, wave-in-deck
impacts on fixed and floating offshore structures and wave impacts

on wind turbines, breakwaters, dams, jetty’s, bridges and other coastal
structures. Wave impacts are strongly non-linear and Fig. 1 illustrates
how violent such events can be. Predicting the extreme values of such
strongly non-linear responses is therefore essential in designing safe and
reliable structures.

1.2. Requirements for an extreme value prediction method for wave impacts

Unfortunately, obtaining extreme values for wave impact loads
is a challenge due to their rare and complex nature. We need long
simulations to obtain converged statistics of rare events, while at
the same time we need high-fidelity (HF) simulations to resolve the
complex physics. HF models here are Computational Fluid Dynamics
(CFD) or physical experiments. CFD became very good at reproducing
wave impact loads in a given wave event (see e.g., [16]), but full
Monte Carlo Simulation (MCS) with such HF tools for long durations
is presently not feasible in practical design contexts. We therefore
need a dedicated extreme value prediction method (EVPM), that can
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Fig. 1. Two examples of wave impacts on marine structures: a wave impacting HMS Edinburgh of the UK Royal Navy in 8 m waves on the South Atlantic (left; courtesy D.
Rosenbaum, Royal Navy Media Archive [15], with permission) and a wave impacting a wind turbine foundation with a transition piece ~20 m above the calm water level close

to Fécamp during storm Ciardn on 2 Nov. 2023 (right; courtesy K. King, with permission).

reduce this computational burden. Due to the stochastic nature of ocean
waves and wave-induced responses, their maximum values increase
with exposure duration; the longer the duration at sea, the larger the ex-
pected maximum ship response. Consequently, wave response extremes
are defined by a probability of exceedance (PoE) or a return period.
Keeping this in mind, an EVPM for strongly non-linear responses like
wave impacts must meet some criteria:

» The EVPM should be multi-fidelity, integrating elements of HF
models for accurate response modelling, and low-fidelity (LF)
models to handle the long simulation times required for rare event
statistics.

For strongly non-linear responses, only a few wave events of
10-20 s can realistically be evaluated with a HF model in the
design of a structure. The EVPM has to be able to cope with that.
The wave impact complexity is mainly due to wave complexity
(see Fig. 1; steepness, non-linearity, breaking, directionality etc.).
Linear wave models disregard much of this complexity. To be able
to identify critical wave events, the EVPM’s LF model therefore
must account for some wave non-linearity.

Peak responses are not always most relevant; rise times or im-
pulses can be more critical for structural dynamic behaviour.
Therefore, the EVPM must consider consistent LF and HF time
profiles, not just extreme values.

» The EVPM must be efficient and practical for use in design.

1.3. Long- and short-term statistics

Design for ‘seakeeping’ (the response of a ship to waves) often
distinguishes long-term (over a ship’s lifetime in various sea states) and
short-term (within single wave conditions) responses (see e.g., [17]).
Most available methods either predict short-term extreme values in a
given sea state (wave condition), or predict long-term extreme values
over all sea states without properly considering short-term variability.
Here, we focus on short-term extreme value prediction. The selection
of sea states and their long-term statistics can be handled by the envi-
ronmental contour method [18], or by its improved versions (e.g., [19,
20]), as is widely accepted in the offshore industry (e.g., [21]). As the
method fails to characterise the joint pdf of the environmental variables
in some cases [22], alternatively we could select critical sea states using
methods such as proposed by Gramstad et al. [23].

1.4. Existing methods and their shortcomings

Various existing EVPMs were reviewed in [24]. Here, we briefly
summarise this review for the present audience, add some recent
studies and explain why current methods are not directly applicable to
strongly non-linear wave-induced responses. Extreme value prediction
problems are similar to reliability problems; the latter predict structural
failure probabilities, whereas the former predict extreme load values in-
dependently of structural response. These quantities are related by Eq.
(1), where S are loads, R is the structural ‘resistance’ of the structure,
P; is its probability of failure and g is some limit state function.
The review below therefore covers both extreme value and reliability
studies.

Py =P(g <0)=P(R-5)<0) @

Design wave or response-conditioning methods (RCMs) generate
critical wave event profiles using response transfer functions, wave
spectra, and wave phase assumptions for extreme events. They can
produce single profiles (e.g., [25]) or multiple profiles that account
for random wave backgrounds (e.g., [26-28]). Most of these RCMs are
based on the classical reliability methods FORM or SORM. RCMs meet
several EVPM criteria from Section 1.2: they are efficient, multi-fidelity,
event-based and consider time profiles. However, most classical RCMs
rely on linear Gaussian waves and struggle to incorporate significant
non-linearity, requiring complex modifications like inverse solutions
for higher-order wave terms or the use of higher-order wave models.
Some recent studies include wave non-linearity in an RCM by using
a higher-order wave model [29,30]. However, they are still applied
only to weakly non-linear responses, and they do not include efficient
adaptive sampling techniques.

Screening methods use LF indicators (or surrogates) to select critical
wave events for HF analysis. Ideally, the indicator’s order statistics
closely match those of the HF response, allowing wave events to be
ranked by their LF response (e.g., [31-35]). This approach allows
efficient screening of sea states using MCS of the LF indicator, where
identified critical events are then analysed using HF methods like CFD
or experiments. van Essen and Seyffert [24] reviewed studies validating
various LF indicators for wave impact loads. Screening methods meet
several EVPM criteria from Section 1.2: they are multi-fidelity, event-
based, can consider time profiles and accommodate weakly non-linear
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x Mean of variable x

o2 Variance of variable x

X MPM of variable x

CFD Computational Fluid Dynamics

CRS Cooperative Research Ships

EVPM Extreme Value Prediction Method

GPR Gaussian Process Regression

HF High-Fidelity

LF Low-Fidelity

MCS Monte-Carlo Simulation

MF-GPR Multi-Fidelity Gaussian Process Regression

MPM Most Probable Maximum

PoE Probability of Exceedance

RCM Response-Conditioning Method

RWE Relative Wave Elevation

UsMv Acquisition func. (uncertainty sampling + mean value)
C’ or C” LF or HF wave crest height

Cy Coefficient of variation over last 20 iterations

d* New PoE prediction range for HF, increasing order
dsﬁl Est. PoE of selected HF peaks, increasing order
a7 PoE of all LF peaks in the MCS, increasing order
dSLel PoE of selected LF peaks, increasing order

Eq Max. abs. iteration difference, averaged over last 20

Fl or F/ LF or HF green water load

H, Significant wave height

h* Predicted HF peak values over range d*

hsel HF peak values in the selected events

mes All LF peak values in the MCS, decreasing order
Jsel Selected LF peak values, decreasing order

m Number of initially selected HF samples

n Number of LF indicator peaks in the MCS

ny, Number of wave encounters in the MCS

N Number of wave seeds in MCS

P Probability

Pexp PoE level corresponding to Texp and wave period
R Monotonicity acceptance criterion

R LF relative wave elevation on deck

Texp Target/exposure duration (typically 20 min-3 h)
T, Peak wave period

T,, Peak encounter wave period

V, Ship forward speed

V' or v" LF or HF hogging vertical bending moment

y Peak enhancement factor JONSWAP spectrum
€ Stopping limit for Ezo

€ Stopping limit for C,,

" Wave heading w.r.t. structure

@ Wave frequency

Box I. Most important nomenclature.

LF models. They also seem suited for strongly non-linear responses.
However, they are yet not very efficient and existing research has
focused more on indicator selection than on handling extreme value
statistics.

Sampling techniques can be used to reduce the number of required
simulations compared to MCS. Such methods include importance sam-
pling (e.g., [36-381), subset sampling (e.g., [39]), adaptive sampling or
combinations (e.g., [40]). Adaptive sampling, also known as sequential
sampling or Bayesian design of experiments, combines surrogate mod-
elling with data-driven sampling strategies that ‘learn’ where to sample
next. Surrogates can be constructed in many different ways: using
simple polynomial models, polynomial chaos expansion (e.g., [41,42]),
support vector regression (e.g., [43,44]) or neural networks (e.g., [45,
46]). In particular, Gaussian Process Regression (GPR or ‘kriging’) is
well-suited for problems with sparse data, as it provides both predic-
tions and associated uncertainty estimates. These uncertainty bands
can be used to effectively guide sampling [47]. GPR can be applied in
single- or multi-fidelity forms [48,49]. GPR-based adaptive sampling
methods were applied to maritime extreme value problems by Gram-
stad et al. [23], Guth and Sapsis [50], Guth et al. [51], Tang et al. [52]
and Abaei et al. [53] (using single-fidelity GPR) and by Guth et al. [54]
(using multi-fidelity GPR). Acquisition functions to guide the sampling
may target extreme values in distribution tails (e.g., [55]), and sam-
pling is typically stopped when predicted values stabilise (e.g., [56,
571). Kim et al. [58] studied multi-fidelity sampling algorithms in the
context of extreme ship motions. Response Surface Methods (RSM) for
reliability problems are similar: they adaptively update a ‘response
surface function’ (a surrogate for limit state function g, in Eq. (1)).
Again, this can be a polynomial (e.g., [59-61]), but this can lead to
errors for strongly non-linear systems. GPR (e.g., [62,63]) or neural
networks (e.g., [46,64,65]) can offer better accuracy. Marrel and Iooss
[66,67] discuss ways to optimise GPR surrogates in the context of
reliability problems. Adaptive sampling methods with GPR meet many
EVPM criteria from Section 1.2: they are efficient, can be multi-fidelity,

can handle weakly non-linear models and some examples consider time
profiles. However, their elements and implementation are very case-
specific, and none of the examples satisfies all requirements. They have
yet to be applied to strongly non-linear wave-induced responses.

Due to the mentioned EVPM limitations for strongly non-linear
responses, maritime designers typically follow established classification
society guidelines. Organisations like maritime classification societies
and the International Towing Tank Conference (ITTC) traditionally
recommend physical experiments using several 0.5 to 3-h wave seeds
for direct assessment of short-term extreme response values. We call
this the ‘conventional’ industry approach, with guidelines summarised
in Appendix D.

1.5. Paper objectives & novelty

As discussed above, we need a new EVPM for wave impacts (and
other strongly non-linear wave-induced responses), because available
methods are not suitable, efficient, and accurate enough, and accidents
related to wave impacts still happen. The objectives of this paper are
therefore to:

1. Introduce a new EVPM for strongly non-linear responses that
complies with the requirements in Section 1.2.

2. Show that the method can accurately and efficiently predict
extreme values for a range of realistic applications.

To this end, we introduce a novel method called Adaptive Screening.
The method combines elements from screening, multi-fidelity GPR, and
adaptive sampling, considering the requirements in Section 1.2. A pilot
study for the new approach was presented in [68]; several important
improvements have since been implemented.

In theory, Adaptive Screening can predict both long- and short-term
extreme values, but our focus here is on the short term. Specifically, we
predict the short-term most probable maximum (MPM) value, which
represents the likeliest extreme within a given exposure duration. We
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Fig. 2. Some of the possible ‘statistical levels’ where multi-fidelity methods can derive or learn the relation between a LF indicator (black) and HF non-linear response (red).

Typical examples, the overview is not exhaustive.

assume that critical sea states were already selected beforehand with
one of the methods discussed in Section 1.3 or Adaptive Screening with
lower fidelity levels. Using MPM for design is common in maritime en-
gineering (e.g., [69-71]). We also (qualitatively) evaluate the predicted
distributions over a larger range of values than only the MPM to make
sure that the MPM prediction is solid and converged.

To demonstrate the effectiveness of Adaptive Screening, we present
three applications: (1) a weakly non-linear case predicting second-
order wave crest extremes, (2) an intermediate case predicting extreme
vertical bending moments on a ferry, and (3) a strongly non-linear case
predicting green water impact loads on a containership. The complexity
of the cases builds up. Case 1 is weakly non-linear: we consider only
waves and the LF and HF data are the same variable. Case 2 is more
non-linear and complex: we consider wave-induced responses, but the
LF and HF data are still the same variable. Finally, case 3 is strongly
non-linear and complex: we consider wave-induced responses and the
LF and HF data are different variables. Case 3 therefore covers the
complexity of the original problem the method was designed for (wave
impact loads). The first two applications allow for method tuning and
validation, while the third demonstrate the method’s capability with
strongly non-linear responses. Especially cases 2 and 3 illustrate real
challenges designers face when developing safe and reliable structures
exposed to waves. Both are maritime examples, but case 2 is represen-
tative for assessment of bending moments on any floating structure,
and case 3 is representative for wave impact load assessment on any
fixed or floating structure (breakwaters, bridges, wind turbines, etc.).
Such assessments form an important element of the reliability analysis
of these structures; they provide input for S in Eq. (1).

The novelty of Adaptive Screening lies in its specific design for
strongly non-linear rare responses. It combines adaptive sampling with
GPR applied directly to the distribution shape (to target the tail of the
distribution) and with screening elements that allow for (weakly) non-
linear low-fidelity tools. Another novelty of the present study is that
we validate the EVPM a.o. with high-fidelity experimental wave impact
data - a relevant case study for design and reliability of structures
exposed to severe waves.

The method is introduced in Section 2, with applications in Sections
3 to 5, and final discussion and conclusions in Section 6.

2. New method: Adaptive screening

Multi-fidelity methods learn relationships between LF and HF re-
sponses at different ‘statistical levels’, as shown in Fig. 2. Methods that
generate critical wave events, like RCM or some adaptive sampling
implementations (e.g., [50,51,54]) are positioned on the left, where
relationships retain detailed wave event data. Screening methods or
approaches that select events from databases (e.g., [23] at a sea state-
instead of event-level) are on the right, simplifying the problem to
single-variate regression and reducing HF data requirements. E.g., [51]
shows that efficient application of GPR to full wave event time traces
requires a reduction of the number of input wave components, which
can lead to underestimated response distribution tails. We therefore
developed Adaptive Screening at the ‘level’ of cumulative distributions.
We use (multi-fidelity) GPR to construct a surrogate for the HF ex-
ceedance probability distribution, combined with adaptive selection of

new HF samples guided by the screening analysis. GPR was chosen over
e.g., polynomial regression and neural networks because it (a) is effi-
cient with limited data and (b) provides uncertainty bands that guide
adaptive sampling. Additionally, GPR is very fast with limited numbers
of samples. We first present the steps and detailed formulations of
Adaptive Screening, after which we discuss the utilised assumptions
and implementation.

2.1. Steps

A schematic overview of Adaptive Screening is provided in Fig. 3,
and the method involves the steps described below. The numbers in the
figure roughly correspond to these steps. Box I includes most notations
used below.

Step 1 Define a LF indicator with a strong statistical relation to the
target HF response, as would be done in a screening method.
The indicator signal is not necessarily the same signal at a
different fidelity level as the target HF response; it can also
be another signal with similar order statistics as the target HF
response. An ideal LF indicator has identical order statistics
as the target HF non-linear response, where the highest LF
indicator value appears in the same wave event as the highest
HF non-linear response value, and so on. See [24] for a review
of suitable wave impact indicators.

Step 2 Perform LF Monte-Carlo Simulations (MCS) for a large num-
ber N of wave seeds, each with the same exposure duration
Texp- This exposure duration is the duration for which you
want to obtain the extreme value of the response in a single
sea state. This is generally the duration for which the hy-
drodynamic response is expected to remain ergodic (roughly
15 min to 3 h, depending on wave ergodicity, speed and
course changes, etc.). The total MCS should be significantly
longer than T, to obtain converged extreme values. See [72,
73] for an example of the required N for wave crests, green
water impact forces and wave-in-deck impact forces. The
total MCS duration Ty follows from Ty = NTeyp.

Step 3 Identify all n LF indicator peaks in the full MCS duration Ti.
This can be done in different ways; here we use peak-over-
threshold crossings. Also find the number of zero up-crossing
encountered wave crests n,, within T}, which can be es-
timated from Eq. (2) if there is no explicit wave record
available. Here, T, , is the peak wave encounter period, which
is different from the peak wave period T, if the (ship) re-
sponse has forward speed. They are related using the absolute
wave frequency w = 2z /T and Eq. (3), where w, is the wave
encounter frequency, V; is the forward speed of the ship and u
is the wave heading with respect to the ship (z is head waves
in the sign convention). n,, is the basis for all distributions
presented from here on, which enables us to use combinations
of LF indicators and HF responses with a different number of
peaks.

ny & NToy /T, 2
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Fig. 3. Schematic illustration of the new Adaptive Screening method. The numbers in this figure roughly correspond to the method steps in Section 2.1. The left plot only shows
a small part of the MCS time traces, and only a few HF samples are included in the middle and right distributions to illustrate the principle.

Step 4

Step 5

Step 6

Step 7

w, = 0 — &*V,cos(u)/g 3)
Calculate the LF probability of exceedance (PoE) for all in-
dicator peaks dTCS = {desli = 1,2,...,n}, related to the

number of wave encounters, by applying Eq. (4). The largest
LF indicator peak value has a PoE of 1/n,, and the smallest
n/n,. We now have a LF indicator peak PoE distribution
dataset [di‘“s,lmcs], where 1™ contains all indicator peak
values, in descending order corresponding to the ascending
PoE values in d7'.

PA™S > 1) - &)

Select initial samples from the LF MCS dataset of the previ-
ous step. The selected set is called [dSLel,lsel], where dSL‘31 =
{dP|k=1,2,....m) and Il = {ImS|k = 1,2, ..., m}. Different
sampling strategies can be used to determine these indices k.
Here we select these events around the PoE corresponding to
Texp based on the LF MCS dataset: the ‘probability of interest’.
This P, is given in Eq. (5). We pick m PoE values that span
a range around Pexp and call them [p,, p,, ..., p,,]. Now we use
Eq. (6) to add the elements in d‘z‘“ closest to these values to
the selected set, and the corresponding elements from 1™,
The resulting selected set [dSLel,lSEI] is a subset of the full
available LF MCS set [dT,1m]. Note that selecting samples
around P, is also used in alternative RCM’s such as those

by Torhaug et al. [27] and Dietz [74].

mcs
dL

Pexp =N/n, & p,e/Texp (5)

s = [arg min |pk—d|] fork=1,2,...,m 6)
. dedmes

Find the corresponding HF response for the wave events

corresponding to [dsl_el,lsel], by running CFD calculations or
experiments for these selected events. This new dataset of HF
samples is called hsel = {hilk =1,2,...,m}, here h is the HF
non-linear response value maximum for event k.

Estimate the sample HF distribution. This is done by assuming
that the order statistics of I*®! and h*¢! are identical. In other
words, we assume that HF value 4, in event k from Step 6
is equally likely as the selected LF value /'® in the same
event from Step 5. This is a critical screening assumption,
stating that the HF distribution [djjl,hsel] can be estimated
using dslsl ~ diel. This only works if a suitable indicator signal
is chosen in Step 1.

Step 8

Step 9

Step 10

Define a range of PoE between 1 and O where you want
to estimate the HF distribution h*. We select this prediction
range d* between approximately a factor ten below and above
Peyp, defined in high to low PoE order.

Construct the surrogate HF distribution over In (d*). We use
the logarithm to construct a surrogate that focuses on the tail
of the HF distribution. The estimated HF distribution from
Step 7 only contains a few samples. We apply 1D single- or
multi-fidelity GPR to the available samples to construct the
surrogate HF distribution h* (including uncertainty) over this
range.

» With single-fidelity GPR, we use the HF sample dataset
[In (djjl),hm] from Step 7 as input. The utilised GPR
formulations are in Appendix B.1.

» With multi-fidelity MF-GPR, we use the same HF sam-
ple dataset [In (dsﬁl), h*el] from Step 7 as input, and
LF dataset [In (d7°),1™*] from Step 3. We used the
linear autoregressive (AR1) multi-fidelity model with
two levels [49]. The utilised MF-GPR formulations are
in Appendix B.2.

For GPR and both parts of MF-GPR we used the Matern32
kernel; details can also be found in Appendix B. As it will not
be possible to define a perfect indicator for most non-linear
response problems, the HF sample data set [In (dsljl), hsel] will
be ‘noisy’. To avoid overfitting, we constrained the noise
variance in both GPR and MF-GPR with a lower limit. For
the same reason, and to help ensure a monotonic distribution,
we also constrained the length-scale hyperparameter of all
kernels with a lower limit. Both constraints are explained in
detail in Appendix B.3. The result of the (MF-)GPR procedure
is the HF prediction [In (d*),h*]. To avoid confusion, we
emphasise that the regression model is linear and Gaussian,
not the underlying HF process itself. We still predict extreme
values of strongly non-linear responses.

Estimate the target short-term extreme value from the (MF-)
GPR prediction. As explained in Section 1.5, our target is the
HF MPM value f, found using Eq. (7). The uncertainty of the
MPM can be derived from the predicted uncertainty band by
GPR in the same way. This is illustrated by the horizontal line
in the right inset of Fig. 3.

d“(H) = P, H

=d (P,

exp) %)

< therefore:
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Step 11 Start the adaptive sampling procedure, iterating over Step 5
to Step 11. In each iteration, an acquisition function is applied
to define a new sample, unless convergence is reached. As we
already guided the prediction in steps Step 8 (by choosing a
prediction range) and Step 9 (by focusing on the tail of the
distribution using the logarithm of PoE), we selected an adap-
tive strategy focusing on exploration rather than exploitation
(see e.g., [47]). The new samples are selected from [di‘cs, 1mes]
defined in Step 4, without replacement. The required formu-
lations are discussed in Section 2.2 (acquisition function) and
Section 2.3 (stopping criterion). When a new HF sample is
defined as discussed there, it is added to the LF selected set
[dSLEI, 1531] in Step 5, after which Step 6 to Step 11 are repeated.

Step 12 When convergence is reached according to the criterion in
Section 2.3, the result is the converged prediction for the HF
distribution h* over prediction range d*, the associated MPM
value A, and the MPM uncertainty.

The steps of Adaptive Screening are presented in general terms,
making the method adaptable to any strongly non-linear response with
a suitable indicator. Step 1 to Step 6 focus on screening, Step 9 on
GPR and Step 11 on adaptive sampling. A key advantage of the new
method is that integrating (MF-)GPR with screening enables efficient
generation of new HF samples at targeted low PoE values, avoiding the
need for extensive HF simulations. This would not be possible with GPR
alone. This adaptation makes Adaptive Screening especially effective
for strongly non-linear responses. Using MF-GPR instead of GPR is
expected to boost efficiency since MF-GPR leverages LF statistics both
in event selection (Step 5) and prediction (Step 9).

To apply this general method, several choices must be made: the
indicator variable and its calculation tool in Step 1, the MCS length
in Step 2, the event definition method in Step 3, the selection of
initial critical events in Step 5, the HF tool and initialisation of this
tool based on the LF wave event in Step 6, the type of GPR and its
settings in Step 9, the target extreme value in Step 10, the acquisition
function, number of samples per iteration, and stopping criterion in
Step 11. The following sections outline broadly applicable options for
the acquisition function and stopping criterion, along with guidance
on initialising critical events in the HF tool. A detailed explanation of
problem-dependent choices for three case studies will be provided in
Sections 3 to 5.

The MPM in Step 10 corresponds to the ¢ = 0.368 quantile of the
short-term distribution for linear Gaussian signals [75]. The offshore
industry often prefers higher quantiles for design. We can estimate
these by replacing Peyp in Eq. (7) with P, =1~ g"™/" [76]. However,
this necessitates an even longer LF MCS to achieve converged results.
Further research is needed to evaluate the applicability of the method
for higher quantiles.

A challenging aspect of screening-based methods is initialising HF
events in Step 6. We use LF linear or weakly non-linear wave events as
input for HF calculations, raising the question of how to define equiva-
lent HF wave input conditions. Potential solutions include the event
matching procedures by Johannessen and Lande [77] and Gramstad
et al. [78] or using coarse mesh CFD as a LF tool, as demonstrated
by van Essen et al. [35]. These approaches require further investigation,
which is beyond the scope of this paper.

2.2. Adaptive sampling

Since HF event calculations are costly for strongly non-linear re-
sponses, the acquisition function in Step 11 should minimise the num-
ber of required HF samples. We define an acquisition function that
selects one new HF sample per iteration, even when used with MF-
GPR. Combining the notation from Section 2.1 and Appendix B, we
denote the mean HF prediction for the current iteration as h* and its

predicted variance as o'i*. Below, p;onV represents the optimal PoE for
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adding a new sample to dSLel in Step 5. Insights from the pilot study with
fixed samples [68] were used to design our acquisition function, named
‘USMV’, as defined in Eq. (8). This function balances selecting the
best new sample with the highest predicted variance from the previous
iteration (Uncertainty Sampling) while guiding the sample toward the
PoE level with the largest mean value from the same iteration. The
function tends to favour HF values in the distribution’s tail. As said,
ppomv would be the best new sample value to add to dSL‘*l in Step 5.
However, in Adaptive Screening, we select the next sample from the
available LF MCS sample pool of Step 4. We therefore always select the
sample from d7 with the closest value, without replacement (see Eq.
(9)). The new sample dLm’;Sew is added to the existing LF pool [dfl,lsell
in Step 5.

P’ = argmax [o'i* . h_*] (8)
d?PS = |arg min_|piSTV — ¢ (©)]
L.new |: gdechs |pnew |]

2.3. Stopping criterion

We further limit the number of HF samples via the stopping crite-
rion. Such a criterion can be based on practical considerations (avail-
able time or computational resources), comparison with a target out-
come, the relative improvement of results across iterations (e.g., [471])
or on all predicted outcomes for the next iteration (e.g., [56]). Since
a fully converged Adaptive Screening prediction cannot achieve 100%
accuracy due to the imperfect indicator, we chose to stop when the
predicted PoE distributions no longer show significant changes. This
criterion consists of three parts. The first part checks whether the
predicted distribution is a proper PoE distribution. The second part
sets a limit for the maximum absolute difference between each set of
subsequently predicted distributions. Because this difference may be far
from P, a third convergence criterion was based on the coefficient of
variation (COV) of the MPM value over the last iterations. The complete
formulations for this stopping criterion are detailed in Appendix C.1.

2.4. Assumptions

The key assumption in our screening method is the similarity be-
tween the order statistics of the LF indicator and the HF response in
Step 7. The validity of this assumption hinges on the chosen indicator; a
poor indicator can significantly reduce result accuracy. Most alternative
methods, such as RCM and other screening techniques discussed in
Section 1.4, rely on similar assumptions. van Essen and Seyffert [24]
review suitable indicators for wave impact loads. Another critical as-
sumption in Step 6 is that the HF tool accurately calculates the true HF
event response. Previous studies have shown that CFD can effectively
predict wave impact loads if wave kinematics and ship motions are
modelled well (see e.g., [16,79,80]). Additionally, van Essen et al. [35]
demonstrated that screening results could serve as effective inputs for
such calculations. In Step 9, GPR also assumes a degree of surrogate
smoothness, which is reasonable for a PoE distribution. MF-GPR further
assumes that the LF and HF distribution shapes are similar, reinforcing
the screening assumption. The utilised GPR formulations assume ho-
moscedastic noise, meaning noise is uniform across d* from Step 8. The
HF ‘noise’ in Adaptive Screening comes from two sources: the stochastic
(aleatoric) variability of the HF response, and the LF indicator quality.
A bad indicator leads to increased scatter in HF samples. While both
noise sources are likely heteroscedastic in reality, with increasing noise
levels for higher response values (see [72,73]), restricting d* to a
small range around P,y allows for a reasonable assumption of uniform
noise distribution. This also enhances method efficiency by potentially
reducing the number of HF points needed for convergence. Finally, we
assume that the monotonicity criterion in Eq. (31) combined with the
definition of d* between 1 and O ensures the prediction of a proper
exceedance probability distribution.
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2.5. Implementation

We used Python toolboxes GPy ([81], v1.10.0) and Emukit ([82],
v0.4.9) to define and optimise the (MF-)GPR formulations. The stan-
dard Emukit structure was used to combine adaptive sampling with
GPR. This was not straightforward for MF-GPR. Adaptive sampling with
MEF-GPR was therefore achieved by creating a new surrogate ‘mock’
GPR prediction in each iteration, trained on the MF-GPR predictions
and their variances.! The acquisition function was then applied to
this mock GPR prediction to choose a new point. Afterward, MF-GPR
was applied again to the updated training set in each iteration. The
acquisition function and stopping criteria were newly implemented. All
scripts are available in the 4TU repository: van Essen and Seyffert [83].

3. Application 1: second-order wave crest heights

In application 1 we predict extreme values of second-order wave
crest heights. This can be seen as a weakly non-linear HF ‘response’. The
goal was to predict the HF one-hour MPM value, 50 Ty, = 3600 s. The
test case used a long-crested JONSWAP wave spectrum with H, = 10 m,
T, = 1ls,y = 33. With 5 = 27[HS/(ngZ) = 0.053, the waves were
relatively steep, and the water depth was set to 30 m to enhance
second-order effects. The HF response was a second-order wave, and
the LF indicator a linear Gaussian wave with or without noise. To keep
the root-mean-square error of the one-hour MPM wave crest height
within 3% of H,, a minimum of 8-22 one-hour wave seeds (random
realisations) is required in a MCS according to van Essen et al. [72]
and Scharnke et al. [73]. To be conservative, we used 50 one-hour
seeds (so N = 50 and total duration Ti,; = 50 hours). We define
C’ as the LF wave crest height, C"” as the HF wave crest height,
and C” as its one-hour MPM value. For this test case, we selected
an analytically traceable HF response, allowing easy generation of
long HF ground truth time traces and avoiding the need for CFD
simulations for Step 6 of Adaptive Screening. This approach enabled us
to validate the Adaptive Screening framework without introducing CFD
calculation accuracy concerns. Sections 3.1 and 3.2 describe the HF and
LF data sources, while Section 3.3 explains adaptive sampling for this
application. For comparison, the conventional industry method for this
application is described in Section 3.4. Results and computational time
are discussed in Sections 3.5 and 3.6.

The probability of interest P, = 3.06 x 10~3 for this application
follows from Egs. (2) and (5), where n,, & 1.64x 10* is the approximate
number of wave crests in the 50-h MCS at zero forward speed (so
T,.=T),).

3.1. High-fidelity data

We generated second-order wave elevation time traces analytically
using Python toolbox PySeaWave from the Cooperative Research Ships
(CRS), based on Sharma and Dean [84], the random phase method and
a frequency bandwidth of 0-5 rad/s for second-order interactions. The
zero up-crossing wave crests in these traces were used as HF data. To
confirm convergence of the one-hour MPM, we generated 10 random
50-h realisations. The true HF one-hour MPM for the chosen 50-h
realisation was 10.56 m, with a mean of 10.55 m across the realisations
and U95% uncertainty of 0.10 m.

1 Similar as all other GPRs in the present study, the mock GPR used a
Matern32 kernel, and restricted Gaussian noise between 0.5-1.5 times the
variance of the input data after subtracting a linear trend.
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3.2. Low-fidelity indicator data

The basic LF indicator, ‘GoodInd’, was derived from linear wave
time traces that deterministically correspond to the second-order waves
described above. The true LF and HF zero up-crossing peak PoE distri-
butions for the 50-h MCS are shown in Fig. 15(a) in Appendix E. This
LF GoodInd distribution followed from Step 3 of Adaptive Screening,
and the HF distribution was generated similarly. The HF results across
ten 50-h realisations show that the one-hour MPM (at Pexp) is well-
converged. The LF distribution matches the linear Rayleigh distribu-
tion, and the HF distribution the second-order distribution of Forristall
[851,% confirming correct MCS setup. Linear wave crests are a good
indicator to predict the occurrence of second-order wave crests. In
a more non-linear response problem, the order statistics of the LF
indicator and HF response are expected to be less similar (see e.g., [32,
33,35]). To account for this, we defined a second, noisier LF indicator
called ‘Worselnd’. The extra noise was created by adding a secondary
JONSWAP wave system with random, independent phases and H, =
20m, T, = 140 s and y = 1.0 to the GoodInd signal. This additional
wave system introduces extra differences in the order statistics of LF
and HF peaks. In summary: Cg g 18 an LF indicator consisting of linear
wave crests and C/, . is an LF indicator consisting of wave crests in
the linear waves plus the additional noise waves.

To assess indicator quality, LF and HF crests were time-matched by
identifying LF zero up-crossing crests and locating the corresponding
HF maximum within each LF interval. This approach allows LF and HF
crests to be matched even when they are slightly shifted in time. Fig.
16(a) (left) in Appendix E shows a scatter plot for GoodInd, where LF
and HF crest statistics closely align, though not perfectly. In the more
non-linear case Worselnd (right in the same plot), there is more scatter,
reflecting differences in LF and HF order statistics. These originate
not from measurement errors, but from model differences. The noise
indicates a less effective indicator. We aimed to define representative
indicators for real non-linear response problems in waves and the
available indicators. To quantify this, we used the average ‘screening
quality index’ (SQI,,,.,,) from [35], where a value of one is ideal, and
higher values indicate more LF samples are needed to predict true
HF values. A short explanation and interpretation of this variable can
be found in Appendix A. For GoodInd, SQI,,,,, = 1.6; for WorseInd
S01,,.., = 3.1, showing the expected decrease in indicator quality with
added noise. Still, the order statistics of these indicator/response pairs
are relatively similar compared to actual cases; van Essen et al. [35]
found SQI values around 10 with the best indicators for green water
loads.

3.3. Adaptive sampling

We chose two PoE levels in the initial sampling for Step 5 of
Adaptive Screening, 0.001 and 0.01 (m = 2), positioned around Pexp
defined in Section 3.2. The prediction range d* in Step 8 was selected
between 5x 107 and 2 x 1072 in 200 uniform steps, containing 450 HF
events. To generate a ‘new’ HF sample in each iteration, we matched
LF and HF peaks as described in Section 3.2. When an event was
selected based on its LF indicator value (in Step 5 or Step 11), the
corresponding HF value was drawn from the matched LF-HF peaks. This
is only possible because we have an analytically traceable HF variable;
in reality, each iteration would require a new HF event calculation.

To monitor convergence, we set stopping criteria limits for S(j)
in Eq. (34): ¢, = 0.05 m for the maximum absolute wave crest
distribution difference, and ¢, = 0.003 for the coefficient of variation
of the one-hour MPM value (standard deviation 0.3% of mean). In

2 We used mean wave period T, = T,/1.198 for JONSWAP to obtain the
reference Forristall distribution.
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Fig. 4. Flow chart of application 1: Adaptive Screening, reference conventional method and HF Monte-Carlo simulation for validation. The area of the red blocks approximately

indicates the simulation length.

real applications, less stringent criteria may suffice if reducing HF
calculations is the main priority.

As explained in Section 2.2, each iteration picks a new event from
the existing LF MCS pool based on the acquisition function applied over
d*, without replacement. The theoretical new best point at PoE pls™V is
therefore always within this range. However, the closest available PoE
level in the (remaining) pool may be slightly outside this range. This is
acceptable, as it still improves prediction accuracy within the range.

For MF-GPR, we also need the LF distribution as input. As explained
in Appendix B.2, we used a subset of the full LF MCS samples in MF-
GPR. This was done by applying a ‘translated’ three-parameter Weibull
fit (see e.g., [17,69,86-89]) to the top 50% of LF samples, using Eq.
(10). We then derived a subset of 50 equally spaced LF samples for
MF-GPR from this fit.

P(X > x) = exp <—("‘9)ﬁ> )

a

3.4. Reference conventional industry method

We also applied a version of the ‘conventional’ industry method,
described in Section 1.4 to application 1. Implementation details and
results are discussed in Appendix D, for three versions of the conven-
tional method (3, 5 or 7 seeds per sea state). In the following section,
the 5-seed conventional results are compared to the full HF MCS and
Adaptive Screening outcomes. Fig. 4 provides an overview of the three
methods used to determine the one-hour MPM for application 1, with
block sizes illustrating the relative duration of simulations, highlighting
Adaptive Screening’s efficiency in minimising HF simulation time (red
blocks).

3.5. Results

We first checked the suitability of the selected stopping criteria
(Sections 2.3 and 3.3) for application 1. Appendix C.2 shows that the
criteria indeed seem appropriate. Fig. 5 shows the fully converged
predicted MPM and its U95% for both indicators, two GPR versions and
acquisition function USMV. It includes annotations with the accuracy
of the mean predictions at convergence. For reference, the prediction
accuracy after only 10 HF samples (8 iterations plus 2 initial samples)
is also indicated.

The predicted final distributions are plotted in Fig. 6. They look
very similar to the HF ground truth, for most of the prediction range
and especially around P,p. This is confirmed by Fig. 5; the HF one-
hour MPM values are predicted with a deviation between —0.8% and

+0.2% from the true MCS result at convergence. This accuracy is in the
same range as the reference conventional method, which has a —0.7%
deviation from the ground truth (see Appendix D). The uncertainties of
these predictions are the same range as well (U95% of 0.6 m from the
conventional method, compared to the shaded area in Fig. 5), although
slightly higher with Adaptive Screening and the Worselnd indicator.

It was expected that Adaptive Screening with MF-GPR may converge
quicker than with GPR, as this also leverages the LF distribution shape.
The results show that the MF-GPR version indeed converges quicker for
both cases (with fewer HF samples), and Fig. 6 shows that the predicted
distributions from MF-GPR are also closer to the true distributions
than from GPR. There seems to be a benefit in using MF-GPR over
GPR especially for lower numbers of HF samples (as also observed in
e.g., [54]).

Comparison of the GoodInd and Worselnd indicators shows that
neither the accuracy of the distribution shape nor that of the MPM
value is significantly affected by the quality of the indicator. However,
the number of required samples to reach this result does increase
with decreasing indicator quality. Adaptive Screening was run until
convergence, meaning that differences will be visible in the number
of required HF samples and in the uncertainty instead of the mean
accuracy. The higher S0OI,,,,,, the more HF samples are required for
convergence and the larger the uncertainty of the predicted MPM. This
is logical, as the reduced indicator quality introduces noise in the HF
results, which is directly translated to uncertainty in the GPR output.

3.6. Computational time

Even more than accuracy, efficiency is the foreseen advantage of
Adaptive Screening over the conventional method. To quantify this,
we need to translate the required number of HF events to simulation
time. As noted in Section 2.4, prior studies have demonstrated the
ability of HF CFD to replicate wave impact loads accurately when wave
and ship motion data from experiments are reproduced accurately.
Simulation times in these studies vary, with durations of 4T, [78],
50 s [90], 35 s [79], ~20 s [16], or even as short as 3 s [80]. When the
initialisation for CFD events is obtained from a LF tool, it was shown
that this can be done with 52 s [51] or 12 s [35]. A short duration can
suffice if fully non-linear wave event kinematics close to the structure
can be obtained from the LF tool, whereas a longer duration may be
required if the waves need to be initialised from linear wave elevation
and/or further from the structure.

Assuming 10-50 s of HF simulation per event, we can estimate the
total simulation time for convergence. The required 10-62 HF events
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Fig. 6. Converged distributions for application 1 for both indicators, from Adaptive Screening with GPR or MF-GPR, acquisition function USMV and the defined stopping criterion.

with Adaptive Screening thus translates to 0.03-0.9 h of HF simulation
per sea state. In comparison, the conventional method requires 5 h
per sea state (~10 times more), and a full HF Monte Carlo simulation
(MCS) takes around 50 h (~100 times more). Thus, Adaptive Screening
achieves accurate results far more efficiently, even with strict conver-
gence criteria - and could converge even faster with relaxed criteria.
Fig. 5 indicates that with only 10 HF samples, the deviation can be
<2.2%, significantly reducing HF simulation time. Adaptive Screening
also requires a 50 h LF MCS, which can be quick for an analytical
indicator (as used here) or with linear potential flow. Additionally,
each iteration requires a (MF-)GPR prediction. These are simulation
times, not CPU times. CPU time depends heavily on the tools used for
LF and HF simulations, where the LF simulations should be cheaper.

For this application, the total computational cost (LF simulations, HF
event calculations and iterative Adaptive Screening procedure) was ~ 1
CPU hour (CPUh), primarily driven by the iterative procedure. As the
problem is analytically traceable, this is not necessarily shorter than
with the reference method or brute force MCS. However, for more
non-linear problems, the HF simulations are more computationally
intensive, to the advantage of Adaptive Screening (see also Table 1).

4. Application 2: vertical bending moment on a ferry
Application 1 examined waves only, whereas Adaptive Screening

was designed for hydrodynamic responses to waves. Thus, application
2 explores the moderately non-linear problem of predicting vertical
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bending moments (VBM) on the 190 m MARIN ferry 2 [91]. We
predicted the HF 30 min MPM value (so Ty, = 1800 s) of hogging VBM
midships, using a sign convention where hogging peaks are identical
to VBM troughs. The loading condition matched that in [72]. We
selected an extreme irregular head wave condition, with a JONSWAP
spectrum, H, = 13.2m, T, = 10.0 s, y = 3.0, at a forward speed of 10
knots (5.14 m/s). This extreme sea state (in reality with heavy wave
breaking) was selected to make the test case similar to that described
in [50,54]. Although our ship shape, and LF / HF tools differ, the
wave and response conditions align, allowing us to obtain an idea of
Adaptive Screening’s performance compared to the alternative method
in [50]. The HF response is non-linear VBM (V"'), and the LF indicator
is linear VBM (V). Unlike in application 1, this HF response is not
analytically traceable, but long-duration non-linear simulations were
feasible. We selected a total MCS duration of 30 h. By performing
LF and HF simulations for the same wave realisations and selecting
HF samples from the existing HF simulations, we could again validate
the probabilistic framework. Here we use Adaptive Screening only
in combination with MF-GPR, as this worked best in application 1.
This chapter follows the structure of application 1, but without the
conventional reference analysis.

The probability of interest Py, = 4.18 x 107 for this application
follows from Egs. (2), (3) and (5), where T,,=75s for T,=100s at
5.14 m/s speed in head waves, and n,, & 1.44 x 10* is the approximate
number of wave crests in the 30-h MCS.

4.1. High-fidelity data

The HF VBM time traces were supplied by non-linear time-domain
code PRETTL R v19.0.1 of CRS [92,93] which includes Froude-Krylov
non-linearity. The ground truth HF hogging peaks were defined by
the zero up-crossing troughs in these VBM traces. The utilised panel
distribution is visualised in Fig. 7. The true HF 30-minute MPM for the
chosen 30-hour realisation is 1.05 x 10° Nm.

4.2. Low-fidelity indicator data

The LF VBM time traces were supplied by linear frequency-domain
potential flow diffraction code SEACAL v7.2.0 of CRS, in the zero speed
Green’s function implementation. The true LF and HF zero up-crossing
peak PoE distributions for the 30-h MCS are shown in Fig. 15(b) in
Appendix E. We matched the LF and HF VBM hogging peaks at midships
in the same way as described for the wave crests in Section 3.2. This
results in the scatter plot in Fig. 16(b) in Appendix E. This shows that
the hogging LF indicator and HF response peaks have less similar order
statistics than those of the wave crests in application 1. This is also
reflected in the SQI,,,, value, which is 22.8.

4.3. Adaptive sampling

As in application 1, we chose two PoE levels (0.001 and 0.01) for
initial sampling in Step 5, along with a prediction range of 1 x 107
to 5 x 1072 with 200 uniform steps in Step 8, both centred around
Peyp- To generate a ‘new’ HF sample in each iteration, we matched LF
and HF peaks in time following the method described in Section 4.2.
For each selected event, the corresponding HF value (determined by
the LF indicator value in Step 5 or Step 11) was drawn from the HF
simulations at the closest matching time. Unlike in application 1, where
an analytically traceable HF variable was available, here we used the
database of non-linear HF simulation results. To monitor convergence,
we set the second limit of the stopping criteria S(j) in Eq. (34) equal
to the limit we set in application 1: ¢, = 0.003 for the coefficient of
variation of the MPM value (standard deviation 0.3% of mean). The
first limit, for the maximum absolute distribution difference, needs
to be adapted as it has the same unit as the predicted variable. For
application 1, we selected 0.05 m crest height, with maximum crest
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Fig. 7. Mesh of the MARIN ferry 2 for the SEACAL and PRETTIR calculations in
application 2, consisting of 3327 panels.
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Fig. 8. Convergence of 30-min HF MPM and its uncertainty from Adaptive Screening
with MF-GPR, for hogging VBM in application 2. Annotations indicate the mean
prediction accuracy compared to the true MCS result.

heights in the order of 15 m. To use a similar criterion, we use ¢; =
5 x 10® N m, with maximum hogging peak values in the order of
1.5 x 10° N m. Again, less stringent criteria may suffice if reducing HF
calculations is the main priority. The rest of the adaptive procedure for
application 2 was identical to that of application 1.

4.4. Results

Fig. 8 shows the predicted 30 min HF MPM and its U95% for hog-
ging, from Adaptive Screening with MF-GPR and acquisition function
USMV. The converged distribution shapes are plotted in Fig. 9. These
plots are similar to Figs. 6(c) and 6(d) for application 1, but here
we plotted the LF and HF distributions separately to distinguish them
better. These results show that, initially, the results start converging
very quickly. However, it takes a while to reach proper convergence
according to the defined stopping criterion. With 59 HF samples, the
30 min VBM hogging peak MPM is predicted with —2.9% accuracy.
This accuracy is slightly less than that of the one-hour wave crest
MPM results in application 1. The is explainable by the indicator
quality (measured as SQI,,,,,), which is lower for application 2 than
application 1. The U95% uncertainty of the 30 min MPM in the present
application is also relatively large compared to the mean value, but
convergence was reached with a similar number of HF samples as
for the Worselnd indicator in application 1. For reference, the LF
equivalent MPM deviates —8.2% from the true HF value, so Adaptive
Screening does significantly improve the prediction compared to pure
LF simulations. These results demonstrate a comparable level of accu-
racy to those obtained using an alternative multi-fidelity method for a
similar VBM case in [50].

4.5. Computational time

Similar to application 1, we assume that each HF event simulation
must be run for 10-50 s. The 59 HF events required for convergence in
application 2 then correspond to ~10-50 min HF simulation time. We
picked the HF results from the 30-h validation HF MCS with PRETTI R.
This total 30-h simulation took 26 CPUh. We therefore estimate that the
required 10-50 min HF simulation time takes ~0.1-0.7 CPUh. We also
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Fig. 9. Converged distribution for application 2, from Adaptive Screening with MF-GPR, acquisition function USMV and the defined stopping criterion.

needed 30 h of LF simulation time with frequency-domain code SEA-
CAL (one speed, one heading) combined with linear analytical waves,
which took ~0.25 CPUh. Additionally, Adaptive Screening roughly took
1 CPUh for 200 iterations. The total computational cost for the Adap-
tive Screening procedure (excluding HF validation data) was therefore
0.1-0.7 CPUh (HF simulations) + 0.25 CPUh (LF simulations) + 1 CPUh
(iterations) ~ 1.5-2 CPUh. The alternative would be 26 CPUh for the 30-
h HF MCS, showing that the new method is considerably more efficient
(see also Table 1). All calculations for application 2 were done on a
single laptop core.

5. Application 3: green water impact forces on a containership

Applications 1 and 2 are weakly and moderately non-linear test
cases, while Adaptive Screening is designed for strongly non-linear re-
sponses. These earlier applications allowed us to compare the method’s
converged outcome to reference HF MCS results (with a good outcome)
and to assess the impact of various settings. The method still performed
well with lower-quality indicators, which showed the method’s po-
tential for more non-linear problems. However, to properly show the
method’s suitability, a strongly non-linear test case is needed. This is
presented here.

In application 3, we predicted extreme values of global green water
impact force peaks on the breakwater of the 230 m KCS contain-
ership [94]. This HF force is noted as F;’ in the remainder of this
application. It was validated against experiments (see Fig. 10). The
considered test campaign is extensively described in [35], including
a discussion of the capability of many different numerical indicators
to predict the occurrence of these green water forces. We selected an
experiment with a full-scale duration of 30 min in irregular head waves
with a JONSWAP spectrum and H; = 6.8 m, T, = 9.7 s, y = 3.3 at 4.6
knots forward speed (2.37 m/s). The conditions were selected such that
the impact frequency was high; there were 95 experimental impacts in
this 30 min duration. Bandringa et al. [16] has shown that calculations
using Cartesian-grid finite volume CFD method ComFLOW [95] on a
fine mesh are able to reproduce the green water forces in 12-second
events accurately for the same experimental data.

We did not run Adaptive Screening until proper convergence ac-
cording to the stopping criterion of Section 2.3, because that would
require a longer duration of the validation material. Instead, we demon-
strate that we can get a good estimate of the 5 min MPM using only
10 HF events (Texp =300 s). This is a demonstration of the potential of
the method; not a full validation case. Again, we only apply Adaptive
Screening in combination with MF-GPR.

Here we do not have a HF response that is analytically traceable
(as in application 1) nor do we calculable with a weakly non-linear
tool (as in application 2), but we do have HF experimental data.
By deterministically reproducing these experiments in the numerical
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indicator calculation, we could also avoid the CFD simulations in Step
6 of Adaptive Screening for this application. Similar as in application
2 from the HF simulations, new HF samples were picked here from
the HF experiments. This chapter follows the same structure as that
of applications 1 and 2.

The probability of interest Pey, = 2.80 X 1072 for this application
follows from Egs. (2), (3) and (5), where T, =84s for T,=97sat
2.37 m/s speed in head waves, N = Ty /Ty, = 1800/300 = 6 and n,, &
215 is the approximate number of wave crests in the available 30 min
experiment. The number of wave encounters remains the leading ref-
erence for all PoE values. This enables the use of different variables
for the LF and HF signals in the Adaptive Screening procedure, as
demonstrated in this application.

5.1. High-fidelity data

The ‘ground truth’ HF distribution and 5 min MPM in application
3 were taken from the experimentally measured green water impact
peak forces on the breakwater of the ship (the vertical structure per-
pendicular to the ship’s length in Fig. 10). These forces were measured
using 40 force panels on the breakwater surface. We focused on the
peak total forces across this structure, obtained by summing the forces
over time from all panels. A zero up-crossing distribution of these force
peaks was made. As the number of HF green water impacts was limited
to 96 (and very sparse in the tail), we fitted a Generalised Pareto
distribution to the highest 10% available samples before deriving the
ground truth MPM (ﬁz/). This was done by applying Eq. (7) to this
fitted distribution. The thus found true HF 5-minute MPM from the
experiments is 2.95 x 10° kN.

5.2. Low-fidelity indicator data

We selected two well-performing indicators from [35]: green wa-
ter force on the breakwater and relative wave elevation (RWE) at a
probe on the foredeck. Both indicators were calculated on a coarse
ComFLOW mesh, known as ‘CF3’ in [35], with wave phases matched
to experiments for deterministic reproduction. Details on the mesh,
settings, and numerical setup can be found in the cited work. These
indicators are non-linear, but lower in order than the fine-mesh CFD
calculations or experiments that are needed for accurate green water
force assessment. Here, the coarse-mesh LF green water force and RWE
indicators are denoted F; and R/, ,, respectively. These indicators have
SOI,.q, values of 2.08 (F;) and 2.06 (R:mk)' The true LF and HF peak
PoE distributions of F are shown in Fig. 15(c), and matched LF-HF
peak scatter plots for both indicators are included in Fig. 16(c) (both
in Appendix E). Although the relationship between LF and HF peaks
is less linear than in application 1, this does not necessarily mean that
the indicator is worse, as supported by similar SQI values. The scatter
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Fig. 10. Green water impact on the KCS during the CRS Green Water experiments; snapshots just before and during the same event.
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Fig. 11. Convergence of 5 min HF MPM and its uncertainty from Adaptive Screening with MF-GPR, for both indicators in application 3. Annotations indicate the mean prediction

accuracy compared to the true MCS result.

plots illustrate why finer CFD meshes are essential for accurate HF
impact forces: coarse mesh CFD predictions underestimate forces due
to wave dissipation, sampling errors, and underestimated crest heights.
However, here we use coarse mesh CFD only to quickly indicate critical
event occurrence, not to predict the magnitude of the resulting forces.
The latter is done using fine mesh calculations for a number of events
in Step 6. This application with indicator R/, A will demonstrate that
it is indeed possible to use an LF indicator that is a different variable

than the HF response.

5.3. Adaptive sampling

Similar as in application 1 and 2, we chose two PoE levels for
the initial sampling points (0.005 and 0.05) for Step 5 of Adaptive
Screening and a prediction range (1.5 x 1072 to 8 x 1072, with 200
uniform steps) for Step 8. Both were selected around P,,;,. We used the
matching in time of LF and HF peaks described in Section 3.2 in order
to obtain a ‘new’ HF sample in every iteration. Using this procedure, the
HF value corresponding to a selected event (based on its LF indicator
value in Step 5 or Step 11) was taken from the experiments around
the same time. In application 1 this was possible because we had an
analytically traceable HF variable; here we use the experiments as HF
database. We also need LF distribution samples as direct input for MF-
GPR. In application 1 and 2 we did not use all available LF wave
crests to prevent unnecessarily large MF-GPR matrices. As the number
of LF indicator peaks for both indicators in the 30 min duration are
limited, this is not necessary in application 3. We used all available LF
distribution samples in MF-GPR.
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5.4. Results

Fig. 11 shows the predicted 5 min HF MPM and its U95% for
both indicators, from Adaptive Screening with MF-GPR and acquisition
function USMV. The x-axis scale is the same as in the plots of the other
two applications, for reference. As said, we only ran the procedure up
to 10 samples (2 initial samples and 8 iterations), at which point the
results are not converged yet. The predicted distribution shapes with
10 HF samples are plotted in Fig. 12.

Comparing these results to those in application 1 and 2 firstly shows
that the uncertainty band and the deviations from the ground truth
with 10 HF samples are an order larger for this strongly non-linear
application than for weakly and moderately non-linear applications 1
and 2. Knowing that it is very hard to predict accurate green water
impact loads, this is not surprising. However, using only 10 HF events,
the shape of the green water impact force distribution is quite well
approximated (Fig. 12). Using the coarse mesh force indicator, the
5 min MPM green water impact forces can be predicted with an error
of only —5.1% (see Figs. 11 and 12(a)). Using indicator FV’ leads to
slightly more accurate (and seemingly more converged) results than
using R/, but this difference may not be significant with the low
number of HF samples. The results with R, , show that it is indeed
possible to use different variables as LF and HF signals in Adaptive
Screening, with satisfactory results. This can be beneficial in cases
where it is less computationally expensive to calculate RWE than forces
on a coarse mesh.

These results indicate that we can obtain quite accurate 5 min
extreme green water forces using only 10 HF events. In the design
stage of a new ship, an accuracy of 5%-10% is definitely acceptable for
wave impact load extreme values (considering that the utilised safety
factors for impacts are usually much higher). Using Adaptive Screening
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(fitted with a Generalised Pareto distribution).

could therefore be considered an improvement compared to the need
to do experiments or very lengthy fine mesh CFD calculations. Obvi-
ously we have not run Adaptive Screening until convergence (which
would require more HF event calculations) and only considered 30 min
screening time and a 5 min MPM. Real design loads would be required
for a longer exposure duration (e.g., 30 min or one hour). However,
this application shows that an acceptable accuracy could already be
achieved with very few HF events, that the results can converge close
to the true distribution with ‘real’ available indicators for a strongly
non-linear response case, and that the computational time in order to
do this reduces considerably compared to MCS.

5.5. Computational time

Similar to applications 1 and 2, we assume that each HF fine
mesh CFD event calculation has to be run for 10-50 s. The 10 HF
events analysed in application 3 therefore correspond to 100-500 s HF
simulation time. We also need to run the coarse mesh CFD screening,
which corresponds to 30 min LF simulation time (where ‘LF’ is in this
case coarse mesh CFD). This took 56 CPUh on 8 cores (so 7 wall clock
hours). We did not perform the HF fine mesh simulations, as we sam-
pled the HF values from the experiments. However, we can estimate the
computational cost for a real problem. One fine mesh CFD green water
event calculation with ComFLOW in [16] for the same experiments
took ~2.000 CPUh. We therefore estimate that the full procedure takes
56 CPUh (30 min LF screening) + 20.000 CPUh (10 HF events with a
fine mesh, which can be run in parallel) + ~1 CPUh (iterative Adaptive
Screening). This is long, but still significantly shorter than running fine
mesh simulations for the full 30 min duration. For reference, linearly
extrapolating the 2.000 CPUh for the 20 s events in [16] to 30 min
would be ~180.000 CPUh (see also Table 1).
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6. Discussion & conclusions

We introduced a new multi-fidelity extreme value prediction
method, Adaptive Screening, for strongly non-linear (ship) responses
to waves. We applied it to three case studies with increasing levels
of non-linearity and complexity: second-order wave crests, VBM on
a ferry and green water impact loads on a containership. The results
of the applications are summarised in Table 1 at the end of this
paper. Adaptive Screening accurately predicts MPM extreme values
for both weakly and strongly non-linear responses, with significantly
reduced computational cost compared to traditional methods. This
makes the approach promising for strongly non-linear responses, where
alternatives are often limited. However, ship design requires evaluating
many wave conditions over the ship’s lifetime, which is impractical
with coarse mesh CFD as needed for the most realistic and non-linear
application 3. We therefore envisage a recursive approach, where low-
/ medium-fidelity Adaptive Screening can identify critical long-term
sea states (similar to Gramstad et al. [23]), and medium-/ high-fidelity
Adaptive Screening can then estimate short-term load distributions in
these states (as presented here).

It can be concluded that Adaptive Screening provides quite accurate
extreme values of non-linear responses, if an adequate indicator is
selected. This indicator selection is crucial, as in other methods like
RCM and alternative screening approaches. Ideally, the indicator’s
order statistics should closely resemble those of the HF response. Since
perfect similarity cannot usually be achieved, some ‘random noise’ is
introduced in selecting events around probability level P, (Step 5),
causing the HF prediction to be a noisy surrogate for the true HF
distribution (Step 7). This noise results in a consistent underestimation
of extreme values by screening approaches, as also observed in research
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projects JIP Green Water [96] and CRS SCREAM [97]. For instance,
classical screening typically selects the top 10-20 indicator events from
a given simulation duration. However, even with perfectly accurate
CFD calculations, extreme HF values may be underestimated since
events are drawn from the distribution tail. With an imperfect indicator,
some selected events will inevitably have lower HF responses than the
true maxima (as the latter are the largest in the available pool), leading
to an underestimation of the HF extreme values. A weaker indicator
further increases this effect. In this study, we mitigate this bias by
selecting events at Py, from a long LF MCS in Step 2 (rather than
the largest events from a shorter MCS), ensuring sufficient HF events
above the target extreme value. A realistic indicator may still select
some ‘wrong’ events, but these can include both larger and smaller
HF responses, reducing underestimation. While this approach does not
fully eliminate bias (as tail events remain sparse), our results demon-
strate that it can effectively reduce the underestimation to acceptable
levels across various cases and levels of non-linearity with realistic
indicators. Further work could consider modelling this bias to define
a safety factor.

With the realistic indicators in the present applications, the one-
hour MPM second-order wave crest height could be calculated with an
accuracy of 0.2-0.8%; the 30 min MPM VBM with an accuracy of 2.9%
and the 5 min MPM green water impact load with an accuracy of 5.1%.
The results in application 1 had a similar accuracy and uncertainty as
a reference conventional method, with a significant reduction in HF
simulation time. These levels of accuracy are probably acceptable in the
design process of a maritime structure, considering that safety factors
for strongly non-linear responses are generally much higher. Using
Adaptive Screening considerably reduces the required computational
cost for all three applications, compared to the conventional method
or MCS.

Adaptive Screening places minimal constraints on the predicted
distribution, apart from the (MF-)GPR properties and a monotonicity
requirement. Thus, it can produce distributions outside the Generalised
Extreme Value (GEV) family. For the present applications, the results
closely approximates ground truth, suggesting that this is not problem-
atic, though it may be an issue for more badly behaving problems. An
alternative approach could involve learning the parameters of a GEV
fit to the HF distribution rather than its overall shape. The cost of the
new method lies mostly in the HF simulations. The largest efficiency
gain is therefore to be found in reducing the number of required HF
samples before convergence, rather than in speeding up the iterative
procedure. Further acceleration of the procedure may therefore be
possible by adopting a more lenient convergence criterion, optimising
the utilised acquisition function or selecting multiple new events per
iteration (allowing HF calculations to run in parallel).

The presented application cases validate only the statistical model in
Adaptive Screening, assuming that the HF calculations or experiments
in Step 6 can be initialised from the LF simulations and are perfectly
accurate. A follow-up study should focus on validation of the full proce-
dure (including HF calculations) for a strongly non-linear application,
and possibly on making Adaptive Screening even more efficient and
robust. Since only limited-duration ground-truth data were available
for application 3, this strongly non-linear case served more as a demon-
stration than full validation. Future work could focus on an additional
validation study using a strongly non-linear test case to further assess
the method. However, the present results are very promising for future
application of the method. It has potential to predict extreme values
of wave impact loads, and likely also of other non-linear problems in
maritime/civil engineering or oceanography (e.g., wave height, wind
speed, ship parametric roll, propeller ventilation, dike overtopping,
local water levels, etc.), and in short- and long-term scenarios.
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Appendix A. Screening quality index

The screening quality index SQI is defined in [35]. This metric
only applies to validation datasets, as it uses an LF-HF peak matching
procedure such as described in Section 3.2. We define false negatives
(indicator misses a critical event), false positives (indicator predicts
a critical event erroneously) and correct positives (indicator correctly
predicts a critical event). SQI does not allow for any false negatives
above a given HF threshold, as formulated in Eq. (11). Here I™ are all
LF indicator peaks, h'lg;iche q are the matched HF peaks (see Fig. 16), 1,
is the HF threshold, and # indicates a count. The numerator finds the
minimum LF value with all matched HF values above a threshold and
counts their number, representing the total number of positives in the
screening. The denominator counts real events above the HF threshold,
representing correct positives. An ideal SQI is one (all positives are
correct), with higher values indicating poorer performance. For exam-
ple, an SQI value of 4 implies 4 events must be evaluated to find one
true positive. Say there are 15 real HF events above the threshold, this
would mean 60 HF CFD event calculations. SQI is defined as a function
of HF response threshold. For practical comparison, we use the mean
SOI,,.q., over the full range of thresholds, similar to van Essen et al.

[35].
# [lmcs > min (lmcs pmes > t,,)]
SQI(t),) = amn
mcs
# [hmatched 2 lh]

Appendix B. (Multi-fidelity) Gaussian Process Regression

B.1. GPR

Single-fidelity GPR (e.g., [98]) can be used to predict new values
y* and their uncertainty over range x*, using a known sampled data
set [x,y]. In Step 9 of Adaptive Screening, [x,y] is the existing HF
data set [In (dSISI),hsel] from Step 7; x* is the prediction range In (d*)
from Step 8 and y* is the predicted HF solution h*. The underlying
process is assumed to have an infinite-dimensional multivariate Gaus-
sian distribution with a mean function u, and covariance function or
kernel k (see Eq. (12)). As customary, we assume that the mean is
zero, the observations are related only by the kernel, the data are
noisy and discrete. This reduces it to Eq. (13), where I is the identity
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matrix and 0,2, is the noise variance. We assume homoscedastic noise
(see Section 2.4).

yo0) ~ N (), k(x,x")) (12)

¥y&) ~ N (0,K(x,x) + 621) 13)

The kernel is a covariance function that describes the relation be-
tween the input points. We used the Matern32 kernel in Eq. (14), which
includes length hyperparameter / and maximum allowable covariance
o. If two points are far apart, their covariance is zero; / determines how
quickly this interaction decreases. The hyperparameters are assembled
in @ = {0,l,0,}. The noise parameter is learned together with the
others. GPR needs the value of the kernel for interaction of each point
with all the other points, resulting in the interaction matrix in Eq. (15).

_x o
k(x’x,|9):‘72<1+m>exp [_ \/glx/ ; l] 14)
k(xy,x110)  k(xy,x,|60) k(xy,x,,10)
K(x,x']0) = | K2 xi10) - kxo. x:10) k(x, % [0) (1s)
k(X x110)  k(x,,,x,]0) k(0 X, 0)

We started by assuming arbitrary a priori hyperparameters, and then
optimised them by maximising the conditional probability P(0|x,y).
According to Bayes’ theorem, this is equivalent to maximising the
log-likelihood given in Eq. (16), where m is the number of existing
observations (see e.g., [82,99]). We solved this for 6 using a multi-
variate optimisation algorithm. Assuming a uniform prior distribution
V' (0,in» 0,nax) 8ives the best parameters 6.

min>

In(P(y|x, 0)) = —%yTK_ly - %lanl - %ln(Zn) 16)

In order to predict y* for new input range x* using the thus trained
GP, we modified Eq. (13) further to obtain Eq. (17). Interaction matrix
C is provided in Eq. (18).

[yy] ~ N (0,C+520) an
_ [Kx.xX'16) Kx*x'16)]  [K, KT 18)
K x"10) K xY9)] T |K+ K

Now Eq. (19) provides the conditional probability of new values
based on existing observations, which yields the best estimate for mean
new values y* and their variance ai*.

y*ly ~ ./\f (K*Ke_ly, K — K*Ke—lK*T) (19)
y*=K'K;'y and o), =var(y*) = K" - K'K;'K*"

B.2. MF-GPR

In multi-fidelity (MF-)GPR, we use both LF and HF data ([x;,y]
and [xh,yh], organised in Eq. (20)) to predict the HF values y; over
x*. In our applications, [x,.y,| is given by [In (d%¢!),h*®!] from Step
7 (same as in the GPR procedure). We also have the LF MCS set
[In (d7¢5),1m5] from Step 2. However, GPR scales with the cube of the
sample size, making it a poor choice for applications with many samples
(see e.g., [54]), so we reduced the number of utilised LF samples in
MEF-GPR. We therefore reduce this to [d; 1], either by sub-sampling or
by fitting a theoretical distribution and deriving new samples from this
fit. This data set is used as [x;,y,| in MF-GPR.
and 'y, ) (20)

Xh] ’ = [YI

We used two fidelity levels (as in [48]) and the autoregressive
(AR1) multi-fidelity model of Kennedy and O’Hagan [49] in Eq. (21).
This model uses the Markov assumption in Eq. (22), which speeds
up the computation by decomposing the multi-fidelity problem into

Xy = [XI Yn
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independent single-fidelity problems: one for the LF data and one
for the difference function & between the LF and HF data. It can be
interpreted as follows: given the nearest LF point y,(x), we can learn
no more about HF point y,(x) from any other point y,(x’) for x’ # x.
The parameter p is used to establish the correlation between the two
datasets.

Yo =0y, +6 21)

k (v, 3Dy () =0 (22)

The LF hyperparameters 6, = {c,,/,} are optimised first, using the
LF data [x,,y,]. Next, the difference function hyperparameters 6; =
{63.1,,6} are optimised, using the HF data [x,.y,| and predicted LF
values [x*,y;*]. Here § is the difference parameter, and / and ¢ are the
kernel hyperparameters (defined separately for the LF and difference
parts). Finally, the LF and HF predictions are made using the optimised
hyperparameter sets 6, and 6;. The AR1 covariance matrix of the
existing data B, is formulated in Eq. (23), using Eq. (15). Similarly, the
AR1 covariance matrix of existing with new points B* is given in Eq.
(24) and the matrix of new points B** in Eq. (25).

B BT B,y =K, x]|6)
B, = [Be.n ];,21 ] where: (B, = pK(x;,X)|6))
e21 e,22 5 , ,
B2, ="Ky, x,10) + K(xp,, x; 1605)
(23)
B = [B:, B| where: 4 Pu =/KOOx10)
noe B:, = p’K(x*.x/0) + K(x*,x] |6;)
24
B* = p’K(x*,x* |6)) + K(x*,x* |0;) (25)

The MF form of the full covariance matrix is given by Eq. (26)
and its log-likelihood function by Eq. (27), where m, is the number
of elements in x,. We use the Matern32 kernel again in both parts of
MF-GPR.

— Be B*T
1 Tp-1 1 m,
In(P(y,|x,,6;.05)) = —Eyu By, - §1n|B| - 71n(27r) 27)

Finally, the new mean predicted values ﬁ and their variance o-;*

can be calculated using Eq. (28). These predicted values include both
the LF and HF prediction over range x*.

vi=B*B,'y, and 05 = var(y?) = B** - B*B,”'B*T

; 28)

2

B.3. Constraints

It is not possible to define a perfect indicator for most non-linear
response problems, so the HF samples resulting from Step 7 will be
‘noisy’. To avoid over-fitting, the minimum GPR noise variance was
constrained to 0.5 x the variance of the available samples, with respect
to a least-squares linear fit to these samples (see Eq. (29), where
[x*(),¥"()] is the set of mean predicted HF samples and c,()) is the
noise variance for iteration j). In MF-GPR, this is done separately for
the LF and difference parts. We also constrained the length hyperpa-
rameter /(j) of all kernels to the lower limit in Eq. (30), where len(y”())
is the number of HF samples in iteration j. This limit takes value ten for
a few samples, and higher values for many samples. The relatively high
number for the first iterations helps to ensure monotonically decreasing
distributions and quick convergence, and the increasing limit with the
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total number of training samples helps to avoid over-fitting of the noisy
data for many samples.

6,(j) = 0.5 - var (y"(j) — linear_fit [x*(j),¥"(j)]) (29)

1(j) = max (10,0.1 - len(¥*(j))) (30)

Appendix C. Details of stopping criterion
C.1. Formulations

We set an acceptance criterion requiring the PoE distribution to de-
crease monotonically, with higher threshold values at low PoE than at
high PoE. Enforcing monotonicity in GPR predictions is challenging, as
it necessitates correlations across the entire domain, while kernels cap-
ture correlations only locally (see e.g., [100]). Although methods exist
to address this (e.g., [101,102]), they may overly constrain regression.
We therefore chose not to modify GPR for monotonicity, accepting that
some early predictions with limited HF data may lack monotonicity.
In our implementation (Step 8), we defined the prediction range d* in
ascending PoE order, so the first element of the HF prediction h* is
highest and the last the lowest. An iteration was rejected if it did not
meet the acceptance criterion R in Eq. (31) (where w = len(ﬁ(j))):
each element of h*( j); must be smaller than the previous one, and the
difference between the first and last elements must exceed 1% of the
first element’s value.

accept if [Vi €[2, ..,,w],§(j),-_1 > h_*(j),.]
n[W 0 -1 0), > 0010 )]

otherwise

RG) =

reject

(31)

Secondly, we calculated the maximum absolute difference E(j) in
HF value between each set of subsequently predicted distributions. As
the distributions in the first few iterations can be quite erratic, we used
the average of E(j) over the last K, iterations: EKI (j). When j < K,
all available iterations were used. Here, K| is a user-defined value.

J
Eq0)= o X EO)
i=y

E(j) = max |h*(j) —h*(j — D)

where: y=landy = forj=1,2,....K; -1

y=j—K +1and y = K| for j > K,

(32)

The largest difference between the predicted distributions of the
E(j) criterion may be far from P,,,. For this reason, a third convergence
criterion was based on the coefficient of variation (COV) of the MPM
value over the last K, iterations: Ck,(j). This is expressed in Eq. (33),
where A(j) is the MPM value predicted in iteration j. Again, we took
the COV over the available iterations when j < K,, where K, is another
user-defined value.

UKz(j)

i, ()

where:

Cx, () =
ni, () = 5 T, HG)

. 1 wJ ~ \?
Ao =1L ZL, (A0 - ue,0)
y=landy =

for j=1,2,....K, — 1

y=j—-K,+landy =K, for j > K,
(33)

The total stopping criterion S(j) is provided in Eq. (34), where limits
¢, and ¢, are case-dependent. The defined values K; = K, = 20 balance
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Fig. 13. MPM and stopping criteria, app. 1. E,, (Eq. (32); middle) and C,, (from Eq.
(33); bottom) only shown for the accepted iterations by Eq. (31). MPM (top) is
transparent from ‘x’, where convergence was reached based on the full stopping
criterion (Eq. (34) and Section 3.3).
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Fig. 14. Peak distributions for 5 randomly picked seeds, their Weibull fits and the
derived MPM in one of the 500 seed picking realisations of the conventional procedure.

limiting both the influence of outliers and the minimum number of
iterations for which convergence can be detected.

stop

s - if (R(j) = accept)n (Ezog) < el) N (Ca() < )

continue otherwise

(€D)]
C.2. Evaluation of stopping criterion in application 1

The predicted one-hour MPM HF wave crest height C7" with Adap-
tive Screening and parts of the stopping criterion of Section 2.3 as
a function of the number of HF samples are shown in Fig. 13 for
application 1. The first part of the criterion (monotonocity check)
is not explicitly shown, but the other parts are only plotted for the
accepted iterations. The moment convergence is reached according to
the limits set in Section 3.3 is indicated in the top MPM plot with a
marker ‘x’. These plots show that the presently selected limits seem
appropriate, but may be quite strict; more lenient limits would lead
to earlier convergence with only a small MPM accuracy loss.
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Fig. 16. Scatter plots of matched LF and HF peaks for all three applications.

Appendix D. ‘Conventional’ industry method for application 1

As discussed in Section 1.4, class societies and ITTC recommend
experiments with several 0.5 to 3-h wave seeds to determine short-term
extreme response values. For strongly non-linear responses, guidelines
suggest using 10-60 seeds per wave condition (e.g., [69,71,76,103—
105]). Extreme values are then derived from the responses, before or
after fitting. van Essen et al. [72] and Scharnke et al. [73] showed that
a large number of seeds is needed to effectively reduce uncertainty.
However, in practice, the limited available experimental time often
restricts testing to 1 seed per wave condition for ships (as also advised
by ITTC [106]) and up to 5-10 occasionally for offshore structures.

We applied this conventional method to application 1 for reference.
No experiments were done, but it was assumed that they would supply
HF data for several one-hour seeds. We used HF MCS results from
Section 3.1 to simulate this, randomly picking 5 seeds (N.ypy = 5)
from the 50-h HF MCS. This was repeated 500 times in a bootstrap
analysis to account for variability. To reduce variability in the one-
hour maxima, a Weibull fit (Eq. (10)) was applied to the top 30% HF
wave crests in each seed. We applied Egs. (4) and (7) to the HF data of
each fitted seed to assemble 5 seed maxima in C’E’, and then made an
ensemble maxima distribution using Eq. (35). The MPM C/‘Z was derived
from Eq. (36), where 0.632 is the exceedance probability of the MPM
in an ensemble maxima distribution for a Gaussian signal [75]. Fig.
14 shows the significant variation in the maxima derived from one of
the 5-seed realisations. To evaluate the sensitivity of the results for the
number of seeds, we have done the same for 3 and 7 seeds.

This variability yields a mean one-hour MPM of 10.62 m (3 seeds),
10.48 m (5 seeds) and 10.44 m (7 seeds), with a U95% uncertainty of

0.85 m (3 seeds), 0.61 m (5 seeds) and 0.49 m (7 seeds) over the 500
realisations. This mean value deviates less than 1% from the true 50-h
MCS results in Section 3.1 for all three numbers of seeds. Obtaining
these results requires 3 / 5 / 7 h of HF simulation or experiment time.
We have used the 5-seed results for reference in the remainder of this
publication.

dg(e)=P(C} 2 0) (35)

d; (@) =0632 , therefore: C7 =dj'(0.632) (36)

Appendix E. Summary of input and results of all three applica-
tions

This appendix assembles some input plots and results of all three
cases, for a concise overview. Fig. 15 provides the PoE distributions
of the LF and HF input; Fig. 16 provides the scatter plots of matched
indicator and HF response peaks; and Table 1 provides an overview of
the input and results in all three cases.

Data availability

Most data and scripts underlying this publication are available in (or
can be re-generated using) the 4TU repository: [83]. This is valid for all
scripts, and the data of application 1 and 2. The dataset of application
3 is proprietary, so this is not included in the repository.
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Table 1
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Summary of input, accuracy and computational time for all three applications. The very short computational times for the alternative methods in application 1 result from the

analytic

al tractability of the problem.

Application 1

Application 2

Application 3

Ship - MARIN ferry 2 KCS containership
Exposure duration MPM 1h 30 min 5 min
HF non-linear variable Second-order waves Hogging VBM midship Green water load breakwater
HF non-linear source Analytical Non-linear diffraction Experiments
LF indicator variable Linear waves  Linear waves + noise Hogging VBM midship Green water load breakwater ~ Relative wave elevation deck
LF indicator source Analytical Analytical Linear diffraction Coarse mesh CFD Coarse mesh CFD
Accuracy of predicted MPM compared to brute force MCS
Adaptive Screening (USMV, GPR) +0.2% -0.8% - - -
Adaptive Screening (USMV, MF-GPR) +0.0% —-0.6% —-2.9% -5.1% +6.4%
Conventional reference method -0.7% -0.7% - - -
Required LF simulation time
Adaptive Screening | 50 h 50 h 30 h 0.5 h 0.5 h
Required HF simulation time
Adaptive Screening (estimate*) 0.03-0.9 h 0.03-0.9 h 0.2-0.8 h 0.03-0.1 h 0.03-0.1 h
Conventional reference method 5h 5h - - -
Brute force HF MCS 50 h 50 h 30 h 0.5 h 0.5h
Required computational time for the total procedure
Adaptive Screening (estimate*) 1 CPUh 1.5-2 CPUh 20000 CPUh
Conventional reference method <1 CPUh - -
Brute force HF MCS <1 CPUh 26 CPUh 180000 CPUh
* Assuming HF events with a duration of 10-50 s.
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