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 A B S T R A C T

Predicting extreme values of strongly non-linear hydrodynamic responses (such as wave impact loads) is crucial 
for ensuring the safety and reliability of marine and coastal structures. However, this task is challenging due to 
the complexity and rarity of these responses. Existing methods are often limited to weakly non-linear responses 
or are very computationally expensive. This paper presents a new multi-fidelity method called ‘Adaptive 
Screening’, designed to efficiently predict extreme values of strongly non-linear wave-induced responses. These 
values are critical inputs for structural design and reliability analysis. Adaptive Screening combines elements 
of screening, multi-fidelity Gaussian Process Regression, and adaptive sampling. We validate its effectiveness 
through three applications: predicting the most probable maxima of second-order wave crests, vertical bending 
moments on a ferry, and green water impact loads on a containership. Our results demonstrate that Adaptive 
Screening outperforms conventional brute-force methods, achieving comparable accuracy in predicting extreme 
values while significantly reducing high-fidelity simulation times (especially for the most non-linear cases). Like 
many alternative methods, Adaptive Screening relies on a response-dependent low-fidelity indicator variable. 
We also show that the method performs well with realistic indicators for a range of applications. The test cases 
indicate that Adaptive Screening is very promising for the strongly non-linear responses it was designed for.
1. Introduction and objectives

1.1. Wave impacts

Impulsive ‘wave impacts’ may occur when a structure is hit by 
large and steep waves, when a floating structure experiences large 
wave-induced motions, or a combination of both. The resulting loads 
can cause significant damage, endanger crew or inhabitants, or de-
crease performance of the structure. Severe wave impact accidents are 
documented on e.g., production ships [1], a bulk carrier [2], semi-
submersibles [3,4], a drilling rig [5], cruise ships [6,7] and several 
other ships [8]. Wave impacts also affect the structural reliability of 
various coastal structures such as breakwaters (e.g., [9,10]), light-
houses (e.g., [11]), bridges (e.g., [12]), complete ports (e.g., [13]) 
and offshore wind turbines (e.g., [14]). These accidents and studies 
illustrate that it is still relevant to improve the prediction of wave im-
pact loads and their probability. In this context, we consider stochastic 
phenomena such as green water and slamming on ships, wave-in-deck 
impacts on fixed and floating offshore structures and wave impacts 
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on wind turbines, breakwaters, dams, jetty’s, bridges and other coastal 
structures. Wave impacts are strongly non-linear and Fig.  1 illustrates 
how violent such events can be. Predicting the extreme values of such 
strongly non-linear responses is therefore essential in designing safe and 
reliable structures.

1.2. Requirements for an extreme value prediction method for wave impacts

Unfortunately, obtaining extreme values for wave impact loads 
is a challenge due to their rare and complex nature. We need long 
simulations to obtain converged statistics of rare events, while at 
the same time we need high-fidelity (HF) simulations to resolve the 
complex physics. HF models here are Computational Fluid Dynamics 
(CFD) or physical experiments. CFD became very good at reproducing 
wave impact loads in a given wave event (see e.g., [16]), but full 
Monte Carlo Simulation (MCS) with such HF tools for long durations 
is presently not feasible in practical design contexts. We therefore 
need a dedicated extreme value prediction method (EVPM), that can 
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Fig. 1. Two examples of wave impacts on marine structures: a wave impacting HMS Edinburgh of the UK Royal Navy in 8 m waves on the South Atlantic (left; courtesy D. 
Rosenbaum, Royal Navy Media Archive [15], with permission) and a wave impacting a wind turbine foundation with a transition piece ∼20 m above the calm water level close 
to Fécamp during storm Ciarán on 2 Nov. 2023 (right; courtesy K. King, with permission).
reduce this computational burden. Due to the stochastic nature of ocean 
waves and wave-induced responses, their maximum values increase 
with exposure duration; the longer the duration at sea, the larger the ex-
pected maximum ship response. Consequently, wave response extremes 
are defined by a probability of exceedance (PoE) or a return period. 
Keeping this in mind, an EVPM for strongly non-linear responses like 
wave impacts must meet some criteria:

• The EVPM should be multi-fidelity, integrating elements of HF 
models for accurate response modelling, and low-fidelity (LF) 
models to handle the long simulation times required for rare event 
statistics.

• For strongly non-linear responses, only a few wave events of 
10–20 s can realistically be evaluated with a HF model in the 
design of a structure. The EVPM has to be able to cope with that.

• The wave impact complexity is mainly due to wave complexity 
(see Fig.  1; steepness, non-linearity, breaking, directionality etc.). 
Linear wave models disregard much of this complexity. To be able 
to identify critical wave events, the EVPM’s LF model therefore 
must account for some wave non-linearity.

• Peak responses are not always most relevant; rise times or im-
pulses can be more critical for structural dynamic behaviour. 
Therefore, the EVPM must consider consistent LF and HF time 
profiles, not just extreme values.

• The EVPM must be efficient and practical for use in design.

1.3. Long- and short-term statistics

Design for ‘seakeeping’ (the response of a ship to waves) often 
distinguishes long-term (over a ship’s lifetime in various sea states) and 
short-term (within single wave conditions) responses (see e.g., [17]). 
Most available methods either predict short-term extreme values in a 
given sea state (wave condition), or predict long-term extreme values 
over all sea states without properly considering short-term variability. 
Here, we focus on short-term extreme value prediction. The selection 
of sea states and their long-term statistics can be handled by the envi-
ronmental contour method [18], or by its improved versions (e.g., [19,
20]), as is widely accepted in the offshore industry (e.g., [21]). As the 
method fails to characterise the joint pdf  of the environmental variables 
in some cases [22], alternatively we could select critical sea states using 
methods such as proposed by Gramstad et al. [23].
2 
1.4. Existing methods and their shortcomings

Various existing EVPMs were reviewed in [24]. Here, we briefly 
summarise this review for the present audience, add some recent 
studies and explain why current methods are not directly applicable to 
strongly non-linear wave-induced responses. Extreme value prediction 
problems are similar to reliability problems; the latter predict structural 
failure probabilities, whereas the former predict extreme load values in-
dependently of structural response. These quantities are related by Eq. 
(1), where 𝑆 are loads, 𝑅 is the structural ‘resistance’ of the structure, 
𝑃𝑓  is its probability of failure and 𝑔𝑙 is some limit state function. 
The review below therefore covers both extreme value and reliability 
studies. 
𝑃𝑓 = 𝑃 (𝑔𝑙 ≤ 0) = 𝑃 ((𝑅 − 𝑆) ≤ 0) (1)

Design wave or response-conditioning methods (RCMs) generate 
critical wave event profiles using response transfer functions, wave 
spectra, and wave phase assumptions for extreme events. They can 
produce single profiles (e.g., [25]) or multiple profiles that account 
for random wave backgrounds (e.g., [26–28]). Most of these RCMs are 
based on the classical reliability methods FORM or SORM. RCMs meet 
several EVPM criteria from Section 1.2: they are efficient, multi-fidelity, 
event-based and consider time profiles. However, most classical RCMs 
rely on linear Gaussian waves and struggle to incorporate significant 
non-linearity, requiring complex modifications like inverse solutions 
for higher-order wave terms or the use of higher-order wave models. 
Some recent studies include wave non-linearity in an RCM by using 
a higher-order wave model [29,30]. However, they are still applied 
only to weakly non-linear responses, and they do not include efficient 
adaptive sampling techniques.

Screening methods use LF indicators (or surrogates) to select critical 
wave events for HF analysis. Ideally, the indicator’s order statistics 
closely match those of the HF response, allowing wave events to be 
ranked by their LF response (e.g., [31–35]). This approach allows 
efficient screening of sea states using MCS of the LF indicator, where 
identified critical events are then analysed using HF methods like CFD 
or experiments. van Essen and Seyffert [24] reviewed studies validating 
various LF indicators for wave impact loads. Screening methods meet 
several EVPM criteria from Section 1.2: they are multi-fidelity, event-
based, can consider time profiles and accommodate weakly non-linear 
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 𝑥 Mean of variable 𝑥 𝐹 ′
𝑥 or 𝐹 ′′

𝑥 LF or HF green water load  
 𝜎2𝑥 Variance of variable 𝑥 𝐻𝑠 Significant wave height  
 𝑥 MPM of variable 𝑥 𝐡∗ Predicted HF peak values over range 𝐝∗  
 𝐡sel HF peak values in the selected events  
 CFD Computational Fluid Dynamics 𝐥mcs All LF peak values in the MCS, decreasing order  
 CRS Cooperative Research Ships 𝐥sel Selected LF peak values, decreasing order  
 EVPM Extreme Value Prediction Method 𝑚 Number of initially selected HF samples  
 GPR Gaussian Process Regression 𝑛 Number of LF indicator peaks in the MCS  
 HF High-Fidelity 𝑛𝑤 Number of wave encounters in the MCS  
 LF Low-Fidelity 𝑁 Number of wave seeds in MCS  
 MCS Monte-Carlo Simulation 𝑃 Probability  
 MF-GPR Multi-Fidelity Gaussian Process Regression 𝑃exp PoE level corresponding to Texp and wave period 
 MPM Most Probable Maximum 𝑅 Monotonicity acceptance criterion  
 PoE Probability of Exceedance 𝑅′

𝑑𝑒𝑐𝑘 LF relative wave elevation on deck  
 RCM Response-Conditioning Method 𝑇exp Target/exposure duration (typically 20 min–3 h)  
 RWE Relative Wave Elevation 𝑇𝑝 Peak wave period  
 USMV Acquisition func. (uncertainty sampling + mean value) 𝑇𝑝,𝑒 Peak encounter wave period  
 𝑉𝑠 Ship forward speed  
 𝐶 ′ or 𝐶 ′′ LF or HF wave crest height 𝑉 ′ or 𝑉 ′′ LF or HF hogging vertical bending moment  
 𝐶20 Coefficient of variation over last 20 iterations  
 𝐝∗ New PoE prediction range for HF, increasing order 𝛾 Peak enhancement factor JONSWAP spectrum  
 𝐝sel𝐻 Est. PoE of selected HF peaks, increasing order 𝜖1 Stopping limit for 𝐸20  
 𝐝mcs𝐿 PoE of all LF peaks in the MCS, increasing order 𝜖2 Stopping limit for 𝐶20  
 𝐝sel𝐿 PoE of selected LF peaks, increasing order 𝜇 Wave heading w.r.t. structure  
 𝐸20 Max. abs. iteration difference, averaged over last 20 𝜔 Wave frequency

Box I. Most important nomenclature. 
LF models. They also seem suited for strongly non-linear responses. 
However, they are yet not very efficient and existing research has 
focused more on indicator selection than on handling extreme value 
statistics.

Sampling techniques can be used to reduce the number of required 
simulations compared to MCS. Such methods include importance sam-
pling (e.g., [36–38]), subset sampling (e.g., [39]), adaptive sampling or 
combinations (e.g., [40]). Adaptive sampling, also known as sequential 
sampling or Bayesian design of experiments, combines surrogate mod-
elling with data-driven sampling strategies that ‘learn’ where to sample 
next. Surrogates can be constructed in many different ways: using 
simple polynomial models, polynomial chaos expansion (e.g., [41,42]), 
support vector regression (e.g., [43,44]) or neural networks (e.g., [45,
46]). In particular, Gaussian Process Regression (GPR or ‘kriging’) is 
well-suited for problems with sparse data, as it provides both predic-
tions and associated uncertainty estimates. These uncertainty bands 
can be used to effectively guide sampling [47]. GPR can be applied in 
single- or multi-fidelity forms [48,49]. GPR-based adaptive sampling 
methods were applied to maritime extreme value problems by Gram-
stad et al. [23], Guth and Sapsis [50], Guth et al. [51], Tang et al. [52] 
and Abaei et al. [53] (using single-fidelity GPR) and by Guth et al. [54] 
(using multi-fidelity GPR). Acquisition functions to guide the sampling 
may target extreme values in distribution tails (e.g., [55]), and sam-
pling is typically stopped when predicted values stabilise (e.g., [56,
57]). Kim et al. [58] studied multi-fidelity sampling algorithms in the 
context of extreme ship motions. Response Surface Methods (RSM) for 
reliability problems are similar: they adaptively update a ‘response 
surface function’ (a surrogate for limit state function 𝑔𝑙 in Eq.  (1)). 
Again, this can be a polynomial (e.g., [59–61]), but this can lead to 
errors for strongly non-linear systems. GPR (e.g., [62,63]) or neural 
networks (e.g., [46,64,65]) can offer better accuracy. Marrel and Iooss 
[66,67] discuss ways to optimise GPR surrogates in the context of 
reliability problems. Adaptive sampling methods with GPR meet many 
EVPM criteria from Section 1.2: they are efficient, can be multi-fidelity, 
3 
can handle weakly non-linear models and some examples consider time 
profiles. However, their elements and implementation are very case-
specific, and none of the examples satisfies all requirements. They have 
yet to be applied to strongly non-linear wave-induced responses.

Due to the mentioned EVPM limitations for strongly non-linear 
responses, maritime designers typically follow established classification 
society guidelines. Organisations like maritime classification societies 
and the International Towing Tank Conference (ITTC) traditionally 
recommend physical experiments using several 0.5 to 3-h wave seeds 
for direct assessment of short-term extreme response values. We call 
this the ‘conventional’ industry approach, with guidelines summarised 
in Appendix  D.

1.5. Paper objectives & novelty

As discussed above, we need a new EVPM for wave impacts (and 
other strongly non-linear wave-induced responses), because available 
methods are not suitable, efficient, and accurate enough, and accidents 
related to wave impacts still happen. The objectives of this paper are 
therefore to:

1. Introduce a new EVPM for strongly non-linear responses that 
complies with the requirements in Section 1.2.

2. Show that the method can accurately and efficiently predict 
extreme values for a range of realistic applications.

To this end, we introduce a novel method called Adaptive Screening. 
The method combines elements from screening, multi-fidelity GPR, and 
adaptive sampling, considering the requirements in Section 1.2. A pilot 
study for the new approach was presented in [68]; several important 
improvements have since been implemented.

In theory, Adaptive Screening can predict both long- and short-term 
extreme values, but our focus here is on the short term. Specifically, we 
predict the short-term most probable maximum (MPM) value, which 
represents the likeliest extreme within a given exposure duration. We 
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Fig. 2. Some of the possible ‘statistical levels’ where multi-fidelity methods can derive or learn the relation between a LF indicator (black) and HF non-linear response (red). 
Typical examples, the overview is not exhaustive.
assume that critical sea states were already selected beforehand with 
one of the methods discussed in Section 1.3 or Adaptive Screening with 
lower fidelity levels. Using MPM for design is common in maritime en-
gineering (e.g., [69–71]). We also (qualitatively) evaluate the predicted 
distributions over a larger range of values than only the MPM to make 
sure that the MPM prediction is solid and converged.

To demonstrate the effectiveness of Adaptive Screening, we present 
three applications: (1) a weakly non-linear case predicting second-
order wave crest extremes, (2) an intermediate case predicting extreme 
vertical bending moments on a ferry, and (3) a strongly non-linear case 
predicting green water impact loads on a containership. The complexity 
of the cases builds up. Case 1 is weakly non-linear: we consider only 
waves and the LF and HF data are the same variable. Case 2 is more 
non-linear and complex: we consider wave-induced responses, but the 
LF and HF data are still the same variable. Finally, case 3 is strongly 
non-linear and complex: we consider wave-induced responses and the 
LF and HF data are different variables. Case 3 therefore covers the 
complexity of the original problem the method was designed for (wave 
impact loads). The first two applications allow for method tuning and 
validation, while the third demonstrate the method’s capability with 
strongly non-linear responses. Especially cases 2 and 3 illustrate real 
challenges designers face when developing safe and reliable structures 
exposed to waves. Both are maritime examples, but case 2 is represen-
tative for assessment of bending moments on any floating structure, 
and case 3 is representative for wave impact load assessment on any 
fixed or floating structure (breakwaters, bridges, wind turbines, etc.). 
Such assessments form an important element of the reliability analysis 
of these structures; they provide input for 𝑆 in Eq.  (1).

The novelty of Adaptive Screening lies in its specific design for 
strongly non-linear rare responses. It combines adaptive sampling with 
GPR applied directly to the distribution shape (to target the tail of the 
distribution) and with screening elements that allow for (weakly) non-
linear low-fidelity tools. Another novelty of the present study is that 
we validate the EVPM a.o. with high-fidelity experimental wave impact 
data - a relevant case study for design and reliability of structures 
exposed to severe waves.

The method is introduced in Section 2, with applications in Sections 
3 to 5, and final discussion and conclusions in Section 6.

2. New method: Adaptive screening

Multi-fidelity methods learn relationships between LF and HF re-
sponses at different ‘statistical levels’, as shown in Fig.  2. Methods that 
generate critical wave events, like RCM or some adaptive sampling 
implementations (e.g., [50,51,54]) are positioned on the left, where 
relationships retain detailed wave event data. Screening methods or 
approaches that select events from databases (e.g., [23] at a sea state- 
instead of event-level) are on the right, simplifying the problem to 
single-variate regression and reducing HF data requirements. E.g., [51] 
shows that efficient application of GPR to full wave event time traces 
requires a reduction of the number of input wave components, which 
can lead to underestimated response distribution tails. We therefore 
developed Adaptive Screening at the ‘level’ of cumulative distributions. 
We use (multi-fidelity) GPR to construct a surrogate for the HF ex-
ceedance probability distribution, combined with adaptive selection of 
4 
new HF samples guided by the screening analysis. GPR was chosen over 
e.g., polynomial regression and neural networks because it (a) is effi-
cient with limited data and (b) provides uncertainty bands that guide 
adaptive sampling. Additionally, GPR is very fast with limited numbers 
of samples. We first present the steps and detailed formulations of 
Adaptive Screening, after which we discuss the utilised assumptions 
and implementation.

2.1. Steps

A schematic overview of Adaptive Screening is provided in Fig.  3, 
and the method involves the steps described below. The numbers in the 
figure roughly correspond to these steps. Box  I includes most notations 
used below.

Step 1 Define a LF indicator with a strong statistical relation to the 
target HF response, as would be done in a screening method. 
The indicator signal is not necessarily the same signal at a 
different fidelity level as the target HF response; it can also 
be another signal with similar order statistics as the target HF 
response. An ideal LF indicator has identical order statistics 
as the target HF non-linear response, where the highest LF 
indicator value appears in the same wave event as the highest 
HF non-linear response value, and so on. See [24] for a review 
of suitable wave impact indicators.

Step 2 Perform LF Monte-Carlo Simulations (MCS) for a large num-
ber 𝑁 of wave seeds, each with the same exposure duration 
𝑇exp. This exposure duration is the duration for which you 
want to obtain the extreme value of the response in a single 
sea state. This is generally the duration for which the hy-
drodynamic response is expected to remain ergodic (roughly 
15 min to 3 h, depending on wave ergodicity, speed and 
course changes, etc.). The total MCS should be significantly 
longer than 𝑇exp to obtain converged extreme values. See [72,
73] for an example of the required 𝑁 for wave crests, green 
water impact forces and wave-in-deck impact forces. The 
total MCS duration 𝑇tot follows from 𝑇tot = 𝑁𝑇exp.

Step 3 Identify all 𝑛 LF indicator peaks in the full MCS duration 𝑇tot. 
This can be done in different ways; here we use peak-over-
threshold crossings. Also find the number of zero up-crossing 
encountered wave crests 𝑛𝑤 within 𝑇tot, which can be es-
timated from Eq.  (2) if there is no explicit wave record 
available. Here, 𝑇𝑝,𝑒 is the peak wave encounter period, which 
is different from the peak wave period 𝑇𝑝 if the (ship) re-
sponse has forward speed. They are related using the absolute 
wave frequency 𝜔 = 2𝜋∕𝑇  and Eq.  (3), where 𝜔𝑒 is the wave 
encounter frequency, 𝑉𝑠 is the forward speed of the ship and 𝜇
is the wave heading with respect to the ship (𝜋 is head waves 
in the sign convention). 𝑛𝑤 is the basis for all distributions 
presented from here on, which enables us to use combinations 
of LF indicators and HF responses with a different number of 
peaks. 

(2)
𝑛𝑤 ≊ 𝑁𝑇exp∕𝑇𝑝,𝑒
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Fig. 3. Schematic illustration of the new Adaptive Screening method. The numbers in this figure roughly correspond to the method steps in Section 2.1. The left plot only shows 
a small part of the MCS time traces, and only a few HF samples are included in the middle and right distributions to illustrate the principle.
𝜔𝑒 = 𝜔 − 𝜔2𝑉𝑠𝑐𝑜𝑠(𝜇)∕𝑔 (3)

Step 4 Calculate the LF probability of exceedance (PoE) for all in-
dicator peaks 𝐝mcs𝐿 = {𝑑mcs𝐿,𝑖 |𝑖 = 1, 2,… , 𝑛}, related to the 
number of wave encounters, by applying Eq.  (4). The largest 
LF indicator peak value has a PoE of 1∕𝑛𝑤 and the smallest 
𝑛∕𝑛𝑤. We now have a LF indicator peak PoE distribution 
dataset [𝐝mcs𝐿 , 𝐥mcs

]

, where 𝐥mcs contains all indicator peak 
values, in descending order corresponding to the ascending 
PoE values in 𝐝mcs𝐿 . 
𝐝mcs𝐿 = 𝑃 (𝐥mcs ≥ 𝑙) ⋅ 𝑛

𝑛𝑤
(4)

Step 5 Select initial samples from the LF MCS dataset of the previ-
ous step. The selected set is called [𝐝sel𝐿 , 𝐥sel

]

, where 𝐝sel𝐿 =
{𝑑mcs𝐿,𝑘 |𝑘 = 1, 2,… , 𝑚} and 𝐥sel = {𝑙mcs𝑘 |𝑘 = 1, 2,… , 𝑚}. Different 
sampling strategies can be used to determine these indices 𝑘. 
Here we select these events around the PoE corresponding to 
𝑇exp based on the LF MCS dataset: the ‘probability of interest’. 
This 𝑃exp is given in Eq.  (5). We pick 𝑚 PoE values that span 
a range around 𝑃exp and call them [𝑝1, 𝑝2,… , 𝑝𝑚]. Now we use 
Eq.  (6) to add the elements in 𝐝mcs𝐿  closest to these values to 
the selected set, and the corresponding elements from 𝐥mcs. 
The resulting selected set [𝐝sel𝐿 , 𝐥sel

] is a subset of the full 
available LF MCS set [𝐝mcs𝐿 , 𝐥mcs

]

. Note that selecting samples 
around 𝑃exp is also used in alternative RCM’s such as those 
by Torhaug et al. [27] and Dietz [74]. 
𝑃exp = 𝑁∕𝑛𝑤 ≊ 𝑇𝑝,𝑒∕𝑇exp (5)

𝑑mcs𝐿,𝑘 =

[

arg min
𝑑∈𝐝mcs𝐿

|𝑝𝑘 − 𝑑|

]

for 𝑘 = 1, 2,… , 𝑚 (6)

Step 6 Find the corresponding HF response for the wave events 
corresponding to [𝐝sel𝐿 , 𝐥sel

]

, by running CFD calculations or 
experiments for these selected events. This new dataset of HF 
samples is called 𝐡sel = {ℎ𝑘|𝑘 = 1, 2,… , 𝑚}, here ℎ𝑘 is the HF 
non-linear response value maximum for event 𝑘.

Step 7 Estimate the sample HF distribution. This is done by assuming 
that the order statistics of 𝐥sel and 𝐡sel are identical. In other 
words, we assume that HF value ℎ𝑘 in event 𝑘 from Step 6 
is equally likely as the selected LF value 𝑙mcs𝑘  in the same 
event from Step 5. This is a critical screening assumption, 
stating that the HF distribution [𝐝sel𝐻 ,𝐡sel] can be estimated 
using 𝐝sel𝐻 ≈ 𝐝sel𝐿 . This only works if a suitable indicator signal 
is chosen in Step 1.
5 
Step 8 Define a range of PoE between 1 and 0 where you want 
to estimate the HF distribution 𝐡∗. We select this prediction 
range 𝐝∗ between approximately a factor ten below and above 
𝑃exp, defined in high to low PoE order.

Step 9 Construct the surrogate HF distribution over ln (𝐝∗). We use 
the logarithm to construct a surrogate that focuses on the tail 
of the HF distribution. The estimated HF distribution from 
Step 7 only contains a few samples. We apply 1D single- or 
multi-fidelity GPR to the available samples to construct the 
surrogate HF distribution 𝐡∗ (including uncertainty) over this 
range.

• With single-fidelity GPR, we use the HF sample dataset 
[ln (𝐝sel𝐻 ),𝐡sel] from Step 7 as input. The utilised GPR 
formulations are in Appendix  B.1.

• With multi-fidelity MF-GPR, we use the same HF sam-
ple dataset [ln (𝐝sel𝐻 ),𝐡sel] from Step 7 as input, and
LF dataset [ln (𝐝mcs𝐿 ), 𝐥mcs

] from Step 3. We used the 
linear autoregressive (AR1) multi-fidelity model with 
two levels [49]. The utilised MF-GPR formulations are 
in Appendix  B.2.

For GPR and both parts of MF-GPR we used the Matern32 
kernel; details can also be found in Appendix  B. As it will not 
be possible to define a perfect indicator for most non-linear 
response problems, the HF sample data set [ln (𝐝sel𝐻 ),𝐡sel] will 
be ‘noisy’. To avoid overfitting, we constrained the noise 
variance in both GPR and MF-GPR with a lower limit. For 
the same reason, and to help ensure a monotonic distribution, 
we also constrained the length-scale hyperparameter of all 
kernels with a lower limit. Both constraints are explained in 
detail in Appendix  B.3. The result of the (MF-)GPR procedure 
is the HF prediction [ln (𝐝∗),𝐡∗]. To avoid confusion, we 
emphasise that the regression model is linear and Gaussian, 
not the underlying HF process itself. We still predict extreme 
values of strongly non-linear responses.

Step 10 Estimate the target short-term extreme value from the (MF-) 
GPR prediction. As explained in Section 1.5, our target is the 
HF MPM value 𝐻̂ , found using Eq.  (7). The uncertainty of the 
MPM can be derived from the predicted uncertainty band by 
GPR in the same way. This is illustrated by the horizontal line 
in the right inset of Fig.  3. 

𝐝∗(𝐻̂) = 𝑃exp,  therefore: 𝐻̂ = 𝐝∗−1(𝑃exp) (7)
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Step 11 Start the adaptive sampling procedure, iterating over Step 5 
to Step 11. In each iteration, an acquisition function is applied 
to define a new sample, unless convergence is reached. As we 
already guided the prediction in steps Step 8 (by choosing a 
prediction range) and Step 9 (by focusing on the tail of the 
distribution using the logarithm of PoE), we selected an adap-
tive strategy focusing on exploration rather than exploitation 
(see e.g., [47]). The new samples are selected from [𝐝mcs𝐿 , 𝐥mcs

]

defined in Step 4, without replacement. The required formu-
lations are discussed in Section 2.2 (acquisition function) and 
Section 2.3 (stopping criterion). When a new HF sample is 
defined as discussed there, it is added to the LF selected set 
[

𝐝sel𝐿 , 𝐥sel
] in Step 5, after which Step 6 to Step 11 are repeated.

Step 12 When convergence is reached according to the criterion in 
Section 2.3, the result is the converged prediction for the HF 
distribution 𝐡∗ over prediction range 𝐝∗, the associated MPM 
value 𝐻̂ , and the MPM uncertainty.

The steps of Adaptive Screening are presented in general terms, 
making the method adaptable to any strongly non-linear response with 
a suitable indicator. Step 1 to Step 6 focus on screening, Step 9 on 
GPR and Step 11 on adaptive sampling. A key advantage of the new 
method is that integrating (MF-)GPR with screening enables efficient 
generation of new HF samples at targeted low PoE values, avoiding the 
need for extensive HF simulations. This would not be possible with GPR 
alone. This adaptation makes Adaptive Screening especially effective 
for strongly non-linear responses. Using MF-GPR instead of GPR is 
expected to boost efficiency since MF-GPR leverages LF statistics both 
in event selection (Step 5) and prediction (Step 9).

To apply this general method, several choices must be made: the 
indicator variable and its calculation tool in Step 1, the MCS length 
in Step 2, the event definition method in Step 3, the selection of 
initial critical events in Step 5, the HF tool and initialisation of this 
tool based on the LF wave event in Step 6, the type of GPR and its 
settings in Step 9, the target extreme value in Step 10, the acquisition 
function, number of samples per iteration, and stopping criterion in 
Step 11. The following sections outline broadly applicable options for 
the acquisition function and stopping criterion, along with guidance 
on initialising critical events in the HF tool. A detailed explanation of 
problem-dependent choices for three case studies will be provided in 
Sections 3 to 5.

The MPM in Step 10 corresponds to the 𝑞 = 0.368 quantile of the 
short-term distribution for linear Gaussian signals [75]. The offshore 
industry often prefers higher quantiles for design. We can estimate 
these by replacing 𝑃exp in Eq.  (7) with 𝑃𝑞 = 1 − 𝑞𝑚∕𝑛 [76]. However, 
this necessitates an even longer LF MCS to achieve converged results. 
Further research is needed to evaluate the applicability of the method 
for higher quantiles.

A challenging aspect of screening-based methods is initialising HF 
events in Step 6. We use LF linear or weakly non-linear wave events as 
input for HF calculations, raising the question of how to define equiva-
lent HF wave input conditions. Potential solutions include the event 
matching procedures by Johannessen and Lande [77] and Gramstad 
et al. [78] or using coarse mesh CFD as a LF tool, as demonstrated 
by van Essen et al. [35]. These approaches require further investigation, 
which is beyond the scope of this paper.

2.2. Adaptive sampling

Since HF event calculations are costly for strongly non-linear re-
sponses, the acquisition function in Step 11 should minimise the num-
ber of required HF samples. We define an acquisition function that 
selects one new HF sample per iteration, even when used with MF-
GPR. Combining the notation from Section 2.1 and Appendix  B, we 
denote the mean HF prediction for the current iteration as 𝐡∗ and its 
predicted variance as 𝝈2 . Below, 𝑝usmv represents the optimal PoE for 
ℎ∗ new

6 
adding a new sample to 𝐝sel𝐿  in Step 5. Insights from the pilot study with 
fixed samples [68] were used to design our acquisition function, named 
‘USMV’, as defined in Eq.  (8). This function balances selecting the 
best new sample with the highest predicted variance from the previous 
iteration (Uncertainty Sampling) while guiding the sample toward the 
PoE level with the largest mean value from the same iteration. The 
function tends to favour HF values in the distribution’s tail. As said, 
𝑝usmvnew  would be the best new sample value to add to 𝐝sel𝐿  in Step 5. 
However, in Adaptive Screening, we select the next sample from the 
available LF MCS sample pool of Step 4. We therefore always select the 
sample from 𝐝mcs𝐿  with the closest value, without replacement (see Eq. 
(9)). The new sample 𝑑mcs𝐿,new is added to the existing LF pool [𝐝sel𝐿 , 𝐥sel

]

in Step 5. 
𝑝usmvnew = argmax

[

𝝈2
ℎ∗ ⋅ 𝐡∗

]

(8)

𝑑mcs𝐿,new =

[

arg min
𝑑∈𝐝mcs𝐿

|𝑝usmvnew − 𝑑|

]

(9)

2.3. Stopping criterion

We further limit the number of HF samples via the stopping crite-
rion. Such a criterion can be based on practical considerations (avail-
able time or computational resources), comparison with a target out-
come, the relative improvement of results across iterations (e.g., [47]) 
or on all predicted outcomes for the next iteration (e.g., [56]). Since 
a fully converged Adaptive Screening prediction cannot achieve 100% 
accuracy due to the imperfect indicator, we chose to stop when the 
predicted PoE distributions no longer show significant changes. This 
criterion consists of three parts. The first part checks whether the 
predicted distribution is a proper PoE distribution. The second part 
sets a limit for the maximum absolute difference between each set of 
subsequently predicted distributions. Because this difference may be far 
from 𝑃exp, a third convergence criterion was based on the coefficient of 
variation (COV) of the MPM value over the last iterations. The complete 
formulations for this stopping criterion are detailed in Appendix  C.1.

2.4. Assumptions

The key assumption in our screening method is the similarity be-
tween the order statistics of the LF indicator and the HF response in 
Step 7. The validity of this assumption hinges on the chosen indicator; a 
poor indicator can significantly reduce result accuracy. Most alternative 
methods, such as RCM and other screening techniques discussed in 
Section 1.4, rely on similar assumptions. van Essen and Seyffert [24] 
review suitable indicators for wave impact loads. Another critical as-
sumption in Step 6 is that the HF tool accurately calculates the true HF 
event response. Previous studies have shown that CFD can effectively 
predict wave impact loads if wave kinematics and ship motions are 
modelled well (see e.g., [16,79,80]). Additionally, van Essen et al. [35] 
demonstrated that screening results could serve as effective inputs for 
such calculations. In Step 9, GPR also assumes a degree of surrogate 
smoothness, which is reasonable for a PoE distribution. MF-GPR further 
assumes that the LF and HF distribution shapes are similar, reinforcing 
the screening assumption. The utilised GPR formulations assume ho-
moscedastic noise, meaning noise is uniform across 𝐝∗ from Step 8. The 
HF ‘noise’ in Adaptive Screening comes from two sources: the stochastic 
(aleatoric) variability of the HF response, and the LF indicator quality. 
A bad indicator leads to increased scatter in HF samples. While both 
noise sources are likely heteroscedastic in reality, with increasing noise 
levels for higher response values (see [72,73]), restricting 𝐝∗ to a 
small range around 𝑃exp allows for a reasonable assumption of uniform 
noise distribution. This also enhances method efficiency by potentially 
reducing the number of HF points needed for convergence. Finally, we 
assume that the monotonicity criterion in Eq.  (31) combined with the 
definition of 𝐝∗ between 1 and 0 ensures the prediction of a proper 
exceedance probability distribution.



S.M. van Essen and H.C. Seyffert Reliability Engineering and System Safety 264 (2025) 111404 
2.5. Implementation

We used Python toolboxes GPy ([81], v1.10.0) and Emukit ([82], 
v0.4.9) to define and optimise the (MF-)GPR formulations. The stan-
dard Emukit structure was used to combine adaptive sampling with 
GPR. This was not straightforward for MF-GPR. Adaptive sampling with 
MF-GPR was therefore achieved by creating a new surrogate ‘mock’ 
GPR prediction in each iteration, trained on the MF-GPR predictions 
and their variances.1 The acquisition function was then applied to 
this mock GPR prediction to choose a new point. Afterward, MF-GPR 
was applied again to the updated training set in each iteration. The 
acquisition function and stopping criteria were newly implemented. All 
scripts are available in the 4TU repository: van Essen and Seyffert [83].

3. Application 1: second-order wave crest heights

In application 1 we predict extreme values of second-order wave 
crest heights. This can be seen as a weakly non-linear HF ‘response’. The 
goal was to predict the HF one-hour MPM value, so 𝑇exp = 3600 s. The 
test case used a long-crested JONSWAP wave spectrum with 𝐻𝑠 = 10 m, 
𝑇𝑝 = 11 s, 𝛾 = 3.3. With 𝑠 = 2𝜋𝐻𝑠∕(𝑔𝑇 2

𝑝 ) = 0.053, the waves were 
relatively steep, and the water depth was set to 30 m to enhance 
second-order effects. The HF response was a second-order wave, and 
the LF indicator a linear Gaussian wave with or without noise. To keep 
the root-mean-square error of the one-hour MPM wave crest height 
within 3% of 𝐻𝑠, a minimum of 8–22 one-hour wave seeds (random 
realisations) is required in a MCS according to van Essen et al. [72] 
and Scharnke et al. [73]. To be conservative, we used 50 one-hour 
seeds (so 𝑁 = 50 and total duration 𝑇tot = 50 hours). We define 
𝐶 ′ as the LF wave crest height, 𝐶 ′′ as the HF wave crest height, 
and 𝐶 ′′ as its one-hour MPM value. For this test case, we selected 
an analytically traceable HF response, allowing easy generation of 
long HF ground truth time traces and avoiding the need for CFD 
simulations for Step 6 of Adaptive Screening. This approach enabled us 
to validate the Adaptive Screening framework without introducing CFD 
calculation accuracy concerns. Sections 3.1 and 3.2 describe the HF and 
LF data sources, while Section 3.3 explains adaptive sampling for this 
application. For comparison, the conventional industry method for this 
application is described in Section 3.4. Results and computational time 
are discussed in Sections 3.5 and 3.6.

The probability of interest 𝑃exp = 3.06 × 10−3 for this application 
follows from Eqs.  (2) and (5), where 𝑛𝑤 ≊ 1.64×104 is the approximate 
number of wave crests in the 50-h MCS at zero forward speed (so 
𝑇𝑝,𝑒 = 𝑇𝑝).

3.1. High-fidelity data

We generated second-order wave elevation time traces analytically 
using Python toolbox PySeaWave from the Cooperative Research Ships 
(CRS), based on Sharma and Dean [84], the random phase method and 
a frequency bandwidth of 0–5 rad/s for second-order interactions. The 
zero up-crossing wave crests in these traces were used as HF data. To 
confirm convergence of the one-hour MPM, we generated 10 random 
50-h realisations. The true HF one-hour MPM for the chosen 50-h 
realisation was 10.56 m, with a mean of 10.55 m across the realisations 
and U95% uncertainty of 0.10 m.

1 Similar as all other GPRs in the present study, the mock GPR used a 
Matern32 kernel, and restricted Gaussian noise between 0.5–1.5 times the 
variance of the input data after subtracting a linear trend.
7 
3.2. Low-fidelity indicator data

The basic LF indicator, ‘GoodInd’, was derived from linear wave 
time traces that deterministically correspond to the second-order waves 
described above. The true LF and HF zero up-crossing peak PoE distri-
butions for the 50-h MCS are shown in Fig.  15(a) in Appendix  E. This 
LF GoodInd distribution followed from Step 3 of Adaptive Screening, 
and the HF distribution was generated similarly. The HF results across 
ten 50-h realisations show that the one-hour MPM (at 𝑃exp) is well-
converged. The LF distribution matches the linear Rayleigh distribu-
tion, and the HF distribution the second-order distribution of Forristall 
[85],2 confirming correct MCS setup. Linear wave crests are a good 
indicator to predict the occurrence of second-order wave crests. In 
a more non-linear response problem, the order statistics of the LF 
indicator and HF response are expected to be less similar (see e.g., [32,
33,35]). To account for this, we defined a second, noisier LF indicator 
called ‘WorseInd’. The extra noise was created by adding a secondary 
JONSWAP wave system with random, independent phases and 𝐻𝑠 =
2.0 m, 𝑇𝑝 = 14.0 s and 𝛾 = 1.0 to the GoodInd signal. This additional 
wave system introduces extra differences in the order statistics of LF 
and HF peaks. In summary: 𝐶 ′

𝑔𝑜𝑜𝑑 is an LF indicator consisting of linear 
wave crests and 𝐶 ′

𝑤𝑜𝑟𝑠𝑒 is an LF indicator consisting of wave crests in 
the linear waves plus the additional noise waves.

To assess indicator quality, LF and HF crests were time-matched by 
identifying LF zero up-crossing crests and locating the corresponding 
HF maximum within each LF interval. This approach allows LF and HF 
crests to be matched even when they are slightly shifted in time. Fig. 
16(a) (left) in Appendix  E shows a scatter plot for GoodInd, where LF 
and HF crest statistics closely align, though not perfectly. In the more 
non-linear case WorseInd (right in the same plot), there is more scatter, 
reflecting differences in LF and HF order statistics. These originate 
not from measurement errors, but from model differences. The noise 
indicates a less effective indicator. We aimed to define representative 
indicators for real non-linear response problems in waves and the 
available indicators. To quantify this, we used the average ‘screening 
quality index’ (𝑆𝑄𝐼𝑚𝑒𝑎𝑛) from [35], where a value of one is ideal, and 
higher values indicate more LF samples are needed to predict true 
HF values. A short explanation and interpretation of this variable can 
be found in Appendix  A. For GoodInd, 𝑆𝑄𝐼𝑚𝑒𝑎𝑛 = 1.6; for WorseInd 
𝑆𝑄𝐼𝑚𝑒𝑎𝑛 = 3.1, showing the expected decrease in indicator quality with 
added noise. Still, the order statistics of these indicator/response pairs 
are relatively similar compared to actual cases; van Essen et al. [35] 
found SQI values around 10 with the best indicators for green water 
loads.

3.3. Adaptive sampling

We chose two PoE levels in the initial sampling for Step 5 of 
Adaptive Screening, 0.001 and 0.01 (𝑚 = 2), positioned around 𝑃exp
defined in Section 3.2. The prediction range 𝐝∗ in Step 8 was selected 
between 5× 10−4 and 2× 10−2 in 200 uniform steps, containing 450 HF 
events. To generate a ‘new’ HF sample in each iteration, we matched 
LF and HF peaks as described in Section 3.2. When an event was 
selected based on its LF indicator value (in Step 5 or Step 11), the 
corresponding HF value was drawn from the matched LF-HF peaks. This 
is only possible because we have an analytically traceable HF variable; 
in reality, each iteration would require a new HF event calculation.

To monitor convergence, we set stopping criteria limits for 𝑆(𝑗)
in Eq.  (34): 𝜖1 = 0.05 m for the maximum absolute wave crest 
distribution difference, and 𝜖2 = 0.003 for the coefficient of variation 
of the one-hour MPM value (standard deviation 0.3% of mean). In 

2 We used mean wave period 𝑇1 = 𝑇𝑝∕1.198 for JONSWAP to obtain the 
reference Forristall distribution.
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Fig. 4. Flow chart of application 1: Adaptive Screening, reference conventional method and HF Monte-Carlo simulation for validation. The area of the red blocks approximately 
indicates the simulation length.
real applications, less stringent criteria may suffice if reducing HF 
calculations is the main priority.

As explained in Section 2.2, each iteration picks a new event from 
the existing LF MCS pool based on the acquisition function applied over 
𝐝∗, without replacement. The theoretical new best point at PoE 𝑝usmvnew  is 
therefore always within this range. However, the closest available PoE 
level in the (remaining) pool may be slightly outside this range. This is 
acceptable, as it still improves prediction accuracy within the range.

For MF-GPR, we also need the LF distribution as input. As explained 
in Appendix  B.2, we used a subset of the full LF MCS samples in MF-
GPR. This was done by applying a ‘translated’ three-parameter Weibull 
fit (see e.g., [17,69,86–89]) to the top 50% of LF samples, using Eq. 
(10). We then derived a subset of 50 equally spaced LF samples for 
MF-GPR from this fit. 

𝑃 (𝑋 ≥ 𝑥) = exp
(

−
(𝑥 − 𝜃

𝛼

)𝛽)

(10)

3.4. Reference conventional industry method

We also applied a version of the ‘conventional’ industry method, 
described in Section 1.4 to application 1. Implementation details and 
results are discussed in Appendix  D, for three versions of the conven-
tional method (3, 5 or 7 seeds per sea state). In the following section, 
the 5-seed conventional results are compared to the full HF MCS and 
Adaptive Screening outcomes. Fig.  4 provides an overview of the three 
methods used to determine the one-hour MPM for application 1, with 
block sizes illustrating the relative duration of simulations, highlighting 
Adaptive Screening’s efficiency in minimising HF simulation time (red 
blocks).

3.5. Results

We first checked the suitability of the selected stopping criteria 
(Sections 2.3 and 3.3) for application 1. Appendix  C.2 shows that the 
criteria indeed seem appropriate. Fig.  5 shows the fully converged 
predicted MPM and its U95% for both indicators, two GPR versions and 
acquisition function USMV. It includes annotations with the accuracy 
of the mean predictions at convergence. For reference, the prediction 
accuracy after only 10 HF samples (8 iterations plus 2 initial samples) 
is also indicated.

The predicted final distributions are plotted in Fig.  6. They look 
very similar to the HF ground truth, for most of the prediction range 
and especially around 𝑃exp. This is confirmed by Fig.  5; the HF one-
hour MPM values are predicted with a deviation between −0.8% and 
8 
+0.2% from the true MCS result at convergence. This accuracy is in the 
same range as the reference conventional method, which has a −0.7% 
deviation from the ground truth (see Appendix  D). The uncertainties of 
these predictions are the same range as well (U95% of 0.6 m from the 
conventional method, compared to the shaded area in Fig.  5), although 
slightly higher with Adaptive Screening and the WorseInd indicator.

It was expected that Adaptive Screening with MF-GPR may converge 
quicker than with GPR, as this also leverages the LF distribution shape. 
The results show that the MF-GPR version indeed converges quicker for 
both cases (with fewer HF samples), and Fig.  6 shows that the predicted 
distributions from MF-GPR are also closer to the true distributions 
than from GPR. There seems to be a benefit in using MF-GPR over 
GPR especially for lower numbers of HF samples (as also observed in 
e.g., [54]).

Comparison of the GoodInd and WorseInd indicators shows that 
neither the accuracy of the distribution shape nor that of the MPM 
value is significantly affected by the quality of the indicator. However, 
the number of required samples to reach this result does increase 
with decreasing indicator quality. Adaptive Screening was run until 
convergence, meaning that differences will be visible in the number 
of required HF samples and in the uncertainty instead of the mean 
accuracy. The higher 𝑆𝑄𝐼𝑚𝑒𝑎𝑛, the more HF samples are required for 
convergence and the larger the uncertainty of the predicted MPM. This 
is logical, as the reduced indicator quality introduces noise in the HF 
results, which is directly translated to uncertainty in the GPR output.

3.6. Computational time

Even more than accuracy, efficiency is the foreseen advantage of 
Adaptive Screening over the conventional method. To quantify this, 
we need to translate the required number of HF events to simulation 
time. As noted in Section 2.4, prior studies have demonstrated the 
ability of HF CFD to replicate wave impact loads accurately when wave 
and ship motion data from experiments are reproduced accurately. 
Simulation times in these studies vary, with durations of 4𝑇𝑝 [78], 
50 s [90], 35 s [79], ∼20 s [16], or even as short as 3 s [80]. When the 
initialisation for CFD events is obtained from a LF tool, it was shown 
that this can be done with 52 s [51] or 12 s [35]. A short duration can 
suffice if fully non-linear wave event kinematics close to the structure 
can be obtained from the LF tool, whereas a longer duration may be 
required if the waves need to be initialised from linear wave elevation 
and/or further from the structure.

Assuming 10–50 s of HF simulation per event, we can estimate the 
total simulation time for convergence. The required 10–62 HF events 
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Fig. 5. Convergence of one-hour HF MPM and its uncertainty from Adaptive Screening with GPR or MF-GPR, for both indicators in application 1. Annotations indicate the mean 
prediction accuracy compared to the true MCS result.
(a) Indicator GoodInd, using GPR. (b) Indicator WorseInd, using GPR.

(c) Indicator GoodInd, using MF-GPR. (d) Indicator WorseInd, using MF-GPR. 

Fig. 6. Converged distributions for application 1 for both indicators, from Adaptive Screening with GPR or MF-GPR, acquisition function USMV and the defined stopping criterion.
with Adaptive Screening thus translates to 0.03–0.9 h of HF simulation 
per sea state. In comparison, the conventional method requires 5 h 
per sea state (∼10 times more), and a full HF Monte Carlo simulation 
(MCS) takes around 50 h (∼100 times more). Thus, Adaptive Screening 
achieves accurate results far more efficiently, even with strict conver-
gence criteria - and could converge even faster with relaxed criteria. 
Fig.  5 indicates that with only 10 HF samples, the deviation can be 
<2.2%, significantly reducing HF simulation time. Adaptive Screening 
also requires a 50 h LF MCS, which can be quick for an analytical 
indicator (as used here) or with linear potential flow. Additionally, 
each iteration requires a (MF-)GPR prediction. These are simulation 
times, not CPU times. CPU time depends heavily on the tools used for 
LF and HF simulations, where the LF simulations should be cheaper. 
9 
For this application, the total computational cost (LF simulations, HF 
event calculations and iterative Adaptive Screening procedure) was ∼ 1
CPU hour (CPUh), primarily driven by the iterative procedure. As the 
problem is analytically traceable, this is not necessarily shorter than 
with the reference method or brute force MCS. However, for more 
non-linear problems, the HF simulations are more computationally 
intensive, to the advantage of Adaptive Screening (see also Table  1).

4. Application 2: vertical bending moment on a ferry

Application 1 examined waves only, whereas Adaptive Screening 
was designed for hydrodynamic responses to waves. Thus, application 
2 explores the moderately non-linear problem of predicting vertical 
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bending moments (VBM) on the 190 m MARIN ferry 2 [91]. We 
predicted the HF 30 min MPM value (so 𝑇exp = 1800 s) of hogging VBM 
midships, using a sign convention where hogging peaks are identical 
to VBM troughs. The loading condition matched that in [72]. We 
selected an extreme irregular head wave condition, with a JONSWAP 
spectrum, 𝐻𝑠 = 13.2 m, 𝑇𝑝 = 10.0 s, 𝛾 = 3.0, at a forward speed of 10 
knots (5.14 m/s). This extreme sea state (in reality with heavy wave 
breaking) was selected to make the test case similar to that described 
in [50,54]. Although our ship shape, and LF / HF tools differ, the 
wave and response conditions align, allowing us to obtain an idea of 
Adaptive Screening’s performance compared to the alternative method 
in [50]. The HF response is non-linear VBM (𝑉 ′′), and the LF indicator 
is linear VBM (𝑉 ′). Unlike in application 1, this HF response is not 
analytically traceable, but long-duration non-linear simulations were 
feasible. We selected a total MCS duration of 30 h. By performing 
LF and HF simulations for the same wave realisations and selecting 
HF samples from the existing HF simulations, we could again validate 
the probabilistic framework. Here we use Adaptive Screening only 
in combination with MF-GPR, as this worked best in application 1. 
This chapter follows the structure of application 1, but without the 
conventional reference analysis.

The probability of interest 𝑃exp = 4.18 × 10−3 for this application 
follows from Eqs.  (2), (3) and (5), where 𝑇𝑝,𝑒 = 7.5 s for 𝑇𝑝 = 10.0 s at 
5.14 m/s speed in head waves, and 𝑛𝑤 ≊ 1.44 × 104 is the approximate 
number of wave crests in the 30-h MCS.

4.1. High-fidelity data

The HF VBM time traces were supplied by non-linear time-domain 
code PRETTI_R v19.0.1 of CRS [92,93] which includes Froude–Krylov 
non-linearity. The ground truth HF hogging peaks were defined by 
the zero up-crossing troughs in these VBM traces. The utilised panel 
distribution is visualised in Fig.  7. The true HF 30-minute MPM for the 
chosen 30-hour realisation is 1.05 × 109 Nm.

4.2. Low-fidelity indicator data

The LF VBM time traces were supplied by linear frequency-domain 
potential flow diffraction code SEACAL v7.2.0 of CRS, in the zero speed 
Green’s function implementation. The true LF and HF zero up-crossing 
peak PoE distributions for the 30-h MCS are shown in Fig.  15(b) in 
Appendix  E. We matched the LF and HF VBM hogging peaks at midships 
in the same way as described for the wave crests in Section 3.2. This 
results in the scatter plot in Fig.  16(b) in Appendix  E. This shows that 
the hogging LF indicator and HF response peaks have less similar order 
statistics than those of the wave crests in application 1. This is also 
reflected in the 𝑆𝑄𝐼𝑚𝑒𝑎𝑛 value, which is 22.8.

4.3. Adaptive sampling

As in application 1, we chose two PoE levels (0.001 and 0.01) for 
initial sampling in Step 5, along with a prediction range of 1 × 10−3

to 5 × 10−2 with 200 uniform steps in Step 8, both centred around 
𝑃exp. To generate a ‘new’ HF sample in each iteration, we matched LF 
and HF peaks in time following the method described in Section 4.2. 
For each selected event, the corresponding HF value (determined by 
the LF indicator value in Step 5 or Step 11) was drawn from the HF 
simulations at the closest matching time. Unlike in application 1, where 
an analytically traceable HF variable was available, here we used the 
database of non-linear HF simulation results. To monitor convergence, 
we set the second limit of the stopping criteria 𝑆(𝑗) in Eq.  (34) equal 
to the limit we set in application 1: 𝜖2 = 0.003 for the coefficient of 
variation of the MPM value (standard deviation 0.3% of mean). The 
first limit, for the maximum absolute distribution difference, needs 
to be adapted as it has the same unit as the predicted variable. For 
application 1, we selected 0.05 m crest height, with maximum crest 
10 
Fig. 7. Mesh of the MARIN ferry 2 for the SEACAL and PRETTI_R calculations in 
application 2, consisting of 3327 panels.

Fig. 8. Convergence of 30-min HF MPM and its uncertainty from Adaptive Screening 
with MF-GPR, for hogging VBM in application 2. Annotations indicate the mean 
prediction accuracy compared to the true MCS result.

heights in the order of 15 m. To use a similar criterion, we use 𝜖1 =
5 × 106 N m, with maximum hogging peak values in the order of 
1.5 × 109 N m. Again, less stringent criteria may suffice if reducing HF 
calculations is the main priority. The rest of the adaptive procedure for 
application 2 was identical to that of application 1.

4.4. Results

Fig.  8 shows the predicted 30 min HF MPM and its U95% for hog-
ging, from Adaptive Screening with MF-GPR and acquisition function 
USMV. The converged distribution shapes are plotted in Fig.  9. These 
plots are similar to Figs.  6(c) and 6(d) for application 1, but here 
we plotted the LF and HF distributions separately to distinguish them 
better. These results show that, initially, the results start converging 
very quickly. However, it takes a while to reach proper convergence 
according to the defined stopping criterion. With 59 HF samples, the 
30 min VBM hogging peak MPM is predicted with −2.9% accuracy. 
This accuracy is slightly less than that of the one-hour wave crest 
MPM results in application 1. The is explainable by the indicator 
quality (measured as 𝑆𝑄𝐼𝑚𝑒𝑎𝑛), which is lower for application 2 than 
application 1. The U95% uncertainty of the 30 min MPM in the present 
application is also relatively large compared to the mean value, but 
convergence was reached with a similar number of HF samples as 
for the WorseInd indicator in application 1. For reference, the LF 
equivalent MPM deviates −8.2% from the true HF value, so Adaptive 
Screening does significantly improve the prediction compared to pure 
LF simulations. These results demonstrate a comparable level of accu-
racy to those obtained using an alternative multi-fidelity method for a 
similar VBM case in [50].

4.5. Computational time

Similar to application 1, we assume that each HF event simulation 
must be run for 10–50 s. The 59 HF events required for convergence in 
application 2 then correspond to ∼10-50 min HF simulation time. We 
picked the HF results from the 30-h validation HF MCS with PRETTI_R. 
This total 30-h simulation took 26 CPUh. We therefore estimate that the 
required 10-50 min HF simulation time takes ∼0.1–0.7 CPUh. We also 
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Fig. 9. Converged distribution for application 2, from Adaptive Screening with MF-GPR, acquisition function USMV and the defined stopping criterion.
needed 30 h of LF simulation time with frequency-domain code SEA-
CAL (one speed, one heading) combined with linear analytical waves, 
which took ∼0.25 CPUh. Additionally, Adaptive Screening roughly took 
1 CPUh for 200 iterations. The total computational cost for the Adap-
tive Screening procedure (excluding HF validation data) was therefore 
0.1–0.7 CPUh (HF simulations) + 0.25 CPUh (LF simulations) + 1 CPUh 
(iterations) ≈ 1.5-2 CPUh. The alternative would be 26 CPUh for the 30-
h HF MCS, showing that the new method is considerably more efficient 
(see also Table  1). All calculations for application 2 were done on a 
single laptop core.

5. Application 3: green water impact forces on a containership

Applications 1 and 2 are weakly and moderately non-linear test 
cases, while Adaptive Screening is designed for strongly non-linear re-
sponses. These earlier applications allowed us to compare the method’s 
converged outcome to reference HF MCS results (with a good outcome) 
and to assess the impact of various settings. The method still performed 
well with lower-quality indicators, which showed the method’s po-
tential for more non-linear problems. However, to properly show the 
method’s suitability, a strongly non-linear test case is needed. This is 
presented here.

In application 3, we predicted extreme values of global green water 
impact force peaks on the breakwater of the 230 m KCS contain-
ership [94]. This HF force is noted as 𝐹 ′′

𝑥  in the remainder of this 
application. It was validated against experiments (see Fig.  10). The 
considered test campaign is extensively described in [35], including 
a discussion of the capability of many different numerical indicators 
to predict the occurrence of these green water forces. We selected an 
experiment with a full-scale duration of 30 min in irregular head waves 
with a JONSWAP spectrum and 𝐻𝑠 = 6.8 m, 𝑇𝑝 = 9.7 s, 𝛾 = 3.3 at 4.6 
knots forward speed (2.37 m/s). The conditions were selected such that 
the impact frequency was high; there were 95 experimental impacts in 
this 30 min duration. Bandringa et al. [16] has shown that calculations 
using Cartesian-grid finite volume CFD method ComFLOW [95] on a 
fine mesh are able to reproduce the green water forces in 12-second 
events accurately for the same experimental data.

We did not run Adaptive Screening until proper convergence ac-
cording to the stopping criterion of Section 2.3, because that would 
require a longer duration of the validation material. Instead, we demon-
strate that we can get a good estimate of the 5 min MPM using only 
10 HF events (𝑇exp = 300 s). This is a demonstration of the potential of 
the method; not a full validation case. Again, we only apply Adaptive 
Screening in combination with MF-GPR.

Here we do not have a HF response that is analytically traceable 
(as in application 1) nor do we calculable with a weakly non-linear 
tool (as in application 2), but we do have HF experimental data. 
By deterministically reproducing these experiments in the numerical 
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indicator calculation, we could also avoid the CFD simulations in Step 
6 of Adaptive Screening for this application. Similar as in application 
2 from the HF simulations, new HF samples were picked here from 
the HF experiments. This chapter follows the same structure as that 
of applications 1 and 2.

The probability of interest 𝑃exp = 2.80 × 10−2 for this application 
follows from Eqs.  (2), (3) and (5), where 𝑇𝑝,𝑒 = 8.4 s for 𝑇𝑝 = 9.7 s at 
2.37 m/s speed in head waves, 𝑁 = 𝑇tot∕𝑇exp = 1800∕300 = 6 and 𝑛𝑤 ≊
215 is the approximate number of wave crests in the available 30 min 
experiment. The number of wave encounters remains the leading ref-
erence for all PoE values. This enables the use of different variables 
for the LF and HF signals in the Adaptive Screening procedure, as 
demonstrated in this application.

5.1. High-fidelity data

The ‘ground truth’ HF distribution and 5 min MPM in application 
3 were taken from the experimentally measured green water impact 
peak forces on the breakwater of the ship (the vertical structure per-
pendicular to the ship’s length in Fig.  10). These forces were measured 
using 40 force panels on the breakwater surface. We focused on the 
peak total forces across this structure, obtained by summing the forces 
over time from all panels. A zero up-crossing distribution of these force 
peaks was made. As the number of HF green water impacts was limited 
to 96 (and very sparse in the tail), we fitted a Generalised Pareto 
distribution to the highest 10% available samples before deriving the 
ground truth MPM (𝐹 ′′

𝑥 ). This was done by applying Eq.  (7) to this 
fitted distribution. The thus found true HF 5-minute MPM from the 
experiments is 2.95 × 103 kN.

5.2. Low-fidelity indicator data

We selected two well-performing indicators from [35]: green wa-
ter force on the breakwater and relative wave elevation (RWE) at a 
probe on the foredeck. Both indicators were calculated on a coarse 
ComFLOW mesh, known as ‘CF3’ in [35], with wave phases matched 
to experiments for deterministic reproduction. Details on the mesh, 
settings, and numerical setup can be found in the cited work. These 
indicators are non-linear, but lower in order than the fine-mesh CFD 
calculations or experiments that are needed for accurate green water 
force assessment. Here, the coarse-mesh LF green water force and RWE 
indicators are denoted 𝐹 ′

𝑥 and 𝑅′
𝑑𝑒𝑐𝑘, respectively. These indicators have 

𝑆𝑄𝐼𝑚𝑒𝑎𝑛 values of 2.08 (𝐹 ′
𝑥) and 2.06 (𝑅′

𝑑𝑒𝑐𝑘). The true LF and HF peak 
PoE distributions of 𝐹 ′

𝑥 are shown in Fig.  15(c), and matched LF-HF 
peak scatter plots for both indicators are included in Fig.  16(c) (both 
in Appendix  E). Although the relationship between LF and HF peaks 
is less linear than in application 1, this does not necessarily mean that 
the indicator is worse, as supported by similar SQI values. The scatter 
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Fig. 10. Green water impact on the KCS during the CRS Green Water experiments; snapshots just before and during the same event.
Fig. 11. Convergence of 5 min HF MPM and its uncertainty from Adaptive Screening with MF-GPR, for both indicators in application 3. Annotations indicate the mean prediction 
accuracy compared to the true MCS result.
plots illustrate why finer CFD meshes are essential for accurate HF 
impact forces: coarse mesh CFD predictions underestimate forces due 
to wave dissipation, sampling errors, and underestimated crest heights. 
However, here we use coarse mesh CFD only to quickly indicate critical 
event occurrence, not to predict the magnitude of the resulting forces. 
The latter is done using fine mesh calculations for a number of events 
in Step 6. This application with indicator 𝑅′

𝑑𝑒𝑐𝑘 will demonstrate that 
it is indeed possible to use an LF indicator that is a different variable 
than the HF response.

5.3. Adaptive sampling

Similar as in application 1 and 2, we chose two PoE levels for 
the initial sampling points (0.005 and 0.05) for Step 5 of Adaptive 
Screening and a prediction range (1.5 × 10−2 to 8 × 10−2, with 200 
uniform steps) for Step 8. Both were selected around 𝑃exp. We used the 
matching in time of LF and HF peaks described in Section 3.2 in order 
to obtain a ‘new’ HF sample in every iteration. Using this procedure, the 
HF value corresponding to a selected event (based on its LF indicator 
value in Step 5 or Step 11) was taken from the experiments around 
the same time. In application 1 this was possible because we had an 
analytically traceable HF variable; here we use the experiments as HF 
database. We also need LF distribution samples as direct input for MF-
GPR. In application 1 and 2 we did not use all available LF wave 
crests to prevent unnecessarily large MF-GPR matrices. As the number 
of LF indicator peaks for both indicators in the 30 min duration are 
limited, this is not necessary in application 3. We used all available LF 
distribution samples in MF-GPR.
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5.4. Results

Fig.  11 shows the predicted 5 min HF MPM and its U95% for 
both indicators, from Adaptive Screening with MF-GPR and acquisition 
function USMV. The 𝑥-axis scale is the same as in the plots of the other 
two applications, for reference. As said, we only ran the procedure up 
to 10 samples (2 initial samples and 8 iterations), at which point the 
results are not converged yet. The predicted distribution shapes with 
10 HF samples are plotted in Fig.  12.

Comparing these results to those in application 1 and 2 firstly shows 
that the uncertainty band and the deviations from the ground truth 
with 10 HF samples are an order larger for this strongly non-linear 
application than for weakly and moderately non-linear applications 1 
and 2. Knowing that it is very hard to predict accurate green water 
impact loads, this is not surprising. However, using only 10 HF events, 
the shape of the green water impact force distribution is quite well 
approximated (Fig.  12). Using the coarse mesh force indicator, the 
5 min MPM green water impact forces can be predicted with an error 
of only −5.1% (see Figs.  11 and 12(a)). Using indicator 𝐹 ′

𝑥 leads to 
slightly more accurate (and seemingly more converged) results than 
using 𝑅′

𝑑𝑒𝑐𝑘, but this difference may not be significant with the low 
number of HF samples. The results with 𝑅′

𝑑𝑒𝑐𝑘 show that it is indeed 
possible to use different variables as LF and HF signals in Adaptive 
Screening, with satisfactory results. This can be beneficial in cases 
where it is less computationally expensive to calculate RWE than forces 
on a coarse mesh.

These results indicate that we can obtain quite accurate 5 min 
extreme green water forces using only 10 HF events. In the design 
stage of a new ship, an accuracy of 5%–10% is definitely acceptable for 
wave impact load extreme values (considering that the utilised safety 
factors for impacts are usually much higher). Using Adaptive Screening 
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(a) Indicator coarse mesh ComFLOW green water force peaks (𝐹 ′
𝑥). 

(b) Indicator coarse mesh ComFLOW RWE peaks at fore deck (𝑅′
𝑑𝑒𝑐𝑘).

Fig. 12. Distributions for application 3, from Adaptive Screening with MF-GPR, acquisition function USMV and 10 HF samples for two indicators. The left side show the LF 
indicator samples and the LF prediction from MF-GPR, the right side shows the HF samples, the HF prediction from MF-GPR and the reference ‘true’ experimental HF distribution 
(fitted with a Generalised Pareto distribution).
could therefore be considered an improvement compared to the need 
to do experiments or very lengthy fine mesh CFD calculations. Obvi-
ously we have not run Adaptive Screening until convergence (which 
would require more HF event calculations) and only considered 30 min 
screening time and a 5 min MPM. Real design loads would be required 
for a longer exposure duration (e.g., 30 min or one hour). However, 
this application shows that an acceptable accuracy could already be 
achieved with very few HF events, that the results can converge close 
to the true distribution with ‘real’ available indicators for a strongly 
non-linear response case, and that the computational time in order to 
do this reduces considerably compared to MCS.

5.5. Computational time

Similar to applications 1 and 2, we assume that each HF fine 
mesh CFD event calculation has to be run for 10–50 s. The 10 HF 
events analysed in application 3 therefore correspond to 100–500 s HF 
simulation time. We also need to run the coarse mesh CFD screening, 
which corresponds to 30 min LF simulation time (where ‘LF’ is in this 
case coarse mesh CFD). This took 56 CPUh on 8 cores (so 7 wall clock 
hours). We did not perform the HF fine mesh simulations, as we sam-
pled the HF values from the experiments. However, we can estimate the 
computational cost for a real problem. One fine mesh CFD green water 
event calculation with ComFLOW in [16] for the same experiments 
took ∼2.000 CPUh. We therefore estimate that the full procedure takes 
56 CPUh (30 min LF screening) + 20.000 CPUh (10 HF events with a 
fine mesh, which can be run in parallel) + ∼1 CPUh (iterative Adaptive 
Screening). This is long, but still significantly shorter than running fine 
mesh simulations for the full 30 min duration. For reference, linearly 
extrapolating the 2.000 CPUh for the 20 s events in [16] to 30 min 
would be ∼180.000 CPUh (see also Table  1).
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6. Discussion & conclusions

We introduced a new multi-fidelity extreme value prediction
method, Adaptive Screening, for strongly non-linear (ship) responses 
to waves. We applied it to three case studies with increasing levels 
of non-linearity and complexity: second-order wave crests, VBM on 
a ferry and green water impact loads on a containership. The results 
of the applications are summarised in Table  1 at the end of this 
paper. Adaptive Screening accurately predicts MPM extreme values 
for both weakly and strongly non-linear responses, with significantly 
reduced computational cost compared to traditional methods. This 
makes the approach promising for strongly non-linear responses, where 
alternatives are often limited. However, ship design requires evaluating 
many wave conditions over the ship’s lifetime, which is impractical 
with coarse mesh CFD as needed for the most realistic and non-linear 
application 3. We therefore envisage a recursive approach, where low-
/ medium-fidelity Adaptive Screening can identify critical long-term 
sea states (similar to Gramstad et al. [23]), and medium-/ high-fidelity 
Adaptive Screening can then estimate short-term load distributions in 
these states (as presented here).

It can be concluded that Adaptive Screening provides quite accurate 
extreme values of non-linear responses, if an adequate indicator is 
selected. This indicator selection is crucial, as in other methods like 
RCM and alternative screening approaches. Ideally, the indicator’s 
order statistics should closely resemble those of the HF response. Since 
perfect similarity cannot usually be achieved, some ‘random noise’ is 
introduced in selecting events around probability level 𝑃exp (Step 5), 
causing the HF prediction to be a noisy surrogate for the true HF 
distribution (Step 7). This noise results in a consistent underestimation 
of extreme values by screening approaches, as also observed in research 
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projects JIP Green Water [96] and CRS SCREAM [97]. For instance, 
classical screening typically selects the top 10–20 indicator events from 
a given simulation duration. However, even with perfectly accurate 
CFD calculations, extreme HF values may be underestimated since 
events are drawn from the distribution tail. With an imperfect indicator, 
some selected events will inevitably have lower HF responses than the 
true maxima (as the latter are the largest in the available pool), leading 
to an underestimation of the HF extreme values. A weaker indicator 
further increases this effect. In this study, we mitigate this bias by 
selecting events at 𝑃exp from a long LF MCS in Step 2 (rather than 
the largest events from a shorter MCS), ensuring sufficient HF events 
above the target extreme value. A realistic indicator may still select 
some ‘wrong’ events, but these can include both larger and smaller 
HF responses, reducing underestimation. While this approach does not 
fully eliminate bias (as tail events remain sparse), our results demon-
strate that it can effectively reduce the underestimation to acceptable 
levels across various cases and levels of non-linearity with realistic 
indicators. Further work could consider modelling this bias to define 
a safety factor.

With the realistic indicators in the present applications, the one-
hour MPM second-order wave crest height could be calculated with an 
accuracy of 0.2–0.8%; the 30 min MPM VBM with an accuracy of 2.9% 
and the 5 min MPM green water impact load with an accuracy of 5.1%. 
The results in application 1 had a similar accuracy and uncertainty as 
a reference conventional method, with a significant reduction in HF 
simulation time. These levels of accuracy are probably acceptable in the 
design process of a maritime structure, considering that safety factors 
for strongly non-linear responses are generally much higher. Using 
Adaptive Screening considerably reduces the required computational 
cost for all three applications, compared to the conventional method 
or MCS.

Adaptive Screening places minimal constraints on the predicted 
distribution, apart from the (MF-)GPR properties and a monotonicity 
requirement. Thus, it can produce distributions outside the Generalised 
Extreme Value (GEV) family. For the present applications, the results 
closely approximates ground truth, suggesting that this is not problem-
atic, though it may be an issue for more badly behaving problems. An 
alternative approach could involve learning the parameters of a GEV 
fit to the HF distribution rather than its overall shape. The cost of the 
new method lies mostly in the HF simulations. The largest efficiency 
gain is therefore to be found in reducing the number of required HF 
samples before convergence, rather than in speeding up the iterative 
procedure. Further acceleration of the procedure may therefore be 
possible by adopting a more lenient convergence criterion, optimising 
the utilised acquisition function or selecting multiple new events per 
iteration (allowing HF calculations to run in parallel).

The presented application cases validate only the statistical model in 
Adaptive Screening, assuming that the HF calculations or experiments 
in Step 6 can be initialised from the LF simulations and are perfectly 
accurate. A follow-up study should focus on validation of the full proce-
dure (including HF calculations) for a strongly non-linear application, 
and possibly on making Adaptive Screening even more efficient and 
robust. Since only limited-duration ground-truth data were available 
for application 3, this strongly non-linear case served more as a demon-
stration than full validation. Future work could focus on an additional 
validation study using a strongly non-linear test case to further assess 
the method. However, the present results are very promising for future 
application of the method. It has potential to predict extreme values 
of wave impact loads, and likely also of other non-linear problems in 
maritime/civil engineering or oceanography (e.g., wave height, wind 
speed, ship parametric roll, propeller ventilation, dike overtopping, 
local water levels, etc.), and in short- and long-term scenarios.
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Appendix A. Screening quality index

The screening quality index SQI is defined in [35]. This metric 
only applies to validation datasets, as it uses an LF-HF peak matching 
procedure such as described in Section 3.2. We define false negatives 
(indicator misses a critical event), false positives (indicator predicts 
a critical event erroneously) and correct positives (indicator correctly 
predicts a critical event). SQI does not allow for any false negatives 
above a given HF threshold, as formulated in Eq.  (11). Here 𝐥mcs are all 
LF indicator peaks, 𝐡mcsmatched are the matched HF peaks (see Fig.  16), 𝑡ℎ
is the HF threshold, and # indicates a count. The numerator finds the 
minimum LF value with all matched HF values above a threshold and 
counts their number, representing the total number of positives in the 
screening. The denominator counts real events above the HF threshold, 
representing correct positives. An ideal SQI is one (all positives are 
correct), with higher values indicating poorer performance. For exam-
ple, an 𝑆𝑄𝐼 value of 4 implies 4 events must be evaluated to find one 
true positive. Say there are 15 real HF events above the threshold, this 
would mean 60 HF CFD event calculations. SQI is defined as a function 
of HF response threshold. For practical comparison, we use the mean 
𝑆𝑄𝐼𝑚𝑒𝑎𝑛 over the full range of thresholds, similar to van Essen et al. 
[35]. 

𝑆𝑄𝐼(𝑡ℎ) =
#
[

𝐥mcs ≥ min
(

𝐥mcs||
|

𝐡mcsmatched ≥ 𝑡ℎ
)]

#
[

𝐡mcsmatched ≥ 𝑡ℎ
] (11)

Appendix B. (Multi-fidelity) Gaussian Process Regression

B.1. GPR

Single-fidelity GPR (e.g., [98]) can be used to predict new values 
𝐲∗ and their uncertainty over range 𝐱∗, using a known sampled data 
set [𝐱, 𝐲]. In Step 9 of Adaptive Screening, [𝐱, 𝐲] is the existing HF 
data set [ln (𝐝sel𝐻 ),𝐡sel

] from Step 7; 𝐱∗ is the prediction range ln (𝐝∗)
from Step 8 and 𝐲∗ is the predicted HF solution 𝐡∗. The underlying 
process is assumed to have an infinite-dimensional multivariate Gaus-
sian distribution with a mean function 𝜇, and covariance function or 
kernel 𝑘 (see Eq.  (12)). As customary, we assume that the mean is 
zero, the observations are related only by the kernel, the data are 
noisy and discrete. This reduces it to Eq.  (13), where 𝐈 is the identity 
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matrix and 𝜎2𝑛 is the noise variance. We assume homoscedastic noise 
(see Section 2.4). 
𝑦(𝑥) ∼ 

(

𝜇(𝑥), 𝑘(𝑥, 𝑥′)
)

(12)

𝐲(𝐱) ∼ 
(

𝟎,𝐊(𝐱, 𝐱′) + 𝜎2𝑛𝐈
)

(13)

The kernel is a covariance function that describes the relation be-
tween the input points. We used the Matern32 kernel in Eq.  (14), which 
includes length hyperparameter 𝑙 and maximum allowable covariance 
𝜎. If two points are far apart, their covariance is zero; 𝑙 determines how 
quickly this interaction decreases. The hyperparameters are assembled 
in 𝜽 = {𝜎, 𝑙, 𝜎𝑛}. The noise parameter is learned together with the 
others. GPR needs the value of the kernel for interaction of each point 
with all the other points, resulting in the interaction matrix in Eq.  (15). 

𝑘(𝑥, 𝑥′|𝜽) = 𝜎2
(

1 +

√

3|𝑥 − 𝑥′|
𝑙

)

exp
[

−

√

3|𝑥 − 𝑥′|
𝑙

]

(14)

𝐊(𝐱, 𝐱′|𝜽) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑘(𝑥1, 𝑥1|𝜽) 𝑘(𝑥1, 𝑥2|𝜽) ... 𝑘(𝑥1, 𝑥𝑚|𝜽)
𝑘(𝑥2, 𝑥1|𝜽) 𝑘(𝑥2, 𝑥2|𝜽) ... 𝑘(𝑥2, 𝑥𝑚|𝜽)

⋮ ⋮ ⋱ ⋮
𝑘(𝑥𝑚, 𝑥1|𝜽) 𝑘(𝑥𝑚, 𝑥2|𝜽) ... 𝑘(𝑥𝑚, 𝑥𝑚|𝜽)

⎤

⎥

⎥

⎥

⎥

⎦

(15)

We started by assuming arbitrary a priori hyperparameters, and then 
optimised them by maximising the conditional probability 𝑃 (𝜃|𝐱, 𝐲). 
According to Bayes’ theorem, this is equivalent to maximising the 
log-likelihood given in Eq.  (16), where 𝑚 is the number of existing 
observations (see e.g., [82,99]). We solved this for 𝜽 using a multi-
variate optimisation algorithm. Assuming a uniform prior distribution 
 (𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥) gives the best parameters 𝜽. 

ln (𝑃 (𝐲|𝐱,𝜽)) = −1
2
𝐲𝑇𝐊−1𝐲 − 1

2
ln|𝐊| − 𝑚

2
ln(2𝜋) (16)

In order to predict 𝐲∗ for new input range 𝐱∗ using the thus trained 
GP, we modified Eq.  (13) further to obtain Eq.  (17). Interaction matrix 
𝐂 is provided in Eq.  (18). 
[

𝐲
𝐲∗

]

∼ 
(

𝟎,𝐂 + 𝜎2𝑛𝐈
)

(17)

𝐂 =
[

𝐊(𝐱, 𝐱′|𝜽) 𝐊(𝐱∗, 𝐱′|𝜽)
𝐊(𝐱, 𝐱∗′ |𝜽) 𝐊(𝐱∗, 𝐱∗′ |𝜽)

]

=
[

𝐊𝑒 𝐊∗𝑇

𝐊∗ 𝐊∗∗

]

(18)

Now Eq.  (19) provides the conditional probability of new values 
based on existing observations, which yields the best estimate for mean 
new values 𝐲∗ and their variance 𝝈2

𝑦∗ . 

𝐲∗|𝐲 ∼ 
(

𝐊∗𝐊−1
𝑒 𝐲,𝐊∗∗ −𝐊∗𝐊−1

𝑒 𝐊∗𝑇 )

𝐲∗ = 𝐊∗𝐊−1
𝑒 𝐲 and 𝝈2

𝑦∗ = var(𝐲∗) = 𝐊∗∗ −𝐊∗𝐊−1
𝑒 𝐊∗𝑇 (19)

B.2. MF-GPR

In multi-fidelity (MF-)GPR, we use both LF and HF data ([𝐱𝑙 , 𝐲𝑙
]

and [𝐱ℎ, 𝐲ℎ
]

, organised in Eq.  (20)) to predict the HF values 𝐲∗ℎ over 
𝐱∗. In our applications, [𝐱ℎ, 𝐲ℎ

] is given by [ln (𝐝sel𝐻 ),𝐡sel
] from Step 

7 (same as in the GPR procedure). We also have the LF MCS set 
[

ln (𝐝mcs𝐿 ), 𝐥mcs
] from Step 2. However, GPR scales with the cube of the 

sample size, making it a poor choice for applications with many samples 
(see e.g., [54]), so we reduced the number of utilised LF samples in 
MF-GPR. We therefore reduce this to [𝐝𝐿, 𝐥

]

, either by sub-sampling or 
by fitting a theoretical distribution and deriving new samples from this 
fit. This data set is used as [𝐱𝑙 , 𝐲𝑙

] in MF-GPR. 

𝐱𝑣 =
[

𝐱𝑙 𝐱ℎ
]𝑇 and 𝐲𝑣 =

[

𝐲𝑙 𝐲ℎ
]𝑇 (20)

We used two fidelity levels (as in [48]) and the autoregressive 
(AR1) multi-fidelity model of Kennedy and O’Hagan [49] in Eq.  (21). 
This model uses the Markov assumption in Eq.  (22), which speeds 
up the computation by decomposing the multi-fidelity problem into 
15 
independent single-fidelity problems: one for the LF data and one 
for the difference function 𝜹 between the LF and HF data. It can be 
interpreted as follows: given the nearest LF point 𝑦𝑙(𝑥), we can learn 
no more about HF point 𝑦ℎ(𝑥) from any other point 𝑦𝑙(𝑥′) for 𝑥′ ≠ 𝑥. 
The parameter 𝜌 is used to establish the correlation between the two 
datasets. 
𝐲ℎ = 𝜌𝐲𝑙 + 𝜹 (21)

𝑘
(

𝑦ℎ(𝑥), 𝑦𝑙(𝑥′)|𝑦𝑙(𝑥)
)

= 0 (22)

The LF hyperparameters 𝜽𝑙 = {𝜎1, 𝑙1} are optimised first, using the 
LF data [𝐱𝑙 , 𝐲𝑙

]

. Next, the difference function hyperparameters 𝜽𝛿 =
{𝜎2, 𝑙2, 𝛿} are optimised, using the HF data 

[

𝐱ℎ, 𝐲ℎ
] and predicted LF 

values [𝐱∗, 𝐲∗𝑙
]

. Here 𝛿 is the difference parameter, and 𝑙 and 𝜎 are the 
kernel hyperparameters (defined separately for the LF and difference 
parts). Finally, the LF and HF predictions are made using the optimised 
hyperparameter sets 𝜽𝑙 and 𝜽𝛿 . The AR1 covariance matrix of the 
existing data 𝐁𝐞 is formulated in Eq.  (23), using Eq.  (15). Similarly, the 
AR1 covariance matrix of existing with new points 𝐁∗ is given in Eq. 
(24) and the matrix of new points 𝐁∗∗ in Eq.  (25). 

𝐁𝐞 =
[

𝐁𝐞,𝟏𝟏 𝐁𝐞,𝟐𝟏
𝑇

𝐁𝐞,𝟐𝟏 𝐁𝐞,𝟐𝟐

]

where:
⎧

⎪

⎨

⎪

⎩

𝐁𝐞,𝟏𝟏 = 𝐊(𝐱𝑙 , 𝐱′𝑙 |𝜽𝑙)
𝐁𝐞,𝟐𝟏 = 𝜌𝐊(𝐱ℎ, 𝐱′𝑙 |𝜽𝑙)
𝐁𝐞,𝟐𝟐 = 𝜌2𝐊(𝐱ℎ, 𝐱′ℎ|𝜽𝑙) +𝐊(𝐱ℎ, 𝐱′ℎ|𝜽𝛿)

(23)

𝐁∗ =
[

𝐁∗
𝟏𝟏 𝐁∗

𝟏𝟐
]

where:
{

𝐁∗
𝟏𝟏 = 𝜌𝐊(𝐱∗, 𝐱′𝑙 |𝜽𝑙)

𝐁∗
𝟏𝟐 = 𝜌2𝐊(𝐱∗, 𝐱′ℎ|𝜽𝑙) +𝐊(𝐱∗, 𝐱′ℎ|𝜽𝛿)

(24)

𝐁∗∗ = 𝜌2𝐊(𝐱∗, 𝐱∗′ |𝜽𝑙) +𝐊(𝐱∗, 𝐱∗′ |𝜽𝛿) (25)

The MF form of the full covariance matrix is given by Eq.  (26) 
and its log-likelihood function by Eq.  (27), where 𝑚𝑣 is the number 
of elements in 𝐱𝑣. We use the Matern32 kernel again in both parts of 
MF-GPR. 

𝐁 =
[

𝐁𝐞 𝐁∗𝐓

𝐁∗ 𝐁∗∗

]

(26)

ln(𝑃 (𝐲𝑣|𝐱𝑣,𝜽𝑙 ,𝜽𝛿)) = −1
2
𝐲𝑇𝑣 𝐁

−1𝐲𝑣 −
1
2
ln|𝐁| −

𝑚𝑣
2
ln(2𝜋) (27)

Finally, the new mean predicted values 𝐲∗𝑣 and their variance 𝝈2
𝐲∗𝑣

can be calculated using Eq.  (28). These predicted values include both 
the LF and HF prediction over range 𝐱∗. 
𝐲∗𝑣 = 𝐁∗𝐁𝐞

−1𝐲𝑣 and 𝝈2
𝐲∗𝑣

= var(𝐲∗𝑣) = 𝐁∗∗ − 𝐁∗𝐁𝐞
−1𝐁∗𝐓 (28)

B.3. Constraints

It is not possible to define a perfect indicator for most non-linear 
response problems, so the HF samples resulting from Step 7 will be 
‘noisy’. To avoid over-fitting, the minimum GPR noise variance was 
constrained to 0.5 × the variance of the available samples, with respect 
to a least-squares linear fit to these samples (see Eq.  (29), where 
[

𝐱∗(𝑗), 𝐲∗(𝑗)
] is the set of mean predicted HF samples and 𝜎𝑛(𝑗) is the 

noise variance for iteration 𝑗). In MF-GPR, this is done separately for 
the LF and difference parts. We also constrained the length hyperpa-
rameter 𝑙(𝑗) of all kernels to the lower limit in Eq.  (30), where len(𝐲∗(𝑗))
is the number of HF samples in iteration 𝑗. This limit takes value ten for 
a few samples, and higher values for many samples. The relatively high 
number for the first iterations helps to ensure monotonically decreasing 
distributions and quick convergence, and the increasing limit with the 
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total number of training samples helps to avoid over-fitting of the noisy 
data for many samples. 
𝜎𝑛(𝑗) ≥ 0.5 ⋅ var

(

𝐲∗(𝑗) − linear_fit
[

𝐱∗(𝑗), 𝐲∗(𝑗)
])

(29)

𝑙(𝑗) ≥ max
(

10, 0.1 ⋅ len(𝐲∗(𝑗))
)

(30)

Appendix C. Details of stopping criterion

C.1. Formulations

We set an acceptance criterion requiring the PoE distribution to de-
crease monotonically, with higher threshold values at low PoE than at 
high PoE. Enforcing monotonicity in GPR predictions is challenging, as 
it necessitates correlations across the entire domain, while kernels cap-
ture correlations only locally (see e.g., [100]). Although methods exist 
to address this (e.g., [101,102]), they may overly constrain regression. 
We therefore chose not to modify GPR for monotonicity, accepting that 
some early predictions with limited HF data may lack monotonicity. 
In our implementation (Step 8), we defined the prediction range 𝐝∗ in 
ascending PoE order, so the first element of the HF prediction 𝐡∗ is 
highest and the last the lowest. An iteration was rejected if it did not 
meet the acceptance criterion 𝑅 in Eq.  (31) (where 𝑤 = len(𝐡∗(𝑗))): 
each element of 𝐡∗(𝑗)𝑖 must be smaller than the previous one, and the 
difference between the first and last elements must exceed 1% of the 
first element’s value. 

𝑅(𝑗) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

accept if 
[

∀𝑖 ∈ [2,… , 𝑤],𝐡∗(𝑗)𝑖−1 > 𝐡∗(𝑗)𝑖
]

∩
[

𝐡∗(𝑗)1 − 𝐡∗(𝑗)𝑤 > 0.01𝐡∗(𝑗)1
]

reject otherwise

(31)

Secondly, we calculated the maximum absolute difference 𝐸(𝑗) in 
HF value between each set of subsequently predicted distributions. As 
the distributions in the first few iterations can be quite erratic, we used 
the average of 𝐸(𝑗) over the last 𝐾1 iterations: 𝐸𝐾1

(𝑗). When 𝑗 < 𝐾1, 
all available iterations were used. Here, 𝐾1 is a user-defined value. 

𝐸𝐾1
(𝑗) = 1

𝜓

𝑗
∑

𝑖=𝜒
𝐸(𝑖)

where:
⎧

⎪

⎨

⎪

⎩

𝐸(𝑗) = max |𝐡∗(𝑗) − 𝐡∗(𝑗 − 1)|
𝜒 = 1 and 𝜓 = 𝑗 for 𝑗 = 1, 2,… , 𝐾1 − 1
𝜒 = 𝑗 −𝐾1 + 1 and 𝜓 = 𝐾1 for 𝑗 ≥ 𝐾1

(32)

The largest difference between the predicted distributions of the 
𝐸(𝑗) criterion may be far from 𝑃exp. For this reason, a third convergence 
criterion was based on the coefficient of variation (COV) of the MPM 
value over the last 𝐾2 iterations: 𝐶𝐾2

(𝑗). This is expressed in Eq.  (33), 
where 𝐻̂(𝑗) is the MPM value predicted in iteration 𝑗. Again, we took 
the COV over the available iterations when 𝑗 < 𝐾2, where 𝐾2 is another 
user-defined value. 

𝐶𝐾2
(𝑗) =

𝜎𝐾2
(𝑗)

𝜇𝐾2
(𝑗)

where:

×

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜇𝐾2
(𝑗) = 1

𝜓
∑𝑗
𝑖=𝜒 𝐻̂(𝑖)

𝜎𝐾2
(𝑗) =

√

1
𝜓
∑𝑗
𝑖=𝜒

(

𝐻̂(𝑖) − 𝝁𝐾2
(𝑖)
)2

𝜒 = 1 and 𝜓 = 𝑗 for 𝑗 = 1, 2,… , 𝐾2 − 1
𝜒 = 𝑗 −𝐾2 + 1 and 𝜓 = 𝐾2 for 𝑗 ≥ 𝐾2

(33)

The total stopping criterion 𝑆(𝑗) is provided in Eq.  (34), where limits 
𝜖  and 𝜖  are case-dependent. The defined values 𝐾 = 𝐾 = 20 balance 
1 2 1 2
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Fig. 13. MPM and stopping criteria, app. 1. 𝐸20 (Eq.  (32); middle) and 𝐶20 (from Eq. 
(33); bottom) only shown for the accepted iterations by Eq.  (31). MPM (top) is 
transparent from ‘x’, where convergence was reached based on the full stopping 
criterion (Eq.  (34) and Section 3.3).

Fig. 14. Peak distributions for 5 randomly picked seeds, their Weibull fits and the 
derived MPM in one of the 500 seed picking realisations of the conventional procedure.

limiting both the influence of outliers and the minimum number of 
iterations for which convergence can be detected. 

𝑆(𝑗) =

⎧

⎪

⎨

⎪

⎩

stop if (𝑅(𝑗) = accept) ∩
(

𝐸20(𝑗) < 𝜖1
)

∩
(

𝐶20(𝑗) < 𝜖2
)

continue otherwise

(34)

C.2. Evaluation of stopping criterion in application 1

The predicted one-hour MPM HF wave crest height 𝐶 ′′ with Adap-
tive Screening and parts of the stopping criterion of Section 2.3 as 
a function of the number of HF samples are shown in Fig.  13 for 
application 1. The first part of the criterion (monotonocity check) 
is not explicitly shown, but the other parts are only plotted for the 
accepted iterations. The moment convergence is reached according to 
the limits set in Section 3.3 is indicated in the top MPM plot with a 
marker ‘x’. These plots show that the presently selected limits seem 
appropriate, but may be quite strict; more lenient limits would lead 
to earlier convergence with only a small MPM accuracy loss.
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(a) Application 1, indicator 𝐶 ′
𝑔𝑜𝑜𝑑 (b) Application 2, indicator 𝑉 ′. (c) Application 3, indicator 𝐹 ′

𝑥. 

Fig. 15. True peak distributions for the LF indicator and HF response (validation) in each application. Fig.  15(a) shows the utilised 50-h realisation, and nine other 50-h realisations 
to illustrate the variability of the distributions.
(a) Application 1. (b) Application 2. (c) Application 3. 

Fig. 16. Scatter plots of matched LF and HF peaks for all three applications. 
Appendix D. ‘Conventional’ industry method for application 1

As discussed in Section 1.4, class societies and ITTC recommend 
experiments with several 0.5 to 3-h wave seeds to determine short-term 
extreme response values. For strongly non-linear responses, guidelines 
suggest using 10–60 seeds per wave condition (e.g., [69,71,76,103–
105]). Extreme values are then derived from the responses, before or 
after fitting. van Essen et al. [72] and Scharnke et al. [73] showed that 
a large number of seeds is needed to effectively reduce uncertainty. 
However, in practice, the limited available experimental time often 
restricts testing to 1 seed per wave condition for ships (as also advised 
by ITTC [106]) and up to 5–10 occasionally for offshore structures.

We applied this conventional method to application 1 for reference. 
No experiments were done, but it was assumed that they would supply 
HF data for several one-hour seeds. We used HF MCS results from 
Section 3.1 to simulate this, randomly picking 5 seeds (𝑁conv = 5) 
from the 50-h HF MCS. This was repeated 500 times in a bootstrap 
analysis to account for variability. To reduce variability in the one-
hour maxima, a Weibull fit (Eq.  (10)) was applied to the top 30% HF 
wave crests in each seed. We applied Eqs.  (4) and (7) to the HF data of 
each fitted seed to assemble 5 seed maxima in 𝐶 ′′

𝐸 , and then made an 
ensemble maxima distribution using Eq.  (35). The MPM 𝐶 ′′

𝐸 was derived 
from Eq.  (36), where 0.632 is the exceedance probability of the MPM 
in an ensemble maxima distribution for a Gaussian signal [75]. Fig. 
14 shows the significant variation in the maxima derived from one of 
the 5-seed realisations. To evaluate the sensitivity of the results for the 
number of seeds, we have done the same for 3 and 7 seeds.

This variability yields a mean one-hour MPM of 10.62 m (3 seeds), 
10.48 m (5 seeds) and 10.44 m (7 seeds), with a U95% uncertainty of 
17 
0.85 m (3 seeds), 0.61 m (5 seeds) and 0.49 m (7 seeds) over the 500 
realisations. This mean value deviates less than 1% from the true 50-h 
MCS results in Section 3.1 for all three numbers of seeds. Obtaining 
these results requires 3 / 5 / 7 h of HF simulation or experiment time. 
We have used the 5-seed results for reference in the remainder of this 
publication. 

𝐝𝐸 (𝑒) = 𝑃 (𝐶 ′′
𝐸 ≥ 𝑒) (35)

𝐝𝐸
(

𝐶 ′′
𝐸

)

= 0.632 , therefore: 𝐶 ′′
𝐸 = 𝐝−1𝐸 (0.632) (36)

Appendix E. Summary of input and results of all three applica-
tions

This appendix assembles some input plots and results of all three 
cases, for a concise overview. Fig.  15 provides the PoE distributions 
of the LF and HF input; Fig.  16 provides the scatter plots of matched 
indicator and HF response peaks; and Table  1 provides an overview of 
the input and results in all three cases.

Data availability

Most data and scripts underlying this publication are available in (or 
can be re-generated using) the 4TU repository: [83]. This is valid for all 
scripts, and the data of application 1 and 2. The dataset of application 
3 is proprietary, so this is not included in the repository.
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Table 1
Summary of input, accuracy and computational time for all three applications. The very short computational times for the alternative methods in application 1 result from the 
analytical tractability of the problem.

Application 1 Application 2 Application 3
Ship – MARIN ferry 2 KCS containership
Exposure duration MPM 1 h 30 min 5 min
HF non-linear variable Second-order waves Hogging VBM midship Green water load breakwater
HF non-linear source Analytical Non-linear diffraction Experiments
LF indicator variable Linear waves Linear waves + noise Hogging VBM midship Green water load breakwater Relative wave elevation deck
LF indicator source Analytical Analytical Linear diffraction Coarse mesh CFD Coarse mesh CFD

 Accuracy of predicted MPM compared to brute force MCS
Adaptive Screening (USMV, GPR) +0.2% −0.8% – – –
Adaptive Screening (USMV, MF-GPR) +0.0% −0.6% −2.9% −5.1% +6.4%
Conventional reference method −0.7% −0.7% – – –

 Required LF simulation time
Adaptive Screening 50 h 50 h 30 h 0.5 h 0.5 h

 Required HF simulation time
Adaptive Screening (estimate*) 0.03–0.9 h 0.03–0.9 h 0.2–0.8 h 0.03–0.1 h 0.03–0.1 h
Conventional reference method 5 h 5 h – – –
Brute force HF MCS 50 h 50 h 30 h 0.5 h 0.5 h

 Required computational time for the total procedure
Adaptive Screening (estimate*) 1 CPUh 1.5-2 CPUh 20000 CPUh
Conventional reference method <1 CPUh – –
Brute force HF MCS <1 CPUh 26 CPUh 180000 CPUh

 * Assuming HF events with a duration of 10-50 s.
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