
Marine Technology

A Geometric Approach Towards
Momentum Conservation

Deepesh Toshniwal

M
as

te
ro

fS
cie

nc
e

Th
es

is





A Geometric Approach Towards
Momentum Conservation

Master of Science Thesis

For obtaining the degree of Master of Science in Marine Technology at
Delft University of Technology

Deepesh Toshniwal

August 2, 2012

Faculty of Mechanical, Maritime and Materials Engineering · Delft University of Technology



Copyright c© Marine Technology, Delft University of Technology
All rights reserved.



Delft University of Technology
Department of Marine Technology

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering for acceptance a thesis entitled

A Geometric Approach Towards Momentum Conservation

by

Deepesh Toshniwal

in partial fulfillment of the requirements for the degree of

Master of Science.

Dated: August 2, 2012

Supervisor(s):
Prof.Dr.Ir. R.H.M. Huijsmans

Dr.Ir. M.I. Gerritsma

Reader(s):
Dr.Ir. H.J. de Koning Gans

Dr.Ir.S.J. Hulshoff

Ir. Artur Palha





Abstract

The equations governing fluid-flow are a set of partial differential equations, as is the case for a
host of other continuous field problems. Analytical solutions to these problems are not always
available and computers are unable to handle continuous representations of variables. This
makes a finite-dimensional projection mandatory for all variables and this may result in a loss
of information. At the same time, invoking the inherent association between physical field
variables and geometric quantities, as seen in [1, 2, 3], it is known that stable discretisation
schemes can be constructed. In this spirit, mimetic discretization strategies are based on
minimizing the loss of information in going from a continuous to a discrete setting by making
a clear distinction between exact/topological and approximate/constitutive relations in a
physical law, and then focussing on an exact representation of the former and a suitable
approximation of the latter. For further reading, please see [4, 5, 6, 7].

The Navier-Stokes equations of fluid-flow, for incompressible flows, can be written as follows
in vector calculus notation, where the symbols have their usual meaning.

∂v

∂t
+ (v.∇)v = −1

ρ
∇p+ ν∇2v in Ω ,

∇.v = 0 in Ω

In this work, a geometric approach towards the solution of these equations is explored. The
framework presented so far in [7] did not contain all the ingredients needed to resolve the
geometric nature of momentum and other associated quantities. In this sense, this work is an
extension of the framework employed in [7, 8] with conservation of momentum as its focus.
The resulting scheme satisfies mass and momentum conservation laws exactly, and resembles a
staggered-mesh finite-volume method. In addition, a generalized-conservation law is derived
that could possibly lead to the conservation of a large set of secondary variables as well
(kinetic energy, enstrophy etc). This still needs to be numerically verified in a future work.
The discretization for momentum conservation presented in this work is tested numerically
for Kovasznay flow, and lid-driven cavity flow.
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Chapter 1

Introduction

The equations governing fluid-flow are represented as a set of partial differential equations,
as is the case for a host of other continuous field problems. In order to perform an analysis of
physical problems, solving these equations is necessary and there are several ways available
of performing this analysis. With respect to fluid-flow, one could choose an Eulerian or
a Lagrangian framework, and within these frameworks, the range of methods available for
solving the governing equations is immense. Some of these methods are the finite-volume,
finite-element, and finite-difference methods. In this work, mimetic discretization schemes
have been employed, and these aim at preserving symmetries associated with the physical
phenomenon. This begs the question that why is preserving these symmetries so important?

Emmy Noether’s theorem associates symmetry properties of a system (defined by a La-
grangian or/and a Hamiltonian) to conserved quantities in time. This theorem is so fun-
damental to physical conservation laws that it fades in the background, unfortunately. The
whole point of mimetic methods is to respect the symmetries that a physical system has. This
is attempted by trying to conserve important quantities (linear-momentum, kinetic energy,
for instance) related to these symmetries. For example, for the symmetry related to transla-
tion in space, it can be proven using the principle of least action that momentum should be
conserved [10]. The conservation properties are achieved in this work by invoking an often ig-
nored association between geometric objects and physical quantities. The focus of this thesis
is on constructing a method that adheres to the conservation properties for momentum and
mass which form the basic building blocks for fluid-flow analysis. More specifically, the focus
is on a geometric discretization of the incompressible Navier-Stokes equations (see Chapter 5).

The first part of this introductory chapter is spent introducing this association between ge-
ometry and physics, Section 1.1. Subsequently, in Section 1.2, a brief introduction to the
fundamentals of mimetic methods and the prevalent literature is provided. Thereafter, at the
end of this chapter an outline of the entire thesis would be given in Section 1.3.

Master of Science Thesis Deepesh Toshniwal



2 Introduction

Figure 1-1: A typical brick with a nonzero volume and a nonzero mass displaying the association
of mass (density) with volumes. The density integrates on the entire volume to give mass which
is eventually measured.

1.1 Geometry and Physics

For an intuitive sense of the inherent association between Geometry and Physics, consider
the mass of an object. For instance, the brick shown in Figure 1-1. We notice that the brick
has a nonzero volume, and we expect that it will have a nonzero mass as well. We note that
for this brick, we can calculate an average density based on its measured mass, m, and its
measured volume, V .

ρ ≈ m

V
(1-1)

This is, however, only a crude approximation of the density, ρ, of the brick and we see that we
can get a better approximation of it by measuring the mass and volume of a smaller chunk of
the brick and repeating the procedure. This will be a better estimate of the brick’s density,
but, nevertheless, an estimate. Of course, a mathematically-exact value of the density, can be
obtained by the following limit where the mass, dm, inside an infinitesimally small volume,
dV , is measured.

ρ = lim
dV→0

dm

dV
(1-2)

However, does the above mathematically-exact density make sense physically? As stated in
[11],

The quantity of matter is the measure of the same, arising from its density and
bulk conjunctly.

The conjunction of density and an objects bulk, or volume, is obviously the most important
part of the above statement. Therefore, if we let the volume, dV , of the piece of the brick
to become zero, it is equivalent to removing the bulk of the object from the relation entirely.
Since a zero-volume would contain no mass, the above mathematically-exact definition of the
brick’s density becomes just that: a mathematical concept. On the other hand, if the above
is framed in the following way,

m =
∫
V
ρ dV (1-3)

Deepesh Toshniwal Master of Science Thesis



1.1 Geometry and Physics 3

(?)

r(a)

r(b)

Measurement Approximation

Figure 1-2: A particle undergoing displacement during a finite time-interval, t. There is no
preferred path which the particle must take in a general situation, and the only thing that can
be said with certainty is that velocities should naturally integrate on time-intervals to give the
measured displacement as per Eq. (1-6).

where V is the chunk of the brick that we are interested in, we know that the above relation
will be exact for all volumes, no matter how big. Moreover, the physical nature of the relation
is maintained.

Similarly, consider a particle undergoing displacement s during a time-interval ∆t moving
from position r(a) to r(b) as shown in Figure 1-2. An estimate of the particle’s velocity can
be obtained by the following relation.

v = s

∆t = r(b)− r(a)
∆t (1-4)

The above assumes a straight-line trajectory for the particle when there is no reason why it
should be so. For a curved trajectory of the particle, it seems obvious that the above is going
to be a very crude estimate of the velocity and we can improve on it by selecting smaller and
smaller time-intervals. In the mathematical limit, for an infinitesimally small displacement
ds in an infinitesimally small time-interval, dt, we have the velocity given by the following.

v = lim
dt→0

ds

dt
(1-5)

Again, it is noted that if the time-interval is allowed to go to 0 as per the above limit, the
particle would not move at all, and hence the above would transform into a 0

0 limit, another
mathematical concept with little relation to the physics that it claims to represent. On the
other hand, if we reframe the above equation in the following form,

s =
∫
T
v dt (1-6)

we expect it to be true for time-intervals, T , of any size irrespective of the nature of the
particle’s trajectory. The above relation depends only on the initial and final displacements,
r(a) and r(b), and not on whether the particle’s trajectory between these points is a straight
line of a curved line. Relations between quantities which display such properties are called
topological/metric-free. Representation of such laws in numerical schemes, as will be seen
later in this thesis, can be done exactly.

Not all laws are topological, of course. On the other end of the spectrum we have certain
laws which are only approximate models of the behavior of real-world systems. For example,
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4 Introduction

with respect to fluids, the Newtonian assumption that stresses, τ , are linearly proportional to
strains, ε, is an empirical law whose sole purpose is to close the fluid-flow model by making
certain assumptions. The constant of proportionality is the viscosity, of course.

τ = µε (1-7)

These kinds of laws can be represented only approximately in numerical schemes and these
we will call material/metric-dependent/constitutive relations.

If we ignore the question of metric-free/metric-dependent relations for now, it is evident that
there exists certain natural associations between physical variables and geometric objects:

• mass-densities and volumes

• velocities and time-lines

This idea of associating physics with geometry is not new and has been around for multiple
centuries, at least. The conjunction between mass-density and bulk as stated in [11] is only
one such example. Maxwell, for example, remarked in [12]

But it is evident that all analogies of this kind depend on principles of a more
fundamental nature; and that, if we had a true mathematical classification of
quantities, we should be able at once to detect the analogy between any system
of quantities presented to us and other systems of quantities in known sciences,
so that we should lose no time in availing ourselves of the mathematical labors of
those who had already solved problems essentially the same.
[...]
At the same time, I think that the progress of science, both in the way of discovery,
and in the way of diffusion, would be greatly aided if more attention were paid in
a direct way to the classification of quantities.

More recently, Nobel-prize winning Physicist, Richard Feynman remarked in [13]:

Why are the equations from different phenomena so similar? We might say: “It
is the underlying unity of nature.” But what does that mean? What could such a
statement mean? It could mean simply that the equations are similar for different
phenomena; but then, of course, we have given no explanation. The underlying
unity might mean that everything is made out of the same stuff, and therefore
obeys the same equations. That sounds like a good explanation, but let us think.
The electrostatic potential, the diffusion of neutrons, heat flow - are we really
dealing with the same stuff? Can we really imagine that the electrostatic potential
is physically identical to the temperature, or to the density of particles? Certainly
is not exactly the same as the thermal energy of particles. The displacement of a
membrane is certainly not like a temperature. Why, then, is there an underlying
unity?
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3-cell0-cell 1-cell 2-cell

Figure 1-3: The different geometric objects that one can encounter in a 3D space.

[. . . ]
Is it possible that this is the clue? That the thing which is common to all the
phenomena is the space the framework into which the physics is put?

This association was rigorously investigated first by [1, 14], and then in [3, 15]. A first step
in the analysis of any physical phenomenon should be to consider the natural association
between the physical variables involved and geometric (and chronometric) objects: points,
lines, surfaces and volumes (time instants and time intervals), as per [1, 14, 3, 15]. These
geometric objects are referred to as n-dimensional cells, or n-cells, as shown in Figure 1-3.

The relation between geometric objects and physical variables also relies heavily on the ori-
entation of these objects, and endowment of an orientation enhances their structure [3]. The
objects listed above can have two types of orientation - inner and outer - and these are shown
in Figure 1-4 for a 2D space, and Figure 1-5 for a 3D space. The concept of oriented geometric
objects can be explained with the help of a 2-cell, for instance. Consider the inner-oriented
2-cell as shown in Figure 1-4 or Figure 1-5, and notice that the inner orientation of this cell
specifies a rotation inside the surface. At the same time, consider the outer-oriented 2-cell
as shown in Figure 1-5, and notice that this orientation specifies a crossing-direction through
the 2-cell. For a detailed exposition on orientation, the reader should look up [1, 3, 4, 16]. It
should be noted from Figure 1-4 and Figure 1-5 that outer orientation is determined by the
geometric object in question and its embedding space’s dimension. This can be best seen in
Figure 1-6 where the orientation of a point, for instance, can be seen to change from a vortex
sense of rotation around it for a 3-D embedding space to a direction through it for a 1-D
embedding space.

To these oriented objects, physical quantities such as mass/momentum/energy fluxes (outer-
oriented surfaces), velocities (inner-oriented lines) etc can be associated [1]. This ‘natural’
relation is mostly arrived at as a result of a heuristic analysis of the physical problem and
the governing equations, as detailed in [3, 1]. An important part of this analysis is looking
at the geometrical objects on which the local quantities are integrated naturally, and the
fact that direct comparison can be made only between objects with the same orientation.
The integrated local quantities on oriented geometric objects result in global quantities i.e.
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Inner-Orientation

Outer-Orientation

Figure 1-4: Different orientations that are possible for geometric objects in a 2D space.

Inner Orientation

Outer Orientation

Figure 1-5: Different orientations that are possible for geometric objects in a 3D space.
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1.2 Mimetic Discretization Schemes 7

3D 2D 1D

Figure 1-6: Different outer-orientations for a 0-cell depending on the dimension of the embedding
space

quantities that can be measured on finite-dimensional objects. This also leads to this approach
being treated as analogous to measurement processes, as highlighted in the above examples
of mass and displacement.

It should be noted here that integral relations such as the ones presented above have a
natural discrete representation since integrals yield discrete numbers. Moreover, by working
with integral values as degrees of freedom, important theorems such as Stokes and Gauss’
theorems can be easily represented even under geometric deformations (curved grids), as
shown in Section 2.1.

Thus, after a suitable geometric object has been determined for every physical variable, links
can be developed between them using topological relations and constitutive relations. Topo-
logical relations, as mentioned before, have an intrinsically discrete nature (metric free) that
allows their exact representation in numerical schemes, and it is the constitutive laws where
metric concepts (length, area, angle etc) are needed and approximations are made while
discretization, chiefly because these relations are valid only in a continuous setting.

1.2 Mimetic Discretization Schemes

Analytical solutions to physical-field problems are not always available and this necessitates
the use of a computer for approximating a solution. Computers, however, are unable to
handle continuous representations of variables. Thus, a projection from an infinite number
of degrees-of-freedom onto a finite number of degrees-of-freedom becomes mandatory (see
Chapter 3). These projections may result in a loss of information depending on the nature of
relation being discretized (topological/constitutive).

As explained in [3], conventionally, the discretization procedure is carried out starting from
the governing set of partial differential equations. It consists of deriving schemes that modify
the properties of the governing equations the least, and can be appropriately grouped into
“numerical methods for partial differential equations”. The focus of mimetic discretization
strategies is based instead on “numerical methods for physical field problems”: formulating the
physical problem in a set of partially discrete equations, which can be subjected to suitable
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8 Introduction

analysis, with the aim of preserving, as much as possible, the physics of the problem in
question.

A partially-discrete representation of the physical problem lays bare its ‘structure’, making
clear the distinction between the topological and material relations constituting the problem,
where the former can be exactly represented in a discrete setting. This distinction is at the
heart of mimetic discretization schemes, also called compatible discretization schemes. As
their name suggests, these schemes aim to ‘mimic’ the physics behind the physical problem
as much as possible.

It should be noted at this point, however, that the numerical methods listed at the beginning
of this chapter and mimetic-schemes are not mutually exclusive. The conservation-mimicking
properties of conventional schemes as well as mimetic schemes can be found in [3], and also
[17] should be seen for a nice review. The conservation-properties of these schemes are the
reason why they are being explored further in this work.

Fluid-flow problems are also being looked at extensively by the Discrete Exterior Calculus
group at California Institute of Technology with applications to computer graphics in mind.
While [6, 18, 19] provides an excellent introduction to these methods, [20] presents geomet-
ric integration based on conserving circulation, [21] presents discrete Lie-advection, and [22]
presents an approach that combines differential-geometry with a variational-calculus frame-
work. Similar to the concepts presented in this thesis are the concepts proposed in [23, 24]
where they propose a possible geometric treatment of stresses. The Finite-element Exterior
Calculus presented in [25] is also built on similar concepts, and in [26] is applied to evolu-
tion problems. Diffusion related problems are treated in [27, 28]. Algebraic Topology guided
numerical-schemes are also developed in [5], and their reduction-reconstruction operators have
also been exploited in this work.

Closer to home, the work presented in [7] extends compatible discretization schemes to quadri-
lateral elements. The entire mathematical framework is explained in this paper. The works
that [7] builds upon, and the ones that follow it, are [29, 30, 31], where the special edge-
basis used in this work (see Chapter 3) are explained and an introduction to compatible
discretization is given. Convection-diffusion problems and physically accurate advection are
treated in [32, 8]. In addition to these works, [33, 34, 8, 35, 36, 37] are the students’ theses
published along the same lines. These have explored Hodge-decomposition, diffusion, ad-
vection, and mesh-refinement problems. The solution-representation basis used have been
piecewise-polynomials as well as splines.

1.3 Thesis Outline

This thesis develops upon the concepts presented in [7] and other related work. In previous
works it had been noticed that momentum conservation was not being satisfied, and the
motivation behind this work is to construct a discretization scheme that adheres to this
physical-symmetry that all fluid-flows must satisfy. The questions that we try to answer are:

• What is the appropriate treatment for the physical quantity momentum?
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1.3 Thesis Outline 9

• Is the law of conservation of momentum like any other conservation law?

• How should bundle-valued differential-forms be implemented in the framework intro-
duced in [7]?

Before jumping down the rabbit-hole, we introduce in some detail the mathematical frame-
work behind this work. This is done in Chapter 2. Should the reader desire to pursue the
mathematics behind this in more detail, recommended literature that should be perused would
be [16, 2, 38].

Once the mathematical framework has been introduced, the discretization of our mathemati-
cal operators is explained in Chapter 3. In this chapter convergence properties related to this
discretization are also investigated.

Next, using the operator discretizations developed in Chapter 3, a few physical-field prob-
lems are solved in Chapter 4. The problems that are briefly looked at are potential-flow,
eletromagnetic resonant cavity, Darcy flow, and scalar and active-advection.

In Chapter 5, the geometric character of momentum (and its fluxes) is explored, and suitable
discretization of the Navier-Stokes equations is done. Using this discretization, numerical-
simulations are done in Chapter 6 for Kovasznay flow and Lid-driven cavity flow, Figure 1-7,
and the results analysed. Some conclusions and recommendation are provided in Chapter 7.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

ψ(0)

(a) Stream-function

x

y

p
(2)

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Pressure

Figure 1-7: Stream-function and pressure contours plotted for the lid-driven cavity problem with
a Re = 1000. The contours plotted are in accordance with the levels used in [9]. Mesh size is
1X1 and made up of elements of order 15.
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Chapter 2

Background Theory

The mathematical framework behind mimetic discretization schemes is constructed based on
an interplay between differential-geometry and algebraic-topology. These branches of mathe-
matics are, however, unfamiliar territory with regards to a few disciplines of science/engineer-
ing. This chapter, thus, attempts to briefly introduce all the relevant concepts to the reader.
For a more in-depth treatment, the text-books [16, 2, 39, 38, 40], and the papers [7, 6] are
recommended.

In Section 2.1, the concepts of differential-geometry are presented with a basic overview of
all the operators that are relevant to this work. Next, the concepts of algebraic-topology are
presented in Section 2.2, where certain analogies with differential-geometry are pointed out
to the reader. At the end, in Section 2.3, the mimetic-framework, as discussed in detail in
[7], is introduced.

2.1 Differential Geometry

Translation of equations governing physical field problems in the language of differential
geometry is very important because of the following reasons:

• the presence of discrete analogues of several of its concepts in algebraic topology, and

• the clear association of variables with geometric objects which reveals much of the
underlying structure, and implementation-wise leads to readily obtainable global values
instead of local values which are more of a mathematical abstraction
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12 Background Theory

This section aims to introduce the basics of differential geometry with differential forms and
some important operators acting on them. Important natural pairings between differential
forms with geometric objects (points, curves, surfaces and volumes) will be seen to exist, which
will pave the way to the natural pairings in a discrete setting with their discrete counterparts,
cochains and chains.

2.1.1 Differential Forms

Differential forms, or exterior differential forms, are simply the objects “that one finds under-
neath an integral sign” [39]. In other words, a k-form is simply an object that can be naturally
integrated on a k-dimensional manifold. This integration is achieved with the help of a du-
ality pairing that exists between differential forms and tangent vectors. Before progressing
further, a brief introduction to (co)tangent spaces and (co)tangent bundles is warranted. Dur-
ing the course of introduction of cotangent spaces, the definition of differential forms will be
completed.

Tangent Spaces and Bundles

Consider a differentiable manifoldMk. Define the tangent space, Mk
p, toMk at point p as

the vector space consisting of all tangent vectors to the manifold at p. An example basis of
this k-dimensional vector space is

∂

∂x1

∣∣∣∣
p
,
∂

∂x2

∣∣∣∣
p
· · · ∂

∂xk

∣∣∣∣
p

if the coordinate system at p is (x1, x2, · · ·xk). This is the coordinate basis or the coordinate
frame. Note that the symbols P, C,S and V are reserved for 0-, 1-, 2- and 3-dimensional
manifolds (i.e. points, curves, surfaces and volumes). No dimension-specifying superscript
will be used for these.

Locally, the tangent space to a n-dimensional manifold,Mn, looks like Rn. For each point p
inMn we can define a tangent space. The collection of all such tangent spaces is called the
tangent bundle denoted by TMn.

TMn :=
⋃

p∈Mn

Mn
p
∼=Mn × Rn (2-1)

The last expression shows that the tangent bundle can (locally) be decomposed into an element
of Mn and an element of Rn. Such a decomposition is called a local trivialization of the
tangent bundle. The dimension of the manifold is n and the dimension of the tangent bundle
is (locally) 2n. Using the local trivialization we can write and element of the tangent bundle
as (p,Xp), i.e. the point p in Mn and the vector Xp at that point. Also note for fixed point
p the sum (p,Xp) + (p, Yp) = (p,Xp + Yp) is well-defined, since the summation takes place in
Rn, but an expression of the form (p,Xp) + (q, Yq) is not defined.
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2.1 Differential Geometry 13

Consider the map π : TMn →Mn. In terms of the local trivialization this map is given as
π : Mn × Rn →Mn with π(p,Xp) = p. Then we have that π−1(p) ∼= Rn is called the fiber
over p. The map s ; Mn → TMn is called a section or a cross section of the tangent bundle.
It assigns to each point p ∈Mn an element (p,Xp) ∈ TMn. A section of the tangent bundle
TMn is what is commonly called a vector field. Of course we then have that π ◦ s ≡ I is the
identity overMn. The space of sections in TMn is denoted by Γ(TMn).

For the numerical methods that we will discuss, we assume that we can describe the base
space Mn exactly. For very simple geometries this assumption poses no restrictions and for
more complex geometries we need more advanced tools such as a NURBS representation of
the manifold or a transfinite map. In a finite set of points pi in the domain (manifold) we
have the complete fiber π−1(pi).

Cotangent Spaces, Bundles, and Differential Forms

Let E be the tangent space to a manifold Mk at point x ∈ Mk, that is Mk
x. This means

that for a covariant tensor Q,

Q : E × E × E × · · ·E → R

Here, Q is not dependent on the basis of E being used. Let vi be vectors in E, and let the
basis of E be the coordinate frame used in the introduction to tangent spaces. The dual space
to this vector space is denoted by E∗, and this is called the cotangent space. The basis of
this dual space is defined with the help of the following equation,

dxi
(
∂

∂xj

)
= δij (2-2)

where the basis of this dual space are denoted by,

dx1, dx2 · · · dxk

where δij is the Kronecker delta. Note that the use of a coordinate frame is not necessary, and
in the event of a different coordinate system being used, the basis of the dual space can again
be evaluated based on the above duality pairing between tangent and cotangent spaces. If
the basis of the tangent space be represented by ei in this other coordinate system, and the
basis of the cotangent space be θi, there exists the following general pairing between these.

θi(ej) = δij (2-3)

It can be proven that the above θi span a vector-space themselves, [16]. The linear-functionals
(on tangent-vectors) belonging to this vector-space are then called covectors. From a physical
points of view vectors can be ‘seen’. For instance, a displacement r can be measured directly
with a ruler, but covectors are invisible. One can only assess covectors by their operation
on vectors. A typical example in nature is force, F . The only way we can quantify a force
is to apply it to a displacement, F (r), which equals the work done by the force over the
displacement r. This is the way force meter like a spring balance or scales work.

Master of Science Thesis Deepesh Toshniwal



14 Background Theory

Now a similar construction as for the tangent space can be set up. Consider a differentiable
manifold Mn again. With every point p ∈ Mn we associated a tangent space Mn

p which is
spanned by n linear independent basis vectors. The dual of the vector space is (Mn

p )∗ denoted
byMn

p∗ . So the fiber at p is vector space of covectors. The collection of all these fibers (Mn
p )∗

is called the cotangent bundle.
T∗Mn =

⋃
p∈Mn

Mn
p∗ (2-4)

While a section of the tangent bundle is what is commonly called a vector field, a section of
the the cotangent bundle is called a differential 1-form or a 1-form. The space of 1-forms on
the manifold Mn is denoted by

∧1E∗.

Differential forms then are higher-rank covectors which are multilinear real-valued functions
on a collection of vectors. An exterior differential form of rank k, α ∈

∧k E∗, is then defined to
be a covariant tensor of rank k that is anti-symmetric in each of its entries. Here,

∧k E∗ is the
vector space of k-forms. The following equation elucidates the anti-symmetry of differential
forms.

α(. . . ,vr . . . ,vs . . . ) = −α(. . . ,vs . . . ,vr . . . ) (2-5)

The above property also implies that in n-dimensional space, if k > n, “there are no nontrivial
k-forms on an n-manifold” [16], since a k-tuple of vectors on this n-dimensional vector space
would have to be linearly dependent. This also means that this formulation of differential
forms (in conjunction with the wedge product defined in the next subsection) can be useful
in studying linear independence of forms.

In R3, we can consider 1-,2-,and 3-forms, and look at them as objects that naturally integrate
on smooth curves, smooth surfaces and smooth volumes, while 0-forms are simply differen-
tiable functions. It will be seen later, when the wedge-product is introduced, that the concept
of orientation is intrinsic to differential forms and is built into their basis. For now, we can
simply represent the bases of the space of p-ranked differential forms,

∧pE∗ , as follows:
{dx, dy, dz} for p = 1, α(1); {dydz, dzdx, dxdy} for p = 2, β(2); and {dxdydz} for p = 3,
γ(3). The construction of these basis functions, and the intrinsic notion of orientation, will be
explained with the help of the wedge product later..

Following the above notation, α(1) can be written as:

α(1) = a(x, y, z)dx+ b(x, y, z)dy + c(x, y, z)dz (2-6)

In the above expression, a, b and c are functions. As is evident from the above expression,
α(1) integrates on a smooth, one-dimensional manifold, C, and the respective natural-pairing
can be shown as: 〈

α(1), C
〉

:=
∫
C
α(1) (2-7)

As we will later see, α(1) can be a physical variable, and the above pairing is the natural asso-
ciation between this physical variable and the 1D geometry. Similarly, β(2) can be expanded
in terms of its basis and is seen to integrate on a smooth, two-dimensional manifold, S, as
per the following duality: 〈

β(2),S
〉

:=
∫
S
β(2) (2-8)

Deepesh Toshniwal Master of Science Thesis



2.1 Differential Geometry 15

As shown above, a general 1- or 2-form will have 3-components in a 3D space. These can
be considered as the components of a vector on R3, and if treated as such, it is clear that
their association with geometry with be lost, and so will be the structure provided by the
duality-pairings in Eq. (2-7) and Eq. (2-8). Similarly, 0- and 3-forms, if only their components
are considered, can be associated with scalar fields alike, but this treatment would result in
the loss of their respective dualities with point objects, P, and volume objects, V.

Bundle-valued Differential Forms

In the process of describing momentum and other components of the momentum equation in
Chapter 5, certain exotic variables will be encountered. These are the covector/vector-valued
differential forms. These bundle-valued differential forms can be best explained as entities
that map tangent/cotangent-bundles to the space of normal differential forms.

So, for instance, a covector-valued differential form would be a map from the tangent bundle,
TMn to the space of p-forms,

α(1,p) : TMn →
p∧
E∗ (2-9)

where TMn contains all possible tangent vectors toMn that can be defined at a particular
point on the manifold, as was explained in the previous section.

Similarly, a vector-valued differential form would then map elements from the cotangent
bundle, T ∗Mn to the space of p-forms,

α1,(p) : T ∗Mn →
p∧
E∗ (2-10)

In the above equations, note that superscripts that are inside parentheses, (·), denote the
covector-degree of the variables. Thus, α(1,p) signifies a form that is covector-valued p-form.
Those superscripts that are outside the parentheses denote vector-degree of the variables.
Therefore, α1,(p) signifies a vector-valued p-form.

The above properties are the only ones that will be used in this work, and [16, 38, 41, 42]
should be perused for a more in-depth discussion.

The notation that is going to be adopted is explained as follows. The space of p-forms is
going to be generally denoted by

∧p. However, if the physical space (manifold) with which
these forms are associated is not clear from context, we will be denoting the space of p-forms
by
∧p(Ω) if the manifold is Ω.

2.1.2 The Wedge Product

The space of differential k-forms, as denoted earlier by
∧k E∗, is constructed as follows from

the space of 1-forms, E∗,
k∧

= E∗ ∧ E∗ ∧ · · · ∧ E∗ ⊂ ⊗kE∗ (2-11)
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16 Background Theory

The operation denoted by the symbol ∧ is the wedge product, or the exterior product, and the
symbol ⊗ denotes tensor-product. The wedge product between differential forms α(k) ∈

∧k
and β(l) ∈

∧l can be seen as the application of the wedge operator such that α(k)∧β(l) results
in a k + l exterior differential form, γ(k+l) ∈

∧k+l. Thus, the action of the operator can be
represented as follows.

∧ :
k∧
×

l∧
E∗ →

k+l∧
(2-12)

The action of the wedge-product can be seen as the skew-symmetrization of the tensor product
of differential forms [16]. This can be shown for the case of α(k) and β(l) as follows, where
their wedge product is seen to act on (k + l)-tuple of vectors vI , where I = i1, i2, ....ik+l,

α(k) ∧ β(l)(vI) :=
∑

⇀
K

∑
⇀
J

δJKI α(vJ)β(vK) (2-13)

where
⇀
K and

⇀
J are ‘directed’ subsets of I i.e. subsets with indices arranged in ascending

order, and δIJ is the generalized kronecker-delta defined as follows:

δIJ :=


1, if J is an even permutation of I
−1, if J is an odd permutation of I
0, if J is not a permutation of I

(2-14)

The most important properties of the wedge operator, which can be easily derived from the
above, are the following:

1. Antisymmetry: α(k) ∧ β(l) = (−1)klβ(l) ∧ α(k)

2. Associativity: (α(k) ∧ β(l)) ∧ γ(m) = α(k) ∧ (β(l) ∧ γ(m))

3. Linearity: (α(k) + β(l)) ∧ γ(m) = α(k) ∧ γ(m) + β(l)) ∧ γ(m)

In particular, because of the antisymmetry of ∧, for forms of odd-degree, we have

α(2k+1) ∧ α(2k+1) = 0 (2-15)

Now that we have a way of constructing higher-dimensional forms using lower-dimensional
exterior differential forms, we can construct the basis for 2-forms (shown in the previous
subsection on Differential Forms), using the basis for 1-forms,

dydz = dy ∧ dz, dzdx = dz ∧ dx, dxdy = dx ∧ dy (2-16)

It is clear from Eq. (2-15) earlier that basis such as dxdx, dydy, and dzdz do not exist. Also,
it can be seen that basis such as dydx, for instance, is simply −dxdy, and this is where the
concept of orientation is built into these forms. For example, consider the 2-form, β(2), and
integrate it on a 2-dimensional manifold, S. The vector calculus analog of the result is going

Deepesh Toshniwal Master of Science Thesis



2.1 Differential Geometry 17

to be
∫
S b.ndS, which is dependent on the direction of the surface normal, n. The concept

of the surface normal, on the other hand, doesn’t need to be invoked for
∫
S β

(2) because the
wedge product automatically gives S the right orientation.

A k-form, dxi1 ∧ · · · ∧ dxik , acting on a k-tuple of vectors, (v1, . . . ,vk), can be geometrically
seen to be ± the k-dimensional volume of the parallelopiped spanned by the projections of
the vectors into the coordinate plane, with the + sign being used if the projected vectors
define the same orientation as does the subset of the vector space basis, (∂i1 , . . . , ∂ik) [16].

2.1.3 The Exterior Derivative

A unique operator, d, can be defined that converts p-forms to (p+ 1)-forms on the manifold
Mk,

d :
p∧
→

p+1∧
(2-17)

with the following properties,

1. Additive: d(α+ β) = dα+ dβ

2. Anti-derivative: d(α(p) ∧ β(q)) = dα(p) ∧ β(q) + (−1)pα(p) ∧ dβ(q)

Note that dα(0) is defined to be the normal differential of the function α(0),

dα(0) = ∂α

∂x
dx+ ∂α

∂y
dy + ∂α

∂z
dz (2-18)

where (dx, dy, dz) are the 1-form basis in a local, possibly curvilinear coordinate system. A
form α is said to be exact if it is the exterior derivative of another form.

α = dβ (2-19)

The action of d on exact forms is as follows,

d2β := d(dβ) = 0, for all forms β (2-20)

In the same spirit, a closed form is defined as,

dα = 0 (2-21)

As is clear from the above, all exact forms are closed, but not all closed forms are exact.

The above completes the definition of the exterior derivative. From its application on 0-forms
in R3, Eq. (2-18), it can be seen that the vector proxy of the resultant 1-form components
resembles the gradient (∇) of a scalar function. Similarly, its application on a 1-form, α(1),
and a 2-form, β(2), in R3 gives the following, respectively,

dα(1) =
(
∂c

∂y
− ∂b

∂z

)
dydz +

(
∂a

∂z
− ∂c

∂x

)
dzdx+

(
∂b

∂x
− ∂a

∂y

)
dxdy (2-22)
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d

dd

d d

d

Figure 2-1: Double de Rham complex, which is a straightforward extension of Eq. (2-24). Here
differential-forms of the same orientation are seen to be connected with the exterior derivative.
As will be seen in Section 2.2, these relations are topological.

and,

dβ(2) =
(
∂a

∂x
+ ∂b

∂y
+ ∂c

∂z

)
dxdydz (2-23)

where (a, b, c) is the vector proxy of the components of α(1) and β(2). It can be seen that
Eq. (2-22) resembles the curl (∇×), and Eq. (2-23) the divergence (∇.) of a vector in vector
calculus. This means, since d2α = 0 for all forms α from Eq. (2-20), double application of
the exterior derivative resembles the following vector calculus identities,

• ∇ × (∇f) = 0

• ∇ · (∇× v) = 0

The exterior derivative, thus, generalizes the concept of gradient, curl and divergence, to
arbitrary dimensions and curvilinear coordinates as well. It will be seen in the next subsection
that the exterior derivative also helps generalize Stokes’ theorem.

We can now write down the de Rham’s complex shown in Eq. (2-24).

R −→
∧0 d−→

grad

∧1 d−→
curl

∧2 d−→
div

∧3 d−→ 0 (2-24)

Note that the differential forms shown in Eq. (2-24) do not have an inner- or outer-orientation
specified; the only requirement is that all of them should have the same orientation (i.e. inner
or outer) for us to be able to put them in the sequence shown. Then, for different orientations,
we can construct the double de Rham complex as shown in Figure 2-1. The geometric objects
associated with the appropriate differential forms are shown in the figure. The horizontal
links formed by d connect forms of the same orientation (p-forms with (p + 1)-forms of the
same orientation, to be specific).
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∫
∂S α

(1) ∫
S dα(1)

Figure 2-2: Stokes theorem demonstrated for a 2-dimensional manifold, S. For a 2D manifold,
this is equivalent to the conventional Stokes’ line-integral theorem. This is easily extensible to
n-dimensions, as shown in Eq. (2-25).

2.1.4 Generalized Stokes’ theorem

As seen in the previous subsection, the exterior derivative is a generalization of the operators
gradient, curl and divergence in vector calculus, depending on the space of differential forms,∧k,on which the operator is acting, and thus results in Generalized Stokes’ theorem, Eq. (2-
25), ∫

Mk+1
dα(k) =

∫
∂Mk+1

α(k) (2-25)

which is basically,

• Fundamental theorem of Calculus for k = 0,

• Stokes’ line-integral theorem for k = 1,

• Gauss’ divergence theorem for k = 2.

In the above, ∂ is the boundary operator acting on the manifoldMk+1. Eq. (2-25) states that
the integration of the exterior derivative applied to a k-form on Mk+1, which is a (k + 1)-
dimensional manifold, is the same as the integral of the k-form on the k-dimensional boundary
of the manifold. Invoking the duality pairing seen in Eq. (2-7) and Eq. (2-8), we see that,〈

dα(k),Mk+1
〉

=
〈
α(k), ∂Mk+1

〉
(2-26)

The above states that the exterior derivative is the formal adjoint of the boundary operator.
We will see later how this concept will be useful in defining the discrete exterior derivative
using concepts of algebraic topology, which are to be introduced in Section 2.2.
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Φ

Φ−1

∧p Ω′
∧p Ω

(Φ−1)∗

Φ∗

Ω Ω′

Figure 2-3: While Φ maps the domain Ω to Ω′, Φ−1 maps differential-forms from Ω′ to Ω. This
is an extremely important property that makes the implementation of mimetic schemes very easy.

2.1.5 The Pullback Operator

The pullback operation is explained here keeping the implementation of our scheme in mind.
In computational approaches such as the one we are talking about here, it is quite popular
to have a reference element on which all analysis is done, and then use mappings to go from
the simple rectangular reference element to the (usually) more complex, curvilinear physical
space. In this work, Lagrange polynomials are used as the interpolation functions for the 0-
form quantities and edge functions for the 1-form quantities [29, 43] in one-dimensional space.
Quantities in a higher dimensional space (limited to two-dimensions here) were represented
with the basis functions formed by taking appropriate tensor products of one-dimensional
basis functions, since only quadrilateral elements were considered.

Since

• these functions are used for the finite-dimensional continuous representation of the field
obtained as the result of a suitable projection operator [7], and

• they are all defined on simple, rectangular, reference elements

it is much easier to do all analysis on the reference element with the operators defined above.
Fortunately, the language of differential geometry developed above is as easy to use in a
curvilinear coordinate system as in a Cartesian one. Hence, a mapping is used between
parametric and physical space. Along with this mapping comes the pullback operator and
some of its very important properties that actually make the use of differential forms as easy
on curved domains as on rectangular domains. This is shown in Figure 2-3

Consider a differentiable map Φ that acts on the parametric space, Ω, where the coordinates
are u(ξ, η, ζ), and yields the physical space, Ω′, where the coordinates are x(x, y, z) - Φ : Ω→
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2.1 Differential Geometry 21

Ω′. Then, we have x = Φ(u), where Φ(u) = [Φx(u) Φy(u) Φz(u)]. The pullback operator
is then defined as,

Φ∗ :
p∧

Ω′ →
p∧

Ω (2-27)

and takes p-forms defined on Ω′ to Ω. This is simply a change of variables applied to the
differential forms defined on Ω′, where all physical field variables are situated. An example is
easy to demonstrate, so let α(1) be a 1-form defined on Ω′ and apply the pullback operator
to this form to get a form β(1) = Φ∗α(1)) on Ω. If the vector proxy of the components of α is
(a(x), b(x), c(x)), we have,

β(1) = Φ∗([a(x) b(x) c(x)][dx dy dz]T ) (2-28)

The pullback of 0-forms (functions), (a(x), b(x), c(x)) is,

Φ∗a(x) = a(Φ(u)) (2-29)

and, thus,

β(1) = [a(Φ(u)) b(Φ(u)) c(Φ(u))]


∂Φx
∂ξ

∂Φx
∂η

∂Φx
∂ζ

∂Φy

∂ξ
∂Φy

∂η
∂Φy

∂ζ

∂Φz
∂ξ

∂Φz
∂η

∂Φz
∂ζ

 [dξ dη dζ]T (2-30)

As is evident from the above example and was stated earlier, the pullback is simply a change
of variables applied to the differential form. Using the above property, we can rewrite the in-
tegration of a general k-form, α(k), define on a k-dimensional manifold, N k, which is obtained
by the mapping Φ :Mk → N k, as follows,∫

N k
α(k) =

∫
Mk

Φ∗α(k) ↔
〈
N k, α(k)

〉
=
〈
Mk,Φ∗α(k)

〉
(2-31)

See also Figure 3-2. This means that instead of carrying out the integration of the form in a
possibly complex physical space, it could be carried out in the rectangular parametric space
with the help of Φ∗.

The pullback operator has some nice properties in that it commutes with the wedge product
and the exterior derivative, which also displays their coordinate free character.

Φ∗(α(k) ∧ β(l)) = (Φ∗α(k)) ∧ (Φ∗β(l)) (2-32)

Φ∗dα(k) = dΦ∗α(k) (2-33)

Using Eq. (2-33). we can also construct the following commutation diagram.

α(p) d−→ β(p+1)

Φ∗ ↓ Φ∗ ↓

γ(p) d−→ ω(p+1)

(2-34)
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Using the above properties, it is easy to see how the pullback of 2-form basis dxdy ,for instance,
can be done.

Φ∗dxdy = Φ∗(dx ∧ dy)
= (Φ∗dx) ∧ (Φ∗dy)

=
(
∂Φx

∂ξ
dξ + ∂Φx

∂η
dη + ∂Φx

∂ζ
dζ

)
∧
(
∂Φy

∂ξ
dξ + ∂Φy

∂η
dη + ∂Φy

∂ζ
dζ

)
=

(
∂Φx

∂ξ

∂Φy

∂η
− ∂Φx

∂η

∂Φy

∂ξ

)
dξdη +

(
∂Φx

∂η

∂Φy

∂ζ
− ∂Φx

∂ζ

∂Φy

∂η

)
dηdζ . . .

. . . +
(
∂Φx

∂ζ

∂Φy

∂ξ
− ∂Φy

∂ζ

∂Φx

∂ξ

)
dζdξ

The pullback of other basis functions can be done in the same way, and thus the pullback of
the entire 2-form can be constructed. The generalization to differential-forms of other degrees
is straightforward.

2.1.6 The Interior Product

The interior product of a k-form, α(k) with a vector-field, v, is defined as the operation that
takes k-forms to (k − 1)-forms

iv :
k∧
→

k−1∧
(2-35)

and the operator definition is as follows:

ivα
(k)(b1,b2, . . . ,bk−1) = α(k)(v,b1,b2, . . . ,bk−1) (2-36)

Its action on zero-forms is defined to be zero.

ivα
(0) = 0 (2-37)

The interior product is simply a way of contracting the differential form with a vector-field.
Its most important properties can be outlined as,

1. Linearity: iv+uα
(p) = ivα

(p) + iuα
(p)

2. Anti-derivation: iv
(
α(p) ∧ β(q)

)
= ivα

(p) ∧ β(q) + (−1)pα(p) ∧ ivβ
(q)

Physically, the interior product can be defined with the help of a vector-field and the flow
generated by it. This is explored here in informal terms. Consider a p-form, α(p), defined
on an n-dimensional manifold, Mn. Consider a (p − 1)-dimensional submanifold of Mn,
N p−1. Let this manifold flow-out under the influence of the vector-field, v, for time t. The
flowed out p-dimensional manifold, Kp, is shown in Figure 2-4, where φt is simply the flow
of v [21]. Then, the instantaneous change in time of α(p) evaluated on Kp is defined as the
interior-product of α(p) with v. ∫

N p−1
ivα

(p) = d

dt

∣∣∣∣
t=0

∫
Kp
α(p) (2-38)
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N p−1
t=0

φt

Kp

N p−1
t=t0

Figure 2-4: Dynamic-definition of the interior-product as outlined in [21, 4, 36, 8]. The p − 1
dimensional manifold, N p−1, flows out under the influence of a transverse vector-field and forms
an extruded p-dimensional surface, Kp. The interior-product, or intrusion, is the adjoint of this
extrusion.

2.1.7 The Lie Derivative

The Lie-derivative of a p-form, α(p) with a vector-field, v, is defined as the operation that
takes the p-form to a p-form

Lv :
p∧
→

p∧
(2-39)

with the operator being defined by Cartan’s magic formula as:

Lvα(p) = d ◦ iv
(
α(p)

)
+ iv ◦ d

(
α(p)

)
(2-40)

Some important properties of this operator can be outlined as,

1. Commutation with the exterior derivative: Lvdα(p) = dLvα(p)

2. Derivation: Lv
(
α(p) ∧ β(q)

)
= Lvα(p) ∧ β(q) + α(p) ∧ Lvβ(q)

Lie-derivatives are an integral element of mechanics. The first property above has an impor-
tant consequence in that if we have a closed form, α(p), then using Eq. (2-21) we can state
that the Lie-derivative of a closed-form yields a closed-form again. This has been utilized, for
instance, in the vorticity advection equations written down with the help of Lie-derivatives
[21]. More specifically, evolution problems are represented with the help of Lie-derivatives
(see Chapter 4 and Chapter 5). Their action on standard volume-forms, σ, can be seen as the
effect of the flow generated by v on volumes (see Chapter 5). A volume-form, σ, is simply
the standard highest-degree differential-form. For R3, for instance, this is just dxdydz. For a
deeper exposition on the Lie-derivative, please see [36, 21].
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2.1.8 The Covariant Derivative

Consider a 1-form, α(1) , with ai as its components. Let us take the partial derivative of these
components with respect to coordinate direction xj ,

Axij = ∂aj
∂xi

(2-41)

If a coordinate transformation from the coordinate system (x) to a coordinate system (x’) is
made, the above derivative transforms as follows,

Ax
′
ij =

∂a′j
∂xi′

=
∑
l,k

∂xl

∂xi′
∂

∂xl

(
∂xk

∂xj′
ak

)

=
∑
l,k

∂xl

∂xi′
∂xk

∂xj′

(
∂

∂xl
ak

)
+
∑
l,k

ak
∂xl

∂xi′
∂

∂xl
∂xk

∂xj′

(2-42)

The first term on the right-hand side is recognizable as the correct way that a covariant tensor
of rank 2 should transform. However, the second term is clearly not a tensor transformation,
and what this implies is that the normal partial derivative is not tensorial in nature. The
second term on the right hand side can be written down as follows.

∑
l,k

ak
∂xl

∂xi′
∂

∂xl
∂xk

∂xj′
=
∑
k

ak
∂2xk

∂xi′∂xj′
(2-43)

This is term that is non-tensorial that we must get rid of. We can do this by adopting the
following ways to define a new kind of derivative operation:

• Anti-symmetrize the partial derivative of 1-forms to get rid of the non-tensorial term:(
Axij

)
1

= ∂aj
∂xi
− ∂ai
∂xj

(2-44)

Since the term in Eq. (2-43) is symmetric in its indices i′ and j′, anti-symmetrization
gets rid of this term.

• Add the negative of the non-tensorial term in Eq. (2-43) to the partial derivative:

(
Ax
′
ij

)
2

=
∑
l,k

∂xl

∂xi′
∂xk

∂xj′

(
∂

∂xl
ak

)
+
���

���
��∑

k

ak
∂2xk

∂xi′∂xj′
−
���

���
��∑

k

ak
∂2xk

∂xi′∂xj′
(2-45)

The first method of defining the derivative operation,
(
Ax
′
ij

)
1
, is exactly how the exterior

derivative, d, is defined for 1-forms. For higher-degree forms, a normalization is done with
the anti-symmetrization. The second method of defining the derivative is called the covariant
derivative, ∇, and the partial derivative defined this way does transform tensorially.

Deepesh Toshniwal Master of Science Thesis



2.1 Differential Geometry 25

We represent the tensorial version of ∂
∂ xi by ∇i, and its action is defined as follows on vector-

and covector-fields,

Vector-components, aj : ∇iaj = ∂aj

∂xi
+ Γjika

k

Covector-components, aj : ∇iaj = ∂aj

∂xi
− Γkijak

(2-46)

where Γijk are the Christoffel symbolds (of the second kind) and transform like the non-
tensorial part of normal partial derivatives. This means that they are not tensorial themselves,
but help in making another non-tensorial entity, ∂

∂xi , tensorial.

The covariant derivative is relevant only in a non-flat space since the Christoffel symbols
are zero in flat space. In a flat coordinate system, we can compare vector-fields by simply
comparing their components since the basis vectors stay essentially the same at every point.
The Christoffel symbols can be seen as encoding information about the variation of basis-
vectors form one point in space to another.

The Exterior Covariant-differential

The derivative operation defined by Eq. (2-46) has a tensorial nature and it can act on
vector- and covector-fields. However, it does not have an anti-symmetric tensorial nature.
What we mean by this is that the operation yields tensors, but not the objects of our in-
terest - differential-forms. Moreover, which derivative opeartion do we use for budle-valued
differential-forms which, as we will see in Chapter 5, will play a central role in our formula-
tion? Here we introduce the third derivative operator, the exterior covariant-differential [16]
and this gets the job done.

The exterior covariant-differential maps a covector-valued p-form to a covector-valued (p+1)-
form.

d∇ :
1,p∧
→

1,p+1∧
(2-47)

This is the derivative operation that we need for manipulation of bundle-valued differential
forms in a general co-ordinate system. If we have a covector-valued p-form, α(1,p) =

∑
i θ
i⊗αpi ,

the action of the exterior covariant-differential on it is given by,

d∇α(1,p) =
∑
i

θi ⊗
(
dαpi −

∑
r

ωir ∧ α(p)
r

)
(2-48)

where ωir are 1-forms related to the Christoffel Symbols. These are zero in a flat-space too.

In this work only flat-space has been considered and the 1-forms ωir have been ignored.
The action of the exterior covariant-differential is then treated as just the exterior-derivative
applied to the p-form in a covector-valued p-form. This will play a pivotal role in a future
work where the extension of this work is done to curvilinear grids.
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?

d

dd

d d

d

???

Figure 2-5: The complete double de Rham complex including the connection between objects
with different orientations. These connections are achieved with the help of the Hodge-? .

2.1.9 The Hodge-? operator

The Hodge-? operator, ?, is a generalization of α(1) → iAσ by mapping k-forms to (n − k)-
forms (which are referred to as the Hodge-dual of the respective k-forms),

? :
k∧
→

n−k∧
(2-49)

and it does so in the continuous setting. Its action in R3 can be easily seen as,

? dx = dydz, ?dy = dzdx, and ? dz = dxdy (2-50)
?1 = dxdydz, and ? dxdydz = 1 (2-51)

σ is the volume-form

Application of the Hodge-? twice gives the original k-form back but with a + or - sign in
front of it as per the following equation.

? ?α(k) = (−1)k(n−k)α(k) (2-52)

It was seen in Figure 2-1 that the exterior derivative forms links between differential forms of
the same orientation in the two rows of the double de Rham complex. The Hodge-? operator
is an operator that helps connect the two rows of the de Rham complex. This resembles
material laws in a physical problem [3]. It is achieved by associating differential forms from
one row of the complex to dual geometric objects, and thus mapping them onto differential
forms of different orientation in the other row of the complex. Thus, the complete double de
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Rham complex can be constructed as shown in the equation below.

R −→
∧0 d−→

∧1 d−→
∧2 d−→

∧3 d−→ 0

↑ ↑ ↑ ↑

? ? ? ?

↓ ↓ ↓ ↓

0 d←−
∧3̃ d←−

∧2̃ d←−
∧1̃ d←−

∧0̃ ←− R

(2-53)

The tilde in the bottom row represents dual-orientation of the top-row of the complex in
Eq. (2-53). The action of the Hodge-? is also clear from its action in R3 as demonstrated
in Eq. (2-51), where it was seen that the Hodge-? operator associated, for instance, surface
values (dxdy) with line values (dz).

A positive-definite inner product between p-forms is introduced here, 〈., .〉 :
∧p×∧p → R,

defined by,

〈
α

(1)
1 ∧ α

(1)
2 · · · ∧ α

(1)
p , β

(1)
1 ∧ β(1)

2 · · · ∧ β
(1)
p

〉
:=

∣∣∣∣∣∣∣∣∣∣

〈
α

(1)
1 , β

(1)
1

〉
· · ·

〈
α

(1)
1 , β

(1)
p

〉
...

...
...〈

α
(1)
p , β

(1)
1

〉
· · ·

〈
α

(1)
p , β

(1)
p

〉
∣∣∣∣∣∣∣∣∣∣

(2-54)

where α(1)
i and β(1)

j are 1-forms, with their point-wise inner product being defined as,〈
α

(1)
i , β

(1)
j

〉
:=
∑
k,l

(αi)k(βj)lgkl (2-55)

where gkl are the coefficients of the inverse of the metric tensor, G. In R3, for example, G is
equal to an identity matrix.

G =


1 0 0

0 1 0

0 0 1

 (2-56)

In the case of a coordinate change, as is evident from the index placement of coefficients of
G, the coefficients gij transform as covariant tensors of rank two. Another useful quantity
defined for each metric tensor is g,

g := |G| (2-57)

The inner product thus defined has a metric built into it, and using it the Hodge-? can be
alternatively defined as,

α(1) ∧ ?β(1) =
〈
α(1), β(1)

〉
σ (2-58)

As mentioned above, the Hodge-? is defined only in the continuous setting, and this is the
reason why interpolation functions, introduced in Chapter 3, are needed in the first place.
If it weren’t for this ‘lack of inherent discreteness’ in the Hodge, all relations could have
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been expressed in purely topological formulations, as will be shown later. This is where
the approximations come into the picture, and this is where the use of spectral elements
facilitates arbitrary-order approximations and exponential convergence (Chapter 3, Chapter 4
and Chapter 6).

The Codifferential

The codifferential, d?, is a derivative of a differential form that, unlike the exterior derivative,
takes differential forms of rank (k + 1) to differential forms of rank k.

d? :
k+1∧
→

k∧
(2-59)

The codifferential is constructed with the combination of the Hodge-? and the exterior deriva-
tive in the following way,

d? = (−1)n(k+1)+1 ? d? (2-60)

and contains a metric. Using the properties of the exterior derivative and the Hodge,

d?d? = ±(?d?)(?d?) = ± ? (dd)? = 0

The codifferential is in fact adjoint of the exterior derivative on boundary-less manifolds.(
d?α(k+1), β(k)

)
Mn

=
(
α(k+1), dβ(k)

)
Mn

(2-61)

If the manifold has a boundary, ∂Mn, the above relation doesn’t hold anymore and there is
an addional boundary integral that must be considered.(

d?α(k+1), β(k)
)
Mn

=
(
α(k+1),dβ(k)

)
Mn
−
∫
∂Mn

β(k) ∧ ?α(k+1) (2-62)

The above equation states that on manifoldsMn that are closed, or for differential forms that
are zero on the boundaries of Mn, the codifferential operator is the adjoint of the exterior
derivative [16]. However, on manifolds with boundaries, one does have a non-zero term on
the right hand side which is simply the integral of β(k) ∧ ?α(k+1) ∈

∧n−1 on the boundary of
Mn. This is important and should be kept in mind while implementing the codifferential for
domains with non-periodic boundaries, or domains with non-zero forms on the boundaries.
This is further treated in Chapter 3.

The Laplace Operator

The Laplacian of a function, f , in R3 can be written down as

∇2f = ∇.(∇f)

and that of a vector, f , can be written down as

∇2f = ∇(∇.f)−∇× (∇× f)

Deepesh Toshniwal Master of Science Thesis



2.2 Algebraic Topology 29

In the same spirit, a Laplacian operator for differential forms can be defined that is the
negative of the vector-calculus Laplacian and maps k-forms to k-forms.

∆ :
k∧
→

k∧
(2-63)

The operator can then be written down in terms of the exterior derivative and the codiffer-
ential as,

∆ = dd? + d?d (2-64)

and is a generalization of ∇.

2.2 Algebraic Topology

Topology can most simply be defined as the study of connectivity. It deals with properties
that are invariant under continuous deformations of space. Algebraic topology is the discrete
counterpart of differential geometry, ans is the perfect tool for translating all purely topological
relations - so, the de Rham complex as shown in Figure 2-1 - to a discrete setting. The
advantage of this approach is that since topological relations need only the connectivity
information of the mesh, it is very easy to set up discrete counterparts of topological relations
on all kinds of meshes and, if the connectivity doesn’t change, the same relations would hold
for moving meshes as well.

2.2.1 Cell Complexes, Chains and Cochains

Cell Complex

In the beginning of Chapter 1, the notion of association of physical variables with points,
lines, surfaces and volumes was introduced. This means that the finite dimensional domain
where all analysis is done should have all the above mentioned p-cells, where p refers to the
dimension of the geometric object. This is fortunate because almost all computational meshes
built for such analysis do indeed possess all these geometric objects even though they are often
not referred to.

Following the above mentioned convention, points, lines, surfaces and volumes can be referred
to as 0-, 1-, 2-, and 3- cells as was shown in Figure 1-3. The cells are assumed to be properly
joined and that all p-cells ‘contain’ all the lower dimensional cells that they are directly
connected to. This means that a 3-cell contains all of its faces, edges and vertices such that
the intersection of two 3-cells is null only if they don’t have even a single vertex in common.
The boundary of a p-cell is then made up of (p−1)-cells and these are referred to as the faces
of the p-cell. Similarly, if a p-cell is contained in a (p+ 1)-cell, the latter is referred to as the
coface of the former [14, 35].

There was another requirement for the association between physical variables and geometric
objects to be meaningful, and this was the requirement of the geometric objects having a
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coherent orientation. To facilitate this, we should be able to identify two cell complexes in
the computational domain - an inner (outer) oriented primal complex and an outer (inner)
oriented dual complex. Once the complexes have been identified as such, global quantities
can be placed in the corresponding p-cells with the proper orientation. This is done as shown
in Figure 2-5 and it can be seen that the excursion from the primal to the dual complex by
the application of the Hodge operator merely changes the geometric objects that physical
variables are associated. The scalar field associated to these objects is left unchanged upto a
factor of ±1. Thus, the Hodge-? operator is often called an identity operation. Compatible
orientation of all cells is assumed [3].

Chains and Cochains

A p-chain is defined as a weighted collection of p-cells. If p-cells are denoted with c(p), and
chains with Cp,

Cp =
np∑
i

wic((p),i) (2-65)

where np is the total number of p-cells in the domain, and wi are the weights associated with
them. Although the weights can be chosen to be anything, it would be easier to work with
crisp cells and thus they are restricted to +1/-1 or 0, where the three cases refer to a p-cell
having a positive/negative orientation or the p-cell not being a part of the chain, respectively.
Thus, a p-chain is a linear combination of all the p-cells that are part of the cell complex.
(Positive and negative orientations are going to be introduced shortly.)

Similarly, the concept of cochains can be developed as a set of global quantities, obtained from
the integration of p-forms on the relevant p-dimensional geometric entities with the correct
orientation and numbering. Denoting a p-cochain by Cp,

Cp =
np∑
i

aic
(p)
i (2-66)

The numbers ai are merely discrete real numbers. As we will see later, with respect to
physical problems, these will be global quantities on ith p-cells. In other words, these will be
simply results of integration of p-forms on appropriate cells as per the duality pairing shown
in Eq. (2-7) and Eq. (2-8). A duality pairing also exists between chains and cochains which
can be represented as follows,

〈Cp, Cp〉 =
np∑
i

np∑
j

aiwj
〈
c

(p)
i , c((p),j)

〉
(2-67)

Now,
〈
c

(p)
i , c((p),j)

〉
= δij since the ith p-cochain is associated with the ith p-cell only. This

results in the final expression for the chain-cochain duality pairing as,

〈Cp, Cp〉 =
np∑
i

aiwi (2-68)
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s1

c1

c4

c2

c3

p3p1

p4p2

Figure 2-6: The numbering and default orientations chosen for 1- and 2-cells are shown in this
figure. The 0-cells are oriented as sinks.

This is similar to the integration of differential forms. We will use the above concept later to
replace integration by simple summation of global quantities.

Note that to make notation easier, the symbols c(p)
i and c((p),j) would be dropped henceforth

and the duality pairing would be automatically assumed. The subscripts of the cochains will
imply which chain they are associated with.

Now that we have the analogy with differential geometry in mind, we can move on to derive
an expression for the discrete version of the exterior derivative - the coboundary operator.

2.2.2 The Boundary and Coboundary Operators

Once the orientation of all cells has been determined, the boundary operator can be defined
as the operator that, when applied to a p-chain, returns the (p − 1)-chain that forms its
boundary.

∂ : Cp → Cp−1 (2-69)

Since the boundary of a boundary is empty, application of the boundary operator twice to
any chain results in 0,

∂∂Cp = 0 (2-70)

Till this point, we had only talked about inner- and outer-orientations. Let us take a slight
detour to talk about positive and negative orientations. The orientation of a chain is said
to be positive if it is being considered with its default orientation. On the other hand, it
is said to be negative if it is being considered with an orientation that is opposite to its
default orientation. For example, consider the inner-oriented and numbered 2-cell shown in
Figure 2-6. As is seen in the figure, certain default orientation has been assigned to all the
inner-oriented mesh components. This default orientation can be summarized as,

Master of Science Thesis Deepesh Toshniwal



32 Background Theory

1. Points: All 0-cells are assumed to be oriented as sinks by default (not shown in Figure 2-
6).

2. Edges: Default orientation is assumed as going from left to right, or from bottom to
top, along the edges.

3. Surfaces: A clockwise sense of rotation inside the surface is assumed to be the assigned
default orientation.

Positive and negative orientations can be visualized better with the help of an example.
Consider again the oriented 2-cell shown in Figure 2-6. The edges of the 2-cell are shown
to be perfectly straight in Figure 2-6, however this is obviously not a requirement and it
could be a deformed 2-cell as well, as is shown in Figure 2-7. Consider this oriented 2-cell
first, and apply the boundary operator to it. This 2-cell with a sense of clockwise rotation
in it induces a matching, or compatible, orientation on its boundary and we are left with the
oriented 1-chain as shown in Figure 2-7. Now if we look carefully, it is apparent that some
of the edges (c2 and c3) shown in Figure 2-7 are being considered in an opposite sense to the
default orientation that was provided to them in Figure 2-6. This means that the oriented
2-cell induces a negative orientation on these edges. Similarly, we see that some of the edges
(c1 and c4) are being considered with their default orientation, or, in other words, with a
positive orientation. If we look back at Eq. (2-65), we see that the weight wi assigned to the
p-cell c((p),i) can then be set as ±1 to signify positive/negative orientation of this cell.

If the numbering of the cells is as shown in Figure 2-6, we can then write down the boundary
operator as,

∂s1 =
[
1 −1 −1 1

]


c1

c2

c3

c4


(2-71)

The oriented 1-chain shown in Figure 2-7 again induces a matching orientation on its bound-
aries formed by the 0-cells of the mesh. The application of the boundary operator to the
1-cells shown in Figure 2-6 is then equivalent to the following operation.

∂



c1

c2

c3

c4


=



−1 0 1 0

0 −1 0 1

−1 1 0 0

0 0 −1 1





p1

p2

p3

p4


(2-72)

The above representations of the boundary operator automatically lead to a discrete repre-

Deepesh Toshniwal Master of Science Thesis



2.2 Algebraic Topology 33
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Figure 2-7: The application of the boundary operator is shown for a 2-cell. The numbering
of the 2-cell is as shown in Figure 2-7. Since the operator is completely topological, it doesn’t
matter if the 2-cell edges are highly curved, as shown here, or completely straight, as shown in
Figure 2-7.

sentation of Eq. (2-70).

∂∂s1 = ∂

[
1 −1 −1 1

]


c1

c2

c3

c4



=
[
1 −1 −1 1

]


−1 0 1 0

0 −1 0 1

−1 1 0 0

0 0 −1 1





p1

p2

p3

p4


= 0

(2-73)

Thus a matrix representation of the boundary operator has been obtained. This can be easily
extended to multiple elements.

Let us define the coboundary operator, δ as the formal adjoint of the boundary operator.
Then,

〈δCp, Cp+1〉 := 〈Cp, ∂Cp+1〉 (2-74)

The analogy with generalized Stokes’ theorem, Eq. (2-25), is clear from the above definition.
The coboundary operator is thus the discrete analog of the exterior derivative and maps p-
cochains to (p + 1)-cochains. The coboundary operator thus allows a matrix representation
which is simply the incidence matrix representing the boundary operator.

Let us represent 0-, 1-, and 2-cochains by pi, ci and si. This means that if the coboundary is
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being applied to 0-cochains, we have,

c1

c2

c3

c4


= δ



p1

p2

p3

p4


=



−1 0 1 0

0 −1 0 1

−1 1 0 0

0 0 −1 1





p1

p2

p3

p4


(2-75)

Similarly, the application of the coboundary to a 1-chain can be represented by,

s1 = δ



c1

c2

c3

c4


=
[
1 −1 −1 1

]


c1

c2

c3

c4


(2-76)

It is no surprise then that the discrete representation of the coboundary operator satisfies the
property shown in Eq. (2-20).

δδ = ∂∂ = 0 (2-77)

From the formulation of the incidence matrices, as seen in the above example and listed as a
property of the boundary operator as well, we have ∂ ◦ ∂ = 0, and this leads to the fact that
δ ◦ δ = 0. A discrete de Rham complex can thus be setup in perfect analogy with Eq. (2-24),
and this is shown in Eq. (2-78).

R −→ C0 δ−→ C1 δ−→ C2 δ−→ C3 δ−→ 0 (2-78)

In the future, we will be representing the coboundary operator acting on p-cochains by Dp+1,p.
This is the notation that is used in Chapter 5 while presenting a discretization of the incom-
pressible Navier-Stokes equations.

A coboundary operator can be defined on the dual grid, and if the orientations of all cells
are taken properly, the following important relation between the coboundary operator on the
primal and dual grids can be established.

D(n−p+1,n−p) = (D( ˜p+1,p̃))T (2-79)

where a ~signifies that the operator is defined on the dual complex. This is the discrete
representation of the vector calculus identities ∇. = −(∇)T and ∇× = (∇×)T .

The complete de Rham complex thus can be setup as shown in Eq. (2-80). To recapitulate,
horizontal links (coboundary operator) signify topological relations and can be represented
exactly in a discrete setting, while the vertical links (discrete Hodge) do not appear naturally
in a discrete form, and have to be represented as such with the help of approximations made
while discretization. A discrete representation of the Hodge-? is derived in Chapter 3.
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R −→ C0 δ−→ C1 δ−→ C2 δ−→ C3 δ−→ 0

↑ ↑ ↑ ↑

?h ?h ?h ?h

↓ ↓ ↓ ↓

0 δ←− C 3̃ δ←− C 2̃ δ←− C 1̃ δ←− C 0̃ ←− R

(2-80)

2.3 Mimetic Framework

The motivation behind the development of a mimetic framework is that the operations on
differential forms of infinite dimensional systems,

∧k, are mimicked at the discrete level i.e.
in a finite dimensional space,

∧k
h [7]. Thus, projections, π, that map differential forms in

infinite dimensional space to finite dimensional space need to be developed such that given
an operation T at the continuous level, the following is satisfied: π ◦ T = T ◦ π. Thus, the
following commutative diagram can be set up.∧k T−→

∧l
π ↓ π ↓∧k
h

T−→
∧l
h

(2-81)

Thus, a projection is defined consisting of two steps - a reduction operation, R, and a recon-
struction operation, I. The first helps map the differential forms to cochains, and the second
reconstructs finite dimensional expressions for the differential forms using these cochains [5, 7].
The projection, π, can then be simply written down as: π = I ◦ R. Now, all that is left is
defining the reduction and reconstruction operators with the help of suitable basis functions.

π :
p∧
→

p∧
h

(2-82)

2.3.1 Reduction

The reduction operator, R, reduces an infinite-dimensional system to a finite set of numbers
(cochains) associated to mesh elements (chains). The action of the reduction operator is
defined as,

R :
p∧

(M)→ Cp(D) (2-83)
where D is the cell-complex (computational mesh). Construction of the above map was
mentioned in the section on cochains, and initially while discussing global values. It is simply
the conversion of the continuous form to global values, i.e. integration of a p-form, α(p) ∈∧pE∗, on the relevant geometric object, a p-cell, c((p),i) ∈ D〈

Rα(p), c((p),i)
〉

:=
∫
c((p),i)

α(p) (2-84)
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Figure 2-8: A 2-form, α(2) = cos(πx) sin(πy) dxdy is reduced on 2-cells of a mesh, and the
2-cochains are plotted.

This operation can be repeated for all p-cells in the cell to form a p-cochain, Cp. Once reduced
as such, and using the fact that the discrete counterpart of generalized Stokes’ theorem was
seen to exist in a framework with chains and cochains, Eq. (2-74), it is easy to see that R
satisfies the following very important property with respect to the exterior derivative’s action.

Rd = δR (2-85)

The above simply states that we can either first reduce our p-form and then apply the cobound-
ary operator, or first apply the exterior derivative and then reduce the (p + 1)-form; this is
merely a confirmation of the exact nature of the discrete exterior derivative. Another im-
portant property that the reduction map satisfies is with respect to the pullback operator.
Consider a map Φ :M→N . Then,

RΦ∗ = Φ]R (2-86)

where Φ] : Cp(DN )→ Cp(DM) is the discrete version of the pullback operator (DM and DN
are the computational meshes on manifolds M and N ). Proofs of these properties can be
found in [7]. As an example ofR in 2-dimensions, the reduction of α(2) = cos(πx) sin(πy) dxdy
defined on Ω = [0 1]2 can be seen in Figure 2-8.

2.3.2 Reconstruction

Once differential forms have been reduced to their corresponding ‘global quantities’ (cochains),
we can interpolate them using appropriate basis functions. The choice of basis functions
is where some freedom lies and different interpolating forms can be used (B-splines [35];
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Figure 2-9: The 2-cochains corresponding to α(2) = cos(πx) sin(πy) dxdy as shown in Figure 2-
8 are interpolated using I. The above is equal to the projection π, see Eq. (2-82), applied to
α(2).

Lagrange Polynomials, Edge Functions [29]), subject to some restrictions, as detailed in [7].
Some properties the reconstruction map,

I : Cp(D)→
p∧
h

(M) (2-87)

should then possess are:

• The reduction operator should be a right-inverse of the interpolation operator.

RI = I (2-88)

where I is the identity matrix.

• The interpolation map should commute with the exterior derivative in the following
manner,

dI = Iδ (2-89)

• It should not matter whether the interpolation is performed on cochains pulled back
from DN to DM, or the interpolated forms are pulled back from N toM

IΦ] = Φ∗I (2-90)

For a list of these properties, see [7]. The choice of interpolating forms was edge functions
(1-forms) and Lagrange polynomials (0-forms), with higher dimensional interpolating forms
being constructed with the tensor products of these two since quadrilateral elements are used.
In the next chapter, implementation of the operators discussed in this chapter is done. An
example of interpolated cochains can be seen in Figure 2-9.
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Chapter 3

Discretization

One of the most important steps in carrying out numerical analysis is the progression from
a continuous setting to its discrete counterpart. This is achieved with the formulation of
appropriate reduction and reconstruction operators, R and I, respectively. In addition to
this, a number of other operators were introduced in the continuous setting and their action
needs to be translated to the discrete setting with as much structure-preservation as possible.
The aim of this chapter is to demonstrate their implementation in a discrete setting, and also
to analyse some of their properties. Using the discretizations explained in this chapter, a few
test problems will be solved in Chapter 4 and their solutions analysed.

Different ways to reduce the physical variables to relevant cochains will be looked at first
in Section 3.1. Then, in Section 3.2, interpolation functions will be introduced in order to
achieve a continuous representation of the physical variable from its cochain. However, it
should be kept in mind that this continuous representation is not done just to get a better
visual representation of the solution; it is the constitutive laws that make this continuous rep-
resentation necessary for a high-order approximation of material laws. Once the reduction and
reconstruction operators have been formulated as such, some of the properties of important
parameters will be investigated with the help of convergence plots (i.e. h/p-refinement plots),
and their numerical implementation discussed in subsequent sections. To make visualization
easier and the text less cluttered, only results for 1D have been provided here. Extension of
concepts to 2D is straightforward, thanks to quadrilateral elements. Convergence analysis for
all the operators showed optimal convergence, and thus this is not mentioned explicitly with
every analysis plot.

3.1 Reduction Operator

As was shown in Eq. (2-84), reduction of differential forms to cochains is simply implemented
by integrating the differential forms on their relevant geometric object. In 3D, this means
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integration of 0-,1-,2-, and 3- forms on points (in other words, evaluation on points), lines,
surfaces and volumes.

Consider a 0-form in 1D, φ(0) = φ(x, y), on Ω′ which is shown in Figure 3-1. Reduction of
φ(0) on the points defined on the manifold, as can be seen in the lower part of Figure 3-1, can
be done by simple evaluation of the differential form on points. A smooth map Φ : Ω → Ω′
is assumed to exist where Ω is the reference element parametrized by ξ where all analysis
(with the help of the pullback operator) is performed. If Ω′ is embedded in R2, the manifold
can be represented by (x, y) in local coordinates where (x, y) = (Φx(ξ),Φy(ξ)). Using these
facts and noting that the pullback operator commutes with the reduction operator, φ(0) can
be represented as a 0-cochain in Ω, C0

Ω, using the notation previously introduced,

C0
Ω = Φ]R φ(0)

= RΦ? φ(0)

= R φ(Φx(ξ),Φy(ξ))

=
∑n0
i φ̄i(Φx(ξi),Φy(ξi))

(3-1)

where ξi is the coordinate of the ith 0-cell on Ω. The 0-cochains is shown in Figure 3-1.

In the same spirit, a one form, α(1) = αx(x, y)dx + αy(x, y)dy on Ω′ can be discretized by
integrating it on line segments.

C1
Ω = Φ]R α(1)

= RΦ? α(1)

= R [αx αy]


∂Φx

∂ξ
∂Φy

∂ξ

 dξ
=

∑n1
i ᾱi

(3-2)

where ᾱi is the global quantity
∫
Ci

Φ∗α(1) and Ci is the ith line segment on Ω.

This finishes the section on reduction of differential forms in 1D. Similar steps can be followed
in 2D for discretizing differential forms, with the exception that, since the mesh will consist
of surfaces as well, it will be able to support 2-forms as well, and they will consequently be
integrated on surfaces (see Figure 2-8).

3.2 Reconstruction Operator

Now that the differential forms have been reduced to cochains, to project the cochains on a
finite dimensional space of differential forms,

∧
h, interpolation functions are required. Inter-

polation through basis functions, m(p)
i , is simply the weighted sum of basis function evalua-

tions at points, with the total number of basis functions being equal to the number of degrees
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Figure 3-1: Reduction of zero-forms on a 1D domain explained. The 0-form is just pulled back
from the physical domain and reduced in the reference domain.
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of freedom in the system. In order to formulate such a reconstruction operator, the first and
foremost property that should be taken care of is that I should be the right inverse of R.
This means that, as explained before, if R is applied to

∧
h, the appropriate cochains should

be reobtained. Specifically, in 1D, the 0-form interpolation basis functions should be such
that values in points should be preserved, and 1-form interpolation basis function should be
such that the integral values on line-segments are preserved. Ideally, it would be desirable
for I to be the left inverse of R as well, but this is indeed too much to ask for in a general
discrete setting. This means that we have to select the interpolation functions such that IR
is as close to being an identity as possible. What we usually have is,

IR = I + ε

In the above equation, ε represents the interpolation error and this is the error one would like
to reduce as much as possible as this is the error that will influence the solution the most
since this is going to be present everytime a non-topological relation is implemented. In other
words, this is the error present in discretizing the constitutive equations. Hence, spectral
elements make for a tempting choice as they can facilitate arbitrary order formulations and
thus make ε reduce exponentially according to the order of the element being used. Moreover,
spectral element methods have favourable conditioning and element-wise local support [7].

Lagrange Polynomials and Edge Functions [29, 43] have been shown to possess these proper-
ties, and these will be used in the work described here.

3.2.1 Lagrange Polynomials IC0
Ω

Let h(0)
i (ξ) be the ith Lagrange polynomial defined on Ω as a function on ξ for interpolating

0-cochains to 0-forms (finite dimensional representation). Following earlier convention, let
the number of degrees of freedom (number of 0-cells) be n0; this implies that the highest
degree h(0) can have is (n0− 1). The nodal positions of the ith 0-cells is denoted as ξi. These
polynomials are then defined as,

h
(0)
i (ξ) =

{
1, ξ = ξi

0, ξ = ξj where i 6= j

To reiterate, since the above definition includes n0 equations, a h(0)
i of order (n0 − 1) can be

uniquely determined. Using these functions, the interpolation is carried out as follows, with
φ0
i being the ith nodal value for a 0-form, φ(0).

φ
(0)
h = (Φ−1)∗ φ(0)

h (ξ)

= (Φ−1)∗
∑n0
i φ0

i h
(0)
i (ξ)

=
∑n0
i (Φ−1)] φ0

ih
(0)
i (ξ)

=
∑n0
i φ0

i h
(0)
i (ξ(x, y))

(3-3)

It is quite obvious that R φ
(0)
h (x) will indeed yield nodal values exactly for φ(0), and thus I

is indeed the right inverse of R.
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An example of Lagrange Polynomials can be seen in Figure 3-3. Note that in all h-refinement
plots shown, with the theoretical order of convergence shown in . The convergence analysis
results for this operation are shown in Figure 3-4. The complete reduction-reconstruction of
a 0-form can be seen in Figure 3-2. A similar example could be constructed for 1-forms,
although it is not shown here.

3.2.2 Edge Functions IC1
Ω

Consider the reconstruction of 1-forms from 1-cochain, C1
Ω. The interpolants used for this

purpose must, as mentioned earlier, preserve the integral quantities. Thus the definition of
the ith Edge Function, e(1)

i , associated with ith line segment on Ω, Li:∫
Lj

e
(1)
i (ξ) =

∫
Lj

εi(ξ) dξ = δij

The interpolated 1-form, α(1)
h , is thus going to be reconstructed as follows from the 1-cochain,

C1
Ω.

α
(1)
h = (Φ∗)−1 α

(1)
h (ξ)

= (Φ∗)−1 ∑n1
i α1

i e
(1)
i (ξ)

= (Φ∗)−1 ∑n1
i α1

i εi(ξ) (dξ)

=
∑n1
i (Φ])−1 α1

i εi(ξ) (dξ)

=
∑n1
i α1

i εi(ξ(x, y))[(∂Φx
∂ξ )−1 (∂Φy

∂ξ )−1]

(dx)

(dy)


(3-4)

If a check needs to be done whether the above interpolation preserves integrals (α1), all that
needs to be done is pulling back α(1)

h to Ω and then applying R. This indeeds shows that the
integral values are preserved, and, thus, I is the right inverse of R. A similar interpolation of
1-forms can be done in 2D and 3D while following the exact same steps, with the exception
that the expression for Φ∗ is going to be more extensive (for instance, Eq. (2-30)).

An example of the edge-basis functions is given in Figure 3-3. The convergence analysis results
for this operation can be seen in Figure 3-5. For more information on Edge polynomials,
[29, 43] should be perused. An alternative derivation of this integral-preserving basis can be
found in [44].

3.3 Discrete Exterior Derivative

The exterior derivative is the easiest to discretize out of all the operators visited so far
and this was shown in Chapter 2 in the section on Algebraic Topology, Section 2.2. It
was demonstrated how the discrete exterior derivative is adjoint of the boundary operator
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Figure 3-2: A 0-form is pulled back from the physical domain to the reference domain (Φ∗),
reduced (R), interpolated (I), and then pulled back to the physical domain ((Φ−1)∗). The mesh
nodes are shown as � and mesh edges as for both domains. The functions are plotted with

. Note that the reduction-reconstruction for a 1-form is going to follow the exact same steps
with the exception that instead of being reduced in the reference domain on point objects, it
would need to be integrated on line objects.
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Figure 3-3: An example of basis functions for 0- and 1-forms. Higher order basis can be
constructed by taking the tensor products of these bases.

(hence the name coboundary operator). Related to this property is the property that the
exterior derivative commutes with the reduction operator, R, making it possible to apply
the coboundary operator to the cochains. This property, mentioned before in Chapter 2, is
simply stated as,

Rd = δR (3-5)

This property is investigated in error convergence plots shown in Figure 3-6 where the RSS
error for cochains is investigated. It can be seen that the errors are alwasy practically zero
implying that the p-cochains obtained by the application of the coboundary operator to
(p − 1)-cochains are always exact when compared to p-cochains obtained by reduction of
the analytical exterior derivative of the (p − 1)-form. The interpolation errors can be seen
in Figure 3-7. This operator is the same as the exterior covariant-derivative introduced in
Section 2.1.

3.4 Discrete Hodge Operator

As was seen in Section 2.1, the Hodge operator is a map from primal to dual cochains, and
can be used in the discretization of constitutive equations. Now that a method to reconstruct
the finite dimensional representations of differential forms from cochains has been defined,
the Hodge can be implemented using Eq. (2-58).

Consider the 1D manifold Ω (the reference element) shown in Figure 3-8 and consider a
Lobatto quadrature node distribution as the mesh. As is shown in [7], a dual grid with Gauss
quadrature nodes can be built, with line segments connecting them, and with Extended Gauss
points forming the boundary of the dual mesh. We can define a dual basis, denoted by a ~
in the basis functions - h(0̃) (dual basis Lagrange polynomials), and e(1̃) (dual basis Edge
Functions).
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Figure 3-4: Convergence analysis results (L2 error) for the reduction and reconstruction of α(0)

in 1D.

Deepesh Toshniwal Master of Science Thesis



3.4 Discrete Hodge Operator 47

10
−1

10
0

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

h

||
α
(1
)
−

α
(1
)

h
||
L
2Λ

1

 

 

0.9

3.9

6.9

10

p = 1
p = 4
p = 7
p = 10

(a) h-refinement

2 4 6 8 10 12 14 16

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

p

||
α
(1
)
−

α
(1
)

h
||
L
2Λ

1

 

 
nElemX = 1
nElemX = 3
nElemX = 5
nElemX = 7
nElemX = 9
nElemX = 11

(b) p-refinement

Figure 3-5: Convergence analysis results (L2 error) for the reduction and reconstruction of α(1)

in 1D.
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Figure 3-6: Convergence analysis results (RSS error for cochains) for the application of the
exterior derivative to 0-forms in 1D. The form is first reduced and then the coboundary operator
is applied.
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Figure 3-7: Convergence analysis results (L2 errors in interpolation) for the application of the
exterior derivative to 0-forms in 1D.
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Figure 3-8: Primal (�) and dual (◦) meshes shown for a 1D reference elemnt.

Now, consider a 0-form, φ(0) ∈
∧0(Ω), and a 1-form, α(1̃) ∈

∧1̃(Ω). Consider implementation
of the Hodge for the zero-forms; the implementation for one-forms can be done in a similar
way. Let the following be true.

α(1̃) = ?φ(0) (3-6)

So, implementation of the Hodge operator entails that we find α(1̃) ∈
∧1̃(Ω) given φ(0) ∈

∧0(Ω)
such that the following is true ∀τ (1̃) ∈

∧1̃(Ω).(
τ (1̃), ?φ(0)

)
Ω

=
(
τ (1̃), α(1̃)

)
Ω

(3-7)

where the global inner product is defined as follows,(
α(p), β(p)

)
Ω

:=
∫

Ω
α(p) ∧ ?β(p) =

∫
Ω

〈
α(p), β(p)

〉
σ (3-8)

This can be further simplified as follows, using the property that ? ? φ(0) = φ(0),∫
Ω

〈
τ (1̃), α(1̃)

〉
σ =

∫
Ω
τ (1̃) ∧ φ(0) (3-9)

Since we only have the finite dimensional representation of φ(0), what we are working with is,
in fact, φ(0)

h , and an expression for this was shown in Eq. (3-3). We are going to obtain α(1̃)
h

instead of α(1̃), and hence it can be expressed in the same form as Eq. (3-4). This means that
the finite-dimesional representations of the forms can be written down as seen previously in
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Figure 3-9: Application of the Hodge to 1-forms is shown. Also shown are 1-cochains and
0-cochains and the 0/1-cells on which these are defined.

terms of cochains (denoted by an over-head bar here) and basis functions. Furthermore, τ (1̃)

can be chosen as the basis functions used for interpolations of 1-forms on the dual mesh (the
mesh with Extended Gauss points). Using the inner product definitions introduced earlier,

(M1̃,1̃ᾱ)e = (N1̃,0φ̄)e (3-10)

where M1̃,1̃ is the inner-product matrix formed by the dual edge basis functions,
(
ẽ(1), ẽ(1)

)
,

and N1̃,0 is the matrix obtained by integrating the wedge products of dual edge basis functions
with primal Lagrange polynomials,

∫
ẽ(1) ∧ h(0). N can be thought of as the matrix that

includes the effects of changing the basis from primal 0-forms to dual 1-forms into the system.
The subscript e denotes that this is the formulation obtained for one spectral element. For
multi-element cases, the matrices can be assembled keeping in mind the cells that are shared
between the elements. The final result is as follows.

M1̃,1̃ᾱ = N1̃,0φ̄ (3-11)

The matrix M−1N can be thought of as the discrete Hodge matrix, ?h,e, that acts on the
0-cochains contained in φ̄e and yields 1-cochains ᾱe. Although element-wise discrete Hodge
is square and invertible because ofM and N being so, it should be noted that, because of the
overlap of cells between elements, global discrete Hodge is, in general, not going to be square,
but instead is going to be rectangular. However, this doesn’t mean that it is not invertible
and this is because of the different assembly of the component ?h,e which enables the reverse
passage. In practice, M doesn’t necessarily need to be inverted and the system matrix can
be built up using the mixed-formulation shown above.
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An example of this process but instead applied to 1-forms is shown in Figure 3-9, where
this was done for going from a primal 1-form to a dual 0-form. It can be seen that the
continuous field representation of both ?α(1) and α(1) are the same. It is only the association
with geometric objects that changes. Error convergence plots for this process can be seen
in Figure 3-10 and Figure 3-11 for 0- and 1-forms, respectively. To see that the Hodge is
indeed not an exact relation and involves an approximation, the RSS error (root of sum of
squares) of the cochains obtained after the application of the Hodge were plotted and these
observations can be seen in Figure 3-12 and Figure 3-13.

It should be noted here that the discrete application of the Hodge-? involves the numerical
evaluation of inner-product integrals, for which a set of quadrature nodes are assigned over
space. Then we can assign a material parameter as a kind of multiplying factor to each
quadrature node, and this can in principle change from one node to another. This is one way
that variable material parameters, such as viscosity, conductivity etc could be taken care of
while discretizing constitutive relations using the Hodge-? . This is exploited in the Darcy
flow test case shown in Chapter 4.

The above procedure for calculating the discrete representation of the Hodge matrix can be
extended and used for calculating the discrete representations of several other operators.

3.5 Discrete Co-differential

The co-differential operator is defined as per Eq. (2-60) and a discrete representation of this
operator is going to be investigated in this section. Similar to the procedure followed in the
development of ?h, we take a 1-form and apply the co-differential operator to it (co-differential
operator applied to 0-forms is always 0).

Consider α(1) ∈
∧1(Ω) and β(0) ∈

∧0(Ω) such that,

d?α(1) = β(0) (3-12)

Similar to the procedure adopted for the Hodge operation, the Galerkin problem translates
to finding β(0) ∈

∧0(Ω), given α(1) ∈
∧1(Ω), such that the following is true ∀τ (0) ∈

∧0(Ω),(
τ (0), d?α(1)

)
Ω

=
(
τ (0), β(0)

)
Ω

(3-13)

Again, on using the definition of the global inner product, Eq. (3-8), we simplify the above
equation as, (

τ (0), d?α(1)
)

Ω
=
∫

Ω

〈
τ (0), β(0)

〉
σ (3-14)

Using (2-62), we can further simplify our system as follows,(
dτ (0), α(1)

)
Ω
−
∫
∂Ω
τ (0) ∧ ?α(1) =

∫
Ω

〈
τ (0), β(0)

〉
σ (3-15)

Now, since we only have the discrete representation of α(1), and we can only calculate a
discrete representation of β(1),∫

Ω

〈
dτ (0), α

(1)
h

〉
σ −

∫
∂Ω
τ (0) ∧ ?α(1)

h =
∫

Ω

〈
τ (0), β

(0)
h

〉
σ (2-62)
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Figure 3-10: Convergence analysis (L2 error) results for the Hodge-? applied to a 0-form in 1D.
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Figure 3-11: Convergence analysis results (L2 error) for the Hodge-? applied to a 0-form in 1D.

Deepesh Toshniwal Master of Science Thesis



3.5 Discrete Co-differential 55

10
−1

10
0

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

h

||
c
(1
)

?
α
−

c
(1
)

?
α
h
||

 

 

4.7

10.9

p = 1
p = 4
p = 7
p = 10

(a) h-refinement

2 4 6 8 10 12 14 16

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

p

||
c(
1) ?
α
−

c(
1) ?
α
h
||

 

 
nElemX = 1
nElemX = 3
nElemX = 5
nElemX = 7
nElemX = 9
nElemX = 11

(b) p-refinement

Figure 3-12: Convergence analysis results (RSS error for cochains) for the Hodge-? applied to a
0-form in 1D.
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Figure 3-13: Convergence analysis results (RSS error for cochains) for the Hodge-? applied to a
1-form in 1D.
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Depending on the boundary conditions, i.e. if we can calculate ?α(1) at boundaries ( in other
words tr ? α(1) ) or not, the boundary integral in the above equation will be either a known
quantity (by imposing ?α(1)

h = ?α(1) at the boundaries), or else it will have to be written
in terms of the unknown cochain corresponding to α(1). In case the boundary integral is a
known quantity, the type of the boundary conditions is going to be Dirichlet with respect to
α(1). The test functions, τ (0), can be chosen to be the 0-form basis functions and the final
equation in matrix representation can be written as,

(M1,1ᾱ)e −Be = (M0,0β̄)e (3-16)

Again, note that if Dirichlet boundary conditions are prescribed, the boundary integral ma-
trix, B, can be evaluated, and is simply going to be a column vector. Else, it is going to be
a matrix multiplied with the 1-cochain, ᾱ, and can be included in M . The convention, ex-
plained in the last section, is reiterated here: Mk,k is the global inner-product matrix between
the basis functions for k-forms with k-forms; ᾱ and β̄ are the 1- and 0-cochains, respectively;
and B is the boundary integral matrix.

The errors involved in the cochains (RSS error) are shown in Figure 3-14 and in the interpo-
lation of cochains (L2 error) in Figure 3-15.

3.6 Discrete Laplace Operator

Laplace-deRham operator, ∆, was defined as shown in (2-64). The construction of the oper-
ator is straightforward and it can be done simply by the multiplications of discrete d and d?
matrices that were derived earlier. A system of equation is easy to setup and solve. This
operator is present in the mathematical definitions of a number of physical problems, and
some of these will be investigated in the next chapter where solutions of some test cases are
presented.

3.7 Discrete Interior Product

The interior product physically represents instantaneous fluxes and, as was explained in Chap-
ter 2, and the discretization is implemented as the formal adjoint of the wedge product [19].
Thus, for (α(1), β(0), τ (0)) ∈

∧1(Ω)×
∧0(Ω)×

∧0(Ω), we have the following,〈
iuα

(1), τ (0)
〉

=
〈
α(1), u(1) ∧ τ (0)

〉
(3-17)

Here, u is the velocity field under which the volume form α(1) is changing and iuα
(1) is like

the instantaneous flux of the volume form. Note that u(1) is the 1-form obtained by lowering
the index of u ( i.e. multiplication by the metric tensor which is a second-rank covariant
tensor). The implementation of the interior product is thus done through (3-17) with the
selection of τ (0) as the 0-form basis functions. Since we work with integral quantities, the
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Figure 3-14: Convergence analysis results (RSS error for cochains) for the codifferential applied
to a 1-form in 1D.
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Figure 3-15: Convergence analysis results (L2 error) for the codifferential applied to a 1-form in
1D.
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full statement of interior product’s implementation in a discrete setting is obtained as follows
after a multiplication with the volume form σ,∫

Ω

〈
iuα

(1), τ (0)
〉
σ =

∫
Ω

〈
α(1), u(1) ∧ τ (0)

〉
σ (3-18)

This can again be cast in matrix form as, assuming β(0) ∈
∧0(Ω) such that iuα(1) = β(0),

(M0,0β̄)e = (AūDCᾱ)e (3-19)

In the above equation, A is the matrix of the operation (τ0 ∧ I), and C is the matrix of the
operation (.∧?I), and ūD is the diagonalized cochain-vector. This is for one elements and for
the multielement case the matrices can be assembled and the interior product implemented.

A convergence plot for the 0-forms obtained after application of the interior product to a
volume form in 1D are shown in Figure 3-16, and the errors in interpolation of these 1-forms
in Figure 3-17.

3.8 Discrete Lie Derivative

As explained in Section 2.1, the Lie Derivative is simply obtained by applying a combination
of the exterior derivative and the interior product to forms. As was seen earlier, the exterior
derivative is a topological operator and thus the cochains obtained as such are indeed going
to be exact upto the accuracy of the interior product.

3.9 Time-stepping Scheme

Unsteadiness is at the heart of several problems of interest in fluid flow problems. A simple
evolution problem in time for α(p) ∈

∧p(Ω) in the presence of only a velocity field u is simply
stated as:

∂α(p)

∂t
+ Luα(p) = 0 (3-20)

Now, for the treatment of the above problem in time with a geometric approach, the approach
adopted in [8] which is a slight modification of the scheme implemented in [36] is implemented
where we treat α(p) as an element of

∧p(Ω) ×
∧0(T ) (where T is the domain in time that

extends from time-instant tn to tn+1) - thus, as a p-form in space and as a 0-form in time -
α

(p)
(0). The subscript of (0) signifies the rank of the differential form in time. The above means

that ∂α
(p)

∂t
is treated as a 1-form in time. This implies that Luα(p) ∈

∧p(Ω)×
∧1(T ) and thus

it should naturally integrate on time-intervals. However, because of a decouple space and
time discretization, Luα(p) is evaluated at each time-instant, and is thus represented using
Lagrange polynomials. In order to get the correct 1-forms in time using this representation, a
projection on edge-basis functions in temporal direction should be done. Thus, without such
a projection, Luα(p) is going to be represented as Luα(p)

(0)
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Figure 3-16: Convergence analysis results (L2 error) for the interior-product of 1-forms in 1D.
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Figure 3-17: Convergence analysis results (RSS error in cochains) for the interior-product of
1-forms in 1D.
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Now, (3-20) can be posed in the following integral form,

α
(p)
(0)

∣∣∣
tn+1
− α

(p)
(0)

∣∣∣
tn

+
∫
T
Luα(p)

(0) = 0 (3-21)

It is easy to see that the first two terms in the above equation represent simply the coboundary
operator applied to α(p)

(0) in time. The discretization of the above in time can thus be performed
in a similar manner as explained in earlier sections. For the 1- and 0-forms in time, we again
use the Edge and Lagrange basis functions for interpolation.

Let −Luα(p) be represented by β(p)
(0) ∈

∧p(Ω) ×
∧0(T ), then the problem reduces to finding

β
(p)
(1) such that the following holds ∀τ (p)

(1) ∈
∧p(Ω)×

∧1(T ):

τ (p)
(1) ,

∂α
(p)
(0)
∂t


T

=
(
τ

(p)
(1) , β

(p)
(0)

)
T

To simplify the above expression, it is assumed that the Lie-derivative’s action can be repre-
sented by the matrix L acting on the spatial p-cochains, ᾱ that are 0-forms in time. Then,
for the above equation, we can get the following matrix system in terms of 0- and 1-cochains
in time,

(M1,1D
1,0
t ᾱ)e = (N1,0Lᾱ)e

where the subscript e indicates that this equation is for one temporal element or, in other
words, for one time-step. The matrix D1,0

t is the coboundary matrix in time which, when
applied to 0-forms in time, yields 1-forms in time;M represents the inner-product of temporal
Edge basis functions; and the matrix N represents the wedge product of temporal Edge basis
functions with temporal Lagrange polynomials.

Using this system, the evolution of α(p)
(0) can be solved for. If the Lie-derivative matrix depends

on the values of α(p)
(0) as well (non-linear evolution), solution can be obtained for the above

system by linearizing it with an initial guess and then iterating till convergence is obtained.

Now that we have outlined the implementation of the operators that come handy in the
solution of steady as well as unsteady problems, we look at some test problems that we can
solve by simple application of these operators in Chapter 4.
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Chapter 4

Test Cases

In this chapter, a step forward is taken by presenting the discretization of a set of standard
physical problems. We start by reviewing steady cases (1D and 2D) in Section 4.1, and then
a few unsteady cases are presented in Section 4.2.

4.1 Steady Test Cases

The first problems that are tried out are steady in nature thereby eliminating the use of the
time-stepping scheme and simplifying the analysis.

4.1.1 One-dimensional Problems

Helmholtz Eigenvalue Problem This problem describes the solution of different modes
of vibration for a acoustic pressure wave in a pipe. It has a similar structure to the equation
used for describing the modes of vibrations of a string. We investigate everything from the
acoustic-wave perspective.

The problem definition in vector calculus for pressures, (p), can be simply stated as:

∇2p+ k2p = 0, in Ω (4-1)

• A general boundary condition:

a
dp

dx
+ bp = c, on ∂Ω (4-2)
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where Ω = [0 1].

This problem has analytical solutions for pressures with which we can compare our solu-
tion. The general form of the boundary condition above can be used to impose Dirichlet
or Neumann boundary conditions depending on the values of a, b and c.For homogeneous
Dirichlet/Neumann boundary conditions on the pressures,

Homogeneous Dirichlet: (a, b, c) = (0, 1, 0)
Homogeneous Neumann: (a, b, c) = (1, 0, 0)

the eigenfunctions for this problem are sinusoidal (see Figure 4-1).

An attempt is now made to translate the above problem in differential geometry terms.
Selection of an inner-oriented mesh is made, and on this mesh, pressures are treated as 0-
forms (or the duals of pressures, see Section 5.2). Remembering the relation between the
vector-calculus Laplace-operator and the Laplace operator used in differential geometry (see
Chapter 2), we can reformulate the problem as:

−∆p(0) + k2p(0) = 0, in Ω (4-3)

In order to translate the boundary conditions, we note that since pressure is being treated as a
0-form, its exterior derivative must be a 1-form. In order to prescribe the value of this 1-form
on the boundary of our 1-dimensional manifold (which would be a 0-dimensional manifold),
we make use of the trace-operator which is defined for this particular case as follows.

tr :
k∧
M→

k∧
∂M (4-4)

For more properties of the operator, please see [45]. It can be seen as the evaluation of the
k-form, that is usually evaluated onM, on a part ofM (the boundary, in this case). Using
this operator, the boundary conditions can be written down as,

• Homogeneous boundary conditions:

tr(?dp(0)) = 0, on ∂Ω1 (Neumann; prescribed flux) (4-5a)

p(0) = 0, on ∂Ω2 (Dirichlet; prescribed pressure) (4-5b)

where Ω1 and Ω2 compose ∂Ω. The results for eigenfunctions can be seen in Figure 4-1.

4.1.2 Two-dimensional Problems

Maxwell Eigenvalue Problem

The Maxwell Eigenvalue problem can be seen as the problem describing the modes of vibration
of electric-field intensity confined to a cavity. It is a vector-laplacian problem, and can be
formulated in vector calculus notation for electric field intensity (u) as follows:

∇× (∇× u) = λu in Ω (4-6a)
∇.u = 0 in Ω (4-6b)
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(b) Dirichlet-Neumann

Figure 4-1: Helmholtz Equation: Eigenfunctions for the Helmholtz eigenvalue problem are shown
above for different sets of boundary conditions. A homogeneous Dirichlet condition on pressure
implies zero perturbation pressure (i.e. the open end of a pipe that is in touch with outside air),
and a homogeneous Neumann condition on pressure implies zero flux (i.e. the closed end of a
pipe which does not allow perpendicular velocities). Number of elements = 20; Order of elements
= 4
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• Boundary conditions:
u× n = 0 on ∂Ω (4-7)

where Ω = [0 π]2. This problem, for the mentioned domain, admits solutions of the type
(see Figure 4-2):

λ = a2 + b2, a, b = 0, 1, 2, .... (4-8)

The integer-solutions that λ should admit are not seen in conventional nodal finite-element
method discretization; a continuous spectrum of eigenvalues is obtained. This is precisely the
kind of spurious modes that need to be avoided.

In order to formulate the problem in differential geometry terms, we note that electric-field
intensity is defined on lines, and has a sense of being along these lines. Thus, choosing
the mesh as inner-oriented and treating electric-field intensity as a 1-form, the problem is
rewritten in the following form:

d?du(1) = λu(1) in Ω (4-9a)

d?u(1) = 0 in Ω (4-9b)

• Homogeneous boundary conditions:

tr(u(1)) = 0 on ∂Ω (4-10)

The boundary condition is synonymous to saying that the tangential component of electric-
field intensity at the boundaries should be zero. The obtained eigenvalues in this way are
shown in Figure 4-2.

Potential Flow Problem

In this part a potential flow problem for flow around a circular cylinder is solved. This kind of
problem describes what the flow would be if it were inviscid, incompressible, and irrotational.
The problem can be formulated in vector calculus as follows for the velocity potential (φ):

∇2φ = 0, in Ω (4-11a)

∇φ = v0, on ∂Ω (4-11b)

where v0 is the known velocity on ∂Ω. The computational domain here is, Ω(r, θ) = [1 10]×
[−π 0], and the radius of the cylinder is 1 units. The θ domain only extends from [−π 0]
because the problem is symmetric about the diameter parallel to the freestream velocity of
the flow - so, only one half of the physical domain needs to be treated.

In order to reformulate the problem in differential geometry terms, the nature of φ needs to
be established first. It is known that φ is a scalar function, and thus should be a 0- or a 2-form
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Figure 4-2: Maxwell eigvenvalue problem: Eigenvalues for the Maxwell eigenvalue problem for
an electromagnetic resonant cavity. Only the non-zero eigenvalues are shown. A number of
numerical methods fail to capture the discrete eigenvalue spectrum [46]. Number of elements
(X,Y ) = (1,1); Order of elements = 7

in 2D. In addition, it is known that on taking the gradient of φ, velocities are obtained. To
be more specific, since

dφ = ∂φ

∂x
dx+ ∂φ

∂y
dy

= u dx+ v dy

(4-12)

it seems that the differential of φ yields inner-oriented quantities (u along dx and so on). Then,
it seems obvious to associate φ with inner-oriented 0-forms. Then, choosing an inner-oriented
mesh, rewriting the problem in differential geometry terms becomes straightforward:

−∆φ(0) = 0 (4-13)

• Boundary Conditions:

tr(dφ(0)) = v
(1)
0 , on ∂Ω (Neumann; prescribed velocity/fluxes) (4-14)

The boundary conditions are synonymous in the sense that the velocities are prescribed
everywhere on the boundary. Note that this yields a purely Neumann problem for φ implying
that it can be solved upto a constant only. The results for the velocity- and pressure-fields
can be seen in Figure 4-3.
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(a) Pressure-field
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(b) Velocity close to the cylinder

Figure 4-3: Potential flow: Solutions for the pressure-field (p = 1
2 (V 2 − U2

∞)), and the velocity
close to the cylinder(v = ∇φ). It can be seen visually that they display the expected traits
(high-pressure stagnation regions and low-pressure high-velocity regions at the correct positions,
as well as no flux through the cylinder walls). The results were compared to analytical solutions
and displayed exponential convergence (graphs not shown) with increasing order of the method.
Number of elements(R, θ) = (1,1); Order of elements = 15.
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Darcy Flow Problem

Darcy flow is a steady, pressure-driven flow through a porous media where the fluxes and
pressures are linearly related. The problem definition in vector calculus in terms of pressures
(p) and fluxes (q) can be given as:

q + K

µ
∇p = 0 in Ω (4-15a)

∇ · v = φ in Ω (4-15b)

• Boundary conditions:
q = q0 on ∂Ω (4-16)

where Ω = [0 1]2; K,µ are material properties (permeability and viscosity); and φ is the
divergence of the velocity, v (so basically mass generation). Note that fluxes, q, and velocities,
v, are obviously dependent variables.

The Darcy law establishes a relation between the pressures and the fluxes, and fluxes are
known to be associated with crossing directions through geometric objects (outer-oriented
forms). Thus, an outer-oriented mesh is chosen for solving the problem with the pressures
(outer-oriented volume-forms; see Section 5.2) and velocities being treated as main unknowns.

p(2̃) = ?p(0), q(1̃) = ?(u dx+ v dy) (4-17)

Using the above unknowns and dropping the ˜ notation since the primal mesh is now outer-
oriented, we can rewrite the Darcy problem as follows:

q(1) + ?K/µd ? p
(2) = 0 in Ω (4-18a)

dq(1) = φ(2) in Ω (4-18b)

• Boundary conditions:
q(1) = q

(1)
0 on ∂Ω (4-19)

The above problem states the same things as the original problem: fluxes are linearly related
to pressure gradients; volumetric-strain rate is dictated by the source of mass generation
(depletion) in the domain; and the fluxes through boundaries are known.

Two test cases were run for this problem corresponding to [27, 47]. The [27] test case is a
manufactured-solution test-case with the following exact-solution:

p(2) = cos(πx) cos(πy)
φ(2) = 2π2 cos(πx) cos(πy)

(4-20)
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The [47] test case is a patch-test with a discontinuous velocity-profile prompted by discon-
tinuous material parameters through the domain. This discontinuous velocity profile is given
by,

u(x, y) =


0.3, (x, y) ∈ [0 1

3)× [0 1]
0.7, (x, y) ∈ [1

3
2
3)× [0 1]

0.5, (x, y) ∈ [2
3 1]× [0 1]

v(x, y) = 0, ∀ (x, y) ∈ Ω

(4-21)

The results for this problem can be seen in Figures 4-4 and 4-5.

4.2 Unsteady Test Cases

The time-stepping scheme as explained in Chapter 3 was implemented for a simple test cases
which are also outlined in [48] and a brief overview of the results is given here.

4.2.1 One-dimensional Problems

Active Field Advection

A velocity-field represented by 0-forms in 1D on an outer-oriented mesh, q(0), evolves under
its own influence. The evolution equation is defined by 1D Burgers’ equation as follows:

∂q(0)

∂t
+ Luq(0) = −ν∆q(0) (4-22)

, where q(0) = ?u(1), ν is the viscosity, and u(1) is the 1-form associated with the velocity.

A small amount of diffusion is added to the equation in the form of ν in order to prevent
the solution from becoming too oscillatory after a point. This happens because of the shock
formation which causes a discontinuity in the solution. This kind of solution can not be
represented by Lagrange basis functions that were used because they assume that 0-form
solutions can be represented in a continuous way across elements. A few time-frames from
the simulation are shown in Figure 4-6. The movie can be seen here:

http://www.youtube.com/watch?v=Ze3dd9q0btE

4.2.2 Two-dimensional Problems

Passive Field Advection

A passive scalar-field represented by the 2-form , ρ(2) ( = sin(πx) sin(πy) dx ∧ dy), is carried
by a velocity field. The evolution equation is then represented as follows:

∂ρ(2)

∂t
+ Luρ(2) = 0 (4-23)
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(a) Pressures
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Figure 4-4: Darcy Flow: Solutions for the manufactured solution. The results compare well with
the analytical values, and show exponential convergence with the order of method (not shown).
Number of elements (X,Y ) = (1,1); Order of elements = 10.
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(a) Pressures

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ux

y

q +K/µ∇p = 0

 

 
Exact
Computed
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Figure 4-5: Darcy Flow: Solutions for a patch test with discontinuous velocity profile. If the
discontinuity coincides with the element boundaries, the solution is always exact, but when the
discontinuities lie inside elements, as shown above, the solution is oscillatory, and these don’t
disappear (Gibb’s phenomenon). Although, as can be seen from the pressure profile, the pressures
in this case are still perfectly linear. Number of elements(X,Y ) = (1,1); Order of elements = 20.
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(a) t = 0 s (b) t = 0.1 s

(c) t = 0.2 s (d) t = 0.3 s

(e) t = 0.4 s (f) t = 0.5 s

Figure 4-6: Shock development (t = 0.2 s) for an initial sinusoidal velocity distribution (t = 0
s) is shown. The shock causes a discontinuity in the solution which is not supported by Lagrange
basis-functions, and this causes the oscillatory solution (t = 0.2 + sec). A small amount of
diffusion is added to stop the oscillations from becoming too big. Number of elements = 15;
Order of elements = 4
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where u(1) ( = sin(πx) cos(πy) dx − cos(πx) sin(πy) dy) is the 1-form associated with the
velocity-field. A few time-frames from the movie are shown in Figure 4-7. Mid-way through
the movie, the velocity-field is changed to its additive inverse, and exact reversibility of
the procedure is demonstrated. Mass is conserved to machine precision during the entire
simulation. The movie can be seen here:

http://www.youtube.com/watch?v=Ze3dd9q0btE
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(a) t = 0 s (b) t = 0.25 s

(c) t = 0.75 s (d) t = 1.25 s

(e) t = 1.75 s (f) t = 1.99 s

Figure 4-7: A passive scalar field whose initial distribution is the one given in t = 0 s frame
is advected with a constant velocity-field. At t = 1, the velocity field is reversed and the initial
redistribution is reobtained. Number of elements (X,Y ) = (4,4); Order of elements = 8

Master of Science Thesis Deepesh Toshniwal



78 Test Cases

Deepesh Toshniwal Master of Science Thesis



Chapter 5

Incompressible Navier-Stokes

The equations governing fluid-flow are the Navier-Stokes equations, and they are shown for
a 2D space in Eq. (5-1a) and Eq. (5-1b).

∂ρ

∂t
+ ∂ρu

∂x
+ ∂ρv

∂y
= 0 (5-1a)

∂ρu

∂t
+ ∂ρu2

∂x
+ ∂ρuv

∂y
= −∂p

∂x
+ µ

(
∂2u

∂x2 + ∂2u

∂y2

)
∂ρv

∂t
+ ∂ρuv

∂x
+ ∂ρv2

∂y
= −∂p

∂y
+ µ

(
∂2v

∂x2 + ∂2v

∂y2

) (5-1b)

These equations simply represent the conservation laws pertaining to mass Eq. (5-1a) and
momentum Eq. (5-1b), and are the fundamental building blocks for fluid-flow analysis in an
Eulerian framework. Mass conservation can alternatively be represented as in Eq. (5-2) where
it is assumed that the ρ is constant, and hence only the divergence of velocity needs to be
enforced as zero for mass conservation. This is the incompressibility constraint.

∇.v = 0 (5-2)

In this chapter, the above two basic conservation laws are talked about. We take a look
at the variables in the equations one by one in Section 5.2 and Section 5.3, and then by
figuring out the necessary operators needed to represent the laws as shown above. A control-
volume approach, shown in Section 5.1 that can be found in any Aerodynamics textbook
([49], for instance) is adopted for this task as it is, in spirit, a measurement-based derivation
that implicitly stays strongly rooted in the principles of mimetic discretization. Next, in
Section 5.4, we look at how we can discretize the above two equations while sticking to
the principles of mimetic discretizations introduced earlier. Final formulations are shown in
Section 5.5.
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≡dS dS
ρu

ρv

ρ

(
v + ∂v

∂y
dy

)

ρ

(
u+ ∂u

∂x
dx

)

Figure 5-1: Mass-conservation is a scalar-conservation law and remains the same even if the
volume is deformed. This is because the fluxes are scalar in nature as well.

5.1 A Control-Volume Formulation

A quick recap is done of the basic structure of control-volume approach towards derivation
of mass and momentum conservation laws for the Navier-Stokes equations. For this purpose,
consider a cartesian infinitesimal 2D-volume element, dS, shown on the left-side of Figure 5-1
and Figure 5-2, which is one of the many parts of a larger volume, S (not shown).

5.1.1 Mass conservation

Let the velocity in 2D be represented by,

v = u ∂x + v ∂y (5-3)

Then mass contained inside the 2D-volume, S, can be written down as,∫
S
ρ dS

and the change in this amount of mass should depend solely on the mass-fluxes through the
walls of the control volume (in the absence of a mass source/sink inside the volume). This is
written in form of the following familiar equation,

0 = ∂

∂t

∫
S
ρ dS +

∫
C
ρ(v.n) dC (5-4)

where C is the curve bounding the 2D-volume (= ∂S), and n is the outward normal direction
to this 2D-volume. In case there is a mass source/sink inside the volume, it would appear on
the left-hand side of the equation. As shown in Figure 5-1, since this is a scalar conservation
law, even if the volume is not a cartesian volume as shown but rather a deformed one, the
conservation law takes on an equivalent form.

Note that here we are talking only about static volumes. If the volume was itself moving, then
the velocity, v, used for calculating the mass-flux through the bounding surface,

∫
C ρ(v.n) dC,

would be the velocity of the fluid relative to the bounding surface.
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Figure 5-2: Momentum-conservation is a vector-conservation law and the fluxes involved are
vector in nature as well. This means that fluxes at two different positions can not be simply
added/subtracted unless it is known how the coordinate system changes.

5.1.2 Momentum Conservation

Momentum conservation has essentially the same formulation as mass conservation. Consider,
for instance, only the momentum in x-direction. This quantity of momentum contained in S
can be represented as, ∫

S
ρu dS

The change in this amount of momentum then should be equal to the total force being
applied on the control-volume (Newton’s second law) augmented by the net outflow/inflow
of momentum because of the velocity field. This is represented as follows,∑

FS +
∑

FC = ∂

∂t

∫
S
ρu dS +

∫
C
ρu(v.n) dC (5-5)

where, again, C is the curve bounding the 2D-volume (= ∂S), and n is the outward normal
direction to this 2D-volume. The derivation of this conservation law in other directions follows
suit.

It can be seen that there are two kinds of forces that are being applied to the control-volume
and these are categorized as follows:

• Surface-forces (applied on C): pressure-force, stresses etc

• Body-forces (applied on S): buoyancy, electric-force etc

What is clear from the above formulations of mass and momentum is the presence of hints of
association of variables with only certain kinds of geometric objects. For instance, surface-
forces and convective momentum-fluxes are integrated on C, and body-forces and momenta
are integrated on S. Preserving this association is precisely the point of this exposition. Next,
it is explored how the above procedure can be carried out using the framework developed in
Chapter 2 and Chapter 3.
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As shown in Figure 5-2, the outflow/inflow of momentum can be calculated by just adding/-
subtracting the components in any direction. This is however not possible for a deformed
control volume as the coordinate system may change from one point to another, and there
would be no way to add/subtract flux-components unless the way the vector/covector-basis
changes is known. This is exactly the information encoded in the Christoffel symbols, Γijk,
that were used in Eq. (2-46) and the 1-forms, ωir used in Eq. (2-48).

Note that in the following, only 2D space is considered. As a result, all body-forces are forces
acting on 2D geometric objects which are referred to as volumes, S, and all surface-forces are
forces acting on 1D geometric objects which are referred to as surfaces, C. In addition to
this, point geometric objects are referred to as P .

5.2 Primary Variables’ Formulation

The primary variables involved in fluid-flow are velocity and pressure. Before talking about
the discretization of these variables, we should first try to associate these variables with
appropriate geometric objects. The discretization then should follow directly from these as-
sociations. Therefore, it is fruitful to invest some time in understanding where these variables
live. This section only deals with continuous formulations of these variables, and discretization
is looked at in the next section.

5.2.1 Velocity

The PIV example that was presented in Section 1.1 showed that velocity naturally integrates
with respect to time to yield the displacement of a particle. In a space-time coupled frame-
work, velocity would be most appropriately associated with temporal curves if an Eulerian
view is adopted (and with a space-time curve, or a particle’s pathline, for a Lagrangian view).
However, as was explained in Section 3.9, we work with discretizations that are decoupled
in space and time. Hence, we must find a way to associate velocities appropriate geometric
objects in space.

Velocity, in space, is most appropriately visualized as a contravariant vector-field. This is
represented using the contravariant coordinate basis vectors in R2 as:

v = ∂x ⊗ u+ ∂y ⊗ v (5-6)

The above can be seen as a variable that is a vector-valued zero-form.

5.2.2 Pressure

Pressure is a scalar-field variable. This makes it obvious that its treatment must be as a 0-
form or a volume-form - but which one? The choice becomes clearer if we include orientation
in our consideration. Consider the treatment of pressure as a 0-form.

p(0) = p (5-7)
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Then, if we take the exterior derivative of the pressure, we get,

dp(0) = ∂p

∂x
dx+ ∂p

∂y
dy (5-8)

It is already known that, for instance, a term such as ∂p
∂x gives a sense of de-acceleration to

the flow in x-direction. Visualizing this de-acceleration as a forcing term in x-direction, we
see that this gives a sense of a force along the x-direction. This implies that the application
of the exterior derivative, d, to 0-form pressures yields inner-oriented 1-forms. This means
that treatment of pressure as a 0-form should correspond to inner-oriented 0-forms.

Once the above has been established, it is trivial to state that the treatment of pressure as
a 2-form (the dual of 0-form pressure) should be associated to outer-oriented volumes (the
duals of inner-oriented 0-forms). From here onwards, even if orientation is not specified, the
particular treatment of pressures (as a 0- or a 2-form) should make it clear what the orientation
is. We select the outer-oriented volume-form as our primary view, and then the inner-oriented
0-form pressures are simply the duals of our primary variable, which are outer-oriented 2-form
pressures.

5.2.3 Density

Treatment of density is one for which everyone has a very good physical intuition - it is known
that density integrates naturally on volumes to give mass (see Section 1.1).

ρ(2) = ρ dxdy (5-9)

This, however, doesn’t complete the formulation because, just like pressures, we still have to
assign an orientation to the volume dxdy. This can be done if we think about the form of
mass conservation that was introduced in Eq. (5-1a).

∂ρ

∂t
+ ∂ρu

∂x
+ ∂ρv

∂y
= 0 (5-1a)

We can choose to write down Eq. (5-1a) in the an integral formulation which is most suitable
for our mimetic methods. ∫

S

∂ρ

∂t
dS +

∫
∂S
ρv.dC = 0 (5-10)

The above equation states that the net change in ρ can be related to the boundary integral
of its fluxes. Noting that fluxes are outer-oriented forms (in other words, variables associated
with a crossing direction through geometric objects), we see that the above equation makes
perfect sense for tracking the changes in an outer-oriented volume-form - thus, dxdy should
be endowed with an outer-orientation. This reasoning can in fact be applied to all kinds of
densities (mass/momentum/energy).
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Mass Conservation

The constraint for mass-conservation, Eq. (5-1a), can now be formulated using the above
ingredients. In differential geometry terms, the mass inside an outer-oriented volume, S, can
be written down with the help of the 2-form, ρ(2) = ρ dxdy, as∫

S
ρ dxdy

In essence, Eq. (5-1a) is a conservation law for the 2-form, ρ dxdy. Let us represent this 2-form
by the symbol, σρ. The evolution equation for this density-weighted standard volume-form
can be written down in integral form as,∫

S

∂σρ
∂t

+
∫
S
Lv σρ = 0 (5-11)

The first term in Eq. (5-11) doesn’t need to be explained. The second term can be explained
with the help of a flux-oriented interpretation of the interior-product. We know that the
Lie-derivative of σρ can be written down as follows.

Lv σρ = div σρ (5-12)

The interior-product of σρ evaluated on a 1D-surface, C, can be interpreted as the transverse-
flux of σρ through this surface. In other words, it just the mass-flux through the surface. We
also know that the application of the exterior derivative to these fluxes is analogous to the
evaluation of their boundary integral through the boundary of S (see Section 2.1). Then the
Lie-derivative of σρ is simply the net-outflow of this volume-form (mass-outflow) through the
boundaries of the volume, S, and Eq. (5-11) is seen to make sense as the conservation law for
mass.

Note that since we work only with fluids with constant densities, it is easy to see that after
some manipulation, Eq. (5-11) can be reduced to Eq. (5-13). This is simply the differential
geometry formulation for Eq. (5-2)! It is known that this formulation simply equates the
volumetric-strain rate to zero.

Lv dxdy = 0 (5-13)

Even though the above equation should suffice for constant density flows, in this work we
choose to work with Eq. (5-11) simply because it conveys more information physically. Thus,
a final form of mass-conservation for the test cases considered here is the following.

Lv σρ = 0 (5-14)

5.3 Derived Variables’ Formulation

Now that the formulations of primary variables have been established, we look at the variables
that are derived from these variables and are present in the momentum Eq. (5-1b): namely
momentum, momentum flux, pressure-forces, and stresses.
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5.3.1 Momentum

If we look at Eq. (5-1b), it would seem like the discretization of conservation of momentum
could be done simply by conserving a 1-form associated to the vector-velocity, v. This was
done in [50] where a formulation for Stokes’ equation was done using At this point, if we recall
the definition for momentum, or “quantity of motion” that is given in [11],

The quantity of motion is the measure of the same, arising from the velocity and
quantity of matter conjointly.

, we see that the conservation of momentum should be geometrically related to quantity of
matter as well. A 1-form is then not the correct way to go as an association with quantity
of matter, or mass, clearly implies the association with volumes! Turning to control-volume
based derivations of momentum conservation, we know that momentum (density) is something
that

• integrates on a volume, and

• has a vectorial nature i.e. has components.

In addition to the above, we know that the work done, W , is the path integral of forces, F ,

W =
∫
F .dx (5-15)

and that forces are related to momenta, m, by,

∆m =
∫
F dt (5-16)

The above suggests that, since work should be coordinate independent and metric free, force
should be covector-valued forms in space (and time, but we don’t consider that here). There-
fore, the momenta are then treated as covector-valued volume-forms here, m(1,2). This idea
was also mentioned in [51]. In other words, momentum densities are things that integrate on
volumes to give components, and these components are covectors. Note that, as has already
been explained, the volume-form with which momentum densities are associated, dxdy, are
outer-oriented.

Before formulating an expression for the momenta, we first take a look at the Euclidean metric
tensor in 2D. The metric tensor, as defined in Chapter 2, for R2 is simply,

G =

1 0

0 1

 (5-17)

but this is a purely mathematical version of the metric. It should be mentioned here that there
is no canonical way to connect vectors and covectors and this must be done by introducing
extra-structure on the manifold (the Lagrangian, see [16] p.55). We thus attempt to introduce
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a more physical version of the metric tensor by looking at the kinetic energy and how it
depends on velocities. Kinetic energy, T , is frequently represented as a positive definite
symmetric form in the velocities, and can be written down in the following local form.

TL = 1
2
∑
i,j

gijv
ivj (5-18)

This is called a local form of kinetic energy here because this assumes point-particles, and their
masses are contained in the metric, gij , as is shown in [16]. For our fluid continuum, kinetic
energy should really be associated with volumes. From a physical perspective, kinetic energy
associated with a point in a continuum doesn’t make sense. Being a scalar, its association
with volume-forms is then obvious. We thus work with the global form of kinetic energy, and
this is represented in the following form.

TG = 1
2
∑
i,j

gijv
ivj dxdy (5-19)

At the same time, kinetic energy can also be represented with a duality pairing between
the global form of momentum (covector-valued volume-forms) and velocities (vector-valued
0-forms). Then, if we represent the global form of momenta by m(1,2), we can write down the
above duality pairing as,

TG = 1
2
〈
m(1,2),v

〉
(5-20)

Comparing the above equation with the global form of kinetic energy, we see that the global
form of momenta should be represented as,

m(1,2) =
∑
i,j

dxj ⊗ gijvj dxdy (5-21)

Moreover, we know that the usual expression for momentum contains a mass/density term in
it. Therefore we choose to include the mass/density term in the metric, gij . We modify the
metric, G, to include the density, ρ, in it and write it in the following form.

Gρ =

ρ 0

0 ρ


= ρ dx⊗ dx+ ρ dy ⊗ dy

(5-22)

Using the above, the global form of momenta would be given by,

m(1,2) = dx⊗ ρu dxdy + dy ⊗ ρv dxdy
= dx⊗m(2)

x + dy ⊗m(2)
y

(5-23)

If one so wishes, one can also define a local form of momenta as follows.

m(1,0) = Gρ(v)
= dx⊗ ρu+ dy ⊗ ρv

(5-24)
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Then the global form of kinetic energy can also be represented as,

TG = 1
2
〈
m(1,2),v

〉
(5-25)

Before progressing to the treatment of other variables, the duality pairings being done here
are explained more thoroughly in order to make the entire formulation as unambiguous as
possible.

Duality Pairings Explained

Consider a 2D manifold, S. The duality pairing that exists between a general vector basis,
ej , and a covector basis, θi, onM is recounted from Section 2.1 as,

θi(ej) = δij (2-3)

It should be noted that the above pairing for the vector- and covector-basis is only defined
at a particular point. In other words, θi and ej belong to the cotangent- and tangent-spaces
defined at a point, p ∈ S, Skp∗ and Skp . This should mean that when the duality pairing
between momentum and for instance, a vector-basis located at point p, ∂i|p is done, it should
yield only the momentum volume-form associcated to the particular p. If p be represented by
(x0, y0) in the local coordinates, (x, y), this should mean that the duality pairing yields the
ith component of momentum evaluated at (x0, y0) following.〈

m(1,2), ∂i|p
〉

= m
(2)
i

∣∣∣
p

= m
(2)
i

∣∣∣
(x0,y0)

(5-26)

Then, to get a global description of this particular component of momentum, the duality
pairing should be done with all ith vector-basis situated at all points on the manifold, that
is with a vector-field spanning the entire manifold with the ith vector-basis. This vector-field
is going to be represented by ∂i, i.e. without the subscript of p to denote that this is not a
vector at a point but a vector-field spanning the entire manifold. In all the work that follows,
we will be working with vector-fields only.

Then, using the above, the global description of momentum components can be given as
follows, which also serves as a relation between momentum and velocity components.

m
(2)
i =

〈
m(1,2),∂i

〉
= ?

〈
m(1,0),∂i

〉
= ?

(
gijv

j
) (5-27)

where i, j = 1, 2 refer to x- and y-directions, respectively. Note that these components are
themselves volume-forms. We can extend the above equation to account for a general vector-
fields,

∑
i b
i∂i, rather than just the constant vector-fields, ∂x or ∂y. Thus, the coefficients bi

are allowed to vary everywhere in space (and, in some cases, even in time as we’ll see later).〈
m(1,2), bi∂i

〉
= ?

〈
m(1,0), bi∂i

〉
=
∑
i

m
(2)
i bi

(5-28)
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The above is a simple extension from Eq. (5-27), and, if we think about the rules that a
vector-space must follow, the above seems almost trivial. We’ll be using the above extension
a lot over the coming parts.

An expression for momentum-densities has, thus, been formulated associated with outer-
oriented volumes. Assuming for a while that these covector-valued volume-forms can be
reduced (integrated, in other words), we note that these outer-oriented volumes are going
to be surrounded by outer-oriented surfaces (edges in 2D), and with these surfaces we can
associate different kinds of momentum fluxes. We take a look at how we can formulate these
fluxes now.

5.3.2 Convective Momentum Flux

In 2D, fluxes are associated with 1D geometric objects, and the first kind of momentum-flux
that we look at is the convective flux. Convective fluxes in our formulation are covector-
valued (n− 1)-forms, which in 2D means covector-valued 1-forms. Let us represent these by
the symbol F (1,1). The calculation of these fluxes for the ith component of the momentum-
conservation equation is defined as,

F (1)
i =

〈
F (1,1),∂i

〉
= iv

〈
m(1,2),∂i

〉
= ivm

(2)
i

(5-29)

Thus, we expect the fluxes in ith direction to depend only on the momentum in that direction.
This is used here in the context of R2, but in fact the above is expected to be true for all
orthogonal coordinate systems. Of course, the covector-valued fluxes, F (1,1), don’t necessarily
need to be weighted by a constant vector-field, and for general vector-fields the flux calculation
can be extended just like it was extended for the momenta.〈

F (1,1),
∑
i

bi∂i

〉
= iv

〈
m(1,2),

∑
i

bi∂i

〉
=
∑
i

ivb
im

(2)
i

(5-30)

As an example, using the above, we can easily derive an expression for momentum-flux com-
ponents in R2 as shown below.

F (1)
i = ivm

(2)
i

= ivmi dxdy

= mi dxdy(u ∂x + v ∂y)
= miu dxdy(∂x) +miv dxdy(∂y)
= mi(u dy − v dx)

(5-31)
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5.3.3 Pressure Force

As is known from control-volume derivations of momentum conservation, pressure-forces act
on surfaces bounding control-volumes (surface forces). This means, that in our 2D setting, we
will have pressure-forces as covector-valued 1-forms, H(1,1), just like convective momentum
fluxes.

To define the components of our pressure-force, H(1,1), the scalar-field pressures, p(2), defined
in Section 5.2 are made use of along with the interior product.

H(1)
i =

〈
H(1,1),∂i

〉
= i∂i

p(2)
(5-32)

The above can be understood with the help of the dynamic definition of iv, as was explained
in Chapter 2. Consider the 2D space, and analyse the above formulation of pressure-force as
follows. Pressure is a 2-form given by the following expression.

p(2) = p dxdy (5-33)

The interior product of the above 2-form with, for instance, a constant vector-field in x-
direction, ∂x, yields,

H(1)
x = i∂xp

(2)

= p dxdy(∂x)
= p dy

(5-34)

The interior product of the volume dxdy above is the opposite of the extrusion of the surface
dy under the transverse vector-field given by ∂x. In fact, these operations are adjoints of each
other, as was also hinted at in Section 2.1 while defining the interior product (see Eq. (2-38),
Figure 2-4). The above formulation then calculates the transverse flux of pressure through
surfaces. Moreover, this formulation also suggests a symmetry between mass-conservation,
Eq. (5-14), and pressures.

As a result of the above operation in R2, the scalar pressure-field is seen to integrate on edges
dy and dx to yield forces in directions ∂x and ∂y (or H(1)

x and H(1)
y ), respectively. These can

also be extended for a general vector-field in the same way as was done for convective fluxes
and momenta.

5.3.4 Stress

Stresses are surface forces as well, just like the last two momentum-fluxes that we looked
at. These are then covector valued 1-forms, T (1,2), that represent the diffusion of momentum
through surfaces that bound the control-volume. These also involve a material parameter,
µ, in their formulation and this is, in fact, the first constitutive equation that we are going
to model. The formulation for viscous stresses in ith direction in vector-calculus notation is
given by:

τ i = µ∇ui (5-35)
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In a similar vein, the stresses in ith direction in R2 can be modeled in our formulation as,

T (1)
i =

〈
T (1,1),∂i

〉
= d?µ/ρ

〈
m(1,2),∂i

〉
= d?µ/ρm

(2)
i

(5-36)

The above is our final formulation for diffusion of momentum fluxes. Of course, the stresses at
all points pointing in a general direction can be obtained by a linear-combination of stresses
weighted by vector-fields ∂x and ∂y, as was shown for convective momentum-fluxes.

Note that all previous variables before stresses are expected to be true for a general coordinate
system even though they have been presented only for R2. The formulation for stresses as
represented above, however, holds only in coordinates where the basis vectors, ∂i, are constant
in space. In other words, these are coordinate systems where two vectors located at different
points in space can be compared based only on their components. In case of a general
coordinates, the formulation should contain terms that take into account the variation of
basis-vectors in space. In other words, it should contain the application of the exterior
covariant-differential as was introduced in Section 2.1 and its adjoint instead of the exterior-
derivative and the codifferential. In this work the treatment of these coordinate systems has
been left out, and this should be taken up in a future work.

In Eq. (5-36), the subscript of µ/ρ on d? is merely a reminder of the fact that the material pa-
rameter used for modeling diffusion of momentum is the kinematic viscosity. The application
of material parameters, variable and constant, was discussed in Section 3.4.

Momentum Conservation

We have identified three different kinds of momentum fluxes so far - F (1)
i ,H(1)

i and T (1)
i . Now,

we only need to relate the net outflow/inflow of momentum due to these fluxes to its total
change. The total outflow of momentum because of these fluxes can be written down as,

Net Outflow : d(F (1)
i +H(1)

i − T
(1)
i )

Note that the above fluxes are situated at different points in the control-volumes. In order to
compare these fluxes located at different points in space, only the use of the exterior derivative
with the flux-components is found to be sufficient. This is because, as was explained for
stresses, the coordinate basis vectors that we use for R2 don’t change in space. If this had
not been the case, we would have had to incorporate Christoffel symbols and the exterior
covariant-differential, which has been left for future work.

The conservation law for momentum is then formulated as,

∂m
(2)
i

∂t
+ d(F (1)

i +H(1)
i − T

(1)
i ) = 0 (5-37)

Deepesh Toshniwal Master of Science Thesis



5.3 Derived Variables’ Formulation 91

The translation of the complete Navier-Stokes equation from vector-calculus to differential-
geometry is complete, and is shown below.

Lv σρ = 0 (5-14)

∂m
(2)
i

∂t
+ d(F (1)

i +H(1)
i − T

(1)
i ) = 0 (5-37)

Secondary Conservation Laws

A more general form of the momentum equation can be written as follows,

∑
i

bi
∂
〈
m(1,2),∂i

〉
∂t

+
∑
i

bid
(〈
F (1,1),∂i

〉
+
〈
H(1,1),∂i

〉
−
〈
T (1,1),∂i

〉)
= 0 (5-39)

It should be noted that Eq. (5-39) is the same as Eq. (5-37) with the exception that

• it is the momentum equation weighted with a general vector-field instead of a constant
one, and

• the fact that it makes clear the origin of the components of momentum by writing them
in terms of the duality pairing that exists between covector-fields and vector-fields.

Now, if we allow this equation to hold ∀ b =
∑
i b
i∂i ∈ TM2, then the coefficients bi can, in

general, be functions of space and time. In such a case, we can rewrite the above equation as,

∂
〈
m(1,2), b

〉
∂t

+ d
(〈
F (1,1), b

〉
+
〈
H(1,1), b

〉
−
〈
T (1,1), b

〉)
= · · ·

· · ·
∑
i

〈
m(1,2),∂i

〉 ∂bi
∂t

+
∑
i

(〈
F (1,1),∂i

〉
+
〈
H(1,1),∂i

〉
−
〈
T (1,1),∂i

〉)
∧ dbi

(5-40)

The above is a generalized equation for momentum conservation. Since it should hold ∀ b ∈
TM2, it should also hold for b = v = u ∂x+v ∂y. For this specific vector-field, Eq. (5-40) will
transform to the evolution equation for Kinetic Energy. Similarly, for different vector-fields
such as position and vorticity, conservation laws for angular-momentum and helicity may be
obtained! Thus, we make use of this equation in the discretization of incompressible Navier-
Stokes equations that is described in the next section. Note that the variables

〈
F (1,1), b

〉
and〈

T (1,1), b
〉
can also be written down as,

〈
F (1,1), b

〉
= iv

〈
m(1,2), b

〉
〈
T (1,1), b

〉
=
∑
i

bid?µ/ρ

〈
m(1,2),∂i

〉 (5-41)
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5.4 Discretisation and Implementation

So far, we have encountered vector-fields, differential-forms, and covector-valued differential
forms. Discretization of some of these terms is straightforward applying the principles dis-
cussed so far, and for some of these we need to take extra care in making the jump from
the infinite-dimensional world to the finite-dimensional one. This section takes a look at how
this can be done for all of our variables. Note that all discretizations are done assuming an
inner-oriented primal mesh.

5.4.1 Velocity and Momentum Variables

Velocity and Mass-conservation

Our final formulation for velocity is given in Eq. (5-6), and for mass-conservation in Eq. (5-
13). It would seem that there is only one way of discretizing the velocity thus introduced,
but we take a look at two equivalent forms of Eq. (5-13) that lead to two possible ways of
discretizing the velocity.

Let α(1) be the 1-form associated with the vector, A, using the metric tensor, G.

α(1) = G(v) (5-42)

Then the Hodge-? can also be seen as a generalization of the following identity (see [16],
Ch.14),

? α(1) = iAσ (5-43)

where σ is the standard volume-form (which in R2 is dxdy).

In our formualtion, the above means that we can write Eq. (5-14) in the following two equiv-
alent forms using the metric-tensor, Gρ.

Lv σρ = d ? Gρ(v) = 0 (5-44)

It was pointed out that discretization is the most obvious for differential forms because of the
fact that they integrate naturally on elements of the mesh to give discrete sets of numbers.
Then, the two possible discretizations of velocity that can be done in accordance with Eq. (5-
44) are:

1. One could discretize the one-forms associated to velocities, v. This, in R2 using Gρ,
would be given by,

v(1) = ρu dx+ ρv dy (5-45)

Let us represent this inner-oriented, density-weighted velocity by v(1). Its reduction is
simply integration on 1-chains of the mesh, Cxij and Cyij , which are 1-chains along x-
and y-axis. ∫

Cx
ij

v(1) dC = v̄xij (5-46)
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∫
Cy

ij

v(1) dC = v̄yij (5-47)

The finite-dimensional approximation of this outer-oriented, density-weighted velocity
is then,

v
(1)
h =

∑
i,j

v̄xijei(x)hj(y) +
∑
i,j

v̄yijhi(x)ej(y) (5-48)

Conservation of mass, Eq. (5-14), would then be represented in a discrete sense as
follows.

D2,1 ?h v̄ = 0 (5-49)

which is simply the right-hand side of Eq. (5-44). The implementation of the exterior
derivative and the Hodge-? in a discrete setting, D2,1 and ?h, has already been discussed
in Chapter 2 and Chapter 3.

2. Alternatively, velocity, v, can be treated component-wise. In this way, velocity compo-
nents, u and v, are simply 0-forms evaluated at the inner-oriented 0-cells of the mesh,
and since the variable is vector-valued, there are two 0-forms that need to be discretized
at each 0-cell, namely u and v. Then, the appropriate velocity 0-cochains, ūij and v̄ij ,
on 0-chains, Fij , are

u(Fij) = ūij (5-50)

v(Fij) = v̄ij (5-51)

The finite-dimensional approximation of velocity vector discretized as such is,

vh = uh ∂x + vh ∂y

=
∑
i,j

ūijhi(x)hj(y) ∂x +
∑
i,j

v̄ijhi(x)hj(y) ∂y (5-52)

In such a discretization, the incompressibility constraint is given by the left-hand side
of Eq. (5-44),

Lvρ dxdy = 0 (5-53)

As was shown earlier, the complete operation of the Lie-derivative on ρ dxdy can be
seen as the derivation of fluxes from the volume-form σρ by an interior product with
the velocity-field. These are obtained on outer-oriented 1-chains.

ivh
ρ dxdy = ρuh dx(∂x)dy − ρvh dy(∂y)dx

= −ρvh dx+ ρuh dy
(5-54)

If the above fluxes are represnted by f (1̃), they can be reduced on the dual 1-chains
of the mesh, C̃xij and C̃yij , which are 1-chains along x- and y-axis. To reiterate, in our
convention the ˜ represents things associated to the dual-mesh. These need to be
reduced on the dual mesh because fluxes are outer-oriented, and our primal mesh, as
was mentioned at the beginning of this section, is inner-oriented.∫

C̃x
ij

f (1̃) dC = f̄xij (5-55)

Master of Science Thesis Deepesh Toshniwal
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∫
C̃y

ij

f (1̃) dC = f̄yij (5-56)

Once we have the above outer-oriented 1-cochains, incompressibility can be enfored by
taking their discrete exterior derivative.

D2̃,1f̄ = 0 (5-57)

Note that in the above, the finite-dimensional density, ρh, is missing. Instead, ρ is
being treated as though we have its infinite-dimensional representation, and this is true
because we only consider cases with constant ρ.

We have managed to pose the constraint of mass-conservation in terms of velocity-unknowns
(or, velocity-cochains), and now we look at the unknowns in the momentum equation and try
to connect all the unknowns in a suitable way.

Momentum

If we take a look at the momentum equation as given in Eq. (5-40), we can see that the form
of unknowns that we have for the momenta are simply,〈

m(1,2), b
〉

and
〈
m(1,2),∂i

〉
Moreover, for the vector-field, b, that is being used in Eq. (5-40), we have bi as the unknowns
∀ b. To make sense of all of this, one of the ways of treating these unknowns arises out of the
following observations.

1. In our discrete setting, we have only a handful of different vector-fields that we can
represent. Their general expansion can be written down in the equation below, following
the convention introduced in the section on velocity’s discretization.

bh =
∑
i,j

b̄xijhi(x)hj(y) ∂x +
∑
i,j

b̄yijhi(x)hj(y) ∂y

=
∑
i,j

bxh ∂x + byh ∂y
(5-58)

2. Therefore, if we have (N + 1) points in the i and j directions, the maximum number
of different b̄xij and b̄yij that we can have are (N + 1)2 independently of each other.
With regards to the general form of momentum conservation shown in Eq. (5-40), we
can consider the following components of the (N + 1)2 vector-fields in each direction,
x and y.

x : (b̄xij , b̄
y
ij) =

{
(1, 0) if (i, j) = (i0, j0)
(0, 0) if (i, j) 6= (i0, j0)

y : (b̄xij , b̄
y
ij) =

{
(0, 1) if (i, j) = (i0, j0)
(0, 0) if (i, j) 6= (i0, j0)

(5-59)
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3. Note that the above vector fields ∀ (i0, j0) form a partition of unity in each directions,
x and y. So, if we denote the (i0, j0) vector-field corresponding to direction x or y by
bxi0j0 or byi0j0 , we can write down the following:

(bxi0j0)h =
∑
i,j

(b̄xij)i0j0hi(x)hj(y) ∂x

(byi0j0)h =
∑
i,j

(b̄yij)i0j0hi(x)hj(y) ∂y
(5-60)

such that for a particular k equal to x or y, we have∑
i0,j0

(bki0j0)h =
∑
i0,j0

∑
i,j

(b̄kij)i0j0hi(x)hj(y)∂k

=
∑
i0,j0

∑
i,j

(b̄kij)i0j0hi(x)hj(y)∂k

= ∂k

(5-61)

because the Lagrange polynomials form a partition of unity.

Thus, using the above, we can consider momentum-components weighted by vector-fields,〈
m(1,2), (bki0j0)h

〉
as our primary unknowns. Let us call these partial-momenta. If the 2-cochains for these
partial-momenta in the kth direction, weighted by the (i0, j0) vector-field, and associated
with 2-chains specified by S̃ij , are denoted by (m̄k)i0j0ij , we have the following expansion for
the kth component of these partial-momenta.〈

m(1,2), (bki0j0)h
〉

= (m(2)
k )i0j0h

=
∑
i,j

(m̄k)i0j0ij ẽi(x)ẽj(y) (5-62)

for k equal to x or y. Keeping in mind that the vector-fields (bki0j0)h form a partition of unity
in the kth direction, we can establish the following relation.

∑
i0,j0

〈
m(1,2), (bki0j0)h

〉
=
〈
m(1,2),∂k

〉
(5-63)

In the specific case that the vector-fields being used to weight the momentum components
are only ∂x and ∂y, we will, of course, we dropping the superscript of i0j0 from momentum
components.

Thus, all three unknowns related to momentum that were identified at the beginning of this
section have been taken care of.
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Velocity And Momentum: Relation

We know that we can, and should be able to, establish a one-to-one relation between the
cochains of velocity and the cochains of momentum. Such a relation has already been es-
tablished in a continuous setting, Eq. (5-27), and can be done in the discrete setting in the
following ways.

Note the following two things about this analysis:

• We consider only momentum components weighted by a constant vector-field, ∂k, or
else the notation would become even more confusing!

• We show how to extract momentum-cochains if velocity cochains are being treated
as the main unknowns. In case the momentum cochains are being treated as main
unknowns, the velocity cochains can be obtained from the following by starting from a
finite-dimensional representation of momentum, and progressing in the same spirit as
below. We address this at the end of this analysis as well.

The analysis can be done for the two ways of velocity discretization that were explored earlier.

1. If the velocities are discretized as outer-oriented 1-forms, v(1), we have their finite-
dimensional representation given by,

v
(1)
h =

∑
i,j

v̄xijei(x)hj(y) +
∑
i,j

v̄yijhi(x)ej(y)

=
∑
i,j

v̄xijεi(x)hj(y) dx+
∑
i,j

v̄yijhi(x)εj(y) dy

= (−ρvh) dx+ (ρuh) dy

(5-64)

2. Alternatively, if the velocities are discretized as vector-valued 0-forms, v, we have their
finite-dimensional representation given below.

vh =
∑
i,j

ūijhi(x)hj(y) ∂x +
∑
i,j

v̄ijhi(x)hj(y) ∂y

= uh ∂x + vh ∂y

(5-65)

We can then find out the finite-dimensional representation of the 1-form associated with
this vector-field, Gρ(v), as

Gρ(vh) = (ρ dx⊗ dx+ ρ dy ⊗ dy)(uh ∂x + vh ∂y)
= ρuh dx+ ρvh dy

(5-66)

Once we have the above expressions for ρuh and ρvh, we can look back at the equation for
momentum components that was derived earlier, Eq. (5-27), and write down momentum
component (fields) as,

(m(2)
x )h = ρuh dxdy

(m(2)
y )h = ρvh dxdy

(5-67)
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and the corresponding cochains can then be obtained by the reduction of these 2-form fields
on appropriate outer-oriented 2-chains, S̃ij . Momentum weighted by a general vector-field can
be obtained by a linear combination of the above 2-form fields, as was shown in Eq. (5-28).
The cochains for the constant vector-fields, ∂i, are given below

R(m(2)
x )h =

∫
S̃ij

ρuh dxdy = (m̄x)ij

and, R(m(2)
y )h =

∫
S̃ij

ρvh dxdy = (m̄y)ij
(5-68)

The finite-dimensional continuous representation of momentum would then be given by,

m
(1,2)
h = dx⊗

∑
i,j

(m̄x)ije(1̃)
i (x)e(1̃)

j (y) + dy ⊗
∑
i,j

(m̄y)ije(1̃)
i (x)e(1̃)

j (y) (5-69)

The above analysis can be concisely represented as,

ūij
I−→ uh

Eq. (5−27)−→ (m(2)
x )h

R−→ (m̄x)ij

v̄ij
I−→ vh

Eq. (5−27)−→ (m(2)
y )h

R−→ (m̄y)ij
(5-70)

In the above analysis, if we were to start with momentum-cochains, the extraction of velocities
would be the exact same analysis, but now progressing in the opposite direction.

(m̄x)ij
I−→ (m(2)

x )h
Eq. (5−27)−→ uh

R−→ ūij

(m̄y)ij
I−→ (m(2)

y )h
Eq. (5−27)−→ vh

R−→ v̄ij

(5-71)

Similarly, if we have partial-momentum cochains as our unknowns, we can write down the
partial-velocity cochains in their terms as follows,

(m̄x)i0j0ij
I−→ (m(2)

x )i0j0h

Eq. (5−27)−→ ui0j0h
R−→ ūi0j0ij

(m̄y)i0j0ij
I−→ (m(2)

y )i0j0h

Eq. (5−27)−→ vi0j0h
R−→ v̄i0j0ij

(5-72)

These partial-velocity cochains will form a partition of unity of the total velocities, and this
can be written down as:

ūij =
∑
i0,j0

ūi0j0ij

v̄ij =
∑
i0,j0

v̄i0j0ij

(5-73)

It is important to note that these one-to-one relation between velocities and momentum
are maintained throughout because these are indeed dependent variables (this results in a
staggered-mesh formulation in our work; Chapter 6).

Once the discretization of momentum is complete, we can write down the flux-cochains and
stress-cochains used in momentum equations using the discrete operators (Chapter 3) on
our momentum-cochains in the discrete-setting. This is trivial to perform once we have
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the momentum cochains and discrete-operators if we use Eq. (5-41). Let us represent the
respective cochains as follow for fluxes,

R
〈
F (1,1), (bki0j0)h

〉
−→(ζ̄k)i0j0ij

R
〈
F (1,1),∂k

〉
−→(ζ̄k)ij

=
∑
i0,j0

(ζ̄k)i0j0ij

(5-74)

and for stresses as,

R
〈
T (1,1), (bki0j0)h

〉
−→(τ̄k)i0j0ij

R
〈
T (1,1),∂k

〉
−→(τ̄k)ij

=
∑
i0,j0

(τ̄k)i0j0ij

(5-75)

5.4.2 Scalar-pressures and Pressure-forces

Scalar-pressure Field

The discretization of pressure is simply the reduction of pressures on dual 2-chains for an
inner-oriented mesh, or on primal 2-chains for an outer-oriented mesh. Therefore, for our
inner-oriented mesh where we have dual 2-chains given by, S̃ij , the pressure cochains will be
given by, ∫

S̃ij

p(2) = p̄ij (5-76)

with a finite-dimensional approximation as follows.

p
(2)
h =

∑
i,j

p̄ijei(x)ej(y)

=
∑
i,j

p̄ijεi(x)εj(y) dxdy
(5-77)

Pressure-forces and Scalar-pressures

From the generalized-momentum conservation equation as given in Eq. (5-40), we see that
our main pressure-variables are:〈

H(1,1),∂i
〉

and
〈
H(1,1), b

〉
From momentum discretization, we already know that if we treat〈

H(1,1), b
〉
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Weighting vector-field bxi0j0 and byi0j0 ∂x and ∂y

Velocity ūi0j0ij , v̄i0j0ij ūij , v̄ij

Momentum (m̄x)i0j0ij , (m̄y)i0j0ij (m̄x)ij , (m̄y)ij

Convective-flux (ζ̄x)i0j0ij , (ζ̄y)i0j0ij (ζ̄x)ij , (ζ̄y)ij

Stresses (τ̄x)i0j0ij , (τ̄y)i0j0ij (τ̄x)ij , (τ̄y)ij

Pressure-force (λ̄x)i0j0ij , (λ̄y)i0j0ij (λ̄x)ij , (λ̄y)ij

Table 5-1: Cochain notation to be used for the discrete Navier-Stokes setup

as our primary unknowns, and use the partition-of-unity vector-fields introduced earlier,

b = bki0j0 ∀ (i0, j0, k)

we can establish the following relation between
〈
H(1,1),∂i

〉
and

〈
H(1,1), b

〉
.

H(1)
k =

〈
H(1,1),∂k

〉
=
∑
i0,j0

〈
H(1,1), bki0j0

〉 (5-78)

We will call the variable corresponding to
〈
H(1,1), bki0j0

〉
partial-pressure force, and the cochains

corresponding to this variable can be determined with the help of Eq. (5-32) and a discrete
application of the interior-product, as was shown in Chapter 3. If the cochains corresponding
to this variable are represented by (λ̄k)i0j0ij , and the discrete vector-field (bki0j0)h by simply a,
we have the following representation of the above.

p̄ij
I−→ p

(2)
h

ia−→ (λi0j0k )h
R−→ (λ̄k)i0j0ij , k = x, y

5.5 Final Discrete Formulation

We have managed to obtain discrete representations of all our variables, and the notation
that has been introduced for our cochains far is as shown in Table 5-1. Using this notation,
the discrete-counterpart of Navier-Stokes equations, as shown in Eq. (5-14) and Eq. (5-40),
can be written down.

• Mass Conservation:

– If velocity is discretized as the 1-form associated to velocity vectors:

D2,1 ?h [v̄ij ] (5-79)
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– If velocity unknowns are vector-valued 0-forms:

D2,1ivh
[Rσρ] (5-80)

• Partial-Momenta Conservation:

∑
k

∂(m̄k)i0j0h

∂t
+
∑
k

D2,1
(
[(ζ̄k)i0j0ij ] + [(λ̄k)i0j0ij ]− [(τ̄k)i0j0ij ]

)
= · · ·

· · ·
∑
k

[(m̄k)ij ]
�
�
�
��∂(bki0j0)h

∂t
+
∑
k

(
[(ζ̄k)ij ] + [(λ̄k)ij ]− [(τ̄k)ij ]

)
∧D1,0[(b̄kij)i0j0 ]

(5-81)

where square-brackets, [·], around a cochain means the matrix of those cochain values. The
above equations need to be solved for all possible vector-fields, i.e. for all possible variations
of the indices i0 and j0. Notice that the vector-fields, bxi0j0 and byi0j0 , were chosen just as
functions of space and partitions of unity, and this is the reason why the time-derivative of
their components is set to zero in Eq. (5-81). Secondary-conservation properties are treated
in the next sub-section.

5.5.1 Discrete Secondary-variable Conservation

In Eq. (5-40), it was stated that by weighting the momentum equation with a general vector-
field we can conserve a lot of secondary variables (kinetic energy, enstrophy etc). This is a
straightforward extension from the partial-momenta conservation law that is given in Eq. (5-
81). As was noted for Eq. (5-81), the coefficients of the weighting vector-fields bxi0j0 and byi0j0
were constant in time, and thus the only thing that we were conserving in Eq. (5-81) was
partial-momenta. We can get expressions for a general vector-field by allowing the coefficients
to vary in time. This is expressed below as:

(bxi0j0)h =
∑
i,j

(b̄xij)i0j0(t)hi(x)hj(y) ∂x

(byi0j0)h =
∑
i,j

(b̄yij)i0j0(t)hi(x)hj(y) ∂y

where (b̄xij)i0j0(t) and (b̄yij)i0j0(t) are the time-variable coefficients. Now, we expand these
time-variable coefficients as 0-forms in the direction of time with our Lagrange polynomials.

(b̄xij)i0j0(t) =
∑
r

(b̄xij)ri0j0hr(t)

(b̄yij)i0j0(t) =
∑
r

(b̄yij)
r
i0j0hr(t)

In the above, the index r denotes the time-level (for example, time-integration with order 4
will have 5 time-levels for each time-step).

If we consider the above as components of the vector-field and look at Eq. (5-81), we see
that the time-variability of the coefficients will simply be a multiplying-factor for the spatial
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derivative terms (divergence of fluxes), and the only terms that will be significantly changed
are the time-derivative terms. Thus, we consider only the time-derivative terms in detail.

∑
k

∂(m̄k)i0j0h

∂t∑
k

[(m̄k)ij ]
∂(bki0j0)h

∂t

The above time-derivatives will transform to the following,

∑
r

∑
k

(b̄kij)ri0j0
∂(m̄k)i0j0h hr(t)

∂t∑
r

∑
k

(b̄kij)ri0j0 [(m̄k)ij ]
∂(hr(t)
∂t

As a result of the above modifications, the quantities we will be preserving are,

(m̄k)i0j0h hr(t)

that is, all the partial-momenta, (m̄k)i0j0h , weighted by hr(t). It is easy to see that since the
time-varying coefficients will just be multiplying-factors for the rest of the equation that only
contains spatial-derivative, the entire equation will have the following multiplying factor.∑

r

∑
k

(b̄kij)ri0j0

Note that we can choose choose (b̄kij)ri0j0 such that they form linearly independent vectors in
the index r. For first order integration, for instance, these can be given by:

(b̄kij)i0j0 =


1√
2

1√
2

 , (b̄kij)i0j0 =


1√
2

− 1√
2


This means that if we solve the partial-momentum equations to conserve (m̄k)i0j0h hr(t) for
all such linearly-independent vectors, we can conserve all possible linear combinations of
the partial-momenta. If this is possible, it would lead to the conservation of a large set of
secondary variables. Of course, the implicit assumption here is that for different linearly-
independent vector-fields, the partial-momenta solution will stay invariant which seems like
a strong condition. This was not checked here, and this approach should be verified, and if
successful, exploited in a future work.
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Chapter 6

Results

In Chapter 5, a general framework for the discretization of incompressible Navier-Stokes equa-
tions was given. This framework was developed for the generalized-momentum conservation
for which the continuous formulation is shown in Eq. (5-40).

∂
〈
m(1,2), b

〉
∂t

+ d
(〈
F (1,1), b

〉
+
〈
H(1,1), b

〉
−
〈
T (1,1), b

〉)
= · · ·

· · ·
∑
i

〈
m(1,2),∂i

〉 ∂bi
∂t

+
∑
i

(〈
F (1,1),∂i

〉
+
〈
H(1,1),∂i

〉
−
〈
T (1,1),∂i

〉)
∧ dbi

(5-40)

In this work, the weighting vector-field used in Eq. (5-40) is simply a constant vector-field
(∂x or ∂y). This gives the usual momentum conservation law, and is equivalent to Eq. (5-37).

∂m
(2)
i

∂t
+ d(F (1)

i +H(1)
i − T

(1)
i ) = 0 (5-37)

Thus, over here the only conservation law that is being tested is linear-momentum conserva-
tion, and the generalized conservation equation, Eq. (5-81), is left for future work.

This is applied to problems of Kovasznay flow, and the lid-driven cavity flow. This chapter
presents results corresponding to these test cases, and brief analysis of their results. Be-
fore proceeding to the results, a brief setup of the mesh and the placement of unknowns is
investigated.

6.1 Computational Mesh and Variable Placement

The setup of the computational mesh is described here first which is not specific to any
problem, but to our method. This setup is explained for one spectral element, and the
extension to multiple elements is straightforward.
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Figure 6-1: A 2D cell complex: (1) 0-Cells: � (2) 1-Cells: (3) 2-Cells: �

Consider a spectral element of polynomial order N . This will be our primal, outer-oriented
computational mesh, and is shown in Figure 6-1. The different ingredients, all outer-oriented,
that build up this mesh are:

• (N + 1)2 Zero-cells

• 2N(N + 1) One-cells

• N2 Two-cells

Our primary variables, velocities and pressures, are discretized on this mesh as per their
appropriate rank. We have already seen in Chapter 5 that velocity is discretized as vector-
valued (inner-oriented) 0-forms,

v = u ∂x + v ∂y (6-1)
or as the 1-forms associated to this vector-field.

v(1) = Gρ(v) = ρu dx+ ρv dy (6-2)

At the same time, we should also note that this was the appropriate discretization for an inner-
oriented mesh. Hence, on our outer-oriented mesh, the duals of these forms of velocity need
to be reduced. In this work, the reduction of ?Gρ(v) was chosen as the primary discretization.
In a future work, the difference between the two approaches should be quantified. Hence, the
velocity 1-form that was chosen for discretization in this work is,

v(1) = ?Gρ(v) = ρu dy − ρv dx (6-3)
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(b) p̄

Figure 6-2: The velocities are discretized as mass-fluxes, and thus on 1-cells of this lowest-order
mesh. Pressures on the other hand are discretized as 2-forms, and thus as a single integral value
for this single-cell mesh.
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Figure 6-3: Once velocities have been discretized as mass-fluxes (Eq. (6-3)), calculation of di-
vergence is simply taking a linear combination of mass-flux cochains with the appropriate weights.
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(a) Volumes for y-
momenta, m̄y
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(b) Primal 1-cells
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(c) Volumes for x-
momenta, m̄x

Figure 6-4: A staggered-mesh system can be constructed from a single primal-cell as shown in
this figure. There is a one-to-one relation between the number of 2-cells and the number of 1-cells
for momenta and velocities, respectively.

This means that velocities are already being discretized as fluxes on the 1-cells ( ) of our
mesh and the pressures are discretized as outer-oriented 2-forms on our 2-cells (�). Their
respective finite-dimensional representations would be as below for pressures,

p
(2)
h =

N∑
i=1

N∑
j=1

p̄ijei(x)ej(y)

=
N∑
i=1

N∑
j=1

p̄ijεi(x)εj(y) dxdy
(6-4)

and for velocities as follows,

v
(1)
h =

N∑
i=1

N∑
j=0

v̄xijei(x)hj(y) +
N∑
i=0

N∑
j=1

v̄yijhi(x)ej(y)

=
N∑
i=1

N∑
j=0

v̄xijεi(x)hj(y) dx+
N∑
i=0

N∑
j=1

v̄yijhi(x)εj(y) dy
(6-5)

with the cochains being defined by the following equations,

p̄ij =
∫
Sij

p(2)

v̄xij =
∫
Cx

ij

v(1) and v̄yij =
∫
Cy

ij

v(1)
(6-6)

where Sij is the ijth 2-cell, and Ckij is the ijth 1-cell in kth direction.

To make things easier to understand and explain, consider the ijth 2-cell of the above mesh
along with its surrounding outer-oriented 1-cells as shown in Figure 6-2. The crossing-
direction specified for these 1-chains implies their outer-orientation. The 2-cell is assigned
a source-like orientation.

Let us say that we want to see how mass-conservation can be enforced for this cell (�).
Recall that the 1-cochains, v̄xij and v̄

y
ij , discretized as above are mass fluxes through the edges
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Figure 6-5: Momentum fluxes’ are placed on the 1-cells surrounding the staggered-mesh volumes
(shown in Figure 6-4).

of the cell. Hence, using the discrete representation of the exterior derivative, we see that the
equation for mass-conservation for this cell is simply:

v̄xij + v̄y(i+1)j − v̄
x
i(j+1) − v̄

y
ij = 0 (6-7)

This operation is shown in Figure 6-3.

Mass conservation can be similarly applied to all cells, and the matrix representation of this
operation will be as shown in Eq. (5-79).

The placement of our primary variables is thus complete. Now we can move on towards the
derived variables and see where they go. Recall that we are weighting the momentum by
constant vector-fields in either direction, ∂x and ∂y, and so our momentum components are
simply,

m
(2)
i =

〈
m(1,2),∂i

〉
, i = {x, y} (6-8)

In order to maintain the one-to-one relation between momentum and velocities that has been
stressed on in Chapter 5, we define two additional meshes which are also outer-oriented, and
which have the correct number of 2-chains corresponding to our primal mesh’s 1-chains. This
automatically leads to a staggered-mesh setup, and is explained as follows.

In order to see the placement of our derived variables, consider the 1-cells surrounding a typical
2-cell on our primal mesh, and let us see what kind of mesh do we get corresponding to this
2-cell. In order to maintain the one-to-one relationship between momenta and velocities, we
surround each 1-cell corresponding to ith component of velocity by volumes that correspond
to this component of momentum. This is shown in Figure 6-4.

Note that, as shown in Figure 6-4, the volumes surrounding 1-cells in x-direction are related
to momentum in y-direction, and the volumes surrounding 1-cells in y-direction are related
to momentum in x-direction. This is because of the outer-oriented nature of the velocities
that we discretize, and can be easily deduced from the expression for v(1).
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(a) Volumes surrounding 1-cells in X-direction

(b) Volumes surrounding 1-cells in Y-direction

Figure 6-6: A staggered-mesh can be constructed by straightforward extension of the single-cell
approach shown in Figure 6-4. Primal mesh: ( ); Staggered-mesh: ( )
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These new outer-oriented volumes on which x- and y-momentum equations are solved can be
seen as the result of a different tesselation of our outer-oriented computational domain. The
1-cells corresponding to these meshes are shown in Figure 6-5. These are the one-cells where
our pressure-forces (λ̄i), convective-momentum fluxes (ζ̄i), and stresses (τ̄i) live.

The above construction allows us to preserve our one-to-one relation between momentum by
an equality of degrees of freedom. The actual calculation of momentum inside these volumes
using v

(1)
h was covered in Chapter 5. The fluxes corresponding to momenta in different

directions can also be evaluated by following the procedure outlined in Chapter 5.

Once we have the momentum inside our staggered-mesh 2-cells and the momentum-fluxes
corresponding to our staggered-mesh 1-cells, the change in momentum in time can be related
to the divergence of these fluxes. This was shown in Eq. (5-81).

The construction of the staggered-mesh above was shown for a single 2-cell which can be
thought of as a lowest-order mesh. This procedure can be carried out for a high-order mesh
in an analogous way by surrounding each 1-cell (associated to a velocity cochain) by a corre-
sponding 2-cell (associated to a momentum cochain) thus preserving the one-to-one relation
between momentum and velocity. The resulting meshes are shown in Figure 6-6 This com-
pletes our section on the setup of a typical computational mesh, and now some results are
presented.

6.2 Kovasznay Flow

Kovasznay flow is a steady-state, analytical solution available to the Navier-Stokes equations.
The solution is similar to the flow behind a periodic array of circular cylinders. The analytical
solution to this problem for velocity, (u, v), and pressures, p, is given as follows:

u = 1− eλxcos(2πy)

v = λ

2πe
λxsin(2πy)

p = 1
2(1− e2λx)

(6-9)

where
λ = 1

2ν −
√

1
4ν2 + 4π2 (6-10)

The kinematic-viscosity chosen for this flow was

ν = µ

ρ
= 1

40 (6-11)

and the computational domain considered was Ω = [−0.5 1]× [−0.5 − 0.5].

The h, p-adaptivity plots for this problem are given in Figure 6-7 for pressures and in Figure 6-
8 for velocities. It can be seen that the solutions converge spectrally. There is some stagnation
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Figure 6-7: The convergence analysis for the solution for pressures is as shown. The plots show
that spectral convergence is obtained for the discretization scheme used.
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Figure 6-8: The convergence analysis for the solution for velocities is as shown. These plots
show spectral convergence as well, just like Figure 6-7.
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Figure 6-9: A sample solution of Kovasznay Flow for a mesh with a 4X4 mesh and elements of
order 3.
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Figure 6-10: The initial pressure-field generated as a result of the solution of Stokes’ flow
is shown in this picture. The singularities at the top corners cause oscillations at the element
boundaries. The solution is discontinuous at these boundaries because of the discontinuous nature
of edge-functions between elements. Regularizing the lid-velocity (removing singularities) makes
the solution better, however discontinuities between elements may still exist if the resolution is
not high enough. Mesh size is 4X4 and made up of elements of order 6.

observed in convergence for a mesh with a single element, and this is attributed to the fact
that our basis may not be capturing certain modes (even/odd). An example solution of the
problem is seen in Figure 6-9 where we show the velocity magnitudes, and the pressure plot
for a 4X4 mesh of order 3.

6.3 Lid-driven Cavity Flow

The momentum-conservation theory developed here was also applied to the problem of flow in
a cavity with the help of a moving boundary. This is a shear driven flow, and the boundary
conditions for this can be simply stated as follows for the velocities on a square domain,
Ω = [0 1]2.

• Normal lid-driven cavity flow (with singularities) ([9]):

u(x, y) =
{
−1, y = 1
0, elsewhere on ∂Ω

v(x, y) = 0 on ∂Ω
(6-12)

• Regularized lid-driven cavity flow ([52]):

u(x, y) =
{
−16x2(1− x)2, y = 1
0, elsewhere on ∂Ω

v(x, y) = 0 on ∂Ω
(6-13)
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Figure 6-11: The magnitude of the initial velocity-field generated as a result of the solution of
Stokes’ flow is as shown for a mesh of 4X4 and made up of elements of order 6.

The simulations were run with the following kinematic-viscosity:

ν = 1
1000 (6-14)

This problem in its normal formulation has two top-corner singularities because of velocity
discontinuities, and in many methods some form of correction needs to be done for this [9].
In our method, however, we have no variables placed exactly at the singularities. This is
because in our velocity-stress-pressure formulation, all variables are either discretized on lines
or surfaces. Some surfaces/lines may contain these singularities, and the integral values for
these surfaces/lines will be very high, but no correction needs to be done for this.

6.3.1 Initial Solution: Stokes’ Flow

For this problem, an initial solution was generated by solving a Stokes’ problem in stress-
velocity-pressure formulation. This was done by ignoring the time-derivative and convective
terms in Eq. (5-37), and choosing ν = 1. The equations thus solved were,

d(H(1)
i − T

(1)
i ) = 0
Lvσρ = 0

(6-15)

The pressure and velocity-magnitude plots for this problem are shown in Figure 6-10 and
Figure 6-11. As expected, the singularities at the top-corner points make the integral values
close to the corner-points high. This is the reason that the polynomial interpolation of these
high-gradient solutions seen in Figure 6-11 and Figure 6-10 for velocities and pressures is
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Figure 6-12: Trace of the stress-tensor should be equal to the divergence of the velocity field,
Eq. (6-16). This is plotted for the Stokes’ flow solution. The global-value is found to be zero.
The local value, however, is found to be non-zero. This is again attributed to the discontinuous
basis-functions and their oscillatory nature. This can be checked by removing the singularities,
as is seen in the regularized lid-driven cavity. However, higher resolution may be needed to make
the trace pointwise zero. Mesh size is 4X4 and made up of elements of order 6.
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Figure 6-13: The initial vorticity-field is shown in this figure where again numerical artifacts
pertaining to the discontinuous solution are seen. These vanish when the singularities are removed
by regularizing the lid-velocity. Mesh size is 4X4 and made up of elements of order 6.
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Figure 6-14: Trace of the stress-tensor for the Stokes’ flow solution calculated on a single element
is shown. This is found to be globally, as well as locally zero. Mesh size is 1X1 and the element
is of order 10.

oscillatory in nature. At the element boundaries, because of the discontinuous nature of edge-
basis functions, this oscillatory solution can thus become discontinuous. The discontinuities
are clearly seen for the normal lid-driven cavity in Figure 6-10 and Figure 6-13.

The oscillations can be removed by removing the singularities as is seen in the regularized
lid-driven cavity case. Even though visually the numerical artifact of discontinuity can be
removed, it may still remain to some extent as is seen in the stress-tensor trace shown in
Figure 6-12. Recall that the trace of the stress tensor is equal to the Lie-derivative of our
density-weighted standard volume-form,

Tr(T (1,1)) = µ

ρ
Lvσρ (6-16)

We would of course like the above to be globally, as well as pointwise zero. Even though it
is not seen to vanish completely even for the regularized lid-driven cavity flow, it becomes
pointwise zero for a single-element mesh where no element discontinuities exist. This is shown
in Figure 6-14

6.3.2 Steady-state solution to full Navier-Stokes problem

The solution for the full Navier-Stokes equation, proceeding from the Stokes’ problem solu-
tion, is as shown in Figure 6-15 and Figure 6-16 for velocity-magnitudes corresponding to
multiple-element meshes and single-element meshes, respectively. The discontinuities at ele-
ment interfaces is seen to be more significant for normal lid-velocity case; increase in order
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Figure 6-15: Velocity magnitudes calculated for the lid-driven cavity are as shown. Mesh size for
the flow with singularities is 4X4 with elements of order 7, while that for the regularized cavity is
3X3 and made up of elements of order 8. The discontinuities at the element interfaces is more
prominent for the normal lid-velocity case. However, this is seen to reduce with increase of order,
and completely disappears for single-element runs (see Figure 6-16)
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Figure 6-16: Velocity magnitudes calculated for the lid-driven cavity are as shown. Mesh size is
1X1 and made up of elements of order 16. As can be seen, for a single element the solution is
smooth with no spurious oscillations.
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Figure 6-17: Stream-function contours plotted for the lid-driven cavity problem with a Re =
1000. The contours plotted are in accordance with the levels used in [9]. Mesh size is 1X1 and
made up of elements of order 16.
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Figure 6-18: Pressure contours plotted for the lid-driven cavity problem with a Re = 1000. The
contours plotted are in accordance with the levels used in [9]. Mesh size is 1X1 and made up of
elements of order 16.
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(b) Horizontal-velocity for y = 0.5 plane

Figure 6-19: Centerline velocities are plotted and compared with the solutions of [9], and the
solutions are found to be reasonably close. Mesh size is 4X4 and made up of elements of order 6.
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of elements is seen to alleviate this problem. Further analysis is done only for the normal-lid
driven cavity flow.

Stream-function contour-levels

-1.5E-3 -5E-4 -2.5E-4 -1E-4 -5E-5 -1E-5 -1E-6 0 1E-10 1E-5

1E-4 1E-2 3E-2 5E-2 7E-2 9E-2 1E-1 1.1E-1 1.15E-1 1.175E-1

Table 6-1: Contour-levels for stream-functions plotted in Figure 6-17 are taken from [9].
.

The contours corresponding to the streamfunctions and pressures can be seen in Figure 6-17
and Figure 6-18. These contours for stream-functions and pressures are plotted as per the
contour-plots of [9], and the levels are shown in Table 6-1 and Table 6-2. As can be seen,
the bottom-corner recirculation regions are captured, and a hint of the recirculation region
in the top-right corner can also be seen. The bottom-corner recirculation regions appear to
be slightly wobbly, and this is attributed to the Runge-effect of high-order polynomials.

Pressure contour-levels

-2E-3 0 2E-2 5E-2 7E-2 9E-2 1.1E-1 1.2E-1 1.7E-1 3E-1

Table 6-2: Contour-levels for pressures plotted in Figure 6-18 are taken from [9].
.

The results are also compared to the results of [9], and these comparisons are shown in
Figure 6-19. For these figures, a vertical cut, x = 0.5, was made for the u-velocities, and a
horizontal-cute, y = 0.5, was made for the for the v-velocities. These results are compared to
the data provided by [9] and our solution is seen to be in good agreement with theirs. While
letting the flow-evolve to its steady-state from the initial conditions provided by Stokes’ flow,
momentum was conserved exactly.
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Chapter 7

Conclusions and Recommendations

7.1 General Remarks

Time reversibility. Exact reversibility in time is seen to exist for the time-integration
scheme, as is shown in Figure 4-7. This symmetry would be extremely important for simu-
lations that should conserve energy exactly (Euler’s equations, for instance), and should be
exploited in the future. Time reversibility is going to be presented in detail in [8].

Applicability of the mimetic spectral element method. In Chapter 4, the mimetic
spectral element method is applied to a host of physical field problems and the results obtained
comply with important conservation laws (mass conservation, for instance), and are seen to
give an edge over conventional discretization methods (2D Maxwell resonant cavity example,
Section 4.1). This is achieved with the help of the framework outlined in [7].

7.2 Conclusions

Bundle-valued differential-forms. The concept of bundle-valued differential-forms is in-
cluded in the context of [7], and their implementation is discussed in Chapter 5. Since
integration for these forms is not well defined, a duality pairing is done with vector-fields in
order to be able to use the familiar operators discretized in Chapter 3 in a discrete setting.
subsequently it is shown how this idea can be used to develop a novel approach towards
conservation of momentum.

Momentum conservation. In a previous formulation of the Stokes’ problem, [50], it was
noticed that momentum was not being conserved exactly. This work shows how this can be
done by treating momentum as a covector-valued volume-form. Although the formulation

Master of Science Thesis Deepesh Toshniwal



122 Conclusions and Recommendations

is given specifically for two-dimensional space, it can be easily extended to three-dimensions
because the action of all the operators used in this work is well-known in higher-dimensions.
The association of momentum with volumes, in addition to the properties of the edge-basis
functions, helps in conserving this quantity exactly in a discrete setting. Moreover, a general
conservation law was also derived in Chapter 5 which could help conserve a large set of
secondary variables in addition to momentum. This needs to be verified numerically.

7.3 Recommendations

Extension to curvilinear grids. It should be noted that the formulation presented for
momentum in Section 5.3 may not be unique and is only a first attempt towards the ge-
ometrization of conservation of momentum. A future work should include the extension to
curvilinear grids, and should make sure that the equations transform properly by making use
of the exterior covariant-differential shown in Eq. (2-48).

Convection of volume-forms. It was noticed throughout this work that the convection of
volume-forms, in its present formulation, is not well suited for multi-element meshes. This
was also seen in Figure 6-15. This problem is present because of the discontinuous nature
of edge-basis functions between elements that yields different fluxes from both sides of the
common boundary between elements. Presently, an ad hoc weighted-average is being done to
calculate the common flux and in the future this could be handled differently, using [53] for
instance, to see if better results are obtained.

Implementation of generalized-momentum conservation. Energy conservation is ex-
tremely important with regards to maritime applications. As an example, there is quite some
interest in real-time prediction of waves that would reach the observer based on observations
made of waves in a distance. In the absence of energy conservation, such predictions would
be of limited use. The numerical implementation of Eq. (5-40) should be done to this effect
to see if energy conservation is possible. An extension to model free-surfaces, as well, would
make such numerical experiments possible.
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