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Tyler Olson
Cognitive Robotics, Delft University of Technology, Postbus 5, 2600 AA Delft, The Netherlands

Abstract
Modern robots make decisions in many ways, but rely on their designers to choose which strategies
to employ and when. Adopting a perspective of bounded rationality from the cognitive sciences,
we develop a definition of decision making for constructivist robots to formulate their own deci-
sions based on their mission-specific values. Our model, extending Kirsch (2019), defines decision
making with an iterative algorithm that captures a broad range of possible strategies and problem
domains. Briefly, a set of decision alternatives are first assessed by a set of relevant cues. These as-
sessments are then aggregated into a multi-dimensional evaluation of each alternative from which
a preference ordering is created. Finally, based on the problem specification, a set of chosen al-
ternatives is either accepted by a stopping rule or a new iteration is started, updating the sets of
alternatives and cues. If no alternatives or cues remain after iterating, then the decision fails. Given
this algorithm, we implement a toolbox of decision-making components as modules in a cognitive
robot architecture and demonstrate a method of assembling them into complete decision strategies,
represented as behavior trees, using an automated theorem prover. For proof of concept, we simu-
late three example strategies used by a domestic robot performing a search and retrieval task. We
discuss new insights into designing and selecting decision-making strategies and make recommen-
dations on how our proof of concept can be improved.

1. Introduction

In a letter to a British physicist, Benjamin Franklin described his moral algebra, a formula for
deciding between two morally challenging options (Franklin, 1772/1987, in Gigerenzer et al., 1999,
p. 76). In the centuries since, psychologists, philosophers, business leaders, and computer scientists
alike have endeavored to describe how decisions are made in the human mind and how they can best
be made by robots, organizations, or even entire populations. Decision-making methods effective
for thinking individuals or teams of analysts are typically ear-marked with a requirement that human
intuition accompany each step of the process to continuously evaluate and reevaluate the method.
Unfortunately, this footnote has been difficult to reproduce in robotics or ignored entirely in favor
of constraining the environments and problems modern robots solve.

Without the luxury of the deeper intuition employed by human decision makers, decision mech-
anisms in robotics and artificial intelligence (AI) are prone to spurious failures when they encounter
unforeseen circumstances. Robots today can perceive and classify objects in their environment, but
they do not perceive the systems giving meaning to those objects. Robots do not understand them-
selves or other agents as systems within the environment or how those systems relate to the values
of their designers. Modern robots often have the implicit assumption that the models they use for
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understanding the world are complete. These systems cannot make sense of vagueness and must be
confined to what Gigerenzer et al. (1999) call “small worlds” that can be nearly completely captured
by the agent’s knowledge.

For robots to break out of the lab into open uncertain worlds, they must adaptively make de-
cisions in the context of their current situation. In these open environments, robot designers often
cannot foresee all the problems their robots will encounter so are unable to instill in them a com-
plete understanding. Contrary to constructionist architectures that are crafted and finely tuned by
engineers, Thórisson et al. (2016) argue that constructivist mechanisms which are self-organizing
or self-programming are better suited to open worlds because they can deepen their understanding
automatically. Providing robots with the tools they need to think about their mission, their own
capabilities, and their environment can enable them to break out of their small worlds.

Taking inspiration from the cognitive sciences, this work proposes that giving robotic agents
an adaptive toolbox of decision strategies can enable them to formulate their decisions on their
own and consider their choices according to their mission-specific values. State-of-the-art model-
free deep learning methods are able to make excellent predictions for well-defined tasks but are
resource-hungry, lack transparency, and are expensive to train (Sridharan, 2025). On the other
hand, symbolic methods tend to be less resource-intensive at runtime and make more explainable
decisions; however, they can be subject to a combinatorial explosion when attempting to capture the
vast frontier of potential choices and consequences of even simple environments. In constructionist
architectures, an engineer decides when and where to use these different strategies, making tradeoffs
in an attempt to maximize the value the robot provides. To adapt to dynamic open environments,
a constructivist agent needs to be able change how it makes decisions according to the problems it
faces.

The objective of this research is to demonstrate how a robot can make ecologically rational
decisions by assembling decision strategies from an adaptive toolbox of components in a construc-
tivist cognitive architecture. Explicit components with a precisely designed purpose are superior in
robot architectures because they are typically easier to compose, modify, add features to, and model
(Scheutz and Andronache, 2004). Accordingly, we develop an assemblable model of decision mak-
ing, largely inspired by Kirsch (2019), and formulate the decision-making process using this model
as a set of independent modules in the CoreSense cognitive robot architecture (Gabriel et al., 2025).
This approach encourages code reuse, makes decisions of robotic systems more explainable, and fa-
cilitates fine-grained self-adaptation through improved self-understanding.

The goal of CoreSense, a constructivist framework built on top of ROS 2 (Macenski et al.,
2022), is to enable a robot to use its understanding of itself and the environment to maintain sit-
uational awareness, adapt itself according to its goals, and act according to its values. Drawing a
distinction between cognitive functions and cognitive capabilities, Gabriel et al. (2023b) organize
the architecture into distinct modules that each perform a specific cognitive function. They offer
these definitions:

Cognitive function: a system behavioral mechanism that transforms inputs into out-
puts and is powered by knowledge-based components (the means view)
Cognitive capability: a system capability provided by a cognitive function that enables
the system to produce intentional action (the ends view)
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This framing enables CoreSense modules to be strung together to form interpretable and adaptive
cognitive structures, demonstrating new cognitive capabilities from the composition. With explicitly
modeled components, a constructivist robot can recognize which of its cognitive functions realize a
desired cognitive capability.

1.1 Document Preview

In Section 2 we motivate our model with background on decision-making theory, bounded rational-
ity, and heuristic decision making, motivating our methods. In Section 3 we introduce how to con-
ceptualize decision problems then develop a model of the cognitive capability of decision making
in Section 4. We describe a method of assembling decision strategies from a collection of compo-
nents in Section 5. A suite of these components based on common heuristics from decision-making
literature are detailed in Appendix B. We demonstrate a proof of concept in Section 6, analyzing
three example decision strategies used by a simulated domestic robot searching for a book in an
apartment. In Section 7, we discuss potential criteria for choosing heuristic components, observa-
tions of heuristic boundedness by how cues and alternatives are updated each decision iteration,
and some of the limitations of assembling heuristics with automated theorem provers. Finally, we
present our conclusions, identify some strengths and weaknesses of our model, and made some
recommendations for future works to address them in Section 8.

2. Background

An agent with multiple decision strategies must answer the question: How can I select the best so-
lution(s) when facing a particular problem? Katsikopoulos et al. (2018) divides decision problems
into three major classes. In inference problems, a decision maker attempts to determine the ap-
propriate category of some object or which object(s) in a collection best fit some desired category.
Preference decisions are one-off strategic problems where the correct decision is not objectively
known but based on the decision maker’s internal preferences. Forecasting problems deal with pre-
dicting a future value of some decision alternative. For example, given a set of blocks to select, a
robot may make an inference decision about which block is closest, a preference decision on which
is its favorite color, or a forecasting decision about which block is most likely to earn it a high
reward.

The ultimate objective of value-based decision making is to facilitate an agent to select the so-
lution(s) which best align with its combination of potentially conflicting values. These values could
be abstract desires like timeliness, beauty, or human safety or they could be concrete goals like get-
ting a coffee, navigating to a location, or winning a game. Haan and Heer (2012) describe decision
alternatives as any potential solution that is capable of effecting an agent’s values. Alternatives
can be any set of options to select from and may be given beforehand or retrieved from memory
by the decision maker (Kirsch, 2019). To make a decision, an agent uses cues, also called features
in artificial intelligence, predictors in statistics, or attributes in decision analysis, to evaluate each
potential alternative (Katsikopoulos et al., 2018). How an agent selects and combines these cues
differentiates its strategies for decision making.
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2.1 Ecological rationality

The traditionally accepted theory of rational choice posits that “good” choices are those which
could have been arrived at by deductively reasoning which alternatives are most likely to achieve
the agent’s goals from all of the available information (Todd and Gigerenzer, 2000a). From this
perspective, choices are judged using coherence criteria which measure how internally consistent
decision strategies are. Robots using these criteria utilize logical soundness, expected value theory,
and probability laws to assess the quality of decisions.

In contrast Gigerenzer et al. (1999) promote the perspective of ecological rationality in which
the “goodness” of choices is based on external outcomes and takes into account the availability
of information, processing power, and deliberation time. Measures of how choices correlate to
positive external outcomes, called correspondence criteria, could include accuracy, frugal use of
information, or speed of the decision process. Agents displaying ecologically rational behavior
adapt their decision strategies according to the structure of information in the environment making
choices based on correspondence criteria.

Trading coherence criteria of “good” choices for correspondence criteria allows agents to make
choices that are seemingly self-conflicting (Gigerenzer et al., 1999). However, while an agent’s
decisions can simultaneously exhibit both coherence and correspondence, for many problems the
decision maker does not need to make consistent choices. In some decision problems being con-
sistent is unimportant, like choosing what color shirt to wear with jeans, or even detrimental, such
as always making the same predictable opening move in a game of chess (Todd and Gigerenzer,
2000a; Gigerenzer et al., 1999). We take the stance that robots should make choices that best cor-
respond with the values of their operators. A robot can provide this value by achieving concrete
goals their operator has or by bringing about their preferred states of the world. This means that
robots should employ decision strategies based on correspondence criteria, even if these strategies
are inconsistent.

Following Kirsch (2019), we will use the term heuristic to refer to any computational strat-
egy used to make a decision, regardless of if these strategies exhibit coherence or correspondence.
Gigerenzer (2001) frames heuristics as compositions of three kinds of rules: search rules which
search memory for relevant cues and alternatives, stopping rules which halt the search, and decision
rules which determine how to make a selection from the alternatives. This three-rule model assumes
memory mechanisms can be used independently of decision making but cognitive architectures like
Soar (Laird, 2012) and ACT-R (Anderson et al., 2004) model the whole process as interdependent
(Baguley and Robertson, 2000). Kirsch (2019) models decision heuristics as recursive algorithms
with interfaces specified for a series of subroutines based on the Multiple Regression (Payne et al.,
1993) and QuickEst (Hertwig et al., 1999) heuristics. As a unifying model, Kirsch’s algorithm
stands out as a promising candidate for modeling decision making in robots. We use their work
as inspiration for an assemblable model of decision making, exploring many of the similarities and
differences in Section 4.
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2.2 Beyond the Multiple Regression heuristic

Perhaps the most frequently used heuristic in AI is multiple regression, also called the Weighted
Additive Rule (WADD) or Multiple Criteria Decision Making in decision-making and operations re-
search (Payne et al., 1993; Shah and Oppenheimer, 2008; Todd and Gigerenzer, 2000b). This model
has been used to describe human decision processes, to make automated decisions and provide de-
cision support, and to evaluate processes against. In WADD a single utility score is calculated for
each given alternative by taking a weighted sum of the scores it receives from each identified cue.
The alternative with the highest utility is selected. Benjamin Franklin’s moral algebra, mentioned
in the introduction, is an early description of multiple regression.

Unfortunately, many psychologists, strategists, and philosophers have co-opted multiple regres-
sion as a definition of rational decision making, rather than one possible strategy for doing so. For
example, Haan and Heer (2012) define “rationalizing” as determining the merits of each alternative
and comparing them on a well-balanced set of criteria versus “optimizing” which focuses heavily
on one or a small number of very specific criteria. Multiple regression follows the principle of total
evidence which posits that in order to make the best decisions, agents must use all of the available
and relevant information (Gigerenzer and Brighton, 2009). This perspective of rationality and the
ease of formalizing multiple regression methods has lead to their wide adoption in robotics. This is
no surprise: examining how humans learn to select heuristics, Rieskamp and Otto (2006) observed
that participants initially preferred WADD regardless of its suitability to the environment in three
of four of their experiments. Even when monetary costs were higher for using WADD, participants
on average searched for too much information but did eventually learn to favor a more ecologically
rational heuristic.

The multiple regression heuristic assumes that the deciding agent exists in a closed world where
it knows of all possible alternatives and cues and has a perfect predictive model for calculating
the expected utilities of each alternative (Kirsch, 2019). While these assumptions are valid for
some environments, they are not always appropriate for robots operating in large, open, and ill-
defined worlds. Lacking a guiding intuition that humans use to make minor corrections as they solve
problems, modern robots are not capable of recognizing when their assumptions no longer apply,
when corrections need to me made, or when their decision heuristic is not ecologically rational.
Multiple regression is ill-suited to making decisions when a robot has incommensurable values that
are difficult or impossible to combine into a single utility. For example the value of a human life is
difficult at best to place a monetary value on. This can also be observed in the difficulty of tuning
the weights of different cost-map layers for robot navigation.

The principle of total evidence assumed by multiple regression suggests the existence of an
accuracy-effort tradeoff where suboptimal decisions can be made using less effort or information
(Gigerenzer et al., 1999). Algorithms exhibiting optimization under constraints explicitly measure
trade-offs between exploration and exploitation, stopping computation when the expected costs
outweigh the expected benefits. Constrained optimization algorithms common in robotics include
Monte Carlo Tree Search for task planning, Adaptive Monte Carlo Localization for navigation and
localization, and Model Predictive Control for a variety of system control functions.
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2.3 Bounded rationality

In many open environments the amount of information available vastly outweighs a robot’s ability
to capture and process it all. To make an optimal decision, “rational” decision processes cannot
take into account all of the potentially relevant information in the required amount of time. An
inability to determine what information is relevant for a particular situation, known in philosophy
as the frame problem, leaves perfectly “rational” robots with the gargantuan task of interpreting
all possible data available before making a choice. The frame problem affects heuristics that have
unbounded information search rules including exhaustive search algorithms of computer science
and optimization under constraints.

In contrast the principle of total evidence, bounded rationality takes the view that choices can be
“good enough” without taking all available information into account. Todd and Gigerenzer (2000a)
offer that to solve the frame problem, an agent can simply use a heuristic that is “good enough”
which allows it to escape the analysis paralysis required for making an optimal decision. Herbert
Simon famously coined the term satisficing to describe agents that make choices by evaluating
options sequentially until a certain level of aspiration is achieved (Simon, 1956). These methods
are commonly used by humans when they do not know all of the possible options in advance such
as house or clothes shopping. Satisficing methods are ubiquitous in robotics: any algorithm which
uses an error threshold to stop a solution procedure can be described as satisficing. Frequently
encountered examples include gradient descent methods, Bayesian networks, and Maes’ behavior
nets (Maes, 1989). While satisficing methods do not require measuring the exploration-exploitation
tradeoff that constrained optimization does, Gigerenzer et al. (1999) are quick to point out that they
may require significant deliberation to set an aspiration level or to compare options to that aspiration
level.

Gigerenzer et al. (1999) promote fast and frugal decision strategies which search for “good
enough” choices but restrict the amount of information used to evaluate each choice. Heuristics
are considered “fast” if they do not involve much computation, such as ignoring dependencies be-
tween cues, skipping evaluation of long causal chains, or using simple selection criteria. They
are considered “frugal” if they robustly make good decisions while using the available information
sparingly. These heuristics use both bounded search and bounded stopping rules. Because fast and
frugal heuristics tend to be simple, they can be more easily combined, adapted, and applied to many
different kinds of problems than complex procedures (Todd and Gigerenzer, 2000b). A detailed
background on fast and frugal heuristics is provided in Appendix A.

Heuristics that ignore information can take advantage of the flat maximum effect in environments
with diminishing returns on solution quality, producing optimal or nearly optimal solutions with
much less effort. In a series of 20 experiments, Czerlinski et al. (1999) demonstrated less-is-more
effects in some environments where ignoring information actually increased predictive accuracy of
decision heuristics. By ignoring information, heuristics can resist overfitting by compensating for a
small increase in error from bias with a larger decrease in error from variance. These simple heuris-
tics generally perform better than complex ones in “difficult” problems where information is not
of high quality, or not enough information is available to draw reliable conclusions (Katsikopoulos
et al., 2018).
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2.4 Assembling heuristics

From the ecological rationality perspective, no heuristic is inherently good or bad, but only more
or less useful in particular environments (Todd and Gigerenzer, 2000b). This tradeoff between
heuristics leads to what Shanks and Lagnado (2000) describe as the selection problem where it
is not often clear a priori what the best heuristic is for a given decision. The selection problem
supposes that in order to make the best decisions, agents must first select the best heuristic for their
given problem, but then an agent must also decide on how to make that decision too, etc. This
inescapability of the selection problem is also known as infinite regress (Feeney, 2000).

The selection problem can be solved similar to the frame problem by dropping the assumption
that an agent must optimize its heuristic selection procedure. At some level of meta-decision, an
agent can simply use a meta-heuristic which makes “good enough” guesses as to which decision
strategy to use for the decision problem of interest (Todd and Gigerenzer, 2000a). Payne et al.
(1993) and Minsky (1988) popularized models of cognition where agents use a variety of different
strategies to make decisions depending on the topic, effort, and accuracy demanded for the deci-
sion problem. Strategy Selection Learning (SSL) (Rieskamp and Otto, 2006) is an unsupervised
reinforcement learning model of how humans learn which strategies result in the highest monetary
reward for solving binary inference tasks. Payne et al. (1993) describe a cost-benefit approach where
a heuristic’s costs are weighed against its benefits. These costs could be computational effort, re-
source loss or consumption, or tertiary negative consequences from wrong decisions. Benefits could
be high accuracy, resource gain, or social acceptability. Exemplar-based models memorize which
heuristics were correlated with positive outcomes in similar past situations and use the strategy with
the highest probability of making a good choice (Juslin et al., 2003).

These existing methods are insufficient for a constructivist robot in an open world that needs
to solve novel decision problems. Because each decision has specific constraints and requirements
independent of the class of alternatives or cues used to evaluate them, there is a vast array of possible
problems that could be encountered. Providing robots with a mechanism to assemble new heuristics
enables them to solve a broader class of decision problems than if they only used a library of pre-
existing ones. By providing a robot with some base heuristic component selection mechanism,
it can use this to assemble “good enough” decision heuristics for novel decisions it encounters.
This creates a stopping rule for the meta-decision of which heuristic to use. Like other heuristics,
this meta-heuristic could be refined through experience, or have been constructed by some external
process (e.g. evolution in humans or the engineers designing robotic agents).

Gigerenzer (2001) uses the metaphor of a “backwoods mechanic” assembling heuristics from a
toolbox of search, stopping, and decision rules which may not be perfect for the decision problem
at hand, but work well enough to provide solutions. These exaptive strategies can be seen through-
out evolution where organisms take some organ or capability they already have and apply it to a
new task, potentially with minor modifications, a strategy copied by evolutionary algorithms in ma-
chine learning (Wimsatt, 2000). Assembling heuristics also leverages the explosion in the number
of possible combinations of individual heuristic components to take better advantage of different
environment information structures.
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3. Decision problem conceptualization

To assemble a decision heuristic a robot must first encode all of the aspects of the decision problem
of interest necessary to collect a choice set of potential alternatives, a working set of cues, and
ensure that the decision matches the form of its desired solution. This encoding must identify
enough aspects of the decision that the robot can reasonably expect to generate a valid heuristic.
Ideally, it also contains enough information to generate a heuristic that can take advantage of the
structure of the environment to save the agent effort. We adopt the problem conceptualization
method of Haan and Heer (2012) and encode the problem into two distinct parts: a “gap” and a set
of “dilemmas.” The gap is a precise description of the difference between the robot’s current and
desired state of the world. Each alternative is then a potential solution to their problem that closes
this gap. Dilemmas are things the agent values and does not want to sacrifice while solving the
decision problem. Different alternatives may offer different tradeoffs between these dilemmas and
to solve the problem an agent needs to decide between the alternatives based on these tradeoffs.

For example: Suppose it is a hot day at the beach and you want some ice cream. You walk up to
an ice cream stand and are presented with several different flavors to choose from. You only have
5 euros in your pocket that you brought to the beach. The gap is the difference in the state of the
world now where you do not have ice cream and the future world where you do. The alternatives
are the different flavors of ice cream that you could purchase from the stand. Some dilemmas might
include your preferences of different flavors of ice cream, any allergies you might have, and the
different costs of the different ice cream options.

Haan and Heer (2012) argue that both a gap and at least one dilemma are necessary components
of a decision problem. A gap without any dilemmas does not present a decision problem because
any alternative is equally valid since there are no sacrifices to be made between them. In this case an
agent can select any alternative and does not need to spend energy trying to decide between them.
Suppose you have no food allergies, no flavor preferences, and find out all the ice cream is free, then
there are no dilemmas preventing you from immediately solving your problem: any flavor is equally
valuable so you may as well pick the first one and get to enjoying your ice cream. Similarly, faced
with only dilemmas but no gap, the agent is in its currently desired state and thus does not need to
change it. If you happen to already be holding some ice cream, then you should not attempt to buy
more because there is no difference between the state of the world now and your desired state. In
both of these environments, there is no decision problem to be solved.

3.0.1 Gap

The gap must capture the class of alternatives that could potentially solve the problem so that an
agent can identify its options. Possible alternatives within this class may be immediately present
when the decision problem is formulated or may need to be retrieved or generated by the agent. In
the ice cream example, the class of alternatives includes all of the flavors of ice cream available at
the stand. If you were instead at home making ice cream from scratch, you would need to retrieve
possible ice cream flavors to consider from memory. The description of this class of alternatives
could vary in the complexity of inclusion and exclusion criteria. A robot must strike a balance
between the costs of evaluating fewer but more specific alternatives and more but less specific ones.
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The gap must also capture the shape of the solution, that is all of the properties a chosen set
must have or could afford, independent of the alternatives present in the set. These properties could
include bounds on the size of the chosen set, if a good enough solution can exist, and if so what
would make it good enough. In order for an agent to assemble an appropriate heuristic, it needs
to select heuristic components that ensure these requirements are met and can take advantage of
affordances to select heuristic components that reduce effort.

3.0.2 Dilemmas

Completing the problem conceptualization, an agent must model the dilemmas alternatives may
pose when closing the gap. Although a robot may select specific dilemmas to focus on for the deci-
sion problem at hand, any feature of an alternative that conflicts with the robot’s values or impedes
its mission represents a dilemma. This means that while each decision problem has a different gap,
the set of dilemmas remains the same for any given mission. Cues perform the function of mea-
suring these dilemmas for each alternative with respect to the others in the choice set. Through the
decision process an agent combines all of these measurements to arrive at an overall value judgment
for each alternative based on what sacrifices they forfeit.

Where the class description encoded in the gap specifies what it means to be a possible alter-
native, cues measure how much each potential alternative sacrifices when used as the solution to
the decision problem. Each cue is then a precise measurement of the agent’s perceived value of
each alternative along some dimension. These measures define what makes the end state desirable,
rather than the degree to which some specific solution was achieved. Because robots should make
choices according to the values of their operators, these values need to modeled in their mission
specification. Haan and Heer (2012) offer some insights into how to break down abstract mission
values into specific measurable cues using a tool called goal trees.

For AI safety researchers alarm bells should be ringing as precisely communicating all of our
human desires to machines has proven to be a non-trivial task. This is referred to as the alignment
problem. A mission designer must carefully identify which of their values to model for a specific
mission, which of these values are incommensurable, and how individual cues can measure them
from perceptions of the world. Ultimately, we leave resolution of the alignment problem and the
development of specific cues to the mission designer. Luckily, with heuristics assembled from
toolbox components, the mechanism and cues used to make each decision are transparent and easy
for an engineer to interpret. This explainability is a key motivation for deriving decisions from
mission values.

4. Definition of Decision Making

In this section we formally define the cognitive capability of decision making by identifying a set
of distinct cognitive functions such that the execution of a cognitive structure composed of each
of these cognitive functions (and the required plumbing) is sufficient to produce a decision. Ac-
cordingly, we refer to a cognitive structure that affords the cognitive capability of decision making
as a decision heuristic and to each constituent cognitive function as a heuristic component.1 We

1. Kirsch (2019) calls each of these a “function,” but we use the term “heuristic component” to avoid confusion.
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Figure 1. An iterative model of the cognitive capability of decision making.

will progressively isolate key requirements of decision making that separate it from other possible
cognitive capabilities while capturing a wide variety of decision problems. We aim to leave as much
room as possible for different implementations of the various heuristic components. Once we have
developed this definition, we will use it to realize the iterative decision-making cognitive structure
illustrated Figure 1).

Our approach is guided by the unifying model of Kirsch (2019) and shares many similarities.
Katsikopoulos (2019) praises Kirsch’s model for its pragmatic ability to describe decision making
in complex open worlds. Kirsch (2017b) demonstrates a precursor to the model by simulating
robots completing navigation tasks with multiple cooperating modules making different decisions.
Throughout this section we will compare and contrast the cognitive functions we develop to the
subroutines in the Kirsch algorithm.

Assume the robot provides a description of the decision problem, specifying the class of al-
ternatives and required properties of the choice. Suppose there exists some set, G, of all possible
descriptions of a decision problem understandable by a robot agent where a gap G ∈ G describes a
single decision problem of interest. We will assume the gap can be encoded into a finite string and
that the robot making this decision is capable of interpreting the encoded specifications. Let A be
the set of all possible alternatives to a given decision problem, according to the class of alternatives
defined in the gap, and A = 2A be the power set of A.

Lets start by formalizing the simplest definition of decision making: to choose a subset from a
set of alternatives. By this definition, at bare minimum a cognitive structure exhibiting the cognitive
capability of decision making must employ some cognitive function

DECIDE : A→ A

where any input C ∈ A is a choice set of alternatives, and any output C ′ ⊆ C is a chosen set.
This model of decision making may be useful from the outside, but it provides no hints at how the
function should behave or that distinguish it from any other subset relation.
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4.1 Accepting

Let us assume, like Kirsch (2019) and Gigerenzer et al. (1999), that decision making can be an
iterative process. First, in order for a decision to be made by agents that are governed by bounded
rationality (which includes humans and robots that make progress), this iteration needs to be stopped
somehow. There are many ways of stopping an iterative (or recursive) process, but they all are
governed by what Gigerenzer (2001) calls a stopping rule. This could be a satisficing condition:
Stop if a chosen set has been identified that is good enough, a comparative condition: Stop if a
chosen set has been identified whose elements are strictly better than all the rest, or a non-condition:
Always stop. The common thread among these stopping rules is some boolean criteria measured on
the chosen set. Using the terminology of Kirsch (2019), we will say that a decision process iterates
until the chosen set has been accepted. Failure to find an acceptable chosen set is a failure to make
a decision.

The decision process must also ensure that the chosen set meets all of the requirements laid out
in the gap. A chosen set which does not meet all of these requirements is unacceptable to a decider
and cannot be a final decision. While deciding on an acceptable choice could be accomplished by
ruling out each of the unacceptable alternatives, ultimately the acceptable choice is the only one
that matters. Imagine saying “Of all the available ice cream flavors, I have decided against mango.”
While this may be valuable understanding, it does not solve your initial problem of deciding which
ice cream to purchase, only on deciding which not to.

Let us then add a first requirement that a chosen set C ′ must be accepted, and define a cognitive
capability of acceptance. From now on we will refer to the boolean domain as B = {⊤,⊥} where
⊤ (verum) represents true and ⊥ (falsum) represents false. Let

ACCEPT : A→ B

be a cognitive function indicating if a chosen set C ′ has been accepted or rejected. Going forward
we will describe a chosen set as having been accepted when ACCEPT(C ′) = ⊤ and an alternative as
having been accepted when it is a member of and accepted chosen set, a ∈ C ′ ∧ACCEPT(C ′) = ⊤.
Note that there is currently some implied parameterization based on the agent’s current understand-
ing state needed to implement an ACCEPT component to reflect the specific desired stopping rule:
this will be addressed more explicitly in Section 4.4.

Now we can define a decision as an accepted subset of the choice set, represented as the pair
(C ′,⊤). This also means we must refine our model of the cognitive function of decision making.

DECIDE : A→ (A,B)

In the event this function returns a rejected choice, (C ′,⊥), the decision process has failed.

4.2 Taking

The cognitive capability to accept or reject is predicated on the existence of a chosen set, and many
decision problems place requirements on the size of this chosen set. Much of the literature on deci-
sion making only considers decision problems with a single chosen alternative (e.g. Czerlinski et al.
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(1999); Kirsch (2019); Shah and Oppenheimer (2008)), however there are plenty of decision prob-
lems that require a different fixed, bounded, or even unbounded number of alternatives to be chosen.
With fixed or bounded size requirements, there could be some alternatives in the choice set that are
“better” than others, but some required number still must be taken. Consider one such decision
problem: choose the two most valuable from a set of coins, each of a different denomination.

In some decision problems alternatives are ranked relative to each other within the context of the
choice set and a change in the choice set could result in a different outcome of second place, third
place, etc. In the United States, the president and vice president were elected as the candidates with
the first and second most votes respectively until 1804 (U.S. Const. amend. XII). Consequently, the
nation’s two most important officials were often members of different political parties, leading to
dysfunction in their administrations. Removing the winning candidate and holding a second elec-
tion for vice president may have alleviated these frustrations, but most likely would have produced
very different outcomes. After the 12th amendment, ballots contained pairs of president and vice
president, reducing the size of the chosen set from two individuals to one pair. Take note of the
notion of ranking alternatives; we will return to it in the next section.

Another requirement could be the fitness of the alternatives, where the chosen set must contain
all of the alternatives that succeed a certain criteria and none that fail it. In these decision problems
it is acceptable to select multiple fit alternatives, resulting in a chosen set of uniform fitness but un-
specified size. Fitness requirements are leveraged by one-good-reason heuristics to assign inclusion
or exclusion in the chosen set, stopping when only precisely one alternative is included and the rest
are excluded. These can easily be generalized to decision problems with other size requirements.

Each of these decision problems about ice cream has a different combination of size and fitness
requirements:

• “I want one scoop of ice cream, but I don’t know which flavor I want.”

• “I want two different scoops of ice cream, but I don’t know which flavors.”

• “I want up to three different scoops of ice cream, but I’ll only take flavors I haven’t tried
before.”

• “I want to try all of the new flavors of ice cream.”

• “I want to at least try the flavor of the week, but maybe others as well.”

While all requirements could be enforced in the ACCEPT component, constructing a new compo-
nent that can incrementally build a chosen set enables a robot to include or exclude alternatives
individually, stopping early if all the requirements are met. Early stopping is a mechanism many
iterative heuristics use to reduce effort (see analysis by (Shah and Oppenheimer, 2008)). After all
of the requirements from the decision problem are met by this new component, it can be composed
with the ACCEPT component to accept or reject the whole chosen set producing a decision. Let

TAKE : A→ A

be a cognitive function where the input is a choice set of alternatives, and the output is a chosen set.
Notice that this is identical to our original definition of DECIDE: this is no coincidence. However,
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to promote early stopping, we add the restriction that there must exist some well-defined indicator
function 1C′ : A → B where ∀(C), (a ∈ TAKE(C) =⇒ 1C′(a) = ⊤) such that it specifies
inclusion or exclusion of each alternative into the chosen set. Applying this indicator function
directly to each a ∈ C gives TAKE linear computational complexity, O(n), where n the size of the
choice set.

Going forward we will refer to an alternative where 1C′(a) = ⊤ as having been “taken.” If a
condition of the chosen set cannot be decomposed into conditions on individuals then it must be
enforced in ACCEPT. TAKE is a generalization of a subroutine Kirsch (2019) defines, called FIRST,
that takes a single “best” alternative from the choice set. However, FIRST pushes the enforcement
of any fitness requirements to the ACCEPT function and is only applicable to decision problems
requiring a chosen set with a size of exactly one.

Armed with TAKE and ACCEPT we can redefine DECIDE as their composition:

DECIDE ∼= (ACCEPT ◦ TAKE).

In plain English: deciding is accepting a set of alternatives taken from an initial set of options.

4.3 Ordering

To be useful to the decision maker, DECIDE should express the agent’s values so that the chosen
alternatives are those it prefers for the decision problem. In this context preferred alternatives are
those that the agent favors because it perceives the consequences of choosing them to result in a
preferred world state. For inference and forecasting problems, an alternative that is the correct or
most accurate answer is assumed to be preferred over incorrect or less accurate ones.

Preferences on alternatives in the choice set must be strongly connected, meaning any two alter-
natives are comparable. By definition, if some alternative was incomparable with another, it would
be impossible to say which was preferred or even if they were of equal preference. Assuming these
preferences are transitive removes the possibility of cyclical preferences which also leave the deci-
sion maker unclear on how to resolve them. These two conditions are fully satisfied by representing
an agent’s preferences with a weak ordering, also called a preference relation or total preorder. Let
a weak ordering a ≲ b represent that alternative b is either preferred to alternative a or they are
of equal preference (a ≲ b and b ≲ a). Strong connectedness also implies reflexivity where any
alternative a ≲ a is of equal preference to itself.

Even if a chosen set is acceptable, and even if all of the taken alternatives individually fulfill the
requirements imposed by the decision problem, as currently specified our robot would have no way
to measure or enforce that it is making “good” decisions, only ones that meet the decision problem
requirements. Because TAKE considers alternatives for membership in the chosen set one-by-one,
there is currently no mechanism to ensure that an alternative exists that was not taken but would
have been preferred over those in the chosen set if only it were considered in a different order.

One way of fixing this problem is to drop the requirement of TAKE to evaluate alternatives
incrementally and instead evaluate them all simultaneously. Preferred alternatives could be taken
before less preferred ones, however each alternative would need to be compared to every other one
to determine if it should be taken. While a possible implementation, this increases the computational
complexity of any TAKE engine by a factor of O(n). Instead, if supplied with a weak ordering on
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the choice set (equivalent to sorting all of the alternatives before taking them), then TAKE can retain
its linear complexity and ability to stop early.

Let LC be the set of all possible weak orderings of a choice set of alternatives C. Let us redefine
the signature of TAKE as:

TAKE : (A,LC)→ A

where the inputs are the choice set, C, and a weak ordering on that choice set, ≲C∈ LC , and the
output is the chosen set, C ′. With access to the preference relation, TAKE can iteratively include
alternatives starting with the most preferred and proceeding in order of preference until the decision
problem restrictions are satisfied. Similarly it could iteratively eliminate alternatives starting with
the least preferred and proceeding in the opposite order. Because there is a possibility of taking
alternatives which may be tied in preference to not-taken alternatives, it may be advantageous for
a decision heuristic to randomly select between all of the alternatives tied with the worst taken
alternative until the size requirements are met. We implement this functionality in our two exemplar
TAKE components in Appendix B.

In order to produce a pair of (C,≲C) from the choice set C, we can introduce a new cognitive
function,

ORDER : A→ (A,LC).

This ORDER component implements what Gigerenzer and Brighton (2009) refer to as a decision
rule, enforcing the preferences of the decision maker based on the features of each alternative. In
essence this component ranks all of the elements in the choice set, with the added information that
some elements could be tied.

This new ORDER component, along with our new definition of TAKE, can be added to the
composition defining DECIDE.

DECIDE ∼= (ACCEPT ◦ TAKE ◦ ORDER)

In plain English: deciding is accepting a set of alternatives preferred over all the others taken from
an initial set of options.

4.4 Judging

The number of ways an agent could order alternatives changes for different kinds of decision prob-
lems. In inference problems, there is only one natural way to order alternatives based on the agent’s
knowledge, assuming it has a complete enough model to make eternally verifiable inferences. Sim-
ilarly, for forecasting problems the number of ways of ordering alternatives is small, depending on
the assumptions an agent makes about the future and how many different sets of assumptions it
considers. For preference decisions, however, any ordering of any choice set could be valid, with
any particular ordering associating a choice set to a different configuration of values. For robot
agents, these preferences must be given to them by the mission designer for any possible class of
alternatives. This implies that for any possible class of alternatives and any kind of decision problem
(previously encountered or never before seen), the decision maker must have some ORDER engine
fit for the job. This means that the number of individual ORDER engines required by a robot is at
minimum the number of different classes of alternatives it is capable of understanding multiplied
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by the number of possible combinations of decision requirements. Clearly for all but the smallest
worlds, this is intractable.

There are three major ways that implementing an adaptive agent to make all of these decisions
can be made tenable. First is to recognize that according to our decision problem conceptualization,
agents may posses some incommensurable measures of value that cannot be combined into a single
utility. However, in order to create a preference ordering of any choice set the agent needs some
way to compress all of its measures of value into a single ordinal rank for each alternative. Kirsch
(2019) identifies computational social choice functions as a prime candidate for ordering alterna-
tives based on incommensurable measures of value. A social choice function maps a set of profiles,
ranked ballots of all alternatives based on some measure, into a single combined preference ranking.
Voting methods like these are commonly encountered for behavior coordination in robotic cogni-
tive architectures. Pirjanian (1999) identifies so-called arbitration methods such as Subsumption
(Brooks, 1986), Maes behavior networks (Maes, 1989), and Discrete Event Systems (Košeckà and
Bajcsy, 1994), that use different mechanisms to select one of a choice set of robot actions, focusing
scarce system resources on tasks considered to be relevant. Note that while voters in social choice
functions are typically assumed to be of equal weight, an agent may elect to weight some of its
values more highly than others, (Kirsch, 2019).

Second is that the methods the agent uses to make these value tradeoffs may be defined sepa-
rately of the measures of value themselves. An agent’s values may change or it may be unclear in
any particular situation how they should be combined. The significance structure of the environ-
ment may change creating different risks and gains associated with each value (Bullock and Todd,
1999). This means that a robot may need to use multiple different value-combination methods for
different scenarios, missions, or alternatives. The particular method to select for a given problem
must be something that is either derivable from the agent’s knowledge, or chosen by the agent in
another decision process. To avoid introducing infinite regress, we assume that the agent has some
predefined mechanism for identifying this method.

Third, because these methods of combining values may not depend on the agent’s particular
value measures, alternatives can be evaluated according to each of the value measures separately
instead of all at once. This increases the number of potential ways an agent can to calculate value
tradeoffs by the number of values measures it uses. A good metaphor for this gain is using product
types instead of sum types to describe a set of unique objects. An agent implementing value-agnostic
combination mechanisms still needs to be able to assess each understandable class of alternatives
along each of its value dimensions, but can then combine these assessments using a small set of
parametrizable combination methods. We will address these assessments in the Section 4.5.2.

Given these insights, let us narrow the definition of the ORDER component, removing the re-
sponsibility of evaluating each alternative and focusing on the compression of incommensurable
value judgments to order the alternatives in the choice set. We assume that any sets of commen-
surable value judgments that can be combined into a single representative value are aggregated
together, leaving only mutually incommensurable value dimensions. In the ice cream example,
value measures of independent color channels of each flavor can be combined into one overall value
measure of color and value measures of the different aspects of taste can be combined together,
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but the two aggregate values are mutually incommensurable so they need to be compressed by the
ORDER component. We will detail this aggregation process in Section 4.5.3.

Suppose there exists some set of k incommensurable measures of value defined for the agent,
V = {v1, v2, . . . , vk}, where each measure takes the form vi : A → R and evaluates alternatives
along a single, specific value dimension. Let a value judgment be a row vector of scores of a single
alternative along each value dimension.

Ja =


v1(a)
v2(a)

...
vm(a)


T

Let an evaluation of a choice set, EC , be a matrix of size n alternatives by k value measures where
each row is a value judgment of a different alternative in the choice set.

EC =


v1(a1) v2(a1) · · · vk(a1)
v1(a2) v2(a2) · · · vk(a2)

...
...

. . .
...

v1(an) v2(an) · · · vk(an)


Let ORDER now be the cognitive function:

ORDER : Rn,k → LC

which takes as input an evaluation of a choice set, EC , and produces as output a weak ordering of
the choice set, ≲C∈ LC .

To make a decision, we now require a new cognitive function which takes as input a choice set
C, and produces as output a contextualized evaluation so that the alternatives in the choice set can
be ordered. Let

JUDGE : A→ Rn,k

be a cognitive function which outputs an evaluation of a choice set EC : C ∈ A from an input choice
set C. We call the cognitive capability afforded by this cognitive function judging, borrowing the
term Shah and Oppenheimer (2008) use to describe the calculation of an overall value of each
alternative. We can refer to the cognitive capability provided by the composition of the other three
decision components as “choosing,” implying that deciding is choosing based on an evaluation of
the alternatives.

4.4.1 Accepting using an evaluation

For practical purposes, it may be necessary to stop attempting to decide or change the decision
strategy if a decision has not been reached after expending some amount of resources. Kirsch
recommends including guards (e.g. Stop if too many iterations have passed) as acceptance criteria.
However, because these criteria do not operate based on the agent’s values, but instead measure other
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external factors, we consider them separately. To express this restriction, we add the requirement
that any ACCEPT engine may only be conditioned on the evaluation of the choice set EC . This can
be enforced by refining its signature to explicitly include this evaluation and the chosen set, and
discarding our previous assumption that the component used in the decision heuristic is implicitly
parameterized by the current understanding state.

ACCEPT : (A,Rn,k)→ B

Now the definition of any ACCEPT engine must be predetermined before the decision is attempted.
With our new component definitions,

with accepted = ACCEPT(TAKE(ORDER(C, JUDGE(C))), JUDGE(C)),

DECIDE(C) ∼=
{

TAKE(ORDER(C, JUDGE(C))), if accepted.
({},⊥), otherwise.

In plain English: deciding is accepting a set of alternatives preferred over all the others taken from an
initial set of options based on an evaluation of each alternative with respect to the decision maker’s
values.

4.5 Assessing and Aggregating

Our current definition of judging leaves open how an agent evaluates each alternative, only requir-
ing that the commensurable measures of value are aggregated into incommensurable ones. With
different decision problems, different features of the alternatives can be more or less relevant. Re-
turning to our ice cream example, a customer deciding which flavor to buy is very different than
the vendor deciding which flavors to sell for the day, despite the decisions being about the same set
of alternatives. The customer and the vendor could even be the same individual on two different
days. This illustrates that the particular goal that an agent has when making a decision can change
how it values the same alternative, meaning that the specific value measures it uses must capture
this nuance. As with ordering, if a robot uses methods for assessing these values that are defined
separately from how it combines them, then it increases the number of unique ways at its disposal
to make judgments with the same total number of cognitive functions.

Along the same line of reasoning as before, to reduce the number and complexity of its value
measures, a mission designer can implement a small reusable set of simpler ones which a robot can
combine for the decision problem at hand using one of a handful of value-agnostic combination
mechanisms. Again, the particular method required for any given decision must be something that
is either derivable from the agent’s knowledge, or chosen by the agent in another decision process.
We return to this in Section 4.6.2.

For some decision problems, it is difficult for an agent to ascribe an absolute value measure to
each alternative, but given a choice set it is easy to measure alternatives against each other. It could
be quite difficult to determine an absolute value of each flavor of ice cream that exists, but when
comparing them side-by-side it is easy to identify which is better in some way than another. This
is likely at some level due to the nature of the underlying mathematical structure: it only takes one
way for a flavor to be better than another, but a vast amount of information is required to measure
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an ice cream flavor in its totality. For making a decision, an agent does not need to capture the
complete value of any of the alternatives, but only how they relate to the others in the choice set.

Therefore, we introduce three new cognitive functions to realize the cognitive capability of
judgment and make it tractable for assembling decision heuristics in robots:

• Cues - versatile cognitive functions of limited scope that measure one specific dimension of
value,

• the ASSESS component - simply executes each cue, producing a multi-dimensional value
measure of each alternative with respect to the choice set,

• and the AGGREGATE component - aggregates commensurable value measures into a judg-
ment of multiple incommensurable value dimensions.

4.5.1 Cues

We can now formally define cues in our model. Suppose there exists some measure of value of
each alternative in a choice set, z : (A, A) → R where the inputs are the choice set C and some
alternative a ∈ C and the output is a real-valued score. This measure could be absolute, or relative
to the other alternatives in the choice set. Let an assessment be a column vector of scores of each
alternative in a choice set according to the value measure z:

ZC =


z(C, a1)
z(C, a2)

...
z(C, an)

 .

We define a cue to be any cognitive structure implementing the cognitive function

CUE : A→ Rn

whose input is the choice set, C of size n, and output is an assessment of the choice set ZC . We
make the same assumption as Kirsch (2019), that cues could implement scoring measures, indicating
some degree of perceived value of each alternative, or ranking measures which simply indicate a
weak ordering between alternatives just as ORDER does. For convenience we assume that cues
always encode higher value with a higher score and leave mapping from the agent’s knowledge to
these value measurements to the cue implementation. By this construction, any ranking cue can
be converted into a scoring cue where each alternative is scored by the number of alternatives it is
preferred over.

Cues could be implemented as boolean predicates, expected utility functions, or projections of
sensory measurements into some abstract value space. Some cognitive architectures model internal
factors such as artificial emotions, long term drives, or artificial personality traits for agents to gauge
their decisions (Kotseruba and Tsotsos, 2020). Albus (1991) refer to these internal factors as “value
state variables” that can be measured along a continuum (e.g. good-bad, pleasure-pain), overlaid on
maps to direct robot attention to different points in space and time. Kotseruba and Tsotsos (2020)
identify cognitive architectures used in robotics that learn expected utilities of various alternatives
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via reinforcement learning such as ICARUS (Choi and Langley, 2018), CLARION (Sun et al.,
2016), Soar (Laird, 2012), and PRODIGY (Fink and Blythe, 2005). Some also use cues from self-
observation to drive decision-making including CLARION, RALPH (Russell, 1991), and COGNET
(Zachary et al., 1996).

Pragmatically, cues should be specific enough to be understandable to human designers, how-
ever it is common to represent them using hierarchical trees or graph structures. For instance,
in the RCS architecture (Albus, 1991), value judgment nodes exchange information at different
hierarchies, over different orders of magnitude in space, time, and level of abstraction. Graph
Retrieval-Augmented Generation (Hu et al., 2025) is a cutting-edge generative AI method that uses
cues spread over graph databases to help large language models make better value judgments of the
relevance of different nodes in the graph.

As cues are cognitive structures that calculate value judgments for a set of alternatives, they
could be composed from the heuristic components we have already identified: ASSESS, and some
AGGREGATE engine that always produces one-dimensional value judgments. However, cues at
some level of abstraction need to be defined in an agent’s knowledge base by the mission designer.
With cues as compositions of decision components, this conceptualization is necessary to avoid
infinite regress.

The particular classes of alternatives each cue measures, how they relate to each decision prob-
lem, and how they are stored in memory are specific to the environment and mission of the robot,
therefore we do not interrogate their structure further. Given that the field of cognitive science has
identified cues as a useful abstraction, this seems to be a reasonable modeling choice.

4.5.2 Assessing

We now add a working set of cues W = {c1, c2, . . . , cm} to the inputs of DECIDE, assuming that
the agent has identified a relevant set of cues to attempt the current decision. Upon failure to accept
a choice in a given iteration, the agent may use that information to update the working set of cues
(and alternatives) and try again. Mechanisms for updating cues in the context of iterative decision
heuristics are discussed in Section 4.6.2. Given this working set, we assume that an agent commits
to assessing each cue on all the alternatives of the choice set for one iteration.

Let an assessment matrix be a matrix, MC , of size n alternatives by m cues where each column
is an assessment of the choice set C by a different cue in the working set. Abusing notation, we use
sj(ai) to denote the score z(C, ai) in the assessment ZC produced by cue cj ∈W :

MC =


s1(a1) s2(a1) · · · sm(a1)
s1(a2) s2(a2) · · · sm(a2)

...
...

. . .
...

s1(an) s2(an) · · · sm(an)


Haan and Heer (2012) refer to this data structure an “impact table.” Let the cognitive function

ASSESS : (A,W )→ Rn,m

produce the assessment matrix MC of all input cues in W and alternatives in the choice set C.
Kirsch (2019) calls this function FillDecisionMatrix, and the output a “decision matrix,”
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however we have renamed each of these to avoid confusion. Note that we (inconsequentially) swap
the rows an columns such that different alternatives are evaluated on different rows.

4.5.3 Aggregating

As previously stated, we assume that when making value judgments an agent aggregates sets of
co-commensurate assessments from cues into a smaller set of incommensurable value dimensions.
To do so, we introduce the cognitive function

AGGREGATE : Rn,m → Rn,k

which takes as input an assessment matrix MC and produces and evaluation EC .
While an assessment matrix looks very similar to an evaluation, we note three distinguishing

differences. First, an assessment matrix has m = |W | columns, one for each cue, but an evaluation
has k ≤ m columns, one for each incommensurable value measure of the alternatives after aggrega-
tion. Second, an assessment matrix can be constructed by concatenating cue assessments sj(a1...n)
across all alternatives in the choice set (column-wise), while an evaluation can be constructed by
stacking judgments of single alternatives v1...m(ai) across all incommensurable measures of value
(row-wise). Third, where each assessment evaluates all alternatives in the context of the choice set
in a single cue-specific dimension, each judgment evaluates each alternative independently of the
others, indicating a multi-dimensional decision-specific value. We make this distinction because,
according to our problem conceptualization, the value of an alternative to an agent is based on the
state of the world in which that alternative is chosen as part of the decision, not in comparison to
the other options.

A simple AGGREGATE component may just perform a single matrix multiplication, possibly
weighing each commensurable cue by some contextual weight parameter. For example, suppose
there are five color alternatives which an agent assesses with a different cue for each of the four
RGBA color channels. However, for the current decision, the agent expresses preferences on colors
by their intensity and opacity, aggregating each of the RGB assessments into judgments containing
a single intensity value dimension that is incommensurable with the opacity value dimension (the A
channel).

Assessment Matrix Evaluation
255 0 0 0.5

0 255 0 1.0

0 0 255 0.5

128 128 6 0.3

199 71 235 0.9

 ∗


1/3 0
1/3 0
1/3 0
0 1

 =


85 0.5
85 1.0
85 0.5
87.3 0.3
168.3 0.9


Notice that after aggregating, the first and third alternatives, red and blue respectfully, are
indistinguishable so will receive an equal ordering no matter what ORDER component is used.

Many different aggregation methods are commonplace in robotics. Pirjanian (1999) identifies a
class of behavior coordination mechanisms in robotics which they call command fusion mechanisms
that combine the results from different behaviors (cues) into one command to be sent to a robot’s
joints and motors (alternatives). These behavior coordination mechanisms can be differentiated by
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the aggregation mechanisms they use. Some examples include DAMN (Rosenblatt, 1997) which
produces one-dimensional judgments, its predecessor SAMBA (Riekki and Roning, 1997) which
produces multi-dimensional judgments, and extensions of DAMN that use fuzzy logic (Yen and
Pfluger, 1995; Saffiotti et al., 1995).

4.6 Completing the cognitive structure

With these three cognitive functions specified, we can complete our model. A cognitive structure
which provides the cognitive function implemented in Algorithm 1 affords the cognitive capability
of decision making.

Algorithm 1: The cognitive function of decision making
Input: A choice set of alternatives, C
A working set of cues, W
Output: A decision, composed of a choice C ′ ⊆ C and a boolean indicating if it was

accepted or rejected
1 MC ← ASSESS(C,W )
2 EC ← AGGREGATE(MC)
3 ≲C ← ORDER(EC)
4 C ′ ← TAKE(C,≲C)
5 if ACCEPT(C ′, EC) then
6 return (C ′,⊤)
7 else
8 return ({},⊥) /* The agent failed to make a decision. */
9 end

Adding two additional helper functions to update the alternatives and cues can help distinguish
between different iterative heuristics. These two helper functions are parametrized by the gap G
which, among other things, defines the class of alternatives and can be used in memory retrieval
processes to collect all of the available alternatives and relevant cues. Figure 1 illustrates how each
of the update functions constructs a choice set of alternatives or working set of cues from relevant
objects retrieved from memory. Kirsch (2019) identifies that the memory retrieval processes for
updating cues and updating alternatives may influence each other depending on how the memory
structure works. Because we treat these two update steps separately, it may require implementers to
cache the results of an interactive retrieval process and collect them in each independent step.

4.6.1 Updating Alternatives

Updating the choice set in real agents can be a complicated affair, as any alternatives that were not
known at the start of the decision process can be expensive to discover or generate. However, in
iterative heuristics, only considering a subset of the available alternatives, C ⊆ A, in each iteration
can substantially reduce effort. For this reason, the way in which the choice set is constructed
each iteration is an important difference between heuristics that is independent of how the available
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alternatives are retrieved from memory. Let

UPDATEALTERNATIVES : (G,A,A)→ A

implement the heuristic component updating alternatives, taking as input a gap defining the current
decision problem, G ∈ G, the previously used choice set of alternatives, C−1 ⊆ A, and the
previously taken choice, C ′ ⊆ C−1, and outputting a new choice set C ⊆ A. We assume that if this
function returns the empty set {}, then there are no more viable alternatives and the agent has failed
to make a decision.

In heuristics that reconsider alternatives in subsequent iterations, the agent must choose which
alternatives to keep or eliminate from the choice set. Kirsch (2019) leaves this choice to the im-
plementation of the UPDATEALTERNATIVES component, providing the evaluation computed in the
previous iteration as an extra argument to the component. However, pulling this decision out of
the UPDATEALTERNATIVES function avoids a circular dependency on the definition of making a
decision to include another decision.

We recognize that choosing which alternatives to keep or eliminate based on an evaluation of
the choice set is precisely the responsibility of the TAKE component. This brings back the idea of
“deciding against” alternatives in order to reduce the difficulty of the decision problem in future
iterations. Moving this responsibility from UPDATEALTERNATIVES to TAKE is another motivation
for generalizing Kirsch’s FIRST function to take multiple alternatives instead of just one. Evalu-
ating if an alternative is worth further consideration is yet another dimension of value judgment,
so any criteria used to update the choice set could also be calculated in the AGGREGATE func-
tion, potentially as an extra incommensurable dimension. This conveniently removes the need for
UPDATEALTERNATIVES to take the results of the previous evaluation as an argument.

4.6.2 Updating Cues

Similar to updating alternatives, updating the working set of cues can require expensive memory
retrieval processes but specifying how the relevant cues should be used in successive iterations is
important to the functionality of iterative heuristics. Suppose there is a set of relevant cues the agent
has retrieved from memory,W , whose power set is denoted W = 2W . Let

UPDATECUES : (G,W)→W

implement the heuristic component updating cues, taking as input a gap defining the current decision
problem, G ∈ G, and the previously used working set of cues, W−1 ⊆ W , and producing a new
working set W ⊆ W as output. We assume that if this function returns the empty set {}, then there
are no more relevant cues and the agent has failed to make a decision.

Because not all relevant cues need to be added to the working set each iteration, an agent may
make a meta-decision on which cues are the most relevant for the next iteration, a common tactic of
one-good-reason heuristics. In this meta-decision, all available cues are now the meta-alternatives
and meta-cues measure their relevancy for the decision problem at hand. The take-the-best heuristic
uses a meta-cue call the validity which measures the true positive rate of each cue in making past
predictions (Gigerenzer and Goldstein, 1996). Other example meta-cues include how recently a
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cue was used like take-the-last heuristic, or just selecting cues randomly like the minimalist heuris-
tic (Gigerenzer et al., 1999). Contrary to UPDATEALTERNATIVES, this meta-decision within the
UPDATECUES component is implementation specific and not definitional. It is distinct from the
decision problem at hand because the meta-alternatives are which cues to consider in the next iter-
ation (for the current decision) not which alternatives to consider. Therefore, just as with retrieving
relevant alternatives, we assume that this meta-decision is part of the relevant cue retrieval process.
We similarly assume that the set of relevant cues is given in each iteration and do not include a
mechanism for their retrieval or generation in this model. In Section 6 we demonstrate heuristics
both with and without this secondary meta-decision on cues.

Algorithm 2: Assemblable iterative decision heuristic
Input: A gap, G, specifying the current decision problem
Output: A decision, composed of a choice C ′ ⊆ C and a boolean indicating if it was

accepted or rejected
1 W ← {} /* Initialize working set */
2 C ← {} /* Initialize choice set */
3 C ′ ← {} /* Initialize choice */
4 accepted← ⊥
5 while not accepted do
6 C ← UPDATEALTERNATIVES(G,C,C ′)
7 W ← UPDATECUES(G,W )
8 if C = {} or W = {} then
9 return ({},⊥) /* The agent failed to make a decision. */

10 end
11 EC ← AGGREGATE(ASSESS(C,W )) /* Judging */
12 C ′ ← TAKE(C, ORDER(EC)) /* Choosing */
13 accepted← ACCEPT(C ′, EC)
14 end
15 return (C ′,⊤)

Including UPDATEALTENATIVES and UPDATECUES in the cognitive structure, we arrive at an
algorithm for an assemblable iterative decision heuristic, shown in Algorithm 2. This algorithm
takes as input the gap defining the current decision problem and produces as output a decision. As
illustrated in Figure 1, an iteration starts by updating the cues and alternatives, proceeds through a
pipeline of judging cues and collecting a choice, then either terminates if the choice is accepted or
starts a new iteration. In the next section we present a method for assembling a cognitive structure
which provides this cognitive function.

We describe a small number of different implementations of each heuristic component in Ap-
pendix B based on heuristics from the decision-making literature. It may be desirable for an agent
to have some minimal set of components to choose from, as deciding which components to use to-
gether for which decision requires effort. Rieskamp and Otto (2006) identify that having too many
existing heuristics makes it more difficult to learn when to use them, but too few leads to worse
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Figure 2. An implementation of a heuristic assembly process, based on theorem proving.

agent performance. It is also possible that different combinations of heuristic components produce
the same outcomes. We take the pragmatic view that as long as an agent has enough tools in its
toolbox to accomplish its mission and take advantage of the structure of its environment, then elim-
inating the possibility of duplicate solutions is not worth the trouble. This assumption has yet to be
validated and is a great candidate for further investigation.

5. Assembling and Executing Heuristics

Once a gap has been identified by a robot, it can begin assembling or searching for a heuristic to
solve the decision problem. If a sufficiently similar problem has been solved previously, it can just
reuse the heuristic and avoid the cost of assembly. We implemented a heuristic assembly method,
shown in Figure 2, based on using theorem proving techniques to generate behavior trees. Briefly,
behavior trees are modular directed acyclic graphs composed of control flow and execution nodes
(Colledanchise and Ögren, 2018). A “tick” signal is propagated through the tree, with control flow
nodes directing which of their children to forward the signal to and leaf nodes executing some
function when they receive this signal. For an example of an assembled behavior tree, see Figure 5.
We demonstrate this heuristic assembly and execution method in Section 6.2

Each heuristic component is implemented as a CoreSense module associated with a particular
execution node in the behavior tree and robot knowledge is stored in a Prolog3 database. Core-
Sense modules (shown in Figure 3) encapsulate a paired engine and model which together provide
a cognitive function (Gabriel et al., 2023a). The engine is an executable program that performs com-
putations or actions, implementing a specific cognitive function. At runtime an agent can attempt
to modify its understanding or environment by exerting this engine on an actionable model of the
world. CoreSense modules also contain internal structural elements:

2. Source code for this demonstration is available upon email request to the author.
3. We are using SWI-Prolog version 8.4.2 for x86_64-linux.
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Figure 3. Schematic of a CoreSense cognitive module. CS-IMG-046 adopted from Gabriel et al. (2023a).

• The afferent and efferent provide a means for handing input and output to other modules
respectively.

• The coupling interfaces with the CoreSense runtime system which manages module deploy-
ment and control.

• The meta handles the module itself such as monitoring the state of the module or controlling
it as part of an aggregate.

The meta describes the engine including the cognitive capability it provides, the shape of its inputs
and outputs, and the cognitive function it employs (Gabriel et al., 2025). Each module is imple-
mented as a ROS4 node and uses the ROS communication layer to interface with other modules.

We use the CoreSense Understanding Core (Gabriel et al., 2025) to assemble heuristics (top
of Figure 2). Each heuristic component is modeled as an engine with a specific configuration and
semantic interface with chains of engine exertions composing a cognitive structure. The inputs
and outputs of each heuristic component are modeled explicitly with rich semantic types. The
Understanding Core is implemented declaratively in the Typed First-order Form language (TFF),
a subset of the TPTP languages used for automated theorem proving (Sutcliffe, 2024). At the
time of writing, the Understanding Core models engine exertions with a situation calculus where
constructing a cognitive structure is achieved by generating a proof of the existence of the final
desired output. We describe each heuristic component at an agent’s disposal with the TFF interface
used by the Understanding Core, then use it to derive a cognitive structure that produces a decision
with the properties encoded in the gap. We use the Vampire Automated Theorem Prover5 (Bártek
et al., 2025; Kovács and Voronkov, 2013) as the backend to generate this proof.

In our demonstrations, we model an agent control architecture using behavior trees that call
ROS actions (see Figure 4). For each engine exerted in the derived cognitive structure, the matching

4. We are using the ROS 2 Humble release.
5. We are using Vampire 4.9 Release build linked to Z3 4.14.0.
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Figure 4. A schematic diagram of the agent control structure used in our demonstrations for assembling and
executing decisions.

meta and configuration are fetched from the agent’s knowledge base and added to a pair of XML
and YAML files, respectively, representing the decision heuristic (bottom of Figure 2). These XML
files can be run by a BehaviorTree.CPP (Faconti, 2019) runtime manager and YAML files are used
to adapt the parameters for each ROS node in the behavior tree. The meta of each heuristic com-
ponent is a partially implemented behavior tree that ensures all of the preconditions for running the
component are met before it is executed and any post conditions are set appropriately depending on
success or failure. Each meta, highlighted with different colors in Figure 5, is a sub-tree starting
with a named fallback node. When assembling the heuristic, each meta is linked to the running ROS
action that provides the cognitive function it models. This design follows the backward chaining
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strategy recommended by Colledanchise and Ögren (2018) for creating behavior trees that provide
a high degree of proactive explainability and minimize essential complexity (Biggar et al., 2022).6

When making a novel decision, an agent must first assemble the heuristic, then can “insert”
it into the running behavior tree. We achieve this insertion by implementing a leaf node which
spawns a second runtime manager in a new thread that executes the decision. When ticked by the
parent tree, this leaf node returns RUNNING until the child thread has finished and then returns
either SUCCESS or FAILURE based on the returned status of the decision heuristic. To execute
the decision, an agent must simply load the YAML config file to adapt the appropriate ROS nodes,
execute the XML behavior tree, then revert to its previous configuration if necessary. Successful
execution of a heuristic writes the solution to the Prolog knowledge base where it can be retrieved
by the agent at any time.

6. Proof of Concept

To demonstrate our model of decision making and heuristic assembly method in action, we present
a proof-of-concept scenario based on Zamani et al. (2025) where a robot has the complete toolbox
of heuristics detailed in Appendix B at its disposal.7 Imagine a domestic service robot is asked to
quickly retrieve a book from somewhere in an apartment by one of the occupants. This person com-
municates their abstract value of timeliness and goal of having a book to the robot. The apartment is
made of four rooms: and office, bedroom, living room, and a kitchen. Assume the robot understands
that when it is looking for something, places it has already visited are unlikely to contain that object,
and that locations which are further away will take longer to investigate. The robot has been in this
apartment for some time so it knows what all the rooms are and has learned the reading habits of
some of the occupants.

• The book belongs in the office, so without any other clues it is most likely there.

• The occupant who leaves their dirty tableware around usually reads in bed so if it encounters
dirty tableware the book is most likely to be in the bedroom.

• The other occupant who cleans their tableware but forgets it usually reads in the living room,
so if clean tableware is found the book it most likely there.

• If both clean and dirty tableware is found, the robot assumes someone was reading but doesn’t
know who, so the bedroom and living room are equally as likely, but above the others.

To complicate matters, the manufacturer programmed the robot with a maintenance rule man-
dating that whenever it passes through a doorway, if something was blocking it that object must be
put away. We assume this robot can deduce that if doorways are blocked it will take some time
to clear them before it can pass through and that any object in the doorway will be expensive to
investigate.8

6. This method of behavior tree generation is not without its flaws. See Colledanchise and Ögren (2018) for details.
7. The complete problem description can be made available upon email request to Carlos Hernández Corbato
8. Notice that with this self-awareness, the robot will act according to the values of the mission, circumventing a 

manufacturer rule to solve its task. Which rules are okay to circumvent is an alignment problem.
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This particular robot uses a two-step strategy to find the book: first it chooses a room in the
house to visit based on its understanding of where the book might be, then once it is in this room, it
decides which objects to investigate to see if they are the book. If it fails it tries this process again
with the updated knowledge of the objects it has investigated. We assume the robot can make some
weak predictions about the likelihood that each object in it’s current room are the book based on its
perceptions of the objects from afar, but is not certain until it visits each of them.

We implemented two decisions the agent will need to make while looking for the book based
on its simple strategy. In the first decision the robot must choose a room to target. In the second
decision the robot decides which objects to investigate.

6.1 Room decision walkthrough

In the first decision, choosing a room, the gap consists of the Prolog clauses shown in Listing 1.
1 %% A handle for the gap
2 gap(room_gap).
3
4 %% The class of alternatives the agent should consider
5 alternative_of(A, room_gap) :-
6 room(A).
7
8 %% Requirements on the choice
9 requirement_of(absolute_size_req, room_gap).

Listing 1. Problem definition for choosing a room, as represented in the robot’s Prolog knowledge base.

We will assume the robot has not attempted this specific task before so it will need to assemble a
heuristic to solve the task. The understanding core then assembles the following cognitive structure
which we will refer to as the Decide-On-Room heuristic:

• Update Alternatives with Elimination - Keeps only the alternatives that were
taken in the previous iteration. The robot is able to take advantage of the fact that all alterna-
tives were known at the start and can be progressively eliminated.

• Update Cues, Take The Best - Gathers one working cue per iteration, and never
reuses them. Take-The-Best is used to decide which cue to select each iteration.

• Assess - There is only one ASSESS component to select.

• Aggregate Preferences - This just uses the assessments directly as value judgments.
Because this heuristic only uses one cue at a time (it is a one-good-reason heuristic), this has
limited effect since no aggregation is necessary.

• Order Dominating - Orders alternatives by majority rule. Because this heuristic only
uses one cue at a time, any alternatives that are not tied for first will be tied for last.

• Eliminate Worst - Eliminates all alternatives tied for last in each iteration, unless they
are all tied. Due to the ordering heuristic selected, this has the same effect as Take Best.

• Accept Size - Accepts when the taken set of alternatives has cardinality N = 1, enforcing
the requirement that precisely one room is chosen.
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Figure 5. A behavior tree assembled to implement the Decide-On-Room heuristic. Sequence nodes are repre-
sented with an arrow, fallback nodes with a question mark, condition nodes as ellipses, and execution nodes
as rectangles. Sub-trees have been condensed are indicated by three vertical dots.

A schematic diagram of the generated behavior tree is given in Figure 5 where each heuristic com-
ponent can be seen as a rectangular leaf node. This heuristic falls into the category of elimination
heuristics, which select which cue to use each round by their validity. It demonstrates how an agent
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can use a meta-decision to determine which cues are relevant. The specific meta-decision selected
is an example of an agent reusing a heuristic already implemented in it’s toolbox, however this
meta-heuristic could also be assembled at runtime.

Now that the robot has a heuristic assembled, it adapts its heuristic components and spawns a
new runtime manager to execute the assembled behavior tree. First the robot updates its choice set,
selecting all four rooms in the apartment to start. Next it updates its working set of cues, triggering
a meta-decision on which cues are relevant using Take-The-Best. This pre-existing meta-heuristic is
implemented with these components:

• Update Alternatives, keep none - Uses all meta-alternatives discovered so far
each iteration. Once a meta-alternative has been considered it will not be considered again.

• Update Cues, reuse all - Adds all available meta-cues each iteration. The meta-cue
addition policy has no effect because only one meta-cue, validity, is used each round.

• Aggregate Preferences - This just uses the assessments directly as value judgments.
Because this meta-heuristic only uses one meta-cue, this engine has limited effect.

• Order Lexicographical - Orders meta-alternatives lexicographically according to their
validities. Because this heuristic only uses one meta-cue, this engine has limited effect.

• Take 1 Best - Takes the single best meta-alternative, breaking ties randomly. This en-
forces the one-good-reason pattern that precisely one cue is selected each decision iteration.

• Accept Satisficing - Accepts when the chosen cue has a validity of at least 0.5. If
this fails, the agent will need to go search for more cues because none that it found so far are
positively correlated with the main decision problem (in this case, deciding on a room).

Deviating from Gigerenzer et al. (1999), we implement of the cue retrieval portion of Take-The-Best
as satisficing, rather than always accepting. Consequently, this meta-heuristic can handle situations
where an agent may not know all of the possible cues before starting, explicitly encoding the ability
to retrieve more from memory before giving up.

In this scenario suppose that the robot identifies four cues and has knowledge of their validities
for selecting rooms based on its past experience. We model this knowledge with the Prolog clauses
shown in Listing 2.

1 % ...
2
3 available_for(’/visited’, room_gap).
4 available_for(’/habits’, room_gap).
5 available_for(’/doorway_status’, room_gap).
6 available_for(’/distance’, room_gap).
7
8 validity(’/visited’, 0.8).
9 validity(’/habits’, 0.7).

10 validity(’/doorway_status’, 0.6).
11 validity(’/distance’, 0.6).
12
13 % ...

Listing 2. Cues and their validities represented in the robot’s Prolog knowledge base.
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Executing the meta-decision, each cue that has not already been used for this decision is now
retrieved from memory as a meta-alternative and assessed by their validities. The assessment is used
by the robot as a value judgment and one meta-alternative with the highest validity, /visited,
is taken. This cue causally links the robot’s value of obtaining a book to its belief that the book is
unlikely to be in a location it has already visited. It scores the rooms by anticipating its value of
being in each alternative room in the future, indicating higher anticipated value with a higher score.
Based on these future projections, it assigns a 1.0 to rooms that have not been visited, and a 0.0 to
rooms that have. Because the cue has a validity greater than 0.5, it is acceptable and chosen as the
first cue to decide which room to target.

Returning to the Decide-On-Room heuristic, the agent updates it working set of cues to be
{/visited} and assesses each of the rooms. As the robot has just started its mission, no room
has been visited yet so each gets the same score of 1.0. It simply passes these assessments along
as final value judgments, and since none are dominating, all rooms are tied with rank 0. The robot
then attempts to eliminate the worst alternatives, however since they are all tied it eliminates none
instead and creates a choice containing all four rooms. As this choice has size four instead of one,
it is not accepted and a new decision cycle is started.

Once again the agent updates its choice set, keeping only the alternatives taken in the last iter-
ation; in this case it happened to take all of them. Since there are no more rooms it does not add
any additional alternatives from memory. Next it updates its working set of cues, not reusing the
cues from the previous round, triggering the meta-decision on cues again. Note that this is a new
instantiation of the meta-decision so a new gap is created and the agent restarts at meta-iteration 0.
This time, /visited is not identified as a meta-alternative since it was already used for Decide-
On-Room in a previous iteration. The meta-heuristic proceeds as before, now choosing /habits
since it has the highest validity (0.7), and accepting it since that validity is greater than 0.5.

Back in Decide-On-Room, the agent assesses each room based on its observations of tableware
and beliefs about how that relates to the book’s location. Let’s suppose it already discovered both
clean and dirty tableware, meaning that the book is likely in the bedroom or living room, but it isn’t
sure which. The /habits cue therefore gives the office and kitchen a score of 0.0 and the bedroom
and living room a higher, but equal score of 1.0. This assessment is again aggregated and ordered,
with the agent eliminating the office and kitchen and taking the bedroom and living room. Since the
choice has size two instead of one, the agent again rejects it and starts a new decision cycle.

Finally, in the third cycle the agent randomly chooses between the /doorway_status and
/distance cues since they are tied for validity. Suppose it chooses the /distance cue which
favors locations by the lowest distance from the robot. The robot is 8.24 meters away from the
bedroom and 0.60 meters from the living room, giving them scores of−8.24 and−0.60 respectively.
Accordingly, it takes the living room and finally accepts as the choice has a cardinality of one.

6.2 Object decision walkthrough

For the second decision, we assume that the robot already has a heuristic in its toolbox for decid-
ing which objects to target. Perhaps an engineer foresaw this decision needing to be made and
programmed the heuristic by hand.
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The Decide-On-Objects heuristic is implemented as a non-iterative decision and makes no re-
quirements on the size or quality of the choice. It uses the following heuristic components:

• Update Alternatives, keep none - Uses all alternatives each round. Because this
is a non-iterative heuristic, the keep policy is irrelevant.

• Update Cues, reuse none - Adds all available cues each round to the working set.
Again, the reuse policy is irrelevant.

• Aggregate Utility, Dawes’ rule - Assessments are aggregated using Dawes’ rule
(Dawes, 1979), interpreting cues only as positive or negative.

• Order Condorcet Extension, Copeland - Orders alternatives by their net prefer-
ences compared to other alternatives. In this case because there is only one dimension of
value created by the aggregation function, this has little effect.

• Take All Best - Takes all alternatives tied for best. Consequently the size of the choice
set may vary depending on the state of the world and could even take no alternatives.

• Accept Always - A no-op that always accepts a choice, making the heuristic non-iterative.

Suppose the robot finds six objects in its current room that are available alternatives. Two of
these objects are in a doorway, two it has already visited, and for each object it calculates some
confidence between [0, 1] that the object is the book. We model this world with the Prolog snippet
in Listing 3.

1 % ...
2
3 % Stacked to demonstrate interesting results from dawes’ rule and copeland

method
4 in_doorway(object_1).
5 in_doorway(object_2).
6
7 visited(object_3).
8 visited(object_4).
9

10 confidence_is_book(object_1, 0.8).
11 confidence_is_book(object_2, 0.2).
12 confidence_is_book(object_3, 0.0).
13 confidence_is_book(object_4, 0.6).
14 confidence_is_book(object_5, 0.6).
15 confidence_is_book(object_6, 0.6).
16
17 % ...

Listing 3. Objects world model

The robot then populates the relevant set of cues with all available, finding four. In this case it
can reuse two cues that it used to assess rooms as they reflect the same stance the agent has towards
the alternatives: /distance, and /visited.9 Unfortunately /distance always returns a

9. For traveling salesman problems, which the task of investigating several unknown objects comes down to, it is
generally not optimal to visit nodes in the order of shortest distance from the current node. However, it can be shown
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negative distance, which is unhelpful for differentiating alternatives with the selected aggregation
method. However, the robot is still able to decide between alternatives because the other cues are
more appropriate for use with Dawes’ rule. The third cue, /in_doorway scores objects highly that
are not in a doorway. The fourth cue, /is_book, scores objects based on the agent’s confidence
that they are the book, with confidences above 0.5 scored by their confidence and below 0.5 scored
as −1 + confidence. Because of this scheme, confidences greater than 0.5 will be considered
positive by the aggregation method and lower than 0.5 will be considered negative.

Assessing all of the alternatives with each of these cues, the agent then aggregates the assess-
ments, orders the alternatives based on its evaluation, and takes objects 5 and 6 which had the
biggest difference between positive and negative cues. In a real robot, assessing the fourth cue
/is_book may represent significant calculation effort, potentially involving sophisticated com-
puter vision models, inference tasks, or Bayesian networks. If the agent instead used an iterative
elimination heuristic, ordering cues by their difficulty to assess, it could have used significantly less
effort, only calculating the /is_book cue for objects 5 and 6. In that case, the robot would have
arrived at the same decision but spent less effort, displaying higher ecological rationality.

6.3 Performance measurements

We measured the performance of our method as a baseline for future works to compare against.
We profiled 50 runs of the example scenario, capturing results for each of the three heuristics in
Table 1. Profiling was performed using Ubuntu 22.04 LTS on a consumer laptop featuring an Intel
i9-12900H processor and 16 gigabytes of memory. Naturally, as the Decide-On-Room heuristic
uses Take-The-Best internally to decide which cues are relevant in each iteration, its total runtime
is much longer than the other two heuristics which did not have to search for cues. As seen in
Table 1, the time spent assembling the Decide-On-Room heuristic only represented 8% of the total,
demonstrating that it is inexpensive to create new heuristics at runtime for iterative decisions. With
runtimes on the order of seconds, a robot could use our method to make decisions with medium
to long term effects, but it is unsuitable for reactive decisions such as avoiding obstacles or having
conversations.

Table 1. Profiling results for each example heuristic. Note that the total runtime of Decide-On-Room had a bi-
modal distribution where trials taking 3 and 4 iterations had average runtimes of 3358 and 4189 milliseconds
respectively.

No. Trials Avg. Total Avg. Heuristic Avg. No.
Decision Heuristic Runtime (ms) Assembly Time (ms) Iterations
Decide-On-Room 50 3690 281 3.4

Take-The-Best 170 480 - 1
Decide-On-Objects 50 579 - 1

that visiting nodes in this way is never worse than twice the optimal path length. This means that admissible heuristics
display a flat maximum effect, with diminishing gains from the naive method. This heuristic takes advantage of this
information structure in the agent’s task.
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Table 2. Profiles of example heuristic average runtimes, excluding memory retrieval processes. Units are
milliseconds. Average time per iteration for Decide-On-Room is shown in parentheses. Breakdown of the
second column into each component is shown in Figure 6.

Sum Heuristic BT Setup Component Self
Decision Heuristic Components and Teardown Communication Adaptation
Decide-On-Room 135 (40) 275 1153 (340) 97 (29)

Take-The-Best 36 285 165 21
Decide-On-Objects 66 297 196 21

The total average time taken for each decision was significantly larger than the sum of the de-
cision components themselves. A deeper analysis, presented in Table 2, shows that the majority
of decision time is spent setting up the behavior trees and communicating between the heuristic
components. This result suggests that using ROS actions to communicate between the heuristic
components and the runtime manager is a costly architectural design. The extra time taken for com-
ponent communication in each Decide-On-Room iteration can be attributed to an extra re-adaptation
of the decision components after running the Take-The-Best heuristic to update the working set of
cues. Instead of our method of adapting each running heuristic component for each decision, using
multiple running instances of the same components with different parameter settings would elim-
inate the need for this self-adaptation step. Potential improvements include switching from ROS
actions to services for the fast-running heuristic components, using a ROS nodelet architecture to
reduce inter-process communication, or using a dynamic behavior tree model that can be modified
at runtime instead of launching and tearing down multiple parallel behavior trees.

Figure 6. Runtime of each heuristic component used in each of the example heuristics. The average runtime
for Decide-On-Room is shown in red stripes, Take-The-Best in green dots, and Decide-On-Objects in solid
blue. Error bars indicate the minimum and maximum runtimes measured over 7 trial iterations for each
example decision.
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Figure 7. Runtimes of the ASSESS heuristic component vs. the number of assessed alternatives in each of the
example heuristics. Iterations of Decide-On-Room are shown as red triangles, Take-The-Best as green circles,
and Decide-On-Objects as blue squares. A linear trend-line illustrates a correlation between the number of
assessed alternatives and ASSESS component runtime.

We measured the individual runtimes of each heuristic component used in each of the example
decisions. As can be seen in Figure 6, for all but the ASSESS component, there is an insignificant
difference in runtime between the three decisions. Updating cues and alternatives took around 5 ms
each on average, the AGGREGATE, ORDER, TAKE, and ACCEPT components ran for 1 to 3 ms on
average, but the ASSESS component was a clear outlier with a wide range of 12 to 54 ms run times.

The wide range of the ASSESS component runtimes can be largely explained by two factors: a
difference in the number of alternatives and cues assessed. Illustrated in Figure 7, there is a strong
linear correlation between the number of assessed alternatives and the ASSESS component runtime
in the Take-The-Best decision on cues. A weaker, but positive, correlation can be seen in iterations
of Decide-On-Room with either 2 or 4 alternatives assessed. Where only one cue was assessed
at a time in these two decisions, four cues were assessed at once in Decide-On-Objects, resulting
in a much higher average ASSESS component runtime of 45 milliseconds. These limited results
suggest that robots concerned with decision speed should focus on limiting the number of cues and
alternatives to be assessed. With a small number of cues that are quick to assess like the ones we
demonstrated, it is faster to consider them all at once instead of iteratively.

7. Discussion

In this section we discuss observations of decision heuristics that we made while developing the
model in Section 4 and implementing the heuristics in Section 6. We first note some considerations
for selecting heuristic components using a meta-heuristic, then examine the bounded rationality of
heuristics based on how they update the choice set of cues and working set of alternatives. We eval-
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uate theorem proving as a method for heuristic assembly and describe some potential alternatives.
Finally we discuss some of the strengths and weaknesses of our model.

7.1 The heuristic heuristic

We attempted to derive which heuristic components should be used by an agent from the decision
requirements, but there proved to be a minefield of special cases, gotchas, and optimizations left
unrealized in our proof-of-concept demonstration. Perhaps obviously, instead an agent could use
some meta-heuristic to decide which heuristic or heuristic components to use for a given decision
problem. Besides the previously discussed problems with infinite regress, this method can also use a
small set of predefined heuristics to grow an agent’s library of heuristics. We identified some useful
cues for deciding between “heuristic patterns” based on observations of heuristics used in literature,
but have not yet implemented them. These patterns could then be filled in with specific components
that ensure all the requirements are met for the decision problem at hand. Decision requirements
themselves can be helpful in making these coarse filtering decisions.

Some example binary cues that we identified to rule these heuristic patterns in or out include:

• Are all alternatives available?

• Are all cues available?

• Is information scare or expensive to evaluate?

• Does the agent already have a good understanding of the ordering of cues for this decision?

• Does the agent already have a good understanding of the validities of cues for this decision?

Similarly, Svenson (1979) identifies heuristic patterns by the coarseness of cues, if they are com-
mensurable or not, and if they can be used iteratively (such as in one-good-reason methods) or all
at once (such as in multiple regression). Interestingly, many of these cues motivate the retrieval
of alternatives and cues prior to selection or assembly of a heuristic. To take advantage of these
heuristic-cues, we propose priming heuristic assembly by first retrieving a relevant set of cues and
available alternatives, as these steps are always required in the first heuristic iteration anyway.

7.2 Bounded rationality, and updating cues and alternatives

The nature of how heuristics collect alternatives and cues can be grouped into four major categories
by how they update their respective working sets of objects. We call an update function accumulat-
ing if it continuously adds more objects to its working set, diminishing if it continuously removes
objects from its working set, static if its working set does not change, and variable otherwise. To be
useful for decision heuristics, update components must always provide at least one cue or alternative
if they are available otherwise the decision will fail immediately.

For an iterative decision heuristic to exhibit bounded rationality it must be able to halt even if a
decision cannot be made. If both update components of a heuristic are static, then failure in the first
iteration will not change the outcome of the decision and the agent can halt immediately. Otherwise,
at least one of the update components must be diminishing so that an agent will eventually run out of
either cues or alternatives and halt. With an accumulating update component, in each iteration more
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alternatives or more cues are considered until all possible alternative or cues have been exhausted.
If the sizes of these sets are small, an agent could potentially afford an exhaustive search, however
with sufficiently large or unbounded sizes, this is prohibitively impractical. Even if a heuristic uses
one variable update function and one either static or variable update function it is not guaranteed to
halt. In both cases, although the size of the working sets do not change monotonically, by definition
they must each have a minimum size of one.

Therefore, only combinations which include one diminishing update component or two static
update components should be considered by agents operating under bounded rationality, absent
other information about their environment or mechanism for stopping the decision process. For ex-
ample, agents using the satisficing heuristic (which uses a static set of cues and an accumulating set
of alternatives) must have some external mechanism for halting the decision process or artificially
limit the number of considered alternatives. In robotics, this often takes the form of timeouts or hard
limits on the number of allowed iterations.

Notably, this observation could be used when assembling a decision heuristic to restrict the
parameters of each of the update components based on the availability of cues and alternatives at
the start of the decision. Table 3 and Table 4 show the behaviors for each update component resulting
from combinations of their parameter settings (assuming the working sets are filled to capacity each
iteration). Each parameter is described in Appendix B.

Table 3. Behavior of iterative use of UPDATEALTERANTIVES based on parameter settings and availability of
alternatives at the start of the decision process.

Keep policy Capacity All known at start Behavior
all free - accumulating
all fixed - variable
all fixed=start T static

none - F variable
none fixed T diminishing
taken - T diminishing
taken free F variable
taken fixed F variable

Table 4. Behavior of iterative use of UPDATECUES based on parameter settings and availability of cues at the
start of the decision process.

Reuse Iterative add All known at start Behavior
- free T static
T - F accumulating
T fixed T variable
F - F variable
F fixed T diminishing
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7.3 Theorem proving as a method for heuristic assembly

We implemented a heuristic assembly mechanism using an automated theorem prover to derive
valid cognitive structures for decision making. This mechanism appeared to be promising at the
outset of the implementation process, however it proved quite difficult when more components
were added and the decision structures got more complex. As a consequence of using first order
logic, in general the proofs we attempted to generate were only semi-decidable, meaning that if a
solution does exist, it will be solvable in finite time, but if it does not exist there there is no guarantee
of finding one. Additionally, even if a solution could be found in finite time, state-of-the art theorem
provers may take a long time as the speed at which they can generate solutions depends highly on the
structure of the problem (Suda, 2022). There is no known generally applicable strategy for solving
any satisfiability problems with tight performance bounds in the size of the problem (Suda, 2022).
Because the problems generated by our assembly logic were on the order of 800-1000 clauses, it
was difficult to find strategies which converged in a reasonable amount of time (we limited all proof
attempts to 60 seconds during tuning).

This fragile unboundedness goes counter to the ethos of bounded rationality, so we believe it is
ill-suited as a method for robots to adaptively assemble decision heuristics. After an initial attempt
to model the heuristic components using higher order logic proved too difficult for capable theorem
provers to solve (we attempted this with the Leo-III automated theorem prover (Steen, 2025), and
a build of Vampire for higher order logic), we decided to switch to first order logic, sacrificing
some expressive power for more stable solver performance. If using theorem proving methods in
future works, we recommend using either fragments of first order logic that are easier to prove, such
as horn clauses like Prolog, or description logics like PDDL. Non-Axiomatic Reasoning Systems
(Xu and Wang, 2012) which perform reasoning using bounded rationality are also very attractive
candidates.

One alternative is modeling the heuristic assembly process as a learning task where the agent
learns a reward function for each set of heuristic components based on the decision problems it
is solving. Rieskamp and Otto (2006) demonstrate the SSL framework which models how hu-
mans select one of two decision strategies for solving binary inference tasks. They assume that
these strategies already exist, but note that their model could be extended to strategy components.
Dodampegama and Sridharan (2023b) demonstrate a method of constructing fast-and-frugal trees
(Martignon et al., 2008) to model heuristics used by team-mates and opponents in a fort defense
scenario. In Dodampegama and Sridharan (2023a), they build on this work by enabling online se-
lection, learning, and adaptation of these models. We do not foresee any inherent difficulties in
learning when certain heuristic components of our model are effective in a particular environment,
however these techniques would likely require extra information to be stored between the execution
of various heuristic elements. These modifications look very similar to the knowledge base modifi-
cations we make throughout the decision process and can easily be added to the meta surrounding
each engine exertion.

Another potential alternative is using program synthesis techniques to assemble decision heuris-
tics. Program synthesis attempts to generalize a small number of example programs to larger sets
of problems by identifying common patterns between many problem solutions. Given a few suc-
cessful heuristics, such as those found in literature or imagined by engineers, and knowledge of the
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building blocks of decision heuristics, these methods could potentially help capture the difficult-to-
identify structural patterns in robot environments, learning generally applicable rules for assembling
heuristics.

7.4 Model strengths and weaknesses

Our model of decision making displays high generality, as it is widely applicable to many decision
problems and domains. However this comes at the expense of high flexibility because there are
(infinitely) many parameters and implementations of the various heuristic components. This makes
our definition very useful as a prescriptive model to make decisions, but much less so as a descriptive
model that can explain why one black-box decision was made over another.

We identified many kinds of decision problems that humans and robots could face, but there
could be others that our model is too cumbersome or not flexible enough to contend with. We
encourage further exploration of similar cognitive capabilities to decision making that can reuse the
components we have defined in new ways. Our algorithm could be useful for cognitive scientists
to develop new models of human decision-making or to describe the mechanisms of existing ones.
However it is not suitable (nor was intended) to describe the precise realization of that process in
the human brain.

We proved that adaptive heuristic assembly is possible, but only demonstrated a few decisions
in one environment. Extension of this proof of concept to a complete robot mission is a natural next
step in testing its strengths and weaknesses. This should also include a comparison to alternative
methods of generalized decision making. Kotseruba and Tsotsos (2020) suggests using competi-
tions and ranking benchmarks, however adopting a perspective of ecological rationality requires
different evaluation methods than robotics and AI have grown accustomed to. Generally applicable
heuristics will by nature perform worse on any particular problem than fine-tuned ones, so they need
to be measured across a range of problems in order to make a fair comparison (Kirsch, 2017a). Un-
fortunately this requires developing problems which are difficult enough that they can demonstrate
the differences between heuristics (see the flat maximum effect in Section 2.3) while still being
measurable enough to facilitate scientific analysis.

We assume that a robot using our method to make decisions is provided with enough knowledge
to link the specific decision it needs to make with its overall mission. However, this is highly
demanding of the mission designer and the memory system of the robot and requires modeling robot
knowledge in unconventional ways. A natural extension of our model is a mechanism for retrieving
alternatives and cues from domain knowledge or deriving specific cues from abstract values. One
possible step researchers could take in retrieving relevant cues is encoding a link between the agent’s
values and how each cue measures those values for different classes of alternatives. Laird et al.
(2012) approach this task in the Soar architecture by proposing an expected value function based
on background knowledge, then refining it with reinforcement learning. Haan and Heer (2012)
describe a tool called causal diagrams to connect observable properties to mission goals that we
think merits further investigation.

We implemented CoreSense modules that each realize one specific heuristic component, but
there is evidence that humans use “partial heuristics” before abandoning them and jumping to an-
other (Huber, 2000). With our assembly method, as long as these partial heuristics have the correct
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inputs and outputs, they could reduce effort in constructing and executing similar heuristics. Similar
to the Kirsch model, each component or partial heuristic could be augmented with checkpoints to
reconfigure the heuristic or attempt different one.

We also assumed that only one of each heuristic component was used at a time, but for some
decision problems, a robot may want to use multiple different components to make complex judg-
ments. For example, it may have found a set of boolean cues to aggregate together for one dimension
of value and a disjoint set of scoring cues to aggregate into another dimension. Kainen (2000) de-
scribes the first-fit-decreasing heuristic that uses two reasonable strategies in parallel but takes the
result of whichever finishes first. With small modifications to our algorithm, assessments, judg-
ments, or even complete heuristics could be processed in parallel streams that are recombined in
some way to complete the decision.

8. Conclusion

In this work we developed a definition of decision-making for constructivist robots to formulate
their own decision heuristics based on their mission values. By modeling each cognitive function
explicitly, it was straight forward to implement components common to well-studied heuristics. We
developed a toolbox of heuristic components as modules in the CoreSense architecture using ROS
actions to communicate between modules and behavior trees to orchestrate their execution.

We simulated three heuristics used by a robot to search for and retrieve a book in an apartment,
showing how a constructivist robot can make decisions using both pre-existing heuristics and as-
semble novel ones from a toolbox of components. This simulated robot was able to reason about
which of its cognitive functions to use based on its self-understanding, then was able to adapt itself
to make mission-critical decisions. It saved cognitive effort by ignoring one of the possible cues
in Decide-On-Room, but was also able to use all of the available information at once to save time
in Decide-On-Objects. Through analysis of the constructed heuristics, we were able to precisely
explain the decision made by the robot and directly link it to the mission designer’s values.

We profiled each of the example heuristics and discussed their ecological rationality in differ-
ent environments. From this profiling we also identified ways to improve the performance of our
implementation, how these improvements effect the speed of different kinds of heuristics, and how
an agent could leverage the performance statistics to assemble better heuristics. We described some
potential cues for choosing heuristic components and how updating cues and alternatives can affect
heuristic boundedness. Finally we discussed some of the limitations of assembling heuristics with
automated theorem provers, identified some strengths and weaknesses of our model, and made some
recommendations for future works to address them.

Modern robots make decisions in many ways, but rely on their designers to choose which strate-
gies to employ and when. By taking the perspective of bounded rationality, we present robots with a
new kit of tools for completing their missions. By understanding their values, taking cognitive short
cuts, and tactfully using information, they can make novel and explainable decisions in an open and
uncertain world.
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Appendix A. A zoo of heuristics

To expand the capabilities of deciding agents, their model of decision making should be usable in
many kinds of decision problems and environments. Because decision-making is a fundamental
component of many cognitive capabilities, a wide variety of decision heuristics have been studied
and classified. This appendix presents a brief survey of heuristics that inspired our model.

A.0.1 Variations on multiple regression

The widespread use of the multiple regression heuristic has lead to many variations with minor
differences. Shah and Oppenheimer (2008) assume that all relevant alternatives have been col-
lected from memory or identified from the environment where other authors include this step in the
decision-making process. Interested readers are directed to Chapter 3 of Haan and Heer (2012) or
Gary Klein’s book Sources of power: How people make decisions (Klein, 2017).

Shah and Oppenheimer (2008) categorize heuristics by which step of the weighted additive
rule they modify to reduce effort. One major focus is how the weights of each cue are used. In
expected utility theory, cue weights may represent the probabilities of the possible outcomes of
selecting each alternative. They could represent preferences of particular alternatives as in Multi
Attribute Utility Theory (see Katsikopoulos et al. (2018)), or levels of risk such as in Failure Mode
and Effects Analysis (International Electrotechnical Commission, 2018). These weights can be
assessed independently for each cue, dependently between cues, or equal cue weights can be used
(a heuristic referred to as Tallying by Gigerenzer and Brighton (2009)).

A.0.2 Classes of Fast and Frugal Heuristics

Todd and Gigerenzer (2000b) identify three major classes of fast and frugal heuristics based on the
amount and kind of cues available to the decision maker: ignorance-based, one-good-reason, and
elimination. Ignorance-based heuristics are useful if the only information an agent has is whether
or not each alternative has been encountered before. The recognition heuristic can be used in these
situations to choose alternatives that have been recognized before over those that have not. The
fluency heuristic, also called the “availability” heuristic by Tversky and Kahneman (1973), similarly
can be used to select alternatives that come to mind the fastest or that an agent knows the most about.

One-good-reason heuristics apply ordered cues one at a time until a single winning alternative
stands out. Examples differing only in their search rule include take-the-best which orders cues by
their true positive rate (also called validity) in predicting the best alternative, take-the-last which
prefers cues that most recently resulted in a decision even if they were incorrect, and minimalist
which just uses cues in a random order (Gigerenzer and Goldstein, 1996; Gigerenzer et al., 1999).
For these heuristics to be useful, cues and cue orderings do not need to causally or exactly match the
environment structure, they just need to point in the right direction (Todd and Gigerenzer, 2000a).
Fast and frugal trees are one-good-reason heuristics that strategically order cues so that each cue
is guaranteed to rule out some of the alternatives (Martignon et al., 2008). Dodampegama and
Sridharan (2023b) and Dodampegama and Sridharan (2023a) employ fast and frugal trees in robotics
to model other agents in two ad hoc teamwork scenarios.
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When cues cannot individually distinguish between alternatives, elimination heuristics can be
used to reject alternatives in stages. Contrary to one-good-reason heuristics, elimination-by-aspects
(Tversky, 1972) uses all cues found so far to discard alternatives instead of applying cues one at a
time. In environments where the cost of being wrong far exceeds the cost of being right, Bullock
and Todd (1999) showed that elimination heuristics can work well, but the order of cues becomes
much more important for success. The QuickEst heuristic (Hertwig et al., 1999) can quantify objects
along some criterion while using as little information as possible by iteratively selecting the cues
that separate the most remaining common objects.

When all of the possible alternatives are not available at the start of decision making, for in-
stance if they are expensive to find or appear only sequentially, satisficing heuristics can be used
to stop searching when a good enough alternative is found. The confirmation rule (Gigerenzer and
Brighton, 2009) suggests waiting until two cues suggest the same alternative, then choosing that
one.

A.0.3 Heuristics in different environments

A major research focus of heuristic decision-making literature has been the analysis of the structure
of information in the environment which heuristics can take advantage of to exhibit ecologically
rational behavior. In environments with scarce information, take-the-best can leverage the few
known cues relative to the number of alternatives to simply decide based on the first cue that divides
one winning alternative from the rest. When the set of alternatives to choose from is constantly
shrinking, such as finding a mate or choosing an apartment, satisficing heuristics can lead to better
results than exhaustive search because all the best options may already be gone by the time they are
evaluated. The equality heuristic suggests dividing resources evenly between all alternatives rather
than committing to one (Shah and Oppenheimer, 2008). This can be useful for making investments
in uncertain markets or distributing food among hungry individuals. Social heuristics can help
agents discover successful strategies quickly from others such as imitating the majority or imitating
the most successful (Gigerenzer and Brighton, 2009). In robotics, imitation learning from human
demonstrations exploits this technique to mimic human behaviors.

Non-compensatory environments are those where a high score from one cue cannot compen-
sate for a low score in another and the potential contribution of each new cue to a final decision
falls off rapidly (Gigerenzer and Brighton, 2009; Gigerenzer et al., 1999). In non-compensatory
environments there is no need to integrate information across cues or to form an overall impression
of an alternative before it is eliminated, so heuristics like take-the-best and elimination-by-aspects
avoid spending extra effort evaluating poor alternatives (Shah and Oppenheimer, 2008). Poisson
processes and power laws commonly encountered in nature produce J-distributions where there are
many more objects at one end of a criteria range than the other. The QuickEst heuristic can use
this to quickly estimate population sizes and categorization by elimination heuristic can rule out
categories quickly (Gigerenzer et al., 1999).
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Appendix B. Toolbox components

We describe a number of specific implementations of heuristic components detailed in Section 3,
based on heuristics from the decision-making literature. Similar to the heuristic components them-
selves, we give each of these specific implementations functional names rather than operational
ones. Source code for this demonstration is available upon email request to the author.

B.1 Assess

Because all cues that an agent has committed to for the given iteration are assumed to be used, there
is only one natural implementation of ASSESS. It simply populates an assessment matrix from each
cue in the working set on each alternative in the choice set.
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B.2 Aggregate

Cognitive structures implementing AGGREGATE combine the assessments of each alternative to
produce independent judgments of each alternative along (potentially) multiple axes of the agent’s
value. Generally speaking, implementations of these components that produce a one-dimensional
judgment are called “utility functions” and they assume cues are commensurable.

Table 5. Aggregate Components

Name Description Related heuristics

Pass
Preferences

Passes assessments along as judgments, assuming that
each cue directly measures a value of the agent. As
judgment dimensions are incommensurable, the as-
sessed cues are assumed to individually measure in-
commensurable axes of each alternative’s value.

one-good-reason
heuristics,
arbitration-based
action selection
mechanisms

Utility -
Boolean

Interprets assessments as boolean preference vectors
and combines them all using a boolean operator. This
could be generalized to combine preferences accord-
ing to any complex predicate logic rule, but for sim-
plicity we assume the same operator (either AND or
OR) is used to combine all scores.

suggested by Kirsch
(2019)

Utility -
Signed

Interprets assessment scores as positive or negative and
counts the number of each. In the Tallying heuristic
only the total number of positive cues is counted. In
Dawes’ Rule, the result is the difference between the
number of positive and negative scores.

Tallying (Gigerenzer
and Brighton, 2009),
Dawes’ Rule (Dawes,
1979)

Utility - Sum Takes a sum of the assessment scores for each alterna-
tive, potentially with some weight according to the cue
that produced it, as used in the Weighted Additive Rule.
When cues are one-hot, this is equivalent to Weighted
Pros. The unweighted sum can also be taken when
there is no difference in importance between the cues.
Depending on the cues used, in some implementations
the range of scores can first be normalized to [0, 1]
within each assessment.

Weighted Additive
Rule (Payne et al.,
1993),
Weighted Pros (Shah
and Oppenheimer,
2008), scoring cues

Multi-value
Utility

Uses some combination of the other utility-based ag-
gregation methods to produce a multi-dimensional
judgment.

Command fusion
action selection
mechanisms, multiple
criteria decision
making
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B.3 Order

Ordering is how an agent takes a stance on incommensurable value judgments to determine its pref-
erences of alternatives. Kirsch (2019) lumps AGGREGATE and ORDER together into one function,
but separating them reduces the total number of different functional implementations an agent needs
to accomplish the same tasks (e.g. 4 aggregate + 3 order = 7 total, vs. 4*3 = 12 possible combi-
nations). We remove the interdependency Kirsch (2019) identifies between ACCEPT and their im-
plementation combined subroutine AGGREGATEANDORDER. Because AGGREGATEANDORDER

could output ranks or scores, their version of ACCEPT needs to be able to interpret them correctly
to properly evaluate stopping criteria. Because we assume AGGREGATE always produces value
judgments, which are scores, this interdependency is removed and ACCEPT always can assume that
evaluations contain scores.

Table 6. Order components

Name Description Related heuristics

Lexicographical Judgment axes are assumed to have some total order-
ing, where alternatives are ranked by their scores along
the first axis first, with subsequent axes breaking ties.

Priority (Brandstätter
et al., 2006), Default
(Gigerenzer and
Brighton, 2009),
Ranking cues

Dominating Alternatives are ranked based on how they dominate
others. Majority Rule measures in how many ways
they dominate others where Pareto Fronts measures
how many others they dominate.

one-good-reason
heuristics

Condorcet Condorcet extensions are social choice functions that
produce a condorcet winner (an alternative that defeats
every other alternative in a pairwise majority) if one
exists. The Copeland method ranks each alternative
by the net preference: the difference in the number of
others that are worse than it and better than it in each
feature. Sequential Majority Comparison gets a sin-
gle winning alternative by making pairwise compar-
isons of the net preferences of all alternatives two at a
time, keeping the better one. Majority of Confirming
Dimensions does the same, but only using confirming
dimensions (those with where the alternative wins) in-
stead of net preference. Confirming Dimensions and
Net Preference are analogous to Tallying vs. Dawes’
Rule, potentially representing another way to reuse the
same underlying machinery.

Majority of
Confirming
Dimensions, examples
by Kirsch (2019)
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B.4 Take

Cognitive structures implementing TAKE simply collect the best alternatives from the choice set in
some way each iteration to make the final decision. How an agent takes these alternatives depends
on the decision to be solved and if they are modifying the size of the choice set each iteration.
Kirsch (2019) defines only one take function, FIRST, which always takes the single best alternative
(or randomly selects among those tied for best) and assumes that any modification to the choice set
for subsequent iterations is evaluated by an UPDATEALTERNATIVES function.

Table 7. Take Components

Name Description Related heuristics

Take Best Takes either a fixed number of the best alternatives or
all of the alternatives tied for best. If the number is not
fixed, an agent may elect to only consider the alterna-
tives that were taken in the previous round to reduce
effort.

Elimination,
one-good-reason
heuristics, fixed-size
choice problems

Eliminate
Worst

Eliminates either a fixed number of the worst alterna-
tives or all tied for worst from the choice set. An agent
may elect not to eliminate any alternatives if all are tied
and it has some minimum required number.

Elimination

Using either Take Best or Eliminate Worst, with a fixed number of alternatives to
take/eliminate could result in alternatives tied for worst that are not taken/eliminated. In these
cases it may be beneficial for an agent to randomly break ties.

B.5 Accept

Cognitive structures implementing ACCEPT determine if computation on the decision problem
should be stopped or not, enforcing the requirements of the decision to be made. If a choice is
acceptable, a decision has been committed to, otherwise the decision process iterates.

Acceptability criteria based on the quality of alternatives are by definition value judgments, so
they must be taken from the evaluation of the choice set. However, some requirements such as size
of the chosen set, do not need access to the value judgments, so they can ignore this input.
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Table 8. Accept Components

Name Description Related heuristics

Always Always accept the taken choice. Heuristics using this
function will not iterate. This accept function assumes
that any requirements on the choice are either met by
the other decision components (e.g. Take-N-Best en-
forces the size of the chosen set) or that there are no
such requirements. Assumes all necessary cues and
relevant alternatives have been identified before the de-
cision process started because there will not be succes-
sive iterations to collect more.

Weighted Additive
Rule (Payne et al.,
1993; Shah and
Oppenheimer, 2008)

Size Accepts a choice based on the number of chosen alter-
natives. This accept function leverages heuristics that
modify the size of the choice set between iterations.
This could be a fixed number or some relation (e.g. at
least 2 scoops of ice cream).

One-good-reason
heuristics, Elimination
heuristics

Satisficing Accepts a choice if the scores of all chosen alterna-
tives meet some threshold along some subset of the
judgment axes. This assumes that some alternatives
may not be good enough to meet the requirements for
the decision task. Typically this is used when all cues
are known beforehand but not all alternatives, however
with our implementation it doesn’t matter as long as
the satisficing axes have been evaluated. For example
in Maes’ behavior nets, the combined activation of an
action may need sufficient evidence before it is chosen
to be executed.

Satisficing (Simon,
1956), Priority
(Brandstätter et al.,
2006), Maes Behavior
Networks (Maes,
1989)

Dominating Accepts a choice if the scores of all chosen alterna-
tives are strictly better than the best unchosen alterna-
tive along some subset of the judgment axes. Kirsch
(2019) surmises that an agent using this heuristic may
elect to keep thinking if some eliminated alternatives
are just as good (or better) in some ways as the taken
ones, or if their perceived value is very close and the
agent can afford more time to better differentiate be-
tween them.

examples in Kirsch
(2019)
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B.6 UpdateAlternatives

With the choice of which alternatives are worth keeping relegated to TAKE, and available alternative
retrieval procedures left to other cognitive functions, we identify two important parameters for a
general UPDATEALTERNATIVES component: the maximum size of the choice set to consider in
each iteration and how the unaccepted choice from the previous iteration should be used. We assume
that in successive iterations, the choice set is refilled up to its capacity with any available alternatives
that the agent has discovered. We are unconcerned with how the agent discovers these alternatives
or retrieves them from memory and assume their existence each iteration as given.

Table 9. UpdateAlternatives components

Name Description Related heuristics

Keep All Keep all of the alternatives from the previous choice
set. This assumes that after enough consideration,
some evaluation will be able to differentiate between
alternatives in an acceptable way.

Kirsch (2019) example
heuristic,
one-good-reason
heuristics

Keep None Keep none of the alternatives from the previous choice
set. This assumes that once an alternative has been
evaluated, no further consideration will make it accept-
able.

QuickEst (Hertwig
et al., 1999),
Satisficing heuristics

Keep Taken Keep only the alternatives taken in the last iteration.
This assumes that the acceptability criteria for a choice
could be satisfied with more consideration but that
once an alternative has not been taken, it should not
be considered further.

Elimination heuristics

B.7 UpdateCues

We identify two important parameters for a general UPDATECUES component: the maximum num-
ber of relevant cues that should be added to the working set in the next iteration, and if cues should
be reused from the previous iteration or not. For example, all one-good-reason heuristics add one
relevant cue per round and cues from the previous iteration are not reused. Satisficing heuristics
typically assume all cues are known at the start of the decision, placing no limit on the number of
relevant cues and reusing them all each iteration. These two classes rely on opposite mechanisms:
one-good-reason heuristics modify the working set of cues each iteration while satisficing heuristics
modify the choice set of alternatives.
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