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A B S T R A C T   

This study reports usage of supervised automation and driver attention from longitudinal natu-
ralistic driving observations. Automation inexperienced drivers were provided with instrumented 
vehicles with adaptive cruise control (ACC) and lane keeping (LK) features (SAE level 2). Data 
was collected comparing one month of driving without support to two months where drivers were 
instructed to use automation as desired. 

On highways, level 2 automation was used respectively 63% and 57% of the time by Tesla and 
BMW users, with peak usage during slow stop-and-go traffic (0–30 km/h) and higher speeds 
(>80 km/h). On roads with speed limits below 70 km/h, automation was used less than 8%, and 
use on urban roads was incidental rather than habitual. Automation usage increased with time in 
trip, but no clear time of day effects were found. Head pose data could not classify driver 
attention, and we recommend gaze tracking in future studies. Head pose deviation was selected as 
alternative indicator for monitoring activity. Comparing among forms of automation usage on the 
highway, head heading deviation was smallest during ACC use, but did not differ between 
automation and baseline manual driving. Head heading deviation during manual driving was 
smaller in the baseline than the experimental phase, which suggests that motives for manual 
highway driving may be attention related. Automation usage did not change much over the first 
12 weeks of the experimental condition, and there were no longitudinal changes in head pose 
deviation.   

1. Introduction 

Supervised, or SAE Level 2 partial automation (SAE, 2021) is rapidly deployed in commercial cars. Current systems automate 
longitudinal control with adaptive cruise control (ACC) and support lateral control with lane keeping (LK). 

While Level 2 automation is active, the driver has to supervise the automation, and intervene when needed to ensure safety. 
However recent studies and accidents indicate that drivers occasionally use automation in unsuitable conditions, and are not al-

ways monitoring the environment sufficiently (Dutch Safety Board, 2019). Harms, Bingen, and Steffens (2020) found that drivers are 
not always aware of the abilities and limitations of current systems. Farah et al. (2021) also found that drivers over-estimated the 
operational design domain as defined by the vehicle manufacturer in an on-road study with a Tesla. Banks, Eriksson, O’Donoghue, and 
Stanton (2018) observed behaviours in a Tesla and noted that drivers occasionally missed notifications from the HMI, leading to mode 
confusion. 
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1.1. Automation usage and experience 

When and how drivers use the automation is motivated by their attitude towards the automation, perceived control over the 
situation and subjective norms (Madden, Ellen, & Ajzen, 1992; Venkatesh, Morris, Davis, & Davis, 2003; Nordhoff, van Arem, & 
Happee, 2016). The formation of attitudes is further described in models of trust (Lee & See, 2004; Hoff & Bashir, 2015) and depends 
on our mental model of the automation, and on the situation in which it is used. The outcome of this process can be inferred from 
automation usage, monitoring and the attention distribution between driving-related and secondary tasks (Meyer, Wiczorek, & 
Günzler, 2014). 

As drivers’ understanding of the automation develops with experience, so will their usage and monitoring behaviour (Sullivan, 
Flannagan, Pradhan, & Bao, 2016; Large, Burnett, Salanitri, Lawson, & Box, 2019). Experience can also lead to faster control transition 
routines Larsson, Kircher, and Andersson Hultgren (2014), lower perceived workload (Stapel, Mullakkal-Babu, & Happee, 2019) and 
larger secondary task uptake at especially slower driving speeds (Naujoks, Purucker, & Neukum, 2016). 

The driver’s perceived control is also influenced by their mental state. This may cause a change in usage as a driver gets fatigued (e. 
g. driving time) or sleepy (e.g. time of day). Automation use can also affect this state. It can initially improve alertness when well-rested 
(Ahlström et al., 2021), but can also degrade it over prolonged use through mental underload (Helton & Warm, 2008; Saxby, Mat-
thews, Warm, & Hitchcock, 2013) and vigilance decrement (Greenlee, DeLucia, & Newton, 2018). Whether drowsiness promotes or 
discourages automation can therefore be highly situational. 

1.2. Monitoring performance 

Effective monitoring requires the driver to maintain situation awareness, which Endsley (1995) described as the perception of the 
environment, comprehension of its meaning and projection of this state into the future. Since perceptual capacity is limited, drivers 
need to divide and schedule attention over the available information sources (and distractions), see e.g. (Kahneman et al., 1973; 
Cohen, Aston-Jones, & Gilzenrat, 2004) for further theories of attention, cognitive control and error detection. 

This scanning behaviour can be inferred from gaze or head movement (Lee et al., 2018) and can indicate distraction or attentional 
mismatches (Engström et al., 2013). Reduced on-road glance duration can impair hazard detection and takeover performance (Park, 
Gao, & Samuel, 2017; Glaser, Glaser, Green, Llaneras, & Meyer, 2017). Mental distraction, cognitive load, time pressure, fatigue and 
intoxication reduce the (especially horizontal) dispersion of visual scanning (Wang, Reimer, Dobres, & Mehler, 2014; Victor, Harbluk, 
& Engström, 2005; Rendon-Velez et al., 2016). Louw and Merat (2017) found that supervised driving automation increases horizontal 
gaze dispersion (as does driving on familiar roads (Young, Mackenzie, Davies, & Crundall, 2017)). They also found that gaze behaviour 
was similar to manual driving when drivers were made uncertain about the automation’s autonomy. Similarly, Jamson, Merat, 
Carsten, and Lai (2013) found that driving automation increased time allocated to secondary tasks, but attention to the road was also 
adjusted depending on traffic. 

1.3. Other naturalistic studies 

While several studies were conducted in controlled or semi-controlled on-road conditions, only few investigated the use of and 
adaptation to automated driving in naturalistic settings. Beggiato, Pereira, Petzoldt, and Krems (2015) performed a longitudinal on- 
road study where they found that drivers developed their trust and functional understanding of ACC over ten drives while establishing 
a high acceptance within two drives. Morando, Victor, and Dozza (2019) investigated how SAE2 driving automation influences 
attention during 10 months of naturalistic manual and automated driving by 17 participants. They found longer on-road glances and 
lower percent eyes on road centre during automated driving (ACC and LK) compared to manual driving. The latter was attributed to a 
reduced task demand during automation use. Russel et al. (2018) conducted a naturalistic driving study with 120 participants driving 
vehicles equipped with adaptive cruise control and automated lane keeping for 4 weeks. They report effects of traffic stability, road 
type and weather conditions (no-precipitation vs precipitation) on automation use and found that drivers were performing secondary 
tasks 60% of the observed time regardless of automation use and found no difference in percentage eyes-off-road time, off-road glance 
duration or type of secondary task. Reaction times to the ’hold steering wheel’- requests did not change over the four weeks of use, but 
instances occurred in the first week where such requests were intentionally ignored to investigate the vehicle’s response. 

While these studies provide useful insights, the evolution of behaviour from manual to automated driving has mainly been 
examined for the first experience with automation, or lack observations of baseline manual driving prior to developing experience with 
automated driving. 

1.4. Study objectives 

In this study we report automation use and driver attention from longitudinal naturalistic driving observations conducted in the 
Netherlands. The study is unique in its inclusion of a one month manual driving baseline followed by a two month experimental phase 
with the same participants and vehicles where participants were allowed to use the vehicle’s automation, enabling a within-subject 
analysis of behavioural adaptation over the first two months of automation usage. 

We address the following research questions:  

1. When and in which conditions do drivers use ACC and LK support? 
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2. Is driver attention different during manual driving compared to driving with supervised automation?  
3. Do these behaviours change with automation experience? 

We study automation use and driver visual attention allocation as a function of road type and driving speed. We study appropriate 
use relative to the operational design domain. We relate behaviour to time in trip and time of day, (which may show effects of fatigue 
and driver state); and time after first automation use (to examine behavioural adaptation with experience). 

In order to perform these analyses, we explore to which extent the visual annotation of automation status and driver attention can 
be automated. We train a classifier to identify system icons in the instrument panel using video and to classify driver attention dis-
tributions among attentive regions and regions associated with non-driving tasks using head pose estimated from video. Both clas-
sifiers are trained and evaluated on manually annotated data from the naturalistic study. 

This study focuses on within-subject effects of automation use. We do not analyse differences or similarities between vehicle types, 
since they were not driven by the same participants or in the same conditions. We do not generalize our findings or use them for theory 
testing because of the small number of participants. 

2. Methods 

2.1. Data description 

In a collaborative project conducted by TNO, SWOV and the Dutch ministry of Infrastructure and Watermanagement, the RDW 
(Dutch Vehicle Authority) and RWS (Dutch Road Authority), recent passenger cars with SAE level 2 automation were equipped with 
instrumentation to observe the driver and the environment. Naturalistic driving data was collected by providing these vehicles for 
daily use to drivers having no prior experience with SAE level 2 automation. The naturalistic dataset is unique in that it includes one 
month of manual driving (baseline condition) followed by two months of use with automation under naturalistic driving conditions 
(experimental condition), allowing for a longitudinal within-subjects analysis of how automation use changes over time. The full 
dataset includes five vehicle types (BMW 540i, Tesla S, Mercedes E, Volkswagen Golf E, Audi A4 Avant) driven by 20 participants. 
However, automation usage information was successfully recovered from the CAN bus or video for for only two vehicle types (Tesla 
and BMW) and therefore 10 participants could be analysed for this paper. An overview of the recorded trips and general automation 
use per participant is provided in Table 1. For the Tesla drivers, data was collected successfully for 357 baseline and 431 experimental 
trips, while BMW drivers recorded 686 baseline and 1025 experimental trips. 

Both the BMW and Tesla were equipped with full-range ACC and LK. The BMW ACC operated for speeds between 0–180 km/h while 
the Tesla ACC operated between 0–150 km/h. In the BMW, LK permits hands off steering wheel for up to 25 s. While enabled, the BMW 
system provides supporting steering inputs whenever system requirements are met (e.g. clear lane markings) and allows the driver to 
provide corrective steering without disabling the automation. We refer to standby when it is enabled while operating conditions are 
not met. Tesla LK (at the time) permitted 15 s of hands free driving and becomes unavailable for the remainder of a drive when this 
limit is exceeded 3 times. Tesla’s LK has to be engaged by the driver and turns off when the driver provides corrective steering or 
braking. The BMW allows LK use with or without ACC enabled. The Tesla only allows LK while ACC is on. 

2.1.1. Participants 
For two participants (1 BMW, 1 Tesla), the demographic data was not available. The remaining 8 participants were all male, mean 

age 49 years (σ 5.2 years), licenced for 29.1 years (σ 6.2 years) and had driven 30,000 km to 40,000 km in the 12 months prior to the 
experiment. All participants indicated they felt “very interested” and “averagely” to “well” informed about the latest technological 
developments in the vehicle sector. Prior to the experiment, all but one participant normally used a vehicle equipped with cruise 
control, zero with adaptive cruise control or lane keeping assistance and three with lane departure warning. One participant (Tesla 
group) indicated to frequently use lane keeping assistance. 

Table 1 
Overview of the data collected.   

Baseline Experimental Experimental trips containing 
Participant days trips days trips only manual ACC&LK Only ACC Only LK 

Tesla1 26 113 35 131 73 (56%) 57 (44%) 0 (0%)  
Tesla2 35 177 44 228 88 (39%) 137 (60%) 3 (1%)  
Tesla3 22 112 30 129 71 (55%) 53 (41%) 5 (4%)  
Total 83 401 109 487 232 (48%) 247 (51%) 8 (2%)  
BMW1 12 32 46 196 99 (51%) 86 (44%) 6 (3%) 5 (3%) 
BMW2 32 111 48 154 31 (20%) 117 (76%) 0 (0%) 6 (4%) 
BMW3 34 133 62 201 155 (77%) 41 (20%) 4 (2%) 1 (0%) 
BMW4 20 62 35 109 40 (37%) 68 (62%) 0 (0%) 1 (1%) 
BMW5 33 147 39 132 51 (39%) 78 (59%) 1 (1%) 2 (2%) 
BMW6 36 116 7 22 10 (45%) 8 (36%) 0 (0%) 4 (18%) 
BMW7 24 85 64 211 83 (39%) 126 (60%) 0 (0%) 2 (1%) 
Total 191 686 301 1025 469 (46%) 524 (51%) 11 (1%) 21 (2%)  
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2.1.2. Instrumentation 
Each vehicle was retrofitted with eight cameras observing the driver, instrument cluster, exterior in forward, left, right and rear 

directions, pedal bay and a top-down view towards the driver seat. The drivers were observed with 325x288 resolution at 10 Hz. The 
Tesla instrument panel was observed with 720x576 resolution at 25 Hz. Fig. 1 provides an overview of the available video feeds. A 
smart camera system (MobilEye) recorded lane position and surrounding road users. For map-matching, GPS and IMU data were 
collected at 1 Hz and 10 Hz respectively. 

CAN-bus data was collected, from which various signals were reverse-engineered, including velocity, accelerations, steering wheel 
angle and torque, brake and accelerator pedal, turn indicator, lights, wind screen wipers, and (for the BMW) status information on the 
automation and warning systems (lane departure; collision). For the purpose of this study, only velocity and automation status were 
used. All signals except video were time-stamped. Video recordings were not synchronised but were watermarked with a human- 
readable timestamp. 

2.2. Data preparation 

A number of challenges emerged after data collection. Reverse engineering of CAN bus data to identify automation status was 
successful for the BMW but not for other vehicle types. GPS tracking, used for obtaining road type data, was not always available with 
sufficient accuracy. Additionally, some videos were corrupted and had to be omitted from the analysis. Table 2 shows data availability 
after filtering, synchronisation and re-sampling. 

Two data enrichment efforts were performed for the analysis in this study. The first was to retrieve Tesla automation status by 

Fig. 1. Overview of the eight camera perspectives recorded by the TNO instrumentation in the time-synchronized visualisation by SWOV for each 
vehicle. In reading order: right mirror view, forward view, left mirror view, driver face, instrument panel, rear view, driver seat, pedal bay. The 
driver’s face is occluded for privacy reasons. 
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automatic detection of icons in the video of the instrument panel. Details on the implementation, training and validation are available 
in Appendix A and obtained 99.33% accuracy. 

The second enrichment aimed to automatically annotate driver attention from video. Head pose was inferred instead of driver gaze 
because we were unable to measure this reliably. Several studies have suggested that head pose can be an acceptable gaze substitute 
when classifying attention into relevant regions of interest. Lee et al. (2018) have demonstrated that attention classification from head 
pose is feasible for on-road driving and obtained classification accuracies in the order of 83% and higher. Similarly, Braunagel (2017) 
used head pose as a fall back for eyes-on-road classification when gaze data was unavailable. Henni et al. (2018) showed that eye based 
features and head based features can achieve a similar classification performance for on-road drowsiness detection. Further imple-
mentation and validation details are available in Appendix B. While we were able to reproduce the per-class performance reported by 
Lee et al. (2018), overall classification accuracy was 69% and intersections over union metrics were below 50%, which is insufficient 
for attention analysis. This suggests that inferring attention from head pose is not feasible for driving scenarios, and demonstrates the 
importance of using appropriate performance metrics to judge classifier performance with unbalanced data. Lacking the means to 
classify driver attention per region of interest, this paper uses head pose variance as indicator for possible changes in attention 
behaviour. 

3. Results 

3.1. Automation usage 

For the Tesla drivers, there were 16 baseline trips with very brief moments (0.2% of time on highways) of ACC or ACC&LK use. 
These are attributed to status classification faults. For the BMW drivers, there were 15 baseline trips (10 by one participant, 4 by 
another) where some form of automation was used (55% of time on highways). Trips where automation was used during baseline were 
excluded from analysis. 

For automation use during the experimental condition, we first describe the distributions for both the Tesla and BMW drivers and 
then provide a statistical analysis. Automation status is observed with respect to road type, road speed limit, driving speed, time since 
the start of a trip and time of day. 

During the experimental condition, all participants combined drove manually 50.4% of the time, 1.6% with ACC and 32.9% with 
ACC&LK turned on. BMW drivers had LK enabled without ACC in 16.5% of the time. Speed limiting was not used. Fig. 2 shows 
automation use by speed limit and road type. For both vehicles, most driving time was spent on the highway, and ACC&LK was used 
most here (Tesla: 63.0%, BMW: 56.6%). Manual driving was however preferred when negotiating highway links. Automation was used 
very little (<8%) on roads with speed limits below 70 km/h. In both vehicles, preference seems to be towards using ACC&LK over using 
either ACC or LK. 

Fig. 3 shows how automation use changes with driving speed. Usage was generally low for driving speeds below 70 km/h. However 
during highway driving, automation use remained high at all speeds, with peak usage during slow stop-and-go traffic (0–30 km/h) and 
higher speeds (>80 km/h). Drivers of the BMW quite often used LK with ACC off, especially at reduced speeds (30–80 km/h) on the 
highway. This suggests that longitudinal automation was not preferred or not trusted in dense traffic conditions, while LK was. This did 
not happen for the Tesla drivers, since LK is not available while ACC is off. At higher speeds a sudden drop in automation use can be 
observed. This drop corresponds with the upper limit at which the vehicles make automation available. 

Fig. 4 shows how automation use changes over the duration of a drive. After the first 10–20 min, automation use was relatively 
steady. The scatter at later times is an artefact resulting from the low number of long-duration trips. In the BMW data, a sudden drop in 
data availability occurs at 30 min. Since recordings are stored in 30 min segments, some data loss may have occurred during these 
transitions. Fig. 5 shows that automation use was uniform across the day for the Tesla drivers, while BMW users used more automated 
driving during commute hours (6 h-8 h and 16 h-18 h). 

3.1.1. Statistics of automation use 
To evaluate if automation use was influenced by time in trip, time of day and driving speed, we performed between-trips multilevel 

ANOVAs with participant as random intercept variable. Only highway driving is considered for these analyses. Table 3 provides the 
means and standard deviations for each category and variable and the statistical results. Effects are reported separately for the Tesla 
and BMW. Significance is also reported combining the two vehicles and thereby not considering standby mode and LK which are 
available only in the BMW. For significant factors, effect sizes are presented as differences in estimated marginal means in Appendix E. 
It should be noted that Table 3 and the histograms of Figs. 5, 4 and in particular 3 show different distributions. This is because the 

Table 2 
Data fraction available after pre-processing.   

Tesla BMW 

Automation status 100% 61.8% 
Speed km/h 80.3% 61.8% 
Allowed speed km/h 65.9% 60.4% 
Road type 63.4% 52.3% 
Head pose 72.4% 56.6%  
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histograms show total usage whereas Table 3 uses average usage per trip and does not account for trip duration. 
Time in trip was split into three categories of 30 min each. The percentage of manual highway driving reduced from 40.0% to 

27.5% after the first 30 min of driving and was replaced by a significant increase in ACC and an insignificant increase in ACC&LK use. 
The effect was consistent in both vehicle groups, but the ACC increase was only significant in the Tesla group. Table E.9 shows that 
Tesla drivers increased ACC use from 9.6% to 17.7% between the first and second 30 min of driving. Time in trip did not affect ACC&LK 
use. BMW drivers also increased LK use from 9.8% to 13.8% between the first and second 30 min of driving. 

Time of day was split into five categories: night (23:00–4:59), morning (5:00–9:59), day (10:00–15:59), afternoon (16:00–18:59) 
and evening (19:00–22:59). For both vehicle types, night time driving was omitted from statistical analysis due to low sample size. For 
the Tesla group, effects of time of day on automation use were not significant. For the BMW group, automation use significantly 
changed with time of day for manual driving, ACC&LK use and LK use. There was no significant difference for ACC, ACC&LCsb or LKsb. 
Differences in estimated marginal means (Table E.8) suggest that ACC&LK use was significantly less during evening drives (38.5%) 
compared to all other moments. Compared to midday drives, LK was used 5.1% more during morning and 7.0% less during afternoon 
commute hours. 

Highway driving speed was divided into categories adopted by Naujoks et al. (2016). Driving speed had a significant effect on all 
forms of automation use in both the Tesla and BMW users. Estimated marginal means (Table E.10) show that manual highway driving 
occurred the most at speeds between 10–60 km/h for both vehicle types. Conversely, ACC&LK (and to a smaller extent ACC&LKsb for 
the BMW) occurred the least at these speeds. ACC usage increased significantly over speeds between 10 km/h and 100 km/h. In the 
BMW group, LK without ACC was used significantly more while driving 10–60 km/h compared to when driving 60–100 km/h, but not 
more compared to when driving  > 100 km/h. Overall, the trend is towards more automation use (ACC or ACC&LK) at higher driving 
speeds. However, from a duration perspective, the overall ACC&LK usage in Fig. 3 suggests that ACC&LK was used at lower speeds as 
much as at higher speeds. This may relate to different behaviour during short and long periods of slow highway driving. Prolonged low 
speed driving was rare; only 11% of trips with slow highway driving contained more than 3 min. This suggests that ACC&LK was 
especially used during longer periods of slow highway driving, and less when such speeds were only reached momentarily, for instance 

Fig. 2. Automation use for road speed limit (top) and road type (bottom). Road type was obtained by map-matching using OpenStreetMap (2004). 
LKsb indicates lane keeping on standby. Type descriptions are provide.d in Appendix D. 
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when entering or leaving a highway at slow speeds, or when traffic slowed down momentarily. 

3.2. Attention distribution 

Since driver attention classification was unsuccessful, we evaluated if automation use changed the head pose distribution. This can 
indicate when and to which extent automation use changes monitoring behaviour. Head heading and pitch distributions (Figs. 6 and 7) 
were centred to the 50-percentile of each trip, and the standard deviation was compared across conditions. Statistical differences were 
explored during highway driving with a multilevel ANOVA using participant as a random intercept. For the BMW group, the standby 
variants ACC + LCsb and LCsb were excluded from this analysis. Table 4 shows that head heading and pitch were significantly affected 
by conditions in both vehicles. 

Fig. 6 shows that more horizontal scanning occurred on road types where manual driving was preferred (e.g. roads with lower 
speed limits). On highways, head heading is similarly distributed across automation types. Fig. 7 indicates that Tesla users tended to 
face up more and face down less while using automation, whereas BMW users tended to have a wider distribution of pitch angles while 
using automation compared to manual driving. It should be noted that these behaviours are not informative on where the driver was 
looking, as demonstrated in Appendix B. These effects reduce when only considering highway driving. 

For highway driving, Table 4 indicates that both heading and pitch deviation differed significantly between automation use for 
both vehicle types. The large sample size allows for statistically significant results even if effect sizes (Table E.11) are small. The effects 
followed the same trends for the BMW compared to Tesla drivers. Head heading deviation was smallest during ACC use (Tesla 12.0◦, 
BMW 4.7◦) and largest while driving manually in the experimental condition (Tesla 15.7◦, BMW 10.2◦). Interestingly, heading de-
viation in the baseline period (Tesla 13.5◦, BMW 9.5◦) was significantly smaller, but did not differ significantly from ACC&LK. For 
BMW users, heading deviation was also significantly smaller during LK (7.9◦) compared to baseline. 

For both groups, head pitch deviation did not differ significantly between baseline (Tesla 6.6◦, BMW 5.1◦) and experimental 
manual driving and was significantly smaller during ACC (Tesla 5.6◦, BMW 3.2◦) compared to all other conditions. Pitch deviation 
during ACC&LK did not differ from the manual conditions (baseline and experimental) for the Tesla group, but was highest (5.6◦) in 

Fig. 3. Automation use as a function of vehicle speed for all road types (top) and highways (bottom).  
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the BMW group and significantly smaller (4.4◦) during LK compared to the manual conditions, though the effect sizes are smaller than 
one degree (Table E.11). 

3.3. Effects of experience 

We evaluate how automation experience during the first 2 months of the experimental condition changed automation usage, and if 
experience affected attention as indicated by head pose deviation. To accommodate the limited sample size, experience is examined in 
3 week periods. The baseline period is included for manual driving. Participant BMW6 is excluded from this analysis since only one 
week of data was recorded in the experimental phase. Statistics are in Table 5 and additional descriptives for automation usage over 
experience are given in Table E.12 which also includes the first day and first week of automation use. 

For the individual vehicle models, there was no consistent change in automation usage over time; the effect is limited to weeks 6–9 
where there was 9.5% less ACC&LK (p=.004) and 13.5% more manual driving (p<.001) in the BMW compared to Wk 1–3. When 
vehicle models are combined, automation usage did not change over the first six weeks, but ACC use decreased from 6.3% in weeks 3–6 
to 1.0% in weeks 9–10, and manual driving increased from 24.7% in weeks 3–6 to 35.1% in weeks 7–9. ACC&LK use also tended to 
decrease over this period, but this effect was not significant. 

Longitudinal changes in head heading and pitch deviation were examined as indicator for changes in attentive behaviour. Table 5 
gives the main effects and Table E.13 provides pairwise comparisons for statistically significant effects. 

For manual driving, head heading deviation was significantly smaller during baseline compared to the experimental phase, but did 
not change significantly over time within the experimental condition. During ACC, ACC&LK and LK use, head heading was not affected 
by experience. 

Head pitch deviation changed significantly over time only for ACC&LK use, where it was 0.6◦ larger in weeks 7–9 compared to 
weeks 1–3. At later weeks, pitch deviation was similar to the first 3 weeks of automation use while using ACC&LK. Since the effect size 
is small and does not show a consistent trend, this was likely a consequence of uncontrolled differences between conditions, rather than 
a direct effect of experience. 

Fig. 4. Automation usage over time since the start of a trip for all road types (top) and highways (bottom).  

J. Stapel et al.                                                                                                                                                                                                          



Transportation Research Part F: Psychology and Behaviour 90 (2022) 397–411

405

4. Discussion 

This study analysed automation use across road types and speeds over the first two months of naturalistic use. Attention was 
evaluated using head pose deviation in heading and pitch. 

4.1. Automation usage 

For both vehicle models, ACC&LK was the dominant driving mode on highways, while roads with speed limits below 70 km/h were 
mainly driven manually. Level 2 automation (ACC&LK) was generally preferred over partial automation (ACC or LK) on highways. 
This high utility is in line with other usage studies (Russel et al., 2018; Nordhoff et al., 2016). 

On highways, ACC&LK was used across all speeds including slow highway driving, but the least in moving congested traffic 
(30–80 km/h). Interestingly, Naujoks et al. (2016) found the highest secondary task uptake during automation use at these speeds. This 
is contradictory, since secondary task engagement requires a high willingness to use the automation. The difference may be caused by 
different trust levels between the vehicle models (Mercedes vs. Tesla, BMW), or the instruction to perform as many secondary tasks as 
possible in the controlled experiment. 

Differences between total use time and per-trip averages suggest that manual driving was especially preferred when slow driving 
lasts shortly. This may include momentary slow-downs in traffic, but also transitions where the vehicle enters or leaves the highway. 
There may have been increased workload or reduced confidence in the automation’s performance during such conditions. The BMW 
group used ACC less in congested traffic, whereas LK was used more. This suggests that unstable traffic flow impairs trust in longi-
tudinal but not lateral automation performance. This distinction is not observed in the Tesla, where LK cannot be used without ACC. It 
is possible that some steering support utilisation is lost in the Tesla as a consequence. 

Users were generally comfortable using automation during most highway conditions, and adapted their usage to the situation. 
Because use on urban roads was limited and incidental, participants were presumably aware of the system’s general limitations and 
acted accordingly. 

Fig. 5. Automation use over time of day (Amsterdam DST) for all road types (top) and on highway (bottom).  
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Table 3 
Descriptives and ANOVAs for automation use on highway for various effects over experimental trips. Night driving (23–4) is excluded from the ANOVA because of small sample size.     

Time of day (hour) Time in trip (min) Speed (km/h)    
23–4 5–9 10–15 16–18 19–22 0–30 30–60 60–90 0–10 10–60 60–100 >100  

nr. trips 3 45 97 60 34 212 103 43 95 155 160 155  
nr. participants 1 3 3 3 3 3 3 3 3 3 3 3 

Tesla Manual μ 72.9% 47.3% 57.1% 55.3% 47.4% 52.2% 36.5% 38.4% 74.1% 79.0% 42.1% 29.2%   
σ 34.7% 37.8% 37.6% 40.8% 39.7% 38.9% 35.2% 35.0% 40.1% 32.4% 34.1% 33.4%  

ACC μ 27.1% 10.8% 9.9% 8.2% 10.5% 9.6% 17.7% 13.5% 3.5% 3.9% 13.9% 16.3%   
σ 34.7% 13.7% 14.7% 14.6% 17.5% 15.4% 26.4% 22.5% 16.8% 12.9% 19.9% 20.6%  

ACC&LK μ 0.0% 41.9% 33.0% 36.5% 42.1% 38.2% 45.8% 48.2% 22.3% 17.1% 44.0% 54.5%   
σ 0.0% 32.9% 31.8% 35.6% 36.0% 34.4% 34.3% 35.4% 37.6% 29.6% 30.9% 33.6%  

nr. trips 22 144 197 142 69 526 191 68 334 510 538 523  
nr. participants 4 7 7 7 7 7 4 4 7 7 7 7 

BMW Manual μ 25.0% 22.4% 40.0% 29.4% 51.0% 34.3% 29.5% 34.6% 39.4% 48.2% 38.4% 31.0%  
σ 25.5% 33.6% 40.9% 39.1% 42.1% 39.8% 38.8% 42.2% 46.9% 46.0% 41.3% 39.9% 

ACC μ 2.3% 1.2% 1.5% 1.1% 0.2% 1.1% 1.7% 1.0% 0.3% 0.4% 1.5% 0.9%  
σ 0.9% 6.6% 7.6% 5.8% 0.4% 6.5% 10.2% 4.6% 2.5% 3.1% 7.7% 6.1% 

ACC&LKsb μ 7.8% 5.1% 5.6% 4.2% 3.8% 5.0% 5.3% 3.2% 0.8% 2.1% 5.7% 5.8%  
σ 5.2% 6.0% 6.6% 5.8% 4.5% 6.5% 10.1% 5.4% 8.1% 10.3% 9.7% 8.3% 

ACC&LK μ 60.5% 56.0% 42.3% 47.9% 34.8% 47.2% 44.7% 40.8% 21.3% 15.7% 38.8% 51.8%  
σ 26.2% 29.7% 32.8% 35.7% 33.7% 34.5% 32.0% 31.1% 36.4% 29.9% 33.1% 36.2% 

LKsb μ 1.9% 4.7% 4.1% 4.8% 3.9% 4.0% 6.6% 6.9% 22.4% 22.7% 6.7% 2.5%  
σ 3.8% 5.2% 8.6% 9.5% 8.5% 8.2% 16.5% 13.2% 39.3% 35.3% 12.5% 6.7% 

LK μ 2.5% 10.7% 6.5% 12.5% 6.3% 8.3% 12.1% 14.0% 15.8% 11.0% 9.0% 8.0%  
σ 6.6% 15.8% 11.6% 21.0% 12.7% 15.8% 19.5% 17.6% 32.1% 21.5% 16.3% 17.0%                   

Time of day Time in trip Speed    
F p F p F p 

Tesla Manual  F(3, 231.2)=0.603 .613 F(2, 354.0)=5.257 .006 F(3,559.2)=72.738 <.001 
ACC  F(3, 231.4)=0.312 .817 F(2, 355)=5.689 .004 F(3,561)=18.937 <.001 
ACC&LK  F(3, 231.3)=0.639 .591 F(2, 354.0)=1.353 .260 F(3, 559.2)=44.587 <.001 

BMW Manual  F(3,542.8)=6.096 <.001 F(2,778.3)=9.015 <.001 F(3, 1895.1)=24.039 <.001  
ACC  F(3,544.9)=0.882 .450 F(2, 752.3)=0.406 .666 F(3, 1897.2)=4.376 .004  
ACC&LKsb  F(3,543.4)=1.643 .178 F(2, 780.3)=3.514 .030 F(3, 1895.5)=34.641 <.001  
ACC&LK  F(3,542.5)=3.716 .011 F(2, 778.2)=0.268 .765 F(3,1895.1)=150.453 <.001  
LKsb  F(3,544.4)=0.251 .861 F(2, 780.4)=11.459 <.001 F(3, 1895.3)=29.808 <.001  
LK  F(3,542.7)=7.272 <.001 F(2, 779.4)=4.451 .012 F(3, 1895.2)=10.861 <.001 

Combined Manual  F(3,776.5)=3.597 0.013 F(2,1134.2)=14.086 <.001 F(3,2457.2)=65.406 <.001 
ACC  F(3,778.7)=0.410 0.746 F(2,1137.6)=6.078 0.002 F(3,2457.1)=20.668 <.001 
ACC&LK  F(3,776.4)=2.155 0.092 F(2,1135.0)=1.208 0.299 F(3,2457.1)=194.918 <.001  
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Time-in-trip effects indicate reduced manual driving on highways after 30 min for both driver groups. The effect does not persist 
over longer trips, but statistical poser also reduces as fewer long trips are available. The manual driving was consistently replaced by an 
increase in ACC, LK and ACC&LK usage, tough these effects were only statistically significant for ACC use in the Tesla group and LK use 
in the BMW group. This suggests that automation use is used more on longer trips, which may be related to an increase in fatigue during 
such drives. 

The effects of time of day were only significant for BMW drivers and did not show a consistentrelation between automation use and 
commute hours (where road familiarity tends to be higher (Young et al., 2017)) or circadian rhythm (where sleepiness susceptibility 
increases at night and late afternoon (Zhang, Yan, Wu, & Qiu, 2014)). Time of day therefore does not suggest a clear tendency to use or 
avoid automation use at particular times. 

No longitudinal experience effects on automation use were observed over the first 6 weeks of automation use. The amount of 
manual driving increased and ACC use decreased after this, but no effects were found for the dominantly used ACC&LK. It is possible 
that most experience effects occured over a shorter period, possibly within a small number of trips. For instance, Beggiato et al. (2015) 
demonstrated that a driver’s mental model of ACC converges within 3.5 h of use. On the other hand, Larsson (2012) demonstrated that 
ACC users keep refining their awareness of system limitations over the first 10 months of use. It is possible that such adaptations are not 
expressed through overall metrics such as system usage. 

4.2. Attention distribution 

While we were unable to classify driver attention among attentive and driving unrelated areas, the analysis of head pose deviation 
identified small but significant trends in visual monitoring. 

On the highway, head heading and pitch deviation were smaller during ACC use compared to other driving modes, including 
baseline manual driving. Deviations during ACC&LK did not differ from baseline. These trends contradict Louw and Merat (2017) and 
Morando et al. (2019) who found automation to increase horizontal gaze dispersion by 1.4◦ and reduce median percent road centre by 
3%. Possible explanations for this difference include the used metrics (gaze vs. head pose) and not controlling for periods of following a 

Fig. 6. Distribution of head heading on all road types (top) and on highways (bottom). Positive heading indicates looking to the right.  
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Fig. 7. Distribution of head pitch on all road types (top) and on highways (bottom). Positive pitch is upward.  

Table 4 
ANOVAs for effects of automation use on head heading and pitch deviation.   

Heading Pitch 

Tesla F(3,583.0)=12.243 <.001 F(3, 581.2)=8.412 <.001 
BMW F(4, 1595.4)=79.286 <.001 F(4, 1593.7)=70.542 <.001 
combined F(4, 2178.8)=63.813 <.001 F(4, 2178.7)=61.914 <.001  

Table 5 
Main effects of experience (wk 1–3, wk 4–6, wk 7–9, wk 10–12) on usage and head heading and pitch deviation for highway driving in the exper-
imental condition. ANOVAs are corrected for individual differences. Baseline condition is only included for Head variance during manual driving.    

Usage Heading Pitch   
F p F p F p 

Tesla Manual F(3, 145.2)=0.241 .868 F(4, 309.0) = 3.659 0.007 F(4, 316.1) = 1.329 0.259  
ACC F(3, 156.0)=1.196 .313 F(3, 129.0) = 2.032 0.113 F(3, 121.2) = 2.206 0.091  
ACC&LK F(3, 114.3)=1.001 .395 F(3,121.6) = 2.528 0.061 F(3, 128.0) = 7.611 <.001 

BMW Manual F(3, 513.7)=5.104 .002 F(4, 628.6) = 15.234 <.001 F(4, 627.9) = 2.687 .030  
ACC F(3, 516.9)=1.968 .118 F(3,151.7)=2.112 .101 F(3, 150.99)=4.812 .003  
ACC&LK F(3, 513.6)=2.851 .037 F(3,379.6)=0.504 .680 F(3, 379.4)=0.481 .696  
LK F(3, 515.4)=0.623 .601 F(3, 342.4)=0.181 .909 F(3, 341.5)=0.083 .969 

Combined Manual F(3,674.5)=4.717 0.003 F(4,948.5)=8.205 <.001 F(4,948.4)=1.279 0.277  
ACC F(3,675.1)=2.970 0.031 F(3,283.3)=0.022 0.996 F(3,282.5)=0.801 0.494  
ACC&LK F(3,674.2)=1.519 0.208 F(3,511.0)=1.723 0.161 F(3,511.4)=3.500 0.015  
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lead vehicle (which for Morando et al. (2019) increased percent road centre by 4%). Whether the lower head pose deviation during 
ACC should be interpreted as an increase or decrease in monitoring intensity (or as a spurious effect) remains to be investigated. If 
drivers were mostly monitoring attentively during automation, lower deviation could indicate an increase in attention to road centre or 
cognitive narrowing due to an increased mental demand. However, it can also be caused by cognitive load from driving-unrelated 
thoughts (Victor et al., 2005; Wang et al., 2014), a reduced perceived need for visual scanning, or an increase in mind wandering 
(He, Becic, Lee, & McCarley, 2011). Even when gaze had been obtained in addition to head pose, identification of the correct cause may 
be challenging since even for gaze dispersion it is not certain if a wider deviation represents more distraction or a better monitoring 
strategy (Grüner & Ansorge, 2017). Classification of attention to driving related and unrelated areas may provide more insight but 
requires gaze observation. 

Heading deviation was larger during manual driving in the experimental phase compared to baseline. This could be caused by the 
voluntary use of automation in this study: drivers may have prefered to drive manually in situations which required more head de-
viation, such as when changing lanes (Goncalves, Louw, Quaresma, Madigan, & Merat, 2020). 

Important to note is that the effect of ACC&LK on heading deviation depends on whether it is compared against baseline-manual 
(no difference) or experimental-manual (ACC&LK reduces heading deviation). This may raise caution for studies which compare 
attention between manual and automated driving without providing a manual baseline. Automation effects on head pitch deviation 
were very small and unlikely to carry practical significance. 

Besides the difference in head heading deviation between baseline and experimental manual driving, no longitudinal changes in 
head pose deviation were found which could indicate effects of experience on monitoring. Possibly such effects were not observable, 
either through the metrics used or confounding variance. 

4.3. Limitations 

This study includes 10 participants and two vehicle types. This sample size is too small to generalise findings to a larger population. 
Therefore, only the larger and consistent effects should be considered indicative. Another limitation is the use of head pose as indicator 
of attention. We demonstrate that driver head pose is not predictive of attended region of interest. While we argue that a change in 
head deviation can indicate a different monitoring strategy, we provide no suggestions on how such change should be interpreted with 
regards to better or worse monitoring, or its safety implications. 

4.4. Suggestions for future research 

Since few effects were observed for aggregate factors such as experience and time of day, future work could more closely examine 
motivations for automation use and disuse. Such information could be acquired through interviews with drivers or a close examination 
of the traffic situation when control transitions are taking place. 

Our second recommendation is related to head pose. Since head pose tracking without gaze direction was insufficient for attention 
classification, we recommend gaze monitoring for future work on naturalistic attention monitoring. 

Finally, for future research it would be interesting to study if different system interaction designs impact the effectiveness and 
usability of the automation, and how this differs across various user groups. Such insights could help formulate design choices that 
benefit safety and ease of use. Intuitiveness and ease of use of the systems are crucial for the adoption and safety of automation. 
Systematic evaluation can aid design guidelines for safe user interaction. Such guidelines would support industrial parties in designing 
safe and intuitive interfaces and support policy makers to evaluate new systems and set clear requirements for admission. 

5. Conclusions 

5.1. When and in which conditions do drivers use ACC and LK support? 

ACC and LK were mostly used on road types for which the systems are intended. On highways ACC&LK was used 63% of the time by 
the Tesla group and 57% of time by the BMW group. It was used least in moving congested traffic (30–80 km/h) where ACC&LK was 
mainly replaced by LK (BMW) or manual driving (Tesla), which could mean that especially ACC is not preferred in unstable traffic. On 
urban roads and roads with speed limits below 70 km/h, automation was used less than 8% of the time, which suggests that users were 
aware of the system’s general limitations in those conditions. Automation use was not clearly affected by time of day. Time-in-trip 
suggests that manual driving occurs less after 30 min of driving, which suggests automation use is favoured in longer drives. These 
observations may help to evaluate if there is good overlap between the application domain and operational design domain. 

5.2. Is driver attention different during manual driving and driving with supervised automation? 

We found limited changes in monitoring behaviour with supervised automation. Head movement activity was smaller on highways 
compared to other road types. On highways, head pose activity during ACC&LK did not differ from baseline manual driving, but was 
smaller during ACC use. Head heading deviation was larger during manual driving in the experimental phase compared to manual 
driving in the baseline phase. This motivates further research into the nature and cause of these changes. This also means that studies 
can risk making incorrect inferences about automation effects on attention when only sampling manual and automation conditions 
during voluntary use without a baseline condition with instructed manual driving. 
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5.3. Do these behaviours change with automation experience? 

There was no consistent change in automation usage over time. Similarly, changes in head motion activity could not be attributed 
to a simple experience effect, and are more likely a consequence of uncontrolled differences between conditions. 
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