
Code Smells in the
Mobile Applications Domain

Master Thesis

Daniël Verloop

Code Smells in the
Mobile Applications Domain

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Daniël Verloop
born in Vlaardingen, the Netherlands

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

c© 2013 Daniël Verloop.

Code Smells in the
Mobile Applications Domain

Author: Daniël Verloop
Student id: 1188526
Email: d.verloop@student.tudelft.nl

Abstract

The mobile applications market is growing rapidly, over 85 billion mo-
bile applications have been downloaded. Smartphone sales are already
bigger than computer sales and this might become the first year in which
over one billion smart phones will be sold. Regardless of these statistics
there is not a lot of research to be found on the subject.

In this thesis one of the observations done in a recent study on mobile
applications is reproduced. We also look for code smells (patterns in source
code that are associated with bad design and bad programming practices)
in a number of commercial and open source applications. The results
of this analysis is used to determine if certain code smells have a higher
likelihood to appear in mobile application source code.

Thesis Committee:

Chair: Prof. Dr. A. van Deursen, TU Delft
University supervisor: Ir. H.J.Geers, TU Delft
Committee Member: Dr. Ir. A.J.H. Hidders, TU Delft

d.verloop@student.tudelft.nl

Contents

Contents iii

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Mobile Applications . 1
1.2 Code Smells . 2
1.3 Problem Statement . 3
1.4 Research Questions . 4
1.5 Thesis Structure . 4

2 Background 5
2.1 Mobile Systems . 5

2.1.1 Software Platforms . 5
2.1.2 Problem Domain . 6

2.2 Android System . 6
2.2.1 Android Applications . 7
2.2.2 Development . 11
2.2.3 Unique Properties . 12

2.3 Code Smells . 16
2.3.1 Introduction . 16
2.3.2 Code Smells Descriptions 16
2.3.3 Code Smells in Android 17

3 Related Work 19
3.1 Introduction . 19
3.2 Energy Code Smells . 19

3.2.1 Example . 19
3.2.2 Other Energy Code Smells 21

3.3 Minelli . 21
3.3.1 Applications . 23
3.3.2 Observations . 23

iii

Contents

3.3.3 Initial Analysis . 26
3.4 Fowler . 28

3.4.1 Extract Class . 28
3.4.2 Extract SubClass . 29
3.4.3 Extract Method . 29
3.4.4 Replace Parameter with Method 29
3.4.5 Preserve Whole Object . 29
3.4.6 Introduce Parameter Object 29
3.4.7 Move Method . 30
3.4.8 Replace Parameter with Explicit Methods 30

3.5 Eclipse Parsing Tools . 30
3.5.1 Introduction . 30
3.5.2 Java Elements . 30

4 Research Framework 33
4.1 Introduction . 33
4.2 Applications . 33

4.2.1 Commercial Applications 33
4.2.2 Open Source Applications 33
4.2.3 Own Test Application . 33

4.3 Code Smell Tools . 34
4.3.1 Introduction . 34
4.3.2 JDeodorant . 34
4.3.3 Lint . 35
4.3.4 PMD . 36
4.3.5 Checkstyle . 37
4.3.6 Decor . 37
4.3.7 iPlasma . 37
4.3.8 Stench Blossom . 38
4.3.9 UCDetector . 38
4.3.10 Samoa . 39
4.3.11 Supported Code Smells 39
4.3.12 Selection . 39
4.3.13 Tool Validation . 40

5 Analysis 43
5.1 Introduction . 43

5.1.1 Android Relevance . 43
5.1.2 What was Analyzed . 43
5.1.3 Expected Results . 43

5.2 Process . 44
5.3 Results . 44

5.3.1 JDeodorant . 44
5.3.2 Checkstyle . 44
5.3.3 PMD . 45
5.3.4 UCDetector . 45
5.3.5 NLOC . 45

iv

Contents

5.4 Code Smells in Core Classes . 45
5.4.1 Introduction . 45
5.4.2 Results . 46
5.4.3 Code Smells . 47

6 Recommendations 49
6.1 Introductions . 49
6.2 Case 1: Adapter Implementation 49

6.2.1 Identify . 49
6.2.2 Refactor Implementation 52
6.2.3 Limitations . 52

6.3 Case 2: ActivityView Class . 53
6.3.1 Refactor Implementation 53
6.3.2 Eclipse Plugin . 53

6.4 Case 3: onClick listener in XML 53
6.4.1 Refactor Implementation 53
6.4.2 Eclipse Plugin . 54

6.5 Case 4: onClick in MenuItem . 55
6.6 Case 5: Resource Code Smells . 55
6.7 Refactor Results . 55

6.7.1 Case 1: Adapter Implementation 56
6.7.2 Case 2: ActivityView Class 56
6.7.3 Case 3: onClick listener in XML 56

7 Conclusion and Future Work 57
7.1 Conclusion . 57

7.1.1 RQ1: What are the main differences between mobile soft-
ware applications and traditional software applications? . 57

7.1.2 RQ2: Which tools can be used to look for code smells in
mobile applications and what is the quality of these tools? 58

7.1.3 RQ3: Is mobile application code more prone to code
smells and if it is how can this risk be limited? 58

7.2 Reliability . 58
7.3 Future Work . 59

A Android Releases 61

B Tool Validation 63
B.1 App: OO . 63

B.1.1 JDeodorant . 63
B.1.2 Checkstyle . 66
B.1.3 PMD . 66

B.2 SipDroid . 67
B.2.1 JDeodorant . 67
B.2.2 Checkstyle . 68
B.2.3 PMD . 69

B.3 Own Test Application . 69

v

Contents

B.3.1 JDeodorant . 69
B.3.2 Checkstyle . 70
B.3.3 PMD . 70

C Raw Analysis Results 71
C.1 Lint . 71
C.2 JDeodorant . 72

C.2.1 Commercial Applications 72
C.2.2 Open Source Applications 73

C.3 Checkstyle . 74
C.3.1 Commercial Applications 74
C.3.2 Open Source Applications 75

C.4 PMD . 76
C.4.1 Commercial Applications 76
C.4.2 Open Source Applications 77

C.5 UCDetector . 78
C.5.1 Commercial Applications 78
C.5.2 Open Source Applications 79

Bibliography 81

vi

List of Figures

2.1 The Android system architecture. 6
2.2 The Android Activity life cycle by state paths. 10
2.3 Example of a getView method following the Android guidelines. . . 14

3.1 Original code of energy smell example. 20
3.2 Refactored code of energy smell example. 20
3.3 Example of a snapshot view made by Samoa with legenda. 23
3.4 Snapshot of Searchlight, smallest app analyzed. 24
3.5 Call ring of Share My Position. 25
3.6 Snapshot of Andless . 26
3.7 The number of method invocations by application split up for packages. 27
3.8 Eclipse Java Package Explorer . 30

6.1 Example of a getView method following the Android guidelines. . . 50
6.2 Refactored Android.getView implementation from Figure 6.1. 51

vii

List of Tables

1.1 Statistics of the two major application stores. Source: Wikipedia . . 1
1.2 Worldwide smartphone sales to end users by Operating System (in

thousands of units). Source: Gartner (May 2013) 2

3.1 List of applications analyzed by Minelli. 24
3.2 The number of method invocations by application split up for packages. 27

4.1 Basic properties of the code smell tools 35
4.2 Code smell support . 39
4.3 Summary of tool validation results with agreed and total code smell

count . 40

5.1 CoreNLOC and NonCoreNLOC for all projects. 45
5.2 Number of code smells found per 1,000 LOC for Long Method and

Large Class. 46
5.3 Number of code smells found per 1,000 LOC for Long Parameter

List, Feature Envy, Type Checking and Dead Code. 46
5.4 Number of code smells found per 1,000 LOC grouped by Code Smell. 47

A.1 Release dates of Android versions based on their API number. . . . 61

C.1 Lint results of OO and SipDroid . 71

ix

Chapter 1

Introduction

1.1 Mobile Applications
Mobile Applications are software applications that run on mobile systems like
smartphones or tablets. Applications are installed on a mobile system using an
application store which downloads and installs applications chosen by the user.
Both the number of applications available in these stores and their download
counts are growing rapidly as can be seen from Table 1.1.

Android iOS

Approximate Applications Accumulated Applications Downloads

Year/Month Available Downloads Available to date

2009/03 2300 25000 0.8 billion

2010/08 80000 1 billion 250000 6.5 billion

2011/05 200000 3 billion 425000 14 billion

2012/06 600000 20 billion 650000 30 billion

2013/04 850000 40 billion 825000 45 billion

Table 1.1: Statistics of the two major application stores. Source: Wikipedia

Mobile applications run on the software layer of the mobile system which
is called the mobile software platform. Currently the most common mobile
software platforms are Android, iOS, Windows Phone and Blackberry. Table
1.2 shows the worldwide smartphone sales for the first quarter of 2012 and 2013
based on operating system. Given the rise in sales it is to be expected that this
year for the first time over one billion smartphones will be sold.

As can be seen from both tables above the market for mobile applications
and the sales of devices on which these applications run is still growing.

1

1. Introduction

Operating System
2013 Q1 2012 Q1

Units % Units %

Android 156,186 74.4 % 83,684 56.9 %

iOS 38,332 18.2 % 33,121 22.5 %

Blackberry 6,219 3.0 % 9,940 6.8 %

Windows Phone 5,990 2.9 % 2,723 1.9 %

Others 3,321 1.5 % 17,554 11.9 %

Total 210,048 100.0 147,022 100.0

Table 1.2: Worldwide smartphone sales to end users by Operating System (in thousands of units).
Source: Gartner (May 2013)

1.2 Code Smells
Code smells are patterns in source code that are associated with bad design
and bad programming practices. Unlike programming errors they do not result
in incorrect external behavior. Code smells point to areas in an application
that could benefit from refactoring. Refactoring is defined as ’a technique for
restructuring an existing body of code, altering its internal structure without
changing its external behavior” [11].

Choosing not to resolve code smells by refactoring will not result in the
application failing to work but will likely increase the difficulty of maintaining
it. Thus refactoring helps to improve the maintainability of an application.
Given that maintenance is considered the most expensive stage of software
development and that the proportion of maintenance cost over total software
cost is increasing each decade [18] refactoring will save money in the long haul.

Because code smells are described in terms of program patterns they can
be identified using static analysis (code analysis), opposed to behavior patterns
where dynamic (runtime) information is needed. This means a tool searching
for code smells does not need to run the application. It only needs access to
the source code and optionally resources and libraries that are referenced by
the source code. Using tools to find code smells and refactor the code will help
improve the maintainability of applications.

2

1.3. Problem Statement

1.3 Problem Statement
The market for mobile applications is growing fast:

• The worldwide smartphone sales for the first quarter has increased by
25% in a single year (see Table 1.2).

• The number of mobile applications available from the various application
stores and their download count is increasing rapidly (see Table 1.1).

At the same time the software development process is changing at a pace
unknown to traditional software systems: for most of the mobile systems a
major update is released at least once a year. The combination of fast growth
and rapid updates implies that it is important for mobile software developers to
keep their applications maintainable. If mobile software developers fail or are
unable to keep their application maintainable it will be more difficult for them
to keep up with the rapid changes and ensure their application remain relevant
in the fast changing mobile application market.

The speed with which the mobile application market is changing is not the
only difference between mobile software applications and traditional software
applications. According to [15] mobile applications are substantially different
from traditional software applications. Some of these differences are obvious like
the lack of a permanent power supply which requires the developer to be energy
efficient. Others are less obvious like a short lifespan of mobile applications or
that the use of inheritance is almost entirely absent in mobile applications which
increases the difficulty of maintaining it. Because of these differences, research
done on traditional software applications may not apply to mobile applications
and despite the growth and changes of the mobile market there is not a lot of
research to be found on this new area of software development.

Given the new challenges developers face while developing mobile applica-
tions and the limited amount of research on the subject it will be interesting to
research how the new mobile software developers can limit the number of code
smells in their applications and thereby increase the maintainability of these
applications.

3

1. Introduction

1.4 Research Questions
Given the problem statement from the previous section, the following three
research questions will be addressed:

• RQ1: What are the main differences between mobile software applica-
tions and traditional software applications?

• RQ2: Which tools can be used to find code smells in mobile applications
and what is the quality of these tools?

• RQ3: Is mobile application code more prone to code smells and if it is
how can this risk be limited?

1.5 Thesis Structure
This thesis is composed of the following seven chapters:

• Chapter 1: Introduction.

• Chapter 2: Background into mobile systems and code smells.

• Chapter 3: Related work on the subject.

• Chapter 4: The framework of the research.

• Chapter 5: The analysis results.

• Chapter 6: Recommendations gathered from the results of the research
performed.

• Chapter 7: Conclusions and future work.

4

Chapter 2

Background

In this chapter background information is given about mobile operating systems
and Android in particular, to comprehend the environment a developer has to
work with and his application operates in.

2.1 Mobile Systems

2.1.1 Software Platforms

As said in the introduction there are currently four major mobile software plat-
forms: Android, iOS , Blackberry and Windows Phone.

Android

Android is an open source software stack for mobile devices that includes an
operating system (based on the Linux kernel), middleware (application frame-
work, libraries and runtime) and a number of applications (image viewer, web
browser, etc). It can be found on smartphones, tablets, netbooks, media play-
ers, radios, televisions and many more electronic devices. Android is developed
by Google and the Open Handset Alliance. It is currently the operating system
with the most momentum and the only one increasing its world-wide sales to
end users between the last quarter of 2012 and the first quarter of 2013.

iOS

iOS (previously iPhone OS) is a mobile operating system developed and dis-
tributed by Apple Inc. Originally released in 2007 for the iPhone and iPod
Touch, it has been extended to support other Apple devices such as the iPad
and Apple TV. Apple does not allow iOS installations on non-Apple hardware
unlike Android and Windows Phone. In sales numbers iOS is currently a dis-
tant second to Android but it was the first in building a large ecosystem around
mobile applications so iOS has a distinct advantage over the other players. It
took Android until early 2013 to surpass iOS in absolute numbers of available
applications in their respective application stores.

5

2. Background

Windows Phone

Windows Phone is a proprietary mobile operating system developed by Mi-
crosoft. It is the successor of Windows Mobile. Currently Windows Phone does
not appear to gain any momentum given the fact that world-wide sales to end
users dropped between the last quarter of 2012 and the first quarter of 2013.

Blackberry 10

Blackberry 10 is a proprietary mobile operating system developed by Black-
Berry Limited (formerly Research In Motion, RIM). It is the successor of Black-
berry OS which until a few years ago was the most used mobile software plat-
form. The sales figures of the Blackberry line of smartphones has been dropping
since early 2011.

2.1.2 Problem Domain

The research in this thesis will be on the Android mobile software platform for
a number of reasons:

• Android currently is the most populair mobile software platform: almost
75% of all smartphones sold in the previous quarter have Android in-
stalled.

• Android applications are mostly written in Java. Since Java is the pre-
ferred language for academic use it will make finding analyzing tools eas-
ier.

• The author’s familiarity with the Android OS, Java and Eclipse (the de-
fault Android IDE).

2.2 Android System
Android applications run on top of the Android system, Figure 2.1 shows where
applications are located in the Android system architecture.

• The top layer, applications, is where An-
droid applications are located. They inter-
act directly with the blue parts: other ap-
plications, the application framework and
the core libraries.

• The core libraries in the Android run-
time consists of Java class libraries com-
parable to the Java SE libraries but are
based on a subset of the Apache Harmony
Java implementation.

• The applications run inside the Dalvik
virtual machine. It runs Dalvik exe-
cutable files.

Figure 2.1: The Android system architec-
ture.

6

2.2. Android System

2.2.1 Android Applications

Overview

An Android application consists of a single APK file containing the compiled
source code, resources, data files and the manifest.

Application Components

Android applications are written in Java, extended with some native parts in C
and screen layouts in XML. Android applications are composed of one or more
application components: activities, services, content providers and broadcast
receivers.

• AnActivity is an Android component that provides a single screen with a
user interface that users can interact with, e.g. sending an email or taking
a picture. The first Activity the user sees is called the Main Activity.

• A Service is an Android component that performs a long-running opera-
tion in the background, e.g. in a music application there is a service that
plays an audio file.

• Content providers manage access to structured sets of data. They are
the standard interfaces to connect data in one process with code running
in another process, e.g. a content provider that gives an application access
to a list of all the contacts in the phone.

• A Broadcast receiver is the base class to receive messages sent by
sendBroadcast(), e.g. a message is sent by the Android system when
the internet connection is lost.

Three of these components are started using messages which in Android are
called Intents. Intents are defined by the Android API as

”Three of the core components of an application (activities, ser-
vices, and broadcast receivers) are activated through messages, called
Intents. Intent messaging is a facility for late run-time binding be-
tween components in the same or different applications. The intent
itself, an Intent object, is a passive data structure holding an ab-
stract description of an operation to be performed or in the case of
broadcasts a description of something that has happened and is being
announced.” [1]

The user interface of an Android application is defined by a layout that
is declared inside a XML file or in code. Each user interface component in
Android extends the android.widget.View class.

7

2. Background

Other Android components

Besides the application components there are other important components:

• An Application instance is created when an application process is first
started. The main use of it is to maintain a global application state.

• Fragments are used to split up the behavior of an Activity which helps
developing for different screen sizes. For example, the gmail application
has 2 fragments: the email list and the email content; on phones the
fragments are shown in two separate screens, on tablets both fragments
are shown in one screen.

• Adapters act as a bridge between an AdapterView (e.g. a list or a grid)
and the data shown in the view. The Adapter provides access to the data,
mostly in the form of the getCount and getItem methods. The Adapter
is also used to create the view and set the contents of the view.

Resources

The res directory contains all resources (e.g. images, translated strings, lay-
outs, colors, sizes, styles, etc..). To reference these resources in source code
Android generates an R class file where each type of resource has its own sub-
class and each resource file has its own resource id in the subclass. For example
R.layout.mainscreen will reference the layout XML file located at layout/main-
screen.xml.

Android Manifest

The Android manifest specifies the components in the application, declares the
application requirements and some other application properties. Here is an
example of the application properties:

• Minimum required API version

• Target API version

• Hardware requirements e.g. camera, touch screen, GPS

• Permissions given by the user e.g. access to contact information

• Libraries required e.g. Google Maps

• Screen densities

• Minimum OpenGL version

A developer has to specify in the manifest which Activity is the main ac-
tivity, i.e. the entry point to the application. The developer also has to specify
whether that main activity should appear in the list of activities (called the
launcher) where it can be launched from. If an application has only one screen
than that Activity will be the main activity and will appear in the launcher.

8

2.2. Android System

Processes and Threads

Each Android application and all its components run in a separate process.
There are five priority levels an Android process can have:

• Foreground process: The process that is required for what the user is
currently doing. A process is in the foreground if it hosts any of the
following applications components:

– An Activity the user is interacting with.
– A Service bound to an Activity the user is interacting with.
– A Service with a high priority.
– A Service running one of its lifecycle methods.
– A BroadcastReceiver running its onReceive method.

• Visible process: A process that is not in the foreground but can still affect
what the user sees on the screen.

• Service process: A process that is running a service which does not fall
in the previous categories, e.g. a service playing music or downloading a
large file.

• Background process: A process with an Activity that is not visible to
the user. These activities are kept in a background process so they can
quickly go to the foreground.

• Empty process: A process that does not hold any of the four application
components. This process is only kept alive for caching purposes, to
improve the startup time when it is needed.

Saving and restoring the application state is done with two methods, the
onSaveInstanceState() method which is called when the Activity leaves the
foreground and the onRestoreInstanceState() method which is called when the
Activity returns to the foreground.

Activity Lifecycle

The Activity lifecycle describes which methods are called when the state of the
Activity changes. These methods are called the lifecycle methods. Figure 2.2
shows the state transitions and the corresponding lifecycle methods.

The lifecycle methods that are most used are:

onCreate() The first method called when an activity is launched. It is
used to set up the layout of the Activity. This includes setting up the user
interface using setContentView, getting all references to the UI components
using findViewById(), setting the UI component listeners and setting all
window properties like fullscreen and theme.

9

2. Background

Figure 2.2: The Android Activity life cycle by state paths.

onResume() Just before the Activity comes to the foreground onResume()
is called. It is used to set the content of the user interface and to register
any Android system listeners (like a gps location listener).

onPause() When the Activity is no longer shown in the foreground on-
Pause() is called. It is used to save any content in the user interface (like
the current search text).

onDestroy() When the activity is finished or destroyed by the system
onDestroy() is called. It is used to perform the final clean up of the Activity.

Software Development Kit

The Android SDK consists of all the necessary tools to build Android appli-
cations. It also contains an Eclipse plugin called Android Development Tools
(ADT) which integrates into the Eclipse IDE.

It includes the Android SDK Manager to download and update Android
packages. The package list consists of tools, Android platform API’s (docu-
mentation, SDK library, samples, emulator images and sources) and optional
libraries like the Android Support Library (backward compatibility library),
Admob Ads SDK (for including advertisement in your application), etc..

10

2.2. Android System

2.2.2 Development

Below is a list of the steps performed while developing an Android application
to give an idea of the development process.

Setting up the project

The development of an Android application begins with the creation of an the
Android project consisting of:

• Application properties e.g. application name, project name, package
name, minimum API, target API and user interface theme.

• Template for the main activity:

– BlankActivity which is almost empty.
– FullscreenActivity which functions to show/hide the system UI (sta-

tus bar, navigation / system bar) and the action bar.
– LoginActivity which has a textfield for an email address, a textfield

for a password and a button to start the login process.
– MasterDetailFlow which uses fragments to show two columns on

large screens like tablets and one column on smaller screens like
phones.

Implementation

• The functionality is implemented in the main activity. Any third-party
libraries to be used are added into the library directory.

• Images to show in the application are added to the drawable directories.

• Components are added to the layout using a graphical layout editor with
drag and drop support or using a XML text editor

• Labels, titles, error messages or any other text are added to the applica-
tion by the the strings.xml resource file. This makes it easy to translate
the application into other natural languages because the Android system
chooses the right strings.xml to get the text from depending on the current
system locale.

Build Process

Android applications are build by making an Android application package file
(APK file). This process consists of three steps that are described below:

• The first step is the pre-compilation step which consist of generating Java
source files. For example, a R.java source file is generated which references
the resources in the res directory.

11

2. Background

• The next step is the compilation step where the Java code is first compiled
into Java bytecode followed by converting this Java bytecode into Dalvik
bytecode because Android applications run on the Dalvik VM.

• The third step consist of creating the APK file by bundling the Dalvik
executable, resources and assets. After creating the APK it will be signed
by either a debug or release key depending on the type of build process.

The result of this final step is a single APK file which contains a complete
Android application to be installed on Android devices or uploaded to Android
application markets like the Google Play Store or the Amazon Appstore.

Testing

Testing in Android is done with Android JUnit test cases, Android uses an
extended JUnit library for testing of Android components. Because Android
components have a specific life cycle there is a set of control methods into the
Android system called Android instrumentation for testing of activities, content
providers and services.

Maintenance

If the developer wants the app to remain relevant he will have to keep the
application up to date with the latest Android platform API. Every new major
version of Android has had a significant user interface change that required the
developer to make some (minor) changes to the application to prevent it from
looking out of place.

2.2.3 Unique Properties

Mobile application systems have some unique properties which affect the devel-
opment process. This section lists the most important properties that makes
developing for mobile applications different from developing for traditional soft-
ware applications.

Small Number of Developers

Mobile applications are usually developed by a single developer or a small team.

Short Lifespan and Development Cycle

Mobile applications have a short lifespan. Users have come to expect regular
updates: from personal experience I found that more users will start to com-
plain, regardless of the number of problems, if there has not been an update
for over a month.

Given this short lifespan the development cycle has to be short which will
likely result in more code smells. Maintenance and refactoring time will also be
shorter. This makes it all the more important to have good refactoring tools.

12

2.2. Android System

A recent internet survey[3] found the average development time of a mobile
application system to be 18 weeks with 10 weeks spent on the backend and only
8 weeks on the frontend (e.g. the Android application).

Regular Platform Updates

Table A.1 shows Android releases based on their API number. The API num-
ber of an Android release is increased by Google when new features are added
that may require changes by the developer to support or backward compati-
bility by the system. When developing an Android application the developer
specifies the target API for the application. This target API tells the Android
system up to which API version the Android application is tested and can be
expected to run correctly. If such an application is run on an Android device
that has a version with a higher API number the system will enable backward
compatibility behavior to ensure the application performs as expected.

An Android version with a new API is released every 92 days on average.
Android developers are not required to keep their application targeting the
latest release but are highly recommended to do so. As said above every major
Android update has had UI changes that required application developers to
update their application so it looked similar to the rest of the system UI. The
Android SDK comes with a static analysis tool called Lint that gives a warning
when the latest API is not targeted.

Limited Processing Power

Because processing power is limited on mobile devices power consuming actions
like object creation should be kept to a minimum. This is especially true on
the user interface thread which will freeze or delay the screen performance if
methods that run on the UI thread take too long to finish.

One of the ways Android handles the limited processing power is recycling
objects instead of creating new ones. The getView method of the Adapter class,
which runs on the UI thread, has a recycled object as a parameter intended for
reuse. The getView method of Adapters has the following signature:

View getView(int position, View convertView, ViewGroup parent)

position: The position of the item ... whose view we want.
convertView: The old view to reuse, if possible.
parent: The parent that the view will be attached to.

For performance reasons an Adapter.getView method should use the recy-
cled view when possible and have a correct implementation of the ViewHolder
pattern.

Using the recycled views is done by checking whether the convertView pa-
rameter is null. If it is null then there are no recycled views available and a
new view is created. If it is not null, the convertView is used as a new view and
no object creation is required. When a view is no longer visible at the screen
it is recycled. For example, when a list is shown on the screen only a limited
number of items are visible at the same time. The user can scroll up or down

13

2. Background

to see new items while at the same time visible items are removed from the
screen. The views that go out of the screen bounds will be recycled and given
as a convertView to the next call to getView.

The getView also needs to implement the ViewHolder pattern which consists
of using an instance of a class to hold references to the child views. Finding the
view references consumes too much power to perform each time the list needs
to be refreshed therefor the references are stored in a ViewHolder class that is
saved in the parent view.

Both the usage of the recycled views and the ViewHolder pattern are imple-
mented in the first part of the getView method. The end result of the first part
is that the viewHolder instance is set. The second part consists of setting all
the attributes of the view and it’s child views, e.g. a label, an image, a color,
etc.. An example of how this implementation looks in source code is shown
below in Figure 2.3.

1 @Override
2 public View getView (int p o s i t i o n , View convertView , ViewGroup

parent) {

3 ContactsViewHolder viewHolder ;

4 i f (convertView == null) {
5 convertView = l a y o u t I n f l a t e r . i n f l a t e (R. layout . contact_row ,

parent , fa l se) ;

6 viewHolder = new ContactsViewHolder () ;
7 viewHolder . txName = (TextView) convertView . findViewById (R. id .

tvName) ;
8 viewHolder . txEmail = (TextView) convertView . findViewById (R. id

. tvEmail) ;
9 viewHolder . txPhone = (TextView) convertView . findViewById (R. id

. tvPhoneNumber) ;

10 convertView . setTag (viewHolder) ;
11 } else {
12 viewHolder = (ContactsViewHolder) convertView . getTag () ;
13 }

14 Contact contact = getItem (p o s i t i o n) ;
15 viewHolder . txName . setText (contact . getName ()) ;
16 viewHolder . txEmail . setText (contact . getEmail ()) ;
17 viewHolder . txPhone . setText (contact . getPhoneNumber ()) ;

18 return convertView ;
19 }

20 class ContactsViewHolder {
21 TextView txName ;
22 TextView txEmail ;
23 TextView txPhone ;
24 }

Figure 2.3: Example of a getView method following the Android guidelines.

This method does two things: the red code creates the UI while the blue
code sets the values of the UI components.

14

2.2. Android System

Smaller Project Size

In a test set of of 20 open source Android applications in [15] it was found
that on average the applications had 5,600 lines of code. In a cast study on
source clones[9] two Java applications, ArgoUML and DNSJava, were analyzed.
ArgoUML consists of 446 to 1538 classes with 45,000 to 200,000 NLOC and
DNSJava consists of 55 to 179 classes with 5,000 to 25,000 NLOC.

External Libraries

Mobile applications rely to a large extent on external libraries: in a current
research[15] the number of external calls was 2/3 of all method calls. This
observation is further described in Section 3.3.2.

Less Inheritance

In Mobile applications there is less inheritance [15] which points to the possi-
bility of duplicate code and increased maintenance time. This observation is
further described in Section 3.3.2.

High Interactive Applications

Mobile applications have more interaction caused by the presence of a touch
screen.

15

2. Background

2.3 Code Smells

2.3.1 Introduction

Code Smells describe patterns associated with bad design and bad program-
ming practices. They point to areas in an application that could benefit from
refactoring. Refactoring will improve the design of the application, make the
application code easier to understand, help with maintainability and result in
faster development [11]. Given the short development cycle refactoring is more
useful for mobile developers.

In this section a definition of both the term Code Smell and a number of
Code Smells is given. This section will also include assumptions on Code Smells
that are more likely to occur in Android.

Mantyla [13] states the large number of code smells makes them difficult to
understand. The code smells are divided into five groups:

Bloaters : Code that has grown so large it cannot be effectively handled
(long methods, large classes).

Object-orientation abusers : Cases that do not fully exploit the power
of object-oriented design (switch statements, temporary field).

Change preventers : Smells that hinder change or further development
of the software.

Dispensables : Unnecessary code (lazy classes, duplicate code).

Couplers : Coupling-related smells (feature envy).

2.3.2 Code Smells Descriptions

This section gives a description of the code smells used in this thesis. Most of
them come from Fowler [11] except the last one, Dead Code, which comes from
Mantyla [13].

Large Class

The Large Class code smell is a class that has too many responsibilities, it is
part of the Bloaters group. The solution according to Fowler is the Extract
Class or Extract SubClass refactoring.

Long Method

The Long Method code smell is also part of the Bloaters group because the
method has grown too large and is difficult to understand. According to Fowler
most of the Long Method code smells can be resolved by applying the Extract
Method refactoring.

16

2.3. Code Smells

Long Parameter List

This code smell is part of the Bloaters group since the parameter list has grown
too large and is difficult to understand. Fowler gives three refactoring solutions:
replace the parameter with a method call (Replace Parameter with Method),
get the parameter data from an object (Preserve Whole Object) and move
the parameter data into a new object and make the new object a parameter
(Introduce Parameter Object).

Feature Envy

Feature Envy occurs when a method is more interested in data from another
class then in data from its own class. Fowler suggests the obvious refactoring
solution which is Move Method.

Switch Statements

The switch statement code smell is close to duplicate code. Often the same
switch statement is found at multiple places. Fowler suggests using polymor-
phism by moving the different switch cases into subclasses. If there are only
a few cases that affect a single method then polymorphism is overkill and the
Replace Parameter with Explicit Methods refactoring can be used.

Duplicate Code

Duplicate code is according to Fowler ”number one in the stink parade”. Luckily
the solution is obvious: perform the Extract Method refactoring and replace all
the duplicate code blocks with a method invocation to the new method.

Dead Code

The Dead Code code smell is not described in Fowler. It is found in [13] where
it is classified as part of the Dispensables group. It is described as code that
has been used in the past but currently is not used anymore. It hinders code
comprehension and makes the structure less obvious.

2.3.3 Code Smells in Android

Activity classes

Activity classes in Android are responsible for a lot of different tasks what might
result in a God Class smell. Looking at the MVC pattern an Activity is both
the View and the Controller by design.

In the lifecycle methods of an Activity a lot of separate tasks have to be
performed. The onCreate method to build the user interface, to get the ref-
erences to every UI component used in the class, to set the listeners for the
different events that may occur during the lifetime of the Activity, etc... The
combination of these different tasks makes the lifecycle methods susceptible to
the Long Method code smell.

17

2. Background

Listener Methods

Android has many listener methods for events: the View class alone has already
10 listener methods. These methods have only one parameter which is the
listener for an event, usually as an anonymous inner class. An example:

1 Button button1 = (Button) findViewById (R. id . button1) ;
2 button1 . s e tOnCl i ckL i s t ene r (new View . OnCl ickListener ()
3 {
4 public void onCl ick (View v)
5 {
6 // do something when the but ton i s c l i c k e d
7 }
8 }) ;

These listener method calls increase the number of lines in the onCreate
method for the UI. Also the use of anonymous inner classes increase the like-
lihood of a Long Method code smell if there are multiple event listeners that
need to be added or if there are a large number of UI components that need
event listeners.

MenuItem clicks

In an Activity the method onOptionsItemSelected(MenuItem) is called when
any of the menuitems is clicked. Other ways of getting notified when a menuitem
is clicked is a listener on the MenuItem or specifying an Activity method to call
in the XML.

This method is highly susceptible to the Switch Statements code smell. For
example, when the menu is used to go to different screens then each Activity
will have a switch statement to see which menuitem was clicked. Each of the
activities will have almost the exact same code to handle the menuitem clicks.

This can be seen as a common code smell which Android developers will be
very susceptible to because the Android API suggests that the onOptionsItem-
Selected method is more efficient compared to the other options and easier in
most situations.

18

Chapter 3

Related Work

3.1 Introduction

As explained at the beginning of this thesis there is not much research to be
found on the subject of code smells in the mobile application domain.

3.2 Energy Code Smells

As discussed in Section 2.2.3 mobile applications need to be energy efficient. In
[12] the authors explain how they try to improve the energy usage of mobile
applications by searching for energy wasting patterns which they called energy
code smells. Their focus is on applying reengineering techniques for removing
energy code smells.

3.2.1 Example

In the paper they give examples of energy code smells, how they can be detected
and be restructured. This example shows code of an open source application
called GPS Print. Below is an altered and simplified version of the example
given in the paper with in red and blue the code that is moved. Figure 3.1
shows the original code and Figure 3.2 shows the refactored code.

As can be seen from the code the refactoring is simple, the code contains
two energy code smells: binding resources too early and releasing resources too
late.

Binding resources too early

The first code smell is the binding resources too early code smell. It occurs
when a resource, like the GPS receiver, is used before it is required for the
application to function properly. In the refactoring example the requestLoca-
tionUpdates method invocation, which turns on the GPS receiver, is moved
from the onCreate method to the onResume method which does not alter the
behavior of the application but does turn on the GPS receiver at a later time.

19

3. Related Work

1 public class GpsPrint extends A c t i v i t y
2 implements L o c a t i o n L i s t e n e r {

3 LocationManager lm ;

4 public void onCreate (Bundle savedIns tanceState) {
5 lm = (LocationManager) getSystemServ ice (Context .

LOCATION_SERVICE) ;
6 lm . addGpsStatusListener (this) ;
7 lm . requestLocat ionUpdates (LocationManager .GPS_PROVIDER, 1000 ,

0 , this) ;
8 }

9 public void onDestroy () {
10 lm . removeUpdates (this) ;
11 }
12 }

Figure 3.1: Original code of energy smell example.

1 public class GpsPrint extends A c t i v i t y
2 implements L o c a t i o n L i s t e n e r {

3 LocationManager lm ;

4 public void onCreate (Bundle savedIns tanceState) {
5 lm = (LocationManager) getSystemServ ice (Context .

LOCATION_SERVICE) ;
6 lm . addGpsStatusListener (this) ;
7 }

8 public void onResume () {
9 lm . requestLocat ionUpdates (LocationManager .GPS_PROVIDER, 1000 ,

0 , this) ;
10 }

11 public void onPause () {
12 lm . removeUpdates (this) ;
13 }
14 }

Figure 3.2: Refactored code of energy smell example.

Releasing resources too late

The second code smell is called the releasing resources too late code smell which
is when a resource, like the GPS receiver, which consumes energy is used longer
then required for the application to function properly. In the refactoring exam-
ple the removeUpdates method invocation, which turns off the GPS receiver, is
moved from the onDestroy to the onPause which does not alter the behavior of
the application but does turn off the GPS receiver sooner.

Refactor Result

Moving the method that turns off the GPS receiver is the largest difference
in energy consumption because the time between the onPause and onDestroy
invocations can be very large while the time between the onCreate and the

20

3.3. Minelli

onResume is usually small. As can be seen from the lifecycle diagram in Chapter
2.2.1 the code before refactoring is not incorrect but it does consume more
energy when it does not need to.

3.2.2 Other Energy Code Smells

[12] describes a number of other energy code smells some of which are not
related to mobile applications alone. Below is a summary of the energy code
smells described that are the most related to mobile applications.

Loop Bug

Loop bugs represent behavior where the application is repeating the same action
over and over again without achieving the intended results. The example given
in the paper is a server being down and the application that keeps trying to
connect thereby using energy for the data connection. Another example is that
the developer made a mistake causing an infinite loop, which if caused in a
background thread keeps consuming CPU and using energy. The solution to
this problem is to introduce a maximum number of iterations to perform the
same action before stopping and reporting the problem to the user.

Using Expensive Resources

Using expensive resources is a code smell that occurs when there is a possibility
to replace energy expensive resources with less energy consuming options, or if
the expensive resource is used when it does not actually function. The example
given for the first case is when only an approximate location is required and
the expensive GPS location service is used. An example of the second case is
having GPS active indoors or underground or having WiFi active without being
in range of a WiFi station that can be connected to.

3.3 Minelli

[15] focusses at the first research question given in this paper: ’We want to study
the source code of apps ... to understand if and how they differ from traditional
software systems, and which are the possible implications for the maintenance
of apps.’ Because these similarity this paper was a good starting point for the
research in this thesis.

His analysis was performed with a selfmade tool called Samoa. Samoa is
described as a web-based software analytics platform to analyze mobile ap-
plications from a structural and historical perspective. It shows a number of
software metrics for the applications it analyzes and presents the metrics using
different types of graphs. The metrics used include the Number of Packages,
the Number of Classes, the Number of Methods, the Number of Internal Calls,
the Number of External Calls, the Number of Core Elements, etc...

21

3. Related Work

Samoa provides snapshot views (see Figure 3.3) which shows the structural
properties of a mobile application. A circular view shows the application core
and the external API method invocations.

The core elements are ”the entities specific to the development of apps (i.e.,
inheriting from the mobile platform SDK’s base classes). In Android apps, they
are specified in the manifest”, where base classes are defined as Activities and
Services. This narrow definition of base classes excludes a large number of
entities that are also specific to the development of mobile applications:

• Custom user interface components, extending android.view.View

• Adapter implementations, extending android.widget.Adapter

• The other two application components:

– content providers extending android.content.ContentProvider
– broadcast receivers extending android.content.BroadcastReceiver

• The application singleton, extending android.app.Application

• Fragments, extending android.app.Fragment

Figure 3.3 shows a snapshot view of Alogcat (one of the applications ana-
lyzed, see Section 3.3.1).

The central part of the snapshot, labeled a, gives a visual representation
about the size of Alogcat with regards to the lines of code. The core of the
application consists of four elements: the yellow circle is the main activity
called the LogActivity, the orange circle is another Activity and the two purple
circles are services. As can be seen from the size the core accounts for almost
half the size of the application. The none-core part of the application consists
of 17 classes that are not shown; the none-core LOC is represented as the light
blue circle while the light red circle is the core LOC.

The outer ring, labeled b, represents the number of external calls, the dis-
tance between the central part and this outer ring shows the number of internal
calls. The outer ring is split into different pieces, the color of these pieces rep-
resents a different third party library. As can be seen from the snapshot most
of the method invocations to third party libraries are to Android, in green,
and Java, in orange. The light green outer circle represents the largest size of
the application for all the revisions available. As can be seen there is a gap
between the outer ring and the call ring which means that the latest revision
of the application is not the largest.

22

3.3. Minelli

Figure 3.3: Example of a snapshot view made by Samoa with legenda.

3.3.1 Applications

Table 3.1 shows the applications that were analyzed with Samoa by Minelli. The
table shows the application name, the LOC count, the Google Play Installs and
the Google Play Rating (on a scale from 1 to 5).

3.3.2 Observations

The information that was gathered is used to give some insight into the structure
of mobile applications. Minelli [15] presents a number of observations gathered
during their analysis. The rest of this section is a summary of the observations.

Apps are smaller than traditional software systems

The first observation is that mobile applications have less lines of code compared
to traditional applications. The average size of the applications analyzed is 5.6
kLOC with the smallest app, Searchlight, having less than 300 LOC. Figure
3.4 shows the snapshot of Searchlight. The app consists of two classes, the

23

3. Related Work

Application Lines Of Code Google Play Google Play
Name Count Installs Rating

aLogcat 876 100.000+ 4.6
Andless 2.372 100.000+ 4.2
Android VNC 4.949 1.000.000+ 4.3
Anstop 1.142 N/A N/A
AppSoundmanager 1.605 50.000+ 4.5
AppsOrganizer 8.321 1.000.000+ 4.6
Csipsimple 20.777 100.000+ 4.4
DiskUsage 4.749 50.000+ 4.7
MythDroid 6.114 N/A N/A
MythMote 1.593 10.000+ 4.6
Open GPSTracker 9.754 100.000+ 4.2
OpenSudoku 3.813 1.000.000+ 4.6
ReplicaIsland 14.192 1.000.000+ 4.2
RingDroid 3.516 10.000.000+ 4.6
Search Light 272 100.000+ 4.7
Share My Position 468 10.000+ 4.6
SipDroid 14.019 500.000+ 4.0
Solitaire 3.343 10.000.000+ 4.3
Zirco Browser 6.429 10.000+ 3.8
Zxing 3.407 50.000.000+ 4.3

Table 3.1: List of applications analyzed by Minelli.

Main Activity (in yellow, the core) and a none-core class (the light blue area).
Together the two classes contain 272 LOC.

Figure 3.4: Snapshot of Searchlight, smallest app analyzed.

The main reason for the small size of source code is that many applications
have a small number of functions that needs only a few classes to implement
them.

Apps are inherently complex, mostly because they rely on
third-party libraries

Minelli [15] found that 2/3 of method invocations were to third-party libraries.
This observation was surprising to me which is why I chose it as an initial
analysis goal to verify this claim. This analysis is given in Subsection 3.3.3

24

3.3. Minelli

In many of the apps that were analyzed over 75% of all method calls were
external calls which means the number of internal calls were small. An example
of this is shown in Figure 3.5 which represents the call ring of Share My Position.

Figure 3.5: Call ring of Share My Position.

As said before the thickness of the outer ring represents the number of third-
party calls and the thickness of the white ring between the outer ring and the
blue ring represents the number of internal calls. Because apps rely strongly on
third-party libraries both the source code of the application needs to be looked
at and the behavior of the third-party library needs to be understood to compre-
hend how an application works. This complicates both program comprehension
and maintenance.

The size and complexity of apps grow in correlation with the
addition of third-party method invocations

They found high values of correlation between the number of third-party method
invocations and two other metrics, McCabe’s cyclomatic complexity number
with an average correlation value of 0.82 and number of LOC with an average
correlation value of 0.84.

The use of inheritance is essentially absent in apps

By looking at the average values of two software metrics related to inheritance
they observed that there was very little inheritance to be found for the applica-
tions analyzed. The average value for Average Hierarchy Height was only 0.09
and the average value for Average Number of Derived Classes was 0.19 which
compared to traditional Java applications is very low. According to Minelli a
possible reason could be that the applications analyzed are much smaller than
traditional Java applications thereby reducing the need for inheritance. An-
other reason could be that many of the mobile applications are not developed
in a systematic way which can result in badly structured code and duplicate
code smells.

According to [10] maintaining a flat system requires 20% more effort than
an analogous system using inheritance. This means maintaining mobile appli-
cations is made more difficult because of the lack of inheritance.

25

3. Related Work

Development guidelines are often ignored

As described above in Section 2.2.1 an Android application normally has only
one main activity. This is actually stated in the Android guidelines: ”an app
consists of multiple activities loosely bound to each other. Typically, one ac-
tivity is specified as the main activity, which is presented to the user when
launching the application for the first time”. It was found that multiple appli-
cations defined more than one main activity. These main activities represent
multiple entry points into the application which increases the complexity and
complicated their comprehension.

Some apps are only composed of the core

They found that on average half of the LOC of an application represents core
classes. Nearly 25% of the applications they analyzed consisted for 70% of core
classes. As an example they give the Andless application which has about 2300
LOC and only 60 of them are not in core classes.

Figure 3.6: Snapshot of Andless

The main activity of Andless has 1700 LOC and is responsible for a lot of
different tasks:

• Drawing the UI

• Starting & stopping the music

• Searching music on the file system

• Parsing playlists

• Handling cue files

This makes the main activity of Andless a God Clas which represents all
kind of maintenance problems.

3.3.3 Initial Analysis

One of the observations was that roughly 2/3 of all the method invocations in
an Android application is a method invocation to a third party library. I have
chosen half of the applications in the Minelli paper to analyze their method
invocations and see if the claim is correct.

26

3.3. Minelli

Process

Figuring out whether the methods invoked are from third party libraries or
not was done by building a small Eclipse plugin. The plugin creates an AST
of the project classes using the AST parser of the Eclipse JDT library. The
AST consists of nodes that refer to a construct in the source code. One type of
node is referring to method invocations. The AST parser resolves the references
of the method invocation include the package and class name of the method
that is invoked. The package determines whether the method invocation is to
android (the package starts with android), java (the package starts with java or
javax), the project itself (if the package is in the project package list) or other
(all remaining packages, e.g. third party libraries).

Results

The results of the method invocation analysis is given below in Table 3.2 and in
Figure 3.7. The last column of the table, External, is the sum of the Android,
Java and Library calls.

Android Java Library Project External

SipDroid 1743 2073 0 4462 3816 / 8278 (46%)
aLogcat 172 97 0 121 269 / 390 (68%)
AppsOrganizer 975 804 0 1285 1779 / 3064 (58%)
DiskUsage 580 509 0 708 1089 / 1797 (60%)
MythDroid 1668 951 148 1382 2767 / 4149 (66%)
MythMote 623 126 0 228 749 / 977 (76%)
OpenSudoku 1072 369 35 643 1476 / 2119 (69%)
ReplicaIsland 672 753 32 6057 1457 / 7514 (19%)
RingDroid 636 298 4 283 938 / 1221 (76%)
Solitaire 368 76 0 810 444 / 1254 (35%)

Total 8509 6056 219 15979 14784 / 30763 (48%)

Table 3.2: The number of method invocations by application split up for packages.

aL
og

ca
t

M
yt
hM

ot
e

R
in
gD

ro
id

So
lit
ai
re

D
isk

U
sa
ge

O
pe

nS
ud

ok
u

A
pp

sO
rg
an

iz
er

M
yt
hD

ro
id

R
ep

lic
aI
sla

nd

Si
pD

ro
id

0

2,000

4,000

6,000

8,000

Android Java
Library Project

Figure 3.7: The number of method invocations by application split up for packages.

27

3. Related Work

The table also shows the total number of calls and the percentage of external
calls. The average percentage of external calls for the 10 applications analyzed
is 48% which is close to the 67% found in the claim. The difference might result
from the fact that only half of the applications from the original study were
analyzed or perhaps different revisions were analyzed.

Third-Party Libraries

The minor difference in the results is less interesting compared to the fact that
they claim 67% of the calls is to third party libraries whereas Table 3.2 shows
external calls including Android and Java calls. So in their paper Java API
libraries and the Android API libraries are considered third party libraries.
Given this definition a Java or Android application can not be made without
third party libraries.

My definition of third party libraries is more like one found online: ’... a
third-party software component is a reusable software component developed to be
either freely distributed or sold by an entity other than the original vendor
of the development platform.’ Both the Android API libraries and the Java
API libraries that come with Android are distributed by the original vendor of
the development platform. I believe the Android API libraries and the Java
API libraries should be described as system libraries because they are part of
the Android Operating System.

3.4 Fowler

[11] contains an introduction into refactoring, it describes 22 code smells and
consists for a large part of a catalog of refactorings. Many of the refactorings
given by Fowler are methods on how to get from where the code is with the
code smell to a given code pattern without the code smell. One of the reasons
to perform refactoring is that it can make object-oriented code easier to under-
stand. Code that is easier to understand results in shorter development time
because complex software code hinders software development.

Section 2.3.2 describes the 7 code smells used in this paper and the Fowler
refactorings on how to solve them. The rest of this section will be about those
refactorings. Some of these refactorings consists of performing other refactor-
ings, these can be found in [11].

3.4.1 Extract Class

The Extract Class refactoring is used to solve the Large Class code smell. The
change consist of splitting one (large) class into two smaller ones. This refactor-
ing consist of choosing which responsibilities of the large class are moved to a
new class and using the Move Field and the Move Method refactorings to move
the fields and methods related to the responsibilities and testing the result.

28

3.4. Fowler

3.4.2 Extract SubClass

The Extract SubClass refactoring can also be used to solve the Large Class
code smell. The choice between Extract Class and Extract SubClass is based
on whether the class includes functionality only used in some instances and not
in others. The refactoring consists of creating a new subclass and using the
Push Down Method and Push Down Field refactorings to move features into
the subclass and test the result.

3.4.3 Extract Method

The Extract Method refactoring is used to solve the Long Method code smell
and the Duplicate Code code smell. The refactoring consists of creating a new
method, moving part of the code into that new method, adding all variables
referenced in the code as parameters to the new method, adding a call to the
new method where the code used to be and test the result.

3.4.4 Replace Parameter with Method

The Replace Parameter with Method refactoring can be used to solve the Long
Parameter List code smell. This refactoring can be performed when the result
of a method invocation is passed to a method call while the method invocation
can also be done inside the method that is called. The refactoring consist of
replacing references to the parameter inside the method to references to the
method call, perform the Remove Parameter refactoring and test the result.

3.4.5 Preserve Whole Object

The Preserve Whole Object refactoring can be used to solve the Long Parameter
List code smell. This refactoring can be performed when values from an object
are passed as parameters in a method call. The refactoring consists of creating
a new parameter for the object where the data comes from, determine which
parameters should be obtained from the whole object and replace the references
to those parameters with calls to methods of the object, delete the obsolete
parameters in the method and method calls and test the result.

3.4.6 Introduce Parameter Object

The Introduce Parameter Object refactoring can be used to solve the Long
Parameter List code smell. This refactoring can be done when there is a group
of parameters that belong to each other. The refactoring consist of creating
a new class that represents the group of parameters, adding the new class to
the parameter list, moving the parameters from the parameter list into the new
class and replacing all references to the removed parameters with references to
the new class parameter.

29

3. Related Work

3.4.7 Move Method

The Move Method refactoring can be used to solve the Feature Envy code smell.
This refactoring can be done when a method is using or used by more features
of another class than the class on which it is defined.

3.4.8 Replace Parameter with Explicit Methods

The Introduce Parameter Object refactoring can be used to solve the Switch
Statements code smell. The refactoring can be done when a method runs differ-
ence code depending on the value of an enumerated parameter. The refactoring
consists of moving the code in the different cases into new methods and directly
calling these methods.

3.5 Eclipse Parsing Tools

3.5.1 Introduction

Part of this thesis consists of creating an Eclipse plugin that looks for patterns
in a Java project. These patterns are described in Chapter 6. This section
describes the creation of an Eclipse plugin that will use the Eclipse JDT Core
to both analyze and refactor Java code. A great resource for this is the PhD.
dissertation [18] of the author of JDeodorant which is one of the tools used in
the analysis described in Chapter 4. Chapter 6 of his dissertation describes the
JDT Core that JDeodorant uses to first search for code smells and later refactor
the code block to remove the code smell.

3.5.2 Java Elements

Eclipse JDT has two different representations for Java code. The first one is
the Java Model which is a high level representation. The nodes of the Java
Model tree are shown in Figure 3.8.

Figure 3.8: Eclipse Java Package Explorer

30

3.5. Eclipse Parsing Tools

The lowest node types represent the methods and fields. This means the
Java Model tree does not give access to the statements. This is what the low
level representation does.

Full access of the Java source code is provided by the Abstract Syntax Tree
(AST). The AST is build from an ICompilationUnit which is the Java Model
representation of a Java source file. The AST has a CompilationUnit as the
root node. All nodes are subclasses of the ASTNode and are grouped in four
abstract superclasses:

• BodyDeclaration: all body declarations (classes, methods, types, enums,
...)

• Type: all types (primitives, arrays, including generics, ...)

• Statement: all statements within method bodies (for, if, switch, ...)

• Expression: all expressions within statements (method invocations, field
access, assignments, ...)

The AST can also be used to refactor the Java source code by adding,
changing and removing nodes in the AST.

31

Chapter 4

Research Framework

4.1 Introduction

This chapter describes which applications were analyzed and what tools were
used to analyze them. It also explains which code smells were looked for and
how the tools found them.

4.2 Applications

4.2.1 Commercial Applications

Part of my thesis study consisted of analyzing a small collection of commer-
cial applications. I was given the opportunity to do so at a mobile application
development company in Amsterdam. Based on the project size and develop-
ment methods I chose 4 out of their 12 Android applications as part of my
research subject. The names of the applications are anonymized because these
applications were developed for clients and are still in use. The applications
are OO, TC, WW and LS. OO was developed using the Extreme programming
development method. TC was developed by an intern co-worker; the develop-
ment method is unknown. WW and LS were both developed using the waterfall
development method.

4.2.2 Open Source Applications

As previously explained in Section 3.3.1 Minelli used the open source application
store FDroid as a source for his research subject. The main analysis used the
same ten FDroid applications that were used to verify the third party library
claim.

4.2.3 Own Test Application

To test the tools I used for my research framework I have made a simple app
with deliberate code smells.

33

4. Research Framework

4.3 Code Smell Tools

4.3.1 Introduction

The main part of this thesis consisted of finding code smells in Android projects
to determine whether code smells occur more often in Android related code.
This section consists of the selection process of the tools to find code smells and
a description of the selected tools.

Searching for tools for code smells in Android applications it became clear
that there were not many tools available yet. Since most of the source code of
an Android application consists of Java code the search was extended to include
tools that find code smells in Java applications. All of the tools described in this
chapter with the exception of Lint are not developed for Android application
analysis.

Lint is the only analysis tool found, that was developed specifically for
analysis of Android applications. It is a tool that is part of the Android SDK; it
performs most of the functions an Android developer may require of an Android
source code analyzing tool.

The following tools were available:

• JDeodorant

• Lint

• Checkstyle

• PMD

• UCDetector

A combination of these tools are recommended by Android developers so
this will be a good starting point.

In [8] some of the tools above are mentioned and three others:

• iPlasma

• Decor

• Stench Blossom

Basic properties of these tools are given in Table 4.1.

4.3.2 JDeodorant

JDeodorant [18] is an Eclipse plugin first released in late 2007. It is made by
Nikolaos Tsantalis and identifies bad smells; it is also able to resolve smells by
applying appropriate refactorings. It can handle the God Class, Long Method,
Type Checking and Feature Envy code smells. Support for the code smell
Duplicate Code is under development.

The output is saved to a text file after pressing a button and entering a
filename. The output contains the name of code smell found with the class

34

4.3. Code Smell Tools

Tool Name Eclipse Plugin / Supported Supports Code
Standalone Languages Refactoring Available

JDeodorant [18] Eclipse Plugin Java Yes Yes

Lint [4] Eclipse Plugin, Java, XML Partially Yes
Standalone

Checkstyle [2] Eclipse Plugin, Java No Yes
Standalone

PMD [5] Eclipse Plugin, Java No Yes
Standalone

Decor [16] Plugin of Ptidej Java No No
(part of tool suite)

iPlasma [14] Standalone Java, C++ No No

Stench Blossom [17] Eclipse Plugin Java No Yes

UCDetector [7] Eclipse Plugin Java No Yes

Table 4.1: Basic properties of the code smell tools

name and method name that contains the smell. Pressing a button for each
project would take too long so I requested the source code from the author.
After receiving the source code and making some changes the output could be
written to a XML file.

God Class

God Class code smells are found by looking for Extract Class refactoring op-
portunities using the Eclipse framework.

Long Method

Long Method code smells are found by searching for Extract Method refactoring
opportunities using slicing techniques.

Type Checking

JDeodorant distinguishes between two different Type Checking code smell cases.
The first one is where the conditional code fragment is a switch statement and
the second one is where it is an if / else if structure.

Feature Envy

Feature Envy code smells are found by looking for Move Method refactoring
opportunities: it searches for methods that will use less foreign resources when
moved to another class.

4.3.3 Lint

Lint is a static code analysis tool released as part of the Android Developer Tools
(ADT), the Android Eclipse plugin. It is developed by Google and released in
late 2011 along ADT 16; the version used in this thesis is ADT 21. It is both
a standalone application and an Eclipse plugin that analyzes Android project

35

4. Research Framework

source files. So far this is the only static analysis tool specificly targeting
Android. The description of the tool does not mention checking for code smells
but since this is the only tool specificly aimed for Android it is included in the
analysis to see if it really does not include any functions for code smell checking.
The output is written to disk into a XML or text file, the contents can be seen
in C.1.

4.3.4 PMD

PMD is a tool that analyzes Java source code. It looks for potential problems
or bugs like dead code, empty try/catch/finally/switch statements, unused lo-
cal variables or parameters, and duplicated code. PMD is able to detect Large
Class, Long Method, Long Parameter List and Duplicated Code smells by look-
ing at metrics for the first three and comparing lines of code for the last one. In
a settings file the minimum thresholds values for the metrics used by PMD can
be set. The output of PMD is an XML file that contains the location (source
file name with line number) and the type of the code smell that was found.

There is no official definition of what PMD stands for but on the PMD
wikipedia page it says the following:

it has several unofficial names, the most appropriate probably
being Programming Mistake Detector [6]

Large Class

The best option PMD has for searching Large Class code smells is the LOC of
the class. This is not how Fowler describes this code smell (number of variables)
but it is the option that best fits the actual definition. PMD looks for the Large
Class code smell using the ExcessiveClassLength rule. The minimum LOC of
the class which is considered a Large Class code smell is 1000 by default.

Long Method

The Long Method code smell is found using the ExcessiveMethodLength rule.
It looks for the LOC of the method. The minimum LOC of the method which
is considered a Long Method code smell is 100 by default.

Long Parameter List

The Long Parameter List code smell is found using the ExcessiveParameterList
rule. The minimum number of parameters it will report is 10 by default.

Duplicate Code

The Duplicate Code code smell is found by looking for a sequence of lines that
appears at multiple places.

36

4.3. Code Smell Tools

4.3.5 Checkstyle

Checkstyle is a static analysis tool first released in 2001. In this thesis version
5.6 is used. Its main function is to help developers write Java code that adheres
to a coding standard. A number of code smells are related to the properties
that the Checkstyle checks look for: the Long Method code smell can be found
using the MethodLength module of Checkstyle which looks for long methods
and constructors. Other code smells that Checkstyle can find are Large Class,
Long Parameter List and Duplicated Code. Metrics like how many lines of code
are required to be considered a Long Method code smell are configurable by
settings a maximum allowed threshold value.

Checkstyle uses a parser generator to construct an abstract syntax tree
(AST). The resulting AST represents blocks of code consisting of classes, meth-
ods, and other control structures. Checkstyle provides full access to this AST
which allows others to extend Checkstyle by writing checks themselves.

The output of Checkstyle is a XML file containing the location (source file
name with line number) and the type of the code smells that were found.

Long Method

The Long Method code smell is found using the MethodLength check, it looks
for the LOC of a method. The maximum allowed value is 150 by default which
means a method having 151 or more LOC is considered a code smell.

Long Parameter List

The Long Parameter List code smell can be found using the ParameterNumber
check. The maximum number of parameters allowed is 7 which means 8 or
more parameters are considered a code smell.

Duplicate Code

The Duplicate Code code smell is found by using the StrictDuplicateCode check.
It searches for a sequence of lines that appears at multiple places. The maximum
length of a sequence is 12 by default.

4.3.6 Decor

Decor is a platform for software analysis. One of the functions is finding anti
patterns (or code smells). The tool can find six code smells. Of all the tools
listed Decor is the only one that is not freely available. It is part of a tool suite
which is available upon request.

4.3.7 iPlasma

iPlasma is an integrated environment for quality analysis of object-oriented
software systems. It includes support for all the necessary phases of analysis:
from model extraction to high-level metrics-based analysis. It is able to detect

37

4. Research Framework

code duplication. It can be used to analyze large open-source systems like
Eclipse (which at the time had 1.4 million lines of code).

It does not appear to be possible to export any specific code smell related
data. An image of design flaws can be exported but no information is given
about the image. An ’Interpretation of the Overview Pyramid’ can also be ex-
ported from this tool. It gives metrics such as Cyclomatic Complexity, Lines Of
Code, Number Of Methods, Number Of Classes, Number Of Packages, Number
of distinct method-calls.

It also gives a summary which contains an indication of the Large Class and
Long Method code smells. Below is an example of this summary for the OO
application:

• Classes tend to:

– be rather large (i.e. they define many methods);

– be organized in rather fine-grained packages (i.e. few classes per package);

• Methods tend to:

– be rather long yet having a rather simple logic (i.e. few conditional branches);

– call few methods (low coupling intensity) from few other classes (low coupling dispersion);

4.3.8 Stench Blossom

Stench Blossom is an Eclipse plugin that provides an interactive visualization
environment to give programmers a quick and high level overview of the code
smells in their code and their origin. The plugin works inside the Eclipse code
editor and only shows code smells for the source code that is currently open.

The plugin shows the code smell results visually with the help of as a set of
petals on the right side of the source code. The size of a petal is proportional
to the strength of the code smell it refers to. The tool can detect eight code
smells: Data Clumps, Feature Envy, Instanceof, Large Class, Long Method,
Message Chains, Switch Statements and Typecast.

It appears to only function on old Eclipse releases. It works on Eclipse 3.3
while the Android Development Tools is bundled with Eclipse 4.2. Trying to
get ADT to function in Eclipse 3.3 failed and getting Stench Blossom working
on Eclipse 4.2 also failed.

4.3.9 UCDetector

UCDetector can detect three different problems with Java Code: unnecessary
code, code where the visibility can be changed and methods or fields which can
be final. The code had to be changed to automate the process just like with
JDeodorant.

The output of UCDetector is a XML file containing the package name, class
name and method names of the problems it finds.

38

4.3. Code Smell Tools

Dead Code

UCDetector finds Dead Code code smells that are called unnecessary code prob-
lems.

4.3.10 Samoa

Samoa itself was not included because the authors did not provide access to the
source code and I was not allowed to share the source code of the commercial
applications.

4.3.11 Supported Code Smells

Table 4.2 gives an overview of what code smells the tools support. Those marked
with a X are described in the previous sections while the ones marked with a
star indicate the tool did not work as expected or was not available.

JD
eo
d
or
an

t

L
in
t

C
h
ec
ks
ty
le

P
M
D

D
ec
or

iP
la
sm

a

S
te
n
ch

B
lo
ss
om

U
C
D
et
ec
to
r

T
ot
al

God Class X 1
Large Class X * * 3
Long Method X X X * * 5
Long Parameter List X X * 3
Feature Envy X * * 3
Switch Statements X * 2
Duplicate Code X X * 2
Dead Code * X 2

Total 4 0 3 5 3 3 3 1

Table 4.2: Code smell support

As can be seen most tools support the Long Method code smell, followed
by Large Class, Long Parameter List and Feature Envy.

Lint does not support any of the code smells mentioned above. It does find
problems in Android layout files, e.g. when a view can be removed without
altering the result or when two views can be merged while the UI remains the
same. These might be considered layout smells: the current structure is not
wrong but changing it to what Lint suggests will improve the structure. The
Lint results for OO and SipDroid are shown in Table C.1.

4.3.12 Selection

Tools

Not all of the tools that were selected based on their supported code smells
were actually usable: Decor as said before is not freely available, iPlasma does
not provide any useful information, Stench Blossom is not compatible with the

39

4. Research Framework

newer versions of Eclipse that Android requires and Lint does not find any
code smells. Only JDeodorant, Checkstyle, PMD and UCDetector were used
as analysis tools. All 4 tools have enough information in their output to find
the package name, class name and method name of the code smells found.

Code Smells

Out of the remaining tools at least two support the following code smells: Long
Method, Large Class (assuming God Class and Large Class are similar) and
Long Parameter List. Feature Envy is supported by only one of the remaining
tools but by three of the initial tools so it was included. And UCDetector is
included to have at least one code smell not described by Fowler, instead it
comes from [13].

This means the analysis looked for the Long Method, Large Class, Long
Parameter List, Feature Envy and Dead Code code smells.

4.3.13 Tool Validation

To validate the tools selected an analysis was done on a subset of the applica-
tions and these results were verified manually to validate the code smells found.
The tool validation was performed a number of times to find the tool parame-
ters (e.g. PMD and Checkstyle method and class length thresholds) that give
the best results.

The validation of the tools and a discussion of the results can be found in
Appendix B, a summary is given in Table 4.3. The table contains the number
of code smells where I agree with the findings of the tool and the total number
of code smells found by the tool.

As can be seen from the table I agreed with all code smells found except
for one smell found in OO: a method of only 3 lines of code which JDeodorant
claimed was a Long Method code smell.

OO SipDroid Custom App

JDeodorant

God Class 5 / 5 3 / 3 1 / 1

Long Method 9 / 10 9 / 9 3 / 3

Checkstyle

Long Method 15 / 15 10 / 10 3 / 3

PMD

Long Method 15 / 15 10 / 10 3 / 3

Large Class 2 / 2 3 / 3 1 / 1

Table 4.3: Summary of tool validation results with agreed and total code smell count

While performing the tool validation I found something interesting about
JDeodorant. As described in Section 4.3.2 JDeodorant looks for God Class
code smells by finding opportunities to perform the Extract Class refactoring

40

4.3. Code Smell Tools

of Eclipse. The result is that the code shown below is considered a God Class
because the two fields and their corresponding methods can be separated.

1 public class GodClass {

2 private S t r i n g s t r 1 ;
3 private S t r i n g s t r 2 ;

4 private void l o a d S t r i n g 1 () {
5 s t r 1 = " abc " ;
6 }

7 private void l o a d S t r i n g 2 () {
8 s t r 2 = " abc " ;
9 }

10 }

This is a good example of the difference between a God Class of JDeodorant
and a Large Class of PMD.

41

Chapter 5

Analysis

5.1 Introduction
In Chapter 4 the applications of this analysis and the tools to be used were
described. This Chapter will describe the details and the results of the analysis.

5.1.1 Android Relevance

During the analysis methods or classes were classified as specific to mobile
development or not. In Section 3.3 Minelli classifies core elements as ”classes
that inherit from the mobile platform SDK’s base classes” with the base classes
being defined as Activities and Services. In this thesis this narrow definition is
extended to include all other Android components like Fragments and Adapters
(see 2.2.1). In the extended definition core classes are described as classes
that inherit from the mobile platform SDK’s classes where the mobile platform
SDK’s classes are all classes in the Android API library.

5.1.2 What was Analyzed

In the analysis six code smells (Large Class, Long Method, Feature Envy, Type
Checking, Long parameter List and Dead Code) were looked at using the four
tools described in Chapter 4. The output included the location of the code smell
and whether the code smell was found in a core class or not. We calculated the
NLOC and which percentage of it is related to Android.

5.1.3 Expected Results

• Section 2.3.3 discussed why the Large Class, Long Method and Switch
Statement code smells are more likely to occur in core classes.

• There are no indications that the Feature Envy and Dead Code code
smells are more likely to occur in core classes.

• Long Parameter List smells are probably less likely to occur in core classes
because of the many methods that need to be overridden (e.g. the lifecycle
methods in Activities).

43

5. Analysis

• Type Checking smells are probably more likely to occur in core classes
because most application screens have a menu. In Android menu item
clicks are usually handled by a method containing a switch statement to
check which menuitem was clicked.

The tool validation phase gave some insights into which code smells can be
expected. A large number of Large Class and Long Method code smells were
found in a small piece of code. No Long Parameter List code smells were found.

5.2 Process
Below is a description given of the analysis process. It includes a description of
how the tools work and how it is determined whether the code smell is related
to mobile development or not.

JDeodorant and UCDetector required some modifications to simplify get-
ting the results, as described in Section 4.3.2 and 4.3.9, respectively. After
Eclipse was started from the command line, the plugins started their analysis
and the output was written to disk. PMD and Checkstyle were also started
from the command line and their output was also written to disk. During the
measurements we also calculate the total NLOC and the total NLOC found in
core classes.

The next step in the analysis was to figure out whether the code smells
found were specific to mobile application development. For JDeodorant this
was done by another modification of JDeodorant; an AST was created to build
a list of classes considered to be core classes. The output of the tools both
included the code smells and whether they were in a core class or not.

At the end of the process we know the following:

• The number of code smells in core classes: CoreCS

• The total NLOC in core classes: CoreNLOC

• The number of code smells in non-core classes: NonCoreCS

• The total NLOC in non-core classes: NonCoreNLOC

5.3 Results

5.3.1 JDeodorant

The JDeodorant results of the analysis can be found in Appendix C.2.
The results of the smallest commercial application, LS, show that out of the

17 code smells found in the application only 1 is not in a core class. This is
to be expected of this small application given that it consists of a number of
Activity classes, a few model classes and two util classes.

5.3.2 Checkstyle

Checkstyle results are in Appendix C.3.

44

5.4. Code Smells in Core Classes

5.3.3 PMD

PMD results are in Appendix C.4.
Most of the results of Checkstyle and PMD are the same which can be

explained by having the same threshold values but there is a small variation in
the Long Method results which might be caused by Checkstyle including the
method signature in the method length whereas PMD only includes the method
body.

5.3.4 UCDetector

UCDetector results are in Appendix C.5.

5.3.5 NLOC

As described above we also calculate the total number of NLOC, the number of
NLOC in core classes and the percentage of CoreNLOC (CoreNLOC

CoreNLOC+NonCoreNLOC).
These metrics are shown in Table 5.1.

Project CoreNLOC NonCoreNLOC CoreNLOC %

OO 9727 8397 53 %
LS 1191 553 68 %
TM 3115 2690 53 %
WW 4499 915 83 %
SipDroid 5254 30929 14 %
aLogcat 719 659 52 %
AppsOrganizer 3013 16741 15 %
DiskUsage 1925 5652 25 %
MythDroid 9361 7135 56 %
MythMote 2348 1058 68 %
OpenSudoku 4216 3411 55 %
ReplicaIsland 3976 21345 15 %
RingDroid 3191 2636 54 %
Solitaire 1011 3371 23 %

Total 53546 105492 33 %

Table 5.1: CoreNLOC and NonCoreNLOC for all projects.

5.4 Code Smells in Core Classes

5.4.1 Introduction

From the analysis results we derived the following metrics: CoreCS, CoreNLOC,
NonCoreCS and NonCoreNLOC.

Using these metrics we calculate the number of code smells found per 1,000
lines of code by calculating CoreCS

CoreNLOC/1000 and NonCoreCS
NonCoreNLOC/1000 .

45

5. Analysis

5.4.2 Results

Table 5.2 and Table 5.3 show the number of code smells per 1,000 lines of code
for all tools and code smells. Table 5.4 shows the results grouped by code smell.

Long Method Large Class
JDeodorant PMD Checkstyle JDeodorant PMD

Core Non-
Core Core Non-

Core Core Non-
Core Core Non-

Core Core Non-
Core

OO 5.8 4.5 10.3 4.4 10.8 4.6 2.5 2.5 2.9 2.4
LS 9.2 1.8 10.1 3.6 11.8 3.6 2.5 0 4.2 3.6
TM 4.8 4.5 6.4 5.9 6.7 5.9 1.6 2.2 1.6 2.6
WW 9.1 1.1 10.2 1.1 10.4 1.1 1.8 4.4 3.1 2.2
SipDroid 8.2 6.8 7.2 2.7 7.2 2.7 1.5 1.5 2.1 1.8
aLogcat 7.0 4.6 5.6 4.6 7.0 4.6 4.2 4.6 1.4 1.5
AppsOrganizer 2.7 4.0 5.0 0.8 5.0 1.0 2.7 1.6 2.0 1.6
DiskUsage 5.7 7.1 5.7 5.7 5.7 5.8 2.1 3.0 2.6 1.6
MythDroid 5.1 4.2 7.9 5.3 8.1 5.5 2.2 2.1 2.7 2.7
MythMote 6.0 1.9 5.5 10.4 6.8 10.4 2.6 2.8 2.1 2.8
OpenSudoku 6.6 6.2 5.9 3.5 6.2 3.8 2.1 3.8 3.3 2.1
ReplicaIsland 3.8 9.1 3.8 6.5 4.0 6.5 1.5 2.2 2.0 1.7
RingDroid 6.9 6.1 6.0 5.7 6.0 5.7 1.6 1.5 1.3 2.3
Solitaire 11.9 6.8 11.9 3.9 11.9 4.2 2.0 2.4 2.0 2.1

All Apps 6.1 6.2 7.5 3.9 7.9 4.0 2.1 2.0 2.5 1.9

Table 5.2: Number of code smells found per 1,000 LOC for Long Method and Large Class.

Long Parameter List Feature Envy Type Checking Dead Code
PMD Checkstyle JDeodorant JDeodorant UCDetector

Core Non-
Core Core Non-

Core Core Non-
Core Core Non-

Core Core Non-
Core

OO 0.1 0.1 0.1 0.1 1.2 0.6 1.1 0 1.7 2.5
LS 0 0 0 0 1.7 0 0 0 0 10.8
TM 0 0 0 0 2.2 0.4 0.3 0.7 1.9 6.3
WW 0 0 0 0 4.2 0 0 0 1.6 8.7
SipDroid 0.2 0.4 0.2 0.4 0.4 1.2 1.9 0.2 2.5 1.6
aLogcat 0 0 0 0 8.3 3.0 0 0 1.4 3.0
AppsOrganizer 0 0 0 0 0.7 0.7 0.7 <0.1 2.3 6.2
DiskUsage 0 1.1 0 1.1 1.6 1.4 0 0.5 2.6 0.7
MythDroid 0 0.1 0 0.1 0.1 0.3 0.3 0 2.7 3.8
MythMote 0 0 0 0 1.3 3.8 0 0 3.4 0.9
OpenSudoku 0 0 0 0 1.7 2.6 0.9 1.5 0.9 2.1
ReplicaIsland 0 0.7 0 0.7 0.3 1.7 2.0 0.9 0.8 1.3
RingDroid 0 0 0 0 0 0 0.3 0.4 0.9 0.8
Solitaire 0 0 0 0 2.0 1.8 5.9 2.4 0 1.5

All Apps <0.1 0.3 <0.1 0.3 1.3 1.2 0.9 0.4 1.8 2.7

Table 5.3: Number of code smells found per 1,000 LOC for Long Parameter List, Feature Envy,
Type Checking and Dead Code.

46

5.4. Code Smells in Core Classes

5.4.3 Code Smells

Code Smell Core Non-Core

Long Method 7.2 4.7
Large Class 2.3 2.0
Long Parameter List <0.1 0.3
Feature Envy 1.3 1.2
Type Checking 0.9 0.4
Dead Code 1.8 2.7

Table 5.4: Number of code smells found per 1,000 LOC grouped by Code Smell.

The results in Table 5.4 give an overview of the results grouped by code
smell.

Long Method

It shows that the Long Method code smell is almost twice as likely to occur in
core classes which was expected.

Large Class

It also shows that the Large Class code smell is almost as likely to occur in
core classes as in non-core classes which was not expected. A possible reason
for this could be that the number of Activity classes compared with the total
number of classes is small.

Long Parameter List

The Long Parameter List code smell is almost non-existent in core classes with
less than 1 Long Parameter List code smell per 10,000 LOC.

Feature Envy

The Feature Envy code smell, like the Large Class smell, is almost as likely to
occur in core classes as in non-core classes.

Type Checking

The Type Checking code smell was found less than once every 1,000 LOC but
was found twice as often in core classes. This was expected, the way Android
handles menu item clicks most likely contributed.

Dead Code

The Dead Code code smell is more likely to be found in non-core classes.

47

Chapter 6

Recommendations

6.1 Introductions

Based on the results in the previous chapter there are a number of recommen-
dations that can be given to Android application developers. Three of these
recommendations are selected for a refactoring strategy for code smells. This
implementation is done in a Eclipse plugin and the before and after code smell
count is given.

For the first case a lot of details are given on how something is done in the
plugin, e.g. finding all calls to getView, for the other cases this information is
left out.

6.2 Case 1: Adapter Implementation

The Adapter.getView implementation from the Android guidelines has been
described in Section 2.2.3.

Improving the getView implementation is done by splitting the method in
two parts as discussed before. The first part consists of setting a ViewHolder
object, either from a newly created view or from the recycled view. In the case
a new view is created, the references of the UI components are set using the
getViewById method. The second part consists of setting the views to reflect
the data, like a contact name or a contact photo.

6.2.1 Identify

Identifying the getView methods is the first step to changing it. The getView
method that needs to be found extends the getView method of android.widget.Adapter.

Once these methods have been found we can look for specific identifiers in
the method body to see if it can be improved.

Figure 6.1 shows the code from Section 2.2.3. What we can look for:

• A local field for the ViewHolder which references a class with only fields,
no methods or constructors (Line 3).

49

6. Recommendations

1 @Override
2 public View getView (int p o s i t i o n , View convertView , ViewGroup

parent) {

3 ContactsViewHolder viewHolder ;

4 i f (convertView == null) {
5 convertView = l a y o u t I n f l a t e r . i n f l a t e (R. layout . contact_row ,

parent , fa l se) ;

6 viewHolder = new ContactsViewHolder () ;
7 viewHolder . txName = (TextView) convertView . findViewById (R. id .

tvName) ;
8 viewHolder . txEmail = (TextView) convertView . findViewById (R. id

. tvEmail) ;
9 viewHolder . txPhone = (TextView) convertView . findViewById (R. id

. tvPhoneNumber) ;

10 convertView . setTag (viewHolder) ;
11 } else {
12 viewHolder = (ContactsViewHolder) convertView . getTag () ;
13 }

14 Contact contact = getItem (p o s i t i o n) ;
15 viewHolder . txName . setText (contact . getName ()) ;
16 viewHolder . txEmail . setText (contact . getEmail ()) ;
17 viewHolder . txPhone . setText (contact . getPhoneNumber ()) ;

18 return convertView ;
19 }

20 class ContactsViewHolder {
21 TextView txName ;
22 TextView txEmail ;
23 TextView txPhone ;
24 }

Figure 6.1: Example of a getView method following the Android guidelines.

• An if statement with the left operand being the convertView parameter,
the equals or not equals operator and the right operand is null (Line 4).

• Inside the branch of the if/else where the convertView is null there is a
inflate method call (Line 5).

• Line 6: A new instance of the ViewHolder class is made.

• Line 7-9: References to the child views will be set to local fields of the
ViewHolder class instance just created using calls to findViewById(resourceId).

• Line 10: The ViewHolder instance will be stored inside the view as a tag
by calling setTag().

• Line 12: In the branch of the if/else where the convertView is not null,
only the ViewHolder instance is retrieved by calling getTag on the con-
vertView.

50

6.2. Case 1: Adapter Implementation

Line 7 to 9 can be simplified by adding a constructor to the ViewHolder
class which takes the view as an argument. In the constructor the findViewById
method calls are made.

The second part of the getView method also has certain identifiers:

• Line 14: A call to getItem(position) which gets the model object to show
to the user using the view that will be returned.

• Line 15-17: Calls to the different set methods for the child views called
on the fields of the ViewHolder class.

This part can be simplified by creating a setItem method in the ViewHolder
class that will perform all the calls to the different set methods for the child
views. The result can be seen in Figure 6.2.

1 @Override
2 public View getView (int p o s i t i o n , View convertView , ViewGroup

parent) {

3 ContactsViewHolder viewHolder ;

4 i f (convertView == null) {
5 convertView = l a y o u t I n f l a t e r . i n f l a t e (R. layout . contact_row ,

parent , fa l se) ;

6 viewHolder = new ContactsViewHolder (convertView) ;

7 convertView . setTag (viewHolder) ;
8 } else {
9 viewHolder = (ContactsViewHolder) convertView . getTag () ;

10 }

11 viewHolder . set I tem (getItem (p o s i t i o n)) ;

12 return convertView ;
13 }

14 class ContactsViewHolder {
15 TextView txName ;
16 TextView txEmails ;
17 TextView txPhones ;

18 public ContactsViewHolder (View convertView) {
19 txName = (TextView) convertView . findViewById (R. id . tvName) ;
20 txEmails = (TextView) convertView . findViewById (R. id . tvEmails)

;
21 txPhones = (TextView) convertView . findViewById (R. id . tvNumbers

) ;
22 }

23 public void set I tem (Contact contact) {
24 txName . setText (contact . getName ()) ;
25 txEmails . setText (contact . getEmai ls () . t o S t r i n g ()) ;
26 txPhones . setText (contact . getNumbers () . t o S t r i n g ()) ;
27 }
28 }

Figure 6.2: Refactored Android.getView implementation from Figure 6.1.

51

6. Recommendations

Splitting the two parts is done by expanding the use of the ViewHolder
class: the findViewById code is moved into the constructor and setting the
views to reflect the data is moved into a new method called setItem with the
data object as an argument. The number of lines increases but by separating
the two functions the getView method code becomes more clear, the possibility
of a Long Method code smell in the getView method has decreased.

Performing a refactoring for these changes can be done by an Eclipse plugin.
Doing this might not be easy cause of the many different structures the AST
can have.

6.2.2 Refactor Implementation

After building an AST we look for the signature of methods that override the
method public abstract android.view.View getView(int, android.view.View, an-
droid.view.ViewGroup) from the class android.widget.Adapter.

These are the steps:

• Find the local field that references the ViewHolder class. In the AST of
JDeodorant this is done by looking for a LocalVariableDeclarationObject.
Since there can be many local fields in the getView method unrelated
to the ViewHolder class we look for classes that have no methods or
constructors.

• Find the if statement with the convertView being the left operand. We
start by getting the name of the second parameter of the getView method,
this has to be the left operand. The operator must be equals or not equals.
The right operand must be null. We find all calls to findViewById, these
will be moved into the constructor of the ViewHolder class.

• Find all method calls performed on the fields in the ViewHolder class.
These will be moved into the setItem method of the ViewHolder class.

6.2.3 Limitations

The getView method from Figure 2.3 is the most common one but obviously
there can be small changes to the code block while it still functions as expected.

One of the changes the Eclipse plugin doesn’t handle is different expres-
sions, e.g. the convertView == null expression can also be a !(convertView
instanceof View) expression. Given this and all the other little changes possible
makes it harder to identify certain classes, fields and methods required for the
refactoring. For simplicity the Eclipse plugin only works on the most common
ViewHolder pattern template. The Eclipse plugin does handle simple changes
like a different name for a parameter or local field.

52

6.3. Case 2: ActivityView Class

6.3 Case 2: ActivityView Class
The user interface is inflated from a XML into a root View object. Inside this
root View object are other views that can be found by calling findViewById(int
layoutId). Getting these references is done in the onCreate method.

The references to the Views are usually fields in the Activity class. I suggest
making a ActivityViewHolder class to hold the references to the views. This
will move a lot of the code from the onCreate method into the new class.

6.3.1 Refactor Implementation

Performing this refactor should not be very difficult:

• Find all Activity.findViewById() calls in the onCreate method.

• All fields that are set from the result of these calls will be moved into the
new ActivityViewHolder class and all the references will be updated.

• The calls themselves will be moved into the constructor of this new class.

6.3.2 Eclipse Plugin

The actual Eclipse plugin was not that difficult to make. As said above it
finds all calls to findViewById in the onCreate. All the fields that are set us-
ing the findViewById call are moved into a inner class of the Activity called
ActivityViewHolder. A new field is added to the Activity to refer to Activi-
tyViewHolder. It is set after the setContentView call. Just like with the pre-
vious case the fields from the Activity are moved into the ActivityViewHolder
class and all the findViewById calls that set these fields are moved into the
constructor of the ActivityViewHolder class. Finally the references to the fields
are updated to point to the ActivityViewHolder field.

6.4 Case 3: onClick listener in XML
As said above the onCreate method inflates the user interface. It is also used to
set all listeners for all the views. This usually means setting a OnClickListener
for each view. Because this requires anonymous inner classes this will increase
the number of lines by a lot. Android also supports setting a XML attribute
named onClick for each view which points to a method that is called when
the view is clicked. This simplifies the onCreate method and also improves the
readability of the class if a good name is chosen for these methods, something
like onClickLoginButton() for when a LoginButton is clicked.

6.4.1 Refactor Implementation

Performing this refactoring might be difficult:

• Find the setContentView(resourceLayoutId) call to get the layout xml
file.

53

6. Recommendations

• Find all setOnClickListener calls and the view objects it is called on.

• Find the call to findViewById that sets the view object. This findView-
ById call has the resourceId that corresponds to the view object. From
this we can find the xml element in the layout file that corresponds to
the view object. We will need to add an ’onClick’ attribute to this XML
element.

• The method body of the run method in the OnClickListener needs to
be moved to a public class method of the activity and the name of that
method needs to be set as the value of the ’onClick’ attribute.

6.4.2 Eclipse Plugin

It took a while to get it working correctly, mostly because XML editing is not
easy to get right in Eclipse.

The Eclipse plugin starts with looking for Activities that have a setCon-
tentView(int layoutId) call in their onCreate method. This will tell the layout
File we are looking for.

With the correct layout file the plugin looks for all calls to setOnClick-
Listener. There are different AST structures that can point to this call. The
expression on which the method is called can be a variable, a method invocation
or a parenthesized version of either, for example:

• button1.setOnClickListener(...);

• findViewById(R.id.button1).setOnClickListener(...);

• (findViewById(R.id.button1)).setOnClickListener(...);

The argument of the setOnClickListener call is an anonymous inner class
of the type OnClickListener. It has only a single method which is the onClick
method. The code block of this method will be used during the refactoring.

From this method call the view id needs to be found. When the expression
is a findViewById call it is simple because the argument is the view id but in
the case of a variable the place where it is set using the findViewById call needs
to be found.

When both the layout file, the setOnClickListener call with the code block
and the view id are known the refactoring begins. The onClick attribute is
added to the child matching the view id in the layout file. The value of this
attribute will be onClick_[ViewId] in the assumption that the developer has
chosen a view id that represents the view correctly. Another reason to add the
view id to the method name is that it is unique. After saving the layout file
the onClick method is added to the Activity class and the code block from the
OnClickListener is moved to this method. Finally the setOnClickListener call
can be removed.

54

6.5. Case 4: onClick in MenuItem

6.5 Case 4: onClick in MenuItem

The onClick XML attribute is also supported for MenuItem UI components.
MenuItems are responsible for the large switch code blocks which result in the
Long Method code smells found in the onMenuItemClicked methods.

6.6 Case 5: Resource Code Smells

As described in Section 2.2.1 resources in Android can be referenced in source
code using resource ids.

A lot of methods to change properties of views accept both the resource
value itself or the resource id. The following two lines of code are exactly the
same:

imageView . setImageDrawable (getResources () . getDrawable (R.
drawable . image1)) ;

imageView . setImageResource (R. drawable . image1) ;

Obviously the second line of code is easier to read but both are more or less
readable. Consider the following case:

textView . setCompoundDrawablesWithIntrinsicBounds (
getResources () . getDrawable (R. drawable . image1) ,
getResources () . getDrawable (R. drawable . image2) ,
getResources () . getDrawable (R. drawable . image3) ,
getResources () . getDrawable (R. drawable . image4)) ;

textView . setCompoundDrawablesWithIntrinsicBounds (
R. drawable . image1 , R. drawable . image2 ,
R. drawable . image3 , R. drawable . image4) ;

Another method that accept both the resource value and the resource id is
the TextView.setText method.

Doing a quick search in the apps shows that this is a common error Android
developers make. Refactoring the code to the shorter version makes the code a
lot easier to read.

6.7 Refactor Results

As explained above an Eclipse plugin was made that performs the refactorings
described in the first 3 cases. All 3 refactorings should help limit Long Method
code smells.

This section will give the before and after refactoring code smells results by
performing the analysis described in 5 again after refactoring.

Because running the refactoring requires a manual check to ensure that
everything went ok the results are limited to OO and SipDroid and for finding
code smells I will be using both PMD and Checkstyle.

55

6. Recommendations

6.7.1 Case 1: Adapter Implementation

The target of case 1 is long getView methods caused by the getView method
requiring to do two things. Before refactoring OO had 12 getView methods
that were considered Long Method code smells, after refactoring it was reduced
to 4. The remaining getView methods did not have the ViewHolder pattern
implemented at all which is a requirement for the plugin to function.

6.7.2 Case 2: ActivityView Class

The target of case 2 is long onCreate methods caused by many calls to findView-
ById to get all references too views. The solution is to introduce a ViewHolder
like adapters have to Activities. In OO 13 ActivityViewHolders are added. This
did not result in removing any Long Method smells. This means the findView-
ById calls were not the only reason why some of the onCreate methods were
considered Long Method smells. I still believe it is an improvement to have the
views in their own class and finding the references in the constructor of that
class because it makes the onCreate method easier to understand.

6.7.3 Case 3: onClick listener in XML

The target of case 3 is long onCreate methods caused by many setOnClick-
Listener calls with a large inner anonymous class with the onClick method.
Before refactoring OO had 13 onCreate methods that were considered Long
Method code smells, after refactoring this is reduced to 7. The remaining on-
Create methods still considered Long Method smells are so long because of
other listeners with anonymous inner classes. These listeners do not have a
corresponding XML attribute so the refactoring used here can not be adapted
to also handle these listeners.

56

Chapter 7

Conclusion and Future Work

7.1 Conclusion

This Section gives an overview of the three research questions (Section 1.4) and
where they were answered.

7.1.1 RQ1: What are the main differences between mobile
software applications and traditional software
applications?

RQ1 was answered in Section 2.2, the differences include:

• Smaller number of developers

• Short lifespan and development cycle

• Regular platform updates

• Limited processing power

• Smaller project size

• External libraries

• Less inheritance

• High Interactive Applications

Limited processing power was further discussed in Section 3.2. In Section
6.2 the adapter implementation, which helps with keeping the required power
consumption low, is refactored to make is less susceptible to the Long Method
code smell.

57

7. Conclusion and Future Work

7.1.2 RQ2: Which tools can be used to look for code smells in
mobile applications and what is the quality of these
tools?

RQ2 consists of two parts, which tools can be used to look for code smells and
what the quality is of these tools, and both were answered in Section 4.3.

The tools that gave the best results, and therefore were used in the analysis,
are JDeodorant, PMD, Checkstyle and UCDetector.

7.1.3 RQ3: Is mobile application code more prone to code
smells and if it is how can this risk be limited?

The first part of RQ3, if mobile application code is more prone to code smells,
was answered in Section 5.4. The results showed that:

• the Long Method code smell was almost twice as likely to occur in mobile
application code.

• the Large Class and Feature Envy code smell were found equally in mobile
application code and none mobile application code.

• the Type Checking code smell was twice as likely to occur in mobile
application code.

• the Long Parameter List code smell was almost non-existent in mobile
application code with less than 1 Long Parameter List code smell per
10,000 LOC. It was found three times as much in none mobile application
code but with these low values that might not be very significant.

• the Dead Code code smell was more likely to occur in none mobile appli-
cation code.

The second part of RQ3, how mobile application code smells can be limited,
was answered in Chapter 6. Five refactorings were described and three of them
were implemented in a Eclipse plugin to see if the code smells could be reduced.
Two of the refactorings were successful with code smells dropping from 12 to
4 for the adapter implementation refactoring and from 13 to 7 for the onClick
listener in XML.

7.2 Reliability

The reliability of the answer to the third research question depends on the
tools used to find the code smells and the definition of what code is relevant to
Android:

• The reliability of the tools is analyzed in Section 4.3.13.

58

7.3. Future Work

• The reliability of the definition depends on the definition of core classes,
the given definition is just one of the possibilities. Independent of Minelli I
came to the same definition as he did. Another option could be to define
Android relevant code at the method level, e.g. consider all code in a
method as Android relevant if it contains at least one call to the Android
API.

7.3 Future Work
Below are some of the possibilities to continue this research.

• Finding whether Android code is more prone to any of the other Fowler
code smells.

• More metrics to find code smells: Fowler does not specify how finding
code smells should be done and points to human intuition as the key to
verifying if a code smell needs refactoring. In this paper the most basic
metric was used to find the bloater code smells, NLOC. The Long Method
for example could be found using a combination of NLOC, Cyclomatic
Complexity and Halstead metrics according to Mantyla [13].

• Expanding the Eclipse Refactor Plugin to include the other recommenda-
tions.

From a personal point of view I will release the Eclipse Refactor Plugin as
open source. I will also try to improve the checks that are done before the
refactoring to further limit the possibility that the refactoring results in code
that does not compile. I would also like to include the other recommendations
and thereby help make the code of Android projects easier to read. I feel this
will be helpful given that a lot of developers are starting in mobile application
development which means the code they produce while learning might benefit
from refactoring tools.

59

Appendix A

Android Releases

API
Release Release Release Date No. of Days Since

Name Version(s) First Version Previous Release

3 Cupcake 1.5 30 April 2009

4 Donut 1.6 15 September 2009 138

5 Eclair 2.0 26 October 2009 41

6 Eclair 2.0.1 3 December 2009 38

7 Eclair 2.1 21 January 2010 49

8 Froyo 2.2 20 May 2010 119

9 Gingerbread 2.3 - 2.3.2 6 December 2010 200

10 Gingerbread 2.3.3 - 2.3.7 9 February 2011 65

11 Honeycomb 3.0 22 February 2011 13

12 Honeycomb 3.1 10 May 2011 77

13 Honeycomb 3.2 15 July 2011 66

14 Ice Cream Sandwich 4.0 - 4.0.2 19 October 2011 96

15 Ice Cream Sandwich 4.0.3 - 4.0.4 16 December 2011 68

16 Jelly Bean 4.1 9 July 2012 206

17 Jelly Bean 4.2 13 November 2012 127

Table A.1: Release dates of Android versions based on their API number.

61

Appendix B

Tool Validation

The following files were chosen to use for validation:

• NewsActivity in OO which is the largest Android related source file. The
NewsActivity class is 1404 lines of code.

• From SipDroid some of the classes in the org.sipdroid.sipua.ui package
were chosen, since this is one of the few packages with Android related
code. Most of the SipDroid application contains code to handle the Sip
protocol. The following classes I’ve chosen to analyze:

– org.sipdroid.sipua.ui.Receiver
– org.sipdroid.sipua.ui.InCallScreen
– org.sipdroid.sipua.ui.CallScreen

The total sum of code lines for these 3 classes is 1638.

• The custom made Android application where code smells were intention-
ally added.

– 3 Long Method code smells
– 1 Large Class code smell
– 1 God Class code smell
– 3 Long Parameter List code smells

The code smells that was looked for are Large Class and Long Method.
Below is a description of the results for each of the projects.

B.1 App: OO

B.1.1 JDeodorant

God Class

JDeodorant showed three God Class code smells inside NewsActivity, all three
were adapters: ColumnAdapter, ArticleAdapter and TwitterAdapter.

63

B. Tool Validation

• ColumnAdapter is used to provide a ViewPager with the views of each of
its 7 pages. JDeodorant suggests 7 class fields that can be extracted along
with its methods from the class to make it less of a God Class. Each field
references a page in the ViewPager so for all 7 extractions the refactoring
can be performed thereby creating classes for each page and removing the
code smell from the ColumnAdapter. I agree with this refactoring because
it removed the code smell and makes the code easier to understand.

• ArticleAdapter fills a ListView with items, it creates the views and pro-
vides access to the data. JDeodorant suggests only one refactoring of
one field with one method setting that field. I agree with the refactoring
suggested. While looking at the ArticleAdapter I also found two bugs or
issues that when solved should simplify the class and make the application
faster:

– The first bug is that the data in the adapter (Articles) is stored
twice: once in an ArrayList<Article> in the class itself and once
in the superclass. The method to add data to the adapter adds to
both of them. It also uses another ArrayList<Integer> to store the
ids of each article so no duplicate articles are added. By adding
equals(Object) and hashCode() methods to the Article class, the
check for duplicates could be performed without using this extra
list.

– The second bug is that in the getView method the ViewHolder pat-
tern is applied but not fully: a new OnClickListener is created each
time getView is called.

• TwitterAdapter is almost the same as ArticleAdapter, the same refactor-
ing is suggested and the double holding of data bug is also found here.

Long Method

JDeodorant finds 10 Long Method code smells inside NewsActivity, 8 of the
code smells are in adapters and the other 2 are in overridden Activity methods
so all are related to Android.

• ColumnAdapter.filterAgendaResults: I agree the method should be refac-
tored but I disagree with the 2 refactorings suggested by JDeodorant. I
decided to refactor the code from if(A) m(); else if(B) m(); to if(A || B)
m();.

• ColumnAdapter.fillTeamSpinner: I agree the method should be refactored
but JDeodorant suggests moving the instantiation of an object and setting
2 attributes of it to a separate method. I would not consider removing
these 3 lines of code a fix for the Long Method code smell.

• NewsActivity.onResume: JDeodorant suggests refactoring an if statement
with one method invocation in it. I disagree with the refactoring suggested
since it’s only three lines of code that are easy to understand but it did

64

B.1. App: OO

help solve a bug: the condition of the if statement compared two Strings
based on the address of the object instead of the contents using the equals.
This bug may be introduced because the first String has a name teamId,
which one would assume is an Integer.

• MatchAdapter.add: This adapter has the same duplicate data bug that all
other adapters had. This adapter shows a list of matches. The matches
are sorted by date and there are headers in the list showing the date
with the relevant matches under it. The problem is the same model
object is used (Match) for both the matches and the headers. This means
the header needs to override some of the Match methods. JDeodorant
suggests doing that outside of the add method, I agree but it would be
better if the header would have its own class and thereby removing the
need to override which makes the method soo long.

• 3 x Adapter.getView: The next 3 instances are all the getView method
of an adapter but JDeodorant does not give a valid refactoring solution.
I do agree the methods should be refactored. In each method there are 2
functions performed. One is creating the view and setting the fields of the
ViewHolder to the relevant components. The other is setting the values of
those components. Instead of doing both in the getView method we can
move the 2 functions into the ViewHolder class, which is a logical place
for it. This makes the getView method easier to understand and moves
changing the values of fields in the ViewHolder class to the ViewHolder.

• ArticleAdapter.loadBanner: The method creates a View that shows a
banner image that can be clicked and will open a link. The largest piece
of code in this method is used to get the image url and the link url.
JDeodorant only shows the method should be refactored by gives no sug-
gestions on how this should be done, my solution would be to make a
Utility method out of getting those 2 urls.

• MatchAdapter.fillResultFlags: The method is used to show an image flag
based on the 2 letter ID of a country. In the method code is duplicated
for both teams of the match. JDeodorant does not give a suggestion but
I agree it should be refactored and would remove the duplicate code and
just call the method twice, once for each of the two teams

• NewsActivity.onOptionsItemSelected: This method is called when an item
in the options menu is selected. The method has one parameter, the Me-
nuItem that was selected. Based on the id of this menuitem an Intent is
created and started. JDeodorant suggests doing the creation in a separate
method which I agree with, I would also remove the duplicate starting of
the intent which is now done separate for each menuitem id.

65

B. Tool Validation

B.1.2 Checkstyle

Long Method

Checkstyle finds 15 Long Method code smells inside NewsActivity. 8 of them
are also found by JDeodorant. Because Checkstyle does not give refactoring
suggestions I can only say if I agree with the notion that a given method is a
code smell:

• NewsActivity.onOptionsItemSelected: Agree (same as JDeodorant)

• NewsActivity.ColumnAdapter.instantiateItem: Agree, it has a switch for
all of the 7 pages, it would be easier to do this in a separate method.

• NewsActivity.ColumnAdapter.alertNoData: Agree, also has a 7 item switch
but no contents for each of the switch items so the method can be removed.

• NewsActivity.ColumnAdapter.fillTeamsSpinner: Agree (same as JDeodor-
ant)

• NewsActivity.ColumnAdapter.LoadAgendaArticlesTask.onPostExecute: Agree
sort of, not sure how to improve.

• NewsActivity.ColumnAdapter.LoadSupportersArticlesTask.onPostExecute:
After looking at this and the other onPostExecute calls for each of the
Tasks, it appears they are all alike, it would be easier to make an abstract
CommonTask class and let that class do most of the common work.

• NewsActivity.ColumnAdapter.LoadEkArticlesTask.onPostExecute: See above.

• NewsActivity.ColumnAdapter.LoadTeamArticlesTask.onPostExecute: See
above.

• NewsActivity.ColumnAdapter.LoadTwitterTask.onPostExecute: See above.

• NewsActivity.ArticleAdapter.getView: Agree (same as JDeodorant)

• NewsActivity.ArticleAdapter.loadBanner: Agree (same as JDeodorant)

• NewsActivity.MatchAdapter.add: Agree (same as JDeodorant)

• NewsActivity.MatchAdapter.getView: Agree (same as JDeodorant)

• NewsActivity.MatchAdapter.fillResultFlags: Agree (same as JDeodorant)

• NewsActivity.TwitterAdapter.getView: Agree (same as JDeodorant)

B.1.3 PMD

Long Method

The results for the Long Method code smell of PMD match those of Checkstyle.
This is to be expected given the same parameters given to both tools.

66

B.2. SipDroid

Large Class

PMD reports two Large Class code smells, NewsActivity itself and NewsActiv-
ity.ColumnAdapter.

I agree with both code smell reports but was expecting more adapters to be
reported as Large Class code smells.

B.2 SipDroid

B.2.1 JDeodorant

God Class

• Receiver: JDeodorant correctly suggests refactoring this class but only
wants to move the progress method and onState method, I would add
the onText method and other static methods that do not belong in a
BroadcastReceiver, which only function is to implement the onReceive
method. Most of the other methods can be moved to Utility classes and
helper classes.

• InCallScreen: As with the Receiver class, JDeodorant suggests refactoring
this class only in a limited way, it wants to split one method and the
corresponding fields. I agree with the refactoring suggestion made, the
result after refactoring looks more clear and the functionality placed in
the new class did not fit well with the rest of the class.

• CallScreen: As with the above classes, only one item is suggested for
refactoring and like InCallScreen I agree with result but to a lesser degree,
the extracted class has less functionality compared to the extracted class
created in InCallScreen.

Long Method

• Receiver.onReceive: This is the only method required in the Receiver
class, this one has to be overridden for the Receiver to correctly implement
BroadcastReceiver. The method is 128 lines long and JDeodorant suggests
5 different refactor options. After performing each suggested refactoring
the method looks more like how I would have refactored it myself. Not
every refactoring was done without causing compile errors but these were
easy to solve.

• Receiver.onText: This is a static method that is used to update the text
of the notification in the system bar, e.g. a missed call warning. I agree
that the method should be refactored.

• Receiver.onState: Two refactorings are suggested for this method. I agree
with neither of them but I do think the method should be refactored.

• CallScreen.opPause: The onPause method is 7 lines in size, 4 of them are
used to close the socket like this:

67

B. Tool Validation

if (socket != null) {
socket.close();
socket = null;

}

I agree that it would look better if there was a closeSocket method that
was called from the onPause method, which is what JDeodorant suggests.

• CallScreen.onOptionsItemSelected: This is an Android method that is
called when a menuitem is selected. A better option would be to use the
setOnMenuItemClickListener method on each MenuItem.

• InCallScreen.onResume: I agree this method should be refactored. JDeodor-
ant gives two possible refactoring options, both of them related to one line
of code.

• InCallScreen.onPause: I agree this method should be refactored. It ap-
pears to do 3 or 4 different things, this can be simplified into separate
methods.

• InCallScreen.answer: I agree this method should be refactored, it is short
but it may be unclear what is done inside the method without refactoring.
I do not agree with the refactoring options that JDeodorant gives.

• InCallScreen.reject: This method appears to be the opposite of the tan-
swer method, not only in functionality but also in the method body. The
same comments given to the answer method apply to this method.

B.2.2 Checkstyle

Long Method

• CallScreen.onResume().new Thread().run: I agree this method should
be refactored, the entire anonymous inner class could be moved into a
separate class.

• CallScreen.onOptionsItemSelected: Same as JDeodorant

• CallScreen.onResume: Same as JDeodorant

• InCallScreen.new Handler().handleMessage: I agree this method should
be refactored, the Handler class can be moved into a separate class but I
think splitting up the method would be a better choice for Handlers.

• InCallScreen.onResume().new Thread().run: I agree this method should
be refactored, the entire anonymous inner class could be moved into a
separate class to limit the length of the onResume method.

• InCallScreen.initInCallScreen: I agree this method should be refactored,
it can be simplified by moving two parts of code that fill a Map.

68

B.3. Own Test Application

• InCallScreen.onKeyDown: This method is called when the user pressed
the menu button, the call button, the back button, the camera button, the
volume up and down button. The type of button is identified by a switch
statement. Inside this switch statement the refactoring can be to call a
method for each of the different keys which will simplify the onKeyDown
method.

• Receiver.onReceive: Same as JDeodorant

• Receiver.onState: Same as JDeodorant

• Receiver.onText: Same as JDeodorant

B.2.3 PMD

Long Method

As with OO, the results of PMD Long Method match those of CheckStyle
LongMethod.

Large Class

PMD finds three LargeClass code smells, the same as JDeodorant did.

B.3 Own Test Application

The custom test application has 1 God Class code smell which also is a Large
Class smell, 3 Long Method smells and 3 Long Parameter List smells.

B.3.1 JDeodorant

JDeodorant found the God Class code smell and all 3 Long Method code smells.
As said before, JDeodorant is able to identify God Class code smells and

not like the other tools Large Class code smells. There is a relation between the
two code smells since in a lot of cases where one is found the other can also be
found but there is a difference between the two which can be seen by stripping
a class down to what JDeodorant still considers a God Class.

public class GodClass {

private String str1;
private String str2;

private void loadString1() {
str1 = "abc";

}

private void loadString2() {
str2 = "abc";

}
}

69

B. Tool Validation

B.3.2 Checkstyle

Checkstyle found the 3 Long Method code smells and also all 3 Long Parameter
List code smells.

B.3.3 PMD

PMD is using the same parameters for the code smells so like Checkstyle, it
also found the 3 Long Method code smells and also all 3 Long Parameter List
code smells. It also found the large class just like JDeodorant found the God
Class.

70

Appendix C

Raw Analysis Results

C.1 Lint

Description OO SipDroid

Looks for unused resources 304 74
Checks for incomplete translations where not all strings are translated 0 148
Looks for uses of "dp" instead of "sp" dimensions for text sizes 89 3
Looks for overdraw issues (where a view is painted only to be fully painted over) 60 3
Looks for use of the "px" dimension 0 41
Finds calls to locale-ambiguous String manipulation methods 3 32
Checks for openFileOutput() and getSharedPreferences() calls passing MODE_WORLD_WRITEABLE 26 0
Ensures that image widgets provide a contentDescription 3 21
Finds API accesses to APIs that are not supported in all targeted API versions 0 20
Looks for hardcoded text attributes which should be converted to resource lookup 6 7
Looks for ellipsis strings (...) which can be replaced with an ellipsis character 0 13
Looks for miscellaneous typographical problems like replacing (c) with c© 0 13
Checks for duplicate ids across layouts that are combined with include tags 9 1
Checks that files with DOS line endings are consistent 8 0
Ensures that Handler classes do not hold on to a reference to an outer class 3 5
Looks for usages of "new" for wrapper classes which should use "valueOf" instead 6 0
Looks for invocations of android.webkit.WebSettings.setJavaScriptEnabled 5 0
Checks whether a parent layout can be removed. 2 3
Looks for inefficient weight declarations in LinearLayouts 1 4
Using SimpleDateFormat directly without an explicit locale 4 0
Looks for typos in messages 2 2
Looks for text fields missing inputType or hint settings 0 4
Looks for problems with wakelock usage 0 4
Looks for hardcoded references to /sdcard 0 3
Checks for exported activities that do not require permissions 0 3
Looks for usages of deprecated layouts, attributes, and so on. 0 3
Looks for code creating a Toast but forgetting to call show() on it 2 0
Ensures that icons provide custom versions for all supported densities 2 0
Checks that the manifest specifies a targetSdkVersion that is recent 1 1
Ensures that Activities, Services and Content Providers are registered in the manifest 1 1
Ensure that allowBackup is explicitly set in the application’s manifest 1 1
Looks for opportunities to replace HashMaps with the more efficient SparseArray 0 2
Looks for LinearLayouts which should set android:baselineAligned=false 0 2
Checks whether a root <FrameLayout> can be replaced with a <merge> tag 1 0
Checks for manifest problems like <uses-sdk> after the <application> tag 0 1
Looks for layout params that are not valid for the given parent layout 0 1
Checks for exported receivers that do not require permissions 0 1

Table C.1: Lint results of OO and SipDroid

71

C. Raw Analysis Results

C.2 JDeodorant

C.2.1 Commercial Applications

Large Class Long Method Feature Envy Type Checking

OO 24 / 45 56 / 94 12 / 17 11 / 11

LS 3 / 3 11 / 12 2 / 2 0 / 0

TM 5 / 11 15 / 27 7 / 8 1 / 3

WW 8 / 12 41 / 42 19 / 19 0 / 0

Total 40 / 71 123 / 175 40 / 46 12 / 14

Table contains number code smells found in core classes and total number of code smells found.

Lo
ng

M
et
ho

d
Fe

at
ur
e
En

vy
T
yp

e
C
he
ck
in
g

La
rg
e
C
la
ss

Lo
ng

M
et
ho

d
Fe

at
ur
e
En

vy
T
yp

e
C
he
ck
in
g

La
rg
e
C
la
ss

Lo
ng

M
et
ho

d
Fe

at
ur
e
En

vy
T
yp

e
C
he
ck
in
g

La
rg
e
C
la
ss

Lo
ng

M
et
ho

d
Fe

at
ur
e
En

vy
T
yp

e
C
he
ck
in
g

La
rg
e
C
la
ss

0

20

40

60

80

100

LS TM WW OO

Core NonCore

72

C.2. JDeodorant

C.2.2 Open Source Applications

Large Class Long Method Feature Envy Type Checking

SipDroid 8 / 53 43 / 253 2 / 39 10 / 17

aLogcat 3 / 6 5 / 8 6 / 8 0 / 0

AppsOrganizer 8 / 34 8 / 75 2 / 14 2 / 3

DiskUsage 4 / 21 11 / 51 3 / 11 0 / 3

MythDroid 21 / 36 48 / 78 1 / 3 3 / 3

MythMote 6 / 9 14 / 16 3 / 7 0 / 0

OpenSudoku 9 / 22 28 / 49 7 / 16 4 / 9

ReplicaIsland 6 / 52 15 / 209 1 / 38 8 / 27

RingDroid 5 / 9 22 / 38 0 / 0 1 / 2

Solitaire 2 / 10 12 / 35 2 / 8 6 / 14

Total 72 / 252 206 / 812 27 / 144 34 / 78

Table contains number code smells found in core classes and total number of code smells found.

Lo
ng

M
et
ho

d
Fe

at
ur
e
En

vy
T
yp

e
C
he
ck
in
g

La
rg
e
C
la
ss

Lo
ng

M
et
ho

d
Fe

at
ur
e
En

vy
T
yp

e
C
he
ck
in
g

La
rg
e
C
la
ss

Lo
ng

M
et
ho

d
Fe

at
ur
e
En

vy
T
yp

e
C
he
ck
in
g

La
rg
e
C
la
ss

Lo
ng

M
et
ho

d
Fe

at
ur
e
En

vy
T
yp

e
C
he
ck
in
g

La
rg
e
C
la
ss

Lo
ng

M
et
ho

d
Fe

at
ur
e
En

vy
T
yp

e
C
he
ck
in
g

La
rg
e
C
la
ss

Lo
ng

M
et
ho

d
Fe

at
ur
e
En

vy
T
yp

e
C
he
ck
in
g

La
rg
e
C
la
ss

Lo
ng

M
et
ho

d
Fe

at
ur
e
En

vy
T
yp

e
C
he
ck
in
g

La
rg
e
C
la
ss

Lo
ng

M
et
ho

d
Fe

at
ur
e
En

vy
T
yp

e
C
he
ck
in
g

La
rg
e
C
la
ss

Lo
ng

M
et
ho

d
Fe

at
ur
e
En

vy
T
yp

e
C
he
ck
in
g

La
rg
e
C
la
ss

Lo
ng

M
et
ho

d
Fe

at
ur
e
En

vy
T
yp

e
C
he
ck
in
g

La
rg
e
C
la
ss

0

100

200

aLogcat MythMote RingDroid Solitaire DiskUsage OpenSudoku MythDroid AppsOrganizer ReplicaIsland SipDroid

Core NonCore

73

C. Raw Analysis Results

C.3 Checkstyle

C.3.1 Commercial Applications

Long Method Long Parameter List

OO 105 / 144 1 / 2

LS 14 / 16 0 / 0

TM 21 / 37 0 / 0

WW 47 / 48 0 / 0

Total 187 / 245 1 / 2

Table contains number code smells found in core classes and total number of code smells found.

Lo
ng

M
et
ho

d
Lo

ng
Pa

ra
m
et
er

Li
st

Lo
ng

M
et
ho

d
Lo

ng
Pa

ra
m
et
er

Li
st

Lo
ng

M
et
ho

d
Lo

ng
Pa

ra
m
et
er

Li
st

Lo
ng

M
et
ho

d
Lo

ng
Pa

ra
m
et
er

Li
st

0

50

100

150

LS TM WW OO

Core NonCore

74

C.3. Checkstyle

C.3.2 Open Source Applications

Long Method Long Parameter List

SipDroid 38 / 121 1 / 13

aLogcat 5 / 8 0 / 0

AppsOrganizer 15 / 31 0 / 0

DiskUsage 11 / 44 0 / 6

MythDroid 76 / 115 0 / 1

MythMote 16 / 27 0 / 0

OpenSudoku 26 / 39 0 / 0

ReplicaIsland 16 / 154 0 / 15

RingDroid 19 / 34 0 / 0

Solitaire 12 / 26 0 / 0

Total 234 / 599 1 / 35

Table contains number code smells found in core classes and total number of code smells found.

Lo
ng

M
et
ho

d
Lo

ng
Pa

ra
m
et
er

Li
st

Lo
ng

M
et
ho

d
Lo

ng
Pa

ra
m
et
er

Li
st

Lo
ng

M
et
ho

d
Lo

ng
Pa

ra
m
et
er

Li
st

Lo
ng

M
et
ho

d
Lo

ng
Pa

ra
m
et
er

Li
st

Lo
ng

M
et
ho

d
Lo

ng
Pa

ra
m
et
er

Li
st

Lo
ng

M
et
ho

d
Lo

ng
Pa

ra
m
et
er

Li
st

Lo
ng

M
et
ho

d
Lo

ng
Pa

ra
m
et
er

Li
st

Lo
ng

M
et
ho

d
Lo

ng
Pa

ra
m
et
er

Li
st

Lo
ng

M
et
ho

d
Lo

ng
Pa

ra
m
et
er

Li
st

Lo
ng

M
et
ho

d
Lo

ng
Pa

ra
m
et
er

Li
st

0

50

100

150

aLogcat Solitaire MythMoteAppsOrganizerRingDroid OpenSudoku DiskUsage MythDroid SipDroid ReplicaIsland

Core NonCore

75

C. Raw Analysis Results

C.4 PMD

C.4.1 Commercial Applications

Large Class Long Method Long Param List

OO 28 / 48 100 / 137 1 / 2

LS 5 / 7 12 / 14 0 / 0

TM 5 / 12 20 / 36 0 / 0

WW 14 / 16 46 / 47 0 / 0

Total 52 / 83 178 / 234 1 / 2

Table contains number code smells found in core classes and total number of code smells found.

Lo
ng

M
et
ho

d
Lo

ng
Pa

ra
m
et
er

Li
st

La
rg
e
C
la
ss

Lo
ng

M
et
ho

d
Lo

ng
Pa

ra
m
et
er

Li
st

La
rg
e
C
la
ss

Lo
ng

M
et
ho

d
Lo

ng
Pa

ra
m
et
er

Li
st

La
rg
e
C
la
ss

Lo
ng

M
et
ho

d
Lo

ng
Pa

ra
m
et
er

Li
st

La
rg
e
C
la
ss

0

50

100

150

LS TM WW OO

Core NonCore

76

C.4. PMD

C.4.2 Open Source Applications

Large Class Long Method Long Param List

SipDroid 11 / 68 38 / 120 1 / 13

aLogcat 1 / 2 4 / 7 0 / 0

AppsOrganizer 6 / 33 15 / 29 0 / 0

DiskUsage 5 / 14 11 / 43 0 / 6

MythDroid 25 / 44 74 / 112 0 / 1

MythMote 5 / 8 13 / 24 0 / 0

OpenSudoku 14 / 21 25 / 37 0 / 0

ReplicaIsland 8 / 45 15 / 153 0 / 15

RingDroid 4 / 10 19 / 34 0 / 0

Solitaire 2 / 9 12 / 25 0 / 0

Total 81 / 254 226 / 584 1 / 35

Table contains number code smells found in core classes and total number of code smells found.

Lo
ng

M
et
ho

d
Lo

ng
Pa

ra
m
et
er

Li
st

La
rg
e
C
la
ss

Lo
ng

M
et
ho

d
Lo

ng
Pa

ra
m
et
er

Li
st

La
rg
e
C
la
ss

Lo
ng

M
et
ho

d
Lo

ng
Pa

ra
m
et
er

Li
st

La
rg
e
C
la
ss

Lo
ng

M
et
ho

d
Lo

ng
Pa

ra
m
et
er

Li
st

La
rg
e
C
la
ss

Lo
ng

M
et
ho

d
Lo

ng
Pa

ra
m
et
er

Li
st

La
rg
e
C
la
ss

Lo
ng

M
et
ho

d
Lo

ng
Pa

ra
m
et
er

Li
st

La
rg
e
C
la
ss

Lo
ng

M
et
ho

d
Lo

ng
Pa

ra
m
et
er

Li
st

La
rg
e
C
la
ss

Lo
ng

M
et
ho

d
Lo

ng
Pa

ra
m
et
er

Li
st

La
rg
e
C
la
ss

Lo
ng

M
et
ho

d
Lo

ng
Pa

ra
m
et
er

Li
st

La
rg
e
C
la
ss

Lo
ng

M
et
ho

d
Lo

ng
Pa

ra
m
et
er

Li
st

La
rg
e
C
la
ss

0

50

100

150

aLogcat MythMote Solitaire RingDroid OpenSudoku AppsOrganizer DiskUsage MythDroid SipDroid ReplicaIsland

Core NonCore

77

C. Raw Analysis Results

C.5 UCDetector

C.5.1 Commercial Applications

Dead Code

OO 17 / 38

LS 0 / 6

TM 6 / 23

WW 7 / 15

Total 30 / 82

Table contains number code smells found in core classes and total number of code smells found.

D
ea
d
C
od

e

D
ea
d
C
od

e

D
ea
d
C
od

e

D
ea
d
C
od

e

0

10

20

30

40

LS WW TM OO

Core NonCore

78

C.5. UCDetector

C.5.2 Open Source Applications

Dead Code

SipDroid 13 / 64

aLogcat 1 / 3

AppsOrganizer 7 / 111

DiskUsage 5 / 9

MythDroid 25 / 52

MythMote 8 / 9

OpenSudoku 4 / 11

ReplicaIsland 3 / 30

RingDroid 3 / 5

Solitaire 0 / 5

Total 69 / 299

Table contains number code smells found in core classes and total number of code smells found.

D
ea
d
C
od

e

D
ea
d
C
od

e

D
ea
d
C
od

e

D
ea
d
C
od

e

D
ea
d
C
od

e

D
ea
d
C
od

e

D
ea
d
C
od

e

D
ea
d
C
od

e

D
ea
d
C
od

e

D
ea
d
C
od

e

0

50

100

aLogcat RingDroid Solitaire MythMote DiskUsage OpenSudoku ReplicaIsland MythDroid SipDroid AppsOrganizer

Core NonCore

79

Bibliography

[1] Android api - intent. http://developer.android.com/reference/
android/content/Intent.html; accessed 01-Mrt-2013.

[2] Checkstyle website. http://checkstyle.sourceforge.net/; accessed 05-
Feb-2013.

[3] Internet survey on mobile app development time. http://www.kinvey.
com/blog/2086/how-long-does-it-take-to-build-a-mobile-app; ac-
cessed 17-Jan-2013.

[4] Lint website. http://tools.android.com/tips/lint; accessed 05-Feb-
2013.

[5] Pmd website. http://pmd.sourceforge.net/; accessed 05-Feb-2013.

[6] Pmd wikipedia page. http://en.wikipedia.org/wiki/PMD_(software);
accessed 15-Aug-2013.

[7] Ucdetector website. http://www.ucdetector.org/; accessed 06-Feb-2013.

[8] F Arcelli Fontana, P Braione, and M Zanoni. Automatic detection of
bad smells in code: An experimental assessment. The Journal of Object
Technology, 11(2):1 – 38, 08 2012.

[9] Lerina Aversano, Luigi Cerulo, and Massimiliano Di Penta. How clones are
maintained: An empirical study. In In Proceedings of the 11th European
Conference on Software Maintenance and Reengineering (CSMR’07, pages
81–90, 2007.

[10] J. Daly, A. Brooks, J. Miller, M. Roper, and M. Wood. The effect of in-
heritance on the maintainability of object-oriented software: an empirical
study. In Proceedings of the International Conference on Software Mainte-
nance, ICSM ’95, pages 20–, Washington, DC, USA, 1995. IEEE Computer
Society.

[11] Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, Boston, MA, USA, 1999.

81

http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Intent.html
http://checkstyle.sourceforge.net/
http://www.kinvey.com/blog/2086/how-long-does-it-take-to-build-a-mobile-app
http://www.kinvey.com/blog/2086/how-long-does-it-take-to-build-a-mobile-app
http://tools.android.com/tips/lint
http://pmd.sourceforge.net/
http://en.wikipedia.org/wiki/PMD_(software)
http://www.ucdetector.org/

Bibliography

[12] Marion Gottschalk, Mirco Josefiok, Jan Jelschen, and Andreas Winter.
Removing energy code smells with reengineering services. In Ursula Goltz,
Marcus Magnor, Hans-Jürgen Appelrath, Herbert K. Matthies, Wolf-Tilo
Balke, and Lars Wolf, editors, Beitragsband der 42. Jahrestagung der
Gesellschaft für Informatik e.V. (GI), volume 208, pages 441–455. Bon-
ner Köllen Verlag, 2012.

[13] Mika Mäntylä, Jari Vanhanen, and Casper Lassenius. A taxonomy and
an initial empirical study of bad smells in code. In Proceedings of the
International Conference on Software Maintenance, ICSM ’03, pages 381–
, Washington, DC, USA, 2003. IEEE Computer Society.

[14] C. Marinescu, R. Marinescu, P. F. Mihancea, and R. Wettel. iplasma: An
integrated platform for quality assessment of object-oriented design. In In
ICSM (Industrial and Tool Volume, pages 77–80. Society Press, 2005.

[15] Roberto Minelli and Michele Lanza. Software analytics for mobile applica-
tions, insights & lessons learned. In Proceedings of the 2013 17th European
Conference on Software Maintenance and Reengineering, 2013.

[16] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. Le Meur. Decor: A
method for the specification and detection of code and design smells. Soft-
ware Engineering, IEEE Transactions on, 36(1):20 –36, jan.-feb. 2010.

[17] Emerson Murphy-Hill and Andrew P. Black. An interactive ambient visu-
alization for code smells. In Proceedings of the 5th international symposium
on Software visualization, SOFTVIS ’10, pages 5–14, New York, NY, USA,
2010. ACM.

[18] N. Tsantalis. Evaluation and improvement of software architecture: Iden-
tification of design problems in object-oriented systems and resolution
through refactorings. 2010.

82

	Contents
	List of Figures
	List of Tables
	Introduction
	Mobile Applications
	Code Smells
	Problem Statement
	Research Questions
	Thesis Structure

	Background
	Mobile Systems
	Software Platforms
	Problem Domain

	Android System
	Android Applications
	Development
	Unique Properties

	Code Smells
	Introduction
	Code Smells Descriptions
	Code Smells in Android

	Related Work
	Introduction
	Energy Code Smells
	Example
	Other Energy Code Smells

	Minelli
	Applications
	Observations
	Initial Analysis

	Fowler
	Extract Class
	Extract SubClass
	Extract Method
	Replace Parameter with Method
	Preserve Whole Object
	Introduce Parameter Object
	Move Method
	Replace Parameter with Explicit Methods

	Eclipse Parsing Tools
	Introduction
	Java Elements

	Research Framework
	Introduction
	Applications
	Commercial Applications
	Open Source Applications
	Own Test Application

	Code Smell Tools
	Introduction
	JDeodorant
	Lint
	PMD
	Checkstyle
	Decor
	iPlasma
	Stench Blossom
	UCDetector
	Samoa
	Supported Code Smells
	Selection
	Tool Validation

	Analysis
	Introduction
	Android Relevance
	What was Analyzed
	Expected Results

	Process
	Results
	JDeodorant
	Checkstyle
	PMD
	UCDetector
	NLOC

	Code Smells in Core Classes
	Introduction
	Results
	Code Smells

	Recommendations
	Introductions
	Case 1: Adapter Implementation
	Identify
	Refactor Implementation
	Limitations

	Case 2: ActivityView Class
	Refactor Implementation
	Eclipse Plugin

	Case 3: onClick listener in XML
	Refactor Implementation
	Eclipse Plugin

	Case 4: onClick in MenuItem
	Case 5: Resource Code Smells
	Refactor Results
	Case 1: Adapter Implementation
	Case 2: ActivityView Class
	Case 3: onClick listener in XML

	Conclusion and Future Work
	Conclusion
	RQ1: What are the main differences between mobile software applications and traditional software applications?
	RQ2: Which tools can be used to look for code smells in mobile applications and what is the quality of these tools?
	RQ3: Is mobile application code more prone to code smells and if it is how can this risk be limited?

	Reliability
	Future Work

	Android Releases
	Tool Validation
	App: OO
	JDeodorant
	Checkstyle
	PMD

	SipDroid
	JDeodorant
	Checkstyle
	PMD

	Own Test Application
	JDeodorant
	Checkstyle
	PMD

	Raw Analysis Results
	Lint
	JDeodorant
	Commercial Applications
	Open Source Applications

	Checkstyle
	Commercial Applications
	Open Source Applications

	PMD
	Commercial Applications
	Open Source Applications

	UCDetector
	Commercial Applications
	Open Source Applications

	Bibliography

