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Attitude Estimation of a Quadcopter with one fully damaged rotor
using on-board MARG Sensors

Prashant Solanki1, C.C. de Visser2

Abstract— Quadcopters are becoming increasingly popular
across diverse sectors. Since rotor damages occur frequently,
it is essential to improve the attitude estimation and thus
ultimately the ability to control a damaged quadcopter. This
research is based on a state-of-the-art method that makes it
possible to control the quadcopter despite the total failure of a
single rotor, where the attitude and position of the quadcopter
are provided by an external system. In the present research, a
novel attitude estimator called Adaptive Fuzzy Complementary
Kalman Filter (AFCKF) has been developed and validated that
works independently of any external systems. It is able to esti-
mate the attitude of a quadcopter with one fully damaged rotor
while only relying on the on-board MARG (Magnetometer,
Accelerometer, Rate Gyroscope) sensors. The AFCKF provides
significantly better attitude estimates for flights with a damaged
rotor than mainstream filters, estimating the roll and pitch of
the quadcopter with an RMS error of less than 1.7 degrees and a
variance of less than 2 degrees. The proposed filter also provides
accurate yaw estimates despite the fast spinning motion of the
damaged quadcopter, and thus outperforms existing methods
at the cost of only a small increase in computation.

I. INTRODUCTION

By virtue of mechanical simplicity, quadcopters have
become very popular in multiple industries. A wide range
of research has been conducted to develop a fault-tolerant
controller for a quadcopter subjected to rotor failure ([1],
[2]). In the scenario of a complete single rotor failure, the
quadcopter has to abandon yaw control and spin at a high
angular rate, which introduces high centrifugal accelerations
and is thus detrimental to conventional on-board attitude
estimation methods.

This research is based on a fault-tolerant controller de-
veloped by [2] for a quadcopter subjected to a complete
single rotor failure. The attitude of that quadcopter was at-
tained using a motion-capture system. Unfortunately, no such
motion capture system exists for the outside environment.
There exist a wide spectrum of attitude estimation techniques
based on different approaches to cater for this problem.
One category are stochastic estimation techniques which are
based on Kalman Filters or Extended Kalman Filters (EKF),
such as [3], [4], [5], [6]. The issue with Kalman-based
estimators is that they tend to be computationally heavy
and are affected by linearization errors. Another approach
is based on Wahba’s problem ([7]), which inspired filters
such as [8], [9], and [10]. These filters tend to be highly
susceptible to noise, which means that applying them on
low-cost sensors can lead to high estimation errors. Lastly,
complementary filter based methods such as [11], [12] and,
[13] tend to be computationally lighter and are developed for
low-cost MARG sensors, but they too are adversely affected

by magnetic distortions and external accelerations.
Consequently, none of these attitude estimation techniques

are able to perform sufficiently well under highly dynamic
motion such as is the case when one rotor is fully damaged
and the quadcopter rotates about the yaw axis. Thus, the
present research develops an attitude estimation method that
can estimate the states of the quadcopter with a damaged
rotor with sufficient accuracy while using only the on-board
MARG (magnetometer, accelerometer, rate gyroscope) sen-
sors and is consequently suitable for an outside environment.
Section II of this paper explains the chosen quaternion rep-
resentation scheme; section III the filter design, and section
IV the results and discussion.

II. QUATERNION REPRESENTATION SCHEME

The AFCKF is based on the quaternion representation of
the attitude. qA/B provides the orientation of the frame B with
respect to frame A. The quaternion is defined as shown in
equation 1, with rA being a unit vector as shown by equation
2.

qA/B =


q1
q2
q3
q4


T

=


cos(θ/2)
−rxsin(θ/2)
−rysin(θ/2)
−rzsin(θ/2)


T

(1)

r2
A = r2

x + r2
y + r2

z (2)

Quaternions are constrained to be normalised as shown in
equation 3, where qT is the quaternion transpose.

qqT = q2
1 +q2

2 +q2
3 +q2

4 = 1 (3)

The quaternion conjugate, denoted with ′∗′ on the super-
script, describes the orientation of frame A with respect to
frame B and is given by equation 4.

qB/A = q∗A/B =
[
q1 −q2 −q3 −q4

]
(4)

The quaternion product is used to find the compound ori-
entation. If two quaternions qB/C and qA/B are known, then
qA/C can be found using equation 5 ([14]). The quaternion
product can be obtained using the Hamilton theorem, given
by equation 6. The quaternion product is not commutative,
i.e., qB/C⊗qA/B 6= qA/B⊗qB/C.

qA/C = qB/C⊗qA/B (5)
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p⊗ r =


p1
p1
p3
p4


T

⊗


r1
r2
r3
r4


T

=


p1r1− p2r2− p3r3− p4r4
p1r2 + p2r1 + p3r4− p4r3
p1r3− p2r4 + p3r1 + p4r2
p1r4 + p2r3− p3r2 + p4r1


T

(6)

If qA/B is known, then a three-dimensional vector in frame
A (~vA) can be converted into frame B using equation 7. An
additional zero is added as the fourth element of the vector
in frame A (~vA) and in frame B (~vB).[

0 ~vB]= qA/B⊗
[
0 ~vA

]
⊗q∗A/B (7)

Equation 7 can be represented in the form of a rotation
matrix (CB/A) as shown in equation 8 ([14]), where CB/A
is the rotation matrix that transforms the vectors in frame A
into the vectors in frame B.

CB/A =

−1+2(q2
1 +q2

2) 2(q2q3 +q4q1) 2(q2q4−q3q1)
2(q2q3−q4q1) −1+2(q2

1 +q2
3) 2(q3q4 +q2q1)

2(q2q4 +q3q1) 2(q3q4−q2q1) −1+2(q2
1 +q2

4)


(8)

The relationship between the quaternion and Euler angles,
i.e., roll angle (φ ), pitch angle (θ ) and yaw angle (ψ), is
given by equation 9.

φ = tan−1
{

2(q3q2−q1q4)

1−2q2
12q2

2

}
(9)

θ = sin−1 {2(q2q4 +q1q3)}

ψ = tan−1
{

2(q2q3−q1q2)

2q2
12q2

4−1

}
III. FILTER DERIVATION

In this section, the filter is derived and presented along
with the equations of the attitude estimator. The schematics
of the AFCKF are shown in figure 1. For a better under-
standing, the AFCKF is divided into five parts.

Fig. 1. Schematics of the AFCKF

A. Correcting the accelerometer readings

The ideal measurement model of an accelerometer in space
is given by equation 10, where ~aB is the acceleration of the
body, ~rB is the position vector of the accelerometer from
the center of rotation, ~ωB is the rotational velocity of the
body reference frame, 2~ωB×~̇rB is the Coriolis acceleration
(which is zero in the case of a fixed sensor), ~gB is the gravity
vector in the body frame of reference, ~ωB × (~ωB ×~rB) is
the centrifugal acceleration and ~̇ωB×~rB is zero under the
assumption that ~̇ωB is zero for a quadcopter. Furthermore,
the accelerometer readings are corrupted with noise denoted
by ea and bias denoted by δa,t . The noise is assumed to be
zero mean white Gaussian noise with a standard deviation
Σa, as given by equation 12. Equation 10 reduces to 11 due
to the aforementioned reasons.

~aBmeasured =~aB + ~̇ωB×~rB +2~ωB×~̇rB +~ωB× (~ωB×~rB)+~gB
(10)

~aBmeasured =~aB +~ωB× (~ωB×~rB)+~gB + ea +δa,t (11)

Σa =

σaccx 0 0
0 σaccy 0
0 0 σaccz

 (12)

In order to obtain correct attitude estimates, the accelerom-
eter readings must be dominated by the gravity vector. How-
ever, the quadcopter’s linear acceleration and the centrifugal
acceleration are also measured by the accelerometer and thus
need to be accounted for. These external noises are modeled
using a predetermined model. The estimator is designed in
such a way that only a crude model of the centrifugal force
about the z-axis is required, which is given by equation 13,
where ω2

z is the yaw rate of the quadcopter, and ϖ1 and ϖ2
are constants. The value of the constants is determined in
the sensor calibration routine. The centrifugal force is only
modeled about the body frame z-axis because the controller
developed by [2] rotates about the body frame yaw axis after
the rotor damage occurs.

~aCB =
[
~FCBx

~FCBy
~FCBz

]
= ω

2
z ·
[
ϖ1 ϖ2 0

]
(13)

Furthermore, it is assumed that the linear acceleration of
the quadcopter is short-lived and small compared to the
acceleration due to gravity. Thus, after the centrifugal ac-
celeration is compensated for, the measured acceleration is
given by equation 14. The obtained accelerometer reading is
normalised against the gravity vector as given by equation
15, where g is the acceleration due to gravity.

~aBcorrected =~aBmeasured −~aCB (14)

~acor =
~aBcorrected

|g|
(15)
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B. Obtaining the attitude from the accelerometer reading

If magnitude and direction of a field in the earth frame are
known, the attitude of the body frame relative to the earth can
be calculated using an observation of the corresponding field
in the sensor/body frame. However, the calculated orientation
is not unique. There exist infinite solutions represented by
rotating the true attitude about an axis parallel to the direction
of the field in the earth frame. Thus, since only accelerom-
eter readings are used to obtain an attitude estimate, the
corresponding yaw estimates cannot be trusted (because the
gravity vector runs parallel to the earth frame’s yaw axis).
This attitude estimation problem can be converted into an
optimisation problem where a rotation operation, given by
equation 7, aligns the known field in the earth frame, v̂, to
the corresponding measurement of the field in the sensor
frame, ŝ, thus providing the attitude of the sensor with respect
to the inertial frame. An optimisation algorithm scheme is
formulated to acquire an attitude estimate. The minimisation
function is given by equation 16.

min[ f (q, v̂, ŝ)] (16)

f (q, v̂, ŝ) = q∗t−1⊗ v̂⊗qt−1− ŝ

v̂ =
[
0 vx vy vz

]
ŝ =

[
0 sx sy sz

]
The gradient descent algorithm is used for optimising and
obtaining an attitude estimate. This method is chosen for the
purpose of optimisation because of its low computational
cost and simplicity. The algorithm is given by equations 17
and 18, used for obtaining the attitude estimate qn, given
the initial estimate q0, where n is the number of iterations,
v̂ is the field vector in the earth frame with an added null
dimension, ŝ consists of the measurement of the field in the
sensor frame with an added null dimension, and µ is the
step size. The optimal value of the step size ensures the
convergence of the qk. The quaternions are re-normalised
after every time step to ensure property 3.

qk = qk−1−µ
O f (qk−1, v̂, ŝ)
||O f (qk−1, v̂, ŝ)||

,k = 1,2...n (17)

O f (qk−1, v̂, ŝ) = JT (qk−1, v̂) f (qk−1, v̂, ŝ) (18)

For the AFCKF, the known field is the acceleration due
to gravity, which is having components along only one
principle axis of the earth frame. Equations 19 and 20 give
the normalised gravity field with an added null dimension
and the normalised corrected accelerometer readings with
an added null dimension respectively. Equations 21 and 22
give the minimisation function and its Jacobian respectively.

ĝ =
[
0 0 0 1

]
(19)

âcor =
[
0 acorx acory acorz

]
(20)

fg(q, ĝ, â) =

2(q2q4−q1q3)−acorx

2(q2q1 +q4q3)−acory

2( 1
2 −q2

2−q2
3)−acorz

 (21)

JT
g (q, ĝ) =

−2q3 2q4 −2q1 2q2
2q2 2q1 2q4 2q3
0 −4q2 −4q3 0

 (22)

Equation 23 provides the attitude estimate at the current
time step given the optimum attitude estimate of previous
time steps and the current accelerometer reading. qO,t is the
attitude estimate of the current time step obtained using the
gradient descent algorithm.

qO,t = qt−1−ut
O fg

||O fg||
(23)

O fg = JT
g (qt−1, ĝ) fg(qt−1, ĝ, âcort )

The convergence of the optimisation process depends on the
value of the step size (µt ). A typical optimisation approach
needs multiple iterations to obtain a new attitude estimate
given a new accelerometer observation. To increase the
efficiency of the optimisation process, the step size (µt ) needs
to be adjusted at every time step. If the convergence rate is
equal to or higher than the physical rate of change of the
attitude, then only one iteration per sample time is enough
to obtain an attitude estimate with sufficient accuracy. Since
the convergence rate is governed by µt , the appropriate value
of µt can ensure that the convergence of the attitude is limited
by the physical rate of change of the attitude, avoiding
overshooting. The value of µt is given by equation 24, where
β is a scaling constant that accounts for accelerometer noise,
q̇ω,t is the current physical rate of change of the attitude
(measured by the gyroscope) and ∆t is the time step.

µt = β |q̇ω,t |∆t,β > 1 (24)

This process ensures that the step size is adapted according
to the physical rate of change of the attitude.

C. Optimal roll and pitch estimates using the Kalman filter

The rate gyroscope measures the quadcopter’s angular
rate (angular velocity) with respect to the inertial frame
represented in the body frame of reference. The angular rate
is used to obtain the rate quaternion (q̇) using equation 25
([15]), where ωt is the current time step gyro reading and
qt−1 is the previous time step optimum attitude estimate.

q̇ω,t =
1
2

qt−1⊗
[
0 ωxt ωyt ωzt

]
(25)

Given the previous time step optimum attitude estimate and
∆t, a numerical integration can be used to obtain the current
time step attitude. This is shown in equation 26, where qω,t
is the attitude estimate obtained from the gyroscope.

qω,t = qt−1 + q̇ω,t∆t (26)

An extended Kalman filter (see the algorithm below) is
used to obtain the optimum roll and pitch estimates of the
quadcopter. The Kalman filter consists of a process model
and a sensor model.

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Ja

nu
ar

y 
5,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
2-

08
57

 



1) Process model: The process model of the Kalman filter
consists of the gyroscope readings and is given by equations
25 and 26. The gyroscope is used to obtain the angular rate of
the quadcopter. However, gyroscope readings are corrupted
by noise and bias. The stationary bias (δω ) is removed from
the gyroscope readings through calibration. The gyroscope
noise, eω , is assumed to be Gaussian distributed white noise
with zero mean and a known standard deviation given by
equation 27. It is also assumed that there is no correlation
between the noise of the three gyroscope axis readings.
Furthermore, the gyroscope is plagued with a bias drift.
Thus, after the stationary bias correction, the gyroscope
measurements consist of real angular velocity (ω) that is
unknown, gyro noise (eω ), and the gyro bias drift (bωt ) as
shown in equation 28.

Σω =
[
σωx σωy σωz

]
I3×3 (27)

ωgyrot = ωt + eω +bωt (28)

The gyroscope readings are corrected for the bias drift using
an orientation filter based on the feedback of the error in the
rate of attitude change, as is shown in the later section of this
paper. Thus, after the bias drift correction and using equation
25, 26, and 28, the process mode is given by equation 29.

qω,t = qt−1 +
1
2

qt−1⊗
([

0 ωt
]
+
[
0 eω

])
∆t (29)

Where:
ωt =

[
ωxt ωyt ωzt

]
eω =

[
ex ey ez

]
Equation 29 can be expressed as equation 30, where eq,ω
is a zero mean white noise (process model noise). Thus,
the final Kalman filter process model and process noise co-
variance matrix are given by equation 31, where ωcor,t is the
gyroscope reading compensated for bias drift, and E[xxT ] is
the expectation operator.

qω,t = qt−1 +
1
2

qt−1⊗
[
0 ωt

]
∆t + eq,ω (30)

Where:

eq,ω =
1
2

qt−1⊗
[
0 eω

]
∆t

qω,t = qt−1 +
1
2

qt−1⊗
[
0 ωcor,t

]
∆t (31)

Qt =E[eq,ω eT
q,ω ] =

∆t2

4
qt−1⊗

[
0 σ2

ωx σ2
ωy σ2

ωz

]
I4×4⊗qT

t−1

2) Sensor model: The sensor model consists of the atti-
tude estimate obtained via the gradient descent algorithm,
as well as the measurement model noise, and is given by
equation 32. The measurement noise co-variance matrix is
given by equation 33, where µt is the step size of the gradient
descent algorithm. Jg is given by equation 22, O fg is given
by equation 23, and Σacc is the known noise characteristics
of the accelerometer, given by equation 34. It is assumed
that there is no correlation between the noise of the different
axes of the accelerometer.

qO,t = I4×4qO,t (32)

Rt =
µ2

t

||O fg||2
JT

g Σ
2
accJg (33)

Σacc =
[
σaccx σaccy σaccz

]
I3×3 (34)

Although the centrifugal model is meant to remove some of
the external acceleration from the accelerometer readings, the
quadcopter can still be affected by some linear acceleration.
The effects of such unanticipated acceleration are reduced by
adapting the measurement noise co-variance matrix (Rt ). The
difference between the norm of the corrected accelerometer
(~acor) reading and the norm of the normalised gravity vector
(unity) is obtained and then used to alter the measurement
noise co-variance matrix, as shown in equation 35, where ξ

is given by equation 36 and Rt is the sensor noise co-variance
matrix. {

Rt = ∞ i f |ξ |> λa
Rt = Ry i f |ξ |< λa

}
(35)

ξ = ||~acor||−1 (36)

The value of λa depends on the value of the known standard
deviation of the accelerometer. Given the standard deviation
of Gaussian distribution, it is possible to tell how far the
measurements can spread out from the mean. Thus, if no
external acceleration (external noise) is present, then the
spread of the accelerometer readings is given by equation 37,
where ~aspreadI is the spread of the accelerometer readings in
the earth frame and α is tuning gain. Equation 37 is only
valid under the assumption that the noise in the accelerometer
readings along each principle axis are uncorrelated.

~aspreadI =
~g
||~g||
±α

[
1 1 1

]
Σa , α = 1,2, ...n (37)

Thus, if the spread of the accelerometer readings in the non-
accelerated scenario is known, the maximum deviation of the
modulus of the accelerometer readings can be obtained using
equation 38, where λa is the modulus of the spread of the
accelerometer readings.

λa = ||
~g
||~g||

+α
[
1 1 1

]
Σa|| , α = 1,2, ...n (38)
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D. Gyroscope bias drift correction

Due to temperature changes and the motion of the quad-
copter, the gyroscope’s bias changes over time. One way
to correct for the drift in bias is to estimate the bias using
a Kalman filter ([3], [4], [5], [6]), but doing so leads to
an increase in the number of states of the Kalman filter,
which directly affects the computational cost of the overall
filter. However, another filter developed by [12] utilises the
integrated feedback of error. A similar approach is used
in this paper for the gyroscope bias drift correction. The
compensated gyroscope readings are given by equation 39,
where ωgyro,t is the current gyroscope reading.

ωcor,t = ωgyro,t −bω,t (39)

bω,t = ρ ∑
t

ωe,t∆t (40)

where:

ωe,t =~acor×

(
q∗t−1⊗

[
0 ~g

]
||~g||

⊗qt−1

)

ρ is the integral gain and ωe,t is the error between the
corrected accelerometer readings and the projection of the
gravity vector. The integral gain ρ depends on the estimated
rate of change of the gyroscope bias drift. The integral
constant value can be obtained in a manner similar to [11].
Equation 41 provides the value of the integral constant ρ ,
where q̂ is any unit quaternion and ωd is the estimated rate
of change of the gyroscopic bias drift. If the estimated rate
of change of the gyroscope bias drift is assumed to be the
same along each axis of the gyroscope, equation 41 can be
simplified as equation 42, where ωd is the same along each
axis of the gyroscope.

ρ = ||1
2

q̂⊗
[
0 ωdx ωdy ωdz

]
|| (41)

ρ =

√
3
4

ωd (42)

AEKF Algorithm
Before proceeding to the yaw estimate, the additive EKF
algorithm used in the filter is provided below for the reader’s
convenience. The Kalman filter is initiated with the initial
estimate (q0) being the true initial attitude and the state
estimation error co-variance matrix (P0,0) as a large value
matrix (P0,0 = ∞). The matrices Φ, Λ and H are identity
matrices of four dimensions.
Obtain the one-step-ahead prediction using the process model
(eq -26)

qω,t =
qω,t

||qω,t ||
Obtain the co-variance matrix of the state prediction error

Pt,t−1 = ΦPt−1,t−1Φ
T +ΛQtΛ

Calculate the Kalman gain; Rt is obtained using equation 33

Kt = Pt,t−1HT (HPt,t−1HT +Rt)
−1

Update measurements

qt = qω,t +Kt(qO,t −Hqω,t)

Normalise qt

qt =
qt

||qt ||
Obtain the co-variance matrix of the state estimation error

Pt,t = (I−KtH)Pt,t−1

E. Yaw estimate

To obtain the yaw estimate, the yaw rate measured by
the gyroscope is integrated and added to the yaw estimate
obtained via the magnetometer reading through a linear
gain. The linear gain is decided using fuzzy logic to cater
for magnetic disturbance. The yaw estimate obtained from
the gyroscope reading via Newton integration is shown in
equation 43.

ψω,t = ψt−1 + ψ̇t∆t (43)

Another set of yaw estimates is obtained from the magne-
tometer. Eclipse hypothesis compensation ([16]) is used to
compensate for the roll and pitch of the quadcopter as given
by equation 44.mcomx

mcomy

mcomz

T

=

 mxcos(φt)−mzsin(φt)
mxsin(φt)sin(θt)+mycos(θt)+mzcos(ψt)sin(θt)
mxsin(φt)cos(θt)−mysin(θt)+mzcos(φt)cos(θt)

T

(44)

The compensated magnetometer reading is used to calculate
the yaw angle using equation 45.

ψm,t = acrtan(
mcomy

mcomy

)+ν (45)

where ν is the angle between the geographical north and
magnetic north for the given geographical location. The
final yaw estimate, which is a weighted sum of the yaw
estimate obtained via the magnetometer and the yaw estimate
obtained via the rate gyroscope, is obtained using a fuzzy
complementary filter, as shown in equation 46.

ψt = (1−κ)ψω,t +κψm,t (46)

κ is the filter gain that is obtained using fuzzy logic. A
fuzzy gain interpolation scheme is used, such that the gain
is altered based on two criteria: Firstly, the error between the
norm of the magnetic field in the inertial frame and the norm
of the magnetometer readings, and secondly, the modulus of
difference between the gyroscope yaw saturation point and
the current gyroscope readings. The fuzzification function is
given by equations 47 and 48, where fuzzifying variables are
ρ|m| (the modulus error between the norm of the local earth’s
magnetic field and the norm of the measured magnetometer
reading) and |ωψ | (modulus of the yaw rate measured by the
gyroscope) respectively.
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y(ρ|m|) =
e

ln(ϑm)
λm

ρ|m| −1
ϑm−1

(47)

y′(ρ|m|) = 1− y(ρ|m|)

y(ωψ) =
e

ln(ϑω )
ωψ,sat

|ωψ |−1
ϑω −1

(48)

y′(ωψ) = 1− y(ωψ)

The curvature of the membership function depends on the
value of ϑ , which is a tuning gain. ωψ,sat is the gyro yaw
rate saturation, ωψ is the current measured yaw rate, and
λm is the maximum acceptable error between the norm of
the local magnetic field and the norm of the magnetic field
measured by the magnetometer. The value of λm depends on
the standard deviation of the magnetometer and is given by
equation 49.

λm = α||
[
1 1 1

]
Σm|| , α = 1,2, ...n (49)

The value of the maximum acceptable error (λm) is obtained
based on a similar reasoning as the reasoning used to obtain
λa, as given in equation 38. The error between the norm of
the local earth’s magnetic field and the norm of the measured
magnetometer reading (ρ|m|) is given by equation 50.{

ρ|m| = ||mt −be|| i f ρ|m| < λm
ρ|m| = λm i f ρ|m| ≥ λm

}
(50)

The minimum weight method, also called fuzzy intersection,
is used for inference ([17]). For implementing the inference
step, ideal gain values (κi) for the four extreme case sets need
to be tuned. Due to its low computational costs, the center of
gravity method ([18], [19]) is used for defuzzification, which
provides the final gain for the linear complementary filter as
shown in equation 51.

κ =
∑yiκi

∑yi
(51)

An adaptive window moving average scheme is adopted to
cater for yaw estimation noise. The moving average is given
by equation 52.

ψ =
∑i ψi

i
, i = 1,2,3...n (52)

An exponential function is used to calculate the window
size i as shown in equation 53. The window size is directly
proportional to yaw rate (ψ̇). Furthermore, ι is a scaling
constant that depends on the sensor frequency and noise.

i = ιe−|ψ̇| (53)

IV. EXPERIMENTS, RESULTS, AND DISCUSSION

The flight tests were divided into two cases: flight with
and without a damaged rotor. The estimates obtained by
the AFCKF are compared to three widely used mainstream
filters: the filter developed by [11] (for the sake of conve-
nience called ’Madgwick Filter’), the filter developed by [20]
(’Complementary Filter’), and the filter developed by [21]
(’Kalman Filter’).

A. Experimental set-up

The filter was tested using data obtained from the flight
of a Parrot Bepop 2 drone, which is equipped with MARG
sensors. The sensor measurements were calibrated and later
post-processed. The logged data were then processed through
the AFCKF and the other three filters to obtain the attitude
estimates of the quadcopter. The attitude estimates are com-
pared against another set of attitude estimates which is ob-
tained from an OptiTrack motion capture system that consists
of twelve high resolution and high frame rate cameras. Using
the OptiTrack system, it is possible to obtain the real-time
attitude estimates of the quadcopter to an accuracy of 0.1mm.

B. Results and discussion

The attitude estimator performance is quantified by calcu-
lating the RMS of the error between the attitude estimates
obtained via the OptiTrack system and the attitude estimates
obtained using the attitude estimator. Furthermore, Euler
representation is used to represent the roll (φ ), pitch (θ ) and
yaw (ψ) of the quadcopter. Since all the filters are based
on quaternion representation, the Euler angles are computed
using quaternion attitude estimates and equation 9.

1) Flight with damaged rotor: In the first flight test,
a quadcopter flight was conducted with one rotor fully
damaged, which resulted in the quadcopter rotating about the
yaw axis with a high rotational rate of about 15.5 rad/sec.
The MARG sensor data obtained from the flight test were
fed to the respective estimators to obtain the quadcopter’s
attitude estimates. Figures 2, 3, and 4 show the yaw, pitch,
and roll estimation error of the different filters respectively.

Fig. 2. Yaw estimate error of different filters [Case: damaged rotor]
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Fig. 3. Pitch estimate error of different filters [Case: damaged rotor]

Fig. 4. Roll estimate error of different filters [Case: damaged rotor]

The RMS error, variance and execution time of the dif-
ferent attitude estimators are compared in tables I, II, and V
respectively.

Madgwick Complementary Kalman AFCKF
Yaw (ψ◦) 143.5094 164.8690 150.4092 9.8865
Pitch (θ ◦) 2.7121 2.0417 2.4125 1.5717
Roll (φ◦) 3.2761 2.7165 3.0184 1.4599

TABLE I
RMS ERROR OF DIFFERENT ATTITUDE ESTIMATORS [CASE: DAMAGED

ROTOR]

2) Flight without damaged rotor: A second flight test
was conducted with the quadcopter’s rotors being fully
functional. Figures 5, 6 and 7 show the yaw, pitch and roll
estimation error of different filters respectively. The RMS
error, variance and execution time of the different attitude
estimators are compared in tables III, IV, and V.

It can be seen from the results that in the cases of
damaged rotor and the quadcopter spinning rigorously about
the yaw axis, the AFCKF estimates the roll and pitch of the
quadcopter more accurate than the other estimators, with an
RMS error of less than 1.7 degrees and a variance of less

Madgwick Complementary Kalman AFCKF
Yaw (ψ◦) 20591.4895 27182.5512 22415.3247 97.7493
Pitch (θ ◦) 6.9058 4.0811 5.5746 1.8775
Roll (φ◦) 6.9263 3.4681 5.5789 1.7705

TABLE II
VARIANCE OF DIFFERENT ATTITUDE ESTIMATORS [CASE: DAMAGED

ROTOR]

Fig. 5. Yaw estimate error of different filters [Case: without damaged
rotor]

Fig. 6. Pitch estimate error of different filters [Case: without damaged
rotor]

Madgwick Complementary Kalman AFCKF
Yaw (ψ◦) 1.8073 2.6526 2.6571 2.4921
Pitch (θ ◦) 1.6893 8.2690 1.8590 2.0445
Roll (φ◦) 1.3670 3.0333 2.9042 2.0558

TABLE III
RMS ERROR OF DIFFERENT ATTITUDE ESTIMATORS [CASE: WITHOUT

DAMAGED ROTOR]

Madgwick Complementary Kalman AFCKF
Yaw (ψ◦) 3.1942 3.0433 3.3033 2.2183
Pitch (θ ◦) 1.4312 7.8106 0.5657 1.3689
Roll (φ◦) 0.5101 0.8680 0.1548 1.1665

TABLE IV
VARIANCE OF DIFFERENT ATTITUDE ESTIMATORS [CASE: WITHOUT

DAMAGED ROTOR]
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Fig. 7. Roll estimate error of different filters [Case: without damaged rotor]

Madgwick Complementary Kalman AFCKF
Time (sec) 0.7080e−4 5.973e−4 4.862e−4 1.110e−4

TABLE V
EXECUTION TIME OF DIFFERENT ATTITUDE ESTIMATORS [CASE:

DAMAGED ROTOR]

than 2 degrees. For the yaw estimate, it is the only filter
that is able to track the quadcopter’s yaw angle. In the cases
in which the rotor is not damaged, all filters show roughly
similar performances with small differences that do not point
to the dominance of any individual filter. Looking at the
execution time, it can be observed that the Madgwick Filter
is the fastest in all cases, while the AFCKF is on average 1.4
times slower than the Madgwick filter. However, it is still on
average five times faster than the EKF-based filter and about
six times faster than the complex complementary filter.

V. CONCLUSIONS

In this paper, a novel attitude estimator that is able to
estimate the attitude of a quadcopter with one fully damaged
rotor has been developed, validated, and compared to a set
of mainstream estimators to evaluate its performance. The
AFCKF is designed in such a way that the yaw estimates
are obtained via a separate channel than the roll and pitch
estimates. This prevents the yaw estimation errors from
affecting the roll and pitch estimates, which is important
because these estimates are essential for the quadcopter’s sta-
bility. The attitude estimates obtained via the AFCKF were
validated against the real-time attitude estimates obtained
from the OptiTrack motion capture system. Additionally,
the AFCKF was also compared against three widely used
attitude estimation algorithms in order to examine its relative
performance. The results show that the AFCKF is able to
provide significantly better attitude estimates for flights with
a damaged rotor than mainstream filters, estimating the roll
and pitch of the quadcopter with an RMS error of less
than 1.7 degrees and a variance of less than 2 degrees.
It is the only filter that is able to track the quadcopter’s
yaw angle for the case of a damaged rotor, while showing

only a comparatively small rise in the computational cost.
In the cases in which the rotor is not damaged, the AFCKF
performs as good as the other mainstream filters.
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