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A B S T R A C T

Purple Phototrophic Bacteria (PPB) are increasingly being applied in resource recovery from wastewater.
Open raceway-pond reactors offer a more cost-effective option, but subject to biological and environmental
perturbations. This study proposes a hierarchical control system based on Adaptive Generalized Model
Predictive Control (AGMPC) for PPB raceway reactors. The AGMPC uses simple linear models updated
adaptively to project the complex process dynamics and capture changes. The hierarchical approach uses the
AGMPC controller to optimize PPB growth as the core of the system. The developed supervisory layer adjusts
set-points for the core controller based on two operational scenarios: maximizing PPB concentration for quality,
or increasing yield for quantity through effluent recycling. Lastly, due to competing PPB and non-PPB bacteria
during start-up phase, an override strategy for this transition is investigated through simulation studies. The
Purple Bacteria Model (PBM) simulates this process, and simulation results demonstrate the control system’s
effectiveness and robustness.
1. Introduction

Cultivation of Purple Phototrophic Bacteria (PPB) has been gain-
ing importance as a promising alternative for microalgae for nutrient
and resource recovery in general. The beneficial aspect of nutrient
recovery, coupled with the assimilation of Chemical Oxygen Demand
(COD) in wastewater treatment, positions PPB as a viable solution
for industrial wastewater resources, consequently contributing to the
fertilizer-feed-food-fork chain (Capson-Tojo et al., 2020). It reflects the
increasing interests into the application of PPB under various growth
conditions over the last decade (Hulsen et al., 2016; Cerruti et al., 2020;
Capson-Tojo et al., 2023b).

Owing to PPB’s metabolic versatility, they can use a broad range
of organic compounds for growth, both in the presence and absence
of light (photoheterotrophic and chemoheterotrophic grown) and oxy-
gen (aerobic and anaerobic conditions) (Capson-Tojo et al., 2020).
PPB cultivation has proven effective in anaerobic closed photobiore-
actors. Puyol et al. (2017) have discussed the mechanistic growth
metabolisms of PPB in this type of reactor environments and have
proposed the Photo-Anaerobic Model (PAnM). While closed controlled
systems like membrane and tubular photobioreactors and illuminated
stirred reactors offer ideal conditions for maximizing PPB microbial
selectivity, open raceway-pond reactors require lower capital and oper-
ational expenses (Alloul et al., 2021). The PAnM accurately represents

∗ Corresponding author.
E-mail address: a.moradvandi@tudelft.nl (A. Moradvandi).

PPB performances for controlled reactors in research labs, however,
the extended PAnM (ePAnM) (Capson-Tojo et al., 2023a) and Pur-
ple Bacteria Model (PBM) (Alloul et al., 2023) are not limited to
photo-anaerobic conditions by taking diverse metabolic capabilities
of PPB across various varying environmental conditions into account.
More specifically, the PBM mechanistically represents PPB growth in
a sequencing batch configuration of raceway reactors, and has been
calibrated for alternating aerobic and anaerobic conditions as well as
various metabolic growth pathways of PPB (Alloul et al., 2023).

Although raceway reactors are potentially cost-effective industrial
options for scale-up, biomass growth productivity can be easily per-
turbed due to limited control over operating conditions (de Andrade
et al., 2016). Therefore, implementing automatic control systems can
be a solution for ensuring bioreactor robustness against inevitable
operational variations. In recent years, control of microalgae biomass
production in tubular and raceway reactors have been studied by
proposing various advanced control strategies, like linear active dis-
turbance rejection control (Carreño-Zagarra et al., 2019), hierarchical
optimization-based control (Fernández et al., 2016), and learning-based
model predictive control (Pataro et al., 2023). These methods have
been tailored for microalgae and their dynamics and metabolisms,
while PPB responds differently to environmental conditions owing to
their different and highly versatile metabolisms, like ability for high
https://doi.org/10.1016/j.compchemeng.2024.108981
Received 29 July 2024; Received in revised form 4 December 2024; Accepted 10 D
vailable online 17 December 2024 
098-1354/© 2024 The Authors. Published by Elsevier Ltd. This is an open access ar
ecember 2024

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/cace
https://www.elsevier.com/locate/cace
https://orcid.org/0000-0001-9867-6196
https://orcid.org/0000-0003-0989-5456
https://orcid.org/0000-0002-0516-929X
mailto:a.moradvandi@tudelft.nl
https://doi.org/10.1016/j.compchemeng.2024.108981
https://doi.org/10.1016/j.compchemeng.2024.108981
http://creativecommons.org/licenses/by/4.0/


A. Moradvandi et al.

s

t

P
c

w
c

t
g

b
f
a
i

P

c
t
a
c
p
t

a
c
a
a
c
r
A
t
p
t

a
t
a
c
c
S

m
p

t
v
T

b
p

t
c
m
p
T

Computers and Chemical Engineering 194 (2025) 108981 
yield on organic carbon sources and utilization of the near infrared light
pectrum. Alloul et al. (2019) have shown that efficient PPB production

can be achieved utilizing fermented wastewater that is enriched in
volatile fatty acids (VFAs). They have also experimentally investigated
various operational strategies impacting the PPB growth in raceway
reactors (Alloul et al., 2021).

The mechanistical understanding acquired through the aforemen-
ioned investigations has been incorporated in the PBM. Basically, the

system configuration is made on a fixed daily sequencing batch through
a natural 12 h dark and 12 h light regime, fed by VFAs, while taking
the stirring effect of the paddle wheel into account. The growth of
PB encompasses three main pathways: photo-, aerobic, and anaerobic
hemotrophic metabolisms. Observations have shown that due to the

constant transition between dark and light conditions, all these path-
ays can contribute to PPB growth, even when a specific operational

ondition seems predominant (Alloul et al., 2021). This metabolic-
mechanistic switch (Alloul et al., 2023) has been incorporated into
he PBM by introducing an empirical constant for parallel metabolic
rowth (Alloul et al., 2023). Although this parameter can be fine-tuned

through dedicated experiments, it remains a significant source of model
mismatch. Furthermore, the open reactor environment of a raceway
pond is conducive for microbial competition between PPB and non-
PPB, when PPB are not the dominant trophic group. From the work
y Alloul et al. (2021), as a consequence of being exposed to air with
luctuating diffusion causing by paddle wheel operation, the low but
lternating dissolved oxygen concentration, seems to be particularly
mportant. Light intensity and wavelength are other factors affecting

PPB growth in raceway reactors that would affect the growth if not
controlled (Cerruti et al., 2022).

Thus, design of a control system to optimize reactor performance
under these challenging conditions is desired. As discussed above,
such a control system would need to enhance the stability and ef-
ficiency of PPB cultivation under complex biological dynamics and
meteorological fluctuations. Advanced control strategies like model
predictive control (MPC) has shown its applicability and credibility
for various biological wastewater treatment systems (Gupta et al.,
2022; Han et al., 2021). The adaptive version of Generalized Model
redictive Control (GMPC) (Clarke et al., 1987) presents a control

strategy for processes with intricate dynamics, such as the sophisticated
microbial dynamics of PPB as described by the PBM. This approach in-
volves simplifying the complex system into input–output dynamics and
ontinuously updating parameters to mimic the evolving behavior of
he actual process under varying operational conditions, uncertainties,
nd perturbations. Furthermore, the continuous changes in operational
onditions pose the challenge of adapting the set-point to optimize
rocess performance throughout the operation, which can be effectively
ackled through a hierarchical control strategy assigning an appropriate

set-point (Sadeghassadi et al., 2018; Ghanavati et al., 2021).
According to the authors’ best knowledge, advanced control of

PPB-based raceway reactor has not reported in the existing literature.
Therefore, this paper introduces a control configuration for a PPB-
based raceway reactor. The primary controller is based on Adaptive
GMPC (AGMPC), and a supervisory layer is responsible for determining
n appropriate set-point given an operational decision strategy and
urrent process status. An operational decision is made based on either
 water quality-driven scenario, which reduces effluent VFA as much
s possible to increase PPB concentration as well as treatment effi-
iency, or a quantity-driven scenario, which increases the production
ate, and thereafter the yield, by recycling unconverted effluent VFA.
dditionally, an override control strategy is integrated into the system

o facilitate the transition from the start-up phase to the PPB-dominant
hase. The proposed control strategy is operationally advantageous in
he following ways:

• Assigning appropriate time varying set-points for PPB concen-
tration, employing a supervisory layer to determine based on
two operational scenarios, i.e. quality-driven and quantity-driven
under varying operational scenarios.
2 
• Maintaining PPB concentration at the desired set-point under
different illumination scenarios and light perturbations.

• Maintaining PPB concentration at the desired set-point even when
parallel metabolic growth constant is unknown and the contribu-
tion of the different metabolic PPB pathways (photoheterotrophic,
anaerobic, and aerobic chemoheterotrophic) to the overall PPB
growth cannot be quantified.

• Suppressing the growth of other competing bacterial species,
enabling moving towards the desired set-point for PPB concen-
tration under non-steady-state conditions more swiftly (i.e. start
up phase) using override phase-based control that regulates the
paddlewheel.

• The proposed applied controller, based on an adaptively updated
linear input–output model, ensures a low computational burden,
and utilizes available measurements to effectively capture process
variations and disturbances at each time step.

The paper is organized as follows. Section 2 includes the PPB
process description and the corresponding control challenges to be
ddressed. Section 3 presents the PPB control system by discussing
he control configuration for PPB-based raceway reactor integrating
daptive generalized model predictive control, override phased-based
ontrol, and decision-making supervisory layer. Finally, the proposed
ontrol strategy is assessed via comprehensive simulation studies in
ection 4, and in the last section, conclusions are drawn.

2. PPB process description

A first-principle model, describing a biological wastewater treat-
ent process, is a valuable tool to design, optimize, and control a
rocess. Purple Phototrophic Bacteria (PPB) dynamics can be mecha-

nistically represented by the Purple Bacteria Model (PBM) (Alloul et al.,
2023). The PBM is the extended model based on the PAnM (Puyol et al.,
2017) and the ePAnM (Capson-Tojo et al., 2023a) for growth of PPB
in open raceway-pond reactors. A summary of the model dynamics is
provided in Appendix. The PBM thus serves as a reliable benchmark
o analyze the PPB dynamics, considering the complexity of microbial
ersatility of PPB as well as competition between PPB and non-PPB.
herefore, in this work, it will be used as a benchmark to simulate the

growth of PPB in a raceway-pond reactor and assess the performance
of the proposed control system. In this section, a few notable behaviors
of the process are described with respect to the PBM, which should
e taken into account for designing a control system and assessing its
erformance.

2.1. Metabolic versatility of PPB

The PBM describes the PPB’s microbial versatility among the pho-
oheterotrophic (𝑋𝑃 𝐵 ,𝑝ℎ), and both anaerobic (𝑋𝑃 𝐵 ,𝑎𝑛𝑐) and aerobic
hemoheterotrophic (𝑋𝑃 𝐵 ,𝑎𝑒𝑐) growth of PPB. This mechanistic-
etabolic microbial dynamical selection is modeled through an em-
irical constant called the parallel metabolic growth constant (𝑀𝑆 ).
his factor is responsible for the contribution of alternative pathways

to PPB growth alongside the dominant pathway, resulting in model
mismatches. These mismatches stem from its variations during oper-
ation, transitions between light and dark conditions, and the challenge
of precisely determining the constant empirically through timely ex-
periments (Alloul et al., 2021). Variations of 𝑀𝑆 result in different
values of PPB concentration during operation, as all these pathways

can contribute to PPB growth.
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2.2. PPB competitors

In addition to PPB, non-PPB are considered within the microbial
biomass of the PBM. Non-PPB are divided into aerobic bacteria (𝑋𝐴𝐸 𝐵)
nd anaerobic bacteria (𝑋𝐴𝑁 𝐵). Since the raceway-pond reactor is an
pen system, aerobic bacteria are the main competitor of PPB. This
ompetition can impact control performance, especially during the

start-up phase when PPB concentration is not dominant. Although,
he oxygen concentration in raceway reactors is nearly zero, using the

paddlewheel to pass oxygen through the bulk, it affects the competition
between PPB and non-PPB, particularly when PPB are not the dominant
species.

2.3. Light irradiance, attenuation, and distribution

Light is a crucial input factor to support the photoheterotrophic
rowth of PPB. Light intensity is considered constant during daylight

times; this assumption can be reliable if an artificial illumination system
is used (Cerruti et al., 2022). Otherwise, the controller should be able
to deal with a Gaussian-like illumination intensity that represents the
real-world scenario in which the circadian rhythm is perturbed with
loud formation. Therefore, meteorological fluctuations and incoming
uspended solids may disturb light distribution and attenuation.

2.4. Maximum yield of PPB

PPB is metabolically capable of using energy and carbon sources
to grow (Imhoff, 2006). In other words, light as an energy source and
hemical oxygen demand (COD) in wastewater as a carbon source are
equired to efficiently cultivate PPB. In this sense, fermented wastew-
ter including mostly volatile fatty acids (VFAs) has been considered

by Alloul et al. (2019) and Capson-Tojo et al. (2020) as favorable car-
bon sources for PPB microbial selectivity. Depending on the availability
of varying amounts of these two sources, the maximum yield achievable
during operation can vary. Therefore, the control system should be
esigned in such way that it makes best use of available sources, subject
o fluctuations, to enhance the process performance.

3. PPB control system

In this section, a step-by-step design of an advanced control system
aimed at tackling the mentioned control challenges for PPB utilization
in raceway reactors is discussed. The primary control objective is to
regulate the concentration of PPB during operation, subject to bio-
logical and meteorological fluctuations. Among the advanced control
strategies, model predictive control (MPC), which has demonstrated its
efficiency and applicability in various biological wastewater treatment
processes (Han et al., 2021; Ghanavati et al., 2021), is selected as the
core of the control system. To improve efficiency, a supervisory layer is
also developed, accounting for an appropriate set-point to be assigned
for the MPC controller based on two operational scenarios. An override
control strategy is also proposed for the condition when the PPB are
not dominant. The developed control system for the raceway reactor
is illustrated in Fig. 1. It includes three main components: (i) phased-
based controller: it serves as an override control mechanism, facilitating
the transition to the MPC controller for PPB concentration during the
start-up operation; (ii) main controller: this component is dedicated
to regulating PPB concentration and to manage process uncertainties
and potential disturbances effectively; and (iii) Decision-making super-
visory layer: it acts as a supervisory layer to assign an appropriate
PPB set-point concentration based on the preferred operational strategy
and the process condition. In the following, the adaptation of the
control architecture based on MPC for PPB cultivation in a raceway-
pond reactor, and developing the supervisory layer and the override
control strategy will be discussed.
3 
3.1. Control of PPB raceway reactors

PPB raceway reactors are modeled as a sequential batch process
ith daily cycles of filling and extracting the reactor with influent and

effluent, respectively. As discussed by Alloul et al. (2021), a favorable
operational strategy is 12 h light/12 h dark condition with 24 h stirring,
where the reactor is fed by the VFA-based medium before the start of
the light condition. To maintain a constant reactor volume, the feeding
and extraction rates are kept equal. From an automatic control point
of view, practical manipulated variables include the concentration and
the flowrate of influent. If the concentration of the incoming medium
is assumed to be constant, the feeding flowrate is the feasible control
action to regulate PPB concentration.

Given the operational conditions of the raceway reactor, the sig-
ificance of employing MPC becomes evident. With the reactor being
ed once a day and the complex behavior of microorganisms char-
cterized by long response times, making predictions over a horizon
nd controlling the process accordingly becomes crucial. Therefore,
hile the simulation (process) time step is an hour, the controller time

tep is a day (24 h). As depicted in Fig. 2, at time step 24𝑘, where
𝑘 is an integer value, measured PPB concentrations (measured 𝑋𝑃 𝐵)
and implemented feeding rates (past 𝑢) at past times like 24(𝑘 − 1),
24(𝑘− 2), 24(𝑘− 3), etc. are utilized to predict PPB concentrations over
a prediction horizon (𝑁𝑝) and calculate planned control action over a
control horizon (𝑁𝑢) accordingly. This concept is similar to event-based

PC (Pawlowski et al., 2012, 2014), where the event is fixed in this
work. This concept also allows for sufficient time to determine PPB con-
centration daily with an off-line spectroscopic measurement combined

ith conventional TSS/VSS monitoring if real-time monitoring is not
vailable (Cerruti et al., 2020).

3.2. Adaptive GMPC algorithm: main controller

Model predictive control is a model-based control strategy. Al-
though the mechanistic PBM model provides detailed process dynam-
ics, using it as the base model for MPC controller presents significant
challenges. Due to its complex biological characteristics and integrated
structure, the PBM model is highly nonlinear. As a result, employing
such a large model for MPC controller design leads to a nonlinear
non-convex optimization problem that must be solved at each control
step, causing computational complexities and a heavy burden (Ahmed
and Rodríguez, 2020). Furthermore, designing an MPC controller based
on this model requires either measurements or estimations of every
tate variable at each control step. Measuring all the state variables is
conomically and practically unfeasible (Dochain, 2013), while devel-

oping a state estimator is also challenging, particularly for PPB states
that grow through different pathways (𝑋𝑃 𝐵 ,𝑝ℎ, 𝑋𝑃 𝐵 ,𝑎𝑛𝑐 , and 𝑋𝑃 𝐵 ,𝑎𝑒𝑐).
Additionally, the effectiveness of MPC relies on the accuracy of the
model, but the PBM model is susceptible to potential mismatches, such
as those related to the parallel PPB growth constant (𝑀𝑆 ). Therefore,
an input–output model is employed in this work to characterize the
relationship between the feeding flow rate and the PPB concentration.
To capture the variation of the process as those related to the nature
of the process like parallel growth pathways as well as external distur-
bances, an adaptive version of the input–output model is employed.
This adaptive approach allows the model parameters to be updated
based on a new set of observations, ensuring accurateness of predictions
as well as robustness of the controller against biological and meteoro-
logical variations. Given the input–output model as the basis of MPC,
the generalized model predictive control (GMPC) algorithm can be used
as a feedback controller (Clarke et al., 1987). In this method, the GMPC
controller calculates the control actions over a control horizon (𝑁𝑢) that
minimizes a cost function based on a prediction horizon (𝑁𝑝). The cost
function, 𝐽 , is defined as follows:

𝐽 =
𝑁𝑝
∑

𝛿 [𝑦̂(𝑘 + 𝑗|𝑘) −𝑤(𝑘 + 𝑗)]2 +
𝑁𝑢
∑

𝜆 [𝛥𝑢(𝑘 + 𝑗 − 1)]2, (1)

𝑗=1 𝑗=1
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Fig. 1. MPC-based control system architecture for a raceway reactor. The figure illustrates the three main components of the control system: (i) the phased-based controller for
transitioning to the MPC controller, (ii) the main controller for regulating the PPB concentration while handling uncertainties and disturbances, and (iii) the decision-making
supervisory layer for assigning the PPB set-point concentration based on a preferred operational strategy.
Fig. 2. Schematic representation of the raceway reactor operation and the integration
of model predictive control: hourly process time step vs daily control time step.

where 𝑦̂(𝑘+𝑗), 𝑤(𝑘+𝑗), and 𝛥𝑢(𝑘+𝑗) denote the 𝑗−step ahead prediction
on data up to time step 𝑘, the future set-point, and the planned control
increment, respectively. Moreover, 𝛿 and 𝜆 are the controller design
parameters representing the error and the control weighting factors.
The predicted output, 𝑦̂, of the actual output, 𝑦, over the prediction
horizon 𝑁𝑝 is obtained by a single-input single-output discrete time
linear model as follows:

𝐴(𝑞−1)𝑦(𝑘) = 𝐵(𝑞−1)𝑢(𝑘) + 𝜖(𝑘)∕𝛥, (2)

in which

𝛥 = 1 − 𝑞−1, (3)

where 𝜖 denotes zero mean white noise, and 𝐴(𝑞−1) and 𝐵(𝑞−1) are the
linear models. These linear models are the rational functions of the time
4 
shift operator 𝑞−1 (i.e. 𝑞−𝑑𝑥𝑘 = 𝑥𝑘−𝑑 for 𝑑 ∈ Z) that can be written as
follows:

𝐴(𝑞−1) = 1 + 𝑎1𝑞
−1 +⋯ + 𝑎𝑛𝑎𝑞

−𝑛𝑎 , (4a)

𝐵(𝑞−1) = 𝑏0 + 𝑏1𝑞
−1 +⋯ + 𝑏𝑛𝑏𝑞

−𝑛𝑏 , (4b)

in which 𝑛𝑎 and 𝑛𝑏 express the order of the system with respect to
the outputs and inputs, respectively. Since, the adaptive version of
the GMPC controller is considered to tackle with improper future
predictions, the parameters of model (2) should be updated. If we
consider 𝜃 = [𝑎1,… , 𝑎𝑛𝑎 , 𝑏0,… , 𝑏𝑛𝑏 ]𝑇 as the vector of the linear model
coefficients, the online estimation of this parameter vector at time step
𝑘, i.e. 𝜃̂(𝑘), can be derived using the least-squares method as follows:

𝜃̂(𝑘) = 𝜃̂(𝑘 − 1) + 𝑃 (𝑘 − 1)𝜙𝑇 (𝑘)
1 + 𝜙𝑇 (𝑘)𝑃 (𝑘 − 1)𝜙(𝑘) (𝑦(𝑘) − 𝑦̂(𝑘)), (5)

where 𝜙(𝑘) is the augmented vector of past input and output observa-
tions, 𝑃 (𝑘) is the covariance matrix, and 𝑦̂(𝑘) is the prediction output.
The identification process can be written as follows:

𝜙(𝑘) = [𝑦(𝑘 − 1),… , 𝑦(𝑘 − 𝑛𝑎), 𝑢(𝑘),… , 𝑢(𝑘 − 𝑛𝑏)]𝑇 , (6a)

𝑃 (𝑘) = 𝑃 (𝑘 − 1) + 𝑃 (𝑘 − 1)𝜙𝑇 (𝑘)𝜙(𝑘)𝑃 (𝑘 − 1)
1 + 𝜙𝑇 (𝑘)𝑃 (𝑘 − 1)𝜙(𝑘) , (6b)

𝑦̂(𝑘) = 𝜙𝑇 (𝑘)𝜃̂(𝑘 − 1). (6c)

Given this adaptive model, the minimization of the cost function 𝐽
expressed by (1) can be explicitly derived, assuming no constraints on
the control signals (Camacho et al., 2007). Therefore, if 𝐟 is defined
as the free response of the process, the optimal vector of the planned
control actions, i.e. 𝐮 can be written as

𝐮 = (𝐆𝑇𝐆 + 𝜆𝐈)−1𝐆𝑇 (𝐰 − 𝐟 ), (7)

where 𝐆, 𝐈, and 𝐰 express the step response matrix of the system, the
identity matrix, and the vector of the future set-points, respectively.
However, the actual control action sent to the process, is the first
element of the vector 𝐮 that can be written as
𝛥𝑢 = 𝐊(𝐰 − 𝐟 ), (8)
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where 𝐊 denotes the first row of the matrix (𝐆𝑇𝐆+ 𝜆𝐈)−1𝐆𝑇 . Now, the
first element of 𝛥𝑢 is the implemented control action, and the rest of the
elements are planned ones that will be re-updated during next control
time steps. The adaptation of the system parameters is reflected in the
response matrix of the system (𝐆) and the free response (𝐟). In other
words, to derive 𝐆, we need to find two polynomials 𝐸𝑗 and 𝐹𝑗 based
on the Diophantine equation as follows:

1 = 𝐸𝑗 (𝑞−1)𝛥𝐴(𝑞−1) + 𝑞−𝑗𝐹𝑗 (𝑞−1), (9)

in which the degrees of polynomials 𝐸𝑗 and 𝐹𝑗 are 𝑛𝑎 and 𝑗 − 1 (𝑗 as
in (1)), respectively, and they can be derived by dividing 1 by 𝛥𝐴(𝑞−1)
ntil the reminder is a factor of 𝑞−𝑗𝐹𝑗 (𝑞−1), and then, the quotient is

𝐸𝑗 (𝑞−1). Therefore, the polynomial 𝐺𝑗 (𝑞−1) can be written as

𝐺𝑗 (𝑞−1) = 𝐸𝑗 (𝑞−1)𝐵(𝑞−1). (10)

The matrix 𝐆 is, then, an 𝑁𝑢 ×𝑁𝑢 matrix based on coefficients of the
polynomial 𝐺𝑗 (𝑞−1) (Camacho et al., 2007). The elements of the free
response vector 𝐟 can also be written as follows:

𝐟𝑗+1 = 𝑞(1 − 𝛥𝐴(𝑞−1))𝐟𝑗 + 𝐵(𝑞−1)𝛥𝑢(𝑘 − 𝑑 + 𝑗) (11)

in which 𝐟1 = 𝑦(𝑘). Therefore, as can be seen in (9), (10), and (11),
these are derived based on the system polynomials of 𝐴(𝑞−1) and 𝐵(𝑞−1).

herefore, as these system polynomials are updated at each time step,
he response matrix of the system (𝐆) and the free response (𝐟) are also
pdated accordingly.

It should also be highlighted that the only physical constraint that
ay be taken into account in the actuator limits as follows:

𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥, (12)

where 𝑢𝑚𝑖𝑛 and 𝑢𝑚𝑎𝑥 express the upper and lower bounds of the actuator
inputs. Considering the reactor configuration, the lower bound is zero,

hile the upper bound can be defined based on the volume of the
eactor. In case of taking the constraint into account, the optimization
roblem written by (1) subject to inequality constraint of (12) has to
e solved numerically (Camacho et al., 2007).

3.3. Supervisory layer: decision-making operational scenarios

As discussed in Section 2.4, maximum productivity of PPB depends
on availability of two sources, i.e. the light intensity and the VFA
concentration in influent. From a design perspective, the daily product
extraction is scheduled before sunrise. This implies that if there is
too much VFA in the influent, such that the illumination of one day
was insufficient to cultivate maximum productivity, there will be some
unconverted VFA in the effluent. Therefore, determining an appropriate
value for the desired PPB set-point concentration of the controller (𝑤
n the objective function 𝐽 expressed by (1)) enables the control system

to operate as efficiently as possible. In addition to this point, variations
n each of these two sources highlight the importance of selecting the
esired PPB set-point concentration.

In thinking of a suitable value for the desired PPB set-point con-
centration, it is essential to prioritize the operational strategy based on
ither ‘‘quality ’’ or ‘‘quantity ’’. In other words, increasing the feeding
ate can enhance quantity but may compromise quality, and vice versa.
uantity and quality can be considered as a higher production rate and
 higher PPB concentration, respectively. The production rate at control
ime step 𝑘 can be defined as

𝑄(𝑘) = 𝑋𝑃 𝐵(𝑘)𝑢(𝑘), (13)

where 𝑄 [mgCOD h−1] denotes the production rate, but since the feed-
ing is configured for only one hour per day, it can be considered as
a daily production rate. Hence, increasing 𝑢 may result in a higher
production rate, but reduces the quality, i.e. 𝑋𝑃 𝐵 . The another factor
to consider is yield. This comes along as decreasing 𝑋 may lead to
𝑃 𝐵

5 
unconverted VFA remaining in the effluent. Yield of production, 𝑌 , at
control time step 𝑘 can be defined as follows:

𝑌 (𝑘) = 𝑄(𝑘)
𝑆VFA,i(𝑘 − 1)𝑢(𝑘 − 1) , (14)

where 𝑆VFA,i is the influent VFA concentration. To have some indi-
ations towards the factors defined, Table 1 provides the steady-state
alues of the open-loop process simulation. As can be seen, increasing

the feeding flow rate (𝑢) leads to a higher daily production (𝑄) but with
less steady-state PPB concentration (𝑋𝑃 𝐵). On the other hand, less PPB
concentration results in less yield (𝑌 ), but some unconverted VFA in
the outlet.

In addition to the discussion above, it is inevitable that fluctuations
ill occur in both incoming VFA and light intensity. It also highlights

he importance of determining an appropriate desired PPB concen-
ration given the process conditions. Therefore, a supervisory layer
s developed in this paper to overcome this challenge. The supervi-
ory layer is responsible for decision-making considering the current
tatus of the process. Utilizing such a decision-making supervisory
ayer within the feedback loop enables the control system to update
he desired set-point for the PBB concentration. Therefore, a criterion
hould be designed for quality-driven and quantity-driven strategies.
n this sense, the concentration of VFA in the inlet and outlet plays a
rucial role in determining the desired PPB set-point concentration, and
hereafter the production rate and the yield. Considering the relations
mong 𝑄, 𝑌 , and 𝑋𝑃 𝐵 , the two following operational scenarios can be
iscussed:

• Quality as priority : In this scenario, the PPB set-point should be
set as high as possible. A suitable measurement for tracking this
trajectory could be the outlet VFA concentration. As this con-
centration approaches the minimum assigned value, i.e. 𝑆𝑚𝑖𝑛

VFA, it
indicates that most portion of carbon sources have been consumed
and converted to PPB. This indication provides valuable feedback
to the controller subject to possible uncertainties, enabling it
to calculate control actions even when no additional informa-
tion is available for the biological and meteorological conditions.
Therefore, a stepwise increase (𝛥𝑋𝑃 𝐵) is implemented for the
set-point until the outlet VFA concentration goes below 𝑆𝑚𝑖𝑛

VFA. It
should be noted that in practice a buffer range, like 𝑆𝑙

VFA,o ≤
𝑆VFA,o < 𝑆𝑢

VFA,o should be taken into account in order to keep
the process operation stable. It should also be highlighted that
using this scenario contributes to not only PPB output quality, but
also to wastewater treatment by reducing output chemical oxygen
demand (COD).

• Quantity as priority : In this scenario, by reducing the PPB set-
point, the production rate will be increased. However, as can be
seen by a few examples provided in Table 1, the yield is also
decreased. To tackle this issue, a novel solution is to recycle
the soluble effluent, which primarily consists of unconverted
VFA. Yield without recycling can be written as (14). Recycling
unconverted VFA reduces the amount of VFA required from the
VFA tank, thereby increasing the yield to some extent. In other
words, it can be written as follows:

𝑆VFA,i(𝑘 + 1)𝑢(𝑘 + 1) = 𝑆VFA,i(𝑘 + 1)𝑢∗(𝑘 + 1) + 𝑆VFA,o(𝑘)𝑢(𝑘), (15)

where 𝑢∗ is the required flow rate of VFA from the fermented
stream, which obviously is less than what should be used without
circulation. Given (14), the new yield based on circulation, 𝑌𝑟𝑒𝑐 ,
can be written based on 𝑢∗ as follows:

𝑌𝑟𝑒𝑐 (𝑘) =
𝑋𝑃 𝐵(𝑘)𝑢(𝑘)

𝑆VFA,i(𝑘 − 1)𝑢∗(𝑘 − 1) , (16)

and by substituting (15), it gives

𝑌𝑟𝑒𝑐 (𝑘) =
𝑋𝑃 𝐵(𝑘)𝑢(𝑘)

𝑆VFA,i(𝑘 − 1)𝑢(𝑘 − 1) − 𝑆VFA,o(𝑘 − 2)𝑢(𝑘 − 2) , (17)
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Table 1
Steady-state values of the inlet and outlet VFA, PPB concentration, yield, and daily production rate under three different operational conditions.

Light intensity 12 h
dark/12 h light [W m−2]

Paddlewheel 12h
dark/12 h light

𝑆VFA,i
[mgCOD L−1]

𝑢 [L d−1] 𝑆VFA,o
[mgCOD L−1]

𝑄
[mgCOD d−1]

𝑌 × 100 𝑋𝑃 𝐵
[mgCOD L−1]

54 On/on 3000 20
25
30

≃0
238.6
637.8

17 792
23 025
25 713

29.6
30.6
28.6

889.6
921.0
857.1

60 On/on 3000 20
25
30

≃0
127.5
534.1

19 020
24 332
27 300

31.7
32.4
30.3

951.0
973.2
910.0

60 Off/on 2500 20
25
30

212.0
594.4
939.3

14 764
17 187
18 120

29.5
27.4
24.1

738.2
687.5
604.0
Fig. 3. Decision-making supervisory layer for assigning a suitable PPB concentration set-point based on either quality- or quantity-driven operational strategy.
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in which it can be seen that 𝑌𝑟𝑒𝑐 > 𝑌 by comparing (17) and
(14). In contrast to the alternative strategy, we should implement
a stepwise reduction (𝛥𝑋𝑃 𝐵). However, we also require an indi-
cation for the set-point reduction. To do so, (17) is rewritten as
follows:

1
𝑌𝑟𝑒𝑐 (𝑘)

=
𝑆VFA,i(𝑘 − 1)𝑢(𝑘 − 1)

𝑋𝑃 𝐵(𝑘)𝑢(𝑘)
−

𝑆VFA,o(𝑘 − 2)𝑢(𝑘 − 2)
𝑋𝑃 𝐵(𝑘)𝑢(𝑘)

, (18)

and

1
𝑌𝑟𝑒𝑐 (𝑘)

= 1
𝑌 (𝑘)

−
𝑆VFA,o(𝑘 − 2)
𝑆VFA,i(𝑘 − 2) ×

𝑆VFA,i(𝑘 − 2)𝑢(𝑘 − 2)
𝑋𝑃 𝐵(𝑘)𝑢(𝑘)

, (19)

Now, it can be seen that a potential measurement indication
can be 𝑆VFA,o

𝑆VFA,i
. In other words, as the process approaches its

steady-state condition considering recycling effluent, this factor
determines the amount of increase in yield. This strategy not
only boosts production rates but also improves yield, which might
otherwise decline, but is offset by recirculation. Like the other
strategy, a buffer range is also required to be taken into account
in practice for operational stability.

Considering these two operational strategies, i.e. quality-driven and
quantity-driven, the decision-making layer can be formulated based on
the decision tree given in Fig. 3. The assignment of the design param-
ters for this mechanistic decision tree, along with the complementary
otes on upper and lower bounds (𝑆𝑢

VFA,o, 𝑆𝑙
VFA,o, 𝛼, and 𝛽) will be

iscussed in a simulation study later.

3.4. Override start-up control: phased-based control

The microbial community considered in the PBM has been divided
nto three categories: PPB, aerobic bacteria (AEB), and anaerobic bac-
eria (ANB) (Alloul et al., 2023). Furthermore, three different growth
athways. i.e. photoheterotrophic (ph), aerobic chemoheterotrophic
aec), and anaerobic chemoheterotrophic (anc) have been defined for
PB. Since the operational condition is not favorable for anaerobic

growth, concentrations of anaerobic bacteria (𝑋𝐴𝑁 𝐵) and anaerobic
hemoheterotropic PPB (𝑋𝑃 𝐵 ,𝑎𝑛𝑐) are very negligible. Therefore, the

main competition is between other two types of PPB (𝑋𝑃 𝐵 ,𝑝ℎ, 𝑋𝑃 𝐵 ,𝑎𝑒𝑐)
with the non-photoheterotrophic aerobic chemoheterotrophic bacteria
(𝑋𝐴𝐸 𝐵). More specifically, aerobic chemoheterotrophic PPB and aero-
bic chemoheterotrophic bacteria compete when oxygen levels are high,
6 
as both thrive under these conditions. Thus, the reactor environment
can be divided into PPB-dominant and competitive phases. The com-
petitive phase predominantly occurs during the start-up phase, when
o microbial biomass dominates and the oxygen concentration is high.
nce PPB becomes the dominant species, it enhances its growth ac-
ordingly. In other words, the reactor is then a PPB-dominated system,
ecause of availability of light, excess in organic carbon, and limited
xygen conditions (Capson-Tojo et al., 2023a).

To facilitate the transition from the competitive phase to the PPB-
dominant phase, the high oxygen concentration during start-up should
be depleted (Alloul et al., 2021). The paddlewheel in the raceway
eactor assists in smooth mixing of the bulk, while also promoting
xygen depletion by accelerating oxygen diffusion for growth, thus

reducing the overall oxygen concentration (Alloul et al., 2023). As
modeled in the PBM, two modes of operation are considered for the
paddlewheel: on and off. The rotation speed is fixed and must not be too
fast to avoid disturbing the settling PPB. Therefore, a feasible control
ction to moderate the transition to the PPB-dominant phase as well as
he promotion of the PPB growth is the activation of the paddlewheel.
iven that the paddlewheel operates in on/off modes, as explained,
n/off control is the only available method. Since the process passes the
ompetitive phase, it can be switched to the main MPC controller like
n override control strategy, which brings the process from the start-up
hase to the PPB-dominated operation (Chung et al., 2006; Sheik et al.,

2022).
As can be seen in Fig. 4, the maximum capacity for PPB cultivation

is attained when the paddlewheel operates continuously throughout
the day. This outcome is biologically explainable, as lower levels of
oxygen enhance the productivity of photoheterotrophic PPB (Capson-
Tojo et al., 2021; Alloul et al., 2021). Furthermore, during the start-up
phase, the high oxygen levels result in the aerobic bacteria’s oxygen
affinity being at its maximum level, consequently maximizing their
production as depicted in Fig. 4. Therefore, to facilitate a smooth
ransition from the start-up phase, a heuristic control approach for reg-

ulating paddlewheel is implemented in this paper. This controller can
effectively suppress the growth of aerobic bacteria. It is worth noting
that utilizing this override approach, we can switch from this on/off
control to the main MPC controller, when the competition between PPB
and non-PPB is minimal. This strategic activation helps preventing any
sudden changes that might otherwise destabilize the process. This is

chosen because the process stability is crucial, given that the solution
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Fig. 4. Open loop outputs for PPB (𝑋𝑃 𝐵) and aerobic bacteria (𝑋𝐴𝐸 𝐵) for two phases, i.e. start-up and steady-state under two operational conditions w.r.t. the paddlewheel.
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of the objective function (1) relies mainly on appropriate initialization.
n the next section, the implementation of the developed control system
nd its results will be discussed.

4. Results and discussions

In this section, the proposed control strategy is assessed via a
tep-by-step simulation study. First, the main controller is evaluated,

including an assessment of its effectiveness and robustness against the
most critical model mismatch, namely PPB microbial parallel growth
onstant, and the most probable disturbances, namely light pertur-
ation and incoming VFA concentration. Secondly, the effectiveness
f the phase-based override controller is discussed, and finally, the
erformance of the main controller coupled with the supervisory layer
s assessed.

4.1. MPC for PPB concentration: performance assessment under different
perturbations

Given the control structure discussed in Section 3.1, to assess the
performance of the proposed controller, the process is considered in
the PPB-dominant condition with 24 h paddlewheel in use. Prediction
and control horizons are determined based on the process settling time
to the open-loop step response. As a role of thumb (Seborg et al.,
2016), the control horizon 𝑁𝑐 can be chosen between 𝑡𝑠

3𝛥𝑡 < 𝑁𝑐 <
𝑡𝑠
2𝛥𝑡 , in which 𝑡𝑠 denotes the settling time that is around 8 d in this
case for step response w.r.t. the feeding rate, and 𝛥𝑡 expresses the
7 
sampling time, which is set to 1 d as discussed in Section 3.1. The
prediction horizon is also selected close to the control horizon (Seborg
et al., 2016). Hence, 𝑁𝑐 and 𝑁𝑝 are assigned the value of 4 d and 5 d,
espectively. The constraint on the control input can be posed based
n the reactor volume. Since the total reactor volume is 100 L in the
BM, the upper limit can be physically considered 40 L h−1, while the
ower limit can be zero, i.e. 0 ≤ 𝑢 ≤ 40L∕h. In addition, the model
xpressed by (2) is taken into account as the base model of the MPC

controller. The order of model is set to 𝑛𝑎 = 1 and 𝑛𝑏 = 1 with respect
to the output and the input, respectively. Thus, the parameter vector
to be updated at each time step is 𝜃 = [𝑎1, 𝑏0, 𝑏1]𝑇 . As increasing the
order did not improve the performance, and the chosen orders provide
sufficient control performance, these values are considered fixed for the
simulation studies.

Four operating scenarios: (i) set-point tracking without disturbance;
ii) set-point tracking subject to fluctuation in incoming VFA; (iii)

set-point tracking under different illumination scenarios; and (iv) set-
point tracking with mismatch in the PPB parallel growth constant
are considered to assess the controller performance. As depicted in
Fig. 5, the AGMPC controller is able to track the assigned set-points by
regulating the feeding flow rate as the control action. As mentioned in
Table 1, the steady-state equilibrium of the system with initial feeding
rate of 25 L h−1 is 921 mgCOD L−1, in which by lowering the PPB set-
point concentration, the production rate can be increased. Such an
observation brought us to design a supervisory layer. Moreover, it has
been observed that assigning a set-point either too high may cause
process instability, since required amounts of carbon sources may not
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Fig. 5. AGMPC set-point tracking – process response and control action.
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be available to convert to PPB, or too low may violate the actuator
constraint and drastically decrease the performance and yield. This
ne also motivates to introduce a supervisory layer to avoid such
ccurrences.

While having a storage tank for VFA produced from an anaerobic
ermentation process helps to stabilize the VFA concentration feeding to

the raceway reactor, fluctuations in VFA levels are inevitable. To assess
the designed AGMPC controller, a potential ±20 % disturbances for the
ominal incoming VFA concentration is implemented to the process.
s shown in Fig. 6, the controller is able to keep the process stable

o the assigned set-point, subject to the incoming VFA disturbances.
s mentioned previously, light and VFA are the two main sources

for PPB growth. In case of a significant decrease in VFA such that
there is no sufficient VFA biologically available to convert and reach
the designated PPB set-point concentration, especially in the presence
of adequate light intensity, the process may become unstable. This
nstability arises from the absence of an optimal solution for the control

action within the considered actuator constraints. For instance, for a
20 % decrease in the nominal inlet VFA, the outlet PPB concentration
an be deceased by 100 mgCOD L−1 without adjusting the feeding rate.
onversely, a significant increase in VFA poses less of a challenge.

However, assigning a set-point concentration that is too low can lead
to diminished yield and productivity, as significant amounts VFA may
remain unconverted. This again highlights the importance of a suitable
set-point to be assigned, considering the process status.

To assess the robustness of the proposed control strategy against
light intensity, three illumination scenarios are considered, namely (i)
ontrolled (constant) illumination with a constant intensity of
54 W m−2, (ii) natural illumination with the total intensity equal to the
controlled illumination, and (iii) natural illumination with uncertainty
that may happen due to meteorological events, like cloud formation
8 
(depicted in Fig. 7 - top figure). As can be seen in Fig. 7, even if the
ight distribution is varying, the controller keeps the process stable on
he assigned PPB set-point. Switching from controlled illumination to
atural light, even though the total intensity remains constant, results
n a decrease in the feeding flow rate determined by the controller. This

indicates that apart from light intensity, the distribution of light also
influences growth (in agreement with Capson-Tojo et al., 2023a). These
results indicate the automatic controller can handle these perturbations
without light distribution information. As the light intensity and distri-
bution may not be the same for every day, in case of meteorological
events that perturbs the planned light intensity, the controller still
satisfies the control objective as shown in Fig. 7. Once again, if the
total intensity becomes too low, in case of too high set-point, there is no
potential energy source available to convert to PPB, thereby the process
becomes unstable, and the importance of assignment of an appropriate
set-point is, then, highlighted.

The robustness of the controller against step changes in incoming
FA concentrations and varying distributions of light intensity has been
emonstrated and discussed. Although the design of such a raceway
eactor for PPB growth is based on coupling it with high-rate anaerobic

digestion for improved performance Alloul et al., 2021; Doki et al.,
2024, daily variations in VFA levels are inevitable. Additionally, daily
fluctuations in light intensity due to meteorological uncertainties fre-
quently occur in practice. Therefore, two additional scenarios involving
daily variations in incoming VFAs and light intensity have also been
assessed through simulation studies. As shown in Fig. 8, the controller
an keep the track of the set-point despite daily variations in incoming
FAs and light intensity. It can also be observed that the process is
ore sensitive to daily variations in light intensity than to fluctuations

in incoming VFA levels. This is because the available VFA is most
effectively converted to PPB when sufficient light energy enables them
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Fig. 6. AGMPC set-point tracking subject to inlet VFA variation – process response and control action.
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to outcompete aerobic chemoheterotrophic bacteria. As a result, the
impact of daily variations in light intensity is larger than the effect
f varying VFA levels. It should also be added that in case of adverse

changes in the sources, the set-point should be accordingly adjusted in
order to achieve the maximum capacity of PPB growth, considering the
process status. To minimize the risk of process failure due to extreme
meteorological fluctuations, especially in reactors operating in regions

ith such conditions, artificial illumination can be a viable solution.
As mentioned in Section 2.1, the most important source of the model

mismatch is the parallel metabolic growth constant (𝑀𝑆 ). Determina-
tion of this parameter is experimentally and mathematically complex,
as it may change due to changes in species and continuous daily switch-
ing between light/dark conditions (Alloul et al., 2021). The proposed
AGMPC controller is robust against uncertainty and model mismatch
ue to its reliance on an input–output model that is free of mechanistic
elationships. Therefore, this model is daily updated based on observed
ata to accurately capture changes over time. As depicted in Fig. 9,

even though the parallel metabolic growth is changed over time, the
controller tracks the assigned set-point by regulating the feeding flow
ate. To compare the results, the open loop steady-state values of PPB
oncentration for the different parallel metabolic growth constants on
he last five days for the feeding flow rate of =25 L h−1 have been also

drawn in Fig. 9. As can be seen, it is an important contributing factor
to the PPB concentration, which can drastically change the output
oncentration without the controller. Thus, the controller keeps the
utput concentration fixed even when the parallel growth constant
hanges and no information about these changes is available.

As discussed above, it has been shown that the controller effectively
racks an assigned set-point and can satisfactorily manage two signifi-
ant potential disturbances: incoming VFA concentration and changes
n illumination scenarios, which are the primary resources enabling
PB growth. Moreover, the robustness of the controller against model
9 
mismatch of the parallel metabolic growth constant has been demon-
trated as well. It has been also investigated, whether in some scenarios

with severe fluctuations, one might need to assign an appropriate set-
point in order to make the best use of available sources to convert to
PPB and to avoid process instability. The simulated examples are for
the process conditions wherein PPB are the dominant species. In the
following section, the discussion focuses on designing a controller to
transition the process from the competition phase (start-up phase) to
this PPB dominant phase.

4.2. Override control for microbial competition: phase-based control

According to the discussion in Section 3.4, the paddlewheel is
onsidered as a control regulator for the competition phase during
he start-up phase. When the paddlewheel is activated, it boosts the
rowth of PPB, if it is the dominant bacteria. Alternatively, turning it off
uppresses the growth of non-PPB bacteria. Due to inability of the main
ontroller to find a control input within the search domain dictated by

the control input constraint, it is suggested to use an override control
ith a heuristic approach for the first few days during the start-up

phase to prevent non-PPB growth by turning the paddlewheel off, and
then switch to MPC controller for PPB concentration control and full-
time paddlewheel activation to enhance PPB growth to a maximum
extent.

As can be seen in Fig. 4, the growth of non-PPB is decreased after
4 − 7 days. Therefore, by suppressing non-PPB growth during these days,
y keeping the paddlewheel deactivated, PPB can be the dominant
acteria in a shorter time, then we can switch to the MPC controller
nd turn the paddlewheel on 24 h to get the maximum growth of PPB.
he switching time for the paddlewheel and the activation of the MPC
ontroller depends on the initial condition (in this case concentration

in influent) for non-PPB namely, aerobic heterotrophic bacteria, 𝑋 .
𝐴𝐻 𝐵
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Fig. 7. AGMPC set-point tracking subject to different illumination scenarios – daily illumination intensity, process response, and control action.
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As depicted in Fig. 10, when 𝑋𝐴𝐻 𝐵 = 10 mgCOD L−1, the transition can
occur as early as day 2. For 𝑋𝐴𝐻 𝐵 = 100 mgCOD L−1, this transition can
ake place from day 5 onwards. However, if 𝑋𝐴𝐻 𝐵 = 200 mgCOD L−1,
witching to the main controller on day 5 may lead to difficulties
or AGMPC in stabilizing the PPB concentration at 860 mgCOD L−1 as
hown. Alternatively, delaying the switch until day 6 can mitigate these
ontrol action variations. The process response shown in Fig. 10 also

highlights that when the concentration of aerobic heterotrophic bacte-
ia is lower, or when competition decreases due to a delay in switching,
he PPB set-point concentration can be reached more rapidly, while
aintaining a higher production rate. Therefore, it can be concluded

hat such an override control benefits the PPB growth.
 m

10 
4.3. Supervisory layer: discussion on decision-making operational strategies

As discussed above, the proposed AGMPC control system is able
to control the assigned output PPB concentration subject to the model

ismatch, influent VFA variations, and different illumination scenarios.
ccording to the discussion in Section 3.3, the main parameter that
ffects the process performance is the PPB set-point concentration to

be assigned. According to an operational decision expressed by the
ecision tree given in Fig. 3, the design parameters can be assigned

as follows:
(i): If the priority is quality and reaching water treatment criteria,

he PPB set-point concentration should be increased to get the maxi-
um potential of available sources, i.e. incoming VFA concentration
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Fig. 8. AGMPC set-point tracking subject to daily variations – process response to daily variation in incoming VFA (top figure), and process response to daily variation in light
intensity (bottom figure).
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and light intensity for PPB cultivation. As explained, 𝑆VFA,o is a rea-
onable indication to check how much VFA remains unconverted after
ne cycle of the process and then to decide for increase/decrease of the
PB set-point. The cross-checking boundaries, i.e 𝑆1

VFA,o and 𝑆2
VFA,o are

et to 250 mgCOD L−1 and 150 mgCOD L−1, respectively, as can be seen
n the decision chart in Fig. 3. Therefore, as long as 𝑆VFA,o ≥ 𝑆1

VFA,o,
the set-point is increased, while if 𝑆VFA,o < 𝑆2

VFA,o, the set-point is de-
creased. Given that the outlet VFA concentration is the only indicator,
in instances of significant increases in light intensity resulting from me-
teorological fluctuations, it may be required to lower the set-point. This
adjustment is aimed at preventing process instability, as insufficient
VFA may be not available for conversion to PPB, leading to a subse-
uent drop in outlet PPB concentration. Consequently, the lower bound
s considered in such cases to address this concern. The buffer range,

i.e 𝑆𝑙
VFA,o ≤ 𝑆VFA,o < 𝑆𝑢

VFA,o is also considered keeping the process
table between a specific range of outlet VFA, instead of continuously
ncreasing and decreasing the PPB set-point concentration. Implement-
ng the proposed decision-making layer for quality successfully achieves
he highest PPB concentration given available sources, as mentioned

in Table 2. According to Table 2, for different operational settings in
terms of the required sources for PPB utilization, by checking the outlet
VFA, the set-point, and consequently the output PPB concentration, are
increased. This decision strategy also contributes to COD removal, as
the outlet VFA concentration is decreased by regulating the feeding
flow rate. The outcomes associated with both PPB concentration and

OD removal align with the conclusions drawn by Alloul et al. (2021,
2023), emphasizing the impact of augmenting hydraulic retention time
(HRT), achievable through reducing the feeding flow rate as managed
by the controller, on both COD removal and PPB concentration.

(ii): For the another operational strategy, quantity as a production
rate is a priority. It can be achieved by reducing the set-point, which
11 
increases the feeding flow rate, and thereafter, the output production
rate, according to (13). While the higher production can be achieved,
this operational strategy is not appropriate for COD removal. Therefore,
it has been suggested to recycle the soluble materials for the subsequent
cycle after separation. It helps to reduce the amount of consumption
of the VFA tank from the VFA tank, as denoted by 𝑢∗ in Table 2. As
discussed in Section 3.3, 𝑆VFA,o

𝑆VFA,i
can be an appropriate indication to

decide for decreasing the PPB set-point concentration. As can be seen
n the decision chart in Fig. 3, 𝛼 and 𝛽 are the two boundaries to decide

for increase/decrease of the PPB set-point.
These parameters are typically regarded as design parameters that

hould to be determined by a process expert. For instance, they should
ot be set at levels where control action becomes saturated. Considering
he nominal design provided in the original PBM model, 𝛼 and 𝛽
re set to 1

3 and 2
5 . Since in this example, recirculation is taken into

account and a portion of feeding rate includes it, the upper actuator
limit is also set to 50 L h−1. Investigating data given in Table 2, while
ncreasing the production rate, the required input from the VFA stream,
∗ is also decreased due to the recirculation. Therefore, using this
perational decision scenario successfully increases the production rate
nd decreases the amount of VFA that needs to be provided from the
FA tank. This highlights that the VFA feeding rate in this operational
trategy is close to the feeding rate computed by the quality decision
trategy (see the column of 𝑢∗ in Table 2). Moreover, according to (19)

and the factor 𝑆VFA,o
𝑆VFA,i

≥ 1
3 , the yield should exceed 3

2 of the yield in
case of a non-recycling process. In other words, without recirculation,
reducing the PPB set-point leads to a corresponding decrease in yield.

onversely, by recycling non-converted VFA, the yield can be increased
y almost 3

2 .
The last assessment includes investigating how the supervisory layer

eacts to perturbation and uncertainty during operation. In this regard,
the following operational conditions are assumed:
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Fig. 9. AGMPC set-point tracking subject to uncertainty of the PPB metabolic growth constant – process response, and control action.
Table 2
Operational conditions (five operational conditions in terms of available sources, i.e. light intensity and incoming VFA, 𝑆VFA,i) and performance outcomes: comparative analysis of
quality-driven (denoted by #1) and quantity-driven (denoted by #2) approaches in PPB cultivation process.

Operational
scenario

Light intensity
12 h dark/12 h light [W m−2]

𝑆VFA,i
[mgCOD L−1]

𝑆VFA,o
[mgCOD L−1]

𝑄
[mgCOD d−1]

𝑌 × 100 𝑋𝑃 𝐵
[mgCOD L−1]

Output
𝑢[L d]

Required input
𝑢∗[L d]

#1
#2

54 3000 170.07
1179.60

22 790.50
28 914.18

31.67
39.66

950.00
741.96

23.99
38.97

23.99
24.30

#1
#2

60 3000 191.26
1117.80

25 244.49
30 631.33

32.99
40.96

989.98
782.01

25.50
39.17

25.50
24.93

#1
#2

50 3000 173.61
1153.2

21 298.37
26.382.78

30.71
40.73

989.98
782.01

23.12
36.26

23.12
21.59

#1
#2

54 2500 211.97
979.48

25 695.50
28 140.02

34.00
41.44

850.00
629.39

30.23
44.71

30.23
27.16

#1
#2

54 3500 239.00
1355.00

21 298.37
26.382.78

28.84
38.69

1009.70
830.00

20.19
32.88

20.19
20.15
q

w

d

1. Start: A light intensity of 54 W m−2 and incoming VFA concen-
tration of 3000 mgCOD L−1 as the nominal condition,

2. Event 1: Perturbation on incoming VFA by 20 % increase on day
100, i.e. a light intensity of 54 W m−2 and an incoming VFA
concentration of 3600 mgCOD L−1,

3. Event 2: Perturbation on light intensity by a 10 % increase on
day 200, i.e. a light intensity of 60 W m−2 and an incoming VFA
concentration of 3600 mgCOD L−1,

4. Event 3: Perturbation on light intensity by a 20 % decrease,
while considering a mismatch in the parallel growth constant
on day 300, i.e. 𝑀𝑆 = 0.32, a light intensity of 50 W m−2 and an
incoming VFA concentration of 3600 mgCOD L−1.

As can be seen in Figs. 11 and 12, for the both decision strategies,
the PPB concentration should be increased upon Events 1 and 2 by
he supervisory layer, as the incoming VFA on Event 1 and the light
12 
intensity on Event 2 are increased. The basis of such a decision for the
uality-driven scenario is keeping the outlet VFA concentration within

the specified range as indicated in Fig. 11 (blue line in top figure),
hile for the quantity-driven scenario, the criterion is the ratio between

the inlet and outlet VFA concentrations, resulting in a higher VFA in
the effluent that should be recycled. On Event 3, it is assumed that
the parallel growth constant is 𝑀𝑆 = 0.32 (the nominal constant is
𝑀𝑆 = 0.28). As discussed in Section 4.1 and more specifically the
iscussion of Fig. 9, the parallel growth constant is a main source

of model mismatch, and therefore, it affects the production, while its
value is not known. Therefore, considering this unknown parameter,
the supervisory decision layer should determine an appropriate set-
point based on the defined criterion. As can be seen in Figs. 11 and
12, however, the light intensity is decreased, but the increase in 𝑀𝑆 is
the reason of more labor division among different types of PPB (Alloul
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Fig. 10. Override control for microbial competition during the start-up phase. The override control switches to the MPC controller after a specific day.
m

et al., 2021), and consequently the higher PPB concentration in com-
parison with Event 1. In terms of the calculated control action for
he both scenarios, feeding flow rate is adjusted according to the
hanges (Figs. 11 and 12, middle ones). On the occurrence of an event,
he supervisory layer intervenes to restore stability to the process by
ddressing the decision criteria that have been violated. Moreover,

for the quantity-driven scenario, the flow rate required from the VFA
tank (𝑢∗ according to Eq. (15)) is also shown in Fig. 12 (red line in
middle figure), which is lower than the actual feeding flow rate, as
the unconverted VFA is recycled for the next cycle of the process.
According to the feeding flow rates depicted in Figs. 11 and 12, the flow
ate from the VFA tank is within a similar range (≃20 L d−1). However,
n quantity-driven operational scenarios, the HRT is prolonged due to
irculation compared to quality-driven scenarios. This prolonged HRT
eems to correspond to an increased yield, aligning with the discussion
n PPB aggregation and HRT presented by Blansaer et al. (2022).

Another point to be discussed is the adaptation and switching
dynamics. As discussed in Section 3.1 and shown in Fig. 2, the system
arameters are theoretically updated every 24 h (daily) based on new

observations (measurements). However, as long as the process remains
within a stable operating domain, meaning no significant perturbations
occur, the observations reach a steady state, and the system parameters
remain unchanged. This can be clearly seen in Figs. 11 and 12 (bottom
nes), where the parameter vector 𝜃 starts switching when an event

occurs, such as on days 100, 200, and 300.

4.4. Implications of the proposed control system and further development

The presented control system is the first developed automatic con-
troller for PPB cultivation in a raceway reactor. This reduces the
need for skilled labors to supervise the process, not only to ensure
13 
process stability against biological perturbations and environmental
disturbances, but also to enhance process performance according to
the preferred operational strategies mentioned in this work. The best
control can be achieved on reliable measurements. Cerruti et al. (2020)
have discussed a method to measure PPB concentration. Measurement

ethods based on flow though cell UV–Vis and NIR spectroscopy (Qi
et al., 2023) allow online measurement if only one species, such as
PPB are dominant. If some errors occur due to a lack of precise
measurements, developing a mathematical prediction method based
on reliable available measurements, such as using either a mecha-
nistic model (Piaggio et al., 2024) or an observer (Kemmer et al.,
2023), would address data availability for the developed control sys-
tem. It should be also highlighted the control system is based on
input–output model, which allows including delay in measurement
by increasing time shift operators. Moreover, if any error occurs for
PPB measurement, it can be somehow offset via the supervisory layer
by cross-checking outlet VFA consecration, for which more reliable
and faster measurement is available, which also highlights another
advantage of the developed hierarchical control system.

This paper highlights dealing with the start-up phase for the tran-
sition between non-PPB and PPB bacteria communities. This has been
addressed by proposing an override control based on mechanistic and
heuristic understanding. As mentioned, the capability of the MPC con-
troller to maintain the process on the assigned set-point depends on
an appropriate initialization. To include the competition phase into
the MPC model, using a simplified mechanistic model instead of such
a proposed linear input–output model would address it. Moreover,
designing a mechanistic-derived override controller can also be con-
sidered as a further development. Finally, a novel supervisory layer
based on two proposed operational strategies has been proposed in
this work to enhance the process performance. This is based on mech-
anistic analysis of the process and the simulation model. As a further
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Fig. 11. Quality-driven scenario: AGMPC set-point tracking integrated with the decision-making supervisory layer to assign the appropriate set-point subject to the operational
onditions and fluctuations – process response, determined set-point, outlet VFA, feeding flow rate, and adaptations of parameters.
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investigation, application of alternative approaches, namely fuzzy logic
system (Ghanavati et al., 2021), neural networks (Sadeghassadi et al.,
2018), and switched systems (Moradvandi et al., 2024), can be taken
nto account.

Although the controller can adapt to varying environmental con-
ditions by updating the internal model, the raceway reactor cannot
be operated in regions with significantly fluctuating conditions. For
example, operating the reactor in areas with limited sunlight (if reliant
on natural light) causes practical operational challenges for cultivating
PPB. Additionally, as raceway reactors are open systems, temperature
is a critical factor. Capson-Tojo et al. (2023a) reported PPB’s resilience
nd a broad survival range to temperature variations, with fixed uptake
ate constants between 20 and 40 ◦C. In case of a wider temperature
ariation, the proposed control strategy requires further assessment for
uch regions.
14 
Exploring other types of MPC approaches, such as scenario-based
MPC (SMPC) (Calafiore and Fagiano, 2013) and practical nonlinear
MPC (PNMPC) (Plucenio et al., 2007), could also be considered as
future work. The SMPC controller is well-suited for conditions with
igh uncertainty, particularly in cases where fluctuations in natural
ight could significantly disrupt the process. It mitigates these adverse
isturbances by accounting for potential scenarios of weather condi-
ions and identifying a solution to handle these variations. Designing
n NMPC controller could also be explored; however, it requires a
implified nonlinear model to reduce the computational complexity of
he resulting non-convex optimization problem. To address the com-
lexity of the PBM model, it can be simplified using approaches such

as principal component analysis by taking into account the availability
of real-time measurements as well as controllability and observability
of the simplified model (García-Diéguez et al., 2013). Thereafter, some
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Fig. 12. Quantity-driven scenario: AGMPC set-point tracking integrated with the decision-making supervisory layer to assign the appropriate set-point subject to the operational
onditions and fluctuations – process response, determined set-point, outlet VFA, and feeding flow rate, and adaptations of parameters.
a

computationally effective approaches such as the PNMPC method can
e explored for this simplified version of the PBM.

5. Conclusions

In this paper, a control system on the basis of adaptive generalized
odel predictive control (AGMPC) for PPB raceway reactors is devel-

ped. PPB cultivation in raceway reactors is subject to biological and
eteorological fluctuations. The proposed control strategy is able to

ffectively deal with environmental disturbances. However, significant
hanges in two essential sources for PPB utilization, namely incoming
FA concentration and light intensity, may lead to process and control

nefficiency and instability if the set-point is set either too low or too
igh. Therefore, the AGMPC controller is integrated to a supervisory
ayer to assign an appropriate set-point given the process condition.
15 
Two operational strategies, namely quality-driven and quantity-driven,
re developed for assigning a set-point. In both operational strategies,

the hierarchical control system is able to fulfill the process objectives
under various perturbations. In the quality-driven scenario, maximizing
PPB concentration in each cycle can be achieved by monitoring the
outlet VFA concentration. This approach also facilitates COD removal,
as it ensures minimal outlet VFA concentrations are attained. In the
quantity-driven scenario, decreasing the PPB set-point results in an
increased production rate. Simultaneously, the system is configured to
recycle unconverted outlet VFA, thereby enhancing yield through the
extension of HRT. Moreover, an override control strategy is developed
in order to transition the process from the microbial competition phase
to the PPB-dominant phase. To achieve this, an investigation is con-
ducted to determine the transition, given an initial condition of the
process, the paddlewheel should be deactivated for a few days before
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switching to full-time activation. The effectiveness of the proposed con-
trol framework has been assessed via the PBM model as a benchmark.
This automatic control framework can also be used for full-scale plants,
ven they are supervised by unskilled labors.
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Appendix. The PBM model used for simulation

(i) State variables: The PBM (Alloul et al., 2023) has 15 state
ariables based on 12 biological and 4 physical processes. Microbial

community is divided to three PPB-based bacteria namely photo-
heterotrophic (𝑋𝑃 𝐵 ,𝑝ℎ), anaerobic chemoheterotrophic (𝑋𝑃 𝐵 ,𝑎𝑛𝑐), and
erobic chemoheterotrophic (𝑋𝑃 𝐵 ,𝑎𝑒𝑐), and two non-PPB bacteria,

namely aerobic bacteria (𝑋𝐴𝐸 𝐵) and anaerobic heterotrophic
fermenters (𝑋𝐴𝑁 𝐵). The other two particulate matters are considered
within the incoming feed as slowly biodegradable organic matter (𝑋𝑆 ),
and inert particulate organic matter (𝑋𝐼 ). The other state variables are
considered as soluble matters, namely, readily biodegradable organic
matter (𝑆𝑆 ), volatile fatty acids (𝑆𝑉 𝐹 𝐴), inert soluble organic matter
(𝑆𝐼 ), soluble hydrogen (𝑆𝐻2), total inorganic carbon (𝑆𝐼 𝐶 ), total inor-
ganic nitrogen (𝑆𝐼 𝑁 ), total inorganic phosphorus (𝑆𝐼 𝑃 ), and dissolved
oxygen (𝑆𝑂2).

(ii) Balances and system dynamics equations: Taking account all the
mentioned particulate (𝑋𝑗 ; 𝑗 = 1,… , 7) and soluble (𝑆𝑖; 𝑖 = 1,… , 8)
matters, mass balances of the PBM model can be summarized as fol-
lows:
𝑑 𝑉
𝑑 𝑡 =𝑄𝑖𝑛(𝑡) −𝑄𝑜𝑢𝑡(𝑡), (A.1a)

𝑑 𝑆𝑖
𝑑 𝑡 =

𝑆 𝑖𝑛𝑝𝑢𝑡
𝑖 𝑄𝑖𝑛(𝑡) − 𝑆𝑖(𝑄𝑜𝑢𝑡(𝑡) + 𝑑 𝑉

𝑑 𝑡 )
𝑉0

+
∑

𝑣𝑖𝜌𝑖, (A.1b)

𝑑 𝑋𝑗

𝑑 𝑡 =
𝑋𝑖𝑛𝑝𝑢𝑡

𝑗 𝑄𝑖𝑛(𝑡) −𝑋𝑗 (𝑄𝑜𝑢𝑡(𝑡) + 𝑑 𝑉
𝑑 𝑡 𝑓𝐻∕𝑆 )

𝑉0
+
∑

𝑣𝑗𝜌𝑗 . (A.1c)

in which 𝑉0, 𝑉 , 𝑄𝑖𝑛, 𝑄𝑜𝑢𝑡 denote the reactor initial and actual volumes,
nd input and output flow rates, respectively. Besides, 𝑣𝑖 and 𝑗 and
𝑖 and 𝑗 express the stoichiometry factors and the corresponding rate
quations, respectively, for consumption and production rates, which
etails can be found in the Peterson matrix of the model (Alloul et al.,

2023). In addition, 𝑓𝐻∕𝑆 is a factor defining the fraction of removed
articles.
(iii) PPB metabolic versatility: PPB state variables are the main output

of the system. Six biological processes are assigned to them, namely:
two photoheterotropic growths on soluble organics and VFAs; two
aerobic chemoheterotrophic growths on soluble organics and VFAs; one
anaerobic chemoheterotrophic growth on soluble organics; and biomass
ecay into biodegradable materials and inerts. Therefore, the model is
16 
written to account for the ability of PPB to grow on different substrates
(carbon sources) or energy sources (light) in parallel. In this regard, a
parallel metabolic growth constant (𝑀𝑆 ) among the three PPB biomass
types is included. Considering the following new variables:

𝑓𝑝ℎ = 𝑋𝑃 𝐵 ,𝑝ℎ +𝑀𝑆 (𝑋𝑃 𝐵 ,𝑎𝑒𝑐 +𝑋𝑃 𝐵 ,𝑎𝑛𝑐 ) (A.2a)

𝑓𝑎𝑒𝑐 = 𝑋𝑃 𝐵 ,𝑎𝑒𝑐 +𝑀𝑆 (𝑋𝑃 𝐵 ,𝑝ℎ +𝑋𝑃 𝐵 ,𝑎𝑛𝑐 ) (A.2b)

𝑎𝑛𝑐 = 𝑋𝑃 𝐵 ,𝑎𝑛𝑐 +𝑀𝑆 (𝑋𝑃 𝐵 ,𝑝ℎ +𝑋𝑃 𝐵 ,𝑎𝑒𝑐 ) (A.2c)

in which 𝑓𝑝ℎ, 𝑓𝑎𝑒𝑐 , and 𝑓𝑎𝑛𝑐 represent variables with regard to par-
allel photoheterotrophic, aerobic chemoheterotrophic, and anaerobic
chemoheterotrophic growths, respectively, these variables are used
in their corresponding kinetic growth rates. This factor facilities to
account the contributions of other parallel growth pathways to the
dominant one. Since, the measurement of growth rate of each indi-
vidual type of PPB is not straightforward and sometime feasible, this
factor, i.e. 𝑀𝑆 is the main source of uncertainty.

(iv) Inhibition functions: Rate equations (𝜌𝑖 and 𝑗) are also included
the associated inhibition functions, which are based on the Monod type
function to describe limitations of organics, ammonium, phosphate,
light, and oxygen. As the PBB bacteria is mainly divided to photo-
heterotrophy and chemoheterotrophy, the light inhibitory factor for
PBB photoheterotrophy is the inverse of the light inhibitory factor for
PPB chemoheterotrophy. In addition, while the main feed is considered
to be VFAs, competitive inhibition function between VFAs and other
soluble organics is also included into the PBM.

The details of the PBM dynamics and parameters are provided in
https://github.com/Ali-Moradvandi/.
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