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1
Introduction

The ever-increasing demand for computing has led to the need for specialized heterogeneous hard-
ware, and the frameworks required to utilize them. Besides the traditional central processing units,
more and more programs will make use of specialized hardware such as GPUs, FPGAs and DSPs to
accelerate computations. There are a number of frameworks that provide a way to utilize this hard-
ware. And while some frameworks only specialize in one type of device, Open Computing Language
(OpenCL) specifications provide a shared specification for a wide range of hardware.

Contrary to everyday belief, computers can in fact make errors. And while the chance of an error
happening is generally small, the increase in computing lowers themean time between errors occurring.
In this thesis, we address this problem for the range of devices supporting the OpenCL specifications.

1.1. Context
The Customizable Parallel Computing [1] (CPC) group, is a research group that is part of Tampere Uni-
versity (TAU) located in the city of Tampere, Finland. The CPC group focuses on parallel applications
ranging from energy-efficient hardware architectures with their OpenASIP tools to high-performance
computing with PoCL. PoCL is an open-source implementation of OpenCL and has support for a range
of different hardware. The hardware it supports includes: CPUs, GPUs and FPGAs.

The CPC group participated in the CPSoSaware [2] project with a focus on heterogeneous com-
puting and fault tolerance. CPSoS in CPSoSaware stands for Cyber-Physical System of Systems and
the project included many different aspects from computer-controlled physical machines to machine
learning and software computing stacks. The organizational structure of the CPSoSaware project is to
have participants work closely together on different aspects of the project. The CPC group was only
one of the thirteen organizations participating and focused particularly on heterogeneous computing,
machine learning and fault tolerance. At the start of this thesis, work on heterogeneous computing and
machine learning had already been delivered. The only thing left to complete was work on achieving
fault tolerance.

1.2. Problem definition
The CPSoSaware project focuses on large, complex systems. The more computations a system does,
the shorter the time between errors occurring. If this error is not caught in time, it can propagate
throughout the system. One example of such an occurrence happening to cyber-physical systems
happened on Qantas Flight 72 in 2008. According to an investigation by the Australian Transport
Safety Bureau [3], an error in one of the plane’s sensors caused the flight control computer to make an
abrupt nose dive.

The CPSoSaware project is broad in its range of applications and this makes PoCL suitable since
PoCL is vendor independent and has been ported to a number of different platforms, including ARM
and recently partially to RISC-V [4]. This aspect also poses a challenge as any solution that depends
on platform-specific properties will be limited in its applicability. The vendor independence of PoCL is
also attractive to the CPSoSaware project as it looks at the total lifecycle of a system and parts may
be changed or swapped out during that lifecycle.

3



4 1. Introduction

Another aspect with regard to the CPSoSaware project is that any implementation will only be one
part of a larger, more complex system. Any solution that is difficult to use or hard to apply faces the
possibility of not being used. A programmer’s time is valuable and if a solution requires them to put
significant time into one detail of a much larger system, that said solution might not be applied in favor
of another.

The problemwe focus on in this thesis project is related to adding fault tolerance to large, interacting,
complex, heterogeneous computing systems. In order to enable fault tolerance in such systems, we
choose to use PoCL as an implementation platform. Therefore, the problem statement in this thesis
can be formulated as follows: How can we add fault tolerance to PoCL?
This leads us to formulate three research questions and which are listed below:

1. How can fault tolerance be added to PoCL in a way that is easy to use for the end user?

2. How can the runtime overhead of this implementation be kept to a minimum?

3. How can we preserve the flexibility of OpenCL while adding this fault-tolerant capability?

1.3. Thesis layout
The layout of the thesis is as follows. Chapter 2 discusses the background of fault tolerance as well as
the used technology stack that we build on. This includes concepts such as triple modular redundancy
as well as key concepts of OpenCL and by extension PoCL. We also discuss previous work and provide
a hierarchical overview of different methods for fault tolerance.

This is followed by Chapter 3, in which we discuss a number of criteria by which we evaluate a
number of potential solutions. We provide a number of potential solutions which we discuss and score
according to the criteria. Finally, we select the most suitable solution for our problem based on how it
satisfies the given criteria.

In Chapter 4, we discuss the implementation details of the chosen solution. We go into detail on
the design and extensions of PoCL. We also discuss the flow of data and computations done by the
chosen solution.

This is followed by Chapter 5, where we evaluate the implemented solution according to the criteria
described in Chapter 3. We compare variations of the same solution in order to find the most optimal
variant. We also evaluate the solution on different hardware architectures and explain any phenomena
shown in the benchmark results.

Finally, we close off with Chapter 6, in which we reflect back on the research questions and the work
done. We also discuss potential future work.



2
Background

In order to discuss in detail how we will add fault tolerance to PoCL, it is important to know some
background information on the used technologies and fault tolerance in general. We will start off by
describing the technology stack used, which among other things includes key concepts of OpenCL and
PoCL. Fault tolerance in computing has been tackled before in several different ways. And therefore, in
this chapter, we will also discuss the theory of fault tolerance and discuss previous research on different
implementations.

2.1. Used technology stack
In this thesis, we build on top of existing technologies and therefore it is important to know the terms
and concepts related to these technologies. We will now go into detail on said technologies.

2.1.1. Open Computing Language
Open computing Language [5] (OpenCL) is an open standard that allows a programmer to write code for
amultitude of heterogeneous hardware. The standard is maintained by the Khronos group and receives
extensions from both industry and academia. Examples of hardware that can be utilized by OpenCL
include central processing units (CPUs), graphics processing units (GPUs), digital signal processors
(DSPs), field programmable gate arrays (FPGAs) and custom accelerators. The code written for these
devices is executed in a parallel or accelerated way. The standard does not provide an implementation
just a description of the framework and runtime needed to run code on this diverse set of hardware.
Often it is up to a hardware vendor (e.g. AMD, Intel and Xilinx) to provide the required resources to run
on their hardware. Since the standard is open, vendors will often add extensions to their implementation
that can exploit features unique to their hardware.

For a programmer, the use of OpenCL follows a number of steps. First, they install the required
runtime and framework for their machine. OpenCL is a C-based API with bindings to Popular languages
such as C++ and Python. Then the programmer writes a special piece of code in a language called
OpenCL C [6] called a kernel. This kernel is different from the program that the programmer writes calls
OpenCL. Such a program is called a host program. Figure 2.1 shows a timeline of the typical execution
of an OpenCL program. First, the host program queries OpenCL to see the available compute devices
and then selects the desired device. The host program then calls the OpenCL runtime to compile
and execute the kernel on the hardware device that has been selected. The reason the kernel is not
compiled beforehand is that it is only known during runtime what the exact hardware is that the kernel
will be run on. However, a programmer can also provide an explicit binary beforehand if they know what
hardware it will run on. Before the kernel is executed on the hardware device, there needs to be data
that the kernel executes on. This is done by creating buffers and filling them with data. When it is time
to execute the kernel, the buffers are moved to the compute device where the kernel then executes.
After the kernel is done executing, the result buffer is moved back to where the host program is running
and the results can then be read. Some devices also allow the result buffer to be mapped so that the
host program can directly read the results.

5
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Host device

Accelerator

Fill buffers with
data

execute kernel

Select and
Compile kernel

Select compute
device

Transfer buffers
Transfer buffer

Read result from
buffer

Figure 2.1: The typical steps in the execution of an OpenCL program.

This example shows how OpenCL takes away some of the complexity of writing code for heteroge-
neous systems. The same kernel code can be run on say a CPU as well as a GPU without modifying
it. The programmer does not have to describe when or how data is moved between devices, just what
data they want to be moved for a computation to be done on. It should however be noted that some
knowledge of how the OpenCLmodel works and the specific physical hardware can improve the overall
performance during execution of the program.

To understand the inner workings of OpenCL, it is important to know a number of objects and terms
it uses. To start off, OpenCL differentiates between a host and a device. A host is a system where
the program that calls OpenCL is run on, i.e. a traditional CPU with its own RAM. A device is a piece
of hardware that executes the kernel code. This device typically has its own RAM to which a buffer
is transferred to before execution. The device writes the result to a different buffer in RAM before this
buffer is then transferred back to the host where it can be read. On the software level, OpenCL has a
number of important objects, as described below.

Device
A device is an abstract object that describes the physical hardware that a kernel will be run on. For
example, device-specific compilation parameters as well as a description of the type of device (e.g.
CPU, GPU, etc...) can be found here. Kernels are compiled for a specific device. To find all the
available devices on the system, one can query the platform.

Platform
A platform is the top layer of information about the system that is running OpenCL. It can be used to
get information on device configurations as well creating a context. Every device or context only has
one platform.

Context
A context describes the context in which a kernel will be run. This includes what buffers are available,
the program running the kernel, the command queue of operations that have to be done and events
that can be used for synchronization and callback during execution. A context also has at least one
device.

Program
A program is a collection of compiled kernels for a number of devices. It is specific to one given context
of which the devices are also part of.

Memory object
A memory object is an abstract datatype that can be either an image or a buffer. It acts like an array of
data and can be used as an argument for a kernel. It also serves as the bridge between a host and a
device, allowing the host to send and receive data from a device. It is specific to a context and not a
device. This means that if a context has multiple devices, the memory object can exist on one or more
devices. A memory object can have a number of properties such as being read- or write-only. These
properties can be useful hints for the runtime to get good performance.
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Command queue
This object is used by the host to issue commands to a device. These commands fall under three
different categories: kernel enqueue commands, which are used to enqueue work; memory commands
used to read and write to buffers and finally synchronization commands which can be used explicitly to
create an order of work.

Event
Events are closely associated with command queues and serve a number of purposes. They signal
the status of a command. This allows events to be used to wait for synchronization and as a trigger for
a callback function. This can for example be used in scenarios where one kernel needs the results of
another kernel.

2.1.2. Portable computing language
Portable computing language [7] [8] (PoCL) is one of the few open-source implementations of OpenCL.
It is developed and maintained by Tampere University (TAU) with contributions from the open-source
community. The goal of PoCL is to be hardware independent and also maintain performance when
changing hardware. It addresses in part the issue that a programmer will often need to optimize kernel
code to specific hardware to get the best performance. It does this by delegating the work group
vectorization to the LLVM compiler. Having to optimize for specific hardware negates the appeal of
having a single interface for multiple devices.

At its core, PoCL uses Clang [9] and LLVM [10] to compile kernel code to a binary that is able to run
on the targeted hardware. Due to the wide range of architectures that LLVM supports it is also possible
to run PoCL itself on many different architectures. The original paper introduced four different devices
of which the pthread device is the most widely used one. But since then, a number of different devices
have been added. The presence of all these different devices allows a programmer to mix different
devices and select the optimal one for the right stage. Some of these devices are described below.

Pthread device
The pthread device is one of the original devices of PoCL. It makes use of POSIX threads[11], often
shortened to pthreads, to execute computations in a parallel fashion. POSIX stands for portable operat-
ing system interface and is a standard maintained by the IEEE Computing Society. The pthread device
runs on the CPU of the system and makes use of its RAM. The fact that it relies on pthreads means
that it is very portable. Pthread devices can work on any system that has an operating system (OS)
that supports the pthread application programming interface (API), regardless of what the underlying
CPU architecture is[7].

AlmaIF device
The concept of using FPGAs for accelerated computing is becoming more and more popular. But in
order to use an FPGA for such applications, an interface is needed. the Almarvi hardware interFace
(AlmaIF) device is a software driver that allows hardware that has an AlmaIF v2 interface to be controlled
by PoCL. As shown in the paper by Leppänen et al. [12], the interface can be used to control hardware
realizations on FPGAs such as softcore processors as well as modules created by high-level synthesis
(HLS). These realizations can then be used as accelerators in PoCL. The interface is designed to be
hardware vendor independent. In OpenCL, this driver is classified as a custom device that abstracts
away more traditional steps like the online compilation of kernels. Instead, it provides a set of built-in
kernels that are implemented on the FPGA fabric.

The AlmIF device also provides an emulation device. It implements the interface and allows for built-
in kernels to be programmed into it. This device can then be used to simulate the FPGA realization on
hardware that does not have an FPGA. This feature can be quite useful in the design process as any
changes can more easily be applied before settling on the final specifications for the FPGA.

Vulkan device
One of the more recent additions to the list of devices available on PoCL is the Vulkan driver. Vulkan
is an open API [13] standard maintained by the Khronos group. Vulkan is known as a platform-
independent graphics API, but it also provides the ability to do computing. The Vulkan driver uses
the CLSPV compiler to compile CL code into SPIR-V. SPIR-V stands for standard portable intermedi-
ate representation where the ”V” indicates the version. The compiled SPIR-V code can then be used
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as input for any available Vulkan runtime to do the desired computation. There exist Vulkan runtimes
for hardware from vendors like AMD, Nvidia and Intel, allowing the Vulkan driver to use any of the
hardware available.

2.1.3. Vitis high-level synthesis
High-level synthesis (HLS) is the process of taking a program written in a high(er) level language such
as C and generating a description of the hardware that implements the same functionality. This De-
scription is on the register transfer level (RTL) and is in a hardware description language (HDL) such
as Verilog or VHDL. RTL level is a very low level and describes how the basic building blocks of digital
circuits are connected to each other. This HDL file can then be used by other programs to synthesize
bitstreams that in turn are used to configure FPGA devices.

The FPGA vendor Xilinx provides a software suite called Vitis HLS for this purpose. For this thesis,
we are using a Xilinx FPGA, therefore it makes sense to use the tools provided by Xilinx. However, it
is not the only one to provide such HLS tools. Through the use of pragmas in the C code, Vitis can
be instructed about what interfaces and optimizations are desired. By creating a test bench also in C,
the code can be checked for desired functionality. There are two ways of doing this testing: C or RTL
simulations. With a C simulation, both files are compiled into binaries and run as regular C programs.
This is fast but not accurate with regard to the eventual hardware that will implement it. The benefit of
this test is that it allows one to check for functional programming mistakes. For a better analysis, an
RTL simulation can be used. Here speed is traded in for better accuracy by running a simulation using
the generated RTL code.

It is not necessary to run the C simulation tests in Vitis. Since The source code is in C, it is possible
to compile it with a conventional compiler outside of Vitis. It also allows one to use a debugger of choice
such as the GNU debugger (GDB). There are some conventions one should adhere to when writing C
code for HLS, but overall the barrier to entry is lower than for HDL languages. And since programming
errors can easily be found in the early stages of development, it is also quicker to develop.

Writing code for HLS is different from writing other accelerated code. When writing parallel code to
run on say a GPU, one tries to break the problem up into many smaller blocks. These blocks can then
be run in parallel on the many processors of the GPU. When writing HLS code, one tries to instead split
the problem up into a sequential order. This is so that the HLS tools can apply pipelining. Pipelining
is the concept of breaking a task up into multiple stages and starting computations on a new piece of
data before the previous entry is done. While this does not reduce the time to complete one task, it
does increase throughput since data can be processed concurrently. This makes HLS very suited for
streaming applications.

2.2. Fault tolerance theory
In order to prevent faults, we first need to know what kind of faults there are. The book ”Distributed
Systems: An Algorithmic Approach” [14] by Ghosh classifies faults into seven different categories.
Solutions for these differ and there is no catch-all solution. Transient errors are particularly interesting
for us.

Transient errors are classified as errors that disturb a system temporally. The source can be from
outside the system and examples include unstable power delivery; (cosmic) radiation (often referred to
as single event upset (SEU)) and mechanical stress. These errors are sometimes also referred to as
soft errors since they do not physically damage the system, but the execution is still disrupted in some
manner. An example of such a disruption is a bit flip in which a bit changes from one to zero or visa
versa.

Some errors not looked at in this thesis are errors caused by the end programmer accidentally
introducing bugs. This is classified as a software error. Another such error that was not looked at is a
security error, where there is deliberate tampering with the system from inside or outside.

There are two aspects of dealing with errors: fault detection and fault recovery. A system cannot
mitigate an error that is not detected and in some scenarios, merely knowing an error has occurred is
already enough. In other scenarios, it is also necessary that the system continues to function and that
is where recovery plays a role.

Double Modular Redundancy (DMR) is a way of detecting failures. In this setup, two computations
are run independently and if at any point an error occurs, be it in transferring data, performing operations
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on it or a bit flip in a register, the results will end up being different. Comparing the two results will show
that there has indeed been a fault but is not possible to tell which result is correct.

Expanding on this concept, Triple Modular Redundancy (TMR) adds a third independent computa-
tion. If one fails, a majority vote can be used to determine the correct result. However, this concept is
still vulnerable to a scenario where two errors occur at the same time. A generalized version of this is
called N-modular redundancy (NMD) and allows for more errors to occur. Equation 2.1 describes the
number of errors that can be recovered from with NMD, in this equation, 𝑛 is the number of independent
devices and 𝑚 is the number of errors that can safely occur. It should be noted that 𝑛 needs to be an
odd number, otherwise it is possible for scenarios to happen where there is no majority vote.

𝑛 ≥ 2 ∗ 𝑚 + 1 (2.1)

2.3. State of the art
There are many approaches to ensure reliability in heterogeneous systems [15]. In Figure 2.2 we
provide a hierarchical overview of a number of different approaches to achieving fault tolerance. We
discuss the idea behind each approach and identify any benefits and shortcomings for our use case.
This thesis is focused on developing a fault-tolerant approach that is both compatible with the various
components of PoCL and can be easily implemented and used by developers using PoCL.

Fault tolerance

Triple modular
redundancy

MaskingNonMasking

Code level Instruction level

Eventually stable Error correcting
codesCheckpoint/rollback

Hardware
duplication

DMR reruns until
same

DMR with single
rerun for TMR

TMR in time
domain

N-modular
redundancy

Algorithm base
fault tolerance

Thread levelHardware signals

Figure 2.2: A comparison of different methods for fault tolerance.

2.3.1. Nonmasking fault tolerance
In nonmasking fault tolerance, the presence of an error can cause a system to temporarily be in an
invalid state but eventually reach a valid state again. Often this results in delays in time. There are
two common forms of nonmasking fault tolerance: checkpointing, also referred to as rollback, and
eventually stable fault tolerance.

A system that uses checkpointing will periodically save its state. When it makes this checkpoint, the
state is known to be error-free. This can be done in multiple ways, data can for example be written to
permanent storage or registers can be copied somewhere else. When an error is detected somewhere
before the next checkpoint is made, the system can revert back to the known good state.

Checkpointing has been implemented multiple times in literature. An example of this is the paper
by Mushtaq etc al. [16]. The authors introduce a library that exploits the multicore nature of today’s
processors to execute a process redundantly. If at some point an error is detected, the system uses
checkpointing to recover. Checkpointing is often used in High-Performance Computing (HPC) environ-
ments [17], [18], [19]. Due to the large number of computations done in such large systems, errors are
common.

The examples given so far fall in the category of applying DMR and rerunning until both results are
the same. It is also possible that a rollback is triggered by specialized processors that have special
hardware for the detection of errors. Some systems in the case of a difference in results in DMR
execution opt to execute the computation a third time in order to apply TMR and resolve the errors
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encountered with a majority vote. This is called Temporal Triple Modular Redundancy (TTMR) and has
been applied in work by Czajkowski et al. [20][21].

The checkpointing paradigm has proven to be very useful in scenarios such as HPC. However, in
the case of an error occurring, the total runtime of the system is increased, something not desired for
our use case. The library by Mushtaq et al [16] sounds promising if applied to the pthread device of
PoCL. This is due to the library not depending on special hardware and therefore being portable and
like the pthread device, making use of pthreads. However as mentioned previously, the pthread device
is only one of the available devices PoCL provides, thus limiting the applicability of the library as a
whole to PoCL.

Some systems are able to tolerate small errors. Even though there is an error, the system is able to
correct itself back to a valid state without having to redo a computation. Or in some cases, the error can
outright be ignored without a noticeable loss to the output of the system. This kind of fault tolerance is
what the ”Eventually stable” node indicates. This kind of fault tolerance is situational and can not be
applied to every use case.

2.3.2. Masking fault tolerance
With masking fault tolerance any error occurring during the operation of the system is not visible from
the outside. This form of fault tolerance is used in safety-critical scenarios where any errors or delays
are unacceptable. Whereas nonmasking fault tolerance will repeat the computation in order to resolve
an error and thereby increase the total runtime, masking fault tolerance will resolve the error.

One such form of masking fault tolerance is called algorithm-based fault tolerance (ABFT). The
concept of ABFT is to exploit mathematical properties of the being done to both detect and correct any
errors that might occur. One such method was introduced by Vainstein [22] and is called a checking
polynomial. Vainstein’s approach is to use algebraic methods to both detect and correct errors in com-
putations. It does this by finding a so-called checking polynomial for a function or number of functions
and using this polynomial to check the results. While this method does not require any modification to
hardware, it requires the person writing the code to find these polynomials which is not an easy task.
This significantly increases the barrier to entry and is not desirable for our use case.

Another form of masking fault tolerance is to use error-correcting codes (ECC). There are a number
of different error-correcting codes of which Hamming code [23] is a well-known example. A Hamming
code works by calculating a number of parity bits over a range of bits. Usually, this range is double
digits in size. When the data is accessed, a new set of parity bits are calculated over the read data,
and if this diverges from the previously stored parity bits, the error can be localized and corrected.
Error-correcting codes are often used in server-grade memory and some GPUs also come with them.
Running PoCL on ECC-capable memory reduces the number of errors visible, however, ECC only
catches errors related to moving and storing data. ECC will not catch a calculation error as when the
data is written back, it calculates the parity over the erroneous data.

Triple modular redundancy (TMR) is a form of masking fault tolerance that has been implemented
on many levels of computing. By doing a calculation three times and using a majority vote on the
results, TMR is able to correct errors.

An implementation of TMR on the lower end of the computing stack is shown by Li et al. [24]. They
provide a mechanism to execute work on three separate redundant processor cores. A fourth core
acts as a voter and manages the execution of the other cores. While this implementation provides low
runtime overhead due to the use of four cores, an implementation in PoCL will be limited in scope to
custom devices only.

Going a step higher in the computing stack is SWIFT-R [25]. SWIFT-R adds TMR on an instruction
level. SWIFT-R is implemented into a compiler. During compilation, SWIFT-R will add extra instructions
to execute work three times and then compare the results. By being a software-only implementation,
There are no special hardware requirements. This would work well on any of the devices of PoCL that
make use of compilation, but not on devices such as the AlmaIF devices that only have fixed function
hardware accelerators.

Instead of adding redundancy to instructions, it is also possible to add redundancy in code. A pro-
grammer can write their code to do the same thing three times and then compare the results. However,
compilers such as for example GCC and Clang have gotten to a point where they can detect this re-
dundant execution and will optimize it away. This optimization can be overcome in the C programming
language by using the ”volatile” keyword for variables but also prevents the compiler from applying any
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other optimizations.
Triple modular redundancy can also be achieved on a hardware device level. In such a scenario,

there are multiple hardware devices that share little to no resources. The devices do however have
some form of data exchange. Each device acts independently to compute a task redundantly after
which the result is sent for comparison. Such an implementation works well in PoCL since the level of
TMR is high enough that it can be applied to any device supported by PoCL.

2.3.3. Comparison methods
Since most forms of fault tolerance rely on some form of comparison of results, it is also interesting to
categorize the options available. These can be seen in Figure 2.3. These levels each differ in granular-
ity. On the buffer level, the entire result is compared. There is very little granularity, either all contents
are correct or it is marked as erroneous. In such a case, it can also make sense to compute some
form of hash (checksum or identity hash) over the entire buffer and compare those. This can reduce
data transfer times and simplify the actual comparison but requires some work to actually compute the
hash. Finding a suitable hash that works well in the parallel environment of OpenCL is an interesting
topic that falls outside the scope of this thesis.

Buffer level Bitwise comparisonObject level

Comparison
methods

hashes

Figure 2.3: Different methods for finding differences in computed results.

On the object level, individual variables are compared. In this case, the maximum granularity goes
up to the size of the register of the processor that the comparison is running on. This finer granularity
allows for more fault tolerance since more errors can be corrected as long as the errors do not happen
at the same variable index. Depending on how this granularity is used, it is also possible to correct
errors earlier. A bitwise comparison is even more granular than an object-level comparison. Using
bitwise comparisons, individual bit errors can be detected and even corrected.





3
Methodology

In this chapter, we will discuss a number of different possible solutions that can bring fault tolerance to
PoCL. To evaluate each solution, we first present a number of criteria. These criteria assist in assessing
each possible solution and finding the solution that best fulfills the research questions we described in
Section 1.2. We end this chapter by picking a solution and discussing our reasoning for doing so.

3.1. Criteria
In order to narrow down the best solution, a number of criteria have been selected. These have been
based on the context and research questions described in Section 1.2. These criteria are: Ease of
use for the end user; runtime overhead; hardware overhead; applicability and robustness. We will now
discuss each criterion in further detail.

3.1.1. Ease of use for the end user
For our solution, we consider the end user to be the programmer that writes an application that uses
the PoCL library. This is because we do not expect the user of that application to know anything about
the internals of the application and instead consider the application a black box. If the solution is to
be used, it should not bring a higher barrier to entry. Heterogeneous computing is already considered
more difficult than programming for one processor. Therefore ideally it should be easy to use once the
foundation of OpenCL is laid out in the code. This non-functional criterion is hard to quantify, so we will
provide some good and bad characteristics that a solution can have.

An example of a good characteristic of a given solution is the number of lines of code that need to
be added to make a given OpenCL application fault tolerant. If there are only a few extra function calls
or there is a flag that can be passed along to a function to enable fault tolerance, the programmer does
not need to make many modifications to existing code. Therefore it can be considered easy to add.

If a solution requires an entirely new set of objects and functions to be used instead of the standard
OpenCL ones, the programmer will first need to familiarize themselves with the programming guide-
lines of these new functions. After familiarizing themselves, the programmer will have to modify many
sections of the code. Therefore, such a solution can not be seen as easy to use.

Deviating from the OpenCL specifications might be necessary for some solutions. However, it is
preferable to stay close to the standard as that is what most users will be familiar with. Some solutions
might not even need any modification to the code. For example, this could be because the tolerance
is applied on a hardware level, or the compiler handles it.

Depending on the solution, it might also be beneficial to be able to enable or disable the fault
tolerance. This feature can be useful during development for quick testing of new features. Some
solutions might also require hardware or resources not available during all stages of development, so
being able to easily disable it is beneficial.

A bad characteristic would be if the end user must rewrite large quantities of code to apply fault
tolerance to an existing application. This can be especially a hindrance if it involves kernel code as this
will make the code only compatible with the solution and therefore less portable. A solution can also be
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hard to use if it requires the programmer first to spend a significant amount of time to first understand
the solution before it can be used.

To sum the ease of use for the end user criterion up, the less time and effort an end user spends to
apply the solution to their (existing) application, the higher the ease of use can be considered.

3.1.2. Runtime overhead
A fault-tolerant solution often adds some overhead in the form of delay before the execution is done.
This can vary greatly from one form to the other. In some solutions, the delay can also be affected by
the occurrence of an error. This extra delay that is caused by an error is what differentiates masking
from nonmasking fault tolerance. Nonmasking tolerance will still eventually reach a correct state, but
the moment of uncertainty can be unacceptable in applications where time is critical.

The importance of these delays can vary per use case, in some cases, the overhead does not matter
as much, as long as the result is correct. However, one of our research questions is to find out how we
can keep the runtime overhead as low as possible. Therefore, when comparing different solutions, a
lower runtime overhead is always desirable.

3.1.3. Hardware overhead
Besides an overhead in time, many solutions can also add an extra requirement in the domain of
hardware. Many masking solutions require more hardware than nonmasking solutions. Sometimes, a
tradeoff can be made between runtime overhead and hardware overhead. An example of this can be
seen with TMR. Three devices could compute the required redundant results at the same time, or one
device could compute the same result three times and the results are compared after that.

The range of hardware overhead can vary from extra logic on a chip to separate processing cores
on the same CPU to entire separate devices that share no resources with each other. Monetary costs
of a solution are often reflected to an extent in this extra hardware. However, costs are not a concern
in our concerns. This same logic also applies to power consumption.

While our research questions do not put a limit on hardware requirements, it is still a factor that is
worth keeping in mind. A solution that has lower hardware requirements than another is preferable. A
solution that has steep hardware requirements can lose out on some of the flexibility of OpenCL.

3.1.4. Applicability
The applicability criterion captures how well a given solution can be applied to different applications in
OpenCL and more specifically PoCL. Of course, a solution should be able to be applied to be even
considered, however, a solution might not be applicable to a particular device type. An example would
be a solution that targets compilers. This solution would work well on pthread devices, but not if a GPU
device has a closed source compiler or a fixed function accelerator. The same goes for a solution that
adds extra logic to a chip or FPGA.

For this comparison, we will limit ourselves and make a grade based on three different types of
devices. These are: CPU devices, such as pthread devices; GPU devices such as Vulcan devices and
finally custom devices such as AlmaIF devices. In Table 3.1, the number of ”+” indicates on how many
devices the given solution works. Since the pthread driver is very much a staple of PoCL and works on
a wide variety of architectures, it is preferable that a given solution works on this, but this is ultimately
not taken into account in grading the applicability.

The applicability criterion is a way to evaluate how well we preserve the flexibility of OpenCL. PoCL
has a wide range of supported devices and limiting a solution to a subset of these devices would make
it less flexible.

3.1.5. Robustness
Robustness gives an indication of how well a solution is resistant to errors happening. This criterion
helps evaluate the research question of how fault tolerance can be added to PoCL that is easy to use
for the end user. The robustness gives an indication of how fault tolerant a solution is. A point of interest
is where the points of failure are. A solution where only one device is critical for good operation is better
than one that relies on multiple aspects to go well in order to guarantee good operation.

Another characteristic is howmany errors can happenwhile continuing to be fault tolerant. A solution
that uses TMR with computed hashes over an entire buffer will be able to tolerate any number of
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errors in one device as long as the other two devices do not have any errors. This will work well in
a scenario where the chance of errors is very small, but if the chance is larger, the chance of getting
three different hashes is a lot larger and thereby not a good application of a solution. A more robust
implementation would be TMR while looking at objects, for example, 32-bit integers. In this case, at
least one error needs to occur in the results of two different devices before fault tolerance fails. This
dramatically improves the robustness compared to the previous solution. An even bigger improvement
to robustness would be to do a comparison on the bit level since the given solution will fail if two or
more bits at the exact same buffer index experience a flip.

Some of the previous work mentioned in Chapter 2 do not aim to catch all errors, but rather only
the critical errors. Such a solution will score lower in this criterion compared to a solution that catches
all errors.

3.2. Alternative solutions
In Chapter 2, we created a hierarchical overview of different fault-tolerant methods, the result of this
can be seen in Figure 2.2. For many entries of this overview, we also discussed previous work that
tackled fault tolerance using a similar method. Based on this information, we have selected a number of
possible solutions that we can apply to PoCL to add fault tolerance. Table 3.1 shows an overview of the
possible solutions. The first column provides a name of the possible solution while the other columns
grade the solution based on the criteria described in Section 3.1. We make a distinction between
runtime overhead with or without errors occurring since depending on the implementation, these can
be different.

Solution Ease of
use for
end user

Runtime
overhead
no errors

Runtime
overhead
errors

Hardware
overhead

Applicability Robustness

Hardware-level check-
pointing

+ + + + + + - + + +

Thread-level checkpoint-
ing

+ + + + + + + + + +

Code-level checkpointing - - + + + + + + +
Bitwise TMR on runtime
level

+ + + + + + - - + + + + + +

Hashed TMR on runtime
level

+ + + + + + - - + + + -

checkpointing on runtime
level

+ + + + - - + + + + +

Table 3.1: A table with different possible solutions and their scores according to criteria.

3.2.1. Hardware-level checkpointing
The Hardware-level checkpointing solution applies DMR on a functional unit level of a chip. By having
two functional units doing the same operation twice, and comparing the result, faulty operations can be
detected. Once a fault has been detected, a rollback can be done so that the correct result is achieved
and errors are not propagated. This has a number of benefits.

The first benefit is the ease of use for the end user. by having the hardware handle all redundancy,
the fault tolerance is abstracted away from the programmer. The programmer can use the device as
any normal OpenCL device.

The second benefit is the runtime overhead. Since the operations are done in parallel, the only
major overhead comes from the logic of comparing the results. And since the comparisons are done in
hardware on a fine-grain level, a rollback in the case of an error will only require a couple of operations
to be repeated.

This solution also has some drawbacks. The first drawback is the hardware overhead. Extra area
of an FPGA or chip is required for the duplicate hardware and comparison logic. This is needed to keep
the runtime overhead low.

A larger drawback is the applicability of hardware-level checkpointing. Since this solution requires
special hardware, it is limited to only accelerators like the AlmaIF device. This is due to the freedom
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that the AlmaIF device provides with regard to how to implement accelerators in hardware. GPU and
pthread devices have fixed hardware and can not provide such fine configuration of the hardware.

3.2.2. Thread-level checkpointing
Instead of providing checkpointing on a hardware level, thread-level checkpointing applies checkpoint-
ing on a higher level. Similar to the work by Mushtaq et al. [16], This solution works By having two
threads computing the same work and regularly comparing the results. In the case of an error, a roll-
back can be done.

This solution differs from the work of Mushtaq et al. by adding this fault tolerance as part of the
compiler instead of a library. Like this, the end user does not need to make any changes to existing
code or use new functions. An end user can continue to write OpenCL kernels without having to
consider fault tolerance.

By implementing this fault tolerance in the compiler, we limit ourselves to only CPU and GPU de-
vices. Pthread devices make use of the LLVM compiler and this compiler can be modified to apply such
fault tolerance. Something similar could also be achieved for GPU devices through the Vulkan device
back-end of PoCL. The CLSPV compiler also makes use of LLVM and therefore could have similar
modifications applied to it.

By having the checkpointing on thread level and therefore one device, there is no extra hardware
overhead required. The downside of this is that there is a significant runtime overhead since one device
is essentially doing twice the number of computations. On top of that, there is also some overhead with
regard to comparing results and possible rollbacks.

3.2.3. Code-level checkpointing
Instead of having the compiler apply fault tolerance, code-level checkpointing instead requires the end
user to apply fault tolerance to the code they write. This could be done by extending the OpenCL C
specifications and adding special functions that allow a programmer to add checkpoints and possible
rollback options. This adds a lot of control to the programmer to add fault tolerance where they deem
necessary but also requires them to have a better understanding of the code in question and fault
tolerance in computing.

Similar to thread-level checkpointing, the solution does not have any extra hardware overhead re-
quirements. But similarly, this solution also suffers from a higher runtime overhead due to the extra
redundant computing. However, a programmer can choose to not apply fault tolerance to every part of
the code in an attempt to lower overhead. This can come at the cost of lower robustness.

Since this solution extends theOpenCLC specification, the compiler will need to bemodified. There-
fore, this solution is also limited to only CPU and GPU devices.

3.2.4. Bitwise TMR on runtime level
This solution makes use of the OpenCL concepts to implement TMR. By executing the kernel redun-
dantly on three different devices, the runtime is kept low regardless of whether errors occur or not. By
applying TMR on a runtime level, we are assured that this solution can be applied to any device PoCL
provides. And by extending the PoCL code, it is possible to make it easier for the end-user to apply the
solution.

To create a high level of robustness, a bitwise comparison and possible correction of the buffers can
be made. This implementation also provides a form of redundancy outside of computation. Because
the data is sent to a fourth voter device, any errors encountered during storing or transportation of the
data are also corrected. This voter device is a single point of failure and can be run on hardware that
has been hardened against faults.

There are however downsides to this implementation. The largest downside is the large hardware
requirement of three redundant devices and a voting device. This makes it very expensive from a
hardware perspective. Another downside of this implementation lies in the comparison method. In
order to do bitwise comparisons, all buffers need to be moved to the voting device. This can cause
some time overhead due to the large amount of data that needs to be moved. Overall, this solution
maximizes robustness while not requiring the end user to have intricate knowledge of the subject.
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3.2.5. Hashed TMR on runtime level
With hashed TMR, instead of transferring the entire result buffers of each redundant device to vote,
a hash is sent instead. This hash is computed of the result buffers and is smaller than the buffer.
This reduces the time spent transferring buffers to the voting device. The voting device compares the
hashes and picks a buffer that is correct. This buffer is then read by the host program to get the correct
result.

This solution is similar to the bitwise TMR on runtime solution and has similar properties. It has
the same hardware overhead and is applicable on all types of devices. The runtime overhead is the
same regardless of errors. Since this method computes a hash, some time is required to compute
it. Depending on the size of the workload, computing hardware and transfer speeds, this method can
have an advantage in speed compared to the bitwise TMR solution.

Onemajor difference between the bitwise TMRand hashed TMR is the level of robustness. Because
hashed TMR votes on entire buffers, it can not correct errors in scenarios where two devices experience
an error. This is due to the fact that an error will change the hash and the hash does not give any
indication where the error occurred. Therefore, in a scenario with two devices experiencing errors,
there will be three different hashes and the voter will not be able to pick a majority.

3.2.6. Checkpointing on runtime level
The high hardware requirement costs of the previous TMR runtime level solution can not always be
feasible in every scenario. In such scenarios, double modular redundancy can be a viable solution.
By having one less device, errors can still be detected, however, the masking ability is not possible
anymore. Instead, the computation can be redone from a point in which the known state was good
until the results match.

By implementing DMR on a runtime level, we keep the benefits such as the guarantee that it will
work on any device supported by PoCL and the possibility of detecting errors that happen during storing
or transportation of data.

However, the downside of applying DMR on a runtime level is that the checkpoints are a lot more
coarse grain. The previously discussed solutions implemented DMR on a much lower level, therefore
the checkpoints could be a lot smaller. Now the entire computation needs to be done again. The end
user could try to mitigate this to a certain extent by breaking up the work into smaller pieces so that
there are more intermediate buffers that can be used as checkpoints. However, this is not possible in
all scenarios.

In scenarios where there is no hard time requirement, a delay is acceptable. It can also be the case
that the chance of an error is so low that a redo is rare ([26],[27]). However, our goal is to keep the
overhead as low as possible and we can not make any assumptions about if this delay is acceptable
in the end-use applications. Therefore, in a worst-case scenario, this overhead is unacceptable.

3.2.7. Chosen solution
Of the six possible solutions we presented, we will now pick a suitable solution that we will implement.
Hardware-level checkpointing provides a solution that is easy for the end user and has low runtime
overhead. However, it requires specific hardware requirements that make it only suitable for acceler-
ators like the AlmaIF device. Thread- and code-level checkpointing can not be applied to the AlmaIF
device but can be applied to CPU and GPU devices. These two solutions, however, do introduce
more overhead compared to other solutions. Since one of our goals is to have the solution work on
the range of hardware devices supported by PoCL, one could make the argument to implement both
Hardware- and thread-level checkpointing. However, this would require more time to implement than
there available in this thesis.

This leaves us with the possible solutions that work on the runtime level. Checkpointing on runtime
level provides an easy way for an end user to apply fault tolerance that works on every device supported
by PoCL. It also has lower hardware requirements compared to the TMR solutions. However, while it
scores well on runtime overhead when there are no errors, this is not the case when errors occur. While
there are use-case scenarios where errors are rare or such delays are acceptable, we can not make
this assumption for all use cases. This leaves the bitwise and hashed TMR on runtime solutions. These
both provide an easy way to implement fault tolerance on a wide range of devices. On top of that, they
both can be implemented with minimal changes to the OpenCL specification. Both solutions also have
the same steep hardware requirements, however, that is required to achieve a low runtime overhead.
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Of these, the hashed TMR has the potential to be faster than the bitwise TMR since there is less data
transferred. However, the bitwise TMR allows more errors to occur across all redundant devices and
is able to correct these. Therefore, we choose Bitwise TMR on runtime level as the solution that best
accomplishes the goals set forth with our research questions.



4
Implementation

In this chapter, we cover the details of the implementation. We will go into detail on how we integrated
our chosen solution into PoCL from a runtime level as well as details on the voting devices and their
kernels.

4.1. Solution architecture
The bitwise TMR solution chosen in Chapter 3 is on the runtime level. This means that the solution
is implemented in the higher levels of PoCL. Our implementation of TMR involves three redundant
devices and one voter device. These redundant devices can be any device supported by PoCL and
do not need all be the same type. The voter device can also be any device supported by PoCL, but
as we will show in Section 4.5, we also provide a fixed function accelerator to perform voting using the
AlmaIF interface.

In order to apply fault tolerance, a number of modifications to the code of PoCL had to be made.
These modifications consist of the following parts: a modified command queue called a replicated
command queue (RCQ); a new function to initialize the replicated command queue; new properties
that can be passed to specific functions and modifications to the function used to queue work.

4.1.1. Replicated command queues
PoCL is written in the C programming language, therefore the command queue object is implemented
as a struct type in PoCL. In order to implement TMR, this struct has been extended with new members.
We call this modified command queue a replicated command queue (RCQ). The RCQ can be used the
same as a normal command queue, the only difference is that it is initialized via a different function. This
means that an existing application making use of PoCL only has to change the initialization function for
a command queue to one for an RCQ. Other functions taking a command queue as an argument do
not have to be changed.

Name Type Function
is_replicated int Used to check if the command queue is replicated
num_rep_devices unsigned int A count of the number of redundant devices
rep_devices cl_device_id * An array of devices on which the user kernel will run
rep_queues cl_command_queue * An array of command queues that are used to schedule work on the devices.
voter_program cl_program The program required to create the voting kernel
voter_kernel cl_kernel The kernel that is used to determine the correct result

Table 4.1: The new members added to command queue struct type.

The new members to the command queue struct can be seen in Table 4.1. It now becomes clear
where the RCQ gets its name from. The RCQ has references to a number of other command queues
that are associated with each redundant device. The RCQ also contains a reference to the voting
kernel which is run on the voting device. Every device needs a command queue in order for work to be
scheduled on it and in the case of the voting device, this is the RCQ. The end user can still schedule
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work on the RCQ as they would normally, but as we will discuss in Subsection 4.1.4, behind the scenes,
the work is not actually scheduled on the voting device.

4.1.2. Replicated command queue creation function
In order to properly initialize an RCQ, a new function has been added to PoCL. This function is called
clCreateReplicatedCommandQueuePoCL. The arguments of this function can be seen in Table 4.2.

This function is an extension of the OpenCL API and this fact is reflected in the name. The ”cl” prefix
indicates that it is an OpenCL function, ”CreateReplicatedCommandQueue” indicates the purpose, and
finally, the ”PoCL” suffix indicates that it is an API added by PoCL.

Name Type Description
context cl_context The context with the information needed to create the command queue
num_devices cl_uint A count of the number of redundant devices.
devices cl_device_id* An array of devices that will act as redundant devices
voter_device cl_device_id The designated device for voting
properties cl_command_queue_properties A list of flags that can be used to change the behavior of the command queue
errcode_ret cl_int* A value that can be used to signal something went wrong. If this is nonzero, an error has occurred

Table 4.2: The arguments of the ClCreateReplicatedCommandQueuePoCL function used to create a RCQ.

The function does a number of things. The first thing it does is to make sure that all the inputs are
suitable in order to create an RCQ object. After that, the new members of the RCQ are initiated. For
each device passed to this function via the devices argument, a new command queue is initialized.
The next step is to select and build the right kernel. By passing flags via the properties argument, a
specific kernel can be selected. The list of available properties specific to the RCQ can be found in
Subsection 4.1.3. The properties argument can also be used to pass normal command queue proper-
ties to the replicated command queues. Finally, after everything goes well, the RCQ object is returned.
If something goes wrong, the errcode_ret will return a number associated with the type of error that
occurred.

4.1.3. Properties
As mentioned before, when calling clCreateReplicatedCommandQueuePoCL, it is possible to pass
along a number of properties to configure the RCQ. We will now go over the new options added. As
can be seen in Table 4.3, a total of six new properties have been added.

Property name Description
CL_QUEUE_HARDENED_VOTER Select a hardened voting kernel
CL_QUEUE_VOTER_GRANULARITY_8 Create kernel with 8-bit datatype arguments
CL_QUEUE_VOTER_GRANULARITY_16 Create kernel with 16-bit datatype arguments
CL_QUEUE_VOTER_GRANULARITY_32 Create kernel with 32-bit datatype arguments
CL_QUEUE_VOTER_GRANULARITY_64 Create kernel with 64-bit datatype arguments
CL_QUEUE_VOTER_GRANULARITY_512 Create kernel with 512-bit datatype arguments

Table 4.3: Properties that can be passed to the ClCreateReplicatedCommandQueuePoCL function to select the desired voting
kernel.

The first property is CL_QUEUE_HARDENED_VOTER. Passing this property to clCreateReplicat-
edCommandQueuePoCL will cause the function to create an RCQ with a hardened voting kernel, the
details of which can be found in Section 4.4. This hardened kernel is only enabled when this property
is passed along and is not mutually exclusive with any other property.

The other five new properties are however mutually exclusive. The various
CL_QUEUE_VOTER_GRANULARITY_* properties are used to select the size of the inputs for the
voter kernel. Since the voter does a bitwise comparison, the result will always be the same regardless
of the property chosen. The size of the property also does not need to match the size of the datatypes
that are arguments to the redundant kernel. The only requirement is that the result buffer is a multiple
of the chosen granularity. The use of these properties is to be able to select an input size that runs
optimally on the given hardware. In Chapter 5, we show the effect on performance these different
granularities have in different configurations.
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4.1.4. Execution function modifications
When everything has been set up the same way an end user would normally set up an OpenCL pro-
gram, it is time to enqueue the kernel to the RCQ. To do this, the user has to call the same function
they would normally call. This function is the clEnqueueNDRangeKernel1 function.

The function has been changed to handle the RCQ. The first thing it does is analyze the arguments of
the kernel. Read-only memory objects and scalar objects can be kept unmodified. However, writable
memory objects need to be different per redundant device. This prevents devices from overwriting
buffers intended for other devices. clEnqueueNDRangeKernel creates intermediate buffers per device
and enqueues a command per device to execute the kernel with the writable buffers pointing to the
intermediate buffer assigned to it.

The function also issues commands to transfer the intermediate buffers to the voter device and start
voting once the redundant devices are finished. This scheduling happens by means of events. The
voter device itself is set up in a manner that it writes the result to the original buffer that was assigned
as output to the redundant kernel. In the case that there is more than one output buffer, the process of
moving buffers and voting is enqueued and repeated. The reason to vote in such a stepwise manner is
to use less total memory. The memory requirement can become quite large since there are minimally
3 buffers the size of the original output buffer on the voting device.

4.2. Data flow
In order to get a good overview of what happens during execution, the diagram of Figure 4.1 can be
consulted. It follows the data from a high level per device. This figure also highlights some of the
differences between the physical hardware and software representations. A good example is the step
of copying the input buffers to devices. In software, there exist only input buffers zero and one; however,
each physical device has a copy of this in memory.
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Figure 4.1: The flow of data and computations during TMR execution.

4.3. Concurrency modifications
Our implementation for fault tolerance in PoCL brings with it some inherent concurrency. As an ex-
ample, whereas before typically each device would be executing its own kernel, now one kernel is
replicated on all redundant devices. To get this concurrency working, some modifications needed to
be made.
1https://registry.khronos.org/OpenCL/sdk/3.0/docs/man/html/clEnqueueNDRangeKernel.html
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4.3.1. Pthread device
The most obvious change to the pthread driver was to move its scheduler from a device-wide one to a
scheduler per instance of a device. It has been possible before to get multiple instances of a pthread
device by passing an environment variable, but it seems until now a shared scheduler was not an issue.

Less obvious was the case where the pthread driver prepares a built-in kernel for execution. PoCL
uses the built-in kernel feature of OpenCL as a way to share a common set of kernels that do not need
to be declared by a programmer. Before a built-in kernel can be executed on a pthread, the source has
to be found. This requires the kernel name to first be sanitized and later restored. Since all redundant
devices share one kernel, this can lead to some unexpected heisenbugs [28] if this is not done in a
thread-safe manner.

The third modification is related to memory, specifically global memory. By default, pthread devices
share one global memory. this is very useful between devices since one device can read the same
buffer that another wrote to. This is however not very representative when it comes to scenarios where
the redundant devices have their own global memory. In order to get a better representation, a build
option has been added to PoCL to disable this shared memory.

4.3.2. Reference counts
Instances of objects in OpenCL keep count of how many references there are. Once this count reaches
zero, the object is freed. These counts are vital for resource management and objects interacting with
each other. When writing for the PoCL runtime, this count will need to be explicitly incremented. failing
to do so will cause an object to be freed prematurely and cause a segmentation fault later when the
program tries to access it.

In our implementation of TMR, the redundant devices share as many resources as possible. This
includes the input buffers and kernel. In order to prevent an input buffer or kernel from being freed too
soon, each redundant device increments the reference count of that object and decrements it when
done.

A good test to see if the reference-count bookkeeping and concurrency are working correctly is
to repeatedly enqueue the kernel. Some issues will not be noticeable when executing a kernel once.
However, bugs will often start to manifest when repeatedly calling clEnqueueNDRangeKernel with new
data in a loop. This kind of execution is common in video processing, where work the samework is done
on a frame-by-frame basis. The reason this kind of application is such a good test is that it requires the
program state to be valid before and after executing the kernel. Resources not freed will eventually fill
up the available memory and resources freed too early will cause the program to crash when accessed.

4.4. Voting kernel
So far we have discussed the system so that voting can happen, but not how the voting happens. For
this there are a number of different ways of doing this. The benefit of TMR is that it reduces the vul-
nerability of the whole system to one point. This means that the voting needs to be more resistant to
faults happening. By making sure the system that is executing the voting kernel is resistant, we can
be sure that the result is also correct. Ghosh [14] also makes a point that the host needs to be fault
resistant because if that fails, computing the fault-corrected result has been for nothing. However, this
falls outside the scope of this thesis.

Regardless of the specific device, there needs to be some form of the kernel to be run. On a bitwise
level, the voting decision can be represented in a truth table, as can be seen in Table 4.4. It turns out
that the logic for the correct result is simple, As can be seen in Equation 4.1. It is however harder to
determine where the error is coming from.

𝑅 = 𝐴𝐵 ∪ 𝐴𝐶 ∪ 𝐵𝐶
𝑒𝑟𝑟𝑜𝑟𝐴 = 𝐴𝐵′𝐶′ ∪ 𝐴′𝐵𝐶
𝑒𝑟𝑟𝑜𝑟𝑏 = 𝐴′𝐵𝐶′ ∪ 𝐴𝐵′𝐶
𝑒𝑟𝑟𝑜𝑟𝑐 = 𝐴′𝐵′𝐶 ∪ 𝐴𝐵𝐶′
𝑒𝑟𝑟𝑜𝑟 = ¬(𝐴𝐵𝐶 ∪ 𝐴′𝐵′𝐶′)

(4.1)

The fact that keeping track of where an error is coming from has an effect on the performance of
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A B C R error errorA errorB errorC
0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 1
0 1 0 0 1 0 1 0
0 1 1 1 1 1 0 0
1 0 0 0 1 1 0 0
1 0 1 1 1 0 1 0
1 1 0 1 1 0 0 1
1 1 1 1 0 0 0 0

Table 4.4: Truth table for TMR. A, B and C are inputs while R is the desired result. Error* indicates which input deviated from
the rest.

voting. Not only is there more logic to determine where the fault is coming from, but there also needs
to be atomic increments of error counts. Since our goal is to keep the overhead as low as possible, we
have opted to only implement the correcting logic.

Due to the simple nature of this voting, it is also possible to create a hardened kernel that is more
resistant to errors. This version of the kernel executes the voting twice and then compares the result.
If the results of the voting differ, then the voting is done again until both results are the same. This
hardens the kernel against errors happening while voting. To make sure the comparison of the voting
results goes well, there is a second check to make sure that it is still the same, only then will the result
be written to the output buffer.

Due to the optimizations that modern compilers do, this double voting is normally optimized out.
This makes sense from a perspective where no errors can happen as the results will be the same then.
But the hardened kernel has been designed for scenarios where this is possible. Therefore, to stop the
compiler from applying optimizations, we declare that our data is volatile.

4.5. FPGA voter
Instead of running a voting kernel on a device, it is also possible to have a device with dedicated
hardware for voting. By using the AlmaIFv2 device driver of PoCL, it is possible to do the voting on
an FPGA. The high IO bandwidth and the possibility of Direct Memory Access (DMA) make FPGAs an
interesting platform to do voting. The task of voting is very suitable to be streamed since data access
can happen in a linear fashion. This is beneficial since FPGAs generally do not have much on-chip
memory forcing buffers to be small if they are to fit in said memory.

By using DMA, It is possible to read data from RAM, bypassing any CPU overhead. This also allows
any FPGA design not to be constrained by the small on-chip memory. The AlmaIFv2 driver has the
possibility to dedicate some RAM on the host that the device can use as its own memory. Using DMA,
this data can then be fed to the logic that implements the kernel. The DMA controllers Xilinx provides
in their Vivado design suite are fast [29]. It allows for data to be fetched in bursts instead of individually.
And by using a dedicated DMA controller, we decouple the data retrieval from the computation. This
allows the next set of data to be fetched while the current data is being used.

The downside to using these DMA controllers is that the data from RAM needs to be physically
contiguous. This is different from how OSes typically allocate memory. Typically an OS will allocate a
number of virtual addresses that are contiguous but are physically spread around on RAM. Fortunately,
Xilinx does provide an API for their Linux images to allocate memory contiguously. The AlmaIF device
driver can then work with this to create buffers in this region which can then be read and written to by
the DMA controllers.

The PoCL repository provides an example of C code that can be used by Xilinx Vitis HLS to create
an Intellectual Property (IP) block that can be used in Xilinx Vivado in a block design. This example
demonstrates how the AlmaIFv2 interface works and the packet design used for communication. While
this example works, it does have some shortcomings for our use case. The first is that it doesn’t use
DMA, but instead reads values using an AXI bus. This is not a problem for applications with more
complex access patterns, but this does not allow us to leverage the benefits of DMA. The second issue
is that Vitis is not able to pipeline the main kernel loop, leaving performance on the table. And finally,
since the control mechanism is in the same IP block as the kernel execution code, the clock speeds are
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tied together. This forces both the control and kernel execution to run at the lower of the two speeds.
This again can leave performance on the table if the kernel code can run faster.

Output

Control

AlmaIF
Controller Interconnect

Programmable logic

DMA
controller

DMA
controller

DMA
controller

DMA
controller

DDR RAMVoter kernel

Block RAM

PYNQ-Z1

ARM CPU

Host
program

Redundant
device

Redundant
device

Redundant
device

Figure 4.2: A Hardware design of an AlmaIFv2 voter device on a PYNQ-Z1 SBC.

To address the issues identified with the example code, we come up with a new design that can be
seen in Figure 4.2. We have implemented this on a Digilent PYNQ-Z1 single-board computer (SBC).
This SBC contains an SoC with both two ARM cores and an FPGA. This FPGA is referred to as pro-
grammable logic (PL) by Xilinx. In the figure, components that are on the FPGA are shown in the
rectangle marked with ”programmable logic”.

Figure 4.2 also shows the full TMR setup of our solution. In this case, the ARM CPU runs the
redundant devices as well as the host code. All the devices read and write buffers to the shared DDR
RAM.

In this design, the control (AlmaIF controller) and kernel logic (Voter kernel) have been separated
into two different IP blocks. By having the kernel in its stand-alone IP block, Vitis is able to pipeline the
voting mechanism. For the TMR voting kernel, Vitis is able to synthesize a pipelined implementation
that takes three clock cycles to compute the result while also starting a new comparison every cycle.
This greatly increases the throughput compared to a nonpipelined version.

In this design, the voting kernel can continue to run as long as it is fed with data by the DMA
controllers. The AlmaIF controller is still in control. It decodes the packets sent to it by the AlmaIF
driver. The AlmaIF driver sends these packets by writing them to a memory-mapped address of block
RAM. The AlmaIF controller controls the other IP blocks by writing to control registers on the other IP
blocks. By using an interconnect IP block, the control packets from the AlmaIF controller are routed to
the correct IP block.

The AlmaIF controller turns on the DMA controllers and indicates from which starting address to
read the required number of bytes. It also tells the DMA engine that does the writing where to write the
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results from the voter kernel IP to. It also turns the voter kernel IP block on. In this design, there is only
one kernel implemented, but in a design that implements multiple kernels, being able to turn Kernel IP
blocks on or off can be useful. Once the kernel and all the DMA controllers signal that they are done,
the AlmaIF controller then signals to the driver that it has completed the work and PoCL can continue
to the next stage of computation.

Another benefit of having the kernel logic in a separate IP block is that the clock speed is separated
from the control logic. The benefit of this can be seen in the estimated maximum clock speeds that
Vitis estimates. In the case of the voter kernel IP, Vitis estimates a maximum clock frequency of 1007
MHz, which is well above the maximum frequency of 250 MHz the Z1 provides by default. The AlmaIF
controller IP instead has an estimated maximum frequency of 137 MHz. In practice, the clock frequency
is set to the maximum speed that Vivado can successfully synthesize the design for. And in this case,
that is the maximum speed the DMA controller that writes to the DDR RAM can go, which is around
142 MHz. This is a decent bump up from 100 MHz which is the speed the AlmaIF controller is running
at.





5
Experiments and results

In this chapter, we evaluate the implementation and discuss its performance. When evaluating an
implementation, the results also depend on the context, therefore we also discuss the hardware and
the parameters used to compile the code. In our case, there are two systems that the experiments
have been run on. One is a more conventional x86 computer while the other is an ARM and FPGA-
based single-board computer (SBC). We will therefore start by describing the setup, followed by the
experimental results, and finish with a conclusion.

5.1. x86 setup
This section describes both the hardware as well as the software setup of the x86 computer system
used in the experiments. The hardware has the biggest effect on performance, but the software used
can be key in getting the most out of the hardware. We, therefore, start with the hardware and follow
this up with the software.

5.1.1. Hardware setup
The x86 computer consists of two server-grade CPUs. This means that the computer has two NUMA
(non-uniformmemory access) nodes, one for each CPU. Each node is connected to four RAMmodules.
If one NUMA node wants to access RAM that is connected to the other node, the data will need to be
sent over an interconnect. Therefore, this memory access will take longer. To keep the access times
consistent between iterations, the tests have been done isolated to one NUMA node. This isolation
is done with a program called numactl. The numactl program allows one to isolate the execution of a
program to run on a set of explicitly defined cores as well as only allocate memory locally on the NUMA
node that those cores belong to. The final details of components can be seen in Table 5.1.

Component Part Details
CPU Intel Xeon E5-2630 v4 10 cores with SMT at 2.20 GHz
RAM 64 GB DDR4 RAM 2133 MHz, 2 ranks, quad channel

Table 5.1: Details of the x86 computer used in the experiments.

While the Intel Xeon E5-2630 V4 launched in the first quarter of 2016, it still has a considerable
number of cores. With 10 physical cores and 20 virtual cores due to Simultaneous Multithreading
(SMT), its core count is still comparable to many of the modern-day server processors. Although with
a base frequency of 2.20 GHz and a max turbo of 3.10 GHz, it is clocked 0.10 to 0.40 GHz lower than
these modern-day processors. And while modern CPUs can benefit from architecture improvements,
the E5-2630 has the AVX-512 instruction extensions, allowing data to be vectorized up to 512 bits long.
This is useful for parallel programs such as the kernels of PoCL.

The RAM that the CPU has access to consists of 64 GB of DDR4 RAM. The RAM consists of four
modules of 16 GB each. It is clocked at 2133 MHz, which is the highest speed supported by the E5-
2630. This is slower than the maximum speed supported by modern-day counterparts, which generally
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support memory up to around the 3000 MHz mark. However, due to the quad-channel memory config-
uration, it can still achieve high throughput. Using the STREAM benchmark [30], we were able to get
an indication of this throughput. In the array copying task, of STREAM, the system was able to achieve
a throughput of 30 GB per second.

5.1.2. Software setup
The experiments were done on the Kubuntu flavor of Ubuntu Linux 22.04. The software was compiled
using the GNU C compiler (GCC) version 11.3.0, while the kernels themselves were compiled using
LLVM version 14.0.0. When preparing for a compilation we use CMake to configure the project de-
pending on what features are needed, but in every case, we make use of the release configuration.
This is done to make sure that the code is compiled with high levels of optimization and no debug flags.
During development, the PoCL code base was continuously synced. This means that the version of
PoCL used is version 3.1.

5.2. PYNQ-Z1 setup
The other hardware used is the Digilent PYNQ-Z1 SBC [31]. The heart of the board is the Xilinx ZYNQ
XC7Z020-1CLG400C System on a Chip (SoC). This SoC contains both two ARM cores and an FPGA.
It comes with its own Linux image and popular libraries for ARM architectures. This SBC is an effective
way to prototype embedded systems. The ARM cores combined with the FPGA make it ideal for low-
power, efficient applications. General computations can be done on the ARM cores, while specialized
operations can be done on the FPGA.

Compared to the X86 setup, PYNQ-Z1 is on the opposite side of the computing spectrum. While the
X86 setup focuses on performance, the PYNQ-Z1 is geared toward efficiency. Therefore, testing on
the PYNQ-z1 allows us to get better coverage over the potential deployment configurations of PoCL.

5.2.1. Hardware setup
The hardware details of the PYNQ-Z1 can be found in Table 5.2. The PYNQ-Z1 comes with a dual-
core ARM Cortex-A9 CPU. This CPU is of the ARMv7L architecture which is a 32-bit architecture. It is
clocked at 650 MHz, but comparing this frequency to the X86 setup does not give any metric of relative
performance since the architectures are so different.

The CPU is connected to the memory controller which manages the 512 MB of DDR3 RAM. The
RAM chip is connected over a 16-bit wide bus and has a clock frequency of 525 MHz. Since it is double
data rate RAM, data can be transferred twice every clock cycle. This means that the clock frequency
is effectively doubled and means that the theoretical maximum memory bandwidth is 2100 MB per
second. However, in practice, this bandwidth is not reached.

The SoC also contains a low-power FPGA. It consists of 13,300 logic slices that can be configured
to provide the requested functionality of the FPGA. It also contains 630 KB of block RAM, referred to
as BRAM. This BRAM is fast, but limited in size.

The CPU and FPGA can communicate with each other through AXI interfaces. The PYNQ-Z1 has
six AXI3 ports. Two of these are general-purpose master ports that can be used by the CPU to control
the programmed FPGA. The other four ports are high-performance slave ports that can be used by the
FPGA to interface with other components of the SoC, such as reading data from the DDR3 RAM.

Care has to be taken with the access that the FPGA has. Unlike running code that an OS man-
ages, The FPGA does not have safeguards with regard to memory access. If for example, due to a
programming error, the DMA engine writes data to the wrong address, the entire system can crash.
Fortunately, on the PYNQ-Z1, a reboot of the system is usually enough to recover.

Componet Part Details
Memory 512 MB DDR3 RAM 16 bits wide at 525 MHz
CPU Cortex-A9 dual-core at 650 MHz (ARMv7L)
FPGA equivalent to Artix-7 13,300 logic slices and 630 KB of block RAM
Interface six AXI3 ports four high-performance slave ports and 2 general purpose master ports

Table 5.2: Hardware details of the Digilent PYNQ-Z1 board.
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5.2.2. Software setup
The PYNQ-Z1 comes with its own software stack. To start off, it comes with its own version of Linux
called PynqLinux. The version used during the experiments is PYNQ version 2.7.0 which is based
on Ubuntu 20.04. The software provided here is older than on the x86 machine. As such, the GCC
compiler is version 9.3.0 and the LLVM used here is version 10.0.0. Also in this case the code used in
benchmarking was compiled in a release configuration. For PoCL, we use the same code as the x86
setup and is therefore version 3.1.

5.2.3. Cross-compilation to ARM
When compiling the pthread driver on the PYNQ-Z1, memory is the limiting factor. With earlier builds on
the PYNQ-Z1, the system would run out of memory and fail. Ironically this happens specifically when
compiling the code responsible for compiling kernels. The 512 MB of RAM plus a 512 MB swapfile was
enough to compile even while compiling the code single-threaded. Increasing the size of the swapfile
can alleviate this problem, however, this will wear out the SD storage card causing it to break after a
couple of uses.

The solution we settled on was to cross-compile PoCL on the x86 machine for the ARM architecture.
To do this, we used QEMU (Quick EMUlation) [32] and Docker [33] to create a virtual ARM environment
on the x86 machine. QEMU was used to emulate an ARM CPU with the same hardware architecture
as the PYNQ-Z1, although it had just as many cores as the x86 machine. With QEMU, we were able
to solve the difference in hardware architectures.

The software on the x86 machine is not compatible with ARM architectures, therefore we used
Docker. Docker allows one to create an isolated container with software that is different from the host
that Docker runs on. We used Docker to create a container that contained software that is both com-
patible with ARM and close enough to what is found on the PYNQ-Z1. As a basis for the container,
we used an ARM 32-bit Ubuntu 20.04 image. This is the same Ubuntu version the PynqLinux image is
based on as well as the same architecture of the CPU. In the container, we installed the required build
tools to compile PoCL. However, it turned out that the CMake program that was available on the soft-
ware repositories contained a bug that would cause it to fail while running on 32-bit ARM architectures.
Therefore, we compiled CMake from the source and this resolved the problem. Using this modified
container, we were able to compile PoCL and the pthread driver.

However, when the time came to benchmark the code, this cross-compilation was not used. For
whatever reason, possibly due to upstream code changes, the code compiled successfully. While
compiling single-threadedly, the memory and the swapfile would fill up significantly, but not enough to
hang the system. Cross-compilation is however still useful as it wears out the SD-card less.

5.3. x86 runtime overhead
In order to see what kind of overhead the implementation introduces, we measure the execution times
of different setups and we compare normal executions to various fault-tolerant ones. This experiment
also allows us to compare different implementations of the bitwise TMR kernels and see which ones
are best suited to a given architecture.

5.3.1. MAD experiment setup
In the overhead experiment, we measure the time it takes for data to be written to input buffers, work
to be done and finally reading the result back from the host. This process is repeated a hundred times
and then the mean value is then taken. The first iteration often takes longer than the subsequent
rounds and therefore is considered a warmup round. For this reason, we drop this measurement in the
calculations.

The work kernel in the setup is a multiply-add (MAD) operation done on 32-bit integers. This work-
load includes two arithmetic operations and three 4-byte memory accesses per integer, putting the
arithmetic intensity at 16 operations per byte. This low arithmetic intensity will put an emphasis on
data transfers while executing the redundant kernel, but not influence the process of bringing the input
buffers to the device.

This is essentially a worst-case scenario. In a non-redundant setup, relatively little time is spent
doing calculations on the data compared to moving data from and to the host. Since the TMR im-
plementation needs to move data to and from each redundant device, a lot more data is transferred
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compared to a non-redundant setup. This means that the relative runtime overhead of a MAD program
with TMR is larger than in more computationally intense scenarios.

When it comes to creating TMR voting kernels, one of the design aspects is the size of the data
type that a work item works on. Depending on the underlying hardware architecture, this can have an
effect on the speed of fetching data and operations. Since the kernel makes a bitwise comparison of
the data type, the results will be the same regardless of how many bits the data type has.

By repeating the same experiment on different input sizes, we can see the effect it has on the overall
time of TMR execution. These input sizes range from 220 (1,048,576) up to 10 ∗ 220 (10,485,760) with
increments of 220. These sizes were chosen so that they were big enough to not be heavily affected
by background processes on the system. It should be noted that this input size directly corresponds to
the size of each of the two input buffers. So the total sum of input data is twice that of the input size

5.3.2. Shared memory TMR
The first voting kernel to be examined is a base TMR kernel that only does bitwise comparisons on the
output buffers of the redundant kernels. Both the redundant and voting device are pthread devices and
share the same global memory. This eliminates a buffer transfer between the two types of devices.

This setup minimizes data transfer times. Since the redundant devices share the same global
memory and input buffers are read-only, it means all redundant devices can read from the same buffer
and this buffer does not need to be physically copied to each device. Each redundant device will still
write to a different buffer. But since the voting device also shares the same global memory, no buffer
transfers between devices are needed and it can read from each redundant output buffer. Compared
to a non-redundant setup, there are the same number of buffer transfers. However, since all redundant
devices share the same computing hardware, the computational time takes a hit.

The results of this configuration can be seen in Figure 5.1. Subfigure 5.1a shows the average
runtime for different setups using variations of the voting kernel compared to normal execution. The
difference between each variation is the size of the data type that is the argument to the voting kernel.

At first glance, it looks like there are only two lines plotted, the normal execution denoted by star
markers and a fault-tolerant setup. However, this is the result of all variations of the voting kernel
being close to the same performance. This is due to PoCL being able to vectorize the work, thereby
making the size of the data type irrelevant. This fact is confirmed when disassembling the binaries
PoCL generates of the kernel. The assembly code contains AVX-512 instructions which the CPU has
support for.
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Figure 5.1: Performance metrics of different kernel configurations in the triple modular redundant implementation on an x86
platform.
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Subfigure 5.1b shows a normalized view of the runtime overhead of each of the setups. The Y-axis
shows the percentage of extra time it takes for a TMR implementation to complete. This figure shows
a bit more variance between different kernel variations in the beginning but less toward the end. The
average overhead across all kernels and inputs is 57 percent more than normal execution. The graph
also shows the line flattening out at the end where the average of the last four entries is 50 percent.

Even though in this benchmark scenario there is minimal runtime overhead from transfers, the
average fault-tolerant implementation is still minimally 50 percent larger than having no fault tolerance.
The voting kernel adds some overhead, but this is not the only source. Other sources include the extra
computations done on each of the redundant devices. While in PoCL there are three pthread devices
executing the redundant kernel, they all share the same hardware as the normal setup, therefore the
sum of physical compute hardware is the same for both setups. But since the runtime overhead is not
three times as large, it would mean that the normal setup is underutilizing the hardware. The third form
of extra overhead comes from scheduling. The TMR setup is more complex and can incur some delay
due to that.

5.3.3. Shared memory hardened TMR
Besides normal TMR execution, there are also hardened versions of the TMR kernel. These kernels do
not make use of vectorization due to the use of volatile datatypes. These volatile datatypes prevent the
compiler from optimizing the code. This lack of optimization leads to some interesting results shown
in Figure 5.2. When looking at Subfigure 5.2a, we can see that the setup using the 8-bit voting kernel
is significantly slower than the others. It becomes clear that the hardware performs suboptimally when
doing operations on 8-bit datatypes compared to other datatypes.
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Figure 5.2: Performance metrics of different hardened kernel configurations in the triple modular redundant implementation on
an x86 platform.

Compared to the previous benchmark, there is also a kernel making use of a vector datatype. This
vector consists of 16 32-bit integers and is therefore 512 bits long (shown in the figure as the ”512-bit
kernel” curve). This was done to see if there are any performance gains to be had using a datatype that
is as wide as the AVX-512 extension. But as can be seen in the figures, there are no major differences.

Compared to the unhardened kernels, there is also more variance in the normalized graph of Sub-
figure 5.2b. A surprising result is just how close the average overhead comes to that of the unhardened
kernels. the best-performing hardened kernel is the 64-bit one and on average has an overhead of 60
percent, 52 percent if only looking at the last four inputs.
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5.3.4. Matrix multiplication experiment setup
The MAD runtime experiments showed a worst-case scenario, where the work of the redundant kernel
is straightforward and fast to complete. It can be argued that this work is not suited to be accelerated
by frameworks like PoCL, since the data transfer times will likely outweigh any gains in computing time.

A more representative workload that could be computed with PoCL is matrix multiplication. Matrix
multiplication is used in many computationally intensive workloads such as computer vision or machine
learning. It also is much more arithmetically intense, making the relative runtime cost of moving data
to an accelerator less.

Calculating the arithmetic intensity of matrix multiplicating depends on the matrices in question. In
these experiments, we are multiplying 𝑁 ∗𝑁 matrices, so 𝑁 is the only variable needed to calculate the
arithmetic intensity. To calculate one value of the resulting matrix, we need to calculate the dot product
of two vectors of length 𝑁. This means that there are 𝑁 multiplications and 𝑁 additions per element in
the resulting matrix. Since the resulting matrix is a 𝑁∗𝑁 matrix, the total number of operations is 2∗𝑁3.
As for the number of bytes accessed, The input matrices consist of 32-bit floating-point numbers and
so does the resulting matrix. Therefore the arithmetic intensity can be calculated as:

𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = 2 ∗ 𝑁3
12 ∗ 𝑁2 (5.1)

The range of 𝑁 in the experiments ranges from 128 to 1280. For these values, the arithmetic
intensity is 21.33 and 213.33 respectively. This is much higher than the MAD kernel, which is only 1

6 .
as mentioned, the input size for the matrix experiments ranges from 128 to 1280 with increments

of 128. However, since the input size is only the dimension of the input matrix, the actual input buffer
is the input size squared. This value is reflected in the X-axis of the graphs.

Just like with the MAD experiments, we time the duration that it takes to write data to input buffers,
execute work and finally read the results back. The experiments were run one hundred times and the
average was taken.

As for the kernel we use in our experiments itself, we use a straightforward multiplication kernel.
There are no optimizations done, for example with regard to memory access. Also, we don’t pass any
local workgroup sizes and instead let PoCL determine them.

5.3.5. Shared memory matrix multiplication
The first matrix multiplication benchmark involves three redundant pthread devices and one pthread
voter pthread device. In this scenario, all devices share the same memory, so there is no need for extra
data transfers. However, when looking at Figure 5.4a, we can see that the fault-tolerant implementation
is noticeably slower. This is to be expected since the normal scenario has access to the same amount
of physical hardware as the fault-tolerant scenario.

Subfigure 5.3b shows the extra overhead of the fault-tolerant implementation compared to normal
execution. Since the fault-tolerant scenario executes the same work three times on the same physical
hardware, one would expect that it takes at least three times the amount of time to execute the fault-
tolerant implementation. However, it turns out that this is only the case for the largest input of 1,638,400
(12802). It is likely that the buffer transfer times compensate for some of the extra computation required
for fault tolerance and that this effect is minimized for larger inputs.

What is surprising, however, is the sharp drop in overhead near marks 0.4 and 1.0. The benchmark
runs a variation of the kernel for each input size before moving on to the next kernel. Therefore, these
drops do not happen because of an outside disturbance, but rather systematically for each kernel
variation. By executing the benchmark with tracing on, we are able to see how much time is spent in
each part of the execution. From these traces, it seems that at these points, the buffer transfer times do
not seem to increase much compared to those observed at the previous data point. It could be that for
these input sizes, the data fits well with the physical hardware and therefore is utilized more efficiently
than with other input sizes.

5.3.6. Separate memory matrix multiplication
In the previous experiment, all devices shared the same memory and hardware. In this experiment, the
devices do not share any memory, forcing data transfers between devices. This is more representative
of different physical hardware running OpenCL.
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Figure 5.3: Performance metrics of different voting kernel configurations with a matrix multiplication redundant kernel on the x86
platform.

On top of enabling separate memory for each device, we also limited the number of cores available
to the normal execution run. This was done to simulate more hardware for the fault-tolerant scenario.
We used numactl to allocate 9 cores (18 threads) for the fault-tolerant execution and 3 cores (6 threads)
for the normal execution.

The results can be seen in Subfigure 5.4. In Subfigure 5.4a we can see that for small input sizes,
there is a noticeable overhead due to relatively much time being spent transferring the data buffers.
However, this difference diminishes as the input size increases. This is due to the computing time of
the matrix multiplication kernel increasing faster with input size than that of the buffer transfers.

Subfigure 5.4b confirms this trend of transfer times becoming more insignificant as the input sizes
increase. From inputs of size 262,144 (512 ∗ 512), the overhead stops dropping off heavily. There is
a surprising drop in overhead for inputs of size 1,048,576 (1024 ∗ 1024). Like with the shared memory
matrix multiplication experiment, data points for each kernel variation are gathered for the range of
inputs before moving on to the next kernel variant, so this is not due to outside influence.

By utilizing the tracing functionality of PoCL, we are able to get some inside into what is happening.
By examining traces for inputs of size 802,816 (896∗896) and 1,048,576 (1024∗1024), we noticed that
while the average execution time of the voting kernel increased with a larger input, it did not increase
with the same factor. PoCL aims to be performance portable and it is possible that for the input size of
1,048,576, the hardware was able to be more efficiently utilized while voting.

By taking the average overhead of all the kernels, we can get an indication of what the average
overhead is of such a configuration. The overhead graph becomes more horizontal at the fourth data
point of 262,144 (512 ∗ 512). The average overhead from the fourth data point is 17.7 percent if we
exclude the entry at 1,048,576 and only 16.2 percent if we don’t exclude it.

5.4. ARM runtime overhead
Besides profiling the runtime overhead on x86 hardware, experiments were also done on the 32-bit
ARM hardware. This was done on the PYNQ-Z1 single-board computer. Doing so gives us the possi-
bility to test and evaluate the performance of other hardware that PoCL may be run on. The PYNQ-Z1
also gives us the possibility to utilize its FPGA with the AlmaIF driver to create a custom voting accel-
erator.
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Figure 5.4: Performance metrics of different voting kernel configurations with a matrix multiplication redundant kernel where the
devices do not share any memory on the x86 platform.

5.4.1. MAD experiment setup
The experiments run on the PYNQ-Z1 board are similar to the X86 machine. The same code has been
used for both the host and the kernels as with the x86 hardware. The input sizes are also the same
and range from 220 (1,048,576) up to 10 ∗ 220 (10,485,760) with increments of 220. The only major
difference is the sample size, which has been reduced to fifty instead of one hundred.

5.4.2. Shared memory TMR
Even though both hardware use the same code, the results are slightly different, as can be seen in
Figure 5.5. The first noticeable difference can be seen in Subfigure 5.5a. In this subfigure, it can be
seen that the 8-bit kernel performs noticeably worse than the other kernels. This is similar to what was
observed with the hardened 8-bit kernel on the x86 hardware and is most likely caused by the hardware
being suboptimal for such small datatypes.

When looking at the normalized overhead shown in Subfigure 5.5b, we can see that on average
the overhead is larger here. In this case, the best-performing kernel is the 64-bit kernel, which on
average has an overhead of an extra 113 percent overhead. It is slightly unexpected that the 32-bit
kernel performs worse with 119 percent overhead since the CPU has a 32-bit architecture. However, it
is still much better when compared to the 8-bit kernel, which on average is 17 percent slower than the
64-bit kernel.

5.4.3. shared memory hardened TMR
Taking a look at the hardened kernels shown in Figure 5.6, we can see that now the 8-bit kernel is not
the worst-performing kernel. In fact, the 16-bit kernel is slightly worse than the 8-bit kernel. This is
most likely again due to the compiler being prevented from optimizing the code.

By looking at the normalized overhead in Subfigure 5.6b, we can see just how much the difference
in performance is. In this case, the best-performing kernel is the 32-bit kernel, which on average is
an extra 154 percent slower. The worst-performing 16-bit kernel is on average an extra 304 percent
slower.

5.4.4. AlmaIF TMR
Besides voting using CPU devices on the PYNQ-Z1, it is also possible to utilize the FPGA available.
For this, we use the AlmaIF device in PoCL. The hardware layout is described in Section 4.5.
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Figure 5.5: Performance metrics of different kernel configurations in the triple modular redundant implementation on the PYNQ-
Z1 platform.

For this experiment, the setup is different compared to the other ARM scenarios. First off, due to
memory limitations related to the external region on the AlmaIF device, the maximum input size was set
to 219 (524,288). The range of input sizes starts at 211 (2048) and scales exponentially. Furthermore,
the run has only been repeated ten times for the AlmaIF voter while the others have been run fifty times.
To see how well it performs against voting kernels on the CPU, we have also plotted a 32-bit kernel
and a 32-bit kernel with separate global memory.

Looking at the results in Figure 5.7, we can see that the AlmaIF device is actually slower than the
pthread voting device with shared memory. This worse performance is due to the overhead associated
with transferring result buffers from the redundant devices to the AlmaIF voting device. To confirm
this, a setup was also run with a pthread voting device with separate global memory. And as indicated
in Subfigures 5.7a and 5.7b with the ”sep mem pthread kernel” plot, this is extra transfer introduces
a significant amount of overhead. Overall, the AlmaIF device has an average extra overhead of 176
percent while in this case, the pthread device with or without shared memory has an extra overhead of
96 and 279 percent, respectively.

While overall, the AlmaIF device was not faster than a pthread voter with shared memory, it still is
faster at comparing results than a pthread device. To find out how much faster, another run was made
with an input size of 524,288 and profiling enabled. Figure 5.8 shows an example of one iteration and
how much time is spent transferring data and executing kernels. Using these traces, it is possible to
calculate the average amount of time spent voting. For the AlmaIF device, this resulted in an average
time of 6.845 milliseconds while the pthread voting device spent an average time of 11.461 milliseconds
voting. This means that the AlmaIF device is 67 percent faster than the pthread device.

It is also possible to analyze the IP block design and see figure out the minimum amount of time it
would take for the voting IP to process all the data. By adding an integrated logic analyzer (ILA) to the
AXI interfaces of the voting IP, we can see how the IP behaves. On a frame of 8192 items of the ILA,
the IP will occasionally stall irregularly but otherwise produce a result every clock cycle. This confirms
the one-cycle initiation interval reported by Vitis HLS, but also likely indicates that the DMA controllers
are oversaturating the available bandwidth. The theoretical minimum time spent by the voting IP can be
calculated with Equation 5.2. In this equation, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑑𝑒𝑙𝑎𝑦 is the number of cycles that are required
to process one input item, while 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑖𝑜𝑛_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑒 is the number of cycles before the IP can start
processing another input. Given that the IP runs at a frequency of 142 MHz and processes 524,288
packets of data, that puts the minimum time spent at 3,692 milliseconds

𝑡𝑖𝑚𝑒 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑑𝑒𝑙𝑎𝑦 + (𝑁 − 1) ∗ 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑖𝑜𝑛_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (5.2)
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Figure 5.6: Performance metrics of different hardened kernel configurations in the triple modular redundant implementation on
the PYNQ-Z1 platform.

To see what kind of throughput the RAM can provide two tests were run to approximate the limit.
The first benchmark was the stream benchmark [30] which benchmarks the throughput of RAM while
performing simple tasks such as copying data from one array to another. By enablingmultithreading, the
best-recorded throughput was 1025.5 MB per second, or 604.1 MB per second if it uses a single thread.
This is far below the maximum speed of the memory indicated in the reference manual provided by
Digilent [31] which says that the memory has a throughput of 2100 MB per second. Opening the ZYNQ
SoC in Vivado shows that the DRAM frequency is 525 MHz and the effective DRAM bus bandwidth is
16 bits, but since it is Double Data Rate (DDR) memory, the frequency is effectively doubled, Thereby
reaching 2100 MB per second. The second test to approximate the limit involved using the PYNQ
Python API to time the transfer of two DMA controllers writing to and receiving from a FIFO IP block.
Even with the overhead associated with Python applications, the highest recorded throughput reached
as high as 1113 MB per second, making this slightly faster than the stream benchmark.

Given the minimum time that the voting IP would need to process the buffers, we can calculate
the maximum bandwidth required. the AlmaIF device reads three buffers of 524,288 32-bit integers
and writes to one buffer; making maximum bandwidth required 524,288∗4∗4

3.692∗10−3 = 2272𝑀𝐵/𝑠. This is above
the theoretical maximum DDR RAM bandwidth and helps to explain the occasional stalling shown
in the wave diagrams captured by the ILA. The PYNQ-Z1 uses a Zynq-7000 SoC and consulting the
technical reference manual [34] of this SoC shows that the AXI ports of the FPGA need to go through an
interconnect and amemory controller in order to get access to the DDRRAM. This will limit the available
bandwidth since the memory controller implements some form of Quality of Service (QoS) preventing
the DMA engines from starving other processes of memory access. Nevertheless, the AlmaIF voting
device displays a high data transfer. With an average time of 6.845 milliseconds, the AlmaIF device
has an average throughput 524,288∗4∗46.845∗10−3 = 1226𝑀𝐵/𝑠. This time includes all control overhead of the
device driver, likely making the actual throughput of the IP block itself even higher.

The technical reference manual [34] may also provide insight into why the stream benchmark is
slower than the speeds on FPGA devices. The memory controller has four access ports. One of these
ports is connected to the CPU while two others are connected to the interconnect that connects the AXI
ports available on the FPGA. It is possible that this access port is a bottleneck while the FPGA does
not suffer from this since it has twice the number of access ports.
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Figure 5.7: Performance metrics of different voting kernels in the triple modular redundant implementation on the PYNQ-Z1
platform.

Figure 5.8: A trace from one iteration of a setup with an AlmaIF voting device.

5.5. Ease of use for end-user
In order to determine how easy it is for an end user to use the implementation, we use the number of
lines of code in the application as a proxy to the complexity of the application. To compare the number
of lines of code, we take one of the example programs provided by PoCL and augment it to also allow
for fault-tolerant execution. For this, we chose to use Example0 which implements a MAD operation in
OpenCL and compares the results of that with a set of results calculated on the host.

The analysis of Example0 can be seen in Table 5.3. To count the lines of code, we excluded
brackets, comments and blank lines. The results show that the code specific to fault tolerance is 24
lines. A large percentage is due to error-handling code that is called every time after a function is called.
In total, there are 7 function calls for the fault-tolerant code compared to the two function calls for the
normal specific code.

The biggest source of lines however is the code that bothmodes share. This code comes down to 84
percent of the total lines of code and shows just howmuch code can be reused by a fault-tolerant setup.
And when looking at the total code size of the normal code vs fault-tolerant code, the fault-tolerant code
is only 11 percent bigger.

5.6. Robustness
In order to test the Robustness of the implementations, we have created a setup that can artificially
insert errors. The setup works by inserting an extra kernel between a redundant device and the voter.
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Section Lines of Code Percentage
fault-tolerant code 24 13%
normal specific code 6 3%
shared lines 153 84%
SUM: 183 100%
Total fault-tolerant code 177 97%
Total normal specific code 159 87%

Table 5.3: Analysis of the code after adding fault tolerance.

This kernel will randomly change a value to simulate an error occurring. OpenCL does not provide
any pseudorandom built-in functions, therefore, the kernel does this by implementing a pseudorandom
algorithm based on the one described in the book The Art of Computer Programming, Volume 2 by
Knuth [35]. The seed used is defined by 𝑠𝑒𝑒𝑑 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑒𝑒𝑑 ∗ 𝑖𝑑2 where 𝑖𝑑 is the index of the
data currently being examined. By multiplying the 𝑖𝑑 with itself, we create more variance between
incremented ids. The 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑒𝑒𝑑 is different per redundant device and is used to create differences
between each redundant device. By doing the same calculation on the host and comparing that to the
result from PoCL, we can determine the number of errors that managed to get past. And by examining
the redundant buffers, we can determine how many errors actually happened.
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Figure 5.9: The percentage of errors introduced compared to the number of errors occurring when applying the TMR solution.

Figure 5.9 shows the results of applying the TMR implementation to an arbitrary workload. In the
experiment, the output buffer contained 220 32-bit integers and we introduced errors on a byte level, so
the total number of points of failure is just over 4.19 ∗ 106. On the X-axis, we show the percentage of
errors we introduced to the buffers. As a baseline, we also draw the expected number of errors. This
line is generated by multiplying the total size of the buffer by the given percentage. And as can be seen,
the mean number of errors per device follows this line closely. The total errors line is the summation of
errors for each redundant device. An interesting phenomenon here is that at an error rate that is lower
than 0.01 percent, the TMR implementation caught all errors, while each device on average produced
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408 errors (all three devices generated a total of 1223 errors at 0.01 percent ).
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Figure 5.10: The number of errors occurring and being caught by the TMR solution for different buffer sizes and error rates.

To get more insight into the relationship between the error rate and input size, we ran a number of
iterations with different error rates and input sizes. We counted the total number of errors occurring for
all redundant devices and the number of errors still present after voting. The results can be seen in
Figure 5.10. In this graph, lines of the same color share the same error rate. Datapoints that do not
show up on the graph mean that there was no error occurring. We see this happening for the voter at
lower input sizes and error rates.

Regardless of input size, the bitwise TMR voter is able to reduce the final number of errors man-
ifesting. This reduction ranges from several factors for higher error rates, to orders of magnitude for
lower error rates.

5.7. Discussion
In this chapter, we put the chosen implementation to the test and saw how well it performs according to
the criteria we set forth in Chapter 3. These criteria are: runtime overhead, hardware overhead, ease
of use, applicability and robustness. We will now discuss how well these criteria were met.

The first criterion looked at is runtime overhead. And as can be seen from the numerous experi-
ments, the measure of this criterion depends a lot on the context. Factors that can influence this are the
underlying hardware, configuration of the fault-tolerant implementation and the workload that is being
made fault tolerant.

When considering x86 hardware, we ran a number of different experiments. By taking a MAD
workload and a configuration where pthread devices share the same memory, we created the best
configuration to minimize overhead in a worst-case scenario. In this case, we were able to achieve a
runtime overhead of on average 57 percent. It should be noted that such a workload as only MAD op
OpenCL is so straightforward that the biggest contributing factor to runtime is buffer transfers itself.

Devices that share memory are very likely to run on the same physical hardware, therefore we also
investigated the overhead of hardened voting kernels. These hardened kernels are designed to still
function even on less stable hardware and therefore more suitable to run on the same hardware as the
redundant kernels.

We investigated the performance of these hardened kernels on both x86 and ARM architectures.
On both architectures, small datatypes should be avoided as they are significantly slower. On x86, this
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was the case for 8-bit datatypes while on ARM 16-bit datatypes should also be avoided. Overall on
x86, the hardened kernels did not perform much worse than their non-hardened counterparts in the
MAD scenario. The best-performing kernel was the 64-bit kernel which on average had an overhead
of 60 percent. On ARM, the performance was worse when compared to non-hardened kernels. here
too the 32-bit voting kernel performed best, with an average of 154 percent overhead.

For a more representative workload, we also measured the performance of a matrix multiplication
workload in different scenarios. These workloads varied in their arithmetic complexity and ranged from
21.33 to 213.33. These experiments were done on x86 hardware. In the first scenario, the memory was
shared between all pthread devices doing work. In this scenario, only 1280 by 1280matrix multiplication
caused the runtime overhead to go above 200 percent. Considering that the fault-tolerant scenario is
computing the redundant kernel three times, this is better than expected. In the second scenario, the
pthread devices do not share any memory and have to transfer data between devices. In this setup,
more physical hardware was simulated for the fault-tolerant implementation by only allocating a third
of the available cores to the normal execution. Once the matrices became big enough for the transfer
time to become comparatively small, the runtime overhead decreased to as little as 17.7 percent.

Part of the runtime overhead experiments also included running aMAD kernel workload on a PYNQ-
Z1. This demonstrates the performance of our implementation on an ARM hardware architecture and
allows us to use a specialized AlmaIF voting device. Running a MAD kernel in our fault-tolerant fashion
without isolating the memory of each pthread device produced more of an overhead compared to the
x86 hardware. The best-performing variant was the 64-bit voting kernel variant, with an average runtime
overhead of 113 percent. This larger increase in overhead compared to x86 hardware is most likely
due to the weaker ARM cores taking relatively longer to complete the redundant computation of the
MAD kernel. While other kernel variants are only slightly worse than the 64-bit kernel, the 8-bit kernel
is significantly worse and should be avoided if possible. We also ran the MAD workload with an AlmaIF
voting device and compared the performance to the pthread devices. It is not possible to share memory
between AlmaIF and pthread devices, so buffer transfers are required. Since buffer transfers make up a
significant part of the total execution times, the AlmaIF voting device is slower than the shared memory
pthread voting device. The AlmaIF voting device has an average runtime overhead of 176 percent.
However, a pthread device without shared memory is much worse with an average runtime overhead
of 279 percent. Part of our analysis also included examining the bandwidth utilized by the AlmaIF
device compared to what is possible from the CPU. Using the stream benchmark, we were able to
get a bandwidth of 1050 MB per second, while the AlmaIF device displayed a bandwidth of 1226 MB
per second while voting. This increase in voting and bandwidth shows the potential of such custom
accelerators.

The runtime overhead is just one criterion of the criteria. the ease of use for the end user criteria
aims to quantify how easy it is to apply fault tolerance to a program. For this, we counted the lines of
code that were required to add fault tolerance to one of the example programs PoCL provides. This
resulted in 24 lines of code specific to fault tolerance being added, which amounts to an increase of 11.3
percent to the total lines of code. This does not give a direct indication of how easy the new functions
are to use but does show that the majority of the code can be reused.

The third criterion looked at was applicability. Here, we evaluate how many devices the implemen-
tation can be applied to. While there were no explicit tests done to show this, the experiments were
run using both pthread and AlmaIF devices. On top of that, the experiments were run not only on x86
hardware but also on ARM hardware. This demonstrates that our implementation can work on multiple
devices.

The final criterion was robustness. By injecting faults into the buffers of the redundant devices, we
simulated faulty behavior. From our tests, we were able to demonstrate that our TMR implementation
is able to significantly reduce the number of errors visible to the host program. Generally, the errors are
either totally eliminated (for a lower number of errors), or the number of errors manifesting is orders of
magnitude smaller than the actual number of errors happening (for larger number of errors).
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Conclusions and recommendations

In this work, we set out to add fault tolerance to the open-source implementation of OpenCL called
Portable Computing Language (PoCL). We do this by implementing a triple modular redundant (TMR)
solution on the runtime level of PoCL. With these solutions, we evaluate the research questions. After
that, we follow up with some recommendations for future work.

6.1. Conclusions
In this thesis, we formulated three research questions. We will now evaluate each of these questions.

6.1.1. Research question 1
The first research question we set out to tackle is: ”How can fault tolerance be added to PoCL that is
easy to use for the end user?” In order to accomplish this, we implemented TMR into the PoCL library.
TMR involves computing the work three times and using a voting mechanism to correct any errors
occurred.

The clEnqueueNDRangeKernel function declared by the OpenCL specifications has been extended
to execute work kernels in a TMR fashion. From the perspective of the end-user, this function behaves
the same with or without fault-tolerant execution. This fault-tolerant execution is triggered by passing a
modified command queue, called a redundant command queue (RCQ), to clEnqueueNDRangeKernel.
This RCQ contains multiple command queues that are used to schedule work to redundant devices.
When creating the RCQ, the end user can configure which devices are used redundantly and which
device is used for voting. The end user can also configure the voting kernel when creating the RCQ.
However, if these voting kernel configurations are not passed, the function will default to presets.

The modifications visible to the end user have been kept as low as possible. This allows for a lot of
code reuse. The end user does not have to change each OpenCL function to an equivalent one that is
fault tolerant.

6.1.2. Research question 2
The second research question we addressed in this thesis is formulated as: How can the runtime
overhead of this implementation be kept to a minimum? We have implemented TMR in PoCL and
this brings with it a number of performance characteristics. Since TMR is able to correct any errors
that occurred during runtime, the computation does not have to be repeated. This makes the runtime
overhead constant regardless of the number of errors.

To keep the runtime overhead as low as possible, three redundant devices are needed to compute
the same result in parallel. Our solution has been implemented on the runtime level of PoCL, so
the redundant computations can be done on any desired device supported by PoCL. However, this
generally means that data needs to be exchanged between redundant devices and the voting device.

Depending on the workload, the runtime is either bound by the transfer times or by the computing
time. Our implementation can be applied differently to minimize runtime overhead depending on the
workload and available physical hardware. In the case of the runtime being bound by the computing
time, three devices can be allocated and the data can be moved between the redundant devices and
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the voter. In our experiments with matrix multiplication on pthread devices that had isolated memory,
this resulted in an average overhead of 18 percent on x86 hardware. If the application is bound by
transfer times, this configuration will be significantly slower. However, on some devices, such as the
pthread and AlmaIF devices, it is possible to divide the physical hardware into multiple devices. These
devices share the same memory and therefore the voting device can directly read the same buffers the
redundant devices write to. In our experiments with multiply and accumulate workloads, this resulted
in an overhead that on average is 57 percent. We also ran the same test on a PYNQ-Z1 board with an
ARM SoC. In this case, the best average performance was 113 percent.

In this thesis, we also implemented a custom accelerator that makes use of the AlmaIF driver in
PoCL. By using high-level synthesis (HLS) we were able to design an accelerator that is implemented
on the FPGA of the PYNQ-Z1 board. This accelerator is used as a voting device. In our experiments,
we have shown that this device is 67 percent faster than the pthread voting device.

6.1.3. Research question 3
The third research question we addressed is: ”How can we preserve the flexibility of OpenCL while
adding this fault tolerance capability?” Our goal here is for our implementation to work with any of the
devices supported by OpenCL as well as PoCL. Our implementation works on the runtime level of PoCL
and therefore any device supported by PoCL can be used the same way without any modifications.

In our benchmarks, we have demonstrated this by combining redundant pthread devices with an
AlmaIF voting device. We also ran our benchmarks on not only x86 hardware but on ARM as well.

We also provide different configuration options for the voting kernel. This allows the end user to
tune the voting kernel to execute optimally to the hardware. For example, the end user can choose to
use a 32- or 64-bit voting kernel on ARM instead of the 8-bit kernel that we showed performed worse.
The end user can also choose to use a hardened voting kernel that employs techniques that mitigate
errors happening in the voting process. The tradeoff is that this hardened kernel is slower than the
normal kernel.

6.2. Future work
In this thesis, we focused on adding fault tolerance to PoCL in a way that is compatible with all devices
that PoCL supports while also minimizing overhead. Part of our goal was to make it easy for an end
user to apply this fault tolerance to their application. There is however always room for improvement.

Due to the large amounts of data being transferred, transfer speeds are important to overall per-
formance. Currently, PoCL internally makes use of the memcpy function in C to copy data. While
memcpy is a fast, optimized function, data still goes through the host CPU. This causes overhead and
utilizes the CPU. A solution could be to employ direct memory access (DMA) for buffer transfers and
thereby avoiding the CPU. This could be done using an FPGA with DMA units. PoCL already has the
capability to interface with FPGAs and could control the DMA units with the AlmaIF driver. This could
improve the transfer speeds on PoCL in general.

During our experiments, we showed the potential of having a voting device on the FPGA of the
PYNQ-Z1. However, this implementation was limited due to the DMA engines only supporting memory
transfers of physically contiguous memory. This forced us to make a buffer copy of the output buffers of
the redundant pthread devices to the memory region of the AlmaIF device. By either allocating memory
contiguously also for the pthread devices or by using DMA engines that do not have this requirement,
the runtime overhead using the AlmaIF voting device (and thereby our solution as a whole) would be
vastly improved.
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