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SUMMARY

Recommender systems help users to find items they presumably like based on data col-
lected on that user. Collaborative filtering is arguably the most common recommenda-
tion system technique. It uses collected ratings to compute similarities between users
and recommends items based on those similarities. With that, a problem arises when
there are few ratings available for a user, also called the cold start problem. An even
stricter setting is where no ratings of a user are available at all, called the pure cold start
problem. Graphs are a natural way to represent data in this domain and Graph Neu-
ral Networks (GNNs) have proven to achieve state-of-the-art accuracies in the domain
of recommender systems over the past few years. In this work, we address this prob-
lem from a graph perspective. In the current literature, the problem is alleviated by
turning to external information, such as demographic or social information. Although
these methods work, they cannot be deployed in situations where this information is
not available. However, our approach uses only rating data. As ratings are unavailable
for pure cold start users, their connectivity to the graph is unknown. To overcome this,
we use a stochastic attachment model to infer connectivity. This model is composed of a
Bernoulli random variable with the corresponding probability value and edge weight for
each existing user. In this work, we propose to learn the parameters of a graph con-
volution model through empirical risk minimization using the stochastic attachment
model to attach users who previously attached to the graph and their ratings, and use
it to predict the same for unseen users. Furthermore, we propose to learn the proba-
bility and weight values of the stochastic attachment model jointly with the parameters
of the graph convolution model. We compare these methods to several graph based
and non-graph baselines. Furthermore, we compare different methods such as graph
filters, GCNNs, and kNN. The experiments show significant improvements of the graph
approaches compared to the non-graph baselines. Furthermore, we show that training
on stochastically expanded graphs improves accuracy compared to only testing on them
by induction.
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As our consumption of multimedia content becomes increasingly digitalized, the
abundance of data increases in tandem. Every minute of 2020, 65000 photos were up-
loaded to Instagram, 500 hours of video were uploaded to YouTube, and 28 songs were
added to the Spotify catalog [14, 86]. Instead of actively searching for content using a
search engine, a recommender system will passively provide items that are likely rele-
vant to the user so that they can access relevant items with little effort. Not only do the
users benefit from recommender systems, but also the commercial enterprises that de-
sign them. For example, 35% of the products purchased by customers on Amazon and
75% of what Netflix customers watch, originates from product recommendations [45].
According to Gomez-Uribe and Hunt from Netflix, in 2015 the company saved up to 1B
USD per year by offering personalized recommendations [20].

The relevance of an item to a user is determined from the information available
about the user and the item. Generally, this information is obtained from historical con-
sumption patterns. For example, in an e-commerce system, we can obtain which items
a user previously has bought. The most popular recommendation system technique,
collaborative filtering (CF), compares the patterns of the target user with the patterns
of other users to identify similar users [59]. From these similar users, we deduce which
item our target user will probably like. So, in the e-commerce example, we find users who
roughly bought the same items as our target user. Subsequently, we can recommend an
item that those similar users bought but our target user did not buy. A drawback of this
approach is that we need sufficient rating data from our target user to find similar users.
When only a few ratings are available, we cannot accurately identify similar users. This is
what is termed the cold start problem [7, 8, 39]. The most extreme case is what is known
in the literature as the pure or strict cold start problem [58]. This is the problem when
there are no ratings available from a user or item. In commercial systems, this is a fre-
quently occurring scenario. If we again consider the example of an e-commerce system,
this would mean that we cannot recommend personalized products on the homepage
using CF approaches. Since we have shown that Amazon sales depend significantly on
recommended products, this is an expensive problem.

In recent years, Graph Neural Networks (GNNs) have proven to achieve state-of-the-
art results in the field of recommender systems [24, 67, 78]. Graph Neural Networks are
a collection of neural network architectures that can be applied to irregular data, which
can be encoded as graphs. Arguably, the most important component is the graph con-
volution, which is designed to transfer the proven success of CNNs to the domain of ir-
regular data [34, 40]. We will use the term graph convolution model for any graph model
using graph convolutions. These graph convolution models process graphs by using the
coupling between its topology and its data, also called the graph signal, to learn patterns
end-to-end.

Data in recommender systems can be naturally represented as graphs. Users can be
represented by nodes, and two users are connected by an edge if they are similar. In this
way, the collaborative nature is incorporated into the graph topology. We can then apply
graph signal processing tools, such as GCNN, to perform collaborative filtering. If we
now look at the pure cold start problem from a graph perspective, we can reformulate it.
As the connectivity between users is determined by rating patterns, which are unknown
in this scenario, the connectivity of the pure cold start node to the graph is unknown.
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Figure 1.1: Visualization of a pure cold start node in a recommender system graph. The nodes represent the
users, and the edge labels are similarities between them. The nodes within the box represent the known users
of the system. u+ represents the pure cold start user for which the connectivity to the graph is unknown. For
simplicity, we omitted visualizing the graph signal.

This scenario is visualized in Figure 1.1. Many approaches in the literature solve this
problem by using external information to infer user similarity, and thus connectivity,
from [26, 50]. Sometimes this data is not available, for example, due to privacy concerns
[3, 10, 87].

Therefore, we take it a step further by performing pure cold start recommendation
without using external information, but by using stochastic attachment. The current lit-
erature already addresses this [12]. However, they use a fixed pretrained graph filter and
then learn the stochastic attachment model. Our hypothesis is that we can improve pure
cold start recommendation by either (1) using a heuristic stochastic attachment model
to attach a pure cold start node and training a graph convolution model on this expanded
graph (2) or by jointly optimizing a stochastic attachment model and a graph convolu-
tion model. By doing so, the graph convolution model is adapted to the stochastically
expanded graphs, potentially yielding a higher accuracy. Specifically, in this thesis, we
address the following research questions:

RQ.1 How can we alleviate the pure cold start problem in collaborative filtering via graph
convolutions by training over stochastically expanded graphs?

RQ.2 Can we jointly learn a stochastic attachment model and graph convolutions instead
of relying on a heuristic attachment model?

To answer these questions, we compare several graph-based and non-graph meth-
ods that can perform pure cold start recommendation. The methods we compare are
(1) mean rating (2) SVD++ (3) Erdős-Rényi attachment (4) Barabási-Albert attachment
(5) learned attachment. To answer the research questions posed above, we make the
following contributions.

1. We use heuristic stochastic methods to attach a pure cold start user to the graph
and train a graph convolution model on those stochastically expanded graphs to
predict his rating or ranking output.

2. We use a learnable stochastic attachment model to attach a pure cold start user
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to the graph and optimize it jointly with a graph convolution model to predict its
rating or ranking output by training on those stochastically expanded graphs.

The remainder of this thesis is structured as follows. Chapter 2 provides the theory
necessary for this thesis. Chapter 3 covers the relevant literature related to this research.
Chapter 4 describes in detail the proposed method. Chapter 5 provides the results and
their interpretations. Chapter 6 gives answers to the posed research questions and sug-
gests potential future work.

NOTATION

For the remainder of this thesis, we use the following notations. Matrices are represented
by bold uppercase letters (i.e. A), vectors by bold lowercase letters (i.e. a), and scalars by
regular weight letters (i.e. a, A). Sets are represented by uppercase calligraphic letters
(that is, A ). [A]i j denotes the entry in the i th row and j th column of the matrix A. [a]i

denotes the i th entry in the vector a.



2
BACKGROUND

The theory behind recommender systems is expansive due to the many different ap-
proaches. As this thesis is concerned with recommender systems implemented by a
graph-based collaborative filtering approach, the focus is on these kinds of techniques.
Also, the cold start phenomenon is highlighted in this chapter. We provide and explain
the required theory that is needed for the rest of this work. Section 2.1.1 introduces the
basic theory and terminology of collaborative filtering. In Section 2.1.3 we explain what
the cold start is. Then we provide a brief overview of some other relevant techniques
used for recommender systems. In Section 2.1.4 we introduce different ways to mea-
sure the success of recommender systems. Section 2.2 describes how graphs are present
in recommender systems in Section 2.2.1. In Section 2.2.2 we explain what graph con-
volutions are, and in Section 2.2.3 how they are used in Graph (Convolutional) Neural
Networks. Next, in Section 2.2.4, we show how these GNNs are utilized in recommender
systems. The chapter is concluded with a summary in Section 2.3.

5
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2.1. RECOMMENDER SYSTEMS
The general problem that a recommender system is concerned with is supplying a user
with new relevant items. The problem of recommending items to users includes two
subproblems.

The first is rating prediction. Consider a set of users U with |U | = U and a set of
items I with |I | = I where || denotes the set cardinality. The rating prediction problem
is defined as the prediction of unknown ratings ru,i for an item i ∈ I by a user u ∈ U .
The known (observed) ratings can be placed into a U × I rating or user-item matrix R st.
[R]ui ̸= 0 if user u rated item i and 0 otherwise. Each row vector u = [ru1, . . . ,ruI ] ∈RI de-
notes user u, and each column vector i = [r1i , . . . ,rUi ]⊤ ∈ RU denotes item i . Therefore,
the rating prediction problem can also be seen as a matrix completion problem for the
matrix R, as the objective of both is to estimate the missing values (ratings).

The second is top-k recommendation. For recommender systems, not only predict-
ing ratings is important. Users often see a list of recommendations. Simply selecting the
items in the top-k highest predicted ratings is suboptimal, as this ignores other aspects
of a recommendation system, such as novelty, diversity and serendipity. Therefore, in-
stead of predicting a rating value, top-k recommendation focuses on predicting the top-
k most relevant items for a user u ∈U , or vice versa, predicting the top-k most relevant
users for an item i ∈I . Two main types of feedback are the following:

1. Implicit feedback is derived from the interaction between a user and an item. For
example, on an e-commerce website, this could be a user visiting a product page
or purchasing it. An important characteristic of implicit ratings is that it is diffi-
cult to capture negative feedback. As there are often many items and often a user
only interacts or buys a small amount of them, there are many unknown ratings.
Therefore, a missing rating is ambiguous: either the user dislikes the item or the
user simply did not (yet) interact with it, but may like it. There are different ways
to treat missing values, for example, by treating all of them as negatives (0s) [27].

2. Explicit feedback is provided consciously by users of a system. For example, many
e-commerce platforms such as Amazon feature a 5-star rating system for pur-
chased items. Contrary to implicit unary ratings, this enables the user to also give
negative feedback, which benefits the rating prediction.

2.1.1. COLLABORATIVE FILTERING

Collaborative filtering (CF) is the most used technique for recommender systems [1].
The underlying assumption is that similar users have similar tastes or similar items at-
tract similar users. For example, assume that two users u1 and u2 have rated items i1, i2

and i3 with a similar high rating, and assume that u1 rated item i4 with rating x, while u2

did not rate i4. Following the correlation between u1 and u2 perceived by their ratings,
it makes sense to assume that u2 will also rate i4 similarly to u4. Figure 2.1 shows an ex-
ample of collaborative filtering. User B and C both interacted with movies 2 and 3. User
C also interacted with movie 4. Following the assumption that similar users have similar
tastes, we recommend movie 4 to user B. Two main categories of CF are memory-based
and model-based.
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Figure 2.1: Visualization of CF. A solid black arrow denotes observed interaction between the corresponding
user and item. The dashed cyan arrow indicates a recommendation.

MEMORY-/NEIGHBORHOOD-BASED

Memory-based CF uses the rating data directly to produce recommendations [8]. The
idea is to identify similar (neighboring) items/users to the target user/item according to
some similarity measures such as cosine similarity and use that collaborative informa-
tion to predict a rating for the target. Memory-based CF or neighborhood-based models
can be subdivided into two categories: user-user CF and item-item CF. Their approaches
are analogous but from a user and item perspective, respectively. For user-user CF, to
predict a rating r̂u,i for an item i by user u, similarities between users must be identified
using some similarity metric, such as Pearson correlation, defined as

cor r (u, v) =
∑I

i (ui − ū)(vi − v̄)√∑I
i (ui − ū)2

√∑I
i (vi − v̄)2

. (2.1)

Then the top-k users most similar to u are collected in the set Nu and used to predict
the rating r̂u,i as

r̂u,i = r̄u +
∑

v∈Nu (rv,i − r̄v ) · cor r (u, v)∑
v∈Nu cor r (u, v)

. (2.2)

Item-item CF is analogous but approaches it from an item perspective. Mostly, an item-
based approach is preferred over a user approach if there are more users than items, be-
cause in that case, the average item has more feedback than the average user. Therefore,
if a new rating is added to the matrix, the average item ratings remain relatively stable
compared to the average user rating. If there are more items than users, the opposite is
true [38].

MODEL-BASED

In model-based CF, a model is trained on the rating data before making recommenda-
tions [59]. After training, inference can be performed on this model to predict missing
ratings. Therefore, model-based systems are generally better scalable because they use a
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model derived from the data instead of directly using the data. Model-based CF methods
can roughly be subdivided into two subcategories.

1. The latent factor model decomposes the user-item matrix into smaller matrices.
An important latent factor model is matrix factorization. This decomposes the
user-item matrix into two matrices U and V,such that R ≈ U ·VT . The matrix U
contains d latent factors for each user, while V contains d latent factors for each
item. A predicted rating of an item j by a user i is obtained by taking the dot
product of their latent vectors uT

i ·v j . By minimizing the loss between the predicted
and observed ratings, the model can be trained. Another technique traditionally
used to decompose the user-item matrix is SVD [6].

2. Clustering models cluster the user-item matrix before inference is performed [83].
For example, users can be clustered based on their rating similarity. This is cheaper
in time complexity compared to memory-based methods to predict an unknown
rating to an item by a target user, as only the similarities between the target and the
other users in the target user’s cluster need to be determined. To reduce the com-
putational burden even more, the user vectors are often reduced using a dimen-
sionality reduction technique. However, compared to matrix factorization mod-
els, this approach is still relatively expensive as many similarities need to be com-
puted.

2.1.2. OTHER TECHNIQUES FOR RECOMMENDER SYSTEMS
Besides CF other techniques have been devised for recommender systems.

• Content-based (CB) filtering represents items by their features and only uses the
preferences of the target user, also called the user profile [43]. For example, a movie
can be represented by its genre, release year, and director. The user profile is rep-
resented in the same feature space. Using the interactions or rating history of the
target user, the model can be trained with the item representations as input, and
the corresponding rating as ground truth. Although CB still needs some prefer-
ence information from the user, it does not require rating data. Therefore, new or
unpopular items will be recommended more frequently compared to CF. Also, for
CB, it is possible to construct a user profile by explicitly asking for the preferred
feature values.

Note that classical matrix completion methods use transductive learning, mean-
ing that it reasons from specific training cases, in this case users or items. This
causes these methods to not work well for instances unseen during training. For
example, the latent factor model has to be retrained for every user or item that
is added to update the latent representations for both the existing and new users
or items. On the other hand, CB builds a general model and is able to predict
ratings for unseen instances, called inductive learning. Therefore, inductive learn-
ing is preferred over transductive learning when new instances are introduced fre-
quently.

• Hybrid recommender systems combine different recommender systems to com-
pensate for the drawbacks of each individual system. There exist different ap-
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proaches to combine recommender systems [9]. For example, a drawback of col-
laborative filtering systems is the long tail or rich-get-richer problem. This phe-
nomenon occurs because with CF items with few interactions have lower proba-
bility of being recommended compared to items with more interactions. To reduce
this effect, one can combine the recommendations from CF and a CB by using for
example a weighted average, as CB is popularity agnostic. In contrary, a disadvan-
tage of CB is that it will recommend items that are objectively similar to previously
interacted items, and therefore lacks serendipity. When the two are combined, CB
reduces the richer-get-richer drawback of CF, and CF compensates for the lack of
serendipity of CB.

• Another type of recommender system is association rule mining [25]. Relations
between items are deduced from co-occurring items in a set of transactions. For
example, assume we have a large transaction dataset of some e-commerce sys-
tem. By analyzing regularities in this set, we obtain sets of items that frequently
co-occur, such as {computer, monitor, keyboard}. If a customer then places a com-
puter and a monitor in his shopping cart, the recommender system can recom-
mend a keyboard. As this approach does not rely on user information, this is a
form of unpersonalized recommendation.

2.1.3. THE COLD START PROBLEM

The cold start problem in RSs is concerned with uses and items for which the system
has no or very little information, which negatively affects the quality of recommenda-
tions [39]. This is usually the case for new users and items. For example, a user who just
started using an e-commerce website has few or no interactions with items. As CF ex-
ploits rating information, it is negatively influenced by this sparsity of user and/or item
ratings. The same can hold in the case of item-item CF for items that few or no users
rated or interacted with. Note that for CB, only the user’s preferences are needed, thus it
does not suffer from cold start items, but only from cold start users, given the availability
of item content features.

A special case of the cold start problem is the pure cold start problem or the first-
time user/item problem. Whereas in the standard case it is assumed that a cold start
user or item has only a few interactions, in this special case the user or item strictly has
no interactions whatsoever.

There are different ways to deal with the (pure) cold start problem. Common practice
is to exploit side information, that is, information about items and users, as explained in
more detail in Section 2.1.2 [57].

2.1.4. EVALUATION METRICS

Evaluation metrics measure the efficacy of recommender systems. They can be divided
into three categories: (i) User studies (ii) Online evaluation (iii) Offline evaluation [53].
User studies and online evaluations use real people to obtain feedback. In a user study,
a user gets a specific task to perform. Online evaluation is concerned with gathering
feedback on the system in a real-world setting without informing the user. As often the
goal of an RS is to increase interactions or purchases, this is the most direct evaluation
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metric. Offline evaluation is done with mathematical metrics. They use pre-obtained
information from users to calculate scores. The assumption is that this data accurately
reflects the current users’ behavior or preferences. In this thesis, we will focus on offline
evaluation metrics, as these are the most obvious to mutually compare different systems,
and do not require interaction with real users. We will consider two classes of metrics,
rating prediction metrics and top-k ranking metrics.

Rating prediction metrics
To measure the accuracy of predicted ratings, the mean absolute error (MAE) is often
used, which is defined as

M AE = 1

n

n∑
i=1

|ru,i − r̂u,i |, (2.3)

where ru,i is the ground truth and r̂u,i the predicted rating of an item i by a user u. Met-
rics related to the MAE are the normalized mean absolute error (NMAE), mean squared
error (MSE), and root mean squared error (RMSE). The mean squared error (MSE) places
greater emphasis on outliers. To compute the RMSE we take the square root of the MSE,

RMSE =
√

1

n

n∑
i=1

(ru,i − r̂u,i )2. (2.4)

Both the MAE and RMSE are represented in the same unit as the prediction variable.
However, the RMSE increases when the variance of the error distribution increases, while
the MAE represents the mean of the error distribution.

Top-K recommendation
The previous metrics consider the recommendation problem as a rating prediction prob-
lem. However, in the real-world, recommendation is in fact a problem of ranking a list
of items. To compute this performance, we must know which items in the test set are
considered relevant or not. To this end, several approaches can be applied. One is to
compute the median rating per user and to consider all items with a rating higher than
or equal to be relevant and lower to be irrelevant to him. Another approach is to con-
sider the top-k highest rated items for each user to be relevant to him. The precision of
the recommended items is measured as

Pr eci si on@K = #relevant items in top-K recommendations

K
, (2.5)

Often we care about the average precision up to K instead of only a single value of K
which is calculated by the average precision (AP) defined as

AP@K = 1

R

K∑
k=1

pr eci si on@k · r el (k), (2.6)

where R is the total number of relevant items for the user, r el (k) = 1 if the item in rank k
is relevant, otherwise r el (k) = 0. The MAP is simply the mean of the APs for all users in
the system.
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Another important aspect of top-k recommendation is to maximize the coverage of
all relevant items, meaning that we should recommend as many different relevant items
as possible. This is measured with recall, which is defined as

Recal l @K = #relevant items in top-K recommendations

#relevant items for the user
. (2.7)

Note that this gives a more fair comparison between a user with only a few relevant items
and a user with many relevant items, as the precision will be lower for the first, but the
recall can be more similar.

Whereas recall treats every item in the recommended list equally, the normalized
discounted cumulative gain (NDCG) considers an item’s position in the list. We start
with the discounted cumulative gain (DCG), defined as

DCG(N ) =
N∑
i

gi

log2(i +1)
. (2.8)

which simply sums the relevance scores (gains) for each of the N recommended items,
and discounts by the rank of the item. This gain can be defined in different ways, for
example, as a binary or ordinal relevance score. The lower the rank of the recommended
item, the lesser its relevance contributes to the cumulative gain. As the DCG increases
monotonically with the length N of the recommendation list, we cannot compare the
DCG for different values of N . To account for this, we can normalize DCG(N) by the ideal
DCG(N), which is the optimal ranking up to N items. So, the formula for the NDCG is

N DCG(N ) = DCG(N )

I DCG(N )
. (2.9)

2.2. GRAPH LEARNING
A graph G = {V ,E } is a mathematical structure with a set of nodes V = {v1, . . . , vN } and a
set of edges E = {(vi , v j )} for all pairs of connected nodes (vi , v j ). There are two types of
edges: directed and undirected. An undirected edge has no direction. A directed edge
(u, v) is directed from its tail u to its head v . An edge can have a weight, which makes
the graph weighted. A graph can be represented by its adjacency matrix A. For an un-
weighted graph, A ∈RN×N , with Ai j ̸= 0 if and only if (i , j ) ∈ E . For an undirected graph,
its adjacency matrix A is symmetric, i.e. Ai j = A j i . The number of edges connected to
a node is called its degree. For a directed graph, two types of degree can be identified,
the in-degree and the out-degree, denoting the number of incoming or outgoing edges,
respectively. The degrees of each node can be collected in a degree matrix. If all nodes
and edges represent the same entity type or relation type, respectively, the graph is ho-
mogeneous; otherwise, it is heterogeneous.

A general algebraic representation of a graph is the graph shift operator (GSO). For
a GSO S of a graph G = (V ,E ) we have Suv ̸= 0 if (u, v) ∈ E , otherwise 0. Looking at this
definition, we can see that the adjacency matrix is an instance of a graph shift operator.
Another instance of GSO is the Laplacian matrix, defined by L = D − A, where D is the
degree matrix and A the adjacency matrix. Since directed graphs have two different types
of degree, one can construct an in-degree Laplacian and an out-degree Laplacian.
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Figure 2.2: Different types of graphs in recommender systems. Red nodes represent users, blue nodes represent
items.

2.2.1. GRAPHS IN RECOMMENDER SYSTEMS
Graphs are a natural way of representing data in recommender systems. We will consider
three different types of graph related to RSs.

1. Rating-based graphs use the rating matrix R to construct a graph. For example, the
user-item matrix B, can be represented as a bipartite graph as shown in Figure 2.2a.
A bipartite graph G = (V ,E ) is defined as a graph whose set of nodes V can be split
into two disjoint sets U and I , which contain only users and items, respectively.
Such a graph is heterogeneous as users and items are different types of entity, and
also the relationship types can differ if edges represent different ratings, for exam-
ple, positive and negative. For a bipartite graph, we have (ui ,u j ) ̸∈ E ,∀ui ,u j ∈ U

and (ii , i j ) ̸∈ E ,∀ii , i j ∈ I . The adjacency matrix of such a user-item bipartite
graph is of the form

A =
[

[0]U×U B
BT [0]I×I

]
. (2.10)

Alternatively, user-user and item-item graphs can also be constructed. Each user
can be represented as a vector of his ratings for the items in the system, u ∈ RI .
Then all mutual similarities can be calculated between all users to obtain a sym-
metric similarity matrix A ∈ RU×U . Also, other information, such as user or item
attributes, can be considered to compute similarities. The similarity matrix can be
considered the adjacency matrix of a user-user graph, which is a fully connected
weighted graph with A(u, v) = si m(u, v),∀u, v ∈ U . Often only an edge directing
from u to v is preserved if u is in the top-k most similar users of v , making it a
k-nearest neighbor graph, as shown in Figure 2.2b. Since the nearest neighbor re-
lation function is asymmetric, the graph is directed.
For an item-item kNN graph, each item is represented by the vector containing
the ratings it received from all users of the system, i ∈ RU . In the same way as for
the user-user graph, a kNN graph as shown in Figure 2.2c can be constructed by
maintaining links to the k most similar items for each item in the graph.

2. Knowledge graphs are another type of graph used in recommender systems [78]. It
encodes different types of factual relationships between different types of nodes. A
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S0x S1x S2x

Figure 2.3: The signal of a node diffuses through its neighborhood by applying the GSO recursively. The
diffusion is shown from the perspective of the green node. In the leftmost figure no diffusion has taken place.
In the middle one, the signal of the green node has been diffused to its direct, or one-hop neighbors. At the
rightmost, its signal has been diffused to the two-hop neighborhood.

knowledge graph can, for example, contain an edge between a node representing
the movie "Interstellar" and the node representing the genre "Adventure". The
label of that edge would be anything similar to "has genre". This type of graph
can be used to perform content-based filtering in combination with collaborative
filtering to alleviate the cold start problem [50, 72].

3. Social graphs encode different social relations, such as friend of or married to, be-
tween nodes that represent people [60]. This data can be exploited for collabora-
tive filtering. The intuition is that users are often influenced by their social network
when it comes to prefering certain items. So, if the social network of a target user
is known and some people in that network rated items, these ratings can be used
to predict the ratings of the target user. Especially if the target user is a cold starter,
this side information can be useful [41].

2.2.2. GRAPH CONVOLUTIONS
The graphs described in Section 2.2.1 expose only a topology. However, each node also
has a value assigned to it. In the user-user graph in Figure 2.2b, each node (user) has a
scalar value equal to the rating of a certain item by that user. This value can be repre-
sented by the function f : V → R. The values at the nodes can be modeled as a signal,
which is called the graph signal x ∈ RI . The graph signal can be diffused to neighboring
nodes via the edges by performing a graph shift operation. This operation is formulated
as

x(1) = Sx. (2.11)

x(1) is the one-shift of the original graph signal x.
The one-shifted signal in Equation (2.11) diffuses the signals of the nodes to their di-
rect, also called one-hop, neighbors. An important property of the GSO is its locality
property. The definition of the one-hop shift at a certain node i is x1

i = S1x and can be

transformed into
∑N

j=1 Si j x j =∑N
j∈Ni

Si j x j . As this one-hop shift operation only uses the
direct neighbors of each node, this operation can be computed locally.

By recursively performing graph shifts, the signal of a node is propagated to nodes a
hop further away at each run. Concretely, to diffuse a node’s signal to its 3-hop neigh-
bors, the shift operation has to be applied recursively for 3 times. This can be generalized
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in the recursive definition of a k-hop shift operation, as

x(k) = Sk x = S(Sk−1x) = Sxk−1. (2.12)

Using the definition of Equation (2.12), we can define convolution for graph signals as a
graph filter written as polynomial of GSO S:

y = H(S)x =
K∑

k=0
hk Sk x. (2.13)

The parameter k defines the filter order, which is the number of hops of the operation,
similar to the kernel size in a convolutional layer of a CNN. H(S) is the Finite Impulse
Response (FIR) graph filter, with h⊤ ∈ RK+1 as its vector of coefficients.

2.2.3. GRAPH NEURAL NETWORKS
Graph Neural Networks (GNNs) leverage the graph topology to learn nonlinear repre-
sentations of the graph and its signal [80]. An important type of GNN is the Graph Con-
volutional Neural Network (GCNN).
GCNNs consist of L layers containing graph convolutional filters followed by a nonlinear
function σ. Each layer l can have a parallel bank of graph filters, producing Fl graph sig-

nals or features {x f
l }Fl

f =1. Subsequently, each filter takes as input Fl1 features, {xg
l−1}Fl−1

g=1 .

If l = 1, the input is the input graph signal x. Each graph filter f ∈ 1, . . . ,Fl in a GCNN

layer l has a vector of coefficients h f g
l = {h f g

0l , . . . ,h f g
K l } for each Fl−1 input feature g .

The coefficients of a single graph filter for all input features can be collected in matrix

H f
l = [h f 0

l , . . . ,h f Fl−1
l ]. From this definition we can derive that a layer in a GCNN has

(K + 1) · (Fl ) · (Fl−1) parameters. With these parameters, we can compute a convolved
feature f using a multilayer GCNN as

z f
l =

Fl−1∑
g=1

K∑
k=0

h f g
kl Sk xg

l−1 =
Fl−1∑
g=1

h f g
l (S)xg

l−1, for f = 1, . . . ,Fl . (2.14)

The convolution filter is used to linearly combine neighboring data points for the current
target node. The filter uses the same shared weights in the linear combination for every
target node. This preserves translation-equivariance, which is a welcome feature. To

acquire the final output feature x f
l , we feed z f

l into an activation function σ,

x f
l =σ(z f

l ) (2.15)

[15]. Figure 2.4 visualizes GCNN processing a graph signal. The output features of the fi-
nal convolutional layer L can, for example, be fed into a fully connected layer to compute
the final output of the GCNN, for example a graph class label.

2.2.4. GRAPH CONVOLUTIONS AND NEURAL NETWORKS IN RECOMMENDER

SYSTEMS
We can structure the user-item rating data as graphs, as described in Section 2.2.1. For
example, a user-user graph connects users to their k most similar users computed from



2.2. GRAPH LEARNING

2

15

Figure 2.4: Visualization of a GCNN processing a graph and corresponding signal. A GCNN block represents a
parallel bank of graph filters. The inside of the block displays the current state of the data. Different node
colors mean different graph signal values. σ denotes a nonlinearity.

their ratings. We can compute the similarities between users as [B]u,v = si m([R]u , [R]v ),
to obtain the similarity matrix B ∈ RU×U from the available rating matrix R and some
similarity measure si m such as Pearson’s correlation. We then define the graph shift
operator of the kNN CF graph for an item i as

[Gi ]uv =
{

Buv , if v ∈Ku,i

0, otherwise
, (2.16)

where Ku,i is the set of k users most similar to u who rated the item i . By this defini-
tion, the graph contains users that rated item i and every user is connected to its k most
similar users in that graph. The signal xi = [R]:,i comprises the ratings of i . By applying
a graph convolution filter on this graph and signal, the ratings of i are passed to similar
users. Each user receives his own ratings and the ratings of his K -hop neighborhood. To
predict a rating r̂ui , we can use a graph filter which computes a weighted combination
of the ratings of i by the k-hop neighborhood of u, via the equation

r̂ui = [x̂i ]u =
K∑

k=0
hk Gk

i xi = [h0 ·xi +h1 ·Gi xi +h2 ·G2
i xi + . . .+hK ·GK

i xi ]u . (2.17)

We collect the shifted signals in Gxi = [xi ,Gi xi ,G2
i xi , . . . ,GK

i xi ], such that x̂i = Gxi h. Let O

be the set of all observed ratings, that is, O = {(u, i )|rui ̸= 0} where rui = [R]ui is the true
rating value item that user u provided to item i . To train the parameters of the graph
filter, we must construct a training set T ⊂ O and define some loss function L . The
problem is then to minimize the loss function by changing the graph filter parameters h,
formulated as

h∗ = argmin
h

= ∑
(u,i )∈T

L ([Gxi h]u ,rui )+α∥h∥2
2, (2.18)

where ∥h∥2
2 is the L2 regularization term tuned by α to prevent the coefficients from

growing too large. Instead of a graph filter, we can also use a GCNN f (x;S;Θ) on the
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user-user graph, with Θ denoting all parameters of the GCNN, h f g
l0 , . . . ,h f g

lK for each layer
l ∈ 1, . . . ,L. The general optimization problem is then formulated as

h∗ = argmin
h

= ∑
(u,i )∈T

L (rui , [ f (xi ;Gi ;Θ)]u)+α∥Θ∥2
2 (2.19)

where ∥Θ∥2
2 is the L2 regularization term tuned by α. If we instantiate L as the MSE, the

loss L is computed as

L = 1

|T |
∑

(u,i )∈T

(rui − [ f (xi ;Gi ;Θ)]u)2 +α∥Θ∥2
2. (2.20)

We can use stochastic gradient descent (SGD) with backpropagation to minimize L with
respect to Θ [2]. As stated before, for recommender systems, not only rating prediction
is important, but also ranking prediction. To optimize for ranking performance, we can
use the BPR loss, focusing on relative user preference instead of absolute ratings. To
train with BPR loss, we must construct a different training set containing triplets T =
{(u, i , j )|rui >u ru j }. Using T , we can define the likelihood function as

P(rui >u ru j |h) =σ(r̂ui − r̂u j ) =σ([x̂i ]u − [x̂ j ]u), (2.21)

where σ is the sigmoid function and [x̂i ]u and [x̂ j ]u can be acquired from a graph filter
or a GCNN as defined above. The training set is then defined as T = {(u, i , j )|(u, i ) ∈
O , (u, j ) ̸∈O }. With this we can formulate the L2 regularized BPR loss as

L =− ∑
(u,i , j )∈T

lnσ([x̂i ]u − [x̂ j ]u)+α∥Θ∥2
2 (2.22)

which we again train using SGD with backpropagation to acquire optimal values for Θ
that maximize the log likelihood.

2.2.5. COLD START IN GRAPH-BASED RECOMMENDATION
As with other techniques, graph-based recommender systems suffer from the cold start
problem. When the ratings are sparse, the similarities in B are based on only a few inter-
actions. If we consider user graphs, the neighborhood of a cold target user is inaccurate
as it is based on a few interactions. Since the predicted rating for a target user is based
on his neighborhood, the accuracy suffers from the sparse ratings.

In the pure cold start scenario, no interactions are available for the target user. Sim-
ilar users cannot be identified as there are no ratings to use for it. Therefore, the con-
nectivity of a pure cold start user is unknown and accordingly, we cannot predict his
rating using his neighborhood. To alleviate this problem, one can turn to other sources
of connectivity, for example, attribute similarity.

2.3. CONCLUSION
In this chapter, we introduced the background information needed for the rest of this
thesis. First, we introduced the basics of recommender systems and collaborative fil-
tering (CF) in particular. We also introduced the cold start problem and pure cold start
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problems which will play a major role in this thesis. The evaluation metrics mentioned
will be used to compare the results in this thesis with existing baselines. Next, we ex-
plained how the underlying data in recommender systems can be structered as a graph.
Finally, we explained graph convolutions and how they are used and optimized in graph
neural networks.





3
LITERATURE REVIEW

This chapter provides an overview of the literature related to this work. It is divided into
three sections, which will descend from more generally to more specifically related pa-
pers. Section 3.1 discusses existing approaches to utilizing GNNs for collaborative filter-
ing, including their general architecture. Subsequently, Section 3.2 provides an overview
of how current works address the cold start problem with Graph Neural Networks. The
final Section 3.3 covers multiple researches that apply GNNs to learn to perform tasks
that involve dynamic graphs.
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3.1. GRAPH NEURAL NETWORKS FOR COLLABORATIVE FILTER-
ING

We will discuss here collaborative filtering approaches implemented with GCNNs and
Graph Attention Networks (GATS), respectively, as these are the most prevalent GNN
architectures for this use.

GCNNs are arguably the most common type of GNN used for collaborative filter-
ing. Collaborative filtering using deep learning on graphs was first introduced in [47],
in which the authors proposed combining a GCN with an RNN to solve the matrix com-
pletion problem. Their approach builds user-user and item-item kNN graphs and feeds
them into a GCN to extract features. These graphs can be constructed directly from the
original rating matrix, but also from content features. These features are subsequently
fed into an RNN architecture. This outputs a small change to the rating matrix as side
information, and the rating matrix is updated accordingly, so the objective function is
a combination of GCN and MF. Instead, the GC-MC model proposed by Berg et al. [5]
works directly on the bipartite rating matrix. It uses a single GCN layer, thus only consid-
ering the one-hop neighborhood of nodes. GC-MC is uncapable of performing inductive
tasks as it uses one-hot node representations, and therefore new nodes cannot be repre-
sented. This architecture supports the integration of side information, such as item con-
tent features. STAR-GCN overcomes the scalability issue of GC-MC by directly learning
user and item embeddings [88], enabling users unrepresented in the training set to be
represented during testing. To learn these embeddings, it exploits content information
and the graph’s topological information. By masking parts of the ground truth user and
item embeddings, STAR-GCN learns to generalize to unseen nodes. PinSage focuses on
scaling GCNs to industrial settings [85]. Instead of using the full graph and feature matri-
ces as in previous works, PinSage samples the neighborhood to perform more efficient
localized computations. SpectralCF performs collaborative filtering in the frequency do-
main [89]. It stacks spectral convolutional layers and applies them to the bipartite rating
graph to learn the collaborative signal. In contract with PinSage, SpectralCF has high
computational complexity, as it computes the eigen-decomposition of the graph.

An important work that only uses a GCNN for collaborative filtering is NGCF [67].
It propagates the node embeddings to the K -hop neighborhood in the bipartite rating
graph. It concatenates the resulting K +1 node embeddings and uses the dot product to
predict ratings. Chen et al. argue that the nonlinear feature transformation hurts the col-
laborative filtering performance [11]. Therefore, they propose LR-GCCF which is a linear
model. Different from NGCF, it discards the feature nonlinear transformation, as the
authors show that it benefits the recommendations’ performance. The authors argue,
inspired by ResNets [23], that using the final embeddings alone will lead to worse per-
formance due to the oversmoothing problem. LR-GCCF uses residual rating prediction,
which means that the ratings are computed using the embeddings at each layer. The
authors prove that this is equivalent to concatenating the embeddings at each layer and
using this concatenation to predict the ratings. In fact, this concatenation of K +1 em-
beddings in each layer is exactly the same as done by NGCF [67]. He et al. take it one step
further by showing that not only the nonlinearity in a GCNN is redundant or even harm-
ful for the performance of CF, but also the entire feature transformation matrix is [24].
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They adopt the NGCF model and trim it down to the essential component by conduct-
ing an ablation study, and call their resulting model LightGCN. LightGCN consists solely
of the neighborhood aggregation step, thus eliminating the feature transformation and
nonlinearity. They argue and empirically prove that, as collaborative filtering only has
the ID feature of no semantic meaning, the feature transformation and subsequent non-
linear function of the embeddings harm the prediction performance, as it complicates
training. Also, instead of concatenating, they sum K +1 embeddings, as the authors ar-
gue that the principle of GCNNs is to improve embeddings by propagation.

As many rating datasets consist of implicit feedback, ratings alone do not reflect
the different types of interaction, such as clicking, buying, or sharing an item. Those
different user intents provide useful information for a recommender systems, and im-
prove its explainability. To this end, people introduced GNN architectures that are capa-
ble of modeling different types of intent. Multi-Behavior Graph Convolutional Network
(MBGCN) constructs a single rating graph using multi-behavior data [33]. For each type
of intent (behavior), there is a corresponding edge type connecting users to items. By
applying a GCNN to this graph, we obtain the probability that a user will interact with
an item with respect to a specific target intent. Instead of using multi-behavior data
as input, which is not always available, Wang et al. propose Disentangled Graph Col-
laborative Filtering (DGCF) [68]. DGCF constructs K intent-aware graphs, one for each
latent intent, and learns intent-specific user and item embeddings for each of them. To
enforce independence between the intents to avoid redundancy, DGCF uses a distance
correlation between the embeddings. The authors show that LightGCN is a specializa-
tion of DGCF with a single intent. Another work that uses more than one graph is [30].
The authors argue that previous graph-based recommender systems focus exclusively
on achieving high accuracy, and diversity is not addressed while it is important. There-
fore, they construct nearest neighbor and furthest neighbor graphs to achieve high ac-
curacy and diversity, respectively. By jointly optimizing GCNNs over these graphs, they
achieve high diversity gains traded for only small accuracy decreases.

The aforementioned works all approach the recommendation problem as a super-
vised learning problem; they use the observed ratings as ground truth signal. Inspired by
recent successes of self-supervised learning in other fields such as computer vision [31,
36, 42], Wu et al. propose a self-supervised graph learning (SGL) framework for recom-
mendation [75]. Using edge dropout, node dropout, and random walk, they stochasti-
cally generate different subgraphs, which they call views, for the same node. By using a
contrastive loss function, they encourage the similarity of the embeddings of the posi-
tive pairs in the two different views to be high and the similarity of the negative pairs to
be low. The contrastive loss is combined with a standard BPR loss, and the two tasks can
be optimized jointly. SGL is model-agnostic, and the authors implement it on LightGCN.
It shows significant improvements, especially for the long-tail problem, referring to the
degenerating performance on low-degree nodes, also known as cold-start nodes.

Instead of using only a GCNN, many works propose using a GAT in combination with
a GCNN to discriminate between neighbors. The work in [70] and [71] both propose GAT
models to disentangle the rating signal into latent representations of user motivations,
similar to DGCF [68]. However, [70] and [71] use attention on content features to dis-
entangle the rating signal, while DGCF only uses the rating signal and convolution op-
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erations. The authors argue that people have different types of motivation to purchase
items, such as its appearance and price. Instead of computing attention scores using
neighboring node features, they can also be computed from edge features [48, 82]. Do-
ing so increases the expressive power of a GAT as it can distinguish connections to nodes
with identical node features. Edge features can be derived from data, or aggregated from
the features of nodes it connects.

3.2. COLD START
Similarly to other types of RS, GNN-based RSs suffer from the cold start problem. A
more strict definition of it is the pure cold start problem, which means that a user or
item has no associated ratings whatsoever. There are several works on finding means
to alleviate the general and pure cold start problem for GNN-based RSs. There are two
main principles to alleviate the cold start problem. One is using side information and
the other is using the graph topology.

The use of external information, such as social or knowledge graphs, can compen-
sate for the sparsity of the rating data. Combining interaction data with side information
enables the generation of recommendations for users or items with sparse ratings com-
pared to exclusively using interaction data.

A common approach to using side information for better cold start recommenda-
tions is using attribute data. Users, for example, can have attributes such as age, gender,
and country, items can have attributes such as product category, price and color. HERS
is an example of a GNN architecture that uses social relationships of users and attribute
attributes of items to make recommendations [26]. It builds a user-user graph based
on social relations and a kNN item-item graph based on attribute similarities. By ag-
gregating neighbors, it exploits the influence of neighboring items or users to generate
recommendations for cold start users and items. Another work is [50] in which AGNN
is proposed which uses an extended variational auto-encoder (eVAE) to approximate
preferences from user and item attributes. This is a VAE extended by a GNN architec-
ture that learns a mapping from user and item attributes to their corresponding ratings.
Therefore, to generate recommendations, only a user’s or item’s attributes are required,
making it applicable to the pure cold start scenario.

Another source of side information is a knowledge graph [51, 56, 63–66, 72]. The bi-
partite rating graph can be coupled with a knowledge graph such that users and/or items
are connected by edges of various types with entities in the knowledge graph. Note that
this is different from using attribute data, as a knowledge graph encodes relationships
between entities, whereas node attributes are not connected. For example, an item in the
rating graph can be connected to its corresponding movie entity in the knowledge graph,
which in turn is connected to genre entity “action" with an edge or relation “genre”.
RippleNet-agg aggregates neighboring node representations in a knowledge graph and
combines it with their own representation to capture topological information. The final
representation of an entity, influenced by its k-hop neighborhood, is fed into a function
together with a user representation to compute a rating. When propagating representa-
tions through the knowledge graph, RippleNet-agg neglects the difference in importance
between relation types for a user. Wang et al. address this issue by learning personalized
user-relation scores, which in fact is the same as employing an attention mechanism to
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the relations (edges) in the aggregation step [65]. Whereas Ripplenet and KGCN use only
the knowledge graph, KGAT combines the rating and knowledge graphs into a collabora-
tive knowledge graph (CKG) [66]. Similarly to KGCN, a knowledge-aware attention func-
tion is applied before aggregating neighbors. Although KGCN uses a knowledge graph,
it fails to generalize for new users as the CKG needs to be reconstructed and the model
retrained for every new user because entities and users are of the same node type. To
overcome this, Wang et al. propose CKAN which performs collaborative propagation for
the rating relations, and knowledge graph propagation separately and combines them
afterwards. Previously discussed works [68, 70, 71] argued that different relations be-
tween users are represented by the same edges. This is also incorporated by [69] in their
model CKIN, which explicitly models users’ intents when rating an item [69]. These in-
tents are learned by applying an attention mechanism to the relation embeddings. This
improves the recommendation performance, and it also improves the explainability of
a recommendation, as it is based on predicted intents. CKIN uses different aggregation
schemes for the intent graph and the knowledge graph to exploit behavioral patterns
and item-relatedness, respectively. Note that knowledge graph-based recommendation
not only increases prediction accuracy and diversity, but also enhances explainability, as
factual information is used to generate recommendations.

Instead of augmenting the user-item graph with information on items like knowl-
edge graphs, also information about users’ social network can be exploited. GraphRec is
a GNN model that uses a user-item graph and a user-user social graph, and learns user
embeddings separately from the rating and social graphs [17]. By applying attention, the
differences in influence or relevance of users or items for a certain target user are mod-
eled. However, GraphRec only considers the first-order neighbors, leaving the higher-
order influences not utilized. Instead, DiffNet models the high-order social influence by
recursively ropagating or diffusing user embeddings through the social graph [76]. The
improved DiffNet++ adds an interest diffusion layer that captures the collaborative filter-
ing signal [77]. It is very similar to GraphRec but is capable of modeling the higher-order
neighborhood.

In many real-world scenarios, however, also side information is sparse or entirely
unavailable. Therefore, there is a need for techniques that alleviate the pure cold start
problem without requiring side information.

They previously discussed STAR-GCN is a model that handles cold-start nodes by
setting some node embeddings to zero entirely to simulate cold-start nodes during train-
ing [88]. Subsequently, the model is trained to reconstruct their true embeddings based
on the graph topology. Therefore, it does not rely on content information for cold-start
users. A similar work is [21] which proposes a pretraining framework to alleviate the
cold-start problem using only the graph topology. It also deals with the problem of a
low-quality embedding of a cold start node that is propagated to a normal node, harm-
ing the embedding of the latter. Another method of applying pretraining focused on cold
start recommendation is DropoutNet [62]. Although it performs standard CF instead of
graph-based CF, it is still worth examining. Similarly to an auto-encoder, it learns to re-
construct the input rating matrix using a transformed rating matrix and user and item
features. It applies dropout to the rating matrix, meaning that some rows or columns
(user or item interactions) are set to zero. By doing that, the model learns to recon-
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Name Year Pure cold start Uses side information

GC-MC [5] 2017 □ ✓□
SpectralCF [89] 2018 □ □
DiffNet [76] 2019 □ ✓□
GraphRec [17] 2019 □ ✓□
HERS [26] 2019 □ ✓□
KGAT [66] 2019 □ □
KGCN [65] 2019 □ ✓□
KGNN-LS [64] 2019 □ ✓□
KNI [51] 2019 ✓□ ✓□
RippleNet [63] 2019 □ ✓□
STAR-GCN [88] 2019 □ ✓□
AGNN [50] 2020 ✓□ ✓□
DiffNet++ [77] 2020 □ ✓□
MBGCN [33] 2020 □ ✓□
MetaHIN [44] 2020 ✓□ ✓□
MetaCF [73] 2020 □ □
HAKG [56] 2021 □ ✓□
KGIN [69] 2021 □ ✓□
Pre-Train [21] 2021 □ □

Table 3.1: GNN-based recommender systems that focus on alleviating the cold start problem.

struct the ratings from the features. For a cold-start user, the model is able to exploit
its attributes to generate recommendations. MetaCF is a metalearning framework that
focuses on fast adaptation to the few interactions of a cold start user or an item [73].
It can be applied to any differentiable CF method. As MetaCF performs meta-learning,
it consists of the actual CF model and the meta-model. The CF model is optimized as
normal, and the meta-model learns parameters that enable it to quickly adapt to only
a few interactions. The meta-model is then fine-tuned by retraining with the few in-
teractions of a cold start user, resulting in a user-specific model. Another pretraining
approach is suggested in [21], which consists of three components. The basic pretrain-
ing component only considers the first-order neighbors to predict an embedding for a
target node, without considering its own embedding. By doing so, the model learns to
quickly adapt to cold start users and items. The authors argue that despite this pretrain-
ing deals with cold start target nodes, cold start neighbors affect target nodes in a delayed
manner. Therefore, prior to the basic pretraining, the authors propose to use a meta-
aggregator. This meta-aggregator applies attention to the neighbors of each neighbor
of a target u, and uses those attention scores to aggregate their embeddings. This im-
proves the embedding of the few neighbors of the cold start node u as they differentiate
between their neighbors. The final component they propose is the adaptive neighbor
sampler, which learns to select the most important neighbors, apart from the first-order
neighbors which are all selected.

We organize the above-mentioned literature in Table 3.1. All of them attempt to al-
leviate the cold-start problem either by incorporating side information or by exploiting
the few interactions of a cold-start user or item. These approaches require the availabil-
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ity of content data or some interactions, respectively. Only the approach in [12] does not
use side information or ratings of cold start users. However, in a pure cold start scenario,
none of these approaches is adequate.

3.3. EXPANDING GRAPH LEARNING
In graph-based collaborative filtering, the pure cold start problem can be framed as the
problem of not knowing the attachment of an incoming node. By learning how an in-
coming node attaches to an existing graph and applying a GNN on the expanded graph,
we can predict ratings for pure cold starters.

Dynamic graphs have been researched in various domains, such as computer vision,
sensor data analysis, in addition to recommender systems [79, 84].
The work in [32] addresses the case of a graph with incoming nodes with unknown graph
signals, also called labels, added to the graph every timestep. Their model learns to pre-
dict the label of a new node and receives the true label after some delay. It updates the
learned model using this true label. The authors of [54] propose a Temporal Graph Net-
work (TGN) framework which is capable of predicting how a graph evolves by learning
from node labels. EvolveGCN employs a Recurrent Neural Network (RNN) in combina-
tion with a GCN in order to capture the dynamism of the graph sequence. Whereas other
methods apply an RNN to the node embeddings returned by a GCN [46, 49, 55] to learn
a node’s temporal evolution, EvolveGCN applies it to the parameters of the GCN, and
the GCN is used to predict the node embeddings in a future timestep. Instead of using
deterministic attachment, Das and Isufi propose using stochastic attachment that can
be used for cold start recommendation [12]. They use a fixed graph filter and learn the
parameters of the stochastic model by minimizing the MSE of the ratings.

Contrary to the above-mentioned works that use a GCNN as a GNN, [81] uses a spe-
cial form of GAT [61], coined the Temporal Graph Attention layer (TGAT). This can be
employed for dynamic graphs. The authors assume that the meaningfulness of neigh-
boring nodes to a target node is negatively correlated with the moment of connection.
TGAT uses some time encoding which is concatenated to the node embedding, and the
total is fed into a self-attention mechanism that learns to capture the temporal aspect of
the graph.

3.4. CONCLUSION
In this chapter we covered the relevant literature related to this thesis. In Section 3.1, we
discussed papers proposing to use GNN architectures to perform collaborative filtering.
We covered the discovery that for recommender systems, the (nonlinear) feature trans-
formation harms the performance. Section 3.2 contains papers that perform collabora-
tive filtering using GNNs and focus on the cold start problem. We showed that none of
them can do pure cold start recommendation without the use of side information. The
proposed methods either turn to side information such as knowledge or social graphs, or
they require a few ratings, and are therefore unapplicable to the pure cold start scenario.
Finally in Section 3.3 we covered literature on expanding graph learning. Although these
methods are not directly applied to collaborative filtering or recommender systems, they
are related to our proposed method. Although they can learn how a graph grows, they
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use node information and do not use stochastic attachment, except for [12]. However,
their method optimizes the stochastic model while keeping the graph filter fixed. This
is different from our proposals as we use a heuristic stochastic attachment model and
train a graph convolution model on the expanded graphs, and we jointly optimize the
stochastic model with the graph convolution model. This will adapt the graph convolu-
tion model to the task of recommendation for stochastically attached nodes.



4
STOCHASTIC ATTACHMENT FOR

PURE COLD START

RECOMMENDATION

This chapter will formulate the problem and provide the contributions of this thesis.
The core contribution is to train a graph convolution model on stochastically expanded
graphs to do pure cold start recommendation. By doing so, a node with no available in-
formation can be attached to an existing graph. The graph topology and available ratings
are then exploited by a graph convolution model to predict ratings for the pure cold start
node. In addition to heuristic-based stochastic models, we also propose to jointly train a
stochastic model and a graph convolution model to optimize recommendation perfor-
mance. First, in Section 4.1 we describe the stochastic attachment of an incoming node
in a general context. Next, in Section 4.2 we explain how we construct nearest-neighbor
graphs for collaborative filtering. After that, in Section 4.3 we show how a graph con-
volution model interpolates the graph signal at a stochastically attached node. Then, in
Section 4.4, we state the problems of optimizing the graph convolution coefficients for
rating and ranking prediction of pure cold start users. Subsequently, in Section 4.5, we
state the problem of jointly optimizing the graph convolution coefficients and the pa-
rameters of the stochastic attachment model for these tasks. The different non-graph
and graph-based methods that we compare are explained in detail in Section 4.6. Then,
Section 4.7 explains how we optimize the parameters of these methods. We conclude the
chapter in Section 4.8 with a conclusion.
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4.1. STOCHASTIC ATTACHMENT
We consider a directed graph G = (V ,E ) of N nodes in set V = {v1, . . . , vN } and E edges in
set E ⊆ V ×V . The adjacency matrix A is a description of the graph G for which Ai , j > 0
if (i , j ) ∈ E . For an incoming node v+ with unknown connectivity, we can still attach it
using stochastic attachment, sampled from a stochastic model. This forms the expanded
graph G+ = (V+,E+) with V+ = V ∪ v+ and E+ = E ∪ (vi , v+) for the newly formed edges.
The attachment to the graph of node v+ is characterized by the vector a+ ∈ RN . The
values of this attachment vector are defined as [a+]i = wi if the node vi attaches to v+
with edge weight wi , and 0 otherwise. The adjacency matrix of this expanded graph is

A+ =
[

A a+
0T 0

]
, (4.1)

where 0 is a vector containing N zeros. Note that since this adjacency matrix is asymmet-
ric, the graph is directed. We want the existing nodes to connect to the incoming node,
but not vice versa. Therefore, the last column contains the connectivity of all nodes
vi ∈ V with v+, and the last row, which contains the edge weights of edges going out of
v+, is set to all zeros.

We consider a node vi ∈ V to connect to v+ with probability pi , forming an edge of
weight wi . Figure 4.1 visualizes this stochastic attachment of v+. Moreover, we assume
that all edges are formed independently. Therefore, the attachment vector is a collection
of N weighted Bernoulli random variables. Each entry is now defined as

[a+]i =
{

wi with probability pi

0 with probability 1−pi
, (4.2)

for i = 1. . . N . We can split each entry [a+]i into a standard Bernoulli distribution, that is,
with outcomes wi and 0 and probability pi . We collect all probabilities pi and weights
wi in the vectors p and w, respectively. p and w characterize the stochastic attachment
of any node incoming to G . As a+ is a vector that contains random variables, it has an
expectation, which is equal to E[a+] = p ◦w, with ◦ being the Hadamard product. The
expected topology of G+ is described by the expected adjacency matrix A+,

E[A+] =
[

A p◦w
0T 0

]
. (4.3)

In practice, we sample the Bernoulli distribution with the parameter pi for each i =
1. . . N to obtain the binary vector S (p). We then obtain a realization of the attachment
vector as a+ =S (p)◦w.

Let x = [x1, . . . , xN ]⊤ be the graph signal where xi ∈ x maps the node vi in the existing
graph to a value. Graph signal processing techniques process the signal by incorporating
its coupling with the topology. We use Graph Filters and Graph Convolutional Neural
Networks as tools to perform this processing.

4.2. COLLABORATIVE GRAPH FILTERING
In order to perform Nearest-Neighbor (NN) collaborative filtering, we need graphs that
capture the collaborative signal. To do so, we make some modifications to the graph
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Figure 4.1: An incoming node v+ attaches to each of the existing nodes vi for i ∈ 1. . .4 with probability pi . If
an edge (vi , vp ) is formed, its corresponding weight is wi .

construction approaches in [28, 30]. The starting point is the user-item or rating matrix,
which we will refer to as X ∈ RU×I . Following common convention, the missing entries
(u, i ) ∈ X will be set to 0. We select a subset V of N users which we call the existing
users. We compute similarities between these existing users using their ratings vectors.
These similarities are then collected in the user similarity matrix B ∈ RU×U which is a
symmetric matrix with 1s on the main diagonal. The matrix B can be considered the
adjacency matrix of a fully connected undirected graph, where [B]uv denotes the simi-
larity between the user u and v . To build an existing graph with an adjacency matrix Bi

specific for an item i , we remove any edge from a user for which it holds that [X]ui = 0,
in other words, we remove edges from users who did not rate the item i . The rationale
behind this is that users who did not rate the item should not affect the rating predic-
tions of others. The corresponding graph signal is xi = [[X]1i , . . . , [X]Ni ], which contains
the ratings of item i by all existing users. We consider the remaining users as incoming
users whose attachment patterns are unknown. We use stochastic attachment to attach
them to the existing graph and obtain the stochastically expanded graph G i+ = (V+,E+)
with adjacency matrix Bi+.

Specifically, we use heuristic stochastic attachment and learned stochastic attach-
ment.

4.3. GRAPH SIGNAL INTERPOLATION
Graph filters and Graph Convolutional Neural Networks are instruments to process a
graph signal while accounting for its coupling with the graph topology [18]. For clarity,
we generalize graph processing models that use graph convolutions (such as graph filters
and GCNNs) as a graph convolution model, which is a mapping of the form Φ(x;S;H )
characterized by a graph signal x, a graph shift operator S, and a set of coefficients H ,
which we abbreviate to Φ(·). We can use a graph convolution model to interpolate the
graph at the incoming node v+ for which the graph signal xi+ is unknown. To this end, we
define the graph signal of the stochastically expanded graph G i+ as xi+ = [xi⊤,0]⊤. Next,
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we apply Φ(·) to obtain the graph convolution output yi+. This operation is formulated
as

yi
+ =Φ(xi

+,Bi
+,H ). (4.4)

If we instantiateΦ as a graph filter, we can particularize the graph convolution output
in eq. (4.4) as

yi
+ = H(Bi

+)xi
+ =

K∑
k=1

hk

[
Bi
+
]k

xi
+, (4.5)

where H(Bi+) is the filtering matrix
∑K

k=1 hk
[
Bi+

]k
with h = [h1, . . . ,hL]⊤ being the K filter

coefficients and K the filter order. Note that the definition of graph filters in eq. (2.13)
starts the summation at k = 0, to incorporate the unshifted graph signal into the pro-
cessed output. However, since the graph signal at node v+ is equal to 0, it does not con-
tribute to the interpolated signal and therefore k = 0 is omitted.

If, instead, we instantiate Φ as a convolutional neural network of L layers, the output
of each layer is defined as

x f
l =σ

[
Fl−1∑
g=1

K∑
k=1

h f g
kl

[
Bi
+
]k

xg
l−1

]
=

[
Fl−1∑
g=1

h f g
l (Bi

+)xg
l−1

]
, for f = 1, . . . ,FL . (4.6)

In the final GCNN layer L we end up with FL features x1
L , . . .xFL

L . To obtain a scalar output

for each node n, we feed the different features [x1
Ln , . . . , xFL

Ln] into a fully connected layer,
which is a matrix of size FL × 1. The output of this fully connected layer for all nodes
combined is the output graph signal yi+ of the GCNN. The predicted rating is then x̂i+ =
[yi+]v+ .

4.4. TRAINING GRAPH CONVOLUTION MODEL
The performance of a graph convolution model for recommendation for the incoming
node depends on the parameters H . In this work, we consider two tasks: rating and
ranking. For rating prediction, we require a training set T r ate

tr = {(v+, x∗+)} containing tu-
ples of the id of an incoming node and his corresponding rating. For ranking, we require
a training set T r ank

tr = {(v+, i , j )} which contains triplets of the id of an incoming user, an
item i , and an item j for which it holds that i >v+ j , meaning v+ prefers item i over j . We
use empirical risk minimization to solve for a set of optimal parameters which minimize
the training loss. To do so, we define a loss function L that is appropriate for the task so
that we can optimize our coefficients accordingly.

4.4.1. LEARNING TO RATE
The task of learning to rate is concerned with predicting unknown ratings. We use the
MSE as a loss function to penalize the difference between the actual and predicted rat-
ings. Formally, we define the MSE loss function as

L = MSE = ([Φ(xi
+,Bi

+,H )]v+ −x∗
+)2, (4.7)

with x∗+ being the true rating of v+. Note that Bi+ is a stochastic adjacency matrix. There-
fore, we must consider the expected MSE, which is defined as

L = E[MSE] = ([Φ(xi
+,E[Bi

+],H )]v+ −x∗
+)2. (4.8)
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To learn to predict the unknown ratings of the stochastically attached nodes, we must
minimize the MSE with respect to H . Formally, this optimization problem is defined as

minimize
H

∑
(v+,x∗+)∈T r ate

tr

([Φ(xi
+,E[Bi

+],H )]v+ −x∗
+)2 +µc∥H ∥2

2, (4.9)

where µc (> 0) is a control variable for L2-norm regularization of the convolution coeffi-
cients to prevent overfitting.

4.4.2. LEARNING TO RANK
Instead of learning to predict unknown ratings, the ranking task addresses the problem
of predicting preferences between items by a user. While the shapes of inputs and out-
puts of the graph convolution model are the same, their interpretations differ following
from the difference in task. For the ranking task, we use Bayesian Personalized Ranking
(BPR) loss as a loss function [52]. BPR loss uses the preference of an item i over an item j
by a user j , in short, i >u j . It maximizes the likelihood of the model parameters Θ based
on these observed pairwise preferences. Formally, it maximizes

P(Θ|i >u j ) ∝P(i >u j |Θ)P(Θ), (4.10)

where P(i >u j |Θ) is the likelihood function and P(Θ) the prior. The likelihood function
can be rewritten as

P(i >u j |Θ) =σ(r̂ui − r̂u j )

with σ= 1

1+e−x .
(4.11)

We take the natural logarithm of the logistic sigmoid σ to arrive at the final loss function
defined as

L =− ∑
(v+,i , j )∈T r ank

tr

lnσ([Φ(xi
+,E[Bi

+],H )]v+ − [Φ(x j
+,E[B j

+],H )]v+ ). (4.12)

Note that we negate the sum because we need a loss function, that is a function that
is low for accurate predictions and vice versa. In the context of ranking, an accurate
prediction maximizes the difference in predicted ratings between an item i preferred
over an item j . The ranking optimization problem can be formulated accordingly as

minimize
H

− ∑
(v+,i , j )∈T r ank

tr

lnσ([Φ(xi
+,E[Bi

+],H )]v+ − [Φ(x j
+,E[B j

+],H )]v+ )+µc∥H ∥2
2.

(4.13)
Note that we use the observed ratings to deduce item preferences, but we do not use the
actual values in this optimization problem.

4.5. LEARNING STOCHASTIC ATTACHMENT
Whereas the previously stated optimization problems assume that we have fixed values
for p and w, we can also optimize the stochastic attachment model to minimize the task-
specific loss. To this end, we consider p and w in Equation (4.3) to be vectors containing
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trainable probabilities and edge weights, respectively. Consequently, we train the graph
convolution coefficients and the stochastic model so that the model learns which exist-
ing nodes are important for the specific task. Important existing nodes will have a high
probability of forming an edge with learned weight to the incoming node.

Instead of minimizing task-specific losses in Equation (4.9) and Equation (4.13) by
only solving for the graph convolution coefficients H , we jointly optimize those coeffi-
cients along with the parameters in p and w. For rating, this is formalized as the joint
optimization problem

minimize
H ,p,w

∑
(v+,xi+)∈T

([Φ(xi
+,E[Bi

+],H )]v+ −xi
+)2 +µc∥H ∥2

2 −µp∥p◦w∥2
2

subject to p ∈ [0,1]N ,w ∈ [0,1]N ,

(4.14)

where µp is the control variable for the L2 norm regularization of the attachment pattern
coefficients to reduce its sparsity. Note that p and w are embedded in E[Bi+]. For the
ranking task, we state the joint optimization problem analogously as

minimize
H ,p,w

− ∑
(v+,i , j )∈T

lnσ([Φ(xi
+,E[Bi

+],H )]v+ − [Φ(x j
+,E[B j

+],H )]v+ )

+µc∥H ∥2
2 −µp∥p◦w∥2

2

subject to p ∈ [0,1]N ,w ∈ [0,1]N .

(4.15)

We optimize both of these problems too using a gradient descent-based approach.

4.6. BASELINES
In this work, we compare several non-graph and graph-based methods that perform
pure cold start recommendation. In this section we present all baselines that we use
in this comparison. We will first present our four graph-based methods, and after that
the two non-graph baselines.

1. TRUE CONNECTIVITY
Using the true connectivity derived from rating similarity, we attach a node analogously
to the construction of the existing graph. Specifically, we calculate similarities between
all existing users in V and the incoming user v+ using the observed ratings. Edges are
formed between the top-k users that are most similar to v+, with an edge weight equal
to the corresponding similarity. Although this baseline does not represent a pure cold
start scenario, since it uses rating data from v+, it is useful to get an idea of how far our
method is from this non-cold start scenario.

2. FIXED GRAPH CONVOLUTION MODEL, HEURISTIC-BASED ATTACHMENT
A naive approach to ameliorating the pure cold start problem using graphs is to attach
v+ using some stochastic attachment model based on heuristics. This model defines the
probability that an existing node connects to v+ using heuristics. Then we apply a graph
convolution model that is trained on existing graphs on the expanded graph to interpo-
late the graph signal at v+. In this work, we use two important random graph models to
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infer attachment, the Erdős-Rényi(ER) and Barabási-Albert(BA) models [4, 16]. The ER
model randomly forms an edge between an existing node and v+ following a uniform
distribution that is the same for all nodes. We set the probability to be k divided by the
number of existing nodes N , so that, in expectation, k edges are formed. Using the ER
model, the probabilities pi ∈ p are set to

pi = k

N
, (4.16)

and the weights wi ∈ w to µi , which is the mean weight of the outgoing edges for each
node.

The BA model randomly forms an edge between an existing node and v+ following a
uniform distribution that differs per node. The probability that a node vi ∈ V connects
to v+ is proportional to the out-degree di of vi , also called preferential attachment. For-
mally, the probabilities pi ∈ w are set to

pi = di∑
j=1...Ve d j

, (4.17)

and the weights wi ∈ w to µi .

3. LEARNABLE GRAPH CONVOLUTION MODEL, HEURISTIC-BASED ATTACH-
MENT
Instead of using a pretrained graph convolution model, we train it on graphs that are
stochastically expanded using one of the heuristic models in Section 4.6. When doing
so, training and testing situations are analogous, which is expected to result in better
performance.

4. LEARNABLE GRAPH CONVOLUTION MODEL, LEARNABLE STOCHASTIC AT-
TACHMENT
As presented in Section 4.1, we can also use a learnable stochastic attachment model
that we optimize jointly with the graph convolution model. By doing so, we try to fit the
stochastic model to the recommendation tasks.

5. MEAN RATING
A very basic approach is to use the mean rating of an item as the predicted rating for a
pure cold start user. For items with a considerate number of ratings, the mean rating
prediction is much more stable than for items with only a few ratings.

6. SVD++
SVD++ is an important algorithm in the world of recommendation systems. It uses a
combination of explicit and implicit ratings [37]. Although the name resembles Singular
Value Decomposition (SVD), its mechanics are quite different. It predicts an unknown
rating of user u to item i using the formula

r̂ui =µ+bi +bu +q⊤
i

(
pu +|Ru |−

1
2

∑
j∈Ru

y j

)
, (4.18)
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where µ is the mean of all observed ratings, bi and bu are the means of all observed rat-
ings of i and u, and qi ,pi ,y j are latent factor vectors of dimension f . Ru denotes the
set items rated by user u. Note the analogy with our graph-based methods, as it uses
the representations of neighboring items of i to predict its rating. SVD++ does, however,
not support pure cold start user prediction by default. Therefore, we modify the imple-
mentation in [29] by selecting the top S users Us with the most observed ratings and
aggregate them into one surrogate user us . Specifically, we aggregate over the selected
users to get

bus =
1

|Us |
∑

u∈Us

bu , (4.19)

and

pus =
1

|Us |
∑

u∈Us

pu . (4.20)

Furthermore, we define
Rus =

∩
u∈Us

Ru , (4.21)

meaning that the set of items rated by our surrogate user is the intersection of all sets of
items rated by the users in Us .

4.7. OPTIMIZING WITH GRADIENT DESCENT
To solve the optimization problems in eq. (4.9), eq. (4.13), eq. (4.14) and eq. (4.15), we
use a gradient descent-based approach. This approach computes the derivatives with
respect to the model’s learnable parameters using backpropagation [2]. These param-
eters are updated proportional to these derivatives. For the SVD++ baseline, these pa-
rameters are b,u,Q,P,Y. For the graph-based approaches, in the cases of a learnable
stochastic attachment model, these parameters include p and w. Otherwise, only the
graph convolution model parameters are optimized.

4.8. CONCLUSION
This chapter introduced the method proposed in this thesis. To summarize, we pro-
pose to compare several graph-based and non-graph baselines to the proposed stochas-
tic attachment models. We proposed two ways of using stochastic attachment for pure
cold start recommendation. The first was to train a graph convolution model on graphs
that are expanded using a heuristic attachment model, specifically Barabási-Albert and
Erdős-Rényi. The second was to jointly train the graph convolution model and a stochas-
tic attachment model. We identified the rating and ranking tasks to train. For both of
these tasks, we will evaluate and compare the results of the methods in Section 4.6, which
will provide us the answers to the research questions.



5
NUMERICAL RESULTS

This chapter will describe the experiments and results in detail. We evaluate and com-
pare the results among different attachment methods and baselines for different datasets.
In Section 5.1 we describe the datasets used for the experiments. Section 5.2 covers the
different types of graph convolution model we use in our experiments. In Section 5.3,
we describe the general setup of the experiments. Section 5.4 present the results of the
experiments. In Section 5.5 we perform sensitivity analysis. We conclude the chapter in
Section 5.6 by discussing the observations.
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5.1. DATASETS
We conduct the experiments on three well-known datasets: Jester [19], MovieLens-1M
[22], and Yelp1. These datasets have different levels of size and sparsity, which will pro-
vide us with more insight into the performance of the proposed method. Table 5.1 sum-
marizes the statistics for each dataset.

Dataset Jester MovieLens-1M Yelp

No. Users 59132 6040 1311199
No. Items 140 3706 149609
No. Ratings 1761439 1000209 3429186
Sparsity 80.41% 95.31% 99.99%
Rating scale [-10, 10] [1,5] [1,5]

Table 5.1: Statistics from the Jester, MovieLens-1M, and Yelp datasets. Sparsity is defined as the proportion of
unobserved ratings in the dataset. Ratings are integers.

5.2. GRAPH CONVOLUTION MODELS
The proposed graph methods use graph convolution models to diffuse the graph signal
over the expanded topology. We already introduced two models: graph filters and GC-
NNs. To recapitulate, a graph filter linearly combines the K -shifted versions of the graph
signal. A GCNN is composed of multiple sequential layers of parallel graph filters, with
nonlinear activation functions in between the layers. The most primitive type of graph
convolution model is k-Nearest Neighbor (kNN), which performs a weighted sum of the
graph signal of the direct neighbors of a target node. We formulate the kNN operator as

y = Sx, (5.1)

with S being the graph shift operator, and x and y the input and output graph signal,
respectively. Note that this operator is equivalent to a graph filter of order 1, where h0

is equal to 0 and h1 is equal to 1. Unlike graph filters and GCNNs, it has no learnable
parameters. So, for the graph-based approaches, we employ the following graph convo-
lution models:

1. Graph Filter

2. Graph Convolutional Neural Network

3. kNN

This will shed light on the effect of propagating the signal through the multi-hop neigh-
borhood and learning the corresponding coefficients.

1https://www.yelp.com/dataset
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5.3. EXPERIMENTAL SETUP
All experiments follow the graph construction procedure as described in Section 4.2. We
use N = 300 randomly selected users as existing users. The remaining users are split
80%−20% into training and testing users, which behave as pure cold starters. We do 5
different realizations to get a more objective insight. We remove 50% of the items that we
used to deduce the true attachment patterns to separate them from the ratings we used
for testing. We use Bayesian Optimization to perform hyperparameter optimization for
the model parameters [74]. For computational reasons, we only use the MovieLens-1M
dataset and used the results for all experiments. For the graph filter, this results in k = 35
for the kNN graphs and a filter order of 7. The optimal GCNN architecture is 3 layers,
each of 11 features and filter banks of order 4. For SVD++, the optimal number of la-
tent factors is 20. The remaining hyperparameters that are not part of the model are
set according to the literature and used for all experiments. These are the learning rate
l = 5e −4, the number of epochs n = 20, and the batch size b = 8. We train the param-
eters using the ADAM optimizer [35]. To evaluate the models trained for rating, we use
MAE and RMSE as metrics. For the models trained for ranking, we used NDCG, mAP, and
recall.

5.4. RESULTS
In this section, we cover the research questions and present the supporting results to
answer them. The research questions are as follows.

RQ.1 How can we alleviate the pure cold start problem in collaborative filtering via graph
convolutions by training over stochastically expanded graphs?

RQ.2 Can we jointly learn a stochastic attachment model and graph convolutions in-
stead of relying on a heuristic attachment model?

We divide the items in each data set into three sets according to their number of ob-
served ratings: low (L ), medium (M ), and high (H ). We need two thresholds tl and
tm to define these sets. Accordingly, we define the item sets as L = {i |R(i ) ≤ tl }, M =
{i |tl < R(i ) ≤ tm}, and H = {i |tm < R(i )}, for which R(i ) is the number of observed rat-
ings for each item. We determine the values of tl and tm using histograms of the number
of ratings per item, which can be found in Appendix C. We use tl = 60, tm = 100 for Jester,
tl = 20, tm = 100 for MovieLens-1M, and tl = 10, tm = 20 for Yelp. Furthermore, we dis-
tinguish between the different types of graph convolution model.

RQ.1
Our first research question comprises two parts. The first is to research whether using
stochastic attachment results in better performance compared to non-graph baselines.
The second is to investigate whether training over stochastically expanded graphs is ben-
eficial compared to training on existing graphs and using induction to test it on stochas-
tically expanded graphs.

For the first part, we train and test graph convolution models on each type of attach-
ment: Barabási-Albert, Erdős-Rényi, true, and learned attachment. We compare with
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Item category

Dataset Method All (95% CI) Low (95% CI) Medium (95% CI) High (95% CI)

Jester True att. 2.7818 [2.7623 - 2.8015] 5.4810 [4.8295 - 6.1232] 4.2002 [3.3648 - 5.0791] 2.7733 [2.7539 - 2.7927]
Mean 4.0975 [4.0714 - 4.1230] 5.0231 [4.4339 - 5.5994] 4.1592 [3.3458 - 5.0179] 4.0957 [4.0699 - 4.1215]
SVD++ 4.2798 [4.2658 - 4.2940] 4.2373 [3.7294 - 4.7418] 4.1777 [3.3298 - 5.0718] 4.2799 [4.2659 - 4.2938]
BA att. 4.3207 [4.2946 - 4.3476] 4.3985 [3.8555 - 4.9419] 4.2762 [3.5106 - 5.0889] 4.2748 [4.2473 - 4.3027]
ER att. 4.1101 [4.0846 - 4.1361] 4.6523 [4.1331 - 5.1537] 4.2363 [3.4647 - 5.0532] 4.1085 [4.0830 - 4.1341]
Learned 4.0903 [4.0644 - 4.1166] 4.3056 [3.8360 - 4.7679] 4.2224 [3.4273 - 5.0449] 4.0897 [4.0639 - 4.1151]

ML-1M True att. 0.7033 [0.7000 - 0.7066] 1.0698 [0.8516 - 1.3013] 0.7824 [0.7761 - 0.7886] 0.6605 [0.6567 - 0.6642]
Mean 0.9547 [0.9503 - 0.9592] 1.1456 [0.9402 - 1.3563] 0.9705 [0.9633 - 0.9776] 0.9467 [0.9411 - 0.9522]
SVD++ 0.9458 [0.9418 - 0.9497] 1.1342 [0.9255 - 1.3429] 0.9631 [0.9562 - 0.9699] 0.9369 [0.9323 - 0.9416]
BA att. 0.9408 [0.9366 - 0.9450] 1.0645 [0.8888 - 1.2380] 0.9652 [0.9583 - 0.9719] 0.9284 [0.9232 - 0.9335]
ER att. 0.9402 [0.9362 - 0.9444] 1.0972 [0.8981 - 1.3003] 0.9649 [0.9581 - 0.9717] 0.9277 [0.9225 - 0.9330]
Learned 0.9474 [0.9434 - 0.9514] 1.1238 [0.9015 - 1.3510] 0.9750 [0.9681 - 0.9820] 0.9334 [0.9285 - 0.9383]

Yelp True att. 0.7426 [0.7366 - 0.7485] 0.8097 [0.8002 - 0.8195] 0.7331 [0.7225 - 0.7438] 0.6416 [0.6316 - 0.6514]
Mean 0.9525 [0.9456 - 0.9593] 0.9885 [0.9776 - 0.9991] 0.9383 [0.9259 - 0.9508] 0.9126 [0.8997 - 0.9254]
SVD++ 0.9327 [0.9261 - 0.9392] 0.9706 [0.9601 - 0.9811] 0.9157 [0.9038 - 0.9273] 0.8932 [0.8810 - 0.9054]
BA att. 0.9031 [0.8938 - 0.9125] 0.9472 [0.9244 - 0.9703] 0.9002 [0.8844 - 0.9160] 0.8884 [0.8753 - 0.9016]
ER att. 0.9034 [0.8941 - 0.9127] 0.9498 [0.9263 - 0.9736] 0.9011 [0.8853 - 0.9168] 0.8876 [0.8746 - 0.9007]
Learned 0.9226 [0.9157 - 0.9292] 0.9524 [0.9420 - 0.9629] 0.9011 [0.8853 - 0.9168] 0.8896 [0.8775 - 0.9016]

Table 5.2: RMSE of all items in all datasets. Bold font indicates the best result per item category for each
dataset. Lower is better. The graph-based approaches all used a graph filter (k = 7). The attachments in the
Method column denote the type of attachment used for both training and testing. All values can be found in
Appendix A.

the non-graph baselines: mean rating and SVD++. Table 5.2 shows the RMSE rating test
scores of these methods on all datasets. We computed confidence intervals using boot-
strapping. We only included the results obtained by the graph filter for the sake of clarity.
Complete rating results can be found in Appendix A and ranking results in Appendix B.
In general, we see that the graph filter and GCNN outperform the kNN model, which
corroborates our hypothesis that using the multi-hop neighborhood improves predic-
tion accuracy. For MovieLens-1M and Yelp, the true attachment baseline outperforms
the other baselines by a large margin (17.8%−32%). Note, however, that this uses rating
data on the incoming user, which is not available in a pure cold start setting. The graph-
based approaches outperform the non-graph baselines by a small margin. Specifically,
for the MovieLens-1M and Yelp datasets, the BA method significantly outperforms the
SVD++ baseline (p < 4e−9 and p = 0.0001, respectively). In particular, in the low-item
category, the Barabási-Albert model outperforms the others. This can be explained by
the construction of existing graphs in combination with the essence of preferential at-
tachment used by the Barabási-Albert model. We will recapitulate this procedure. Each
node u in the existing graph is connected to an existing node v if u ∈ Kv , where Kv is
the set of the top-k existing nodes most similar to u. This implies that an existing node
with either a lot of ratings or a "general" rating behavior will have more outgoing edges,
in other words, a higher out-degree. Since the Barabási-Albert attachment probabilities
are proportional to a node’s out-degree, the probability of an incoming node connecting
to an existing node with many ratings is larger. This can be beneficial for items with only
a few ratings, as in general users with a lot of ratings better predict unknown ratings than
users with fewer ratings.

The ranking results show small differences between all methods, as shown in Ap-
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Figure 5.1: MAE violin plots of four models trained and tested on MovieLens-1M: Mean rating (blue), SVD++
(red), learned stochastic attachment (yellow) and true attachment (green). Each row is for a different type of
graph convolution which is denoted on the left. Each column denotes the item category, which is denoted at
the top. The raw evaluation metrics are in Appendix A.

pendix B. This is believed to be caused by the nature of ranking prediction. The differ-
ence in ranking ‘score’ must be substantial to cause a shift in the ranking. For example,
say that a ranking model A predicts 1.0 and 1.5 for items i and j respectively. Then as-
sume that another model B predicts 1.45 and 1.5 for items i and j . Although the results
for item i differ significantly (+45%), the ranking is equal (B > A) and consequently the
ranking evaluation metrics will also produce the same results.

Figure 5.1 shows the MAE violin plots of these models trained and tested on the
MovieLens-1M dataset. We only show the best heuristic model, which was the Barabási-
Albert model. We see that for the low category, the Barabási-Albert trained graph filter
performs the best and that its error distribution is also more dense at lower errors. This
indicates that this method is more robust when only a few ratings are available than the
non-graph baselines. For the medium and high categories, the differences are smaller.
This is remarkable, as SVD++ predicts ratings deterministically by creating a surrogate
user of 10 randomly selected existing users.

Figure 5.2 shows a two-dimensional embedding of the latent factors of all MovieLens-
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(a) KDE plot of t-SNE embedding
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(b) Scatter plot of t-SNE embedding

Figure 5.2: Visualization of the two-dimensional embedding of the latent factors of MovieLens-1M users
learned by the SVD++ algorithm. The embedding is calculated using t-SNE with a perplexity of 40.

1M users, as learned by SVD++. For Jester and Yelp, these plots can be found in Ap-
pendix C. These embeddings appear to be jointly normally distributed around (0,0) with-
out many outliers. Therefore, taking the mean of multiple randomly selected vectors of
latent factors will always result in approximately the same aggregated vector. Due to the
fact that these vectors are normally distributed, the true latent factor vector of a pure
cold start user will on average be close to this mean vector, which explains the relatively
high accuracy of this baseline. Another explanation for the relatively high accuracy of
this baseline is that graph-based methods train the graph convolution model to prop-
agate the graph signal so that it can predict the unknown rating of the incoming user.
To do so, it needs the graph signal of the existing graph. This signal comprises at most
300 data points, since this is the size of the existing graph. SVD++, on the other hand,
uses all training data to learn embeddings of users and items, which is a lot more. There-
fore, it has an advantage over the graph methods. To further investigate the effect of the
size of the existing graph on performance, we built the existing graphs of 600 users for
MovieLens-1M and the trained and tested a graph filter using the true, Barabási-Albert,
Erdős-Rényi and learned attachments. The results of these experiments are shown in
Table 5.3. Whereas the learned attachment performs the worst of all graph methods on
the smaller graphs, it performs the best of all graph methods on the larger graphs. It
seems that this method needs more data than it gets from the existing graph of 300 users
to achieve satisfactory accuracy.

Another remarkable result shown in Table 5.2 is that for the Jester dataset, the learned
stochastic attachment model shows good performance compared to the other datasets,
and even compared to true attachment. For low-category items, it even outperforms the
true attachment baseline. Note that using a GCNN and learned stochastic attachment,
the performance on low items was slightly better than SVD++ as shown in Appendix A.
The Jester dataset is quite different from the other datasets, as it only has a few items
and is relatively dense. Therefore, the learned stochastic model has to generalize over
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Item category

Attachment All (95% CI) Low (95% CI) Medium (95% CI) High (95% CI)

True 0.6528 [0.6494 - 0.6562] 1.1275 [0.8975 - 1.3731] 0.7165 [0.7104 - 0.7227] 0.6127 [0.6090 - 0.6166]
BA 0.9431 [0.9389 - 0.9474] 1.1022 [0.9163 - 1.3107] 0.9622 [0.9553 - 0.9690] 0.9319 [0.9266 - 0.9372]
ER 0.9397 [0.9352 - 0.9441] 1.0930 [0.9066 - 1.3004] 0.9560 [0.9490 - 0.9631] 0.9300 [0.9244 - 0.9356]
Learned 0.9341 [0.9298 - 0.9384] 1.0776 [0.8957 - 1.2754] 0.9524 [0.9455 - 0.9594] 0.9234 [0.9181 - 0.9289]

Table 5.3: RMSEs of a graph filter (k = 7) trained and tested on all items in the MovieLens-1M dataset using an
existing graph of 600 users. The attachments in the method column denote the type of attachment used for
both training and testing. Lower is better for all metrics.

a smaller amount of different graph structures, causing it to fit better to the data. This
explains its remarkable performance. Due to its relative density, SVD++ and mean rating
also perform well. Each item has many ratings which is believed to be beneficial for the
performance. The reason why the mean rating outperforms SVD++ in the high category
may be that the latter uses items rated by the target user. Since there are only a few items
in this dataset, this procedure is less effective since only a few items can be considered
when making a prediction.

For the second part, we must find out whether training and testing on stochastically
expanded graphs is better in terms of accuracy than training on existing graphs and test-
ing on stochastically expanded graphs. To this end, we train a graph filter on existing
graphs on each dataset: one on graphs obeying Barabási-Albert expansion, and one on
graphs obeying Erdős-Rényi. We then test four cases: (i) train on ER, test on ER (ii) train
on existing, test on ER (iii) train on BA, test on BA (iv) train on existing, test on BA. The
models trained on existing graphs use induction to make predictions on the expanded
graphs. The MAE distributions for Jester are shown in Figure 5.3, and the corresponding
RMSE scores are found in Table 5.4. For all items, the trained ER and BA models out-
perform the inductive models (p = 3e− 6, p = 0.04, respectively). For items in the low
category, the Barabási-Albert and Erdős-Rényi trained and tested graph filters are more
robust because the error density is higher at low values. For the other categories, the
differences are smaller, but still apparent. We observed the same pattern for the other
datasets. This confirms our hypothesis that training on stochastically attached nodes
improves the prediction performance. By doing so, the model adapts to this type of at-
tachment and is better able to predict ratings using such a graph compared to the use of
a pretrained model on a stochastically expanded graph.

Item category

Attachment All Low Medium High

ER trained 4.1101 [4.0843 - 4.1357] 4.6494 [4.1219 - 5.1568] 4.2384 [3.4594 - 5.0521] 4.1088 [4.0836 - 4.1350]
ER tested 4.2083 [4.1807 - 4.2354] 5.1244 [4.5306 - 5.6978] 4.1957 [3.3152 - 5.1252] 4.2069 [4.1802 - 4.2342]
BA trained 4.3209 [4.2951 - 4.3471] 4.4010 [3.8526 - 4.9436] 4.2811 [3.5310 - 5.0736] 4.3206 [4.2943 - 4.3471]
BA tested 4.3698 [4.3417 - 4.3981] 5.1534 [4.5735 - 5.7338] 4.1751 [3.3157 - 5.0974] 4.3687 [4.3406 - 4.3962]

Table 5.4: RMSE graph filters trained and/or tested on Erdős-Rényi and Barabási-Albert expanded graphs of
the Jester dataset.
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Figure 5.3: MAE violin plots of four graph filters trained and tested on Jester. In the legend. BA or ER trained
means trained and tested on expanded graphs using the respective heuristics. BA or ER tested means trained
on existing graphs and tested on expanded graphs using the respective heuristics. Each column denotes the
category of items, which is denoted at the top.

RQ.2
For the second question, we will provide results that show the differences in performance
between learning a stochastic attachment model instead of using a Barabási-Albert or
Erdős-Rényi model. Accuracy scores are in Table 5.2. We see that the learned model
performs better than the heuristic ones only for the Jester dataset (p = 0.0001). For the
MovieLens-1M and Yelp datasets, the learned stochastic attachment model becomes rel-
atively better for less sparse items. A reason behind this can be that there are more dense
items and that dense items consequently have more incoming users to train on com-
pared to sparse items. This can cause the model to overfit to dense items. If we look at
the results from the Jester dataset, we see that the learned attachment model performs
the best overall and specifically for the high category. Since this dataset has few items
and each item has many ratings, the model has sufficient data to effectively learn the
stochastic model. On top of that, due to the fact that the dataset comprises only a few
items, the model can generalize better over all items compared to the other datasets that
comprise many items. So for dense datasets with a few items, the learned stochastic
model is effective, otherwise the heuristic-based models are prefered. Again, for rank-
ing, there were no clear differences.

5.5. SENSITIVITY ANALYSIS
To get an idea of how each model hyperparameter influences the results, we performed
a sensitivity analysis on our proposed learnable stochastic model. For the graph filter,
we consider the most important parameter, which is the filter order K . For the GCNN,
we consider the number of layers and the type of nonlinearity. For the loss function, we
consider the scalars µc and µp . We will consider the same three categories of items as
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before. For computational reasons, we will only use the Yelp dataset and assume that the
outcomes to correspond to the other datasets.

The first hyperparameter we will cover is the term µp that controls the L2-regularization
of the p ◦w norm. We trained and tested a graph filter of K = 7 for all reported values.
The results are found in Table 5.5. We see that the accuracy does not change much when
we try different values. The best value appears to be µp = 1e−3.

µp

Item cat. 1e-1 1e-2 1e-3 1e-4 1e-5 1e-6

All 0.9231 0.9223 0.9217 0.9230 0.9231 0.9227
Low 0.9521 0.9517 0.9506 0.9518 0.9528 0.9515
Medium 0.9112 0.9102 0.9094 0.9110 0.9108 0.9109
High 0.8913 0.8902 0.8904 0.8918 0.8906 0.8910

Table 5.5: RMSE for different values of µp trained and tested on Yelp.

Next, we will try different values for the other L2-regularization term µc of the graph
convolution parameters H . We trained and tested a graph filter of K = 7 on learned
stochastically expanded graphs for all reported values. The results are found in Table 5.6.
Also, for this parameter the outcomes do not change much. The best value is somewhere
between 1e−4 and 1e−5.

µc

Item cat. 1e-1 1e-2 1e-3 1e-4 1e-5 1e-6

All 0.9257 0.9238 0.9220 0.9220 0.9219 0.9223
Low 0.9568 0.9534 0.9508 0.9508 0.9508 0.9520
Medium 0.9135 0.9120 0.9098 0.9101 0.9099 0.9101
High 0.8911 0.8908 0.8910 0.8904 0.8905 0.8899

Table 5.6: RMSE for different values of µc trained and tested on Yelp.

The most important hyperparameter of a graph filter is the filter order K . We trained and
tested graph filters on Barabási-Albert expanded graphs with different values of K . The
results are found in Table 5.7. It is clear that using the graph signal from the multi-hop
neighborhood improves the accuracy, since the RMSEs for K = 1 are significantly higher
than the others, particularly for low-category items. This observation corresponds to the
literature and our preceding results of the kNN experiments as shown in Table 5.2.
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K

Item cat. 1 3 5 7 9 11

All 0.9675 0.9208 0.9212 0.9030 0.9216 0.9211
Low 1.0139 0.9486 0.9498 0.9470 0.9493 0.9492
Medium 0.9473 0.9104 0.9106 0.9002 0.9113 0.9104
High 0.9165 0.8892 0.8887 0.8885 0.8902 0.8894

Table 5.7: RMSE for different values of K trained and tested on Yelp.

Now we will move on to the GCNN hyperparameters. We trained and tested a GCNN
using different types of nonlinearities on learned stochastically expanded graphs. The
results are found in Table 5.8. It appears that the Tanh nonlinear function results in the
best accuracy, especially for low-category items.

Nonlinearity

Item cat. Sigmoid Tanh LeakyReLU ReLU

All 0.9263 0.9219 0.9235 0.9235
Low 0.9557 0.9495 0.9529 0.9530
Medium 0.9151 0.9113 0.9118 0.9120
High 0.8932 0.8911 0.8910 0.8920

Table 5.8: RMSE for different types of nonlinearities for GCNNs trained and tested on Yelp.

Another hyperparameter specific to GCNNs is the number of layers. Therefore, we trained
and tested a GCNN using different number of layers on learned stochastically expanded
graphs. The results are found in Table 5.9. It appears that the 7 layers yield the lowest
RMSE.

Number of layers

Item cat. 3 5 7 9 11

All 0.9235 0.9253 0.9243 0.9270 0.9288
Low 0.9523 0.9515 0.9510 0.9539 0.9609
Medium 0.9118 0.9167 0.9133 0.9175 0.9160
High 0.8920 0.8946 0.8953 0.8962 0.8932

Table 5.9: RMSE for different numbers of layers for GCNNs trained and tested on Yelp.
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5.6. DISCUSSION
In this chapter, we presented the results of the various experiments we carried out for
this thesis and covered the main observations.

In Section 5.4 we covered our research questions and the corresponding results. We
compared our proposed stochastic methods with two heuristic baselines. For two of
the three datasets, the proposed methods outperform those baselines. The performance
gap is the largest when an item only has a few ratings, which also reflects a cold start set-
ting accurately, since it is unlikely that a ‘cold’ recommender system has items with a lot
of ratings. Our findings show that the heuristic-based methods outperform the learned
stochastic attachment model when there are many items. The reason for that can be
that the model is unable to successfully generalize over the various graph structures.
The results on the Jester dataset support this hypothesis, as this dataset only comrpises
a few items, each with many ratings, and we observed our learned stochastic attach-
ment model to outperform the others. In the general case where we consider all items,
we could not significantly determine which of the two heuristical methods is the best.
However, for the low category, the Barabási-Albert model was significantly better. An-
other finding we did not expect is the relatively good performance of our constructed
SVD++ baseline. The t-SNE embeddings of the users’ latent factors led us to the discov-
ery that taking the mean over a set of users results in a surrogate user that is actually
a good approximation of many users in the system, which causes it to perform reason-
ably well. In summary, our findings suggest that, particularly for sparse items, the use of
stochastically expanded graphs improves the accuracy of pure cold start recommenda-
tion compared to using deterministic baselines. However, for items with more available
ratings, the improvements were smaller. We argue that such cases are rare in a real cold
start scenario.

For the second research question, we compared our approach of training on stochas-
tically expanded graphs to only test on them. We observed that this training method
resulted in better performance, particularly in the sparse rating setting. Therefore, our
findings corroborate the hypothesis that the training approach is indeed advantageous
over only testing on stochastically expanded graphs by some margin.

In Section 5.5 we experimented with different settings of the hyperparameters of our
models. We saw that using the multi-hop neighborhood indeed improved the accuracy,
which was what we expected. We also saw slight differences for different values of the
regularization terms.
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CONCLUSION

In this chapter, we conclude this thesis. In Section 6.1 we answer the research questions
posed. We conclude this work in Section 6.2 where we suggest possible directions for
future work.
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6.1. ANSWERS TO TE RESEARCH QUESTIONS

With our research, we tried to find an answer to the following research questions.

RQ.1 How can we alleviate the pure cold start problem in collaborative filtering via graph
convolutions by training over stochastically expanded graphs?

RQ.2 Can we jointly learn a stochastic attachment model and graph convolutions instead
of relying on a heuristic attachment model?

To find answers to these questions, we came up with several baselines in Chapter 4.
For the first question, we focused on training on incoming nodes that are attached us-
ing heuristic stochastic models Barabási-Albert and Erdős-Rényi. During training, we
attached nodes using either models and then trained a graph filter and a GCNN on the
stochastically expanded graphs. During testing, we attach an incoming node following
the same procedure and use the trained graph convolution model to predict the un-
known rating. We showed in Chapter 5 that in some cases we indeed achieve significant
improvements compared to the non-graph baselines. To emphasize the training part in
the first research question, we conducted an additional experiment that trains a graph
filter on stochastically expanded graphs and one on existing graphs. Both were tested on
stochastically expanded graphs, which resulted in a relatively large performance gap in
favor of the first model. Altogether we have shown that we can indeed alleviate the pure
cold start problem with our proposed method, which outperforms baselines by a small
margin.

For the second question, we implemented a model that jointly optimizes a graph
convolution model and a stochastic attachment model, instead of using a heuristic model.
Our experiments showed that only in some cases the learned model outperformed the
others. Specifically, the learned model showed to work well on the Jester dataset, which
is relatively dense. This led us to the hypothesis that the learned model and the graph
models in general suffer from the sparsity in the graph signal, which comprises at most
300 data points. To better explain this, we trained it with the other graph baselines again
on a larger existing graph. This showed improvements for all graph baselines. Although
the heuristic baselines first outperformed the learned model, on the larger graph, the
learned model was better. This confirmed our hypothesis that the graph methods suffer
from the graph signal sparsity.

Overall, our findings confirm our hypothesis that we can do pure cold start recom-
mendation by training over stochastically expanded graphs. However, the improvements
of the proposed methods, especially the learned stochastic model, were minor in many
cases compared to the baselines. We have already given some explanations for this.
However, we also want to emphasize the immanent complexity of the problem that we
address in this work. We are trying to do pure cold start recommendation without using
external information. Specifically, we try to predict ratings of users of which we have no
data at all, whereas many approaches in the literature try to circumvent the problem by
turning to external data. Therefore, we believe that any improvement to this problem
must be considered a relevant contribution.
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6.2. FUTURE WORK
We conclude this thesis by providing future work directions that follow from our re-
search. There are three possible branches that we identified: (1) use groups of users
as nodes (2) use heterogeneous graphs (3) develop hybrid system with side information.

COMBINING USERS
Our first suggestion is to group users into a single node. We showed that the prediction
performance is proportional to the size of the existing graph because more data points
are available when testing. However, the train and test times also increase with the size
of the existing graph. Therefore, we group similar users into one node. For example, we
could select 500 users and combine each group of 5 users most similar to a single node,
resulting in a graph of 100 nodes. These nodes are then connected analogously as in this
work. Consequently, more data points are available in the existing graph, since we use
data from more users. However, the size of the existing graph remains relatively small,
preserving the train and test speed.

HETEROGENEOUS GRAPHS
The next possible future direction is to use heterogeneous graphs instead of homoge-
neous graphs. We can encode the entire rating matrix as a heterogeneous graph and
stochastically attach incoming users or items to that graph. Note that users can only
stochastically attach to items and vice versa. Consequently, we have more data points in
the graph and we support both pure cold start users and items. We can then apply the
same graph convolution models on the heterogeneous graph, and we believe this will
further improve the recommendations.

HYBRID SYSTEM WITH SIDE INFORMATION
The final possible direction for future research is to develop a hybrid system that com-
bines our proposed method and a side information system. By doing so, the hybrid sys-
tem can use the available side information and combine it with stochastic attachment
for pure cold start users. Consequently, the system supports users with and without side
information associated with them. We believe that side information can be beneficial
for pure cold start recommendation. Therefore, the more side information available, the
more the hybrid system uses it. If there is only little or no side information available, the
hybrid system will turn more to the stochastic attachment solution.
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A
RATING EVALUATIONS

A.1. JESTER

Metric

Item category Baseline RMSE (95% CI) MSE (95% CI) MAE (95% CI)

All Mean rating 4.0975 [4.0714 - 4.1230] 16.7894 [16.5765 - 16.9993] 3.1403 [3.1197 - 3.1606]
SVD++ 4.2798 [4.2658 - 4.2940] 18.3170 [18.1968 - 18.4388] 3.3393 [3.3280 - 3.3506]

Low Mean rating 5.0231 [4.4339 - 5.5994] 25.3200 [19.6593 - 31.3529] 4.0627 [3.4916 - 4.6352]
SVD++ 4.2373 [3.7294 - 4.7418] 18.0225 [13.9087 - 22.4846] 3.4228 [2.9527 - 3.9098]

Medium Mean rating 4.1592 [3.3458 - 5.0179] 17.4852 [11.1942 - 25.1794] 3.1554 [2.5603 - 3.8026]
SVD++ 4.1777 [3.3298 - 5.0718] 17.6529 [11.0875 - 25.7234] 3.1431 [2.5439 - 3.7831]

High Mean rating 4.0957 [4.0699 - 4.1215] 16.7747 [16.5644 - 16.9870] 3.1387 [3.1184 - 3.1593]
SVD++ 4.2799 [4.2659 - 4.2938] 18.3173 [18.1975 - 18.4367] 3.3393 [3.3281 - 3.3505]

Table A.1: Evaluations of the non-graph baselines for all items in the Jester dataset. Bold font indicates the best
result for each category of items. Lower is better for all metrics.
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Metric

Item cat. Conv. type Attachment RMSE (95% CI) MSE (95% CI) MAE (95% CI)

All kNN True 3.3334 [3.3108 - 3.3562] 11.1119 [10.9614 - 11.2643] 2.5143 [2.4973 - 2.5313]
BA 4.2766 [4.2494 - 4.3038] 18.2893 [18.0572 - 18.5226] 3.2699 [3.2495 - 3.2908]
ER 4.1904 [4.1632 - 4.2174] 17.5600 [17.3324 - 17.7865] 3.2071 [3.1861 - 3.2281]
Learned 4.0835 [4.0582 - 4.1092] 16.6750 [16.4694 - 16.8858] 3.1281 [3.1078 - 3.1486]

GF True 2.7818 [2.7623 - 2.8015] 7.7384 [7.6302 - 7.8486] 2.0888 [2.0747 - 2.1033]
BA 4.3207 [4.2946 - 4.3476] 18.6689 [18.4437 - 18.9016] 3.3254 [3.3041 - 3.3470]
ER 4.1101 [4.0846 - 4.1361] 16.8928 [16.6841 - 17.1075] 3.1594 [3.1392 - 3.1798]
Learned 4.0903 [4.0644 - 4.1166] 16.7310 [16.5191 - 16.9466] 3.1341 [3.1139 - 3.1546]

GCNN True 4.0862 [4.0608 - 4.1115] 16.6971 [16.4904 - 16.9042] 3.1490 [3.1289 - 3.1690]
BA 4.1047 [4.0801 - 4.1293] 16.8489 [16.6474 - 17.0512] 3.1712 [3.1515 - 3.1913]
ER 4.1007 [4.0751 - 4.1270] 16.8161 [16.6066 - 17.0322] 3.1413 [3.1218 - 3.1618]
Learned 4.0889 [4.0631 - 4.1147] 16.7194 [16.5090 - 16.9308] 3.1327 [3.1125 - 3.1526]

Low kNN True 5.1265 [4.5340 - 5.7321] 26.3736 [20.5571 - 32.8569] 4.1240 [3.5560 - 4.7242]
BA 5.1976 [4.5867 - 5.7960] 27.1104 [21.0381 - 33.5934] 4.1925 [3.6027 - 4.8015]
ER 5.1934 [4.5906 - 5.7825] 27.0651 [21.0738 - 33.4370] 4.1889 [3.6044 - 4.7814]
Learned 4.3835 [3.8450 - 4.9263] 19.2893 [14.7841 - 24.2682] 3.5454 [3.0439 - 4.0625]

GF True 5.4810 [4.8295 - 6.1232] 30.1511 [23.3242 - 37.4937] 4.3855 [3.7548 - 5.0272]
BA 4.3985 [3.8555 - 4.9419] 19.4231 [14.8646 - 24.4222] 3.5487 [3.0565 - 4.0558]
ER 4.6523 [4.1331 - 5.1537] 21.7122 [17.0823 - 26.5610] 3.8151 [3.3044 - 4.3327]
Learned 4.3056 [3.8360 - 4.7679] 18.5937 [14.7147 - 22.7326] 3.5478 [3.0739 - 4.0210]

GCNN True 4.2547 [3.7952 - 4.7010] 18.1555 [14.4035 - 22.0999] 3.5218 [3.0593 - 3.9851]
BA 4.4872 [3.9977 - 4.9757] 20.1969 [15.9815 - 24.7575] 3.7192 [3.2388 - 4.2154]
ER 4.2973 [3.8296 - 4.7573] 18.5232 [14.6657 - 22.6320] 3.5434 [3.0776 - 4.0123]
Learned 4.2727 [3.8221 - 4.7254] 18.3096 [14.6085 - 22.3290] 3.5237 [3.0708 - 3.9945]

Medium kNN True 4.0159 [3.1822 - 4.8947] 16.3177 [10.1263 - 23.9582] 2.9785 [2.3879 - 3.6289]
BA 4.1512 [3.3470 - 5.0155] 17.4162 [11.2027 - 25.1548] 3.1505 [2.5577 - 3.8144]
ER 4.1667 [3.3577 - 5.0326] 17.5449 [11.2742 - 25.3266] 3.1583 [2.5674 - 3.8048]
Learned 4.2759 [3.5140 - 5.0777] 18.4458 [12.3485 - 25.7831] 3.3048 [2.7001 - 3.9539]

GF True 4.2002 [3.3648 - 5.0791] 17.8337 [11.3220 - 25.7976] 3.1379 [2.5223 - 3.8209]
BA 4.2762 [3.5106 - 5.0889] 18.4475 [12.3245 - 25.8964] 3.3093 [2.6958 - 3.9722]
ER 4.2363 [3.4647 - 5.0532] 18.1139 [12.0043 - 25.5349] 3.2618 [2.6691 - 3.9140]
Learned 4.2224 [3.4273 - 5.0449] 17.9993 [11.7461 - 25.4507] 3.2338 [2.6341 - 3.8742]

GCNN True 4.3298 [3.5745 - 5.1225] 18.9034 [12.7770 - 26.2396] 3.3823 [2.7852 - 4.0243]
BA 4.2848 [3.5123 - 5.0913] 18.5209 [12.3364 - 25.9209] 3.3195 [2.7146 - 3.9644]
ER 4.2407 [3.4688 - 5.0649] 18.1473 [12.0324 - 25.6531] 3.2678 [2.6643 - 3.9203]
Learned 4.2488 [3.4695 - 5.0593] 18.2182 [12.0371 - 25.5970] 3.2731 [2.6718 - 3.9181]

High kNN True 3.3285 [3.3063 - 3.3512] 11.0792 [10.9319 - 11.2308] 2.5109 [2.4942 - 2.5276]
BA 4.2748 [4.2473 - 4.3027] 18.2745 [18.0393 - 18.5131] 3.2685 [3.2476 - 3.2900]
ER 4.1886 [4.1617 - 4.2161] 17.5447 [17.3201 - 17.7756] 3.2057 [3.1850 - 3.2265]
Learned 4.0828 [4.0568 - 4.1084] 16.6691 [16.4580 - 16.8791] 3.1274 [3.1069 - 3.1470]

GF True 2.7733 [2.7539 - 2.7927] 7.6914 [7.5839 - 7.7991] 2.0839 [2.0699 - 2.0979]
BA 4.3204 [4.2945 - 4.3469] 18.6662 [18.4430 - 18.8955] 3.3249 [3.3040 - 3.3462]
ER 4.1085 [4.0830 - 4.1341] 16.8799 [16.6711 - 17.0906] 3.1578 [3.1379 - 3.1780]
Learned 4.0897 [4.0639 - 4.1151] 16.7258 [16.5150 - 16.9338] 3.1333 [3.1129 - 3.1539]

GCNN True 4.0856 [4.0600 - 4.1109] 16.6921 [16.4836 - 16.8997] 3.1481 [3.1282 - 3.1686]
BA 4.1037 [4.0785 - 4.1289] 16.8404 [16.6341 - 17.0475] 3.1701 [3.1501 - 3.1900]
ER 4.1001 [4.0749 - 4.1251] 16.8108 [16.6048 - 17.0166] 3.1404 [3.1208 - 3.1601]
Learned 4.0886 [4.0632 - 4.1145] 16.7172 [16.5095 - 16.9288] 3.1321 [3.1122 - 3.1523]

Table A.2: Evaluations for graph-based experiments on the Jester dataset. Bold font marks the best result
for each category of items with true attachment excluded. Lower is better attachment for all metrics. The
attachment column indicates the type of attachment that the model is trained and tested on.
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Metric

Item category Baseline RMSE (95% CI) MSE (95% CI) MAE (95% CI)

All Mean rating 0.9547 [0.9503 - 0.9592] 0.9115 [0.9031 - 0.9200] 0.7432 [0.7397 - 0.7467]
SVD++ 0.9458 [0.9418 - 0.9497] 0.8945 [0.8871 - 0.9019] 0.7578 [0.7544 - 0.7611]

Low Mean rating 1.1456 [0.9402 - 1.3563] 1.3236 [0.8840 - 1.8394] 0.9159 [0.7310 - 1.1130]
SVD++ 1.1342 [0.9255 - 1.3429] 1.2975 [0.8565 - 1.8033] 0.9210 [0.7469 - 1.1087]

Medium Mean rating 0.9705 [0.9633 - 0.9776] 0.9419 [0.9279 - 0.9558] 0.7679 [0.7620 - 0.7739]
SVD++ 0.9631 [0.9562 - 0.9699] 0.9276 [0.9142 - 0.9406] 0.7717 [0.7657 - 0.7775]

High Mean rating 0.9467 [0.9411 - 0.9522] 0.8962 [0.8856 - 0.9067] 0.7308 [0.7266 - 0.7351]
SVD++ 0.9369 [0.9323 - 0.9416] 0.8778 [0.8692 - 0.8865] 0.7508 [0.7469 - 0.7548]

Table A.3: Evaluations of the non-graph baselines for all items in the MovieLens-1M dataset. Bold font indi-
cates the best result for each category of items. Lower is better for all metrics.
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Metric

Item cat. Conv. type Attachment RMSE (95% CI) MSE (95% CI) MAE (95% CI)

All kNN True 0.8399 [0.8360 - 0.8439] 0.7055 [0.6989 - 0.7122] 0.6532 [0.6501 - 0.6563]
BA 1.0181 [1.0134 - 1.0228] 1.0366 [1.0270 - 1.0460] 0.7895 [0.7859 - 0.7932]
ER 0.9958 [0.9911 - 1.0005] 0.9916 [0.9822 - 1.0010] 0.7721 [0.7685 - 0.7758]
Learned 0.9675 [0.9632 - 0.9717] 0.9360 [0.9278 - 0.9441] 0.7605 [0.7570 - 0.7639]

GF True 0.7033 [0.7000 - 0.7066] 0.4946 [0.4900 - 0.4993] 0.5486 [0.5460 - 0.5512]
BA 0.9408 [0.9366 - 0.9450] 0.8851 [0.8773 - 0.8930] 0.7439 [0.7406 - 0.7473]
ER 0.9402 [0.9362 - 0.9444] 0.8841 [0.8765 - 0.8918] 0.7427 [0.7394 - 0.7460]
Learned 0.9474 [0.9434 - 0.9514] 0.8975 [0.8900 - 0.9052] 0.7539 [0.7507 - 0.7573]

GCNN True 0.6929 [0.6897 - 0.6961] 0.4801 [0.4757 - 0.4845] 0.5420 [0.5395 - 0.5446]
BA 0.9463 [0.9424 - 0.9503] 0.8955 [0.8880 - 0.9030] 0.7580 [0.7546 - 0.7613]
ER 0.9412 [0.9372 - 0.9453] 0.8858 [0.8784 - 0.8935] 0.7468 [0.7436 - 0.7502]
Learned 0.9495 [0.9457 - 0.9533] 0.9015 [0.8943 - 0.9088] 0.7640 [0.7608 - 0.7673]

Low kNN True 0.9962 [0.8238 - 1.1651] 1.0001 [0.6786 - 1.3576] 0.8012 [0.6407 - 0.9719]
BA 1.0886 [0.9091 - 1.2678] 1.1934 [0.8265 - 1.6073] 0.8874 [0.7213 - 1.0641]
ER 1.2009 [0.9797 - 1.4215] 1.4550 [0.9598 - 2.0207] 0.9740 [0.7909 - 1.1702]
Learned 1.2476 [0.9997 - 1.4930] 1.5721 [0.9994 - 2.2290] 0.9930 [0.7909 - 1.2159]

GF True 1.0698 [0.8516 - 1.3013] 1.1579 [0.7253 - 1.6933] 0.8210 [0.6351 - 1.0174]
BA 1.0645 [0.8888 - 1.2380] 1.1411 [0.7900 - 1.5326] 0.8767 [0.7150 - 1.0476]
ER 1.0972 [0.8981 - 1.3003] 1.2144 [0.8066 - 1.6907] 0.8908 [0.7185 - 1.0703]
Learned 1.1238 [0.9015 - 1.3510] 1.2763 [0.8127 - 1.8252] 0.8895 [0.7014 - 1.0886]

GCNN True 1.0938 [0.8933 - 1.2888] 1.2065 [0.7980 - 1.6610] 0.8552 [0.6695 - 1.0471]
BA 1.0911 [0.8918 - 1.2931] 1.2008 [0.7953 - 1.6722] 0.8919 [0.7186 - 1.0734]
ER 1.0912 [0.8933 - 1.2953] 1.2013 [0.7980 - 1.6779] 0.8949 [0.7252 - 1.0743]
Learned 1.0815 [0.8822 - 1.2818] 1.1801 [0.7783 - 1.6430] 0.8698 [0.6992 - 1.0518]

Medium kNN True 0.8745 [0.8680 - 0.8811] 0.7647 [0.7533 - 0.7763] 0.6899 [0.6846 - 0.6954]
BA 0.9884 [0.9808 - 0.9959] 0.9769 [0.9621 - 0.9919] 0.7809 [0.7747 - 0.7870]
ER 0.9863 [0.9790 - 0.9937] 0.9728 [0.9585 - 0.9874] 0.7800 [0.7741 - 0.7861]
Learned 1.0363 [1.0288 - 1.0438] 1.0739 [1.0584 - 1.0894] 0.8197 [0.8133 - 0.8261]

GF True 0.7824 [0.7761 - 0.7886] 0.6121 [0.6024 - 0.6220] 0.6146 [0.6095 - 0.6195]
BA 0.9652 [0.9583 - 0.9719] 0.9317 [0.9184 - 0.9446] 0.7731 [0.7672 - 0.7790]
ER 0.9649 [0.9581 - 0.9717] 0.9310 [0.9179 - 0.9442] 0.7719 [0.7661 - 0.7777]
Learned 0.9750 [0.9681 - 0.9820] 0.9506 [0.9372 - 0.9643] 0.7761 [0.7702 - 0.7821]

GCNN True 0.7671 [0.7611 - 0.7732] 0.5884 [0.5793 - 0.5978] 0.6042 [0.5994 - 0.6090]
BA 0.9706 [0.9640 - 0.9772] 0.9421 [0.9294 - 0.9550] 0.7805 [0.7748 - 0.7863]
ER 0.9666 [0.9597 - 0.9736] 0.9343 [0.9210 - 0.9479] 0.7722 [0.7662 - 0.7781]
Learned 0.9763 [0.9697 - 0.9829] 0.9531 [0.9402 - 0.9660] 0.7870 [0.7812 - 0.7928]

High kNN True 0.8222 [0.8173 - 0.8271] 0.6761 [0.6681 - 0.6842] 0.6349 [0.6312 - 0.6387]
BA 1.0324 [1.0260 - 1.0385] 1.0658 [1.0528 - 1.0785] 0.7937 [0.7889 - 0.7984]
ER 1.0002 [0.9942 - 1.0062] 1.0004 [0.9884 - 1.0124] 0.7681 [0.7635 - 0.7726]
Learned 0.9315 [0.9263 - 0.9368] 0.8677 [0.8580 - 0.8776] 0.7312 [0.7271 - 0.7354]

GF True 0.6605 [0.6567 - 0.6642] 0.4362 [0.4313 - 0.4412] 0.5159 [0.5129 - 0.5188]
BA 0.9284 [0.9232 - 0.9335] 0.8619 [0.8523 - 0.8714] 0.7295 [0.7254 - 0.7336]
ER 0.9277 [0.9225 - 0.9330] 0.8607 [0.8510 - 0.8704] 0.7282 [0.7240 - 0.7323]
Learned 0.9334 [0.9285 - 0.9383] 0.8713 [0.8621 - 0.8805] 0.7430 [0.7389 - 0.7470]

GCNN True 0.6529 [0.6492 - 0.6565] 0.4262 [0.4215 - 0.4310] 0.5112 [0.5083 - 0.5141]
BA 0.9339 [0.9291 - 0.9387] 0.8722 [0.8632 - 0.8811] 0.7467 [0.7426 - 0.7507]
ER 0.9283 [0.9233 - 0.9333] 0.8617 [0.8525 - 0.8711] 0.7342 [0.7302 - 0.7383]
Learned 0.9359 [0.9313 - 0.9406] 0.8760 [0.8674 - 0.8847] 0.7527 [0.7489 - 0.7566]

Table A.4: Evaluations for graph-based experiments on the MovieLens-1M dataset. Bold font marks the best
result for each category of items with true attachment excluded. Lower is better attachment for All metrics.
The attachment column indicates the type of attachment that the model is trained and tested on.
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Metric

Item category Baseline RMSE (95% CI) MSE (95% CI) MAE (95% CI)

All Mean rating 0.9525 [0.9456 - 0.9593] 0.9073 [0.8942 - 0.9203] 0.7368 [0.7315 - 0.7423]
SVD++ 0.9327 [0.9261 - 0.9392] 0.8699 [0.8576 - 0.8822] 0.7223 [0.7173 - 0.7274]

Low Mean rating 0.9885 [0.9776 - 0.9991] 0.9771 [0.9557 - 0.9982] 0.7642 [0.7557 - 0.7728]
SVD++ 0.9706 [0.9601 - 0.9811] 0.9422 [0.9218 - 0.9626] 0.7532 [0.7451 - 0.7613]

Medium Mean rating 0.9383 [0.9259 - 0.9508] 0.8804 [0.8572 - 0.9039] 0.7271 [0.7175 - 0.7368]
SVD++ 0.9157 [0.9038 - 0.9273] 0.8385 [0.8168 - 0.8599] 0.7099 [0.7008 - 0.7189]

High Mean rating 0.9126 [0.8997 - 0.9254] 0.8328 [0.8095 - 0.8564] 0.7069 [0.6972 - 0.7166]
SVD++ 0.8932 [0.8810 - 0.9054] 0.7979 [0.7762 - 0.8198] 0.6907 [0.6817 - 0.7001]

Table A.5: Evaluations of the non-graph baselines for the Yelp dataset. Bold font indicates the best result for
each category of items. Lower is better for all metrics.
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Metric

Item cat. Conv. type Attachment RMSE (95% CI) MSE (95% CI) MAE (95% CI)

All kNN True 0.7929 [0.7867 - 0.7991] 0.6287 [0.6190 - 0.6385] 0.6021 [0.5975 - 0.6066]
BA 0.9271 [0.9173 - 0.9365] 0.8595 [0.8415 - 0.8771] 0.7163 [0.7089 - 0.7235]
ER 0.9271 [0.9175 - 0.9368] 0.8596 [0.8418 - 0.8776] 0.7164 [0.7088 - 0.7238]
Learned 0.9609 [0.9543 - 0.9676] 0.9233 [0.9106 - 0.9362] 0.7599 [0.7547 - 0.7651]

GF True 0.7426 [0.7366 - 0.7485] 0.5514 [0.5426 - 0.5603] 0.5611 [0.5569 - 0.5656]
BA 0.9031 [0.8938 - 0.9125] 0.8155 [0.7989 - 0.8326] 0.7055 [0.6983 - 0.7127]
ER 0.9034 [0.8941 - 0.9127] 0.8161 [0.7994 - 0.8330] 0.7046 [0.6975 - 0.7117]
Learned 0.9226 [0.9157 - 0.9292] 0.8511 [0.8386 - 0.8635] 0.7193 [0.7142 - 0.7244]

GCNN True 0.6933 [0.6876 - 0.6990] 0.4807 [0.4729 - 0.4886] 0.5253 [0.5212 - 0.5294]
BA 0.9024 [0.8931 - 0.9116] 0.8144 [0.7975 - 0.8310] 0.7023 [0.6953 - 0.7094]
ER 0.9039 [0.8946 - 0.9132] 0.8171 [0.8003 - 0.8339] 0.7034 [0.6962 - 0.7105]
Learned 0.9235 [0.9172 - 0.9300] 0.8528 [0.8412 - 0.8650] 0.7295 [0.7245 - 0.7347]

Low kNN True 0.8709 [0.8611 - 0.8807] 0.7585 [0.7415 - 0.7756] 0.6654 [0.6579 - 0.6730]
BA 0.9720 [0.9487 - 0.9956] 0.9450 [0.9000 - 0.9912] 0.7494 [0.7309 - 0.7677]
ER 0.9721 [0.9485 - 0.9962] 0.9452 [0.8996 - 0.9925] 0.7494 [0.7307 - 0.7682]
Learned 1.0082 [0.9973 - 1.0191] 1.0165 [0.9946 - 1.0386] 0.7959 [0.7875 - 0.8045]

GF True 0.8097 [0.8002 - 0.8195] 0.6557 [0.6403 - 0.6716] 0.6150 [0.6078 - 0.6223]
BA 0.9472 [0.9244 - 0.9703] 0.8972 [0.8546 - 0.9414] 0.7363 [0.7186 - 0.7542]
ER 0.9498 [0.9263 - 0.9736] 0.9022 [0.8580 - 0.9480] 0.7366 [0.7188 - 0.7545]
Learned 0.9524 [0.9420 - 0.9629] 0.9071 [0.8874 - 0.9271] 0.7395 [0.7314 - 0.7476]

GCNN True 0.7599 [0.7511 - 0.7691] 0.5775 [0.5641 - 0.5915] 0.5767 [0.5699 - 0.5835]
BA 0.9483 [0.9251 - 0.9715] 0.8995 [0.8558 - 0.9439] 0.7349 [0.7171 - 0.7527]
ER 0.9482 [0.9256 - 0.9715] 0.8992 [0.8567 - 0.9438] 0.7350 [0.7174 - 0.7532]
Learned 0.9522 [0.9422 - 0.9623] 0.9068 [0.8878 - 0.9261] 0.7503 [0.7424 - 0.7584]

Medium kNN True 0.7820 [0.7707 - 0.7932] 0.6115 [0.5940 - 0.6291] 0.5975 [0.5891 - 0.6060]
BA 0.9236 [0.9073 - 0.9398] 0.8531 [0.8232 - 0.8831] 0.7142 [0.7013 - 0.7271]
ER 0.9235 [0.9073 - 0.9398] 0.8530 [0.8232 - 0.8832] 0.7142 [0.7016 - 0.7267]
Learned 0.9418 [0.9297 - 0.9538] 0.8870 [0.8643 - 0.9098] 0.7452 [0.7358 - 0.7548]

GF True 0.7331 [0.7225 - 0.7438] 0.5375 [0.5221 - 0.5532] 0.5582 [0.5504 - 0.5660]
BA 0.9002 [0.8844 - 0.9160] 0.8104 [0.7822 - 0.8391] 0.7030 [0.6909 - 0.7154]
ER 0.9011 [0.8853 - 0.9168] 0.8120 [0.7838 - 0.8405] 0.7025 [0.6905 - 0.7148]
Learned 0.9107 [0.8988 - 0.9227] 0.8295 [0.8079 - 0.8514] 0.7105 [0.7012 - 0.7197]

GCNN True 0.6836 [0.6737 - 0.6938] 0.4673 [0.4538 - 0.4813] 0.5232 [0.5160 - 0.5306]
BA 0.8990 [0.8828 - 0.9153] 0.8083 [0.7793 - 0.8377] 0.7001 [0.6876 - 0.7127]
ER 0.9002 [0.8843 - 0.9162] 0.8105 [0.7820 - 0.8394] 0.7008 [0.6884 - 0.7132]
Learned 0.9118 [0.9004 - 0.9234] 0.8314 [0.8107 - 0.8528] 0.7210 [0.7119 - 0.7303]

High kNN True 0.6748 [0.6647 - 0.6850] 0.4554 [0.4418 - 0.4693] 0.5134 [0.5062 - 0.5206]
BA 0.9127 [0.8987 - 0.9266] 0.8330 [0.8077 - 0.8586] 0.7058 [0.6953 - 0.7164]
ER 0.9124 [0.8985 - 0.9265] 0.8324 [0.8073 - 0.8583] 0.7056 [0.6951 - 0.7161]
Learned 0.9074 [0.8956 - 0.9194] 0.8235 [0.8022 - 0.8454] 0.7219 [0.7127 - 0.7311]

GF True 0.6416 [0.6316 - 0.6514] 0.4117 [0.3989 - 0.4243] 0.4847 [0.4776 - 0.4917]
BA 0.8884 [0.8753 - 0.9016] 0.7892 [0.7662 - 0.8128] 0.6959 [0.6858 - 0.7058]
ER 0.8876 [0.8746 - 0.9007] 0.7878 [0.7650 - 0.8113] 0.6946 [0.6848 - 0.7044]
Learned 0.8896 [0.8775 - 0.9016] 0.7913 [0.7700 - 0.8129] 0.6987 [0.6895 - 0.7080]

GCNN True 0.5931 [0.5837 - 0.6025] 0.3518 [0.3407 - 0.3630] 0.4515 [0.4450 - 0.4580]
BA 0.8875 [0.8743 - 0.9012] 0.7877 [0.7644 - 0.8121] 0.6920 [0.6821 - 0.7023]
ER 0.8896 [0.8764 - 0.9030] 0.7914 [0.7681 - 0.8155] 0.6936 [0.6837 - 0.7036]
Learned 0.8920 [0.8807 - 0.9038] 0.7956 [0.7756 - 0.8168] 0.7076 [0.6986 - 0.7167]

Table A.6: Evaluations for graph-based experiments on the Yelp dataset. Bold font marks the best result for each
category of items with true attachment excluded. Lower is better attachment for all metrics. The attachment
column indicates the type of attachment that the model is trained and tested on.
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B.1. JESTER

Metric

Item category Baseline NDCG (95% CI) Recall (95% CI) mAP (95%)

All Mean rating 0.6631 [0.6561 - 0.6701] 0.9479 [0.9435 - 0.9523] 0.4151 [0.4101 - 0.4200]
SVD++ 0.6852 [0.6816 - 0.6889] 0.8169 [0.8115 - 0.8223] 0.6461 [0.6424 - 0.6498]

Low Mean rating 0.7786 [0.6996 - 0.8522] 0.7932 [0.7011 - 0.8736] 0.1763 [0.1519 - 0.2008]
SVD++ 0.7551 [0.6732 - 0.8321] 0.8047 [0.7241 - 0.8851] 0.1796 [0.1553 - 0.2041]

Medium Mean rating 0.6074 [0.5200 - 0.6880] 0.5678 [0.4800 - 0.6560] 0.1062 [0.0885 - 0.1240]
SVD++ 0.6077 [0.5200 - 0.6960] 0.5673 [0.4800 - 0.6480] 0.1061 [0.0883 - 0.1244]

High Mean rating 0.6636 [0.6567 - 0.6706] 0.9480 [0.9434 - 0.9524] 0.4144 [0.4095 - 0.4194]
SVD++ 0.6854 [0.6818 - 0.6889] 0.8174 [0.8120 - 0.8227] 0.6460 [0.6423 - 0.6497]

Table B.1: Evaluations of non-graph ranking experiments on the Jester dataset. Bold font indicates the best
result for each category of items for that metric. Higher is better for all metrics.
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Metric

Item cat. Conv. type Attachment NDCG (95% CI) Recall (95% CI) mAP (95%)

All kNN True 0.8419 [0.8367 - 0.8471] 0.9543 [0.9497 - 0.9586] 0.4619 [0.4564 - 0.4672]
BA 0.6588 [0.6519 - 0.6657] 0.9474 [0.9429 - 0.9518] 0.4140 [0.4091 - 0.4190]
ER 0.6587 [0.6516 - 0.6659] 0.9476 [0.9430 - 0.9520] 0.4142 [0.4092 - 0.4193]
Learned 0.6494 [0.6424 - 0.6564] 0.9469 [0.9424 - 0.9512] 0.4118 [0.4069 - 0.4167]

GF True 0.8973 [0.8930 - 0.9016] 0.9595 [0.9551 - 0.9638] 0.4790 [0.4735 - 0.4848]
BA 0.6565 [0.6494 - 0.6636] 0.9474 [0.9429 - 0.9518] 0.4140 [0.4090 - 0.4191]
ER 0.6559 [0.6487 - 0.6630] 0.9476 [0.9430 - 0.9520] 0.4140 [0.4090 - 0.4188]
Learned 0.6631 [0.6561 - 0.6701] 0.9478 [0.9433 - 0.9521] 0.4149 [0.4100 - 0.4198]

GCNN True 0.9024 [0.8982 - 0.9065] 0.9597 [0.9552 - 0.9640] 0.4799 [0.4741 - 0.4855]
BA 0.6558 [0.6488 - 0.6630] 0.9475 [0.9430 - 0.9518] 0.4140 [0.4091 - 0.4189]
ER 0.6559 [0.6488 - 0.6630] 0.9475 [0.9431 - 0.9519] 0.4140 [0.4090 - 0.4189]
Learned 0.6595 [0.6525 - 0.6666] 0.9475 [0.9430 - 0.9518] 0.4144 [0.4095 - 0.4195]

Low kNN True 0.7672 [0.6891 - 0.8402] 0.7928 [0.7011 - 0.8736] 0.1762 [0.1506 - 0.2010]
BA 0.7782 [0.6988 - 0.8510] 0.7935 [0.7011 - 0.8736] 0.1765 [0.1513 - 0.2019]
ER 0.7783 [0.6987 - 0.8523] 0.7932 [0.7011 - 0.8736] 0.1763 [0.1518 - 0.2013]
Learned 0.6792 [0.5903 - 0.7665] 0.7931 [0.7011 - 0.8736] 0.1713 [0.1471 - 0.1962]

GF True 0.7863 [0.7075 - 0.8598] 0.7941 [0.7011 - 0.8736] 0.1779 [0.1534 - 0.2030]
BA 0.7422 [0.6597 - 0.8218] 0.7930 [0.7011 - 0.8736] 0.1752 [0.1509 - 0.2003]
ER 0.7781 [0.6987 - 0.8513] 0.7924 [0.7011 - 0.8736] 0.1760 [0.1518 - 0.2007]
Learned 0.7422 [0.6593 - 0.8191] 0.7924 [0.7011 - 0.8736] 0.1750 [0.1504 - 0.1997]

GCNN True 0.7819 [0.7023 - 0.8552] 0.7929 [0.7011 - 0.8736] 0.1774 [0.1531 - 0.2023]
BA 0.7417 [0.6577 - 0.8202] 0.7926 [0.7011 - 0.8736] 0.1751 [0.1508 - 0.2002]
ER 0.7414 [0.6573 - 0.8204] 0.7941 [0.7011 - 0.8736] 0.1755 [0.1509 - 0.2003]
Learned 0.7417 [0.6568 - 0.8211] 0.7932 [0.7011 - 0.8736] 0.1752 [0.1505 - 0.1995]

Medium kNN True 0.6560 [0.5680 - 0.7360] 0.5681 [0.4800 - 0.6560] 0.1083 [0.0899 - 0.1268]
BA 0.6082 [0.5200 - 0.6960] 0.5681 [0.4800 - 0.6560] 0.1062 [0.0885 - 0.1246]
ER 0.6088 [0.5200 - 0.6960] 0.5681 [0.4800 - 0.6560] 0.1063 [0.0885 - 0.1244]
Learned 0.6085 [0.5200 - 0.6960] 0.5679 [0.4800 - 0.6560] 0.1062 [0.0883 - 0.1244]

GF True 0.7278 [0.6480 - 0.8000] 0.5683 [0.4800 - 0.6560] 0.1099 [0.0911 - 0.1282]
BA 0.6085 [0.5200 - 0.6880] 0.5679 [0.4800 - 0.6560] 0.1062 [0.0881 - 0.1242]
ER 0.6091 [0.5200 - 0.6960] 0.5681 [0.4800 - 0.6560] 0.1063 [0.0879 - 0.1244]
Learned 0.6085 [0.5200 - 0.6880] 0.5684 [0.4800 - 0.6560] 0.1063 [0.0881 - 0.1248]

GCNN True 0.7281 [0.6480 - 0.8080] 0.5678 [0.4800 - 0.6560] 0.1098 [0.0918 - 0.1284]
BA 0.6084 [0.5200 - 0.6960] 0.5685 [0.4800 - 0.6560] 0.1063 [0.0885 - 0.1246]
ER 0.6078 [0.5200 - 0.6960] 0.5675 [0.4800 - 0.6560] 0.1061 [0.0887 - 0.1246]
Learned 0.6080 [0.5200 - 0.6882] 0.5678 [0.4800 - 0.6560] 0.1062 [0.0887 - 0.1242]

High kNN True 0.8429 [0.8376 - 0.8480] 0.9543 [0.9498 - 0.9587] 0.4610 [0.4555 - 0.4666]
BA 0.6594 [0.6525 - 0.6663] 0.9476 [0.9430 - 0.9520] 0.4134 [0.4084 - 0.4184]
ER 0.6592 [0.6522 - 0.6662] 0.9478 [0.9432 - 0.9522] 0.4135 [0.4086 - 0.4185]
Learned 0.6503 [0.6431 - 0.6575] 0.9473 [0.9428 - 0.9516] 0.4111 [0.4060 - 0.4161]

GF True 0.8982 [0.8938 - 0.9025] 0.9595 [0.9551 - 0.9638] 0.4781 [0.4723 - 0.4838]
BA 0.6574 [0.6503 - 0.6643] 0.9476 [0.9431 - 0.9520] 0.4134 [0.4084 - 0.4184]
ER 0.6565 [0.6495 - 0.6636] 0.9477 [0.9431 - 0.9522] 0.4132 [0.4081 - 0.4182]
Learned 0.6636 [0.6566 - 0.6707] 0.9479 [0.9434 - 0.9523] 0.4142 [0.4091 - 0.4191]

GCNN True 0.9033 [0.8991 - 0.9074] 0.9597 [0.9552 - 0.9640] 0.4788 [0.4731 - 0.4846]
BA 0.6564 [0.6493 - 0.6633] 0.9476 [0.9431 - 0.9519] 0.4132 [0.4083 - 0.4182]
ER 0.6563 [0.6491 - 0.6633] 0.9476 [0.9431 - 0.9521] 0.4132 [0.4082 - 0.4182]
Learned 0.6599 [0.6528 - 0.6670] 0.9477 [0.9431 - 0.9521] 0.4136 [0.4085 - 0.4185]

Table B.2: Evaluations of graph-based ranking experiments on the Jester dataset. Bold font marks the best
result for each category of items with true attachment excluded. Higher is better attachment for all metrics.
The attachment column indicates the type of attachment that the model is trained and tested on.
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B.2. MOVIELENS-1M

Metric

Item category Baseline NDCG (95% CI) Recall (95% CI) mAP (95%)

All Mean rating 0.7485 [0.7413 - 0.7556] 0.6113 [0.5961 - 0.6267] 0.7258 [0.7168 - 0.7345]
SVD++ 0.7535 [0.7469 - 0.7601] 0.6099 [0.5946 - 0.6249] 0.7267 [0.7178 - 0.7354]

Low Mean rating 0.8429 [0.8205 - 0.8652] 0.5553 [0.5194 - 0.5908] 0.1324 [0.1217 - 0.1434]
SVD++ 0.8652 [0.8442 - 0.8853] 0.5552 [0.5187 - 0.5907] 0.1331 [0.1222 - 0.1442]

Medium Mean rating 0.7413 [0.7296 - 0.7529] 0.7982 [0.7823 - 0.8138] 0.4388 [0.4255 - 0.4517]
SVD++ 0.7468 [0.7353 - 0.7582] 0.7954 [0.7794 - 0.8109] 0.4374 [0.4246 - 0.4501]

High Mean rating 0.7288 [0.7208 - 0.7367] 0.6951 [0.6808 - 0.7094] 0.7072 [0.6979 - 0.7168]
SVD++ 0.7321 [0.7245 - 0.7396] 0.6932 [0.6790 - 0.7076] 0.7060 [0.6964 - 0.7152]

Table B.3: Evaluations of the non-graph baselines for the MovieLens-1M dataset. Bold font indicates the best
result for each category of items. Lower is better for all metrics.
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Metric

Item cat. Conv. type Attachment NDCG (95% CI) Recall (95% CI) mAP (95%)

All kNN True 0.8998 [0.8966 - 0.9030] 0.6602 [0.6455 - 0.6755] 0.8477 [0.8405 - 0.8546]
BA 0.7410 [0.7339 - 0.7480] 0.6080 [0.5927 - 0.6232] 0.7175 [0.7088 - 0.7263]
ER 0.7443 [0.7371 - 0.7513] 0.6087 [0.5933 - 0.6240] 0.7198 [0.7110 - 0.7284]
Learned 0.7326 [0.7257 - 0.7394] 0.6040 [0.5887 - 0.6193] 0.7095 [0.7008 - 0.7182]

GF True 0.9441 [0.9418 - 0.9465] 0.6850 [0.6698 - 0.7000] 0.8840 [0.8772 - 0.8907]
BA 0.7419 [0.7346 - 0.7490] 0.6093 [0.5942 - 0.6243] 0.7172 [0.7084 - 0.7258]
ER 0.7424 [0.7352 - 0.7495] 0.6096 [0.5946 - 0.6249] 0.7182 [0.7093 - 0.7270]
Learned 0.7486 [0.7417 - 0.7555] 0.6110 [0.5959 - 0.6262] 0.7251 [0.7163 - 0.7339]

GCNN True 0.9462 [0.9438 - 0.9486] 0.6870 [0.6719 - 0.7020] 0.8862 [0.8792 - 0.8929]
BA 0.7424 [0.7352 - 0.7496] 0.6087 [0.5933 - 0.6241] 0.7186 [0.7097 - 0.7274]
ER 0.7429 [0.7357 - 0.7501] 0.6088 [0.5936 - 0.6240] 0.7188 [0.7101 - 0.7274]
Learned 0.7485 [0.7414 - 0.7554] 0.6118 [0.5967 - 0.6272] 0.7254 [0.7166 - 0.7344]

Low kNN True 0.8683 [0.8472 - 0.8882] 0.5553 [0.5188 - 0.5908] 0.1350 [0.1236 - 0.1465]
BA 0.8416 [0.8187 - 0.8636] 0.5553 [0.5190 - 0.5915] 0.1324 [0.1213 - 0.1436]
ER 0.8434 [0.8204 - 0.8650] 0.5556 [0.5201 - 0.5908] 0.1326 [0.1216 - 0.1437]
Learned 0.8178 [0.7942 - 0.8414] 0.5547 [0.5186 - 0.5894] 0.1303 [0.1192 - 0.1413]

GF True 0.8713 [0.8506 - 0.8916] 0.5556 [0.5189 - 0.5908] 0.1358 [0.1245 - 0.1475]
BA 0.8401 [0.8172 - 0.8618] 0.5553 [0.5190 - 0.5908] 0.1328 [0.1219 - 0.1440]
ER 0.8373 [0.8142 - 0.8591] 0.5553 [0.5197 - 0.5912] 0.1325 [0.1217 - 0.1437]
Learned 0.8448 [0.8220 - 0.8667] 0.5553 [0.5199 - 0.5908] 0.1326 [0.1217 - 0.1437]

GCNN True 0.8738 [0.8534 - 0.8933] 0.5553 [0.5190 - 0.5908] 0.1352 [0.1239 - 0.1469]
BA 0.8422 [0.8203 - 0.8638] 0.5553 [0.5190 - 0.5908] 0.1321 [0.1210 - 0.1434]
ER 0.8423 [0.8196 - 0.8648] 0.5555 [0.5190 - 0.5915] 0.1322 [0.1212 - 0.1433]
Learned 0.8439 [0.8214 - 0.8658] 0.5554 [0.5190 - 0.5908] 0.1326 [0.1216 - 0.1438]

Medium kNN True 0.8527 [0.8443 - 0.8608] 0.8112 [0.7958 - 0.8264] 0.4824 [0.4688 - 0.4961]
BA 0.7378 [0.7259 - 0.7495] 0.7983 [0.7828 - 0.8137] 0.4367 [0.4237 - 0.4495]
ER 0.7370 [0.7250 - 0.7488] 0.7982 [0.7827 - 0.8136] 0.4376 [0.4251 - 0.4505]
Learned 0.7184 [0.7063 - 0.7304] 0.7924 [0.7766 - 0.8085] 0.4249 [0.4125 - 0.4376]

GF True 0.9142 [0.9082 - 0.9200] 0.8226 [0.8072 - 0.8376] 0.5087 [0.4944 - 0.5226]
BA 0.7389 [0.7271 - 0.7506] 0.7983 [0.7824 - 0.8138] 0.4368 [0.4242 - 0.4495]
ER 0.7380 [0.7259 - 0.7496] 0.7980 [0.7822 - 0.8135] 0.4369 [0.4239 - 0.4495]
Learned 0.7400 [0.7282 - 0.7516] 0.7982 [0.7826 - 0.8140] 0.4378 [0.4246 - 0.4509]

GCNN True 0.9185 [0.9126 - 0.9242] 0.8237 [0.8085 - 0.8386] 0.5113 [0.4971 - 0.5256]
BA 0.7367 [0.7249 - 0.7483] 0.7977 [0.7818 - 0.8133] 0.4354 [0.4225 - 0.4482]
ER 0.7376 [0.7260 - 0.7494] 0.7978 [0.7820 - 0.8134] 0.4363 [0.4235 - 0.4493]
Learned 0.7425 [0.7308 - 0.7536] 0.7983 [0.7821 - 0.8141] 0.4391 [0.4260 - 0.4520]

High kNN True 0.8998 [0.8961 - 0.9033] 0.7377 [0.7243 - 0.7511] 0.8156 [0.8073 - 0.8239]
BA 0.7205 [0.7122 - 0.7285] 0.6922 [0.6781 - 0.7063] 0.6994 [0.6900 - 0.7086]
ER 0.7239 [0.7155 - 0.7320] 0.6928 [0.6784 - 0.7072] 0.7015 [0.6919 - 0.7111]
Learned 0.7129 [0.7048 - 0.7209] 0.6893 [0.6752 - 0.7035] 0.6931 [0.6836 - 0.7025]

GF True 0.9456 [0.9431 - 0.9482] 0.7583 [0.7448 - 0.7717] 0.8485 [0.8398 - 0.8567]
BA 0.7208 [0.7125 - 0.7290] 0.6931 [0.6785 - 0.7073] 0.6991 [0.6897 - 0.7085]
ER 0.7221 [0.7136 - 0.7304] 0.6937 [0.6797 - 0.7077] 0.7002 [0.6907 - 0.7098]
Learned 0.7290 [0.7209 - 0.7370] 0.6946 [0.6803 - 0.7089] 0.7060 [0.6965 - 0.7155]

GCNN True 0.9491 [0.9466 - 0.9516] 0.7606 [0.7472 - 0.7741] 0.8511 [0.8427 - 0.8594]
BA 0.7210 [0.7126 - 0.7292] 0.6920 [0.6772 - 0.7065] 0.7003 [0.6907 - 0.7097]
ER 0.7219 [0.7135 - 0.7302] 0.6924 [0.6785 - 0.7064] 0.7005 [0.6911 - 0.7096]
Learned 0.7275 [0.7193 - 0.7355] 0.6944 [0.6805 - 0.7084] 0.7065 [0.6969 - 0.7160]

Table B.4: Evaluations of graph-based ranking experiments on the MovieLens-1M dataset. Bold font marks
the best result for each category of items with true attachment excluded. Higher is better attachment for all
metrics. The attachment column indicates the type of attachment that the model is trained and tested on.
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B.3. YELP

Metric

Item category Baseline NDCG (95% CI) Recall (95% CI) mAP (95%)

All Mean rating 0.7325 [0.7253 - 0.7397] 0.9761 [0.9733 - 0.9788] 0.4789 [0.4731 - 0.4845]
SVD++ 0.7021 [0.6944 - 0.7098] 0.9769 [0.9744 - 0.9793] 0.4832 [0.4775 - 0.4889]

Low Mean rating 0.7945 [0.7852 - 0.8035] 0.8842 [0.8746 - 0.8938] 0.2956 [0.2899 - 0.3012]
SVD++ 0.7554 [0.7457 - 0.7651] 0.8875 [0.8779 - 0.8968] 0.2947 [0.2892 - 0.3004]

Medium Mean rating 0.7910 [0.7807 - 0.8011] 0.8529 [0.8417 - 0.8640] 0.2558 [0.2503 - 0.2612]
SVD++ 0.7875 [0.7776 - 0.7972] 0.8611 [0.8507 - 0.8717] 0.2636 [0.2583 - 0.2690]

High Mean rating 0.7795 [0.7684 - 0.7904] 0.8620 [0.8508 - 0.8732] 0.2651 [0.2593 - 0.2711]
SVD++ 0.7823 [0.7716 - 0.7928] 0.8643 [0.8536 - 0.8751] 0.2700 [0.2641 - 0.2759]

Table B.5: Evaluations of the non-graph baselines for the Yelp dataset. Bold font indicates the best result for
each category of items. Lower is better for all metrics.
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Metric

Item cat. Conv. type Attachment NDCG (95% CI) Recall (95% CI) mAP (95%)

All kNN True 0.9118 [0.9083 - 0.9153] 0.9846 [0.9823 - 0.9869] 0.5349 [0.5288 - 0.5410]
BA 0.7352 [0.7281 - 0.7425] 0.9763 [0.9735 - 0.9790] 0.4794 [0.4736 - 0.4851]
ER 0.7346 [0.7276 - 0.7416] 0.9763 [0.9735 - 0.9790] 0.4791 [0.4734 - 0.4848]
Learned 0.6193 [0.6109 - 0.6278] 0.9695 [0.9662 - 0.9727] 0.4446 [0.4391 - 0.4501]

GF True 0.9212 [0.9179 - 0.9245] 0.9853 [0.9830 - 0.9875] 0.5395 [0.5331 - 0.5458]
BA 0.7355 [0.7282 - 0.7428] 0.9763 [0.9735 - 0.9791] 0.4794 [0.4736 - 0.4851]
ER 0.7355 [0.7282 - 0.7427] 0.9762 [0.9734 - 0.9789] 0.4795 [0.4736 - 0.4853]
Learned 0.7346 [0.7272 - 0.7418] 0.9760 [0.9732 - 0.9788] 0.4793 [0.4735 - 0.4850]

GCNN True 0.9324 [0.9294 - 0.9353] 0.9854 [0.9831 - 0.9876] 0.5429 [0.5367 - 0.5493]
BA 0.7369 [0.7298 - 0.7441] 0.9762 [0.9733 - 0.9789] 0.4800 [0.4742 - 0.4857]
ER 0.7371 [0.7298 - 0.7443] 0.9762 [0.9733 - 0.9789] 0.4801 [0.4744 - 0.4857]
Learned 0.7346 [0.7273 - 0.7418] 0.9762 [0.9733 - 0.9790] 0.4798 [0.4740 - 0.4856]

Low kNN True 0.9011 [0.8949 - 0.9071] 0.8847 [0.8750 - 0.8941] 0.3118 [0.3060 - 0.3176]
BA 0.7973 [0.7884 - 0.8062] 0.8842 [0.8746 - 0.8935] 0.2958 [0.2902 - 0.3014]
ER 0.7974 [0.7882 - 0.8062] 0.8842 [0.8748 - 0.8937] 0.2959 [0.2904 - 0.3015]
Learned 0.6801 [0.6694 - 0.6909] 0.8837 [0.8741 - 0.8930] 0.2772 [0.2719 - 0.2825]

GF True 0.9111 [0.9053 - 0.9168] 0.8847 [0.8750 - 0.8941] 0.3135 [0.3076 - 0.3196]
BA 0.7984 [0.7896 - 0.8073] 0.8842 [0.8747 - 0.8938] 0.2961 [0.2906 - 0.3018]
ER 0.7987 [0.7898 - 0.8075] 0.8843 [0.8744 - 0.8940] 0.2961 [0.2903 - 0.3019]
Learned 0.7952 [0.7862 - 0.8042] 0.8841 [0.8742 - 0.8939] 0.2957 [0.2900 - 0.3014]

GCNN True 0.9186 [0.9131 - 0.9239] 0.8846 [0.8752 - 0.8939] 0.3146 [0.3088 - 0.3206]
BA 0.7985 [0.7895 - 0.8071] 0.8842 [0.8748 - 0.8939] 0.2962 [0.2906 - 0.3018]
ER 0.7986 [0.7897 - 0.8075] 0.8842 [0.8746 - 0.8937] 0.2962 [0.2905 - 0.3020]
Learned 0.7986 [0.7897 - 0.8076] 0.8841 [0.8743 - 0.8936] 0.2960 [0.2904 - 0.3017]

Medium kNN True 0.9152 [0.9087 - 0.9216] 0.8529 [0.8415 - 0.8638] 0.2708 [0.2653 - 0.2764]
BA 0.7940 [0.7837 - 0.8042] 0.8529 [0.8418 - 0.8639] 0.2561 [0.2507 - 0.2616]
ER 0.7938 [0.7836 - 0.8039] 0.8530 [0.8418 - 0.8639] 0.2561 [0.2507 - 0.2615]
Learned 0.7343 [0.7230 - 0.7454] 0.8529 [0.8417 - 0.8638] 0.2486 [0.2433 - 0.2539]

GF True 0.9229 [0.9167 - 0.9289] 0.8529 [0.8418 - 0.8636] 0.2719 [0.2661 - 0.2775]
BA 0.7956 [0.7856 - 0.8058] 0.8529 [0.8418 - 0.8636] 0.2561 [0.2508 - 0.2614]
ER 0.7953 [0.7851 - 0.8054] 0.8529 [0.8418 - 0.8641] 0.2561 [0.2506 - 0.2615]
Learned 0.7962 [0.7860 - 0.8062] 0.8529 [0.8417 - 0.8636] 0.2561 [0.2507 - 0.2615]

GCNN True 0.9312 [0.9256 - 0.9367] 0.8530 [0.8418 - 0.8641] 0.2724 [0.2666 - 0.2782]
BA 0.7947 [0.7843 - 0.8049] 0.8529 [0.8415 - 0.8641] 0.2562 [0.2508 - 0.2617]
ER 0.7955 [0.7853 - 0.8054] 0.8529 [0.8418 - 0.8639] 0.2561 [0.2507 - 0.2615]
Learned 0.7956 [0.7855 - 0.8057] 0.8529 [0.8415 - 0.8640] 0.2562 [0.2510 - 0.2617]

High kNN True 0.9368 [0.9308 - 0.9426] 0.8622 [0.8510 - 0.8729] 0.2850 [0.2786 - 0.2913]
BA 0.7788 [0.7678 - 0.7899] 0.8620 [0.8507 - 0.8730] 0.2652 [0.2594 - 0.2712]
ER 0.7792 [0.7684 - 0.7901] 0.8621 [0.8510 - 0.8733] 0.2651 [0.2592 - 0.2710]
Learned 0.7418 [0.7301 - 0.7534] 0.8616 [0.8503 - 0.8727] 0.2599 [0.2541 - 0.2656]

GF True 0.9469 [0.9413 - 0.9521] 0.8621 [0.8509 - 0.8731] 0.2864 [0.2801 - 0.2928]
BA 0.7795 [0.7686 - 0.7903] 0.8620 [0.8509 - 0.8733] 0.2651 [0.2592 - 0.2711]
ER 0.7802 [0.7694 - 0.7914] 0.8620 [0.8507 - 0.8729] 0.2653 [0.2595 - 0.2712]
Learned 0.7822 [0.7712 - 0.7930] 0.8621 [0.8508 - 0.8731] 0.2654 [0.2596 - 0.2714]

GCNN True 0.9540 [0.9491 - 0.9588] 0.8622 [0.8511 - 0.8732] 0.2869 [0.2807 - 0.2933]
BA 0.7840 [0.7729 - 0.7947] 0.8620 [0.8507 - 0.8731] 0.2655 [0.2597 - 0.2712]
ER 0.7836 [0.7726 - 0.7944] 0.8619 [0.8506 - 0.8729] 0.2655 [0.2597 - 0.2713]
Learned 0.7837 [0.7728 - 0.7945] 0.8620 [0.8506 - 0.8728] 0.2657 [0.2599 - 0.2716]

Table B.6: Evaluations of graph-based ranking experiments on the Yelp dataset. Bold font marks the best result
for each category of items with true attachment excluded. Higher is better attachment for all metrics. The
attachment column indicates the type of attachment that the model is trained and tested on.
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(a) KDE plot of t-SNE embedding
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(b) Scatter plot of t-SNE embedding

Figure C.1: Visualization of the two-dimensional embedding of the latent factors of Jester users learned by the
SVD++ algorithm. The embedding is calculated using t-SNE with a perplexity of 40.
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Figure C.2: Histogram of number of ratings for the Jester dataset
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Figure C.3: Histogram of number of ratings for the MovieLens-1M dataset
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(a) KDE plot of t-SNE embedding
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(b) Scatter plot of t-SNE embedding

Figure C.4: Visualization of the two-dimensional embedding of the latent factors of Yelp users learned by the
SVD++ algorithm. The embedding is calculated using t-SNE with a perplexity of 40.
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Figure C.5: Histogram of number of ratings for the Yelp dataset
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