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A new methodology is presented for model reduction of linear parabolic partial differential equations
(PDEs) on general geometries using multivariate splines on triangulations. State space descriptions are
derived that can be used for control design. This method uses Galerkin projection with B-splines to
derive a finite set of ordinary differential equations (ODEs). Any desired smoothness conditions between
elements as well as the boundary conditions are flexibly imposed as a system of side constraints on
the set of ODEs. Projection of the set of ODEs on the null space of the system of side constraints
naturally produces a reduced order model that satisfies these constraints. This method can be applied
for both in-domain control and boundary control of parabolic PDEs with spatially varying coefficients
on general geometries. The reduction method is applied to design and implement feedback controllers for
stabilization of a 1-D unstable heat equation and a more challenging 2-D reaction-convection-diffusion
equation on an irregular domain. It is shown that effective feedback stabilization can be achieved using
low order control models.

Keywords: Distributed parameter systems, multivariate splines, Galerkin’s method, parabolic partial
differential equations

1. Introduction

This paper presents a reduced order modeling approach for control of distributed parameter systems
(DPS) on general geometries using multivariate basis splines (B-splines) defined on triangulations
(de Boor, 1987; Farin, 1986; Lai & Schumaker, 2007). With DPS the system state, input,
output and parameters vary both spatially and temporally. This paper focuses on DPS governed by
parabolic partial differential equations (PDEs) which for example arise in the context of chemical
processes, thermal processes and fluid dynamic systems. PDE control theory often focuses on
extending finite dimensional results such as stability and optimal control to the infinite dimensional
case, see (Curtain & Zwart, 1995; Lasiecka & Triggiani, 2000) for a more complete coverage and
references therein. While mathematically precise, these results are often derived for general classes
of PDEs and for systems defined on 2-D/3-D general geometries only abstract results are typically
available.
This led to the attention of structure specific opportunities that exists in PDEs to produce

results that are both constructive and mathematically rigorous (Bamieh, Paganini, & Dahleh,
2002; Smyshlyaev & Krstic, 2004). Constructive methods for solving optimal control problems for
a class of spatially invariant systems with distributed sensing and actuation was first presented in
(Bamieh et al., 2002). By applying a Fourier transform to the system along the spatially invariant
coordinates the system can be block diagonalized and decoupled in terms of a frequency parameter
that replaces the spatially invariant coordinate (Bamieh et al., 2002). In this way, analysis and
design of the controller can be carried out on a parameterized lower-dimensional system and later
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reconstructed in the physical space (Bamieh et al., 2002; Hagen, Mezić, & Bamieh, 2004). In
(Smyshlyaev & Krstic, 2004, 2005) a closed form continuous backstepping control/observer design
method was first presented for stabilization of a class of 1-D parabolic PDEs. The backstepping
method has the powerful feature that it produces explicitly computable gains and has been extended
to higher dimensional spatial domains and systems of coupled PDEs; We refer to (Baccoli, Pisano,
& Orlov, 2015) for a recent overview of developments of the backstepping method. In particular,
by also exploiting spatial invariance this method has led to explicit solutions for 2-D and 3-D
spatially invariant control problems (Vazquez & Krstic, 2007b) such as the Navier-Stokes channel
flow (Vazquez & Krstic, 2007a).
Many practical engineering problems are formulated in spatially variant geometries such as ir-

regular channels or require that the controls and sensors are spatially localized. In this case a finite
dimensional approximation of the infinite dimensional system is often required. Model reduction
is the process of reducing the infinite dimensional PDE to a finite set of ODEs that can be used
for control design. We refer to (Li & Qi, 2010) for a recent review on model reduction techniques
for PDEs. Galerkin projection is most commonly applied to parabolic PDEs and in this method,
one obtains a lower dimensional approximation by projecting the PDE onto a set of spatial basis
functions that contain characteristics of the expected solution. The orthogonality of the projection
ensures the best possible solution in the space spanned by the basis functions. The main advantage
of this approach is that it is robust with respect to the truncated dynamics; a controller which
exponentially stabilizes the closed-loop ODE system also stabilizes the closed loop parabolic PDE
system (Balas, 1979, 1983, 1984). On the other hand it may require a large number of modes to
derive an ODE system with the desired degree of accuracy. Selection of the spatial basis functions
is critical and has a great impact to the modeling performance.
A feature of most parabolic PDE systems is that the eigenspectrum of the spatial differential

operator shows a clear separation between a finite dimensional slow part and infinite dimensional
fast complement (Balas, 1979). If the eigenfunctions of the spatial differential operator are known,
a suitable choice for model reduction is therefore the projection of the system on the modal sub-
space spanned by the dominant eigenfunctions (Armaou & Christofides, 2001b; Christofides,
2001; Christofides & Baker, 1999). This requires analytic solutions of the spatial differential op-
erator eigenvalue problem to form the modal subspace which are often not available for systems
defined on irregular domains and systems with spatially varying coefficients. Another approach is
to utilize simulation data or experimental data of the PDE system to compute a set of empirical
eigenfunctions through the Proper Orthogonal Decomposition (POD) method, see e.g. (Armaou &
Christofides, 2001a, 2002; Baker, Armao, & Christofides, 2000). The POD method is a statistical
technique that extracts the most energetic modes from a set of snapshots and therefore leads to low
order expansions. The POD method is applicable to a wide range of DPS, including those defined
on irregular domains. However, each set of POD modes is intrinsic to a particular simulation or
snapshots and its effectiveness is highly dependent on the simulation/experimental settings (Li &
Qi, 2010; Rowley, 2005). It also has limitations for the describing input-output behavior of the
system (Rowley, 2005).
This paper introduces a new systematic approach for model reduction of parabolic PDEs on

general geometries using multivariate B-splines defined on triangulations (de Boor, 1987; Farin,
1986; Lai & Schumaker, 2007). This method uses Galerkin projection with B-splines to derive a
finite set of ODEs. The multivariate B-spline consists of piecewise defined polynomials of arbitrary
degree called B-form polynomials. Any desired smoothness conditions between elements as well as
the boundary conditions are flexibly imposed as a system of side constraints on the set of ODEs.
Projection of the set of ODEs on the null space of the system of side constraints naturally produces
a reduced order model that satisfies these constraints. The multivariate B-spline has been used in
the past to find numerical solutions for elliptic PDEs (Awanou, Lai, & Wenston, 2005; Hu, Han,
& Lai, 2007) and steady Navier-Stokes equations (Awanou & Lai, 2004; Lai & Wenston, 2004)
based on energy methods, and to find numerical solutions for Hamilton-Jacobi-Bellman PDEs using
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the collocation method (Govindarajan, de Visser, & Krishnakumar, 2014). This work is different
in the sense that it is does not find explicit numerical solutions for PDEs. Instead the PDE is
spatially discretized and converted to a linear state space representation that is used for control
design.
The main contribution of the paper is a new framework to derive state space descriptions for

a class of parabolic PDEs to which standard control theoretic tools can be applied. The main
advantage of this method is that it is general in the sense that it can be applied for both in-
domain control and boundary control of parabolic PDEs with spatially varying coefficients defined
on general geometries. It is in particular useful for parabolic PDEs for which analytic solutions
of the spatial differential operator eigenvalue problem are not possible. We are also able to use
multivariate spline functions of variable degrees and variable smoothness across any given domain.
These properties make spline functions more user-friendly compared to standard finite elements.
Splines with higher order smoothness can directly be implemented to approximate the strong
solution of the PDE system and polynomials of high degrees can be easily used to get better
approximation properties (Awanou & Lai, 2004; Awanou et al., 2005; Hu et al., 2007). The
degree and order of continuity of splines are simply input variables for creating the state space
models which can be also tuned to achieve a desirable trade-off between the accuracy and the
order of the model. Together with the mesh flexibility, this method allows the construction of
reduced order models which are both accurate and suitable for online applications. We refer to
(Awanou et al., 2005) for an overview of more features of multivariate splines and references
within. Compared to POD-Galerkin methods, this approach may lead to higher order models,
but in return provides a systematic approach in which the input-output behavior of the system is
easily established. This method can also be used in conjunction with other open loop truncation
methods for state space systems such balanced POD (Rowley, 2005) and balanced truncation.
This combination can open a new route towards the control of more complex problems such as the
three-dimensional Navier-Stokes equations.
In this paper we restrict our attention to a linear class of parabolic PDEs. Nonlinear parabolic

PDEs are also tractable for the spline Galerkin method and, in the most general case, lead to
nonlinear state space descriptions of the PDE. To accurately capture the nonlinear couplings be-
tween the fast and slow modes without using a high-order model the Galerkin method should be
used in combination with (approximate) inertial manifolds to compensate the fast modes with
the slow modes (Armaou & Christofides, 2001b; Baker et al., 2000; Christofides & Daoutidis,
1997). Nonlinear model reduction and control of parabolic PDEs will therefore be considered in a
forthcoming study.
The outline of the paper is as follows. In Section 2 the class of parabolic PDEs and control

types for which the reduction method can be applied is formulated. In Section 3 a preliminary on
multivariate B-splines is given. In Section 4 the side constraints for the boundary conditions are
derived using new expressions for differential operators acting on B-splines. Section 5 contains the
main contribution of this paper in which the state space descriptions are derived and in Section
6 the state space models are used to synthesize the output feedback controller. Finally in section
7 the reduction method is used to implement the feedback controllers for stabilization of a 1-D
unstable heat equation and a 2-D unstable reaction-convection-diffusion equation on an irregular
domain followed by conclusions in Section 8.

2. Class of systems under consideration

Let Ω be an open bounded subset of Rn with a Lipschitz-continuous boundary Γ and set ΩT =
Ω × (0, T ] for some fixed time T > 0. In this paper we consider linear parabolic PDEs, with the

3
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following state space description

∂y(x, t)

∂t
= Ly(x, t) + g(x)u(t) in ΩT (1a)

LΓy(x, t) = gΓ(x)uΓ(t) on ΓT (1b)

zmk
(t) =

∫

Ω
δ(x − xk)Lzmy(x, t), k = 1, · · · ,K (1c)

zci(t) =

∫

Ω
φi(x)Lzcy(x, t)dx, i = 1, · · · , Q (1d)

with y(x, t) the state variable, x ∈ Ω the spatial coordinate, zmk
∈ R a measured output

and zci ∈ R a controlled output which is used to define the control objective later in this
section. The vector function g(x) = [g1(x), · · · , gm(x)], gi ∈ L2(Ω) describes how the inputs
u(t) = [u1(t), · · · , um(t)]T ∈ R

m from m linear actuators are distributed in the domain, gΓ(x) =
[gΓ,1(x), · · · , gΓ,m(x)], gΓ,i ∈ L2(Γ) describes how the inputs uΓ(t) = [uΓ,1(t), · · · , uΓ,m(t)]T ∈ R

mΓ

are distributed over the boundary and φi(x) is determined by the desired performance specifications
in the domain Ω. The operator L is defined as a linear partial differential operator with derivatives
up to order k ≥ 1 with spatially varying coefficients

L =
∑

|α|≤k

aα(x)D
α = a0(x) +

∑

1≤|α|≤k

aα(x)D
α (2)

where we have used the well-known multi-index notation for the spatial derivative

Dαy =
∂|α|y

∂xα1

1 ∂xα2

2 · · · ∂xαn
n

(3)

for a given multi-index (α1, α2, · · · , αn) of order |α| = α1 + α2 + · · · + αn and the operators
LΓ, Lzc , Lzm are defined as partial differential operators with constant coefficients. Common bound-
ary conditions are Dirichlet (LΓ = I), Neumann (LΓ = ∂

∂n) and Robin boundary conditions

(LΓ = I + ∂
∂n). In this study feedback stabilization of (1a) is considered where the PDE describes

the error between the unsteady response and the equilibrium profile, e.g. the error between the
unsteady temperature and the equilibrium profile of the temperature. It is assumed that point
measurements from K boundary or in-domain sensors are used for feedback.
The objective is to reduce the infinite dimensional state space system (1) to a finite dimensional

state space system using multivariate splines, which can be used to synthesize any suitable linear
controller. In this study a classical linear quadratic optimal control problem is considered. To define
the control objective, the system (1) is formulated as an infinite dimensional system in a Hilbert
space (Christofides & Daoutidis, 1997; Curtain & Zwart, 1995). The derivation of this system
is also closely related to the derivation of the reduced order model in Section 5. Let H be the
space of functions defined on Ω that satisfy the boundary conditions (1b), with inner product

(y1, y2) =
∫

Ω y1y2dx and norm ‖y1‖2 = (y1, y1)
1/2 where y1, y2 ∈ H. Furthermore, let the trajectory

segment y(·, t) = {y(x, t), x ∈ Ω} be the state and y(t)|Γ ∈ U the value of y(t) on the boundary
defined in a separable Hilbert space U . Defining the following operators on H as

A : D(A) ⊂ H 7→ H, Ay(t) = Ly(t)

AΓ : D(AΓ) ⊂ H 7→ U , AΓy(t) = LΓy(t)|Γ

A : D(A) 7→ H, Ay(t) = Ay(t), for y ∈ D(A),

D(A) = D(A) ∩ ker(AΓ) = {y ∈ H;LΓy(t)|Γ = 0} (4)

4
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where D(A) denotes the domain of A, defining the input and output operators as

B : Rm 7→ H, Bu(t) = g(x)u(t)

BΓ : RmΓ 7→ U , BΓuΓ(t) = gΓ(x)uΓ(t)

Cmk
: H 7→ R, Cmk

y(t) = (δ(x − xk), Lzmy(t))

Cci : H 7→ R, Cciy(t) = (φi(x), Lzcy(t)) (5)

and construct an operator Q such that

Q : U 7→ H, AΓQBΓuΓ(t) = BΓuΓ(t) (6)

the system (1) can be formulated as (Curtain & Zwart, 1995)

∂ỹ(t)

∂t
= Aỹ(t)−QBΓu̇Γ(t) + AQBΓuΓ(t) + Bu(t), ỹ(0) = ỹ0

zm(t) = Cm

(

ỹ(t) +QBΓuΓ(t)
)

(7)

zc(t) = Cc

(

ỹ(t) +QBΓuΓ(t)
)

where the solution of (7) is related to the classical solution of (1) by

y(t) = ỹ(t) +QBΓuΓ(t) (8)

From (6) and (8) it follows that ỹ(t) can be regarded as a homogeneous solution and QBΓuΓ(t)
as a particular solution that satisfies the boundary conditions. (7) can also be formulated in the
infinite dimensional state space format

ẋ(t) = Āx(t) + B̄ū(t), x(0) = x0

zm(t) = C̄mx(t), zc(t) = C̄cx(t) (9)

where

x(t) =
[

ỹT (t) uTΓ (t)
]T

, ū(t) =
[

uT (t) u̇TΓ (t)
]T

Ā =

[

A AQBΓ

0 0

]

, B̄ =

[

B −QBΓ

0 I

]

(10)

C̄m = [Cm CmQBΓ] , C̄c = [Cc CcQBΓ]

The control objective is to synthesize an output feedback that minimizes the quadratic (LQR) cost
function

J =

∫ ∞

0
(zc, zc)Rn + (ū, Rū)

Rn dt (11)

where (·, ·)
Rn denotes the standard inner product in R

n.

5
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3. Preliminaries on multivariate splines

Given a bounded polygonal domain Ω ∈ R
n and let T be a triangulation of Ω. The spline space is

the space of all smooth piecewise polynomial functions of degree d and smoothness r over T with
0 ≤ r < d

Sr
d (T ) := s ∈ Cr (Ω) : s|∆ ∈ Pd, ∀∆ ∈ T (12)

With Pd the space of all polynomials of total degree d and ∆ denotes an n-simplex (line in 1-D,
triangle in 2-D, tetrahedron in 3-D) and Ω =

⋃

∆∈T ∆. In this paper, the B-form representation of
splines defined on triangulations is used (de Boor, 1987; Farin, 1986). Only the essential theory
that is necessary for the treatment of the spline model reduction framework is discussed here. We
refer to (Lai & Schumaker, 2007) for a more complete coverage.

Let ∆ = 〈v0, v1, · · · , vn〉 be an n-simplex with vertices vi = (x
(i)
1 , x

(i)
2 , · · · , x

(i)
n ). A separate local

coordinate system can be defined for each simplex in terms of barycentric weights. In this coordinate
system every point x = (x1, x2, · · · , xn) ∈ R

n is described in terms of a unique weighted vector
sum of the vertices of ∆

x =
n
∑

i=0

bivi,
∑n

i=0 bi = 1 (13)

where b = (b0, b1, · · · , bn) ∈ R
n+1 is called the barycentric coordinate of point x = (x1, · · · , xn)

relative to simplex ∆. In the remainder of this paper we denote b∆j
(x) : Rn → R

n+1 as the mapping
from Cartesian coordinates to barycentric coordinates for a specific simplex with b = b∆j

(x).
The simplex polynomials are expressed in terms of Bernstein - Bézier basis polynomials of degree

d

Bd
κ(b∆j

(x)) =

{

d!
κ0!,κ1!···κn!

bκ0

0 bκ1

1 · · · bκn

n = d!
κ!b

κ, x ∈ ∆j

0, x /∈ ∆j
(14)

with κ = (κ0, κ1, · · · , κn) ∈ N
n+1 a multi-index with properties κ! = κ0!κ1! · · · κn! and |κ| =

κ0 + κ1 + · · ·+ κn. In (de Boor, 1987) it is shown that the set

Bd =
{

Bd
κ(b), |κ| = d

}

(15)

forms a unique stable local basis for Pd on ∆. Hence, any simplex polynomial p∆j of degree d
defined on ∆ can be uniquely written as a linear combination of basis polynomials in Bd (de Boor,
1987)

p∆j (x) =
∑

|κ|=d

c∆j

κ Bd
κ(b) (16)

with cκ the B-coefficients. The total number of valid permutations of κ is d̂ = (d+ n)!/n!d! which is
equal to the total number of B-coefficients per simplex. The B-coefficients have a special property
in the sense that they have a unique geometric location inside their parent simplex which are
referred to as the domain points. The complete set of domain points ξκ in barycentric coordinates
of a polynomial of degree d is given by

Dd =
{

ξκ =
κ

d
, |κ| = d

}

(17)

6
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Figure 1.: Spatial location B-coefficients for a 2 dimensional simplex polynomial
of degree 4 (left) and the B-net of the polynomial (right)

which is equal to the location of the unique maximum of the Bernstein basis polynomial Bd
κ in

(14). In Figure 1, the domain points and the B-net are shown for a bivariate simplex polynomial
of degree 4. The following theorem will be used for the spline approximation of functions over
simplices.

Theorem 1: There is a unique polynomial p in n variables of degree d that interpolates any given
function f on a n-simplex over the domain points in (17).

See (Chung & Yao, 1977) for a proof. The B-form polynomial (16) can also be written in vector
form (de Visser, Chu, & Mulder, 2009)

p∆j (x) = Bd
∆j

(x)c∆j (18)

with Bd
∆j

(x) =
[

Bd
κ(b∆j

(x))
]

|κ|=d
∈ R

1×d̂ the vector of basis polynomials and with c∆j :=

[c
∆j

κ ]|κ|=d ∈ R
d̂×1 the vector of B-coefficients. Similarly, the globally defined spline function can

be written as

s(x) =

J
∑

j=1

∑

|κ|=d

c∆j

κ Bd
κ(x) = Bd(x)c (19)

with Bd(x) ∈ R
1×Jd̂ the global vector of vector basis polynomials and c ∈ R

Jd̂×1 the global
vector of B-coefficients and J the total number of simplices. A spline function is by definition a
piecewise defined polynomial with Cr continuity over the element simplex boundaries. Continuity
of order Cr between two neighboring B-form simplex polynomials p∆i , p∆j is achieved when all mth
order directional derivatives, with 0 ≤ m ≤ r are equal at every point on the edge ∆̃i,j = ∆i ∩∆j

between the two simplices ∆i,∆j . This is enforced by homogeneous equality constraints of the form
H∆i,∆j [cT∆i

, cT∆j
]T = 0 which are defined for every edge of two neighboring simplices in triangulation

T (Awanou et al., 2005) and (Lai & Schumaker, 2007, pp.133-135). This guarantees the existence

of a matrix H ∈ R
R∗×Jd̂ with R∗ = rank(H) such that s ∈ Cr(Ω) if and only if

Hc = 0 (20)

Constructing H is not trivial and we refer to (de Visser et al., 2009) for a general formulation of

7
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the continuity conditions and the procedure to derive them utilizing a B-net orientation rule.
We next discuss the process of computing integrals and inner product of B-form polynomials

which are required for the Galerkin projection. The integral of a B-form basis polynomial of degree
d and dimension n for any multi-index |κ| = d over the volume of its simplex ∆ is given by

∫

∆
Bd

κ(x)dx =
S∆

(

d+n
n

) (21)

where S∆ is the length (1d), area (2d), volume (3d) or hypervolume of the simplex. (21) leads
directly to inner products of any two B-form basis polynomials Bd1

γ , Bd2
κ . Using (14) we have

Bd1

γ Bd2

κ =
d1!d2!

γ!κ!
bκ+γ , Bd1+d2

γ+κ =
(d1 + d2)!

(γ + κ)!
bκ+γ (22)

It follows that

∫

∆
Bd1

γ Bd2

κ dx =

∫

∆

d1!d2!

γ!κ!

(γ + κ)!

(d1 + d2)!
Bd1+d2

γ+κ dx (23)

which with (21) results in

∫

∆
Bd1

γ Bd2

κ dx =
d1!d2!

(d1 + d2)!

S∆
(

d1+d2+n
n

)

(γ + κ)!

γ!κ!
(24)

In the same way it can be shown that the integral of the product of three B-form basis polynomials
Bd1

µ , Bd2
γ and Bd3

κ is given by

∫

∆
Bd1

µ Bd2

γ Bd3

κ dx =
d1!d2!d3!

(d1 + d2 + d3)!

S∆
(d1+d2+d3+n

n

)

(µ + γ + κ)!

µ!γ!κ!
(25)

4. Boundary conditions as side constraints

Similar to the continuity conditions (20), the boundary conditions (1b) are included as side con-
straints for the B-coefficients which are derived in this section. With standard finite element meth-
ods boundary conditions are commonly explicitly incorporated (Dirichlet type) in the finite element
basis or implicitly incorporated (Neumann type) using a suitable choice for the weak formulation
of the PDE. We treat them as side constraints to simplify the construction of the spline basis
that satisfies the boundary conditions. No modifications to the spline basis or to the weak for-
mulation are required for different types of boundary conditions. This also allows us to define a
model reduction scheme for the general class of linear parabolic PDEs in the next section. The side
constraints constrain the spline polynomials at the boundary such that the spline solution satisfies
the boundary conditions. The derivation of the constraints requires a new matrix formulation for
B-spline derivatives whose image is in the same polynomial space. This allows the formulation of
all differential operators in (2) in terms of a single degree polynomial basis which will also prove to
be essential in the model reduction framework. These derivatives are completely defined in terms
of a mapping acting on its B-coefficients and are derived by combining the de Castelau formulation
for the derivatives (de Visser, Chu, & Mulder, 2011) with a polynomial degree raising algorithm
(Hu et al., 2007).
We start by introducing a mapping that raises the degree of a simplex polynomial p ∈ Pd to

p ∈ Pd+m. Let p be a polynomial of degree d defined on a simplex ∆ written in the vector form

8
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(18), and let c be its coefficients. Then it can also be evaluated by (Hu et al., 2007)

Bd(x)c =
d!

(d+m)!
Bd+m(x)Ad+m,d

∆ c (26)

with Ad+m,d
∆ ∈ R

(d+m+n)!

n!(d+m)!
× (d+n)!

n!d! the degree raising matrix that raises the set of B-coefficients of
degree d into a set of B-coefficients of degree d+m (Hu et al., 2007). The right hand side of (26) is

again a B-form polynomial with Bd+m(x) the polynomial basis and d!
(d+m)!A

d+m,d
∆ c its B-coefficient

vector. It follows that the mapping given by c 7→ d!
(d+m)!A

d+m,d
∆ c transforms the B-coefficient vector

of p ∈ Pd to the B-coefficient vector of p ∈ Pd+m.
We next discuss derivatives of B-form polynomials. Let a = b∆j

(v) − b∆j
(0) = (a0, a1, · · · , an)

be the directional coordinate of the unit vector v in barycentric coordinates. Then the general kth
order derivative of a polynomial p of degree 1 ≤ k ≤ d in the unit directions v1, · · · , vk is given by
(Lai & Schumaker, 2007, pp.29)

Dvk · ·Dv1p(x) =
d!

(d− k)!

∑

|κ|=d−k

c(k)κ (a(1), · · · , a(k))Bd−k
κ (x) (27)

where c
(k)
κ (a(1), · · · , a(k)) are the quantities obtained after carrying out k steps of the de Castelau

iteration

c(k)κ (a) =
∑

|γ|=1

aγc
(k−1)
κ+γ (a), |κ| = d− k, k ≤ d (28)

using the directional coordinates a(1), · · · , a(k) of v1, · · · , vk in that order. For example, if we put

dκ = c
(1)
κ (a(1)), then c

(2)
κ (a(1), a(2)) = d

(1)
κ (a(2)). (28) can be written in matrix form (de Visser et

al., 2011)

c(k) = P d−k,d−k+1(a)c(k−1)(a) (29)

with P d−k,d−k+1 ∈ R
(d−k+n)!

n!(d−k)!
× (d−k+1+n)!

n!(d−k+1)! the one step de Castelau matrix (de Visser et al., 2011)
which reduces the set of B-coefficients of degree d−k+1 into a set of B-coefficients of degree d−k.
Using the vector formulation of the B-form polynomial (18) and the de Castelau algorithm (29),
the general derivative (27) can be written in matrix form

Dkp(x) =
d!

(d− k)!
Bd−k(x)P d−k,d(a(1), · · · , a(k))c (30)

with Dk = Dvk · · ·Dv1 and

P d−k,d(a(1), · · · , a(k)) = Πk
i=1P

d−i,d−i+1(a(i)) (31)

a multi-degree de Castelau matrix. (30) can be combined with polynomial degree raising (26) to
construct kth order derivatives whos image is in Pd−k+m

Theorem 2: Let p ∈ Pd be a B-form polynomial of degree 1 ≤ k ≤ d relative to simplex ∆, and

given a set of directions v1, · · · , vk described by the directional coordinates a(k) = (a
(k)
0 , · · · , a

(k)
n ).

The matrix form of the kth order derivative Dk = Dvk · · ·Dv1p ∈ Pd−k+m in the unit directions

9
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v1, · · · , vk is given by

Dkp(x) =
d!

(d− k +m)!
Bd−k+m(x)Ad−k+m,d−k

∆ P d−k,d(a(1), · · · , a(k))c (32)

Proof. The right hand side of (30) is a B-form polynomial in Pd−k with Bd−k(x) its polyno-
mial basis and c(k) = d!

(d−k)!P
d−k,d(a(1), · · · , a(k))c its coefficients. Applying the mapping c(k) 7→

(d−k)!
(d−k+m)!A

d−k+m,d−kc(k) to (30) to raise Dkp(x) ∈ Pd−k to Dkp(x) ∈ Pd−k+m gives the result in

(32)

The spline function s ∈ Sr
d(Ω) is guaranteed to be r-times continuously differentiable on the

domain Ω. The following corollary introduces a mapping for the B-coefficient vector to compute
derivatives of s and follows directly from Theorem 2.

Corollary 1: Given the B-coefficient vector c of s ∈ Sr
d(T ), the mapping c 7→ T

d−k+m,d
Dk c with

T
d−k+m,d
Dk = diag

(

d!

(d− k +m)!
Ad−k+m,d−k

∆ P d−k,d(a(1), · · · , a(k)
)J

j=1

(33)

maps the B-coeficients of s ∈ Sr
d(T ) to the B-coefficients of Dks ∈ Sr−k

d−k+m(T ), that is

Dk
[

Bd(x)c
]

= Bd−k+m(x)Td−k+m,d
Dk c (34)

Hence, any spatial derivative can simply be constructed by applying the mapping (33) in param-
eter space. Note that the spatial derivative Dα (3) of order |α| is a special case of Dk. Corollary 1 is
used to define a similar transformation matrix for the general linear differential operator (2) with
constant coefficients.

Theorem 3: Let L be a linear partial differential operator of order k given by (2) with constant

coefficients and given the B-coefficient vector c of s ∈ Sr
d(T ). Furthermore let Td,d

Dα be the transfor-

mation matrix that maps s ∈ Sr
d(T ) to Dαs ∈ S

r−|α|
d (T ) constructed using (33) with k = m = |α|.

Then the mapping c 7→ T
d,d
L c with

T
d,d
L =

∑

|α|≤k

aαT
d,d
Dα (35)

maps the B-coefficients of s ∈ Sr
d(T ) to the B-coefficients of Ls ∈ Sr−k

d (T ), that is L
[

Bd(x)c
]

=

Bd(x)Td,d
L c

Proof. Applying Corollary 1 the linear operator acting on s can be written in terms of a single
degree basis polynomial

L
[

Bd(x)c
]

=
∑

|α|≤k

aαD
α
[

Bd(x)c
]

=
∑

|α|≤k

aαB
d(x)Td,d

Dαc (36)

which can be written in the form L
[

Bd(x)c
]

= Bd(x)Td,d
L c where T

d,d
L is given by (35).

10
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This theorem is used to define the boundary constraints. The value of a B-form simplex polyno-
mial at the edge of the simplex is uniquely determined by the values of the B-coefficients located
on the edge (Awanou & Lai, 2004) (See also Figure 1). This implies that there is a matrix D which
maps the B-coefficients of s to the B-coefficients of s|Γ, that is s|Γ = B̃d(x)Dc, with B̃d(x) an n−1
B-form vector basis (Awanou & Lai, 2004). Or in other words, the action c 7→ Dc selects the

B-coefficients located on the boundary. Combined with theorem 3 it follows that c 7→ DT
d,d
LΓ

c maps

the B-coefficients of s to the B-coefficients of LΓs|Γ, that is LΓs|Γ = B̃d(x)DT
d,d
LΓ

c. Furthermore, by
Theorem 1 there is a unique n− 1 dimensional simplex polynomial that interpolates the actuator
distribution functions gΓ,i(x) at the domain points on the simplex face located on the boundary
Γ. Denote giΓ as the B-coefficient vector of the n− 1 dimensional spline function that interpolates
gΓ,i(x) over the complete set of domain points on the boundary Γ and define GΓ =

[

g1Γ · · · g
m
Γ

]

, we
may set

DT
d,d
LΓ

c(t) = GΓuΓ(t) (37)

to enforce that the spline solution satisfies the boundary condition (1b) approximately. Note that
in the case of homogeneous boundary conditions the B-coefficient constraints model the boundary
conditions exactly since no approximations are involved.

5. Model Reduction of linear parabolic PDEs

In this section the finite dimensional state space description of (1) is constructed using multivariate
splines. First the DPS is reduced to a finite set of coupled ODEs using Galerkin projection after
which the complete system of equations including the side constraints for the smoothness conditions
(20) and boundary conditions (37) is transformed to state space format using a null space approach
that significantly reduces the size of the system.
The spline approximation is determined through the following Galerkin type weak formulation:

Find y(x, t) ∈ L2
(

0, T ;Hk(Ω)
)

such that

∫

Ω

∂y(x, t)

∂t
v(x)dx =

∫

Ω

(

Ly(x, t) + g(x)u(t)

)

v(x)dx

LΓy(x, t) = gΓ(x)uΓ(t), on ΓT (38)

∀v ∈ V0 and t ∈ [0, T ], with Hk(Ω) the standard Sobolev space consisting of all functions whose
spatial derivatives up to k-th order exist in the weak sense and are in L2(Ω) and with V0 the space
associated with the test functions v(x)

V0 =
{

v ∈ Hk(Ω) : LΓv = 0
}

(39)

A common approach is to apply integration by parts and the Gauss-Green theorem to (38) to
lower the smoothness requirements and to implicitly incorporate natural (Neumann type) boundary
conditions in the weak formulation. This approach is not employed here since a spline basis of higher
degree and smoothness with the characteristics of the strong solution can easily be constructed.
We now define the spline approximation of (38). Let T be the triangulation of Ω if Ω is a

polygonal domain. Otherwise we choose the vertices on Γ such that T becomes the approximation
of Ω. Let d and r be two positive integers with d > r, r ≥ k − 1 and let S be a spline subspace
consisting of spline functions which are Cr inside Ω. We have that S ⊂ Sk−1

d (T ) ⊂ Hk(Ω). The

11
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finite dimensional approximation of y in Ω can be represented by

yN (x, t) = s(x, t) =
J
∑

j=1

∑

|κ|=d

c∆j

κ (t)Bd
κ(x) = Bd(x)c(t) (40)

with s ∈ S, N = Jd̂ and where the B-coefficients satisfy the Cr continuity conditions (20). In (40)
the B-form basis polynomials Bd

κ(x) are used as spatial basis functions and the B-coefficients as
time-varying expansion coefficients. Let S0 = S∩V0. The spline approximation of (38) with respect
to the spatial variables is s(·, t) ∈ S which must satisfy the approximate boundary conditions (37)
such that

∫

Ω

∂s(x, t)

∂t
sv(x)dx =

∫

Ω

(

Ls(x, t) + g(x)u(t)

)

sv(x)dx (41)

∀sv ∈ S0 and t ∈ [0 T ]. Recall from Theorem 3 that the differential operator acting on s can be
written in terms of a single degree basis polynomial

L
[

Bd(x)c(t)
]

=
∑

|α|≤k

aα(x)B
d(x)Td,d

Dαc(t) (42)

with T
d,d
Dα the transformation matrix that maps the B-coefficient vector of s ∈ Sr

d(T ) to the B-

coefficients of Dαs ∈ S
r−|α|
d (T ). Let cv be the B-coefficient vector of the test function sv ∈ S0 with

sv = Bd(x)cv , (41) can be written as

cTv

(∫

Ω

[

Bd(x)
]T

Bd(x)dx

)

ċ(t) = cTv

[

∑

|α|≤k

(∫

Ω
aα(x)

[

Bd(x)
]T

Bd(x)dx

)

T
d,d
Dα

]

c(t)

+cTv

(
∫

Ω

[

Bd(x)
]T

g(x)dx

)

u(t) (43)

which must hold for all B-coefficient vectors cv of splines in S0, that is for all cv satisfying the Cr

smoothness constraints Hcv = 0 and the homogeneous boundary constraints DT
d,d
LΓ

cv = 0. (43) is
written in terms of B-form polynomials by approximating the actuator distribution functions gi(x)
and the PDE coefficients aα(x) using B-splines. If these functions are continuous, interpolation is
the obvious choice. By theorem 1 there is a unique simplex polynomial that interpolates aα(x)
over the simplex domain points {ξ∆κ , |κ| = d}. Let aα be a B-coefficient vector with saα

(x) =
Bd(x)aα ∈ S0

d(T ) the spline interpolation of aα(x) over the complete set of domain points and
let gi be a B-coefficient vector with sgi(x) = Bd(x)gi ∈ S0

d(T ) the spline interpolation of gi(x)
and define G =

[

g1, g2, · · · , gm
]

, the projection condition (43) can be approximated in terms of
B-form polynomials by

cTv

(∫

Ω

[

Bd(x)
]T

Bd(x)dx

)

ċ(t) = cTv

[

∑

|α|≤k

(∫

Ω
Bd(x)aα

[

Bd(x)
]T

Bd(x)dx

)

T
d,d
Dα

]

c(t)

+cTv

(∫

Ω

[

Bd(x)
]T

Bd(x)dx

)

Gu(t) (44)

If aα(x) and gi(x) are not continuous, interpolation can still be used except that the interpolation
values should come from a suitable continuous approximation of aα(x) and gi(x) or one can use a

12
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piece-wise discontinuous polynomial approximation using for example a least squares fit (de Visser
et al., 2009).
The integral over a simplex ∆ of the product of two or more basis polynomials defined on different

simplices is always equal to zero because of their local support. It follows that the integrals in (44)
result in block diagonal matrices. Applying the integration gives

cTv Mċ(t) = cTv





∑

|α|≤k

Kα
T
d,d
Dα



 c(t) + cTv MGu(t) (45)

with M = diag(M∆) a mass matrix (Awanou & Lai, 2004) with blocks

M∆ =

[
∫

∆
Bd

κ(x)B
d
γ(x)dx

]

|κ| = d
|γ| = d

(46)

and Kα = diag(Kα
∆) a bending matrix with blocks

Kα
∆ =

[
∫

∆
Bd(x)aαBd

κ(x)B
d
γ(x)dx

]

|κ| = d
|γ| = d

=





∫

∆

∑

|µ|=d

Bd
µ(x)a

α
µB

d
κ(x)B

d
γ(x)dx





|κ| = d
|γ| = d

(47)

Using (24) and (25) the mass and bending matrices can be explicitly calculated with

M∆ =
d!d!

(2d)!

S∆
(2d+n

n

)

[

(γ + κ)!

γ!κ!

]

|κ| = d
|γ| = d

(48)

Kα
∆ =

d!d!d!

(3d)!

S∆
(

3d+n
n

)





∑

|µ|=d

aαµ
(µ+ γ + κ)!

µ!γ!κ!





|κ| = d
|γ| = d

(49)

Let K =
∑

|α|≤k K
α
T
d,d
Dα and F = MG, it follows that the B-coefficient vector c of the spline

approximation satisfies

cTv Mċ(t) = cTv Kc(t) + cTv Fu(t) (50a)

Hc(t) = 0 (50b)

DT
d,d
LΓ

c(t) = GΓuΓ(t) (50c)

for all B-coefficient vectors cv of splines in S0 satisfying Hcv = 0 and DT
d,d
LΓ

cv = 0. Existence and
uniqueness of c can be shown by using the same argument for the existence of the weak solution
satisfying (38) (Awanou et al., 2005; Lai & Wenston, 2004). We are interested in solving (50)
for ċ. A null space approach is proposed which significantly reduces the size of the system by the

rank of the side constraints. Let Q =
[

HT (DT
d,d
LΓ

)T
]T

and ḠΓ =
[

0T GT
Γ

]T
, the constraints

(50b) and (50c) can be written as

Qc(t) = ḠΓuΓ(t) (51)

13
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Let V be a basis for null(Q) such that QV = 0 and let cp(t) = CpuΓ(t) be a particular solution of
(51). The general solution set for (51) can be written as

c(t) = V c̃(t) + CpuΓ(t) (52)

with c̃ ∈ R
N−R∗

the coordinate vector of c relative to the basis for null(Q) and with R∗ the rank
of Q. Since Qcv = 0 for all B-coefficient vectors cv of splines in S0, the solution set for cv can be
written as cv = V c̃v Substituting this set for cv and the solution set (52) for c in (50) gives

c̃Tv V
TM

(

V ˙̃c(t) + Cpu̇Γ(t)
)

= c̃Tv V
TK

(

V c̃(t) + CpuΓ(t)
)

+ c̃Tv V
TFu(t) (53)

which is a reduced unconstrained system of order N − R∗ projected on the null space of the side
constraints. Since (53) must hold for all c̃v, (53) is equivalent to

(

V TMV
)

˙̃c(t) = V T [KV c̃(t) +KCpuΓ(t) + Fu(t)−MCpu̇Γ(t)] (54)

The null space method requires the construction of the null basis V for Q. We use the sparse null
space algorithm recently introduced in (Hölzel & Bernstein, 2014) which is in particular useful for
computing the null space of large sparse matrices. The particular solution is obtained as by-product
of the computations necessary to obtain V . For the measured output (1c) and the controlled output
(1d) the null space Galerkin method yields

zmk
(t) = Bd(xk)T

d,d
Lzm

[V c̃(t) + CpuΓ(t)] (55)

zci(t) =
(

φi
)T

MT
d,d
Lzc

[V c̃(t) + CpuΓ(t)] (56)

where T
d,d
Lz

maps the B-coefficient vector of s to the B-coefficient vector of Lzs and with φi the
B-coefficient vector of the spline that interpolates φi(x). Finally we obtain the system in state
space format

ẋN (t) = AxN (t) +Bū(t)

zNmk
(t) = Cmk

xN (t), zNci (t) = Ccix
N (t) (57)

where

xN (t) =
[

c̃T (t) uTΓ (t)
]T

, ū(t) =
[

uT (t) u̇TΓ (t)
]T

A =

[

(

V TMV
)−1

V TKV
(

V TMV
)−1

V TKCp

0 0

]

B =

[

(

V TMV
)−1

V TF −
(

V TMV
)−1

V TMCp

0 I

]

(58)

Cmk
=

[

Bd(xk)T
d,d
Lzm

V Bd(xk)T
d,d
Lzm

Cp

]

Cci =
[

(

φi
)T

MT
d,d
Lzc

V
(

φi
)T

MT
d,d
Lzc

Cp

]

Remark 1: The approximation power of the general multivariate spline space Sr
d(T ) is not fully

known. For bi-variate spline spaces full approximation power in all p-norms is achieved when
d ≥ 3r+2 (Lai & Schumaker, 1998) and (Lai & Schumaker, 2007, pp.276-286). The orthogonality

14
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of the Galerkin projection (41) ensures that the approximation yN is the best possible solution in
the space spanned by the basis functions. Specific bounds for the L2 norm of projections onto bi-
variate spline spaces S0

d(T ) and Sd
d(T ) with d ≥ 3r+2 are derived in (Von Golitschek & Schumaker,

2002).

6. Controller synthesis

The reduced order model (57) can be used to design any suitable linear controller. In this study
a quadratic optimal design is considered where the controlled output (56) is used to build the
objective function (11). The quadratic objective function (11) for the reduced order model becomes

J =

∫ ∞

0

(

xN
)T

CT
c Ccx

N + ūTRū dt (59)

Assuming that (A,B) is stabilizable the state feedback ū(t) = −Kcx
N (t) that minimizes (59) can

be computed by solving the associated algebraic Ricatti equation for (59). An output feedback
controller is obtained by combining the state feedback with a state observer and takes the form

u(t) = −Kcx̂
N (t)

˙̂xN (t) = Ax̂N +Bū(t) +Ko

(

zm(t)− ẑNm(t)
)

ẑNm(t) = Cmx̂N (t), x̂N (0) = x̂N0

(60)

where the observer gain Ko is tuned such that A−KoCm has desired stability margins. The closed
loop system consist of the actual DPS (9) combined with the controller (60)

[

ẋ
˙̂xN

]

=

[

Ā −B̄Kc

KoC̄m A−BKc −KoCm

] [

x
x̂N

]

(61)

When using reduced order models in the design of a control system, the truncated dynamics must
be taken into account in the stability analysis. Robustness with respect to the truncated dynamics
of reduced order controllers based on projections on non-modal subspaces, such as finite element
spaces and spline spaces, for the linear class of parabolic DPS treated in this paper has been
discussed in (Balas, 1983). In (Balas, 1983) precise conditions are derived under which model
reduction based on consistent Galerkin approximations will lead to stable infinite dimensional
control. In particular, provided that the infinite dimensional system is exponentially stable and
N sufficiently large, a controller which exponentially stabilizes the closed-loop ODE system, also
stabilizes the closed-loop parabolic PDE system. The assumption that the DPS is exponentially
stable is generally required in order to prove that the estimates are bounded for all times, that is
‖y − yN‖2 ≤ µ(N),∀t with µ(N) a positive number depending on N satisfying limN→∞µ(N) = 0
(Baker et al., 2000; Balas, 1983). In the next section we apply the reduction method to control
two unstable PDEs and analyze the closed loop stability by computing the eigenvalues of (61)
numerically. To compute the eigenvalues and to simulate the response of the system an accurate
high order model is used to represent the actual DPS, that is Ā, B̄ and C̄m in (61), and lower
order models are used to design the control system. For a given partitioning of the domain, the
degree and order of continuity of the splines basis can be chosen arbitrarily to derive these state
space models. The order of continuity is chosen equal to the continuity of the strong solution of the
PDE system. For the systems considered in the next section the strong solution is C2 smooth. The
degree of the control model can subsequently be tuned to obtain a desirable trade-off between the
order of the model and the accuracy of model, and thereby closed loop performance. We provide
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a closed-loop performance analysis for various degrees and selected the model that gives a good
balance between model order and performance to implement the controller.

7. Demonstration

In this section two representative PDE control problems are presented to demonstrate the imple-
mentation and to evaluate the effectiveness of the proposed model reduction scheme. In the first
case we consider stabilization of a 1-D unstable reaction diffusion process which is often considered
as a benchmark problem, see e.g. (Smyshlyaev & Krstic, 2004). For this problem an analytic so-
lution of the spatial differential operator eigenvalue problem is available which allows for a direct
comparison of the eigenvalues and stability eigenfunctions of the reduced order models with the
analytic solution. In the second case stabilization of a 2-D reaction-convection-diffusion equation
on an irregular spatial domain is considered for which analytic solutions of the spatial differential
operator eigenvalue problem are not possible. This is a non-trivial example which better illustrates
the potential of the spline reduction framework. We provide numerical convergence results for in-
creasing polynomial degrees and show that effective feedback stabilization can be achieved using
low order control models.

7.1 Boundary feedback stabilization of an unstable reaction-diffusion equation

In this demo boundary feedback control of an unstable reaction-diffusion equation with constant
coefficients is considered































∂y(x,t)
∂t = µ∂2y(x,t)

∂x2 + ay(x, t) in (0, 1) × (0,∞)
y(0, t) = 0, y(1, t) = u(t) in (0,∞)
y(x, 0) = sin(πx) in (0, 1)

zm(t) = ∂y(0,t)
∂x in (0,∞)

zc1(t) =
∫

Ω sin(πx)y(x, t)dx in (0,∞)
zc2(t) =

∫

Ω sin(2πx)y(x, t)dx in (0,∞)

(62)

where ∂y
∂x(0, t) is measured and y(1, t) is actuated. The coefficients are chosen as µ = 0.2, a = 4.

The complete system is converted to state space format using a C2(Ω) continuous spline basis of
various degrees defined on a uniform partitioning of the domain consisting of 3 and 6 simplices.
The dimension of the state space systems is listed in Table 1. For the system (62) the differential

operator is of the form Ay = µ ∂2y
∂x2 +ay and the exact solution of the differential operator eigenvalue

problem Aφj(x) = λjφj(x) is given by (Curtain & Zwart, 1995)

λj = a− µj2π2, φj(x) = sin (jπx) (63)

with j = 1, 2, ··,∞, λj the eigenvalues and φj the eigenfunctions. The case with µ = 0.2, a = 4
corresponds to one unstable eigenvalue at λ1 = 4−0.2π2 ≈ 2.03. Using this eigenfunction expansion
we can directly calculate power spectral density (PSD) of the differential operator (Jovanović &
Bamieh, 2006)

‖(iω −A)−1‖2HS = ‖F(ω)‖2HS =
∑

j∈N

1

ω2 + λ4
j

(64)

where ‖·‖HS denotes the Hilbert-Schmidt norm (generalization of the Frobenius norm for matrices).
Figure 2 shows the errors for the first four dominant eigenvalues of the reduced order models and
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Table 1.: Number of system states (Jd̂−R∗ + 1)

degree 3 4 5 6 7 8 9 10

T3 5 8 11 14 17 20 23 26
T6 8 14 20 26 32 38 44 50

Table 2.: Real part of the two least stable eigenvalues
of the closed loop system (61)

degree 3 4 5 6 7 8

σ1 -1.41 -2.47 -2.62 -2.69 -2.69 -2.69
σ2 -1.56 -3.29 -3.06 -3.09 -3.10 -3.10
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Figure 2.: The error of the first four dominant eigenvalues of the S2
d(T3) and

S2
d(T6) reduced order models

Figure 3 compares the PSD. It can be observed that the dominant modes converge quickly up to
numerical precision and that reduced order models only deviate at higher frequencies.
The control objective is to stabilize the state at its unstable equilibrium ȳ = 0. The controller

(60) is synthesized using s ∈ S2
d(T3) Galerkin models of various degrees. The controlled output

is build using the first two dominant eigenfunctions φ1(x), φ2(x) and the input weight is set to
R = 0.01. Adding more eigenfunctions to the controlled output or lowering the input weight did
not further improve the performance of the controller. An s ∈ S2

10(T6) Galerkin model is assumed
to represent the original DPS, that is Ā, B̄, C̄m in (61), and is used in the simulations. It is verified
that further increase of the order provided no improvement on the accuracy of the results. The real
part of the two least stable eigenvalues (pairs) of the closed loop system (61) is shown in Table
2. Higher degree controllers give a faster stabilization but no significant improvement is achieved
after d = 4; the dominant dynamics are accurately captured by low degree models. The closed loop
response for the s ∈ S2

4(T3) model based controller is shown in Figure 4. It can be observed that
the s ∈ S2

4(T3) model based controller provides a satisfactory performance and quickly stabilizes
the system.
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Figure 4.: Closed loop response of the s ∈ S2
4(T3) controller. An s ∈ S2

10(T6) Galerkin model is used
for simulating the response. (a) Response, (b) boundary control input, (c) L2 norm of the state

7.2 In-domain control of a reaction-convection-diffusion equation

In this demo in-domain feedback control of a reaction-convection-diffusion equation is considered
with spatially varying coefficients































∂y(x,t)
∂t = µ(x)∇2y(x, t)− v(x) · ∇y(x, t)

+a(x)y(x, t) + g(x)u(t) in ΩT
∂y(x,t)

∂n = 0 on Γ
y(x, 0) = 5 cos(π(x21 − 1)(x21 − 0.09))

−5 cos(π(x22 − 1)(x22 − 0.09))
zmk

(t) = zck(t) = y(xk, t), k = 1, · · · , 4

(65)

on a rectangular domain with a cut-out

Ω = {(x1, x2) , (x1, x2) ∈ (−1, 1)× (−1, 1) \ (−0.3, 0.3) × (−0.3, 0.3)}
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Table 3.: Dimension state space systems

(a) Number of states Jd̂−R∗

degree 4 5 6 7 8 9 10

T56 18 114 266 474 738 1058 1434
T120 32 232 552 992 1552 2232 3032

(b) State reduction R∗

degree 4 5 6 7 8 9 10

T56 822 1062 1302 1542 1782 2022 2262
T120 1768 2288 2808 3328 3848 4368 4888

A rotating velocity field is applied with v(x) = [ x2 −x1 ]T , the diffusivity is kept constant

µ(x) = µ = 0.05 and the reaction rate is chosen as a(x) = 0.5 cos(12πx1)e
x2 which has a destabi-

lizing effect. The system is controlled using four actuators whose spatial distributions are modeled
as Gaussian radial basis functions: gi(x) = exp[−(‖x− xc‖

2
2)/(2σ

2)] and 4 in-domain Dirichlet
measurements are used for feedback. The complete geometry is shown in Figure 5 along with the
triangulations used in this study. All state space models are derived using a C2 continuous spline
basis of various degrees defined on a triangulation consisting of 56 and 120 simplices. The dimen-
sion of the state space systems are listed in Table 3a and the size reduction R∗ resulting from the
null space projection is listed in Table 3b.
Since no analytic solution is available the state space systems are validated using a manufac-

tured solution (Roache, 2002). For this, we consider the system (65) with manufactured solution
y∗(x, t) = y(x, 0)u∗(t). Since the solution is not exact, inserting this solution into the PDE results
in a residual that does not cancel out. This residual is added as source term to the right hand side
of the PDE to create a modified PDE for which the artificial solution is correct and can thus be
used for comparison. A sinusoidal input is applied u∗(t) = cos(πt) and the resulting state-space
models are integrated over a time span of 1 second using a low sample time of ∆t = 0.001 to
minimize the errors from the time integration. The maximum error of spline solutions of various
degrees against the manufactured solution are shown in Figure 6.
S2
d(T56) state space models for the original system are used to synthesize the controller (60).

The measured output is also chosen as the controlled output and the input weight is set to R =
diag(0.01). A high order s ∈ S2

9(T120) model is assumed to represent original DPS and is used to
simulate the response. Figure 7 shows the real part of the most dominant eigenvalue of the closed
loop system for various sensor/actuator configurations. We were able to lower the degree to d = 5
after which the stabilization effect is lost at d = 4 which is in accordance with the validation results
in Figure 6. The s ∈ S2

6(T56) model gives a good balance between performance and model order,
see Table 3, and is used to implement the controller. Figure 8 shows the dominant eigenvalues of
the s ∈ S2

6(T56) control model and the s ∈ S2
9(T120) simulation model. It can be observed that the

eigenvalues of the control and simulation model coincide well and that they only differ significantly
in the highly damped region (Re λ < −4.5). As a result the controller effectively stabilizes the
system as can be seen in Figure 9. As a final study, we keep the s ∈ S2

6(T56) controller but vary
the number of observation points used for feedback (Figure 10a) and the number of actuators used
for control (Figure 10b). It can be observed that effective feedback stabilization can be achieved
using a minimal amount of sensors and actuators.
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Figure 5.: Control layout and triangulations. (a): domain, convective field v(x), actuator distribu-
tion contours gi(x) and sensor locations zi. (b): Triangulation with 56 simplices used for control
design. (c): Triangulation with 120 simplices used for simulation.
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Figure 6.: The maximum error versus degrees on T56 and
T120 with respect to the manufactured solution

8. Conclusions

This paper presented a new framework for model reduction of parabolic partial differential equa-
tions (PDEs) on general geometries using multivariate B-splines. The method uses Galerkin pro-
jection with B-splines to derive state space descriptions that can be used for control design. The
method can be used to design both in-domain and boundary feedback controllers for PDEs. The
effectiveness of the proposed reduction scheme is demonstrated using two examples, a 1-D un-
stable reaction-diffusion equation and a 2-D unstable reaction-convection-diffusion equation with
spatially varying coefficients on an irregular domain. Numerical convergence results show that the
proposed reduction scheme results in accurate low order models of the PDE. The reduced order
models are successfully applied to design and implement feedback controllers for the two test cases.
It is shown that effective feedback stabilization can be achieved using low order controllers with a
minimal amount of state information from sensors.
In this paper we restricted our attention to a class of linear PDEs. Significant work remains to be

done in applying this method to more complex PDE models of chemical processes and fluid flows.
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Such control problems are often formulated on higher-dimensional irregular geometries and are
very tractable by the multivariate spline reduction method. Future work will focus on extending
this method to coupled and nonlinear PDE systems to further evaluate its effectiveness for practical
applications of PDE control.
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Jovanović, M. R., & Bamieh, B. (2006). A formula for frequency responses of distributed systems with one

spatial variable. Systems & control letters , 55 (1), 27–37.
Lai, M.-J., & Schumaker, L. L. (1998). On the approximation power of bivariate splines. Advances in

Computational Mathematics , 9 (3-4), 251–279.
Lai, M. J., & Schumaker, L. L. (2007). Spline functions on triangulations (Vol. 110). Cambridge University

Press, Cambridge, UK.
Lai, M. J., & Wenston, P. (2004). Bivariate splines for fluid flows. Computers & fluids , 33 (8), 1047-1073.
Lasiecka, I., & Triggiani, R. (2000). Control theory for partial differential equations: Volume 1, abstract

parabolic systems: Continuous and approximation theories (Vol. 1). Cambridge University Press,
Cambridge, UK.

Li, H.-X., & Qi, C. (2010). Modeling of distributed parameter systems for applications—a synthesized
review from time–space separation. Journal of Process Control , 20 (8), 891–901.

Roache, P. J. (2002). Code verification by the method of manufactured solutions. Journal of Fluids
Engineering, 124 (1), 4-10.

Rowley, C. W. (2005). Model reduction for fluids, using balanced proper orthogonal decomposition. Inter-
national Journal of Bifurcation and Chaos , 15 (03), 997–1013.

23



September 15, 2016 International Journal of Control IJC˙SROM˙r1

Smyshlyaev, A., & Krstic, M. (2004). Closed-form boundary state feedbacks for a class of 1-D partial
integro-differential equations. IEEE Transactions on Automatic Control , 49 , 2185-2201.

Smyshlyaev, A., & Krstic, M. (2005). Backstepping observers for a class of parabolic PDEs. Systems and
Control Letters , 54 (7), 613-625.

Vazquez, R., & Krstic, M. (2007a). A closed-form feedback controller for stabilization of the linearized 2-D
Navier-Stokes Poiseuille system. IEEE Transactions on Automatic Control , 52 (12), 2298-2312.

Vazquez, R., & Krstic, M. (2007b). Control of turbulent and magnetohydrodynamic channel flows: boundary
stabilization and state estimation. Springer Science & Business Media.

Von Golitschek, M., & Schumaker, L. L. (2002). Bounds on projections onto bivariate polynomial spline
spaces with stable local bases. Constructive approximation, 18 (2), 241–254.

24


