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Exact Network Reconstruction from Complete
SIS Nodal State Infection Information Seems

Infeasible
Bastian Prasse and Piet Van Mieghem

Abstract—The SIS dynamics of the spread of a virus crucially depend on both the network topology and the spreading parameters.
Since neither the topology nor the spreading parameters are known for the majority of applications, they have to be inferred from
observations of the viral spread. We propose an inference method for both topology and spreading parameters based on a
maximum-a-posteriori estimation approach for the sampled-time Markov chain of an SIS process. The resulting estimation problem,
given by a mixed-integer optimisation problem, results in exponential computational time if a brute-force approach is employed. By
introducing an efficient and accurate, polynomial-time heuristic, the topology of the network can almost always be exactly
reconstructed. Notwithstanding, reconstructing the network with a reasonably high accuracy requires a subexponentially increasing
number of observations and an exponentially increasing computation time with respect to the number of nodes N . Such long
observation periods are hardly realistic, which justifies the claim in the title.

Index Terms—SIS Process, Network Reconstruction, Spreading Parameter Estimation, Bayesian Estimation

F

1 INTRODUCTION

E PIDEMICS on networks received much attention in re-
cent years [1]. Modern epidemics is a genuinely in-

terdisciplinary field and incorporates epidemiology, social
and computer sciences, mathematics and physics. Epidemic
models consist of two intertwined parts. The first part is
the network, which is characterised by the number N of
nodes and the L links between the nodes, specified by the
adjacency matrix A ∈ RN×N . The second part of epidemic
models is the dynamic behaviour of the viral spread, which
is mostly described by differential equations.

In the fundamental susceptible-infected-susceptible (SIS)
model, each node is either in a susceptible or an infected
state, which is specified by a Bernoulli random variable
xi(t) ∈ {0, 1}. For a node i in the SIS model, the susceptible
state at time t is denoted by xi(t) = 0 and the infected
state at time t is denoted by xi(t) = 1. Thus, for any node
there are two transitions possible in the SIS model, from
susceptible to infected and vice versa. The SIS model is
formulated in continuous time t ∈ R+, starting at t = 0.
The SIS model assumes that the curing process per node i
is a Poisson process with curing rate δ and that the infection
rate per link is a Poisson process with infection rate β. An
extension is the ε−SIS model, where a susceptible node also
suffers from self-infections, an event that is independent of
the number of infectious neighbours of the respective node
and characterised by the additive self-infection rate ε. The
knowledge of the underlying topology and of the curing
and infection rates is decisive for the prediction of the viral
spread and for the design of control strategies which aim for
steering the network towards a desired state.

• B. Prasse and P. Van Mieghem are with the faculty of Electrical Engineer-
ing, Mathematics and Computer Science, Delft University of Technology,
The Netherlands.
E-mail: {B.Prasse, P.F.A.VanMieghem}@tudelft.nl

This work considers the inverse problem of estimating
both the adjacency matrix A and the spreading parameters
β, δ and ε, given the knowledge of the viral states xi(t) of
all nodes i = 1, ..., N of the sampled-time Markov chain of
an ε-SIS process, described in Section 5, over a sequence of
n time slots.

Section 2 reviews related work. The nomenclature is
introduced in Section 3. Section 4 states our assumptions.
The sampled-time Markov chain of the ε-SIS process is
described in Section 5. The estimation problem is formulated
in a Maximum-A-Posteriori (MAP) sense in Section 6, which
gives rise to a mixed-integer programming problem. A
brute-force approach would require a computation time of
O(2N

2/2). In order to find a close-to-optimal point of the
mixed-integer programming problem in a feasible compu-
tation time for larger networks, an efficient heuristic based
on solving multiple convex problems is given in Section 7.
Numerical evaluations of the heuristic and the brute-force
approach are given in Section 8. The numerical experiments
show that a reconstruction of the network and, up to a small
error, an estimation of the spreading parameters is possible
for the SIS process. The crucial negative result of our work
is that the estimation requires an infeasibly high amount of
data, i.e. observations of the viral states xi(t) of all nodes,
for large networks.

2 RELATED WORK

Various methods for the network reconstruction were pro-
posed for the susceptible-infected (SI) and the susceptible-
infected-recovered (SIR) models, whereby infected nodes
remain infected, and hence contagious, or can be recovered,
respectively. Since in these models the nodes change their
state only once from susceptible to infected (and possibly to
recovered), it is usually not possible to infer the network

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for 
advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
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topology from observing the nodal states over time of
only one outbreak. To overcome this shortage of available
information for the network reconstruction for SI and SIR
models, a commonly employed setting is the observation
of multiple, independent outbreaks or cascades [2]. The
state-of-the-art network reconstruction methods for SI and
SIR models confine to a maximum-likelihood formulation
in discrete time [3], [4], [5], [6], [7], [8]. Besides network
reconstruction methods based on observing viral dynamics,
current research also focusses on other dynamical processes
on networks. For general dynamical systems, Peng et al. [9]
propose a parameter estimation method by a chaotic ant
swarm algorithm.

Substantially less attention has been drawn to the net-
work reconstruction for the SIS epidemics. For a discrete-
time SIS process in which all nodes change their viral state
simultaneously, Shen et al. [10] reconstruct the network
topology by observing the states of all nodes and employ
a heuristic which allows for compressed sensing. Vajdi and
Scoglio [11] formulate the network reconstruction for the
continuous-time SIS model in a Bayesian sense by utilising
the time intervals between infections as observations, derive
the closed-form expression for the posteriori distribution of
the infection rates and propose a Gibbs sampling approach
for a large number of uncertain links. Since in their work
the posterior probability densities of the infection rates
instead of the existence of links is estimated, they assume
the transmission rate for an existing link to be known in
order to deduce the existence of a link from the respective
infection rate. Under the assumption that the adjacency
matrix A is exactly known, Paré et al. [12] estimate the
spreading parameters β and δ of the N -Intertwined Mean-
Field Approximation (NIMFA) [13], [14], [15] of the SIS
process in discrete-time by observing the viral states xi(t)
of all nodes i over time t.

In this work, we assume the more general ε-SIS model
[16] in discrete-time without information on the network
topology A nor the spreading parameters β, δ and ε. Our
contribution consists of rigorously stating the estimation
problem for both the network topology and the spreading
parameters in a MAP, or Bayesian, sense, taking into account
every transition of the sampled-time Markov chain of the
SIS process. Furthermore, by solving the reconstruction
problem, we conclude that the topology and spreading
parameter estimation is hardly feasible in practice.

3 NOMENCLATURE

We denote the number of nodes in the graph by N . An
adjacency matrix is denoted by A and the elements of A
by aij . The set of all unweighted adjacency matrices A is
denoted by A. The probability of an adjacency matrix A
is denoted by Pr[A]. The probability density functions of
the continuous spreading parameters are given by fbeta(β),
fdelta(δ) and fepsilon(ε). Furthermore, the viral state of all
nodes at time k is the N×1 vector x[k]. The infected state of
node i at time k is indicated by xi[k] = 1 and the susceptible
state by xi[k] = 0. We denote all observations until discrete
time k by the N × k matrix X[k] = (x[k], x[k − 1], ..., x[1]).
The parameters which are to be estimated are contained
in the tuple θ = (A, β, δ, ε). The parameters are given by

the random variable Θ. The conditional probability density
function of the realisation θ of the parameters given the
observations X[k] is denoted by fΘ|X[k](θ) and the uncon-
ditional density by fΘ(θ).

4 ASSUMPTIONS

The sampling time T of the sampled-time Markov chain of
the SIS process needs to be ”small enough”, which is stated
more precisely by the following two assumptions.

1) The number of changes of nodal states per time de-
pends on the value of the spreading parameters β, δ
and ε, and the greater their value the more changes
of the nodal states per time. Since the exact values of
the spreading parameters are unknown, we cannot
directly state an upper bound on the sampling time
T . Instead, we assume that arbitrary but finite upper
bounds on the spreading parameters are available,
i.e.

β ≤ βmax, δ ≤ δmax and ε ≤ εmax

In Section 5, we derive an upper bound on the
sampling time T using the upper bounds on the
spreading parameters above.

2) The sampling time T of the sampled-time Markov
chain of the SIS process, introduced in Section 5, is
small enough such that describing the SIS process
by the first-order terms of the Taylor expansion
of the transition probabilities of the sampled-time
Markov chain of the SIS process is ”sufficiently accu-
rate”. This assumption translates into two require-
ments for the sampling time T : Firstly, each transi-
tion is observed, i.e. there is at most one transition
in the interval [kT, (k + 1)T ] for k ∈ N. Secondly,
the MAP estimate of the adjacency matrix A for
the continuous-time SIS process coincides with the
MAP estimate of the adjacency matrix A for the
sampled-time Markov chain of the SIS process.

For the estimation of the adjacency matrix A and the
spreading parameters β, δ and ε, the following assumptions
are made.

3) There is an arbitrary, but positive lower bound
available for β, i.e. 0 < βmin < β.

4) A-priori, the adjacency matrix A and the rates β, δ
and ε are stochastically independent distributed.
Furthermore, they are stochastically independent of
the first observation x[1].

5) The prior distribution Pr[A] of A ∈ A is logarithmi-
cally concave when extending the range of values
to the convex hull of A, i.e. log(Pr[A]) is concave
when the range of elements of A is extended from
aij ∈ {0, 1} to aij ∈ [0, 1]. Every nonnegative
concave function is logarithmically concave, but not
vice versa [17].

6) The unknown spreading parameters β, δ and ε are
assumed to be uniformly distributed in the in-
tervals described above, which complies with the
maximum-entropy principle [18].
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TABLE 1
Nomenclature

A Set of all adjacency matrices of simple graphs, A = {A ∈ {0, 1}N×N |aij = aji, aii = 0, ∀i, j}
β and βT Infection rate β and sampled-time infection intensity βT = Tβ

δ and δT Curing rate δ and sampled-time curing intensity δT = Tδ

ε and εT Self-infection ε rate and sampled-time self-infection intensity εT = Tε

N Number of nodes

n Number of time instants which were observed, n ∈ N
NN Set of natural numbers not greater than N , i.e. NN = {1, 2, ..., N}
Sθ Set of all possible parameter tuples θ

T Sampling time of the sampled-time Markov chain

θ Parameters which are to be estimated: θ = (A, β, δ, ε)

θ̃ Parameters θ after change of variables: β̃ = β−1
T , δ̃ = δT /βT , ε̃ = εT /βT

θ̃cvx,l Solution to the optimisation problem based on convex relaxation and line segment l

θheur,l The heuristic estimate for θ based on the l-th line segment

θheur The heuristic θheur,l which results in the minimum value of the objective function

u All-one vector u = (1, ..., 1)T ∈ RN

x[k] At time k: xi[k] = 0 denotes the susceptible and xi[k] = 1 the infected state of node i

X[k] All observations at time k and before, X[k] = (x[k], x[k − 1], ..., x[1])

w Number of line segments of the piecewise-linear approximation

Assumptions 4-6 are required for the MAP approach
in Section 6. All these three assumptions could be omitted
and a maximum-likelihood approach be employed instead,
which follows straightforwardly from the presented MAP
method by omitting the additive term of the prior distribu-
tion of the parameters θ. For the numerical experiments in
Section 8, we choose to generate the network topology A
and spreading parameters β, δ and ε such that assumptions
4-6 do hold. In Section 8, the MAP estimate is thus at
least as accurate as the maximum-likelihood estimate, and
the performance of the MAP estimate serves as a best-case
scenario in view of the difficulty of the estimation problem.

The Assumptions 1-3 are satisfied for continuous-time
SIS processes on real-world networks, which justifies the
application of the maximum-likelihood approach as intro-
duced in this work. On the other hand, Assumptions 4-
6 may not be not satisfied for the majority of real-world
networks. Hence, the introduced MAP procedure cannot be
used in a straightforward manner instead of the maximum-
likelihood approach for real-world networks.

5 SAMPLED-TIME ε-SIS PROCESS

The inverse problem of the reconstruction of the network
topology and the estimation of the spreading parameters,
given a number of measurements, is best described in
discrete-time. For epidemic processes on computer systems,
such as the spread of opinions on social media, the dynamics
are inherently in discrete-time due to the digital design of
hardware and software. For other epidemic processes, such
as the spread of a disease, it is reasonable to assume that
there is a limit to the temporal resolution of the empirical
measurements. In the following, the sampled-time Markov
chain for the SIS process is stated.

We denote the transition probability of the continuous-
time Markov chain of the SIS process from state i at time τ to
state j at time t+τ by Pij(t), which is independent of τ since

the SIS process is stationary. The sampled-time Markov
chain with sampling time T is a discrete-time Markov chain
[19], where the transition probabilities Pij from state i to
state j are given by the first-order Taylor expansion of
Pij(t),

Pij = P ′ij(0)T,

and the transition probabilities from state i to state i are
given by

Pii = 1−
N∑
l=1

Pil

The transition probabilities depend on the adjacency matrix
A and the spreading parameters β, δ, ε, which comprise the
compound parameter tuple θ = (A, β, δ, ε). Due to Assump-
tion 2, there are three transitions possible in the sampled-
time Markov chain of the ε-SIS process. These transitions
are listed below and their probabilities are inferred from
the continuous-time SIS equations. For all transitions, we
state upper bounds on the sampling time T , such that the
corresponding transition probabilities are in [0, 1].

1) A single node i changes from the infected state at
discrete time k to the susceptible state at discrete
time k + 1. The probability of this transition is

Pr
[
xi[k + 1] = 0|xi[k] = 1, x[k], θ

]
= δT, (1)

which needs to be smaller than one. Since δT =
δT ≤ Tδmax, T must obey

T ≤ 1

δmax
(2)

2) A single node i changes from the susceptible state
at time instant k to the infected state at time instant
k + 1 with the probability

Pr
[
xi[k + 1] = 1

∣∣∣xi[k] = 0, x[k], θ
]

=

(βNi(A, k) + ε)T,
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where Ni(A, k) is the number of infected nodes
adjacent to node i in A at time k. Since βT = βT ,
εT = εT and

Ni(A, k) =
N∑
j=1

aijxj [k], (3)

we obtain

Pr
[
xi[k + 1] = 1

∣∣∣xi[k] = 0, x[k], θ
]

=

εT + βT

N∑
j=1

xj [k]aij (4)

In order to ensure that Pr[xi[k + 1] = 1|xi[k] =
0, x[k], θ] is not greater than one, we consider the
upper bound

Pr
[
xi[k + 1] = 1

∣∣∣xi[k] = 0, x[k], θ
]
≤ εT + βTN

Since εT ≤ εmaxT and βT ≤ βmaxT , we obtain that
T must obey

T ≤ 1

εmax +Nβmax
(5)

3) The state of no node changes from time k to time
k + 1. Denote the susceptible and infected nodes,
respectively, at time instant k by

M0[k] = {j ∈ NN |xj [k] = 0}

and

M1[k] = {j ∈ NN |xj [k] = 1}

By denoting the all-one vector as u = (1, ..., 1)T , it
holds

|M0[k]| = uT (u− x[k]) (6)

|M1[k]| = uTx[k] (7)

Then, the probability of no change from time k to
k + 1 can be written as

Pr
[
x[k + 1] = x[k]

∣∣∣x[k], θ
]

= 1−
∑

j∈M1[k]

δT

−
∑

i∈M0[k]

(βTNi(A, k) + εT )

Using (3) and (7) gives

Pr
[
x[k + 1] = x[k]

∣∣∣x[k], θ
]

= 1− δTuTx[k]

−
∑

i∈M0[k]

εT + βT

N∑
j=1

aijxj [k]


With (6), we obtain

Pr
[
x[k + 1] = x[k]

∣∣∣x[k], θ
]

= 1− δTuTx[k]

− uT (u− x[k])εT −
∑

i∈M0[k]

N∑
j=1

βTaijxj [k]

Finally, since
∑
i∈M0[k] aij =

∑N
i=1(1−xi[k])aij and

uTu = N ,

Pr
[
x[k + 1] = x[k]

∣∣∣x[k], θ
]

= 1−NεT + (εT − δT )uTx[k]

−
N∑
j=1

βTxj [k]
N∑
i=1

(1− xi[k])aij (8)

In order to ensure that the expression for Pr[x[k +
1] = x[k]|x[k], θ] does not exceed one, we consider
the upper bound of (8)

Pr
[
x[k + 1] = x[k]

∣∣∣x[k], θ
]
≤ 1−NεT

+ (εT − δT )uTx[k], (9)

which follows from the fact that the sum in equation
(8) is not negative. If the upper bound (9) does
not exceed one, then also the transition probability
Pr
[
x[k + 1] = x[k]

∣∣∣x[k], θ
]

is bounded by one.
We consider two cases, depending on the values
the self-infection rate εT and the curing rate δT . If
εT ≥ δT , then we apply uTx[k] ≤ N and obtain the
following upper bound on the transition probability

Pr
[
x[k + 1] = x[k]

∣∣∣x[k], θ
]
≤ 1− δTN (10)

On the other hand, if εT < δT , the transition proba-
bility is upper bounded by

Pr
[
x[k + 1] = x[k]

∣∣∣x[k], θ
]
≤ 1−NεT , (11)

due to uTx[k] ≥ 0. Since the curing rate δT as well
as the self-infection rate εT are not negative, both
upper bounds (10) and (11) are smaller than or equal
to one. Thus, also the transition probability Pr

[
x[k+

1] = x[k]
∣∣∣x[k], θ

]
does not exceed one.

To ensure that the expression for Pr[x[k + 1] =
x[k]|x[k], θ] is not negative, we deduce from (8)

Pr
[
x[k + 1] = x[k]

∣∣∣x[k], θ
]
≥ 1−NεT

+ (εT − δT )uTx[k]− βT
N∑
j=1

xj [k]
N∑
i=1

(1− xi[k]),

since aij ≥ 0. Furthermore, it holds

Pr
[
x[k + 1] = x[k]

∣∣∣x[k], θ
]
≥ 1−NεT

+ (εT − δT )uTx[k]− βT
N2

4
, (12)

which follows after minimisation with respect to
ξ =

∑N
j=1 xj [k], and the minimum is attained at

ξ = N
2 . Assumption 1 states the bounds on the in-

fection and curing rates, namely βT = βT ≤ βmaxT ,
δT ≤ δmaxT and εT ≤ εmaxT . Using these bounds on
the spreading parameters and the bound (12), we
obtain that the transition probability Pr

[
x[k + 1] =
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x[k]
∣∣∣x[k], θ

]
is not negative if the sampling time T

satisfies

T ≤ 4

N2βmax + 4N max{εmax, δmax}
(13)

The upper bound on T in (13) is smaller than both
bounds in (2) and (5) and, hence, condition (13) is a sufficient
condition for all transition probabilities of the sampled-time
Markov chain to lie in the interval [0, 1].

6 MAXIMUM-A-POSTERIORI FORMULATION

The estimation problem is stated in the MAP sense. Given
all measurements X[n] = (x[n], ..., x[1]), we aim to find the
parameter tuple θMAP, which maximises the posterior:

θMAP = arg max
θ∈Sθ

fΘ|X[n](θ), (14)

where Sθ denotes the set of feasible solutions for the pa-
rameter tuple θ according to the assumptions in Section 4,
i.e.

Sθ = A× [βmin, βmax]× [0, δmax]× [0, εmax],

where S1 × S2 denotes the Cartesian product of set S1 and
set S2.

Applying the MAP estimation method is motivated
especially by two facts. Firstly, the estimation problem is
translated into an optimisation problem, which often allows
for an efficient computation due to the advances in modern
optimisation theory and the availability of high performance
computers [20], [21].

Secondly, the MAP method exhibits two important
accuracy properties for continuous parameter estimation,
namely the MAP estimation gives an unbiased and efficient
estimator. In order to introduce these accuracy properties,
we denote an arbitrary estimator of the true parameters
θ given n observations by θ̂(n). Since the observations
are generated by a random process, e.g. the ε-SIS process,
and the estimator θ̂(n) is a non-trivial mapping of these
observations, the estimator θ̂(n) is a random variable.

The first accuracy property of the MAP estimator is that,
under mild conditions, the MAP estimator is (uncondition-
ally) unbiased, which means that its expectation E[θ̂(n)]
equals the true parameters, if θ̂(n) equals the MAP estimator
[22, Theorem 4.16].

In order to state the second property of the MAP estima-
tor, we refer to the bound on the highest attainable accuracy
of estimators, which was discovered independently by Rao
[23] and Cramér [24], in 1945 and 1946, respectively. Under
mild conditions, the Cramér-Rao inequality [22] gives a
lower bound on the mean square error for any estimator
θ̂(n),

E[(θ̂(n)− θ)(θ̂(n)− θ)T ] �M(n,X[n], fΘ), (15)

where for matrices A,B, we denote by A � B that A − B
is a positive semidefinite matrix, M(n,X[n], fΘ) is a matrix
depending on the number of observations n, the observa-
tions X[n] and the prior distribution fΘ of the parameters
θ. An estimator θ̂(n) is efficient if equality in (15) holds. The
importance of the MAP estimator stems from the fact that
if an unbiased efficient estimator exists, then it coincides

with the MAP estimator1. We emphasise that the bound
(15) solely depends on the estimation problem and not on
the specific estimator θ̂(n). Hence, the bound, together with
the equality-achieving MAP estimator, gives a measure of
difficulty of the respective estimation problem.

The Cramér-Rao bound requires the parameters θ to be
continuous. For the ε-SIS process considered in this work,
the parameters are not continuous due to the binary-valued
adjacency matrixA. Only recently, attention has been drawn
to establishing accuracy bounds on estimators for discrete
parameter settings [25]. Motivated by translating the es-
timation into an optimisation problem and the strength
for completely continuous parameter estimation, the vast
majority of approaches to network reconstruction rely on
maximum-likelihood or MAP estimation methods [3], [4],
[5], [6], [7], [8].

The optimisation problem (14) is translated into a mixed-
integer program. Bayes’ theorem gives

fΘ|X[n](θ) =
Pr [X[n]|θ] fΘ(θ)

Pr [X[n]]
,

and, since the SIS process is Markovian [19, Chapter 9],

fΘ|X[n](θ) =
Pr [x[1]|θ]
Pr [X[n]]

fΘ(θ)
n∏
k=2

Pr [x[k]|x[k − 1], θ] (16)

The term Pr [X[n]] is not a function of θ and neither is
Pr [x[1]|θ] = Pr [x[1]], since θ and x[1] are stochastically
independent by Assumption 4 in Section 4. Hence, the first
factor of (16) can be neglected and the estimation problem
(14) becomes

θMAP = arg max
θ∈Sθ

Pr[A]fbeta(β)fdelta(δ)fepsilon(ε)·

·
n∏
k=2

Pr [x[k]|x[k − 1], θ] ,

since A, β, δ and ε are stochastically independent by As-
sumption 4. The spreading parameters β, δ and ε are uni-
formly distributed by Assumption 6, thus the last three
factors can be neglected, and by taking the logarithm (pre-
serving the same optimum), we obtain

θMAP = arg max
θ∈Sθ

log (Pr[A]) +
n∑
k=2

log (Pr [x[k]|x[k − 1], θ])

(17)
We denote the set of the time instants of the infections of

node i as

H01[i] = {k ∈ Nn|xi[k + 1] = 1 ∧ xi[k] = 0}

1. For a finite number of observations n, the Cramér-Rao inequality
can be stated in two versions, either neglecting the prior distribution fΘ

of the parameters θ [22, Theorem 4.13] or taking the prior distribution
into account [22, Theorem 4.17]. The former bound is attained for
maximum-likelihood estimators and the latter, and tighter, bound is
attained for MAP estimators. The bounds coincide when the observa-
tion length n tends to infinity. In other words, considering the prior
distribution of the parameters θ in the estimation procedure only has
an impact on the accuracy for small observation lengths n.
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Furthermore, we denote the set of time instants which cor-
respond to the curing of a node and to a constant transition,
respectively, as

H10 = {k ∈ Nn|∃i ∈ NN : xi[k + 1] = 0 ∧ xi[k] = 1}
Hconst = {k ∈ Nn|∀i ∈ NN : xi[k + 1] = xi[k]}

The addends of the optimisation problem (17) corre-
spond to the time instant of either one of the sets H01[i], H10

or Hconst. We obtain

θMAP = arg min
θ∈Θ

fobj(θ),

where the objective function arises from the expressions for
the transition probabilities (1), (4) and (8), and is explicitly
given by

fobj(θ) = − log(Pr[A])−
∑
k∈H10

log (δT )

−
N∑
i=1

∑
k∈H01[i]

log

εT + βT

N∑
j=1

xj [k]aij


−

∑
k∈Hconst

log
(

1−NεT + (εT − δT )uTx[k]

+ βT
∑
i,j

xj [k](xi[k]− 1)aij
)

(18)

Since transitions can occur multiple times, i.e. x[k1] = x[k2]
and x[k1 − 1] = x[k2 − 1] for k1 6= k2, the objective function
fobj(θ) may contain the same addends multiple times and
they can be replaced by a single addend weighted with
the multiplicity of the addend. By formulating θ ∈ Sθ as
constraints, the MAP estimation is given by the following
mixed-integer programming optimisation problem

minimise
θ

fobj(θ)

subject to aij ∈ {0, 1} ∀i, j
Tβmin ≤ βT ≤ Tβmax

0 ≤ δT ≤ δmaxT

0 ≤ εT ≤ εmaxT

(19)

The solution to the above optimisation problem (19) is de-
noted by θMAP. The optimisation problem (19) can be proved
to be NP-hard [26], for any connected true adjacency matrix
A, on which the SIS viral state sequence x[1], ..., x[n] was
generated. If the considered graph is simple, i.e. undirected
and without self-loops, the constraints aij = aji and aii = 0
can be added to the optimisation problem. For ease of
exposition, these constraints are not explicitly stated in the
following.

The optimum θMAP of problem (19) can be found by
a brute-force algorithm, whose computation time is in
O(2N(N−1)/2). Thereby, the minimum of the optimisation
problem (19) is computed for every possible N × N adja-
cency matrix A1, A2, ... ∈ A. For a fixed A = Am, where
m ∈ {1, ..., 2N(N−1)/2}, the optimisation is performed with
respect to the three spreading parameters βT , δT , εT , and
the objective function (18) is convex, since the objective
function is a sum of composition of negative logarithms and
linear functions. The brute-force approach yields 2N(N−1)/2

feasible points θm, one for each Am, and the solution θMAP

to the optimisation problem (19) is given by the feasible
point which results in the minimal objective value. Since
a computational complexity of O(2N(N−1)/2) is infeasible
for large N , a heuristic based on convex relaxation and
piecewise-linear approximation is presented in the Section
7.

7 HEURISTIC BY PIECEWISE-LINEAR APPROXI-
MATION AND CONVEX RELAXATION

A common heuristic for solving mixed integer program-
ming problems is based on the solution of a convex opti-
misation problem which results from relaxing the integer
constraint [17], i.e. replacing aij ∈ {0, 1} by aij ∈ [0, 1].
However, the objective function fobj given by (18) contains
the terms βaij which render fobj non-convex also when
applying the convex relaxation of the integer constraint.

The intuitive approach of introducing a new variable
ãij = βTaij and relaxing the binary constraint ãij ∈ {0, βT }
to ãij ∈ [0, βT ] cannot be straightforwardly employed.
Firstly, there is no guarantee that expressing log(p[A]) by
ãij (and possibly by βT ) results in a convex function.
Secondly, even if A is assumed to be uniformly distributed
and the term log(p[A]) can hence be omitted, replacing
βTaij by ãij would erase βT in the objective fobj, and
βT would only appear in the constraints ãij ∈ [0, βT ]
and Tβmin ≤ βT ≤ Tβmax. Thus, setting βT = Tβmax
would always be a solution to the corresponding convex
optimisation problem since the constraint [0, Tβmax] is the
least restrictive interval for ãij . It is not obvious how to
infer an estimate βT which does not equal Tβmax, and
furthermore, how to deduce aij = 0 or aij = 1 from a
solution 0 < ãij < Tβmax.

We propose a heuristic by translating the non-convex
optimisation problem (19) into w convex optimisation prob-
lems with the solutions θ̃cvx,l for l = 1, ..., w. The translation
is achieved by a transformation of the optimisation vari-
ables, i.e. θ̃ = t(θ) for a bijective function t, a piecewise-
linear approximation of non-convex terms of the objective
function with w line segments and by a convex relaxation of
the binary constraint aij ∈ {0, 1}. The greater the number
of line segments w, the more accurate is the piecewise-linear
approximation. We refer the reader to the Appendix for
details.

The solutions θ̃cvx,l = (Acvx,l, β̃cvx,l, δ̃cvx,l, ε̃cvx,l), l =
1..., w, correspond to a non-binary estimates of the links, i.e.
(Acvx,l)i,j may neither be 0 nor 1. Considering that the links
have to be binary-valued, a heuristic is employed which
aims for finding an estimate that approximates the exact
solution θMAP of the original optimisation problem (19). For
each θ̃cvx,l, the following two steps are performed.

1) The solution θ̃cvx,l of the optimisation problem (22)
corresponds to a non-binary valued adjacency ma-
trix Acvx,l. To obtain a binary-valued solution, we
round the elements of Acvx,l to the nearest integer,
which results in the heuristic estimate denoted by

(Aheur,l)ij =

{
1 if (Acvx,l)ij ≥

1
2

0 if (Acvx,l)ij <
1
2

(20)
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2) The binary-valued heuristic estimates for the ad-
jacency matrix Aheur,l, together with the estimates
β̃cvx,l, δ̃cvx,l, ε̃cvx,l for the spreading parameters ob-
tained by the convex problems (22), do realise a
feasible point to the original optimisation (19). How-
ever, a better estimation of the three rates, for Aheur,l
given, can be performed as follows.
When A is fixed to Aheur,l, the objective of the
original problem (19) becomes a function of the
three rates, i.e.

fobj,l(βT , δT , εT ) = fobj(Aheur,l, βT , δT , εT ), (21)

The function fobj,l(βT , δT , εT ) is convex with respect
to βT , δT , εT . Hence, the function fobj,l(βT , δT , εT )
can be efficiently minimised with respect to these
three variables, whereby the constraints of the origi-
nal optimisation problem (19) have to be considered
(the constraints are also convex with respect to
βT , δT , εT ). The reduced-size optimisation problem
is also called convex restriction [27] of the original
optimisation problem at the point Aheur,l.
The refinement of the spreading parameters
by convex optimisation results in an heuris-
tic estimate, which is denoted by θheur,l =
(Aheur,l, βheur,l, δheur,l, εheur,l). As the heuristic is per-
formed for every line segment l = 1, ..., w, we
obtain w solution candidates θheur,l.

The final estimate of the presented heuristic estimation
approach is denoted by θheur and is given by the candidate
θheur,l which results in the minimal value of the objective
function (18), i.e.

θheur = arg min
{
fobj (θheur,l)

∣∣∣l = 1, ..., w
}

(22)

The corresponding value of the objective function is denoted
by fheur = fobj(θheur).

In pseudocode, the approach for determining a heuristic
estimate θheur is given by Algorithm 1. The presented algo-
rithm allows for parallelisation in a straightforward manner
since θheur,l can be obtained independently for the different
line segments l.

Algorithm 1 Heuristic for SIS Network Reconstruction and
Spreading Parameter Estimation

1: Input: Observations X[n]
2: Output: Heuristic for MAP estimate θheur
3: fheur ←∞
4: for l = 1, ..., w do . Piecewise-linear approximation

with w segments
5: Obtain θ̃cvx,l = (Acvx,l, β̃cvx,l, δ̃cvx,l, ε̃cvx,l) by solving

the convex optimisation problem (22)
6: Obtain binary Aheur,l from non-binary Acvx,l by

rounding (20)
7: Obtain (βheur,l, δheur,l, εheur,l) by minimising the con-

vex fobj,l(βT , δT , εT ) given by (21)
8: if fobj (Aheur,l, βheur,l, δheur,l, εheur,l) < fheur then
9: θheur ← (Aheur,l, βheur,l, δheur,l, εheur,l)

10: fheur ← fobj(θheur)
11: end if
12: end for

8 NUMERICAL EVALUATION

Both the heuristic estimation approach, resulting from con-
vex relaxation and piecewise-linear approximation, and the
brute-force approach are numerically evaluated. Multiple
Erdős-Rényi graphs are generated randomly. For each of
these graphs, the nodal infection state matrixX[n] is created
by a random number generator according to the transition
probabilities of the sampled-time ε-SIS process described in
Section 5. The nodal states X[n] are then given as input to
the estimation procedures. A solution to the optimisation
problems (22) of the heuristic is obtained by the Matlab
command fmincon. The expression for the gradient of
the respective objective function is provided to the solver
fmincon. The resulting estimated graph and spreading
parameters are compared with the true parameters.

We choose the link probability p of the Erdős-Rényi
model such that the generated random graphs are connected
with a high probability, which holds if p is significantly
greater than the threshold log(N)/N . By setting p = 0.7,
we ensure p > 2 log(N)/N for all networks considered in
the numerical evaluation, which are of sizeN = 4 or greater.
For Erdős-Rényi random graphs, the logarithm of the prior
distribution of the adjacency matrix A is given by

log (Pr[A]) =
1

2
N(N − 1) log (1− p)

+ log

(
p

1− p

) N∑
i=1

N∑
j=1

aij (23)

Only the second addend depends on A and has to be
considered for the optimisation. Alternatively, prior infor-
mation on the link density could be considered by replacing
log (Pr[A]) by ρ

∑
ij aij , where ρ is the sparsity parameter

[6].
The brute-force and the heuristic estimation of Section 7

are compared for small2 network sizes N = 4, 5, 6 and for
gradually increasing observation lengths from n = 100 to
n = 5000. Furthermore, the heuristic estimation approach is
numerically evaluated for larger networks up to N = 24
nodes and for gradually increasing observation lengths
ranging from n = 103 to n = 106. For each pair of number
of nodes N and observation length n, 103 networks are
randomly generated according to the Erdős-Rényi random
graph model with p = 0.7 - except for the comparison of
brute-force and heuristic in Subsection 8.1, where 2 · 103

networks are created.
The spreading parameters are set to β = 2/3, δ = 1

and ε = 0.01. The upper bounds on the parameters are set
to βmax = 1, δmax = 1 and εmax = 1. The lower bound
on the infection rate is set to βmin = 0.1β = 2/30. The
sampling time T is set as large as possible, considering the
upper bound (13). Every node is set initially to the infected
state, i.e. x[1] = u. For the heuristic approach presented in
Section 7, the number of line segments for the piecewise-
linear approximation is set to w = 10.

The accuracy of the resulting estimates is compared as
follows. For the spreading parameters β, δ and ε, the error

2. The ratio of possible adjacency matrices grows exponentially with
respect to N . For N = 6, there are approximately 3 · 104 possible
adjacency matrices and for N = 7 there are approximately 2 · 106

possible matrices.
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of the estimates is defined as the relative deviation, i.e. (β−
β̂)/β, where β̂ is the estimate and β the true value (the
error of δ and ε is defined analogously). For the adjacency
matrix, the error is defined as (Â − A)/L, where Â and A
are the estimated and true adjacency matrix, respectively,
and L = (N − 1)N/2 is the number of possible links.

8.1 Evaluation of the Heuristic Estimation Method
The heuristic based on convex relaxation and piecewise-
linear approximation, as introduced in Section 7, and the
exact brute-force algorithm are compared with respect to
accuracy and computation time. Figure 1 depicts that for al-
most every randomly generated graph the heuristic and the
brute-force estimates are identical. Figure 2 demonstrates
the difference in computation time of the heuristic and exact
brute-force approach.

We aim to justify the convex relaxation of the binary
constraints of the MAP estimation problem (19), i.e. the
replacement of the constraints aij ∈ {0, 1} by aij ∈ [0, 1].
We set the spreading parameters to their true value and
consider the estimation only with respect to the adjacency
matrix A:

Acvx = arg min
A

fobj(A, βT , δT , εT )

s. t. aij ∈ [0, 1] ∀i, j
(24)

Figure 3 illustrates the error of the non-binary estimate Acvx
and the rounded, binary estimate Aheur. The accuracy of
the non-binary estimateAcvx increases monotonically, which
justifies the convex relaxation of the binary constraints of the
MAP estimation problem (19).

102 103

0

2

4

·10−3

Observation Length n

R
a
ti
o
R
d
iff

N=4

N=5

N=6

Fig. 1. Accuracy of heuristic: Fraction Rdiff of the 2 · 103 randomly
generated graphs for which the results of the heuristic and the exact
brute-force methods do not coincide.

8.2 Accuracy of Estimation Depending on Observation
Length
The dependency of the accuracy of the heuristic estimate
θheur, given by equation (22), on the number of observation
samples n is depicted in Figure 4. The figure shows that for
a sufficiently large observation length, the adjacency matrix
can be reconstructed with the heuristic approach almost
always exactly. The network size N has not a great impact
on the accuracy of the estimate for δ, but the network size
N does have a considerable impact on the goodness of the
estimates of both β and ε. The accuracy of the estimate of the

4 4.5 5 5.5 6
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e
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] n=100 bf n=100 heur
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n=5000 bf n=5000 heur

Fig. 2. Comparison of computation time of heuristic (heur) and brute-
force (bf) approach in dependency of the number of nodes N .
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N=10 heur

N=15 cvx

N=15 heur

N=20 cvx
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Fig. 3. Accuracy of the non-binary estimate Acvx, given by (24), and
the rounded estimate Aheur in dependency of the observation length n.
Discontinued graphs in the logarithmically scaled plot refer to zero errors
of the estimate of A.

self-infection rate ε is not monotonically increasing when the
number of observations n is small and the adjacency matrix
A is reconstructed very poorly.

To evaluate the introduced network reconstruction
method for real-world networks, we consider the Zachary
karate club [28] with N = 34 nodes and the network of
windsurfers [29] with N = 43 nodes. We accessed the
networks via the Konect network collection [30]. In both
networks, the nodes refer to an individual, and the edges
refer to a tie or interpersonal contact of the individuals, re-
spectively. For the two networks, 100 different SIS viral state
sequences x[1], ..., x[n] were created. Since the prior distri-
bution is not available, we perform a maximum-likelihood
estimation by omitting the term log(Pr[A]) in the objective
function (17). Figure 5 depicts the resulting accuracy of
the estimates of the adjacency matrices A, averaged over
the 100 different SIS viral state traces, in dependency of
the observation length n. For both networks, the number
of observations n is very large if a reasonable estimation
accuracy is to be achieved.

8.3 Impact of Self-Infections

The ε-SIS model is more general than the SIS-model without
self-infections (ε = 0), and the network reconstruction
method in this work is applicable in both cases. Without
the presence of self-infections, the virus can die out, which
means that xi[k] = 0 for all nodes i and some time k. If
the virus dies out at time k, then we reset the viral state to
the all-one vector: x[k + 1] = u. If the self-infection equals
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Fig. 4. Accuracy of reconstructed network and estimated parameters
in dependency of the observation length n. Discontinued graphs in the
first, logarithmically scaled plot refer to zero errors of the estimate of A.

ε = 0, then only the infection rate β, the curing rate δ and
the adjacency matrix A are estimated in the MAP problem
(19). Figure (6) illustrates the impact of self-infections on the
accuracy of the network reconstruction and estimation of
the infection rate β. The accuracy of the network A changes
to a negligible extend when self-infections do not occur. For
larger observation lengths n, the accuracy of the estimation
of the infection rate β deteriorates in the presence of self-
infections.
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Observation Length n

E
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r
A

Karate Club (N = 34)

Windsurfers (N = 43)

Fig. 5. Accuracy of reconstructed network and estimated parameters in
dependency of the observation length n, for two real-world networks.
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Fig. 6. Impact of self-infections: Comparison of accuracy of recon-
structed network and estimated spreading parameters in dependency
of the observation length n. Discontinued graphs in the logarithmically
scaled plot refer to zero errors of the estimate of A.

8.4 Impact of Knowledge of Spreading Parameters

In some cases, the spreading parameters β, δ and ε may be
available, and the estimation problem reduces to finding
the adjacency matrix A. Figure (7) depicts the error of the
reconstructed network for the two cases of known and
unknown spreading parameters. If the spreading param-
eters are known, then the network reconstruction method
performs better -especially for large observation lengths n-
than if the spreading parameters are unknown.

8.5 Impact of the Value of the Infection-Rate

The greater the infection rate β, the more nodes are infected
in the metastable state of the SIS process, which may have
an impact on the accuracy of the network reconstruction.
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Fig. 7. Impact of knowledge of spreading parameters: Comparison of
accuracy of reconstructed network with knowledge of spreading pa-
rameters (sp) and without knowledge of spreading parameters (no sp).
Discontinued graphs in the logarithmically scaled plot refer to zero errors
of the estimate of A.

We aim to choose the spreading parameters close to the epi-
demic threshold, which is decisive for the average number
of infected nodes in the metastable state.

We generate adjacency matrices A with N = 22 nodes
by the Erdős-Rényi model with the link probability p = 0.1,
and keep 1000 connected adjacency matrices. Since we dis-
card disconnected adjacency matrices, the prior distribution
(23) is not correct, and we perform a maximum-likelihood
estimation instead by omitting the term log(Pr[A]) in the
objective function (17). For each generated adjacency matrix
A, the infection rate β is set to a multiplicity l ∈ R of
the lower bound on the epidemic threshold given by [19,
Theorem 17.3.1],

β

δ
= lτ (1)

c = l
1

λ1
,

where λ1 is the spectral radius of the adjacency matrix A
on which the SIS process is run. The largest eigenvalue λ1

of an N × N adjacency matrix is bounded by λ1 ≤ N − 1
and λ1 ≥ 2L/N , where L is the number of links of the
adjacency matrix A. For Erdős-Rényi random graphs, the
expected value of the lower bound on the eigenvalue λ1 is
E[2L/N ] = (N − 1)p. For a given multiplicity l, we set the
bounds of the infection rate to βmin = 0.1l(N − 1)−1 and
βmax = 10l(p(N − 1))−1. We set the curing rate to δ = 1
and the self-infection rate to ε = 0.01. Figure 8 illustrates
the network reconstruction error versus the infection rate β.

8.6 Impact of Knowledge on Prior Distribution
In Figure 9, the impact of knowledge of the prior distri-
bution of the adjacency matrix A on the accuracy of the
estimation is depicted. For the link probabilities p = 0.7
and p = 0.9, the heuristic estimation as presented in Section
7 is performed in two versions. The first version assumes
that a-priori knowledge is available and sets the term of
the a-priori distribution Pr[A] in the objective function (18)
accordingly. The other version assumes that there is no
a-priori knowledge available and the term Pr[A] in the
objective function (18) is omitted, which is equivalent to
assuming a uniform distribution of A. The plot shows that,
if no a-priori knowledge is available, then the estimation
accuracy for A is worse for small observation lengths n but
the estimation accuracy converges to the accuracy of the

1
2
τ
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c τ
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c 2τ
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c 4τ
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n = 2 · 104 n = 3 · 104 n = 5 · 104

n = 1 · 105 n = 2 · 105

Fig. 8. Average error of estimates of A in dependency of the infection
rate β.

case where a-priori knowledge is available if n increases.
The observation is due to the fact that the ratio of log(Pr[A])
to fobj(θ) in (18) converges to zero as the observation length
n tends to infinity. For p = 0.9 the relative gap is larger than
for p = 0.7, which is align with the intuition that a-priori
knowledge of the distribution of the adjacency matrix A has
more impact when A is randomly generated by a random
graph model with higher entropy.
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Fig. 9. Impact of a-priori knowledge: Comparison of accuracy of re-
constructed network and estimated spreading parameters with a-priori
knowledge (ap) and without a-priori knowledge (no ap) for the link prob-
abilities p = 0.7 and p = 0.9. Discontinued graphs in the logarithmically
scaled plots refer to zero errors of the estimate of A.

8.7 Required Observation Length and Computation
Time
The number of observations and the computation time,
which are required for a certain error tolerance of the re-
constructed network, is a decisive indicator for the amount
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TABLE 2
Parameters obtained by fitting subexponential and exponential

functions to the number of observations n and the computation time
Tcomp in dependency of the number of nodes N , respectively.

Error A 0.2 0.15 0.1 0.05
α 0.5548 0.5596 0.5566 0.5549
b -0.2259 0.0097 0.2985 0.5621
m 0.1380 0.1459 0.1551 0.1712
d -1.5966 -1.5138 -1.4777 -1.5518

of information and time required for solving the estimation
problem. In Figure 10 and Figure 11, the dependency of the
observation length n and of the computation time, respec-
tively, on the number of nodes N is depicted, if a certain
error margin on the estimate of A is given. Since none of
the data points in Figure 4 coincides exactly with either of
the desired error on the estimate of A, a linear interpolation
between these points is performed. The Figures 10 and 11
indicate that, given a desired average error on the adjacency
matrix A, both the observation length and the computation
time seem to grow exponentially with respect to the number
of nodes N . Indeed, given the small range for N , we can
approximately deduce a subexponential dependency [31]
of the number of observations n on the number of nodes
N , log10(n) ≈ Nα + b. Similarly, for the computation time
Tcomp, we approximately find an exponential dependency
on the number of nodes N , log10(Tcomp) ≈ mN + d. The
parameters α, b,m and d, which resulted from fitting the
(sub)exponential functions to the interpolated data points,
are given by Table 2.

Interior-point algorithms, such as the one implemented
by the Matlab command fmincon, allow for a large number
of decision variables. The number of decision variables in
the optimisation problem (22) equals (N(N − 2)/2 + 3),
which is not problematic for computing the solution of (22).
Instead, the size N of the network, for which the network
reconstruction can be performed, is in practice determined
by the computation time, which is required for a reasonable
estimation accuracy. For the Zachary karate club network
[28] of size N = 34, Algorithm 1 took approximately 75
minutes on a 2.5GHz Intel Xeon Processor E5-2670 v2 in order
to estimate the network with a reasonable accuracy (average
fraction of erroneous links εA ≈ 10−4). As illustrated by
Figure 11, the computation time for a desired average frac-
tion of erroneous links εA grows exponentially with respect
to the number of nodes N , which poses a severe practical
constraint, even if the large number of observations n given
by Figure 10 is available.

9 CONCLUSIONS

The problem of reconstructing the underlying graph and
estimating the spreading parameters of the sampled-time
SIS process is formulated in a Bayesian sense and an ef-
ficient, polynomial-time heuristic is proposed. Numerical
evaluations indicate that the heuristic estimation procedure
performs very well in comparison to the exact solution on
small-scale networks. This observation motivates to use the

5 10 15 20 25

104

106

Number of Nodes N

O
b
se
rv
a
ti
o
n
L
en
g
th

n

Error εA=0.05

Error εA=0.1

Error εA=0.15

Error εA=0.2

Fig. 10. Required observation length n for given average fraction εA
of erroneous links of the estimate of A, in dependency of the number
of nodes N . The points are obtained by interpolation and the fitted
subexponential dependencies are given by the dashed graphs.

5 10 15 20 25
10−1

100

101

102

Number of Nodes N

C
o
m
p
u
ta
ti
o
n
T
im

e
T
co

m
p

[s
]

Error εA=0.05

Error εA=0.1

Error εA=0.15

Error εA=0.2

Fig. 11. Required computation time Tcomp for given average fraction εA
of erroneous links of the estimate of A, in dependency of the number
of nodes N . The points are obtained by interpolation and the fitted
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heuristic for larger networks, where solving the estima-
tion problem exactly becomes computationally infeasible.
Indeed, we have proved in another work [26] that the
maximum-likelihood estimation problem is NP-hard for any
connected true adjacency matrix A, on which the SIS viral
state sequence was generated.

Numerical evaluations demonstrate that also for larger
networks the heuristic algorithm estimates the true spread-
ing parameters up to a small error margin and that the
true topology A is almost always inferred correctly for suffi-
ciently many observations n. However, the number of obser-
vations n which is required for a sufficiently high accuracy
of the network reconstruction grows rapidly with respect to
the size N of the network, in particular log10(n) ≈ Nα + b,
for α ≈ 0.56.

In practical applications, the underlying network is only
available in exceptional cases and reconstructing the net-
work is rendered infeasible due to the tremendous amount
of required observations. The negative result will further de-
teriorate with incomplete information, when certain nodes
or periods of time are not observable. Endeavours that aim
for steering the viral spread towards a desired state, such as
the mitigation of an outbreak of an infectious human disease
or countermeasures against fake news on social media, are
thus subject to the fundamental limit of uncertainty of the
underlying network. This limit strongly opposes the Big
Data belief, suggesting that the vast amount of available
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data is sufficient to solve most problems. Since observing the
viral states for a practicable number of observation does not
allow for reconstructing the network with a viable accuracy,
approaches for steering the viral spread necessarily have to
incorporate the uncertainty of the underlying network.
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