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filters 

M. Verlaan and A.W. Heemink 
Department of Applied Mathematics, Delft University of Technology, Mekelweg 4, Delft, 
The Netherlands 

Abs t r ac t :  The Kalman filter algorithm can be used for many data assimilation problems. For large 
systems, that  arise from diseretizing partial differential equations, the standard algorithm has huge 
computational and storage requirements. This makes direct use infeasible for many applications. In 
addition numerical difficulties may arise if due to finite precision computations or approximations 
of the error covariance the requirement that  the error covariance should be positive semi-definite is 
violated. 

In this paper an approximation to the Kalman fitter Mgorithm is suggested that  solves these 
problems for many applications. The algorithm is based on a reduced rank approximation of the 
error covariance using a square root factorization. The use of the faetorization ensures that the 
error covariance matrix remains positive semi-definite at all times, while the smaller rank reduces 
the number of computations and storage requirements. The nmnber of computations and storage 
required depend on the problem at hand, but will typically be orders of magnitude smaller than tbr 
the full Kalman filter without significant loss of accuracy. 

The algorithm is applied to a model based on a linearized version of the two-dimensional shallow 
water equations for the prediction of tides and storm surges. 

For non-linear models the reduced rank square root algorithm can be extended in a similar way as 

the extended Kalman filter approach. Moreover, by introducing a finite difference approximation to 
the Reduced Rank Square Root algorithm it is possible to prevent the use of a tangent linear model 
for the propagation of the error covariance, which poses a large implementational effort in case an 
extended kalman filter is used. 

Key words:  Data assimilation, Kalman filter, Square root filter. 

I I n t r o d u c t i o n  

In t h e  N e t h e r l a n d s  large  areas  of l and  lie below or j u s t  above  m e a n  sea level. To 

p ro t ec t  these  dense ly  p o p u l a t e d  areas  f rom t h e  sea  m a n y  dikes a n d  ba r r i e r s  were 
cons t ruc t ed .  For  t h e  la rge  ba r r i e r s  in  t h e  E a s t e r n  Sche ld t  a n d  'Nieuwe W a t e r w e g '  
a ccu ra t e  p r ed i c t i ons  for water leve ls  are needed  6 hours  in  advance  to dec ide  w h e t h e r  
t he se  ba r r i e r s  h a v e  to  be  closed or not .  Also for t h e  p r o t e c t i o n  of t h e  dikes a n d  for 
t he  ships  e n t e r i n g  t h e  h a r b o r  a t  R o t t e r d a m  these  p red ic t ions  a re  needed .  
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At the moment the predictions tot watertevels during storm surges are computed 
using a two-dimensional shallow water flow model of the North Sea and a steady 
state Kalman filter algorithm to assimilate waterlevet measurements into the model 
to improve the model forecasts [Heemink, 1986, tteemink and Kloosterhuis, 1990]. To 
obtain a filter algorithm suitable for implementation either a distributed parameter 
filter for the shallow water equations is derived and after that discretized [Curl et 
al., 1995], or first the partial differential equations are discretized and a 'lumped 
parameter' Kalman filter is employed. The latter approach will be followed in the 
sequel. 

The number of additional computations needed for data assimilation with the steady 
state KMman filter is very small. Provided that the model is time invariant and 
approximately linear this procedure works quite well and has been used on a routine 
basis for some years. To speed up of the (off-line) steady state gain computations a 
Chandrasekhar type algorithm [Morf et al., 1974, Iteemink, 1986, Bolding, 1995] or 
a doubling algorithm [Anderson and Moore, 1979] can be applied. When there are 
no irregular boundaries a coarser grid combined with an interpolation scheme can be 
used for the gain computations [Fukumori and Melanotte-Rizzoti, 1995]. 

For many data assimilation problems a steady state approach is not possible and a 
full Kalman filter has to be used. For storm surge prediction the errors in the wind 
forcing are non-stationary and the wind friction coetl~cient depends on the mean wave- 
height which varies during a storm. As a result a time varying Kalman filter would 
improve the model forecasts considerably. For problems with one spatial dimension 
a full extended Kalman filter can sometimes be used [Heemink, 1986, Budgell, 1986]. 
However for two or more spatial dimensions the computational burden is usually 
too large. And even if the computation were possible numerical difficulties can be 
expected because of the high condition number of the error covariance matrix [Boggs 
et al., 1995]. As a result approximations of the Kalman filter equations are needed. 
Following Todting and Cohn we will refer to these approximations as sub-optimal 
schemes or SOS's [Todling and Cohn, 1994]. 

Most of these methods are aimed at an approximation of the model dynamics or of 
the error covariance matrix, because the main part of the computations is needed for 
the propagation of the error covariance. The model is often simplified by removing less 
important terms from the equations, or by introducing other simplifying assumptions. 
The simplified model is then used for time propagation of the error covariance and 
the full model for the time propagation of the estimate. Cohn recently proposed to 
approximate the state transition matrix by one of a lower rank [Cohn and Todling, 
1995]. The partial singular value decomposition can be used in this case to reduce 
the computations. 

Various methods have been proposed for the approximation of the error covariance 
matrix. Setting correlations for large distances to zero can be exploited to speed the 
algorithm up considerably [Parrish and Cohn, 1985]. However, due to the generally 
large condition number of the error covariance matrix negative eigenvalues may ap- 
pear. A solution to this problem is to use a square root filter [Boggs et al., 1995], but 
in this approach it is more difficult to exploit the sparse structure of the matrices. 
Often the error covariance matrix has only a few large eigenvalues, which can be used 
for approximation. The resulting partial eigenvalue decomposition can be used for 
fast propagation of the error covariance. Todling and Cohn used this idea together 
with ~ Lanczos algorithm for the eigenvalue computations to obtain an et~cient and 



351 

general algorithm, the Partial Eigen decomposition Kalman Filter or PEKF [Cohn 
and Todling, 1995]. 

In this paper the Reduced Rank Square Root (RRSQRT) algorithm is presented. 
Preliminary results were presented at the Second International Symposium on As- 
similation of Observations in Meteorology and Oceanography in Tokyo [Verlaan and 
Heemink, 1995]. The algorithm uses a square root approach together with an approx- 
imation of the error covariance matrix by one of a lower rank. The optimal choice 
for this low rank approximation results in the use of the eigenvalues and eigenvectors 
of the error covariance matrix. The .algorithm is applied to storm surge forecasting 
in the North Sea. For a test model the results of the suboptimal filter are compared 
with the exact Kalman filter results. 

Finally, for use with non-linear models, a method is proposed to propagate the error 
covariance matrix, that does not use a tangent linear model but only the full state 
transition function. The method is based on finite differences, and simplifies the use 
of the RRSQRT algorithm considerably. 

2 A de t e rmin i s t i c  mode l  for s t o r m  surge p red ic t ion  

In order to obtain estimates that are consistent with physical laws like conservation 
of mass and momentmn the stochastic model is based on a deterministic model that, 
reflects these laws. For storm surge prediction the shallow water equations can be 
used for the deterministic model [Stelling, 1984]. 
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/dr/ 
h = 
D = 
H=h+D = 
g = 

coordinates in the horizontal plane 
depth-averaged current in ~ direction 
depth-averaged current in r] direction 
water level above the reference plane 
water depth below the reference plane 
total water depth 
gravity acceleration 
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C = 
V = 

= 

Cd = 
P a  

Pw z 

coefficient for the Corriolis force 
Chezy coefficient 
wind velocity 
wind angle with respect to the positive ~-axis 
wind friction coefficient 
air pressure at the surface 
density of sea water 
density air at tile surface 

A model usually has two or three types of boundaries. At land-water boundaries 
the normal flow is set to zero. At the open boundaries no physical boundaries exist 
and thus artificial ones will have to be specified. Often the surface level or the flow is 
prescribed at these boundaries, but also non-reflecting boundaries are used [Stelling, 
1984]. The waterlevels are often specified by their harmonic constituents. 

When meteorological activity is low and there are no external surges, this deter- 
ministic model is quite accurate. In these cases the Root Mean Square (RMS) error 
in the waterlevels is approximately 15 cm. In case of storm surges the accuracy is 
less and it is believed that the main sources of error are the open boundary condition 
and the wind input as provided by the meteorological model. 

Although the detailed non-linear model described can be used for the RRSQRT 
algorithm and this would most likely result in more accurate predictions, a simplified 
linear time-independent model will be used in the sequel since this will make a more 
detailed analysis of the results possible. Since the model used is linear it is possible to 
separate the astronomical tide and the so-called set-up. For storm surge prediction 
we are mainly interested in the set-up since the astronomical tide is known much 
more accurately. The simplified model for the set-up is given by: 

Oh Ou¢ Ou s 
0--T + D ~ -  + D  0r/ = 0 (4) 

Ou¢ Oh Au~ "q 
0-t- ÷ g O - ~  - fur ÷ D D - 0 (5) 

Ou. Oh Aus r. - 0 (6) 
0t + g ~ "  +fu~ + D D 

where A is the coefficient for the linearized friction and ~-~,r s are stresses due to 
wind. These equations are discretized using an Alternating Directions Implicit (ADI) 
method and a staggered grid that is based on a simplification of the method by 
Leenderstse and Stelling [Stelling, 1984] for the equations 4-6 (see [Brummelhuis, 
1992]), 

3 S t o c h a s t i c  e x t e n s i o n  of  a d e t e r m i n i s t i c  m o d e l  and  m e a s u r e m e n t s  

Before a Kalman filter can be applied a description of the errors in the model and 
the measurements are needed, since the covarianees of the errors determine how the 
model predictions and the measurements will be weighted. 

An important tool for the description of the errors in the model and measurements 
are ARMA processes [Box et al., 1994]. An ARMA model maps a white noise process 
to an error process with the desired shape of the autocorretation function. 



353 

For storm surge forecasting in the North Sea it is assumed that errors in the forecast 
are mainly caused by the uncertainty at the open boundary and in the meteorological 
forcing, i.e. wind stress and pressure gradients. The covariances of these errors will 
be modelled using ARMA models. 

To obtain a general notation for a stochastic system the waterlevels h and the 
current speeds u, v at all the grid points (i,j) are put together in a large vector x(k) 
together with the state variables of the ARMA models. Using this state vector the 
discretized shallow water equations can formally be written as: 

x(k + 1) = f(k,x(k),u(k),w(k)) (7) 

In a similar way, with the measurements at time k stacked in y(k), the measurement 
relation can be denoted as: 

y(k) = g(k,x(k),v(k)) (8) 

where x(k)ER ~, w(k)CR ~ and v(k),y(k)ER p, u(k)ER 1. The u(k) contain the astro- 
nomical part of the waterlevels on the boundary and the prediction of wind-stresses 
by a meteorological model. The system noise w and the measurement noise v are 
white Gaussian and zero mean. The covariances are given by E[w(k)w(k)']=~.~k), 
E[v(k)v(k) ' ]=20(k ) and E[w(k)v(1)']=0 for all k, 1. The initial condition is given by 

E[x(0)]  = ×o (9) 

E l (x (0 )  - x0) = P0 

For the linearized shallow water equations 7 and 8 can be written as 

x(k + 1) = A(k)x(k) + B(k)u(k) + F(k)w(k) 

(10) 

(iz) 

y(k) = C(k)x(k) + v(k) (12) 

This formal notation will be used in the sequel to describe the various algorithms. 

4 The  K a l m a n  f i l ter  

When a stochastic description of model and measurements is available it is possible 
to combine these sources of information to obtain an optimal estimate of the state. 
When the model is linear with Oaussian noise Kalman and Bucy showed that a 
recursive update of the estimate can be found [KMman, 1960, Kalman and Bucy, 
1961]. Under these assumptions the estimate is optimal for several criteria, such as 
minimum variance and maximum likelihood. For the estimate of x(k) given Y(k) = 
{y(1),l=0,...,k} denoted by i(klk ) the Kalman filter equations are given by 

~ ( k +  llk) = A(k) i (k lk)+B(k)u(k)  (13) 

P(k + lIk) = A(k)P(klk)A(k) '+ F(k)~s(k)F(k )' (14) 

5<(k + l I k  + 1) = ~:(k + l l k  ) 

+ K ( k +  1)(y(k + 1) - C ( k +  1)~(k + l [k) )  (15) 
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K ( k + l ) =  P ( k + l [ k ) C ( k + l ) '  

(C(k + l)P(k + lIk)C(k + 1) '+  E0(k  + 1)) -1 (16) 

P ( k + l l k + l )  = P ( k + l l k  ) - K ( k + l ) C ( k + l ) P ( k + l l k  ) (17) 

 (ol- 1) = ×o (18) 

P(O[- 1) = Po (19) 

Although these equations, at least in principle, provide a solution to many data 
assimilation problems, a straight forward application is not possible for the problem 
of reconstructing storm surges because the number of computations becomes infea- 
sible for large systems. Also storage requirements grow fast with increasing model 
dimension. 

It can be seen from the structure of equations 13-19, that K(k) does not depend on 
the measurements y and therefore can be computed in advance and stored. During 
the actuaJ filtering the stored values can then be used. If the model is time invariant 
and stable, it can be shown that the Kalman gain K(k) converges to a limit value K. 
When this steady state Kalman gain is used for all measurement times the estimate 
converges to the optimal estimate for large k. 

To compute the steady state Kalman gain also a Chandrasekhar type algorithm 
[Morf et al., 1974] or a doubling algorithm [Anderson and Moore, 1979] can be 
used instead of the equations 13-19. Both algorithms can reduce computation 
times considerably. The Chandrasekhar type filter is based on a recursion for 
A P ( k ) : = P ( k i k ) - P ( k - l l k - 1 ) .  The advantage is that for a time invariant model with 
P0=0 the rank of these matrices is m. The doubling algorithm performs steps from 
time k to 2k instead of to k+l .  

The steady state approach has been used successfully for large, two dimensional, 
models (eg. [Heemink, 1986, Bolding, 1995, Fukumori and Melanotte-Rizzoli, 1995]). 
Compared to a more traditional prediction by a deterministic model only, the number 
of additional computations is small while the reduction in errors can be large. A 
disadvantage is that the steady state approach can not be used for many applications 
because in many applications the model is not nearly linear or the measurements are 
irregular in time or space. 

The product A(k)P(klk)A(k )' in equation 14 requires order n 3 computations if A(k) 
is a full matrix. For most finite difference methods the sparse structure carl be used 
to reduce this to order n 2 computations. Even then this part of the equations remains 
the bottleneck. For this reason most approximate algorithms introduced in literature 
are aimed at reducing the number of computations in this part. 

One possibility is to represent P(klk), P(k+llk)  on a coarser grid and perform the 
covariance updates on this coarse grid. Let x(k)=Fx¢(k) represent an interpolation 
from the coarse grid to the fine grid. The equation 15 is changed to 

~(k + l l k  ÷ I) = :~(k + l l k  ) 

+ rKc(k + 1)(y(k + 1) - C(k + 1)~(k + l lk ) )  (2O) 

Equation 13 remains unchanged and 14 and 16 are performed on the coarse grid. 
Several successful applications of this approach have been reported (eg. [Fukumori 
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and Melanotte-Rizzoli, 1995, Cohn and Todling, 1995]). For storm surge prediction 
the complicated patterns of the closed boundaries make it difficult to define an in- 
terpolation scheme that results in physically acceptable solutions. If for instance a 
bilinear interpolation scheme is used near the boundaries the component of the flow 
normal to the boundary is in general nonzero. 

Recently Todling and Cohn [Cohn and Todling, 1995] introduced an approximate 
algorithm based on a singular value decomposition of the matrices A(k). It is well 
known that the best rank q approximation in the Frobenius norm as well as the 
spectral radius is given by setting all singular values from q+l  on to 0 [Golub and 
Van Loan, 1989]. Let A=UDV t be the singular value decomposition of a matrix 
A6R ~x~, where U, V are orthogonal and D diagonal with elements [D]i,i : o'~ and 
o-1 >_ o.2 _> "'" >_ on. The optimal rank q approximation is given by 

D Aapproximate = [U]l:n,l:q[ ]l:q,l:q[V]l:n,l:q (21) 

where []il:i2,jl:j 2 denotes the submatrix with rows il through i2 and columns jl through 
j2. Tile leading singular vectors and singular values can be computed efficiently 
using a Lanczos algorithm [Golub and Van Loan, 1989]. If there are only a few 
relatively large singular values, the matrix can be approximated quite well with q<<n. 
Although the method works well it was outperformed by another method (PEKF 
[Cohn and Todling, 1995]) introduced in the same article. 

Instead of approximating A(k) one can also try to approximate P(klk), P(k+llk). 
In addition to reducing the number of computations it is often also possible to reduce 
storage requirements in this case. 

One way to approximate P(klk), P(k+llk ) is to set correlations over large distances 
to zero [Parrish and Cohn, 1985]. This is also called a banded approximation since 
in one dimension the resulting matrix becomes a band matrix. The sparse structure 
of the approximate P(klk), P(k+ltk ) can be used to reduce the number of com- 
putations. Since the matrices P(k+l]k) and P(klk ) represent covariance matrices, 
they should be positive semidefinite. If due to approximations this is not. true for 
the computed matrices, this may cause divergence of the solution. The square root 
algorithms as introduced by Potter (see [Maybe&, 1979, Bierman, 1977] for an intro- 
duction) avoid this problem by using the square root of the error covariance matrix, 
P(kI1)=L(ktl)L(ktt)', with L(kll ) a lower triangular matrix. Because the factors L(kll) 
have a much smaller range of the eigenvalues these algorithms are also numerically 
better conditioned then the original Kalman filter algorithm. 

The time update of the L matrix is given by 

L(k +l [k)  = [a(k)L(klk),F(k)2~/2lU(k) (22) 

where U(k) is a unitary matrix such that the last m rows of the first factor on the 
right hand side become zero. Usually Householder reflections or the Modified Gramm 
Schmidt procedure is used for this. It is easily shown that the multiplication with 
a unitary U(k) does not change P(=LL'). ~ / 2  is a square root factor of 2~, i.e. 

E~/~(E~/2)  ' = E , .  The notation [,] means that a larger block matrix is built from 
the two submatrices A(k)L(klk ) and F(k) y~/2. 

The measurement update for scalar measurements p=l  is given by 

H(k+  1) = L(k + t ]k) 'C(k+ 1)' (23) 
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"/(k + 1) = (H(k + 1)'H(k + 1)Y~o(k + 1)) -~ (24) 

K ( k ÷ l )  = L ( k + l l k ) H ( k + l ) ~ ( k + l )  (25) 

L(k + l l k  + 1) = L(k + llk) - K(k + 1)H(k + 1)' 
(1 + (-ffk + 1)•0(k + 1))1/2) -1 (26) 

If there is more than one measurement at one time then the measurements are trans- 
formed using ~ g .  The resulting independent measurements can be processed one at 
a time. 

Though more robust square root algorithms are in general not more efficient than 
the standard KMman filter algorithm and therefore the square root filter equations 
described above can not be used directly for large scale models. 

Recently Boggs [Boggs et al., 1995] proposed a banded approach on the square 
root of the error covariance, tn one dimension the Cholesky factor of a banded error 
covariance matrix is also banded and can be used to reduce the computational burden. 
In two dimensions L contains more nonzero elements than P if the error covariance 
P is banded. 

Another method is to approximate P(klk), P(k+llk)  by one of a lower rank. Since 
the matrices P(klk), P(k+l lk  ) are symmetric the singular value decomposition reduces 
to the eigen decomposition. The error covariance matrix is approximated using the 
largest eigenvectors and eigenvalues. Todling and Cohn [Cohn and Todling, 1995] and 
Verlaan and Heemink [Verlaan and tteemink, 1995] proposed approximate Kalman 
filter algorithms based on this idea. The Partial Eigendecomposition Kalman Filter 
(PEKF) by Todling and Cohn uses a Lanczos type algorithm to efficiently compute 
the largest eigenvalues and the corresponding vectors [Anderson and Moore, 1979]. 
The Reduced Rank Square Root Filter (RRSQRT) uses a square root like algorithm 
to update the decomposition. The reduced rank structure allows the eigenvalues and 
vectors to be updated efficiently. The RRSQRT algorithm will be explained in detail 
in tile sequel. 

5 T h e  reduced  r a n k  square  roo t  fi l ter 

The square root factorization of a positive semidefinite matrix is not unique. The 
lower triangular form or Cholesky decomposition used in most square root filtering 
algorithms was chosen because of computational efficiency. Unfortunately this form 
does not allow for easy approximation. For the Reduced Rank Square Root algorithm 
the square root factors are based on the eigendecomposition. If P=UDU' is the 
eigendecomposition of the error covariance matrix P then L=UD 1/2 is a square root 
factor of P. The error covariance matrix is now approximated by using q leading 
eigenvalues only. If the eigenvalues are ordered, i.e. [D]1,1 _> --- _> [D]~,n _> 0, then 
the approximation can be accomplished by truncating after the first q columns of the 
square root factor L. 

The steps of the RRSQRT algorithm resemble those of the square root filtering 
algorithm (22-26). The three main steps are the "time-step" the "reduction-step" 
and the "measurement-step". 

5.1 ~Tirae-step" 
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The "time-step" performs the time propagation of the estimate and error covariance 
and is equivalent to equations 13,14 of the Kalman filter equations. The equations 
are 

~:(k + l lk )  = A(k)~(klk)-t- B(k)u(k) (27) 

L(k + 1]k) = [A(k)L(klk),F(k)Es(k) 1/2] (28) 

where L(klk ) is the n by q estimate square root of the error covariance P(klk ). The 
multiplication A(k)L(klk ) in equation 28 is much faster than the one in equation 22, 
since in the RRSQRT algorithm the matrix L(klk ) contains q columns instead of n 
and q<<n. The connection between equations 28 and 14 can be seen from 

P(k + l lk )  -- L(k + llk)L(k + l l k  )' (29) 
= [a(k)L(klk),F(k)2s(k)l/~][A(k)L(klk),F(k)2s(k)~/2] ' (30) 
= A(k)L(klk)L(klk)'A(k)'+ F(k)2~(k)F(k )' (31) 
= A(k)P(kIk)A(k)'+ F(k)2~(k)F(k)' (32) 

5.2 "Reduction-step" 

The addition of rows, F(k) ~ ( k )  1/2 in equation 28, for the system noise every time- 
step would quickly increase computation times. Therefore the number of columns is 
reduced to q after every "time-step". The concept of this approximation is to use 
only the first q leading eigenvalues and eigenvectors of the error covariance matrix 
L(k+l lk)L(k+llk)'. In order to compute this efficiently first the eigendecomposition 
of the matrix L(k+llk) 'L(k+iIk ) is determined: 

L(k + llk)'L(k + llk) -- V(k + 1)E(k + 1)V(k + 1)' (33) 

It can easily be shown that 

(L(k + l lk)V(k + 1)E-1/2(k + 1))(E(k + 1))(L(k + llk)V(k + 1)E-~/2(k + 1))' (34) 

is the eigendecomposition of L(k+lIk)L(k+lJk )' and thus 

L*(k + l lk )  = [L(k + llk)V(k + 1)]l:n,l:q (35) 

is the square root of the optimal rank q approximation, of L(k+l[k)L(k+llk)'. 
The above procedure is much faster than eigenvalue computations on the ma- 

trix L(k+llk)L(k+l[k)' or singular value computations on L(k+llk), which could 
also accomplish the task of reduction. This is caused by the fact that the matrix 
L(k+llk)L(k+llk )' is a q+m by q+ m matrix and q<<n, m<<n.  

5.3 "Measurement-step" 

The measurement-update equations (23-26) of the square root algorithm do not de- 
pend on the specific type of square root factor used and can thus also be used for 
the RRSQRT algorithm, although the dimensions of some of the matrices are now 
different. 

H(k + 1) = L(k + llk)'C(k + 1)' (36) 
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~/(k + 1) = (H(k + 1)'H(k + 1) + Eo(k  + 1)) -~ (37) 

K(k + 1) = L ( k +  llk)tt(k + 1)7(k+ 1) (38) 

L ( k + l l k + l )  = L ( k + l t k  ) - K ( k + t ) H ( k + l ) '  
(1 + (7(k + 1)E0(k + 1))1/2) -~ (39) 

Independent measurements can be processed one at a time. If the measurements are 
correlated, ie. ~ 0  is not diagonal then these measurements can be transtbrmed. Let 
~(k) be defined by 

1 

5 @ ) : =  ~ j ~ y ( k )  (40) 

where ~ j 1  is the matrix inverse of the Cholesky factor of ~0-  Then 

~(k) = (~(k)x(k) + ~(k) (41) 

where 

~(k): = Eg}C(k) (42) 

~(k) : = ~o-½ v(k) (43) 

These transformed measurements are equivalent to the original measurements, but 
the covariance matrix of the errors of ~l(k) is the identity matrix. 

5, 4 Initialization 

For many applications tile initial transient of the estimate is not important and P(010) 
can be set to 0. In this case L(010) also becomes 0. If this is not the case then P(010 ) 
or P(0I-1)  can be approximated using the q leading eigenvectors and eigenvalues, for 
which a Lanczos type algorithm [Golub and Van Loan, 1989] can be used. 

The columns of L can be interpreted as error vectors in the state space, tn some re- 
spects these columns are a generalization of the 'modes' of a system and will therefore 
also be called modes. 

The number of computations required in the time propagation of the error in the 
covariance, which is a major fraction of the total number, is reduced by a factor 
with respect to the original Kalman filter algorithm. It can be shown that for q=n 
the RRSQRT algorithm is exact in the sense that it is equivalent to the Kalman filter 
equations. The parameter q controls the accuracy of the approximation. The price 
for greater accuracy is as always a larger computational burden. 

6 E x p e r i m e n t s  

To evaluate the performance of the RRSQRT algorithm some experiments were per- 
formed. The measurements were generated using the same linear model as for the 
Kalman filter. Contrary to Using field data this allows for comparison between the 
true state and the estimate of the state. Aithough the RRSQRT algorithm is es- 
pecially suited for nonlinear and time-varying models, a linear time-invariant model 
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was used, so that results can be compared with the optimal estimate, which in this 
case can be obtained using a Chandrasekhar filter algorithm. Comparisons using field 
data and a non-linear model will be performed in the future. 

For simplicity the effects of wind and errors in the wind are neglected in all but the 
last experiment. The remaining uncertainty on the open boundary is modelled using 
an AR(1) model. The system noise is inserted only at a few points on the boundary. 
For points in between the values are interpolated. 

The area of the North Sea covered by the model is shown in Figure 1. The grid 
size used is Ax=6400[m] and Ay=6400[m]. This results in a 95 by 60 grid with 
2669 computational gridpoints. The time-step is AT=1800[s]. The friction coeffi- 
cient is #=2.4.10 -3 . The system noise at the northern boundary is generated by an 
AR(1) process with correlation a1=0.9 over one time-step and white noise with stan- 
dard deviation ~r= 0x/0~.2[m]. The noise is generated at four points (m=2, 30, 60, 93, 
n=60) with linear interpolation in between. The measurements are generated at A 
(re,n)=(8,55), B (re,n)=(10,40) and C(m,n)=(40,18). The measurement errors are 
assumed to be independent with standard deviation ~r=0.1[m]. The initial estimate 
of the state is 0. The initial error covariance is also 0. The number of modes is q=20. 

As a first test a periodic Kelvin wave is generated at the western part of the bound- 
ary. Snap-shots of the true and estimate waterlevels are shown in Figure 2. Only 
measurement station A was used for the assimilation. The figure shows that without 
noise the filter is able to track the state with only one measurement station. 

For the next experiment system noise and measurement noise were generated using 
a random number generator, with variance according to the values above. Where 
possible this realization of the noise is used for the other experiments, too. Again 
only measurements from station A were used. Figures 3, 4 shows the RMS error 
for various settings of the number of modes q, as well as the optimal Kalman filter 
estimate, which in this special case of a time invariant linear model with zero initial 
noise can be computed efficiently using the Chandrasekhar algorithm. The RMS 
values are computed using 

e(k) = ~/(~:(klk ) - x(k))'(:~(klk) - x(k})- (44) 

This shows how well the filter is doing. How well the filter ' thinks'  it is doing can be 
seen from the computed error covariance P(klk ). The error e can be compared with 
the estimate e ~ given by 

e'(k) = v/traceP(klk) (45) 

which can be computed from the sum of the eigenvalues in the RRSQRT algorithm. 
In Figures 3, 4 the true and estimated RMS values are shown for several number of 
modes. 

The results show that for 5 modes the system with filter is probably unstable, for 
10 modes the filter works welt and for 20 modes the results are almost the same as 
for the full Kalman filter. The RRSQRT algorithm systematically underestimates the 
errors it is making~ but with more modes the estimated error variance grows to the 
value of the full Kalman filter. 
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In Figure 5 the computed eigenvalues are shown for various numbers of modes. 
These plots show that the RRSQRT algorithm mainly underestimates the errors in 
the smaller (faster) modes. The large range in eigenvalues is the reason accurate low 
order approximations of the error covariance can be made. 

Since the optimal gain can be computed in this special case it is possible to deter- 
mine the relative error in the gain. The t~¥obenius norm was used for these compu- 
tations. The results are shown in Figure 6. 

An important aspect of the RRSQRT algorithm is the number of modes needed to 
get a good approximation since the computation time is proportional to this. The 
number of modes can be used as a trade off between the number of computations 
needed and the approximation error of the algorithm. The number of modes needed 
will also depend on the model used, the values of the parameters, the position and 
number of measurements and the system noise and measurement noise. This number 
is not known advance, but has to be determined from experiments. Therefore the 
remaining experiments will study the sensitivity of the RRSQRT algorithm. 

When the measurement position is changed this has little influence on the magni- 
tude of the approximation errors. Figure 8 shows the relative error in the gain when 
only the measurements in B are used. There is almost no ditference with Figure 6. 
The estimates however do change. 

If all the measurements from A,B and C are used the relative error in the gain 
grows, as can be seen in Figure 9. This can be expected since the complexity of the 
data assimilation increases. By increasing the number of modes this error can be 
decreased again. 

In the next experiment the system noise on the open boundary is correlated in space. 
In time the same AR(1) model as before is used. An exponential correlation model in 
space was used with a decorrelation length of 60 gridpoints. The correlation reduces 
the effective number of degrees of freedom for the system noise. Because of this it 
is expected that the truncation error of the RRSQRT algorithm will decrease. In 
Figure 10 the relative error in the gain for this experiment is shown. It indeed shows 
a small decrease in error, but the change is very small while quite large correlations 
were used. 

In the last experiment additional uncertainty in the wind-stress was introduced. 
An AR(1) model was used to model correlation in time (c~=0.9) and an exponen- 
tial correlation function was used for correlation in space with decorrelation length 
19.5 gridpoints and driven by white noise with standard deviation 0.001. To reduce 
the number of noise input variables the uncertainty was introduced on a subgrid 
(m=1,24,47,60, 83, n=1,20,39,58). Measurements from stations A,B and C were used 
for assimilation. 

Figure 11 shows the true IKMS and estimated RMS values for 50 modes. For fewer 
than 50 modes (20,30,40) the filter is unstable. For 100 modes the RMS values are 
very close to the optimal values. The additional uncertainty introduced by the wind 
requires the use of more modes. Much of the additional uncertainty can not be 
estimated from three waterlevel stations, but this uncertainty does occupy storage in 
the estimate of the error covariance. 

From these experiments is seems that given a model the number of modes needed 
depends mainly on the number of independent noise inputs. The size of the errors 
introduced by the approximations in the filter is not very sensitive to changes of 
parameters. 
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Figure 5. Eigenvalues of the approximate error covariance matrix• 
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7 The  R R S Q R T  filter as e x t e n d e d  K a l m a n  filter 

So far, this work dealt with estimation for linear models. For non-linear models 
the RRSQRT algorithm can be adapted to approximate the extended Kalman filter. 
The changes needed are conceptually not very dit~cult. The time propagation of the 
estimate is performed using the non-linear model. The time propagation of the error 
covariance estimate uses the tangent model ~ ,  which is linearization of the model 
around the current estimate. The main difficulty in practice is that the derivation 
and implementation of the tangent linear model is a lot of work. To avoid the use of 
a tangent linear model a method based on finite differences is proposed here. 

For the extended Kalman filter the matrix A(k) of equation 28 is replaced by 
(see eqn. 7) evaluated at the latest estimate ~(klk ). Let the i'th column of L(klk) be 
denoted by li(klk ) then 

0f L(klk)= Of 
0-~ Oxx [ll(klk)'" " '  lq(ktk)] 

[Of Of lq(klk)] (46) 
= Oxx [1,(klk),...,Oxx 

o, li(klk ) can be approximated by The column vector 

__0f li(klk ) ~ f(2(klk ) + eli(klk)) - f(~(k[k)) (47) 
c)x g 

where e is small. And thus 
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f(R(klk) + Cll(klk)) - f(R(klk)) f(R(klk) + elq(klk)) - f(2(klk)) Of L(klk) ~ 
Ox e e 

(4s) 

For the computation of L(ktk) q+l evauations of f  eeded, but f( (klk)) also 
needed for equation 27. Usually the number of computat ions needed for an evaluation 
like ~ l~(klk) is close to the number of computat ions needed for an evaluation of 
f(.). In this case the proposed method requires approximately the same number of 
computat ions as the extended RRSQRT kalman filter using a tangent linear model, 
the effort needed for implementat ion is however considerably less. 

For ' smal l '  non-linearit ies the extended Katman filter, either using a tangent  linear 
model or finite differences is expected to yield good results. For 's t rong'  non-linearities 
or discontinuities however this may fail. An important  discontinuity in t idal  flow 
models is when area 's  with a height close to the mean sea level are flooded. Future 
research will address the problems posed by non-linear aspects of tidal-flow models. 

8 C o n c l u s i o n s  

In this paper we introduced a new filter algori thm for da ta  assimilation for large 
scale systems. The algori thm is based on a reduced rank approximation of the error 
covariance mat r ix  using a square root factorization. The use of the factorization 
ensures that  the error covariance matr ix  remains positive semi-definite at all times, 
while the smaller rank reduces the number of computations and storage requirements. 

The algori thm performs very well in the experiments shown. In these experiments a 
large reduction in computat ions could obtained. Although more analysis and experi- 
ments are needed the algori thm seems very promising. The methods used are generic 
and can be applied to various types of da t a  assimilation problems. It is straight 
forward to use the aIgorithm as a modified version of an Extended Kalman Filter. 
Moreover, also a method was suggested to avoid the use of a tangent linear system 
in this case. 

In the future the RRSQRT algorithm will be applied for s torm surge forecasting 
using a non-linear model  of the North-Sea based on the shallow water equations 
combined with the proposed finite-difference approach. Research will focus on non- 
linear effects and applicat ion using real-life data. 
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