SELECTED
TOPICS
IN

Volume 3, 1991 Edited by O.H. Bosgra and P.M.J. Van den Hof

Delft University Press




IDENTIFICATION, MODELLING AND CONTROL




SELECTED TOPICS IN IDENTIFICATION,
MODELLING AND CONTROL

Progress Report on Research Activities in the
Mechanical Engineering Systems and Control Group

Edited by O.H. Bosgra and P.M.J. Van den Hof

Volume 3, June 1991

Mechanical Engineering Systems and Control Group
Delft University of Technology

Delft University Press/1991




Published and Distributed by

Delft University Press
Stevinweg 1

2628 CN Delft

The Netherlands
Tel.: (0)15-783254
Telefax: (0)15-781661

By order of

Mechanical Engineering Systems and Control Group
Delft University of Technology

Mekelweg 2, 2628 CD Delft

The Netherlands

Tel.: +31-15-786400; Telefax: +31-15-784717

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG
Selected

Selected topics in identification, modelling and control:

progress report on research activities in the mechanical engineering

systems and control group. — Delft: Mechanical Engineering Systems and Control Group,
Delft University of Technology, Vol. 3—ed. by O.H. Bosgra and

P.M.J. Van den Hof. —ill. Met lit.opg.

ISBN 80-6275-702-2

SISO 656 UDC 531.7+681.5 NUGI 841

Cover design by Ruud Schrama

© 1991 Copyright Delft University Press. All rights reserved. No part of this journal may be reproduced,
in any form or by any means, without written permission from the publisher.




Contents

Volume 3, June 1991
Experimental robustness analysis based on coprime factorizations
R.J.P. Schrama and P.M.M. Bongers 1

Normalized coprime factorizations of generalized state-space systems

P.M.M. Bongers and O.1. Bosgra 9

Robust control design application for a flight control system
S Bennani, J.A. Mulder and A.J.J. van der Weiden 15

The parametrization of all controllers that achieve output regulation and tracking

P.F. Lambrechts and O.H. Bosgra i

Controller reduction with closed loop stability margins

P.M.M. Bongers and O.ll. Bosgra E .
[nfinity norm calculation for large systems
P. Wortelboer 13

[dentification of an upper bound for the £'-norm of the model uncertainty
R.G. Hakvoort 51

Closed loop identification of a 600 MW Benson boiler
J. Heintze and H. Aling -

Identification of a pilot plant crystallization process with output error methods
S. de Wolf and P.M.J. Van den Hof ea




Editorial

This is the third issue of Selected Topics in Iden-
tification, Modelling and Control. The publication
has shown to serve its purpose both as a progress
report on research in our group and as an infor-
mal and fast means of publishing research results
most of which will eventually appear in the open
literature in revised or expanded form after the un-
evitable publication delays.

The present issue contains a balanced mixture
of theoretical and application-oriented papers. The
application areas include aircraft flight control, the
dynamics of mechanical structures, the process dy-
namics of a power station boiler and the dynamic
behaviour of an industrial crystallization plant.
Samir Bennani, Bob Mulder (both from the De-
partment of Aerospace Engineering at Delft Uni-
versity) and Ton van der Weiden discuss the de-
sign of a robust aircraft flight control system us-
ing I, techniques. Pepijn Wortelboer (now with
Philips Research Labs., Eindhoven, the Nether-
lands) presents results on infinity norm computa-
tion for very large dynamic models of mechanical
systems. Hans Heintze and Henk Aling (now with
Integrated Systems Inc., Santa Clara, CA) report
on their extensive work involving system identifi-
cation of a power station boiler under closed-loop

vi

experimental conditions. Sjoerd de Wolf and Paul
van den Hof report on the system identification of
an industrial crystallization plant based on experi-
ments on a large pilot plant located at the Labora-
tory for Process Equipment at Delft University.

The theoretical part of this issue is covered by
papers on robust control and identification. Ruud
Schrama and Peter Bongers investigate the possi-
bilities to assess the stability robustness of closed
loop systems on the basis of experimental data. Pe-
ter Bongers and Okko Bosgra present an algorithm
for the computation of normalized coprime factor-
izations for possibly nonproper systems. Paul Lam-
brechts and Okko Bosgra provide a parametriza-
tion for controllers that achieve output regulation
and tracking in the face of persistent disturbances
and relerence trajectories. A solution for controller
reduction with guaranteed stability margins is de-
rived in a paper by Peter Bongers and Okko Bosgra.
Finally, Richard Hakvoort presents a theory for the
assessment of an upper bound of the model uncer-
tainty in system identification experiments.

Okko Bosgra
Paul Van den Hof
Editors
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Experimental robustness analysis based on
coprime factorizations

Ruud J.P. Schrama and Peter M.M. Bongers

Mechanical Engineering Systems and Control Group
Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.

Abstract. The performance of an existing feedback system may be increased by a re-
design of the compensator. Before a new compensator is applied to the plant we like to
ascertain that the new feedback system will at least not be unstable. In fact we wish to
make sure whether the actual performance will be increased. Our approach to this prob-
lem is based on the use of a recently developed accurate robustness margin conceived in
terms of a coprime factorization of the plant. We apply this robustness margin in con-
junction with the frequency response of a coprime factorization of the unknown plant.
We indicate how fo estimate such a frequency response from input and output measure-
ments of the plant, while the latter still operates under the "old” feedback. We use this
frequency domain data to determine the distance between the plant and its model in the
sense of the robustness margin. This results in a spectral estimate of an upper bound
on the actual distance between plant and model. Stability of the plant under feedback

by the new compensator can be guaranteed if this upper bound is smaller one.

Keywords. feedback control; stability criteria; frequency response estimation coprime

factorization.

1 Introduction

If an existing feedback system does not meet the
performance requirements, then we can try to de-
sign a better compensator. Before such a new com-
pensator is applied to the actual plant, we w‘amt to
be sure that the plant will be stabilized by this new
compensator. A common approach to ascertaining
stability of the plant under the new feedback sl.?,rts
from describing the plant by a so-called noml.nal
model and a perturbation. The nominal mode.l is a
simple description of the characterisLi? dynamics of
the plant. The difference between this model la.nd
the plant dynamics is regarded as an uncertainty
or a perturbation of the nominal model. We -den
note this difference as the deficiency of the nominal
model. Further this deficiency is usually character-
ized by an upper bound. Now we can use the nomi-
nal model and the deficiency to make sure whether

the new compensator will stabilize the plant. For
stability is guaranteed if the feedback system com-
posed of the nominal model and the new compen-
sator is robustly stable in the face of the deficiency.

By conducting robust control design the set of al-
lowable perturbations, i.e. perturbations that still
yield an acceptable feedback system, is maximized
in terms of a robustness margin. If a reliable up-
per bound on the deficiency at hand is smaller
than this margin, then stability is guaranteed. It
is well known that large robustness margins and
a good performance are conflicting requirements
(Doyle and Stein, 1981; Maciejowski, 1989). Thus
in case the upper bound on the deficiency is conser-
vative, it is not likely that stability can be guaran-
teed under high performance feedback. Since high
performance is desired, we need more accurate in-
formation on the actual deficiency and we might
have to remodel the plant. However first we like to




subject the designed control system to a less con-
servative robustness analysis. Moreover in case the
design paradigm is not robust control, i.e. the de-
sign does not explicitly provide a robustness mar-
gin, then such a robustness analysis is definitely
required.

w
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Ilig. 1: Feedback system H(Pr,C,).

We consider the feedback system H(Pr,C,) of
Fig. 1 in which the plant P of interest operates
under feedback! by a known compensator C',. The
subseript T' indicates the presence of Two vector in-
puts to the plant: there is an inner-loop plant input
u and an exogeneous signal w. The latter is incor-
porated just to tolerate possible disturbances. Of
main interest is the relation between u and y. This
relation is called the inner-loop plant, which is sig-
nificd by P. We assume that a nominal model P, of
P has been used to design a new and hopefully bet-
ter compensator C'. Prior to the implementation of
€' we have to assess the robust stability of the feed-
back system H(P,,C) in the face of the deficiency
of P,.

A well established means for the ascertainment
of stability is the small gain theorem. One of its
most widespread applications in linear systems the-
ory lies with multiplicative uncertainties. In Doyle
and Stein (1981) a robustness margin has been de-
rived in terms of an upper bound on the multiplica-
tive uncertainty. Notice that there exist plants that
are stabilized by C, while the corresponding defi-
ciency is not contained within the largest ball of
allowed uncertainties. In this sense robustness mar-
gins are conservative in view of robustness analysis.
A typical example hereof is presented in Section 6.

A drawback of the robustness margin based on
multiplicative uncertainties is that the nominal
model P, must have as many unstable poles as the
inner-loop plant P. However unless C, =0 we can-
not be sure about the number of unstable poles
of P. Thus we wish to obviate the above restric-
tion. This is accomplished by expressing the feed-
back system in terms of coprime factorizations and
then applying the small gain theorem. In this pa-

'Operation in open-loop is a special case: C,=0.

per we will utilize the robustness margin of Bongers
(1991a), which is less conservative than a similar
margin in gap-metric sense. Furthermore for rea-
sons that are made clear in Section 3, this robust-
ness margin is called the compensator-gap.

The ascertainment of stability by means of the
compensator-gap requires the knowledge of a co-
prime factorization of the unknown plant. Such
knowledge can be obtained from experimental data
by means of a recently developed framework for
the identification of a plant under known feedback
Schrama (1991b). This framework enables the es-
timation of the frequency response of a particular
right coprime factorization of the inner-loop plant
from measurements of input v and output y, while
the plant operates under the initial feedback (see
Fig. 1). No information on the signals ry,7; and wis
needed. Thus a frequency response is obtained un-
der the initial feedback and then used to conduct ro-
bustness analysis in regard of the new compensator.
In this paper we do not pursue guaranteed upper
bounds or confidence regions for the estimated fre-
quency responses as in Helmicki et al (1991) and
Webb et al. (1989) respectively Yuan and Ljung
(1984), Loh et al. (1985) and Zhu (1990). In Sec-
tion 5 we will make clear that such specific identifi-
cation techniques can be readily applied within our
framework.

The paper is organized as follows. The next sec-
tion introduces notation and summarizes several
concepts of the algebraic theory. In Section 3 we
discuss robustness margins in terms of coprime fac-
tors and we incorporate the compensator-gap in-
troduced in Bongers (1991a). Subsequently in Sec-
tion 4 we recall the framework for identification of a
plant under feedback from Schrama (1991b). Fur-
ther we show how this framework can be used to
estimate the frequency response of a coprime fac-
torization of the plant. Then Section 5 consid-
ers the determination of an upper bound on the
compensator-gap from the estimated frequency re-
sponses. Section 6 illustrates the utility of our ex-
perimental robustness analysis by means of an ex-
ample. Concluding remarks are listed in Section 7.

2 Notation and preliminaries

The basic results in the algebraic theory of linear
time-invariant finite dimensional systems have been
derived for the so-called single-variate control sys-
tem H(P,C) comprising an inner-loop plant P and
a compensator C (Desoer et al, 1980). This feed-
back system equals H(Pr,C) of Fig. 1 except that
the plant lacks the second vector input w. Note




that both control systems are signified by H(P _,C)
and the index of the plant-term obviates any ambi-
guity. Further the signification P is used to indicate
the inner-loop plant as well as its transfer function
P(s).

In the algebraic theory of coprime factorizations
a plant P is expressed as the ratio of two stable
proper mappings: P = ND™', with N and D
proper stable rational functions. Particular classes
of factors N and D are specified below.

Definition 2.1 (Vidyasagar, 1985)

i. Let N,D be stable, then the pair (N,D) is
called right coprime if there exist stable X,Y
such that XN + YD = I. Analogously (D,N)
is left coprime if there exist stable X,Y such
that NX+DY =1.

ii. (N,D) is a right coprime factorization (rcf)
of P if det D #0, P = ND~* and (N,D) is
right coprime. Analogously (D, N) is a left co-
prime factorization (lcf) of the P if det D #0,
P=D"'N and (D,N) is left coprime.

iii. (N,,D,) is called a normalized right coprime
factorization (nref) of P if it is a ref of P and
additionally NyN, + D}, D, =1 with N;(s) the
transpose of N (=s). Analogously (D,,N,) is
a normalized lcf of P if it is a lcf of P and
additionally N, N2+ D, D =1.

Before we recall the main stability theorem we in-
troduce "A € J” as a shorthand notation for the
paraphrase "A is stable and has a stable inverse”
(see Vidyasagar (1985) for the ring theoretic mean-

ing of J).

Theorem 2.2 (Vidyasagar et al., 1982) Let plant
P and compensator C have a ref (N, D) respectively
a lef (D,,N,), then the feedback system H(P,C) is
stable if and only if A € J with A defined as

A= N,N+ D_D. (1)

With ND=' and D:!N, substituted for P respec-
tively C' a block dlagram of H(P,C) can be drawn
as in Fig. 2. In here é=D,ri+N_r; and z=A"'¢.
Hence stability of A=' and boundedness of ¢ guar-
antee z and all other signals to be bounded.

3 Saufficient conditions
for robust stability

This section discusses conditions that guarantee ro-
bust stability of the newly designed feedback sys-
tem H(P,,C) in the face of the deficiency of the

2 N J
l— bl —N.

Fig. 2: Fractional representation of H(P,C).

nominal model P,. In order to examine robust sta-
bility in terms of coprime factorizations we adopt
the next expression from Vidyasagar and Kimura
(1986). The feedback transfer function T(P,C) is
defined as

HPE) = [_IP](I+CP)“‘[C e 52)

which maps 7, and r; into y and u. The feed-
back system H(P,C) is stable if and only if its
transfer function T(P, C) is stable (Vidyasagar and
Kimura, 1986). We express T(P, C) in terms of the
rcf (N, D) of P and the lcf (D,,N,) of C.

T(P,C) = [ ‘g l (D.D+N, N[N, D.].

As proposed in Bongers (1991) we replace the rcf
(N, D) by the factorization P=(NQ)(DQ)™" with

some stable Q:

T(P,C) = [ '[‘;VQQ ] (D.DQ+N.NQ)™ [N, D.].
(3)

Since @ is stable, the two block-matrices at the
right hand side of (3) are stable. Consequently if
(D,DQ+N.NQ)™! is stable, then T(P, C) is guaran-
teed stable. Since the inverse of @ is not necessarily
stable, this condition is sufficient but possibly not
necessary for stability of H(P,C).

Next we implicitly express (NQ, DQ) as a sta-
ble perturbation of the rcf (N,, D,) of the nominal

model P,:
Ap D D,
(o] =[F]e-[] @

which will be signified as col(Ap,An). Now sta-
bility of H(P,C) is guaranteed if the designed
H(P,,C) is robustly stable in the face of the stable
factor perturbations Ap, Ay of (4). In fact these
perturbations Ap, Ay embody the deficiency of the
nominal model. By defining Aa as

Aan = D.DQ+N.NQ
(D.D, +N.N,) + [ D, Nc][iﬂm




we can formalize the following two sufficient condi-
tions for stability of H(P,C).

Lemma 3.1 Let Ay and A be defined as in (5) and
(1). Then Ap € T if

”[DC Nc][ii]

provided that the designed compensator C stabilizes
the nominal model P,.

1 :
L ‘. @

Proof: By Theorem 2.2 stability of H(P,,C) im-
plics A € J. With A € J the inversion lemma
2.2.19 of says that Ax € J if 1/||[Aa—All, <
[A=Y]|,. Substitution of (5) and (1) in the left
hand side of this inequality yields (6). O

Theorem 3.2 Let H(P,,C) be stable and let
(N,,D,), (N, D,) be rcf’s of P, respectively C' such
that A = I. Further let plant P have ref (N, D)
and Ap,Ay be as in (4). Then the feedback system
H(P,C) is stable if

I[ D, Nr.HIm”[ii]

Proof: From (3) we know that H(P,C) is stable if
Ax € J with Aj as in (5). Since Lemma 3.1 holds
for any (N,, D,), (D,, N.) we may choose these fac-
torizations such that A= without loss of general-
ity. And since all elements in the left hand side of
(6) are stable, we may apply the triangle inequality
to accomplish (7). m}

L 2l (7)

In Bongers (1991b) it is shown that the robustness
margin in (6) is the least conservative if A = al,
where a may be any real scalar. This supports the
choice of A =1 in Theorem 3.2. By this theorem
we can ascertain robust stability of H(FP,,C) in the
[ace of the deficiency of P, as follows. We minimize
Ap,An of (4) by selecting an appropriate stable
(. Notice that not only the magnitude but also
the phase of @ is of importance here. Stability of
H(P,C) is guaranteed as soon as a stable () has
been found, such that the inequality (7) is satisfied.
Bongers (1991a) showed that the robustness margin
of Theorem 3.2 equals the directed gap in case the
nominal model factors are normalized, and that the
robustness margin of (7) is less conservative if the
compensalor factors are normalized. The result is a
new robustness margin called the compensator-gap.

Corollary 3.3 (Bongers, 1991a) Let compensator
C stabilize the nominal model P,. Let (D,.,N,.)

4

be a nlef of C and let (N,,D,) be a rcf of P, such
that D,.D,+ N, .N,=1. Then C' stabilizes P if

Ap
1
IL=2 1. < ©
with Ap, Ay as in (4) for any stable Q. The infi-
mum of the Ho-norm bound in (8) over all stable
Qs 1s called the compensator-gap.

This new metric is similar to the gap-metric, ex-
cept that it depends on the compensator at hand.
We will use this compensator-gap in our robustness
analysis based on experimental data.

4 Frequency response estimation

In this section we show how measurements of u and
y can be used to estimate the frequency response
of a particular ref of the inner-loop plant P. These
measurements are taken while the plant operates
under feedback by the known compensator C,. In
order to provide for cases where the plant of interest
is affected by noise we consider the plant Pr of
IFig. 1. Since Py is stabilized by (., it is an element
of the set of all plants, that are stabilized by C,. In
Schrama (1991b) this set has been parameterized
in terms of coprime factorizations.

Theorem 4.1 (Schrama, 1991b) Let the nominal
model P, of the inner-loop plant P be stabilized by
compensator C,. Let (N,,D,) and (N,,,D.,) be a

ca? co

ref of P, respectively C,. Define (N, D) as

N, = [D,S N,+D,R]
WL I 0 (9)
& ol =N SN B

with stable R, S such that det(D,—N,_, R)#0. Then
the set of all plants Py, that make a stable feedback
system H(Prp,C) like in Fig. 1, can be parameter-
ized in the form

P(C) = {Pr = N,D;' | (N, D,) as in (9)} .

This parameterization of the set P(C) is called the
(R, S)-parameterization and it has been depicted in
Fig. 3. We define the associated coprime factoriza-
tion (N°, D?) as

N° = N,+D,R

Do — Dg b A‘rmR (l[])

and by expanding Pr = N,D;' we get P =
N°(D?)~!. In Schrama (1991b) it is shown that
every pair of C, and (N,, D,) induce an unique rcf




(N°, D°) of the inner-loop plant P. In the sequel
we consider the identification of this particular rcf
of P. This identification is based on the variable
z, that appears in Fig. 3 in between D! and N,.
Two important properties of this variable z, called
the intermediate, are listed below.

______________________

Fig. 3: (R, S)-parameterization of Pr in a stable
feedback system H(Pp,C,).

Lemma 4.2 (Schrama, 1991b) Let input u and
output y in H(Pr,C,) of Fig. 1 be measured. Let C,
and (N,, D,) of Fig. 3 be known. Then the interme-
diate x can be reconstructed from the measurements
of u and y via

= (D, +C,N,) (u+ Coy) (11)

without any knowledge of the plant Pr, except the
fact that H(Pr,C,) is stable.

The latter paraphrase supports the practical util-
ity of our approach. Besides in Schrama (1991b)
an alternative expression for (11) has been derived,
which enables to reconstruct z by stable filters even
if C, is unstable. Inspection of the contribution of
w to y and u reveals the next corollary.

Corollary 4.3 (Schrama, 1991b) The intermedi-
ate x of Lemma 4.2 and outer-loop plant input w of
H(Pr,C,) in Fig. 1 are uncorrelated, provided thal
each of the signals vy and 7y is uncorrelated with w.

In summary the artificial intermediate z can be re-
constructed from measured u,y and it does not de-
pend on the noise disturbance w. For a full ex-
planation of this phenomenon we refer to Schrama
(1991b). The next theorem will enable the fre-
quency response estimation of the unknown plant
rcf (N°, D). i

Theorem 4.4 (Schrama, 1991) Let the feedback
system H(Pr,C,) of Fig. 1 be stable and let com-
pensator C, with lef (ﬁm,ﬁm] be known. Then
with = reconstructed via Lemma 4.2 the closed-loop

identification of the inner-loop plant P from mea-
surements u,y is equivalent lo the open-loop iden-
tification of (N°, D°) in

v = D°z—N_Sw

y = N°x+DCDSw (12)

provided that vy and ry are both uncorrelated with
w.

Since the identification of N° and D? is conducted
in open-loop we may apply non-parametric identi-
fication methods directly to the pairs z,y and z, u.

Corollary 4.5 Let H(Pr,C,) with unknown Pr
and known C, be stable. Then the frequency re-
sponse of the ref (N°,D°) of P as in (10) can be
estimated from the inner-loop signals u and y and
the intermediate x.

We end up by mentioning that the intermediate =
can be specified a priori if the signals r, and r; are
at our proposal (Schrama, 1991a).

5 Estimation of
the compensator-gap

In Section 3 we discussed robustness analysis in re-
gard of the new compensator. This ascertainment
of stability requires information on a right coprime
factorization of the unknown plant. By the frame-
work of Section 4 we can obtain such information,
while the plants operates under the initial feedback
C,. We will use the frequency responses of N°
and D° over the frequency range of interest. In
order not to obscure the key objectives we will pro-
visionally assume that exact frequency responses
are available. We return to this subject at the end
of this section. Besides in this and subsequent sec-
tion we consider only single-input single-output sys-
tems.

By Corollary 3.3 robust stability of H(F,,C) in
the face of the deficiency col(Ap, Ay) is guaranteed
if the H.,-norm upper bound on the deficiency is
smaller than 1. The H.-bound of a stable system is
the maximum over all frequencies of the largest sin-
gular value of its frequency response. Hence we may
as well consider the frequency response of the de-
ficiency col(Ap,Ax), provided that the deficiency
is stable. The latter condition can be satisfied as
long as the initial feedback system is stable. Since
stability of H(Pr,C,) implies the existence of the
stable associated ref (N°, D°) of (10), and hence by
Corollary 4.5 we can take the (N°, D°) for (N, D)
in (4). From there on any stable Q yields a stable
deficiency col(Ap, An).




By (4) the frequency response of col(Ap, Ay) de-
pends on the stable term @, which is at our discre-
tion. Motivated by Corollary 3.3 we seek for a sta-
ble @ such that the maximum singular value plot
of col(Ap, Ay) is smaller than 1 for all frequencies.
We start our search for an approximate stable @
with the determination of a lower bound of the sin-
gular value plot of the deficiency col(Ap, Ax): we
let I{T", D° and N’o, IU)D be the frequency responses of
(N¢,D?) and (N,, D,) and for each frequency point
1 we minimize

1D2gi — Doil? + |Nfgi — Noil? (13)

over the scalar ¢; € €. This produces a vector @, of
scalars at length of the number of frequency points
of interest.

Substitution of (:),, for Q in the frequency re-
sponse analog of (4) yields the smallest maximum
value of (13) over all frequencies. With any stable @
the maximumn of the singular value plot of the defi-
ciency will be larger or equal. Henceif (13) is larger
than one for any frequency point i, then stability
of H(P, (') cannot be guaranteed. But if this max-
imum is smaller than 1, then we model Qq as good
as possible by a stable @@,. We substitute @, for @
in (4) and check whether the inequality (8) is satis-
fied. If not then we model Qq/(}l by a stable (); and
substitute @, @; for @ in (4), and repeat this proce-
dure until (8) is satisfied. At every step we obtain
an upper bound on the compensator-gap. Since (?,,
provides only a lower bound of this compensator-
gap, the latter may happen to be larger than | pre-
cluding a robust stability assessment.

Finallv we comment on the use of estimated [re-
quencey response data.  As alluded to in the in-
troduction certain identification techniques provide
such an estimate together with a bounded region
or confidence region, which contains the true’ fre-
quency tesponse. We point out that these tech-
niques arve all designed for open-loop identification.
However they can be applied to the feedback con-
trolled plant since the framework of Section 4 en-
ables an open-loop identification of the ref (N2, D?).
Such an estimate could be subjected to the above
procedure with the regions plugged in the robust-
ness analysis. A prerequisite is that the region is
nol too conservative, especially in case of outliers
in the data (De Vries, 1991). In the example of the
next section we will not utilize these techniques.
Again we will assume that exact frequency response
data is available, or at least that the accuracy of
the estimates is such that estimation errors are ne-
glectable. The latter can be achieved e.g. in cases

where sine-wave experiments at various frequencies
are allowed (Schrama, 1991b).

6 Example

This section describes the application of our ap-
proach to robustness analysis based on frequency
response data. The inner-loop plant under consid-
cration is given by

P(s) =
105°4+106.15420165°412125%41 10454129
5546.0235-}10 1.25%48.905°4110.05%41.0949 .87

and the nominal model P, is

1000
824654+100"

2 =
(4]

The magnitude Bode-plots of both P and P, are
depicted in Fig. 4. The compensator C, currently
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Fig. 4: Magnitude Bode-plots of P and P,.

stabilizing the plant P is
4.70s4-0.112

7, = 0.01 —
< , 0= 0.0016

and the new compensator is

1.971s+427.84
0= _bﬂf_
s+T1.81

Both compensators stabilize P as well as P,.

The sensitivity function, i.e. the bottom right el-
ement of 7(P,C) in (2), has been drawn in Fig. 5
for P and P, under feedback by C, as well as C.
Note that (/4+CP)~" is not yet guaranteed to be sta-
ble but the "frequency response” can be calculated
from N°, D”. We observe that the performance of
the confrolled plant has been improved (in the sense
of a lower sensitivity at low [requencies) provided
that H(P,C') is stable. First we verify the robust-
ness by means of a multiplicative uncertainty. From
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Fig. 5: Sensitivity under feedback by C, and C.

we know that H(P, C) is stable if the multiplicative
uncertainty is smaller than the inverse of the magni-
tude of the complementary sensitivity of H(FP,,C)
(i.e. the negative top left element of T(FP,,C) of
(2)). The multiplicative uncertainty has been cal-
culated as (P/P,)—1 and its magnitude is drawn
in Fig. 6 together with the inverse complementary
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Fig. 6: Multiplicative uncertainty and robustness
margin.

sensitivity. Clearly the deficiency of P, expressed
as a multiplicative uncertainty does not satisfy the
condition for robust stability.

Now we turn to the robustness analysis in terms
of coprime factorizations. By the procedure de-
scribed in the previous section we estimate a stable
@ of order 6 and subsequently another @ of order 4.
Since we apply a general identification routine the
estimated @) sometimes is unstable. Hence we have
to eliminate the unstable part in some ad hoc man-
ner. The corresponding maximum singular value
of |Ap|*+|An|? has been plotted in Fig. 7 (solid
line). This curve embodies an upper bound on the
compensator-gap. Clearly it is smaller than one
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10=1E \ E
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101 100 101 102

Fig. 7: Minimized coprime factors deficiency.

over all frequencies and thus stability of H(P,C) is
guaranteed.

7 Concluding remarks

In this paper we proposed a solution to the prob-
lem of robustness analysis based on experimental
data. The solution has been conceived in terms of
coprime factorizations. First we have used coprime
factors to establish robustness margins and consec-
utively a sufficient condition for robust stability. By
this condition we can ascertain robust stability of a
feedback system in the face of stable coprime factor
perturbations. Secondly we have provided a means
to estimate the frequency response of a particular
coprime factorization of an unknown plant. This re-
quires measurements of only the input and output
of the plant, while it operates under known feed-
back. Then these frequency responses have been
used to verify the condition for robust stability for
this particular plant. That is, the frequency re-
sponse data of the coprime factors were used to as-
certain stability of the unknown plant under feed-
back by the new compensator. This application
of the small gain theorem to the specific frequency
response data is legitimate, since the underlying co-
prime factors of the unknown plant are stable. An
example shows the utility of our approach.

Issues for future investigation are the develop-
ment of a frequency domain identification method
that yields only stable models as well as the robust-
ness analysis with the application of identification
techniques, that provide a bounded or confidence
region for the frequency response estimates.
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Abstract. This note presents a state-space algorithm for the calculation of a normal-
ized coprime factorization of continuous-time generalized dynamical systems. It will be
shown that two Ricatti equations have to be solved to obtain this normalized coprime

factorization.
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1 Introduction

Recent publications have shown the importance
of normalized coprime factorization plant descrip-
tions in the field of control design (McFarlane and
Glover (1989), Bongers and Bosgra (1990)), robust-
ness analysis , (Vidyasagar (1984), Vidyasagar and
Kimura (1986)) model reduction (Meyer (1988))
and identification for control (Schrama (1991)).

In Nett et al. (1984) the connection between the
state-space realization of a strictly proper plant
and a coprime factorization has been established.
The coprime factorization of a generalized dy-
namical system was presented in Wang and Balas
(1989). In Meyer and Franklin (1987) it has been
shown that in order to calculate a normalized co-
prime factorization of a continuous-time strictly
proper plant one Ricatti equation has to be solved,
Vidyasagar (1988) extended these results to proper
plants. For discrete-time proper systems the con-
truction of a normalized coprime factorization has
been set up in Bongers and Heuberger (1990).

In this note we extend the results of (Meyer and
Franklin (1987), Vidyasagar (1988)) to generalized
dynamical systems. It will be shown that in the
calculation of a normalized coprime factorization
for systems in a generalized state-space form two
Ricatti equations has to be solved instead of one Ri-
catti equation as in the case for systems in a com-
mon state-space form. The procedure to achieve

a normalized coprime factorization for systems in
generalized state-space form will be given as an ex-
plicit algorithm.

2 Preliminaries

In this note we adopt the ring theoretic set-
ting of Desoer et al. (1980), Vidyasagar et al.
(1982) to study stable multivariable linear sys-
tems. That is we consider a stable system as a
transfer function matrix with all its entries be-
longing to the ring H. We consider the class of
possibly non-proper and/or unstable multivariable
systems as transfer function matrices whose en-
tries are elements of the quotient field F of H
(F := {a/b|a €™, be H\0}). For the applica-
tion of our state-space algorithm we will identify
the ring H with IRH.,, the space of stable real
rational finite dimensional linear time-invariant
continuous—time systems. The set of multiplicative
units of H is defined as: J := {he H | h~! € H}.
In the sequel systems P € F™*" are denoted as
P € F.

Factorizations

Definition 2.1 ( Vidyasagar et al. (1982))

A plant P € F has a right (left) fractional repre-
sentation if there ezist N, M(N, M) € H such that
P=NM- (= M-N).




The pair M, N(M,N) is a right (left) coprime
Jactorization (rcf orlcf ) if it is a right (left) fraction
and there ezists U,V(U,V) € H such that: UN +
VM =1 (NU+ MV =1I)

The pair M, N(M, N) is called a normalized right
(left) coprime factorization (nrcf or nlef ) if it is
coprime and: M*M +N*N = [ (MM*+NN* =1I)
with M* = M7 (—3s).

Proposition 2.2 Let P(s) be a real rational pos-
sibly non-proper transfer function having MecMil-
lan degree v. Then P(s) can be represented by
P(s) = C(sE — A)™'B, where:

E:[fr 0],14:[/111 Alz]

00 Ay Ag
By
B:[BJ,Cz (¢ €]
with A AL, = 0, AL, Ay = 0 and both B,BY, CTC,
non-singular. The matriz partitions are assumed to
be compatible with the partitioning of E.

Proof: Let P(s) = P,,(3) + Po(s) with P, =
C(sl — A)™'B strictly proper and Po= Clli—
sJ)"'B the polynomial part with (4,86‘) and
(J, B_,C_-') controllable and observable matrix triples
and J in Jordan form (Rosenbrock (1974)). Then

‘T ] Sj B T 5.6 SI __‘j“ __‘)il? él
—C' 0 > _J‘zl —Jaa | By
~-C, —C; |0

wlere r.s.e. denotes an operation of restricted sys-
tem equivalence (Rosenbrock (1974)). In this case
the operations only involve interchanging rows and
columns containing an s, and sign changes. Con-
trollability /observability of systems in Jordan form
implies non-singularity of B;B] and CJ C; (Chen
and_Desoer (1968)) . The Jordan form implies
J|2J§; = () and J;";ng = 0. Defining the partitioned
system matrices as:

proves the proposition O

3 Main result

The main result consists of two parts. First we will
show that a nrcf of P is a full rank spectral factor
of

[;](H-P'P)"[f P ] (1)
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Secondly we will use this result to obtain a state-
space realization of a nref of P. This will be pre-
sented in the form of an algorithm.

Theorem 3.1 Let P € F be given. Then the fol-
lowing statements are equivalent

a) (N,M) is a nrcf of P
b) [ i{ ] € H is a full rank spectral factor of
I

[P](1+P'P)_1[I P ]

Proof: (a) — (b). Given an (N, M) as a nrcf of
P. Then [ i‘: ] € H is full rank and (1) can be

writlen as:
[ N;!_, } (I+M"'f\"Nz’L-I“)_l [I M'N*]

={g][m- N* ]

- [ ¥ } (MM +N°N)"' [ M* N ]

N

which proves the first part of the theorem.
(b) — (a). Conversely, let (N;,M;) € H be a
rcf of P and let A € J be a spectral factor of

Y A i
(M?M; + N7N;) and define [ ,r\! ] a [ Vrf ] A

Then [ J;:: ] € H and is a spectral factor of (1)

i.e. (b) holds. Moreover [ M= N*] I:j:irf]

=1 I’K‘ -1
A" 1@ N: ol A= AT ARANGE = T,
A [ M7 N; ] { N, ] A A
M. .
Hence N is a nrcf of P and this proves the sec-
ond part of the theorem. O

Based on Theorem 3.1 an algorithm is con-
structed which will lead to a state-space represen-
tation of a nrcf of a generalized dynamical system.
The proof is given in Appendix 5.
begin Algorithm
step 1 By proposition Proposition 2.2, we realize
the system P along the lines of Rosenbrock (1974)
in terms of a generalized state-space systems with:

| ) _ | An A
E_[U 0]’/1_[‘421 An}

B
Bz[B;]‘CZ[C‘ cul

(2)




step 2 Calculate W; as the stabilizing solution of
the Riccati equation:

CFCy + WAy + ALW, — Wy B,BTW, = 0

step 83 Define Y, Z,C, B, A to be:

== ~(W2Azz o C;CQ)_I(AE — WQBQBIT')

1= —(WaAz + CTC2) "} (CTCy + W A1)

=C, —ChZ

= An + (A2 + Y7TCTCy) 2

=By — (Alg — B[BII’VQ)(A:‘; - BQB;WQ}_] B,

o QN

step 4 Calculate W, as the stabilizing solution of
the Riccati equation:

C‘TC'+ATWIT+W14EI— WIBBTWIT= 0

step 5 A state-space realization of is
N(s)
given by:

in the algoritm:

s 0] (%)

y

2312+
Lo =11(%)

the steps outlined in the pro-

Ty

|

Then following

posed algorithm a state-space realization of [ % ]

] . Therefore

M(s) = 3%, N(s) = 75 and then M(s), N(s) €
H, N(s)M(s)™* = P(s) and M*(s)M(s) +
N*(s)N(s) = I.

Remark 4.1 For systems P(s) having an proper
inverse and using the theory described in Meyer and
Franklin (1987), Vidyasagar (1988) we can calcu-
late a nicf of P~ = M~YN. Then a nrcf of P is

given by M = NN = M

sl, — A+ BB™W,

| B

\(I - B B;) + AWy B}

(7 — Bf B,) BTW; + Bf Ay,

—(I-C,B¥)C, + CF" AT W, {

I-BIB;
ct¥ w,B,

with Bf = BI(B,BT)~! and ¥ =
end Algorithm

(C3C)Cs,

The connection between a nrcf and a nlcf of a
plant is given in the following corollary.

Corollary 3.2 If (M,N) is a nrcf of the system
PT, then (MT,NT) is a nlcf of P
4 Example

Assume that our non-proper system is a differen-
tiator: P(s) = 5s. A generalized state-space form

can be written as:
o 1] (5)+[ 4]

Iy

[g g](z:) B [01 2
b

Using Proposition 2.2 we can write the above gener-
alized state-space form into the standard form used

Il

y
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5 Conclusions

In this note a state-space algorithm for the cal-
culation of a normalized coprime factorization of
continuous—-time generalized dynamical systems is
given. It has been shown that two Ricatti equa-
tions have to be solved in the calculation of this
normalized coprime factorization.
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Appendix

In this appendix we proof the construction of a nrcf
(M,N) of P € F as proposed in the algorithm.
Let the generalized state-space realization of
the system be partitioned according to Propo-
sition 2.2 and apply a similarity transforma-
tion to a generalized state-space realization of

[H(HP-P)" [I P

cTc -—sET-AT|0 CT
sE-A -BBT |B 0
0 /()
=y g g

Q —sET — AT+ WBBT |-WB CT

sk — A+ BBTWT -BBT B _ 0

= BTWT -BT R (‘1]
= 0 0 0
Schrama, R.J.P. (1991). A framework for control- with

oriented approximate closed-loop identifica-
tion.  To appear at 9th Int. Symp. on
Mathematical Theory of Networks and Sys-
tems, Kobe, Japan.

Vidyasagar, M. and H., Kimura. (1986), Robust
controllers for uncertain linear multivariable
systems. Automatica, vol.22, no.1, pp 85-94.
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Q = s(ETWT —WE)+CTC+ (5)
ATWT + WA — WBBTWT

Equation (4) defines a generalized state-space re-

alization of 3 spectral tnikin
of [ }!3 } (7 + BER)I [ /I 25 ] provided that @ in

4




(5) can be made zero. Which proves that the presented algorithm will lead

. W, Wi, ; T to a state-space representation of a nref of a system
Defme }y = [ 0 W, wikh Wm0 il = in a generalized state-space form.
WZE, W partitioned according to £. Then the first

part of (5): s(ETWT — WE) equals zero. o =
Define Ajy = A+ A12X, Ay = A + AnX, G, =
Cit CX, X =YWk 7 with:

Y = —(WaAy + C] Cy) ™Y (AL, — WaB, BY)
Z = —(WaAn +CIC:) " (CTCy + WaAy,)

where Wy, W; are the stabilizing solutions to the
Ricatti equations (existence can be shown using
Proposition 2.2):
0 = C7Cr+ Wadp + ALW, — W B, BTW,
0 = CTC+ A™WT + wyA- w,BBTWT
with:
C = C-C2
A = An+ (An+YTCICy)z
B := By~ (A1~ BiB{W))(Ay — B,BI W)™ B,

Using F = [ BfWy — BIW,X BIW, ] (4) can be

written as:
0 —sBET — AT 4 FTBT|_FT CT
sk — A+ BF —BBT B
F -BY I 0
—C 0 0 0

which equals a generalized state-space realization

of the transfer function [?\/{] [M" N"] with

o sE— A+ BF|B
[ N ] o F I Now it can be
-C 0

easily checked that P(s) = N(s)M~'(s). Us-
ing operations under restricted system equivalence
(Rosenbrock (1974)) the generalized state-space re-

alization of [ ] is reduced to the state-space

N
form:
with Bf = B (B;BT)~! and Cf = (C1C,)~C,.

A sI, — A+ BBTW, | B,(1 - Bf B,) + AuW;'BY
[ N((‘:; ] = |T(T=B¥B,)BTW; + B} Az I- BB,
—(I - C,B})Cy + CF AT,W, c¥ ' w,B,

Hence [ i;((;)) ] is proper and asymptoticly stable.
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Abstract.

This paper studies in a tutorial way the application of Structured Singu-

lar value analysis and synthesis concepts, known as pu—synthesis, on the De Haviland
Beaver flight control system (FCS). Our goal is to present the general ideas behind the
mechanisms involved with p—synthesis. The main idea is to show how u as a robust
performance index arises from the General Nyquist stability criterion. The power of the
method will be demonstrated by bringing this concept into practice on a design example.

Keywords.

1 Introduction

No mathematical model can exactly describe a
physical system. For this reason we must be aware
of how modelling errors might have an adverse ef-
fect upon the performance of a control system. In
general, a property of a control system such as its
stability or performance, is said to be robust if it is
preserved under plant perturbations. In the last
decade much research has been done on the de-
sign of robust control systems. This has led to
the H, control design method (Doyle, Glover,
Khargonekar and Francis (1988)), which is suited
for robust stability and nominal performance prob-
lems. For Single-Input-Single-Output (SISO) sys-
tems H,, control can also be used for the robust
performance problems. For multivariable systems
however the robust performance design problem is
more complicated because of its inherent structure.
H., control does not account for this structure and
for that reason Doyle (1982) introduced the notion
of Structured Singular Values (u), first for analysis
and later for synthesis (Doyle (1984)). Main refer-
ences on theory and application of the structured
singular value concepts can be found in Williams
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Robust stability, nominal performance, robust performance.

(1990). In order to reveal how u arises from the
general case, we first apply the main ideas on a
simple SISO control structure. In figure 1, the ba-
sic feedback structure is enough to tackle the SISO
robust performance problem that we will review in
section 2 of this paper. The generalized robust per-
formance problem cannot be handled within this
basic feedback structure. In section 3, we will see
how, by introducing an alternative framework pro-
posed by Doyle (1984), consisting of a general in-
terconnection structure as in figure 4 and a ma-
trix norm, a necessary and sufficient condition for
the general robust performance problem can be ob-
tained. In section 4 is shown how within this new
framework analysis and synthesis can be carried out
on a design example of the Beaver DHC-2 aircraft
attitude-hold auto-pilot at a speed of 35m/s and al-

d(s)
y(s)

-

Fig. 1: Basic feedback structure




titude of 6000 ft. Two controllers are presented, one
achieved by the classical root-locus design method
of Evans and the other by pu—synthesis. Rather
than only showing superiority of the g—controller,
the design example is meant to show how valuable
the information of the characteristics of the classi-
cal design can be, for a suitable choice of weight-
ing functions which is not always transparent, these
form the starting point of the p—synthesis.

2 Robust Performance for
SISO Systems

2.1 Introduction

Before definitions about robust performance are
treated, nominal performance and robust stability
are defined. As, if we choose a particular uncer-
tainty model, robust performance is achieved if and
only if nominal performance and robust stabilty are
achieved. For SISO systems these plant properties
are related to the infinity norm,( i.e. maximum over
all frequencies of a transfer function), of well known
transfer functions, as the sensitivity and comple-
mentary sensitvity which satisfy the relation:

S(jw)+T(jw) =1 (1)

The response y(s) of the closed loop system in figure
1 to a reference r(s) or to a noise signal n(s) is given
by the complementary sensitivity function 7'(jw) .
On the other hand the response of the error signal
e(s) to a reference r(s), or the response y(s) to a
disturbance signal d(s) as in figure 1, are given by
the sensitivity function S(jw). Taking into account
the fact that generally |T'(jw)| — 0 as w — oo and
the conservation law of equation (1), a fairly com-
mon design rule arises, i.e. keep at low frequencies
|S(jw)| small and keep |T'(jw)| small at sensor
noise frequencies. In order to trade off among the
frequency ranges, weighting functions which form
the major design parameters in p—synthesis are
required. For a more thourough treatment on fre-
quency domain properties of feedback systems we
refer to Freudenberg and Looze (1988).

In figure 1 the plant G(s) is only a model of real-
ity and to take account for a whole set of possible
plants, we introduce the multiplicative uncertainty
description as shown in figure 2. Assuming this
uncertainty structure we consider a set of possible
plants given by :

G(jw) = G(jw) (1 + A(jw) Wa(jw)) . (2)

Here W,(jw) represents the uncertainty profile of
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the plant and A(jw) a scaling factor in magnitude
between 0 and 1.

2.2 Nominal Performance

If we want to track a reference signal asymptot-
ically, or reject disturbances at the plant’s out-
put, then the sensitivity transfer funtion is involved.
This can be expressed in a performance objective
as for example:

IS |lee < €

which reflects the desire to keep the maximum am-
plitude of output errors, which is the co-norm of the
sensitivity function, i.e. max, |S(jw)| below some
level € . Or if we define some weighting function
Wi(s) = % the performance specification becomes

[| Wi S || < 1

More realistic is the situation when the weight-
ing function is frequency dependent. Assume that
Wi(s) is real-rational and stable, we will show how
to come to an oo-norm specification. In several ap-
plications, as flight control design, designers have
acquired through experience desired shapes of the
Bode magnitude plot of S. In particular, suppose
good performance is achieved if and only if the plot
of [S(jw)| lies under some curve. We could rewrite
this as
IS(w)] < [Wa(jw)l™ Ve

or in other words

Nominal Performance iff
[| W4 S ]l < 1. (3)

This means that nominal performance is achieved
if the worst case response, over frequency, to dis-
turbances (fig. 2) is not amplified.

2.3 Robust Stability

To get a satisfactory characterisation of robust sta-
bility we shall use a specific uncertainty model
namely, multiplicative perturbations as defined
above. In order to obtain a consistent set of models,
two conditions have to be satisfied:

Fig. 2: Multiplicative uncertainty structure



1. G(s) and G(s) have the same number of un-
stable poles.

2. |AGw)llee < 1.

When both conditions hold the perturbation is
called allowable. The idea behind the multiplicative
uncertainty model is that A(jw)W,(jw) represents
the relative plant perturbation:

G(jw) — G(jw)
G(jw)
Hence, if ||[A(jw)|lec < 1, then Yw

Gw)[1 + A(jw)Ws(jw)] — G(jw) (5)
G(jw)

in this way the uncertainty profile |[W,(jw)| is ob-
tained. The main purpose of A(jw) is to account
for phase uncertainty and to act as a scaling factor
for the perturbation, i.e., |A(jw)| varies between 0
and 1.

Assume the nominal feedback system is internally
stable. When is stability of a system robust,
i.e.,when is internal stability preserved under all al-
lowable perturbations A(jw)? Using a theorem by
Doyle (1984) we get:

= A(jw)Wa(jw).  (4)

< [Wa(jw)|

Theorem: Robust stability
A system is robustly stable, for all A(jw), with
|A(jw)| < 1, if and only if

W2(jw) T(jw)lleo < 1. (6)

The last result can be obtained by stability consid-
erations of the closed loop system. The question we
ask ourselves is, when does the perturbation A(jw)
destabilize the closed loop system ? Therefore cut
the loop at the input and output of A(jw) in fig-
ure 2 to obtain the transfer function that A(jw)
"sees”. Using the assumptions made on A(jw) and
the Nyquist stability theorem we obtain the desired
result.

2.4 Robust Performance

Once nominal performance and robust stability are
achieved, we might ask ourselves if performance can
be made robust. Let S(jw) be the perturbed sen-
sitivity function, i.e., the sensivity function of the
plant under some allowable perturbation A(jw).
Performance is robust if and only if it preserved
under all perturbations. This gives (Doyle (1984)):

Robust Performance A necessary and sufficient
condition for robust performance is

sup || Wi(jw) S(jw) [l < 1 (7)
|aj<1
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Fig. 3: Robust Performance as a Robust Stability
test

The last equation holds iff

I IW1(jw)S(w)l + [Wa(jw)T'(jw)| fle <1 (8)
Which means that robust performance is achieved
if and only if nominal performance and robast sta-
bility are both satisfied and that their absolute sum
is less than unity. Equation (8) follows with some
manipulations directly from equation (7). Equation
(8) can also be obtained in an other way, namely
as a stability test, this forms the crucial idea be-
hind the p—analysis. Therefore introduce an extra
allowable perturbation mostly called performance
block A, on the performance as shown in figure 3.
To test stability with respect to simultaneous per-
turbations, again break the loop at the inputs and
outputs of both perturbations and determine which
transfer function matrix the simultaneous pertur-
bation "sees”. Then applying the Nyquist stability
criterion we obtain the desired result. This machin-
ery forms the principle of the u analysis which can
handle any complex valued uncertainty and perfor-
mance as a stability test. A detailled discussion on
the material presented in this section can be found

in Balas, Packard and Doyle (1990).

3 pu-Synthesis Methodology
in a General Framework

3.1 Introduction

In multivariable design performance and stability
objectives can not be reflected in terms of the sen-
sitivity and complementary sensitivity alone. More
complex transfer functions are involved so that a
condition for robust performance is hard to ob-
tain. Even when we obtain such a condition it can
be arbitrarly conservative so that the resulting de-
sign is far from satisfactory, (see e.g. Stein and
Doyle (1990)). The limitations can be overcome
partly with an alternative design framework which
has been developed in the past few years by Doyle,
Wall and Stein (1982), Doyle (1984) and Stein and
Doyle (1990). The alternative framework consist of
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a more general problem description, a more suitable
measure of magnitude for matrix transfer functions,
and certain key analysis and synthesis results. In
this paper we apply the alternative framework on
a very simple SISO example in order to reveal the
involved mechanisms which can be helpful for the
understanding in dealing with more complex multi-
variable problems. The general problem description
is shown in figure 4. It consists of a general system
P with three pairs of input/output variables. The
first pair consists of the measured outputs y, and
control inputs u. The second pair consists of per-
formance variables e, and external input signals
d , and the third pair consists of output signals z,
and v through which unit-norm perturbations are
fed back into the system. Any linear interconnec-
tion of inputs, outputs and commands along with
the perturbations and a controller can be viewed in
this context and can be rearranged to match this
diagram so that P can be chosen to reflect many
different problem specifications.

3.2 Analysis Review

Beyond its generality, the alternative framework is
important because it comes equipped with a non-
conservative necessary and sufficient condition for
robust performance. In order to describe this con-
dition we first close the compensator feedback-loop
in fig 4 to get the loop in fig 5. The system M(P, K)
in this figure has a 2 x 2 block-structured transfer
function M(s) whose blocks are defined in terms
of the original 3 x 3 partition of P(s) as follows:

M,-J-{s) =
for i =12
(9)

Equation (9) is called a Linear Fractional Trans-
formation of the system P through K , therefore
the notation M(P, K). Suppose that this system
is stable, then the following results apply:
Theorem (Doyle (1984)):

Pi;(8) + Pia(s)[I = K(8)Psa(s)]™" K(s)Ps;(s)
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1. Nominal performance is satisfied if and
only if
(10)

2. Robust stability is satisfied if and only
if

[|Ma2(jw)]lee < 1

M1 (jw)llee < 1 (11)
3. Robust performance is satisfied if and
only if

uM(jw)] <1 Ve (12)

(where y is a function to be defined shortly)

The first result is true by definition since M, rep-
resents any nominal performance transfer function
block. Already here we see that through this con-
struction we can capture any performance objective
not only the sensitivity. The second result follows
from a stability consideration with the perturba-
tion loop closed, i.e. det(I — A(s)My(s)) # 0
along the imaginary axis for all allowable pertur-
bations. Again M,;(s) can consist of any trans-
fer function not just the complementary sensitivity.
The third result is the most significant one. It pro-
vides a necessary and sufficient condition for robust
performance. It can be established from the defi-
nition that performance is robust if and only if the
transfer function from d to e with the A loop
closed remains oo -norm bounded by unity, that is
if and only if

| Maz + May (I — AMyy)  AMya)lee < 1 VA (13)

Equation (13) is also a necessary and sufficient con-
dition for the system M(P,K) to remain sta-
ble even if we choose to connect a second norm-
bounded perturbation A, ( performance block )
across the e and d terminals. In this view, robust
performance is exactly equivalent to robust stabil-
ity in face of two perturbations A and A, con-
nected around the system M(P, K') in the block
diagonal arrangement shown in figure 6. The ro-
bust stability is assured, if and only if the func-
tion det(/ — diag(A,Ap)M(jw)) remains nonzero
along the imaginary axis. This observation brings
us to the function g, called the structured singu-
lar value. This function was defined specifically to
test the kind of determinant conditions identified
above. Its full definition for complex matrices is

[

z
e M d

Fig. 5: Analysis part General interconnection struc-
ture




M (P, K

Fig. 6: p-stability test

the following (Doyle (1984)):
det[l — eXM] =0 =
for some X = diag(Ay,...,Am) }]

u[M] 2 [min {c
with [| Al < 1, for all i
(14)

In words, p is the reciprocal of the smallest value of
scalar € which makes the matrix I —eXM singular
for some X in a block-diagonal perturbation set.
If no such e exists, p is taken to be zero. It is clear
from definition (14) that u can be applied to the
transfer function matrix in figure 3.2 to test wether
det(] —diag(A,A,)M) remains non-zero along the
imaginary axis. In fact the determinant remains
non-zero as long as u[M)] < 1. Applying Schur for-
mula for determinants, both conditions, eq(11) and
eq(13) can be obtained at once; (in Maciejowski
(1989), pp 126-127 is shown how the robust perfor-
mance condition is obtained). This is a tight con-
dition for robust stability with respect to two per-
turbation blocks, and equivalently a tight condition
for robust performance. Note that the definition is
not limited to 2 x 2 block structures, so that it can
be used to test stability with respect to any num-
ber of diagonal blocks. This permits to establish
robust stability with respect to plant sets charac-
terized by several unstructured perturbations, and
simultaneously, to establish robust performance.

For practical use, the function g[M] has to
be evaluated. This is done across frequency, pro-
viding a Bode-like plot to analyse robust stabil-
ity /performance of any given design.

The algorithms of g are based on the following
inequalities which are proven in Doyle (1982):

sup p(MU) < u(M) < inf G(DMD™') (15)
veu Deb.

where p denotes the spectral radius, @ the maxi-
mum singular value and

U = {diag (U1,Us, ... ,Us) |USU; = T}

D = {diag(d:11,ds1,...,dn) |d; € Ry}

with block dimensions of U; and D; matching those
in X.
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Fig. 7: Synthesis part General interconnection

structure

In Doyle (1982) key theorems regarding u are
proven; it is shown that the lower bound is always
an equality, while the upper bound is an equality
as long as n < 3. It has to be remarked that the
sets U and D leave perturbations from the set X
invariant, in the sense that &(AU) = (UA) and
DAD™!' = A, which is equivalent to say for the
last expression that u(DM D™') = u(M). Noticing
the fact that singular values are not invariant un-
der scaling leads to a practical computation scheme
for (M) by minimizing (DM D™!) (the upper
bound) over all D € D , resulting in the so called
optimal D—scales. Althoug a(DMD™') is con-
vex in In(D) the infimum is not necessarily equal
to u, but practice shows that the upper bound is
acceptably close to g .

3.3 Synthesis Review - H, Opti-
mization

For the purpose of synthesis, the perturbation can
be normalized properly to unity so that the nor-
malizing factor can be absorbed into P . This re-
sults in the synthesis problem as shown in figure
7. The synthesis problem involves finding a con-
troller K such that performance requirements are
satisfied under prescribed uncertainties. The inter-
connection structure P can be partitioned so that

the input-output map from d' = [ :] toe = [ z ]

can also be expressed as the following lower linear
fractional transformation denoted Fi(P, K):

e = F(P,K)d
where
F(P,K)= M(P,K)= Py + PpK(I — PnpK) ' Py.

For the H,, optimal problem, the objective is
to find a stabilizing controller K which minimizes

|Fy(P,JK)|ls . Thus find a controller K such that
IE(PK)lloo < (16)

where > is the minimum norm of the perturba-
tion that destabilizes the closed-loop system. The




minimization is carried out iteratively and is called
~—iteration. An excellent reference on this mat-
ter is Francis (1987), while the used algorithms to
obtain H,, controllers come from Doyle, Glover,
Khargonekar and Francis (1988).

3.4 p-Synthesis Methodology

The p-synthesis methodology emerges as a practical
approach in designing control systems with robust
performance objectives. This technique essentially
integrates two powerfull theories for synthesis and
analysis info a systematic design technique involv-
ing H,, optimization methods for synthesis and
the structured singular value p for analysis. Recall
that p may be obtained by scaling and applying
an infimum over D . Extending this concept to
synthesis, the problem of robust controller design
becomes that of finding a stabilizing controller K
and a scaling matrix D such that the quantity
| DF(P,K)D™" || is minimized, for more detail
see Doyle (1984).

One approach for solving this problem is that of
alternaly minimizing the above expression for ei-
ther K or D while holding the other constant.
For fixed D, it becomes an H. optimal con-
trol problem and can be solved using the the state-
space method of Doyle, Glover, Khargonekar and
Francis (1988). On the other hand, with fixed K,
the above quantity can be minimized at each fre-
quency as a convex optimization in In(D). The
resulting data of D can be fit with an invertible,
stable, minimum-phase, real-rational transfer func-
tion. This proces is called D — K —iteration and
is carried out until a satisfactory controller is ob-
tained. For a deaper treatement of this procedure,
we refer to Balas, Packard and Doyle (1990).

4 Application of u-Synthesis
to a FCS design

4.1 Introduction

This section deals with an application of the pre-
sented theory on a flight control system. To be
able to perform practical design all desired objec-
tives are translated into suitable weighting func-
tions and absorbed into the general interconnection
structure. Then comparison between classical and
the achieved p—controller is made.
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4.2 Problem Description

We consider the Linear Time Invariant (LTI) model
of the DHC2-Beaver aircraft for the longitudinal
motion as described in Tjee and Mulder (1988).
The plant can be represented in state space form
as:

&(t)

y(t) =
where z represents state vector, u the input vector
and y the output vector.

Az(t) + Bu(t)

Cz(t) (17)

u | (m/s) forward speed
o a | (deg) angle of attack

) (deg) pitch angle

q (deg/s) pitch rate
u = 6, (deg) elevator deflection
="y

Also, a third order actuator model denoted
Gres(s) has been included as we can see in fig-
ure 8. With the root-locus design method from
Evans a two-loop controller has been synthesised.
The obtained controller as in figure 8, revealed to
have satisfactory characteristics during flight tests.
Then performance results of the classical controller
are used as requirements for the synthesis of the
p—controller in order to obtain realistic weighting
functions. The p—control structure can be viewed
as a disturbance rejection problem as given in fig-
ure 2, which means that design can be carried out
following the results of section 2. The weighting
functions can be obtained from the sensitivity and
complementary sensitivity function of the classical
design as given in figure 9. This is due to the fact
that the complementary sensitivity, in our example,
through its inverse, directly can be related to the
uncertainty profile. In this view the complemen-
tary sensitivity in figure 9 tells us that the design
can tolerate an input multiplicative perturbation
of 125 percent. On the other hand the sensitivity
function tells us how fast and up to which bandwith
errors due to disturbances or commands are elimi-
nated. At zero frequency of the sensitivity function




in figure 9, we get an indication of the steady state
error level. Having made these observations, we are
able fo formulate our design objectives. Since we
know that the classical design does account for such
an high uncertainty level, we drop this down to fifty
percent in return of more performance.

The lower curve in figure 10 represents |W,(jw)|,
i.e., the upper bound on the magintude of the rel-
ative plant perturbation with frequency w . So in
our case |W;(jw)| starts at a level of 0.5 crosses
the zero dB axis at 100 rds~ and increases at a
rate of 20 dB/decade. The transfer function for the
input uncertainty is:

50(s + 100)

Wa(s) = 75 T0000)

(18)

For the performance is chosen a rejection factor 50

to 1 in the operating bandwith, i.e. output distur-
bances are attenuated over this frequency region.
Expressed differently, steady-state tracking error to
step references has to be in the order of 0.02 or
smaller. This performance requirement gets less
and less stringent as frequency increases as shown
in figure 10. From equation (1), we know that this
performance level is the maximum achievable one
in front the chosen uncertainty level. The transfer
function associated with the performance goal is:

5(s+3)

Wi(s) = G +.03)

(19)

Once, the weighting functions are obtained, the
general matrix interconnection structure has to be
built up.

In our example we have to break in figure 2 the
loop at the compensator and the perturbation A to
obtain the open loop interconnection structure rep-
resented by the transfer function matrix P . Then
through an LFT we get the object transfer function
M(P, K) for synthesis and analysis purpose:

-WhT -WKS

M M
M(P’K)z[ v u]= WiSG W,

My My
The following analysis results apply:

Nominal performance

[IM22]lec = [[WiS]|oo ]

Robust Stability
“Mll”oa - "W2T"m e |

Robust performance
IM]l, = [IW2T|+ [WiS]lle < 1

These results precisely match the earlier state-
ments (see sec. 2.4 and 3.2) and are used after
each synthesis step as performance indicators.

4.3 Control Design and Results

In this section we present the synthesis results from
the D-K iterations. After having set up the problem
into the general form, the first design step consists
of synthesising an H,, controller. Achieved with
the y—iteration was 4 = 1.43, this corresponds to
an allowable unertainty level of 70 %. To analyze
whether robust performance is achieved, p is calcu-
lated and plotted against frequency as a Bode mag-
nitude plot. The resulting p is over the operating
region above one which means that the desired ro-
bust performance level yet is not achieved. At this
stage optimal dynamic D-scales are introduced and
a new controller is synthesised. The new + value is
1.09, this corresponds to an allowable uncertainty
level of 91 %. The robust performance level is not
achieved as we see in figure 11. A new D-scale is
fitted, leading to 4 = .93 in the third iteration
step. At this stage the robust performance level,
i.e., g <1 is achieved by a 15th order controller

4.4 Comparison to the Classical
Design

In order to compare both designs, the classical con-
troller has been also absorbed with the weithing
functions into the open loop interconnection struc-
ture P.

1. Results Robust Stability.

Let us look at figure 12, where the robust stability
level with respect to the specified uncertainty model
is represented by the lower curve for the classical de-
sign. The curve lies far under unity, which means
that the control system is robustly stable. The
perturbation which destabilizes the system, can be
seen in terms of classical gain margin, which means
in our case that the gain could be raised up to 1
over 0.49 which is slightly more than a factor 2 to
make the closed loop unstable. For the p design ro-
bust stabiliy is represented in the same figure by the
upper curve. The result reflects precisely what we
included in the weighting function which intended
to allow 50 percent of uncertainty at low frequency,
the gain margin in this case is 2 as we expected.

Resuming, it can be said that, with respect to the

prescribed uncertainty profile, both designs behave
similarily.

2. Results Nominal Performance.

Remember that the performance specification for
the p—controller was more stringent than the clas-
sical controller. The steady state error for the clas-
sical controller is 0.2 while the objective for the

|




pi—controller was to tolerate only an error of 0.05.
So we know in advance that the classical system
does not satisfy the nominal performance objective.
If we look at the nominal performance plots in fig-
ure 13, the above curve goes far above unity at low
frequency as expected, while the lower curve repre-
sents the achieved nominal performance level of 0.5
as we introduced in the weighting function.

3. Robust Performance.

Since for the classical controller nominal perfor-
mance is not achieved, neither robust performance
could be. This can be seen in figure 14 where
the upper figure represents the robust performance
level of the classical controller. The lower curve in
the plot represents the achieved robust performance
level for the p design, which is everywhere below
unity so that it could account for an unity pertur-
bation and still achieve the performance objective.

4. Time Responses.

To give an impression what the frequency bounds
reflect in time domain, we made some step re-
sponses of the weighted sensitivity and weighted
complementary sensitivity functions for both con-
trollers. The weighted complementary sensitivity
can be seen as the response of reference distur-
bances or measurement noise. Let the input signal
be a step of level 0.1, then in figure 15 the above
curve represents the response of the u design while
the lower curve represents the response of the clas-
sical design. These results are in accordance with
the chosen weighting function where we intended to
obtain a 50 percent robust stability level, reflecting
a reduction by a factor 2 of reference disturbances
or measurement noise. Figure 16, represents the
step responses of the weighted sensitivity function,
which is the output error due to external distur-
bances. In the weighting function we addressed the
desire to keep the output error on a level of 50 per-
cent steady-state, which means that an 0.1 step dis-
turbance will be attenuated by a factor 2. We can
see on the upper curve classical design nominally al-
ready amplifies disturbances in order to attenuate
them; we knew this already from frequency domain
considerations on performance.

5 Conclusion

This paper reviewed the main mechanisms involved
with p—synthesis. This method is a powerful tool
that can handle in a non conservative way the gen-
eral robust performance problem. We chose this
particular simple SISO design configuration in or-
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der to demonstrate the mechanism of bringing the
basic control structure into the general interconnec-
tion structure, from which it is analytically easy to
obtain conditions for robust performance. It should
be said that for this example the whole u calcula-
tion is not necessary since robust performance can
be obtained from equation (8). But if more pertur-
bations are involved and the system is multivari-
able, everything gets more complex. For example,
sensitivity at the systems input is not anymore the
same as at the output, also directionality of sig-
nals and the systems condition number begin to
play an important role. Therefore non conservative
analytical expressions for robust performance are
hard to obtain. In the view of this context u turns
out to be a non conservative performance measure
which means that the methodology reviewed here is
very suitable for multivariable design. We showed
that selection of weighting functions to represent
design ojectives is quite natural when character-
ics of a classical controller are available. For this
SISO system the design specification where cap-
tured in terms of S and 7". This is certainly not the
case for multivariable systems, therefore analysis in
the general framework for a suitable choice of the
weighting functions is essential. Through a Linear
Fractional Transformation on the open loop inter-
connection structure P, both synthesis and analysis
where performed. With respect to robust stability,
both designs have the same characteristics. Superi-
ority of pu—synthesis shows up, when also the per-
formance problem is considered. It can be said,
that for the same uncertainty level, the u—design
has a four times better performance than the classi-
cal design while using only one feedback signal and
no gain scheduling. And even more, not only nom-
inal performance but as well robust performance is
achieved.
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Appendix

We present the system data as in the storage for-
mat of the Musyn Toolbox Balas, Doyle, Glover,
Packard and Smith (1990). A state space repre-
sentation (A, B,C, D) is given by a single compact
data structure containing all the relevant system
information:

A B nz
¢ D0
0 0 -0

The number of states is given by nz while the —co
in the last row tells us that we deal with a system
state space realization. The system matrix for the
symmetric motion of the Beaver rigid body model
in the stability reference system at 35m/s, 6000 ft

is given by:
-.0756 0710 —.1711 -.0070 ~-.0112 4.0000
-.7406  —.9451 0 9657 -.0732 0
0 0 0 1.0000 0 0
1.8402 —4.6441 0 -3.1767 -6.3391 0
0 0 1.0000 0 0 0
0 1] 0 0 0 —0o

The model of the hydraulic system is included for
design. The system in state space form is given by

—38.8040 4] 0 0.0768 3.0000
0 0 1.0000 0 0
—-656.8851 -79.9182 -17.5252 1.5199 0
0 458.3582 0 0 0

L] 0 0 0 —-00

The states are piston and elevator displacement
[m] , elevator translation displacement speed [m/s].
The output is the elevator deflection [deg] and the
input is the voltage [Volt].
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The parametrization of all controllers that achieve
output regulation and tracking
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Abstract. This paper considers frequency-domain conditions for feedback compen-
sators that achieve output regulation and tracking in the presence of persistent set point
inputs. Using a standard plant approach it is shown that the property of internal sta-
bility must be relaxed to what is defined as ‘tracking stability’. A characterization of
all controllers is formulated in terms of an extended plant description. The formulation
provides a framework for compensator design when both regulator and tracking objec-
tives have to be satisfied. It allows application of control design methods like H, and
Ho optimal control to consider trade-offs between tracking properties and other design
objectives.

Keywords. linear multivariable systems; output regulation and tracking; controller
parametrization; H; and H., control design methods

1 Introduction

Recent results in the field of control system design
(e.g. H; and H., optimal control methods) allow
a precise formulation of control performance goals
in conjunction with descriptions of the system, the
signals and the uncertainties involved. The vari-
ous control design goals may be conflicting; it may
be desirable to achieve stability but also to have
a certain amount of bandwidth, disturbance re-
jection and robustness. Another important objec-
tive is output regulation and asymptotically track-
ing certain classes of reference signals, as has been
studied by many authors (Bengtsson 1977, Bhat-
tacharyya and Pearson 1972, Davison and Golden-
berg 1975, Davison 1976, Desoer and Wang 1980,
Francis 1977). Especially the robust control of the
so-called general servomechanism problem has been
considered; solvability conditions are available and
it is well known that candidate controllers must
have certain structural properties according to the
internal model principle (Francis and Wonham,

1975). Design procedures for this type of con-

trollers usually consist of two stages; first the con-
troller structure is partly determined by extending
the original control problem with an internal model
of the signals that are to be tracked, next a stabiliz-
ing controller is designed to achieve all other control
objectives (Desoer and Wang, 1980).

Recently, the (further) development of H; and
H,, optimal control theory, based on a renewed in-
terest in frequency domain methods and the ap-
plication of certain tools from operator theory
(Vidyasagar, 1985), has led to the characteriza-
tion of all controllers that solve the robust tracking
problem: a class of controllers that is in principle
infinitely large (Francis and Vidyasagar, 1983). A
problem with the characterization given by Francis
and Vidyasagar however is that the requirement of
robust tracking is quite strict in the multivariable
case. The robustness property can only be achieved
with a sufficiently redundant internal model, often
leading to high order controllers in comparison with
the order of the plant. Above this, the robustness
property is derived for independent variations of all
the plants parameters, which is usually conservative




with respect to the actual perturbations that can
occur; this may therefore lead to insufficient per-
formance in other control objectives than tracking
and it is even possible that the problem becomes
unsolvable (see Grasselli and Longhi, 1991).

This paper will concentrate on deriving a charac-
terization of all acceptable controllers that achieve
a prespecified form of tracking and for which the
solution of the robust tracking problem can be con-
sidered as a special case. We will obtain this char-
acterization based on a ‘standard plant’ approach,
as used in many of the recent studies on regula-
tor problems mentioned above. The main advan-
tage of this approach is the possibility of apply-
ing standard H, or He optimization tools to se-
lect a controller that not only solves the tracking
problem, but also obtains a trade-off between other
control design goals. In comparison with another
method to incorporate the tracking problem into
., optimization theory, known as jw-axis shifting
(Xu and Mansour 1986, Wu and Mansour 1990),
this approach is much less restrictive, and will shift
the attention to the problem of choosing appropri-
ate weight functions. As for the servomechanism
problem, this then leads to a two-step design proce-
dure; first characterize all possible controllers that
achieve tracking, next use H; or Ho, optimization
tools to select one of them.

The tracking problem that we will consider here
will have some restrictions. We will look at the
problem of letting the plants output signal track
a prespecified persistent reference signal, although
persistent disturbances can be dealt with in the
same way. Furthermore we will construct con-
trollers that can only use measured error signals;
this implies that we will only find one-degree-of-
freedom controllers.

Some preliminaries and notation followed by the
exact formulation of the tracking problem can be
found in section 2. The actual derivation of a char-
acterization of all controllers that achieve the track-
ing objective will follow in section 3. Section 4
will then give a high level algorithm and show the
possiblity to apply standard optimization methods.
Next an example will be given in section 5 to illus-
trate some of the properties of the developed pro-
cedure. Finally, section 6 will give some concluding
remarks.

2 Preliminaries and problem for-
mulation

We will adopt the standard plant approach as inves-
tigated by for instance Doyle et al. 1984. Therefore
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Fig. 1: Standard control configuration

consider the standard control configuration given in
fig.2. Here P is the standard plant, K is the con-
troller, z is a vector of control objectives—usually
error signals—that are to be minimized, y is a vec-
tor of measurement signals, w a vector of external
disturbances and u a vector of control inputs. Fur-
thermore the auxiliary signals v; and v; are added
to be able to check internal stability. Many control
problems can be brought into this form; the control
objective is to find a controller K that minimizes
the transfer from w to z in some sense. In many
cases this minimization can be sensibly defined by
means of operator norms on function spaces in the
frequency domain (see Doyle et al. 1984, Francis
1987, Vidyasagar 1985). The function spaces used
in this paper may be defined as follows:

e R[s] is the set of polynomials in the indetermi-
nate s € C with coéfficients in the field R of
real numbers.

® R(s) is the field of fractions associated with
R[s] and consists of real-rational functions in
s.

e RL, is the subspace of R(s) for which
sup,, |F'(jw)| is bounded for all F € RlLe.
The least upper bound is called the ‘cc-norm’
and makes RL,, a Banach space. F' € RL
if it is a proper, real-rational transfer function
without poles on the imaginary axis.

e RH,, is the subspace of RL, for which F is
analytic in the complex closed right half plane
Cy for all F € RHy,. F € RHy ifit isa
proper, stable, real-rational transfer function.

With abuse of notation we will identify the set of
matrices or vectors with elements in a previously
defined subspace with the subspace itself. Unless
explicitly stated otherwise, transfer function matri-
ces are considered as matrices over the field of real
rational functions.

Now consider the standard tracking control config-
uration as given in fig.2. Here we want to min-
imize the effect of reference signals r and distur-
bances n;, n, on the weighed error signal z; and the
weighed control input z;. We will assume that the
weights Wy, W, Ny and N, are all in RHe. Typ-

ically r will consist of a combination of persistent




Fig. 2: Standard tracking control configuration

signals like step-functions and sinusoids. These sig-
nals can be modelled as the time-domain responses
of a linear dynamic system with nonzero initial con-
ditions. In the frequency-domain this results in a
transfer function R € R(s) that has only imag-
inary poles and is driven by a ¢-dimensional con-
stant vector §, € RI. We will assume that this
vector lies in an arbitrary direction and can be nor-
malized to 1. We will also make a non-restrictive
technical assumption; if R is factorized as RR with
R strictly proper and }? polynomial, we assume
that rank(R) = rank([R | R]). This assumption
cnsures that the signal r = Ré, is persistent for
all é, € RY,

It will be the intention to let the outputs y,
asymptotically track any signal r that can be gener-
ated this way, or in other words to make sure that
the error signals e are not persistent. It is well
known that this time-domain demand of tracking
a persistent signal can be stated within frequency-
domain terminology as the problem of stabilizing
the transfer function from é,. to e(s). Therefore, if
we write down the standard plant of fig.2 without
auxiliary signals as:

~-WiR 0 WiGN, | WG
P=| 0 0 WN |W
-R M GM, | G

(1)

it can be verified that both the tracking objec-
tive and stability of the closed loop system can be
achieved with any controller K that internally sta-
bilizes P.

The problem now is that there may not exist any
internally stabilizing controller for P, while in prac-
tice it is still possible to find acceptable solutions.
More specifically, if we want to compensate the ef-
fect of the Cy poles of B in the error signal e we
can only do so by creating the same effect in y, (of
course this actually is the objective of the tracking
problem). If we assume for the moment that the
poles of G are disjoint from those of R, the same
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effect must also appear in the control input u; this
implies that the transfer from 6, to u must contain
C4 poles which is in contradiction with internal sta-
bility. In the next section we will therefore relax
the internal stability demand to look for solutions
in more general cases.

3 A characterization of all con-
trollers that achieve the tracking
objective

From the observations given above it is clear that
C4 poles must be allowed in the transfer function
from &, to u. To concretise this we will make use
of the following two stability concepts.

Definition 3.1 (partial tracking stability)
Consider the standard tracking control config-
uration in fig.2, and let G,R € R(s) and
Ny, N, W1, W, € RH,, be given, R having only
imaginary poles.
Then a controller K is said to achieve partial track-
ing stability of the closed loop system if:
- the transfer functions from &,,ny,n2,v; and
vy to y are in RH,.
- the C, poles that appear in the transfer func-
tions from 6., ny,na, vy and vy to u are located
at the same positions in the complez plane as

the poles of R.

Definition 3.2 (tracking stability)

Consider the standard tracking control config-
uration in fig.2, and let G,R € R(s) and
Ny, Noy Wy, Wo € RHy, be given, R having only
imaginary poles.

Then a controller K is said to achieve tracking sta-
bility of the closed loop system if:

- it achieves partial tracking stability.

- the transfer functions from ny,na, vy and vy

to u are in RHy.

Tracking stability is clearly more restrictive, but
also more desirable. We will start however by in-
vestigating a necessary and a sufficient condition for
existence of controllers that achieve partial tracking
stability in lemma 3.3.

Lemma 3.3 Consider the standard tracking con-
trol configuration in fig.2, and let G, R € R(s) and
Ny, Ny, Wy, W, € RH,, be given, R having only
imaginary poles.

Then a necessary condition for the ezistence of a
controller K that achieves partial tracking stability
S5

IM € R(s) s.t. GM =R




l'or sufficiency this can be extended to:
M € R(s) s.t. GM = R and
none of the C poles of M is cancelled in GM.

Proof:
I'or necessity first suppose that the condition does
not hold. We then must have:

GM # R, VM € R(s) <= 9
36, € R7 s.t. (GM — R)é, #0, VM € R(s) (2)
Given any such &, € R?, the persistent signal RS,
can not be tracked by the system G with any con-
trol input u, which proves necessity of the first con-
dition.

To prove sufficiency of the extended condition we
will construct a suitable controller.
Iirst take any internally stabilizing controller K¢
for the system G, such that the transfer functions
from vy and v, to u and y are stable:

(I — KG)™!

(I — KoG) 'K

(It Gn’cg"GG L (3)
(I — GKg)™

Define Gy := (I — GKg)™'G as the closed loop
transfer function with controller K and note that
with GM = R we can write the closed loop trans-
fer [unction from §, to e as Gx M.

Next take any internally stabilizing controller Kp
for G M; similar to eq.3 we then have:

(f - }\,RGKJ"{)LI

Gl = f\'RG;\'ﬂf)_‘Kﬁ
(I —GxMKgr)'Gx M
(I — G,I\‘JWKR]_I

€ RH., (4)

From this we will prove that application of the con-
troller K := K¢ + MKg in fig.2 achieves partial
tracking stability.

Iirst consider the error signal e as a function of
&, v1 and vyt

e=(I - GK)™' {-GM§, + Gvy + va} (5)
By using the basic equalities
(I=GK)?' =(I-GK)'GK +1 (6)

=G(I - KG)'K +1

we can rewrite the three transfer functions respec-
tively as:

—~(I - GxkMKR)'GgM,
(I —GxkMKR) Gk,
(I —-GgMKR)™(I — GKg)™!

(7)

From the stability properties of K and Kr sepa-
rately, it is now easy to verify that all these transfer
functions are in Rll.

Next consider the transfer functions from é,,v; and
vg to u:

u= (I - KG)"' {—KGMé&, + v, + Kvy} (8)
Also these transfer functions can be rewritten:
M— (I - KeG)*M(I — KrGxgM)™',
(I — KeG)™' + (I — KgG)™
‘M(I — KrGgM)™' KrGk, (9)

(I - KcG)'Kg + (I — KcG)™
-M(I — KrGxM)"'Kr(I — GKg)™'}

It can now be verified that all these transfer func-
tions consist of sums and products of elements in
which only (some of) the poles of M may appear
as unstable poles. Due to the sufficiency condition
we may furthermore conclude that all these poles
also occur in R. Finally it is straightforward to
check that all other transfer functions mentioned
in definition 3.1 have the desired properties. We
may therefore state that, under the sufficiency con-
dition, the combined controller K = K¢ + MKg
achieves partial tracking stability. This concludes
the proof. a

With this lemma we now have the possibility to find
any controller achieving partial tracking stability in
a two-step procedure. However, we will show that
not all controllers that can be derived this way will
have desirable properties. For this we will bring in
a left coprime factorization of M:

M = Dy} Nn (10)

The combined controller can then be rewritten as:

K = Dy {bMKt; + Ny KR} (11)
and we can define:
K := DM Kg + NMKR (12)

Now, by incorporating f);,‘ in the standard plant
and defining a new auxiliary disturbance input sig-
nal vz and a new control input i, we arrive at the
block diagram given in fig.3 and a modified stan-
dard plant P given (without auxiliary signals) as:

~WAR 0 WiGN, |WiGDyf
P= 0 0 WgNg WQD;;
-R N, GMN, | GDy

(13)




Fig. 3: Modified tracking control configuration

The transfer function from vz to y can be found as:

y =(I-GK)*GDjz v

= (I - Gk MKr) (I - GK&)*GDylvg 1
Left coprimeness of [Dps | Na] implies
[DMWM] [i] =1 X,Y €eRH, (15)
such that
y = (I - GxMKg)" (I - GKg)"'G u

{X + MY} s

and the transfer from v; to y is again in RH,,
(see eq.7). So any set of internally stabilizing
controllers, Kg for G and Kpg for GgM, will
have the property that all transfer functions from
8.,n1,n2,v;,v3 and v3 to y are in RH,,. The trans-
fer functions from the same inputs to # however can
be given as:

T i— };’y+l’3

(17)

and may not be stable due to possible unstable
poles in K.

From fig.3 it is however clear that the effect of
6, can be completely compensated by application
of the stable control input # = Npé,. Further-
more we have that any C; pole appearing in the
behaviour of & must also appear in u and thus will
have no desirable effect in z;. It seems therefore
that such C,. poles are both unnecessary and unde-
sirable and we will therefore restrict the class of de-
sirable controllers to those that stabilize all fransfer
functions from the external inputs to both y and 4.
The next lemma will show that all internally stabi-
lizing controllers for the product GDj; are in this
class, such that we can indeed always find a solution
without undesirable Cy poles.

Lemma 3.4 Consider the standard tracking con-
trol configuration in fig.2, and let G, R € R(s) and
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Ny, No, Wi, Wy € RH, be given, R having only
imaginary poles. Furthermore suppose that G and
R meet the sufficient condition for partial tracking
stability given in lemma 3.9, let GM = R with
M € R(s) and let a left coprime factorization of M
be: M = Djy; Ny. Finally let the modified stan-
dard plant P be given by fig.3.

o Any controller K for which the closed loop
transfer functions from va and v, to 4 and y
are in RH.,, also ensures that the closed loop
transfer functions from ny,ng,6, and vy to @
and y are in RH,,.

o For any such controller K we have that K =
Dyt K will achieve partial tracking stability
according to definition 3.1 for the configuration
in fig.2.

Proof: "
To prove the first item, take any controller X' such
that the four transfer functions mentioned are sta-

ble:

(I- KGD3}),

P=SReD K,

EI a2 Gﬁ;,‘ﬂ;"{;“, &Rt (18)
)

(I - GDyK)'GD;}

Now define 93 := v3 + Davr + DagNana + Nagé,
and ¥, := vy + Nin; and notice that both sig-
nals are in RH,. From fig.3 it is then clear that
application of all signals seperately is equal to only
applying v3 instead of vs and 7, instead of v,. With
this, stability of all transfer functions mentioned is
established.

For the second item stability of the transfer func-
tions from all external inputs to y is already proven
(eq.7 and 16). Furthermore we have:

u=Dylu+n (19)

such that, under the sufficient condition of
lemma 3.3, the transfer functions from all external
inputs to u can only have the poles of R as unsta-
ble poles. With definition 3.1 we may conclude that
partial tracking stability is indeed achieved. O

With this lemma we are now able to clarify the
specific importance of C poles of M that cancel in
the product GM, as mentioned in the the sufficient
condition of lemma 3.3. If we consider the equation
GM =R with M = ﬁ;,}ﬂ"M the cancellation of
C, poles of M can occur in three different ways:
1. We can find an M such that GM = R, and
such that M has a lesser McMillan degree than
M. Because GM = GM = R all poles of M
that do not appear in M must be cancelled in
GM.




2. 3z € C4 such that rank(G(z)) < rank([G(z) |
R(2)]), but if we deﬁne R:=(s—2)R we
have that rank(G(z)) = rank([G(z) | R(2)]);
zis a Cy zero of G tha.t does not coincide with

a zero of R, nor with a pole of B. M must
have C, poles that eliminate the effect of such

zeros but do not appear in R; they must be
cancelled in GM.

3. 3z € C4 such that rank(G(z)) < rank([G(z) |
R(z)]), and if we define R :=(s—z)R we still
have that rank(G(z)) < rank([G(z) | R(2)]);
zis a Cj zero of G that does not coincide with
a zero of R, but does coincide with a pole of
R. M must have C, poles that eliminate the
effect of such zeros and must cancel in GM, but
M must also have poles at the same location
that appear in R.

Cancellations of the first type can be prevented by
finding a solution M to the equation GM = R
such that M has minimal McMillan degree; this
problem is well known as the ‘minimal design prob-
lem” and solutions are available in literature (see
Foster, 1979). Poles of the second type can also
be removed. We can redefine R to have C, ze-
ros that coincide with those of G, for instance by
removing the poles from M that are cancelled in
GM and defining R := GM. Unfortunately it is
nol possible to remove poles of the third type. If
we attempt to redefine R for these poles, we find
that the poles of R at the same location are au-
tomatically removed. This then would imply that
the persistent signals that were modelled by these
specific poles are removed from the problem, thus
making it impossible to solve. On the other hand, if
we do not redefine R, we can not allow an unstable
cancellation occurring in GDj/; we will therefore
consider these cases as unsolvable.

In the following theorem we will now state our main
result and show that the necessary condition of
lemma 3.3 together with the demand that no pole-
zero cancellations of the third kind may occur is
necessary and sufficient for existence of controllers
that achieve tracking stability.

Theorem 3.5 Consider the standard tracking con-
trol configuration in fig.2, and let G, R € R(s) and
Ny, Noy Wy, Wy, € RHo, be given, R having only
imaginary poles.

Then necessary and sufficient conditions for the ez-
istence of a controller K that achieves tracking sta-
bility are:

1. 3M € R(s) such that GM = R
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2. if there ezists @ z € Cy such that
rank(G(z)) < rank([G(2) | R(2)]),
we have with R := (s — z)R that
rank(G(z)) = rank([G(z) | R(2)])

Furthermore all such controllers can be constructed
by the procedure of lemma 3.4

Proof:
First note that with the second condition we are
always able to prevent cancellations in the prod-
uct GM by a correct choice of M and/or an al-
lowable redefinition of R. This then implies that
we can meet the sufficient condition for existence
of a controller that achieves partial tracking sta-
bility as given in lemma 3.3. According to defini-
tion 3.2 we therefore only have to prove that with
any controller i constructed by the procedure of
lemma 3.4, the transfer functions from ny,ng, v;
and v, to u are all in RH,, if and only if the given
conditions are met.

From fig.3 we can find these transfer functions to be
(I-KG)'KN,, (I- KG)'KGN,, (I - KG)™
and (I — KG)™'K respectively; clearly with
Ny,N; € RHyy and (I — KG)'KG = (I -
KG)™' — I we only need to consider the latter
two.

First we will look at sufficiency for the transfer func-
tion from v,

(I-KG)

to u:

V= DO — RGO Dy (20)
With (I — ]?Gf);,l)‘l and Dy in RH,, we have
from lemma 3.4 that any C, poles of this transfer
function must be poles of D . Now none of these
poles is cancelled by G' in the product G'DM S0 any
C, pole of DM (I - KGD 1)=1Dpr is also a pole
of GD3} (I — KGD3})™? f)M. However, we have:

GDy (I = KGD3})™Dpy =

(I-GDyK)'G=(I-GK)'G €RHs =)

because of lemma 3.3 (the transfer function from v;
to e). We therefore must have that (/ — KG)™ €
RHeo

Next consider sufficiency for the transfer function
from vy to u:

(F=KG)" lr(_(f Dyt KG) Dyt R
== KGNk

(22)

Again, but now with (I — KGD;})'K € RH,,
we have from lemma 3.4 that any C, poles of this
transfer function must be poles of DM So in this
case any C, pole of DM (L= K GDM )1K is also
a pole of GDy3}(I — KGD3})~'K. Now we have




from lemma 3.3 (the transfer function from v, to
e):
GDyf (I — KGD3})7'K =
GDy K(I - GDK)! =
GK(I -GK)™? =(I-GK)™!

(23)
=i e R

such that (I — KG)™'K € RH.
Next we will prove necessity of the second condi-
tion (necessity of the first condition is obvious from
lemma 3.3). For this, consider the case that an un-
stable pole-zero cancellation of the type given in
condition 2 does occur in the product G'f);;, such
that the offending zero has a corresponding pole in
R. It can then be verified from the equation:
R=GM = GDyf Nm (24)
that this pole must appear in f);,l with a multi-
plicity that is at least one higher than that in R,
and that the cancellation does not remove the pole
under consideration completely but merely reduces
its multiplicity.
Now suppose that in spite of this we can still find
a controller K that achieves tracking stability. We
will use the fact that—among others—the following
transfer function matrices must then be stable:

L = K(I-GK)™!
D7} R(I—GDjtK)™
£ =—(I-GK)'GM
= —(I - GD;}K)GD;} Ny € RHy

Il

€ RH, (25)

First cons:der the case that none of the C,; poles
of Dt o s cancelled in the product D 'K. Clearly,
if DyfK(I —GDjK)™ € RH,, we then must
have for any C+ pole of Di} a corresponding zero
of (I - GDj 1K) , that is, a pole of GDjK.
Due to the cancellation in GDM however, we are
always at least one zero ‘short’ to cancel all C,
poles. 2
This implies that a pole-zero cancellation in GDjy}
might only be allowable if there is a correspond-
ing pole-zero cancellation in Dy K. Now, be-
cause the cancellation in GDj; does not remove
the pole under consideration completely but merely
reduces its multiplicity, this implies that the num-
ber of C; poles—counting multiplicities—in the
product GD3} K would be at least one less than
that in GD;;. This then would make —(I —
GD3 K)'GD3 Ny ¢ RH, according to the
same argument that was given before and coprime-
ness of [bM | }?M]

So any pole-zero cancellations in G}.‘);} results in ei-
ther —(I—GK)™*GM ¢ RHy, or K(I-GK)™ ¢
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RH,, which is in contradiction with tracking sta-
bility.

Finally we will prove that all controllers that
achieve tracking stability can be constructed by the
procedure of lemma 3.4. For this, take any con-
troller K that achieves tracking stablhty and define
K := Dy K. Now note from fig.3 that application
of vs is equal to application of v; = DMva, and
that # = Dpsu. It is then possible to verify that K
stabilizes the transfer functions from vz and v, to
% and y such that the controller K can always be
constructed by the procedure of lemma 3.4. This
concludes the proof of the theorem. 0

To conclude this section we will consider a spe-
cial case, resulting in the well-known robust ser-
vomechanism problem (see Davison and Golden-

berg, 1975). For this, define B in fig.2 to have
the following strucfure:
Risicdiy ~aiER(E): (26)

a having only imaginary poles

The reference signal vector thus consists of ¢ inde-
pendent signals a, with ¢ being the number of error
signals. So any output signal of the plant G must
be able to track all possible signals generated by
a, and this independent of all other outputs. This
leads to the following corollary.

Corollary 3.6 Consider the standard tracking
control configuration in fig.2, and let G € R(s)7*"
and Ny, N2, W1, W2 € RH,, be given, R = al, with
a € R(s) having only imaginary poles.
Then necessary and sufficient conditions for exis-
tence of a controller K that achieves tracking sta-
bility are:

1. rank(G) = q, ¢ is the number of outputs of G

2. G has no transmission zeros that are equal to
poles of

Furthermore, tracking stability will be maintained
for perturbations of the system G as long as the
number of Cy poles in any of the transfer functions
mentioned in definition 3.1 remains unchanged.

Proof:

The proof presented here will be using the results
of lemmas 3.3 and 3.4 and theorem 3.5; the origi-
nal proof can be found in Davison and Goldenberg
(1975).

First note that condition 1 implies rank(G) =
rank([G | R]) which in its turn implies that there
exists an M € R(s) such that GM = R (see
Vidyasagar, 1985). Furthermore G has full row




rank, so it has a right inverse G® € R(s) and we
can take M = GRR = aGR. Now suppose G has
no Cy zeros (otherwise condition 2 ensures that R
can be redefined). A left coprime factorization of
M thenis M = D;;}QM with Dy = E"IE'I and
Ny = éG‘R (B is some polynomial with zeros in
the open left half plane such that Dy and Ny are
proper). Both conditions now ensure that there are
no C4 cancellations in the product G - afI and
lemma 3.4 and theorem 3.5 thus prove that all con-
trollers I that stabilize aBG define a controller
K = afK that achieves tracking stability.

To prove the second part of the corollary, consider a
perturbed system G, and apply the same controller
K = aBK. As long as

1. K stabilizes «8G, and

2. G, has full rank and no transmission zeros
equal to poles of a

tracking stability is ensured due to lemma 3.4 and
theorem 3.5. It can be verified that violation of
1) destabilizes one of the stable transfer functions
mentioned in definition 3.1, and that violation of 2)
makes the number of imaginary poles in the transfer
from é, to u decrease at least by one. The given
condition is therefore sufficient to achieve tracking
stability for the perturbed system. a

It is now clear that the procedure given thusfar,
brings the unstable behaviour defined in R into
the control loop by means of f);,l. The resulting
incorporation of this term into the final controller I
is also referred to as the ‘internal model principle’
(Francis and Wonham, 1975); from this Dy, itself
can be seen as the ‘internal model’ of the reference
signal’s behaviour.

4 Application of optimal control
methods

We have shown that all controllers that achieve out-
put regulation and tracking for the control configu-
ration of fig.2 can be found by the procedure given
in lemma 3.4. This procedure can be summarized
as follows:

1. Construct the standard tracking configuration
according to fig.2, with GG the plant to be con-
trolled and Ny, Ny, Wy, W, some stable weights
to account for performance objectives other
than tracking.

2. Model all occurring persistent reference signals
r as a combination of sinusoids and polynomi-
als and construct a real-rational transfer func-

| 1 il
/////a A o
T2 ]
r

Fig. 4: The two-stage actuator

tion matrix R with imaginary poles to generate
them.

3. Make sure R has C; zeros that coincide with
those of G if it is impossible to do this without
removing some of the poles of R the problem
is unsolvable (condition 2 of theorem 3.5).

4. Find M € R(s) such that GM = R and such
that M has minimal McMillan degree; this is
a minimal design problem (Foster, 1979).

5. Take a LCF M = DE,INYM and construct the
modified tracking configuration of fig.3.

6. Find a sta.bilizing controller K for the modified
standard plant P.

7. Construct the controller K := D;,] K that
achieves tracking stability.

An explicit parametrization of all controllers that
achieve tracking stability can be found if we ad-
just the weight W, such that no persistent signals
can occur in z;. This can be done by defining W,
as W, := WjDy with W} € RH,. The modi-
fied standard plant P then becomes internally sta-
bilizable and a Youla-parametrization of all inter-
nally stabilizing controllers K can readily be found
(Youla et al. 1976). Next if we take R, Ny, N, W)
and W; such that the modified standard plant P
is proper, we can use standard H, or H,, optimal
control theory to find an optimal K (or any other
design procedure based on a standard plant formu-
lation). This will then lead to a controller K that
under the condition of achieving tracking stability,
simultaneously optimizes other performance objec-
tives like disturbance rejection or stability robust-
ness. Although the exact influence on these other
performance objectives of the incorporation of C.
zeros mentioned in step 3 and the extra demand on
W, is not yet completely clear, the example con-
sidered in the next section will show some of the
advantages of this unifying approach.

5 Example: the two-stage actuator

This example is derived from a two-stage actuator
as given in fig.5. It is intended to use a slow actu-




ator with a large operational range in combination
with a fast actuator with a small operational range.
The slow actuator is intended to let z; asymptoti-
cally track step-like reference signals while the fast
operator is used for high frequency disturbance re-
duction. We assume that the system is governed by
the following simplified relations and signals:

Ty =21+ €

Ty = 7o1 (w1 + na)

zn=e =345 (ua +n2)

21 =€ =2Tg9—T

r = %6, (27)
N = e + .0lny

Y2 = ez + .01ny;

Z21 = Uy + Ny

Z22 = ug + nz2

To bring this system into the standard tracking con-
trol configuration of fig.2 we define:

< e

01 0 10

Nl'“[o .01] Nz'_[[}l] 35
1e40

W“_[Um]

With this we can immediately verify the second
condition of theorem 3.5, furthermore we can take:

sl
M’::[ 6 ]

ﬁﬁ,:=[iﬁf?] m,:=[

(29)

1

]
to also satisfy the first condition.
As was suggested in the previous section we will
define W, := WjDp and choose W; = I such
that the modified standard plant P becomes inter-
nally stabilizable and optimal control theory can
be applied. From eq.13 we can find this modified
standard plant as

0= B W 0 Zfﬁ 0 a+'10
_Io 0 0 10 10s | 10 _10s
s 824s4+1 s+10| s s410
N R E
= s 30
- g: 00 0 il | L Sl (30)
e S0t 5 ¥s+1 s+10 | s s+10

For this plant a fourth order Ho, optimal controller
K was determined, achieving an upper bound of

i
g
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Fig. 5: Closed loop behaviour of two-stage actuator

1.33 for the minimal co-norm of the closed loop
system transfer from 6é,,n; and ny to 2z; and z,.
This then gives a fifth order controller K = Dj; K
that achieves tracking stability for the original sys-
tem. Fig.5 shows the tracking property both in the
frequency-domain and in the time-domain. Note
that a ‘robust’ solution according to corollary 3.6
does not exist due to the C; transmission zero of G
at s = 0; the structural zero in the upper left corner
of G however, still ensures robustness against pa-
rameter variations (see Grasselli and Longhi, 1991).
Also note that next to the tracking property we can
establish a trade-off between properties like distur-
bance rejection (determined by N; and W;) and
stability robustness (determined by N, and W3).

6 Conclusion

We have given necessary and sufficient conditions
for the non-robust asymptotic tracking problem
and have shown that the robust problem can be




solved as a special case. Furthermore, the standard
plant formulation provides a framework for care-
fully (usually iteratively) selecting weights to spec-
iy design goals, and to use standard optimization
theory to find a controller to obtain them. Espe-
cially in comparison with available results on the
incorporation of the tracking problem into H., op-
timization theory as for instance given by Xu and
Mansour (1986) and Wu and Mansour (1990), the
given procedure is more general and relates better
to earlier results on the internal model principle and
the robust servomechanism problem.
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Abstract.

In this paper a controller reduction scheme is proposed which provides a

guaranteed stability margin of the closed loop behaviour. A key role in the reduction
schemeis played by a specific coprime factor representation of the controller. The coprime
factors of the controller are constructed using a coprime factor representation of the plant.
Thereby the closed loop behaviour is taken into account. Next reduced order coprime
factors, parametrizing the reduced order controller, are determined using a weighted
Hankel norm approximation. For this reasons the proposed controller reduction method
will minimize the difference in closed loop behaviour induced by the full order controller
and the reduced order controller, secondly a stability margin on the closed loop can be

calculated.

Keywords. Controller reduction, closed loop performance, coprime factorizations

1 Introduction

For various reasons low order controllers are pre-
ferred rather than high order controllers:

- The advantage in computational requirements
of low order controllers are especially important in
consumer electronics applications when a mass pro-
duction of the controller is necessary.

- Another motivation stems from controller de-
sign methods: H, controllers are usually designed
on the plant model including weighting functions.
These weighting functions are used to shape for ex-
ample the desired sensitivity function. The order
of the controller equals the order of the plant plus
the order of the weighting functions. When for ex-
ample the H,, design is based on a normalized co-
prime factor description of the plant, the order of
the controller equals the order of the plant and two
times the order of the weighting functions (McFar-
lane and Glover (1989)). Therefore the order of the
H-controller will be in general unnecessary high
and reduction seems useful.

The major difficulty in reducing the order of the
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controller is to ensure that the reduction error does
not adversely affect the closed loop objectives. It is
assumed that the high order controller is designed
such that the closed loop objectives can be speci-
fied by the closed loop transfer function T'(C, P).
For convenience we have denoted the closed loop
transfer function of a plant P controlled by the full
order controller C by T'(C, P), the plant controlled
by the reduced order controller C, will be denoted
by T(C,, P).

An open loop approach like ( (Moore (1981),
Pernebo and Silverman (1982), Kabamba (1985))
to controller reduction will not take the closed loop
objectives into account.

A natural way of relating open loop properties to
closed loop properties is by making use of the graph
topology (Vidyasagar (1984)). For controller reduc-
tion this implies a right coprime factorization of the
high order controller is approximated by a right co-
prime factorization of the low order controller. In
the graph-topology the difference between the right
coprime factorization of the high order controller
and the right coprime factorization of the low or-




der controller is isomorph to the difference between
their closed loop transfer functions. Therefore a re-
duction problem stated in the graph-topology will
take the specified closed loop objectives into ac-
count.

If the high order controller is represented by a
normalized right coprime factorization the reduc-
tion error can be stated in the gap-metric and
will induce a bound on the order of the low or-
der controller such that the closed loop remains
The reason for this is that the low order
controller can be seen as a perturbation/deviation
of the full order controller, then results on robust
stability in the gap-metric (Georgiou and Smith
(1990), Bongers and Bosgra (1990)) directly apply
to controller reduction. In this respect, if desired,
the stability margin derived in Liu et al. (1990)
equ.(21) can be stated in the gap-metric.

stable.

It is known that the gap-metric approach results
frequently into “very” conservative robustness mar-
gins. In this paper we will extend the results of
Bongers (1991b) to controller reduction in a closed
loop setting. Using these results we obtain a less
conservative robustness margin and thereby allow
the application of lower order controllers. This
margin is based on a coprime factorization of the
controller determined by the closed loop transfer
function. Hence we take the closed loop objectives
into account and are able to guarentee stability of
T(C,,P). A certain amount of performance will
also be gained by the graph-topology setting of the
whole reduction problem.

The layout of this paper is as follows: after the
preliminaries in Section 2 we will formulate the con-
troller reduction problem in Section 3. In Section 4
the main result of this paper is stated followed by
an example in Section 6 and Section 7 contains the
conclusions.

2 Preliminaries

In this note we adopt the ring theoretic setting of
(Desoer et al. (1980), Vidyasagar et al. (1982)) to
study stable multivariable linear systems by consid-
cring them as transfer function matrices having all
entries belonging to a ring H. For the application
of state-space algorithms we will identify the ring
H with IRH, the space of stable real rational finite
dimensional linear time-invariant continuous-time
systems. We consider the class of stable/unstable
multivariable systems as transfer function matrices
whose entries are elements of the quotient field F
of H (F := {a/b|a € H, bec H\0}). The set of
multiplicative units of H is defined as: J := {h €
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H | k' € H}. In the sequel systems P € F™*"
are denoted as P € F.

Proposition 2.1 Let P € H. The Hankel singular
values of P are:

oH{P} = N(W.W,)F = o;

where W, W, are the symmetric positive definite
solutions to the controllable and observable gram-
mians of P. The Hankel norm of P is defined as

l| P ||u= a5

If P € F then the Hankel singular values of P
are the Hankel singular values of the proper stable
part of P i.e. Ply,.

The He-norm of P is defined as |P|
sup,, max o;[ P(jw)].

Factorizations

Definition 2.2 ( Vidyasagar et al. (1982))

A plant P € F has a right (left) fractional repre-
sentation if there exist N,M(N, M) € H such that
P=NM-' (=M~ ‘N)

The pair M, N(M, N) is right (left) coprime (rcf
orlcf ) if it is a right (left) fraction and there exists
U, V(U V) € H such that: UN + VM =1 (NU +
MV =1)

The pair M, N(M, N) is called normalized right
(left) coprime (nrcf or nlcf ) if it is coprime and:
M*M + N*N =1 (MM* + NN* = I) with M* =
MT(=s).

3 Closed loop stability

In this section we will study closed loop stability
according to Fig. 1, where we assume that a stabi-
lizing controller C has been designed for the plant
P. The transfer function H(C, P) mapping the ex-

€2 + U2 i
T C {]
uy = €y
“ p b+
Fig. 1: closed loop configuration

ternal inputs (ey,es) onto the outputs (uy,uz) is




given by:
T o
Hgpy={"s & ]
- [ I-C(I+PC)'P -C(I+ PC)™? ]
= (I+PC)'P (I+PC)!

Stability of the closed loop, i.e. the controller C
internally stabilizes the plant P, is guaranteed if
and only if H(C,P) € H. Define a closed loop
transfer function T'(C, P) by

H(C,P)—[" 0]

= [_IC](I+PC)“[P 1]

then using the definition of the ring H we have
H(C,P) € H & T(C,P) € H. The advantage of
studying T'(C, P) instead of H(C, P) becomes clear
when we use coprime factorizations for the plant
and controller. Now let C = Y X! with (X,Y) a
rcf of C and let P = M~'N with (M, N) a lef of P
then:

T(C,P) = [ ';’ ] (MX+NY)'[N M] (1)
Using the coprime representation of plant and con-

troller the closed loop structure of Fig. 1 can be
redrawn as in Fig. 2 with £ = Me; 4+ Ne;.

Uz

x-1 H v

M~ [+%+ -N
{

Fig. 2: Closed loop structure with coprime repre-
sentation

Lemma 3.1 ( Vidyasagar (1985)) Let C € F
be given as C =YX with (X,Y) a rcf of C and
let the plant P € F be given as P = M~'N with
(M, N) alcf of P. Then stability of the closed loop
T(C, P) is equivalent to:

AeJ with A=([M &][;\;]) (2)

Remark 3.2 A™! is the transfer function from ¢
to n. Thus stability of the closed loop is equivalent
to stability of the transfer function A= from £ to
n, whereas A is stable by definition.

4 Controller reduction framework

Usually a full order controller (with the order of
the controller equal to the order of the plant and
weightings) is designed based on the plant model
P such that the closed loop T'(C,P) will be sta-
ble and have a certain performance. For controller
reduction it is essential that the closed loop trans-
fer function remains stable for reduced order con-
trollers C; close to C. In a more precise formulation
of the controller reduction problem it is usefull to
determine the largest class S such that:

C. €8 :={C, € F|T(C.,P) € H}

In order to determine a large class S we will ex-
ploid properties of a nlef of the plant in conjunction
with an associated rcf of the full order controller.
Furthermore we will parametrize the reduced or-
der controller by the coprime factors of the full
order controller and additive transfer functions to
describe the difference between the full order con-
troller and the reduced order controller. In a robust
control setting these additive transfer functions can
be seen as perturbations/deviations on coprime fac-
tors of the controller. An upper bound on these
coprime factor deviations such that the closed loop
remains stable is given in the following theorem.

Theorem 4.1 Let the plant P = M-'N be given,
with (M, N) anlecf of P and let the controller C € F

(internally stabilizing P) be given as C = Y X!
with (X,Y) a rcf such that:

(it &1 |=1

and let the reduced order controller C, € F be given
as:

Gy =N XM= (¥ —AY (X = AX)TY 0 1(3)
Then a sufficient condition for stability of T'(C., P)

is given by:
AX
14 ] s

Proof: T(C,, P) is stable if Lemma 3.1 holds:

A= (X, +8Y,) €T




Using the factorization of the controller given by
(3) A can be written as:

- AX
(-t [
Applying the small gain theorem we have a suffi-
cient condition for stability of T'(C,, P):

e w2 ]| <

Using the fact that ||[ M N ]”m = 1 by defini-
tion of normalized left coprimeness, the theorem is
proved. m|

Next we will use a transfer function Q € H to char-
acterize the class of reduced order controller fac-
torizations and determine a ) € H such that the
coprime factor deviations are minimized. For this
reason the reduced order controller can also be fac-
torized as C, = (Y,Q)(X,Q)™" with Q € H such
that (Y;Q, X.Q) is a right fraction. Then the de-
viation between the full order controller and the
reduced order controller are written as:

[331-[5]-[%]e

An uppper bound on all allowable deviations is de-

scribed by:
AX : X X+
I&F I -al[7]- 15 Je], o

Theorem 4.2 Given a full order controller C' =
};‘.\’nf with (Xn, Yy) a nrcf stabilizing a plant P =
M='N with (M,N) a nlcf and define:

A= (WX, + NY,,) e

then the class & of all stabilizing low order con-
trollers can be written as:

S ={C,|T(C,P) € Hand
(L ]-1% ]9+

Proof: Another coprime factor description (X, Y)
of the controller is given by:

X Xﬂ -1
[v]-[5]s
Using this factorization sequential in Theorem 4.1
and in (4) proves this theorem. 0

: (5)
infgeq < 1}

00

38

Corollary 4.3 Given Theorem 4.2 and the fact
that ||A7Y|,, = |IT(C,P)|., for normalized co-
prime factorization of plant and controller a suf-
ficient condition for stability of (5) is

e ]-[¥]d <memr
Y. Y. w NT(C,P)|s
The stability condition of Corollary 4.3 is equal

to stability in gap-metric sense (Georgiou and
Smith (1990), Bongers and Bosgra (1990)).

inf
QeH

Remark 4.4 Only in case of A = al the appli-
cation of the multiplicative H.,-norm properties on
(5) implies that the stability margin defined in The-
orem 4.2 is as conservative as the margin in gap-
metric sense.

To provide an answer to the question wether A =
al occurs frequently in control design consider the
following remark.

Remark 4.5 If an (n — 1)** order controller has
been calculated for an n'* order plant using a nor-
malized coprime factor approach (Bongers (1991a))
then A = ol and there is no difference between the
the stability margin in gap-metric sense and the
margin derived in Theorem 4.2. Therefore when
a lower order controller has been calculated or the
controller has been designed with another method A
will in general not be equal to al.

Plant reduction

The presented framework of controller reduction
can also be applied to plant model reduction.

Remark 4.6 If the plant is unstable a controller

is necessary to stabilize the closed loop, since we
require stability of T(C, P).

Remark 4.7 If a controller is available which sta-
bilizes the closed loop then model reduction is equiv-
alent with controller reduction. Then the inter-
change of plant and controller in Theorem 4.2 yields
the closed loop model reduction.

In the next remark we will show that open loop
model reduction is a special case of closed loop
model reduction.

Remark 4.8 We assume a stable plant without a
controller, i.e. a controller equal to 0. A normal-
ized left coprime factorization of the zero controller
C =X isY = 0,X = I, then according to




= M54,
resentation of the plant [?3 ] A~ equals [ I;J,

Theorem 4.2 A—! The coprime factor rep-

which is the open loop plant reduction. Therefore
open loop model reduction is a special case of closed
loop model reduction.

5 Application to reduction

We will now apply the framework developed in the
previous section in an actual reduction scheme.
The freedom @ in (5) can not be used in the
actual reduction procedure but only in the stability
analysis phase. For this reasons in the reduction
scheme we will use a @ = 1. Given a plant and
controller by their normalized coprime factorization
as in Theorem 4.2 the controller reduction problem

is formulated as:
[l-[EDel, o

The reduced order controller C;. = Y, X! will sta-
bilize T'(C,, P) is (6) is less than one. This weighted
reduction scheme can be performed by balance and
truncate (Enns (1984)), Hankel norm approxima-
tion (Latham and Anderson (1985)) or an H,,-norm
based reduction.

We prefer a Hankel norm approximation because
it provides the smallest upper bound on the H-
norm of the model error which can be calculated
easily. In the reduction scheme two cases can be
distinghuised:

inf
Xr Yr€H

. A=al,ae R
This is a special case of the presented frame-
work. The reduction problem is equivalent
to model reduction in the gap-metric (Corol-
lary 4.3). The balanced reduction approach
is described in Meyer (1988). If we view the
coprime factors as a normal plant description
we can apply a Hankel norm approximation
(Glover (1984)). In Glover (1984) an H.,-norm
on the reduction error can be given in terms
of the neglected Hankel singular values of the
plant. This error bound is an upper bound on

(6).
2. Aol

In this general case there is a large benefit com-
pared to the case A = ol since a lot of con-
servatism has been removed. The controller
reduction can be done by a weighted Han-
kel norm approximation (Latham and Ander-
son (1985)) in which A~! can be seen as the
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appropriate closed loop weighting. An H.-
norm bound of (6) can be calculated (Ander-
son (1986)) in terms of the neglected Hankel
singular values:

Theorem 5.1 Let P and C be given by their
normalized coprime factorizations as in The-
orem 4.2 and denote the Hankel singular val-

ues a;([‘;(/" ] A as oy > op > 00 >0

then there exists a reduced order controller C,
parametrized by (Y, X,) € H such that

(5 ]- 1 Dl < 2

=5 i=r+1
Proof: Denote G := {

Xn A Xr

o | Ol [ : ]
then it is straight forward in (Latham and An-
derson (1985), Anderson (1986)) to prove this
theorem. o

6 Example

In this section we will illustrate the presented
framework of controller reduction by an example
studied for example in (Enns (1984), Anderson and
Liu (1989), Liu et al. (1990)). This four disk exam-
ple system can be described by an 8% order SISO
linear, time-invariant, minimum phase and open
loop unstable model. The two unstable poles are
located in the origin, therefore a controller is neces-
sary to stabilize the closed loop. In (Anderson and
Liu (1989)) different LQG controllers where calcu-
lated and reduced by different techniques. In this
example we will use one of their LQG controllers
(the one with g, = 200) to be able to compare the
results. In the paper by Anderson and Liu (1989)
stability of the closed loop is checked for every re-
duced order controller but no bounds on the stabil-
ity are determined before the reduced controller is
actually applied. However the stability margin de-
rived in (Liu et al. (1990)) eqn.(21) can be stated
in the gap-metric if the factorization of the full or-
der controller is chosen to be normalized.

In order to apply the presented framework of
controller reduction we need to calculate the Hankel
singular values of the weighted controller factoriza-
tion in order to determine the least allowable order
of the controller. The hankel singular values of the

weighted controller coprime factors o;( { ':," ] A



are:
(1.1 0.92 0.88 0.75 0.35 0.31 0.16 0.14)

In view of Theorem 5.1 and Theorem 4.2 the suf-
ficient condition for stability of T'(C,, P) is deter-
mined by the sum of the neglected singular values.
Therefore this sum is plotted in Fig. 3 for different
controller orders. It can be seen in Fig. 3 that a

5
o
=1 *
-
8 L]
—
E .
S 4 <

0 1 1 T L

0 2 4 6 8

order of the controller

Fig. 3: H,,-norm bound on the coprime factor con-
troller deviations

4" order controller C, (which has an error bound

smaller than one) will still stabilize the plant P.

In Fig. 4 the (1,2) element of the closed loop trans-
fer function T'(C;, P) being (I+PC;)~' P is given for
the full order controller and the 4** order controller.
It can be seen that only a slight performance degra-
dation has occured due to the lower order of the
controller. When we calculate stability margins for
reduced order controllers using controller reduction
in the gap-metric (without the closed loop weight-
ing) it turned out that no stability of T'(C,, P)
can be guaranteed for any reduced order controller.
The Hy-norm on the error between 8% order con-
troller and the 7** order controller (the minimal sin-

gular value of [ /}\:ﬂ ]) iS Omin = 0.2, while the al-

lowable deviation is ||A~Y||Z} = 0.015.
Hereby we have illustated the importance of this
presented controller reduction framework.

T Conclusions

In this paper we have shown that using an appropri-
ate closed loop weighting, reduced order controllers
can be calculated with a guaranteed stability mar-
gin. The closed loop weighting is a function of the
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Fig. 4: (1,2) element of the closed loop transfer
functionT(C;, P)

plant and the full order stabilizing controller. The
actual reduction step is performed by a weighted
Hankel norm approximation. Compared to a gap
metric reduction it has been shown that for sig-
nificant lower order controllers the closed loop will
remain stable.
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Abstract.

Infinity norm calculation of transfer function matrices is reviewed and mod-

ified for usage in large systems analysis. Using the system eigenvalues and an inverse
orthogonal iteration technique the recently introduced two-step algorithm is modified to
enable the application of infinity norm approaches in high-dimensional systems.

Keywords.
0 Notation
[1G|oo Lo norm of G(s)
H Hamiltonian matrix
hyh lower- and upper bound of |G|«
¥ estimate of ||G||«
a maximum singular value
w {weR|||G(jw)llo = [IGlloo}
w estimation of @
AH Hermitian of A
101 inverse orthogonal iteration
1 Introduction
In linear system theory and robust control, the in-

finity norm of a transfer function matrix is now
widely used: both in stability analysis and in per-
formance characterization. The infinity norm (L)
of a transfer function matrix G(s) is defined as

Gllo = sup 5{G(jw)] (1)

wEIR.

provided G(s) does not have imaginary poles. For
stable systems the H, norm

sup &[G(s)]
Re(s)>0

equals the L, norm. In the sequel the L., norm is
subject of discussion and simply denoted by ||G||.

large systems; infinity norm; inverse orthogonal iteration.

In most cases the supremum in (1) is reached at
one specific frequency, denoted by @.

For G asymptotically stable and proper, |G|«
can be interpreted as an upper bound on energy
transfer from input to output:

lyll2
sup = [|Glleo (2)
w w2
/[ oo, uT(t)u(t)dt finite.
The infinity norm obeys standard operator norm
properties and besides it satisfies

with |lu]lz2 =

1G1Galleo < [|G1llo|G2lloo-

These properties are especially useful in robust con-
trol applications where a set of systems has to
be controlled (stabilized in first instance). Repre-
senting the system variations in some way by an
auxiliary stable perturbation system A(s) which
is free within an infinity norm bound, the set of
closed-loop systems can be concluded to be stable
if ||T(s)A(s)|lc < 1, in which T'(s) is an auxiliary
nominal closed-loop system. The larger ||A(s)|loo,
the more serious the robust stabilization problem
in the infinity-norm setting. In this respect it is
important to realize that bounding system varia-
tions by means of infinity norm bounds on A(s)
is only attractive when little is known about the
origin of system variations. When the variations




only depend on a relatively small number of pa-
rameters (often called structured uncertainty) the
infinity norm bound may be much too crude (con-
servative).

In the first stages of modelling for controller de-
sign purposes, little is known about the variations,
and infinity norm bounds on the uncertainty pro-
vide a valuable starting point in robustness issues.

In this note the problem of efficient computation
of the infinity norm is considered. The purpose
is to make infinity norm approaches applicable to
large systems which cannot be described accurately
by a single low-dimensional model. This means we
want to characterize i) differences between possibly
high-dimensional models in a model set and ii) con-
tributions of model reduction errors, both by means
of infinity norm bounds.

The difficulty in computing the infinity norm is
that no direct methods exist and that the itera-
tive methods are time consuming. Several algo-
rithms have been proposed in the literature to find
increasingly tight upper and lower bounds. Basic
idea is to first estimate the infinity norm (y) and
then determine whether 7 is an upper bound or a
lower bound. Robel (1989) used the following re-
lationship: iff 421 — GT(—s)G(s) has no imaginary
transmission zeros and 4 > &[D] than ¥ > ||G||-
The transmission zeros are computed by means of
the QZ algorithm. Independently Boyd et al.(1989)
proposed a bisection algorithm in which the lower-
bound property was checked by means of the ex-
istence of imaginary eigenvalues of a Hamiltonian
I1(5) in each iteration step. If the Hamiltonian
has no imaginary eigenvalues v is an upper bound.
Both methods are strongly related.

An important acceleration was found by
Bruinsma & Steinbuch (1990). They showed that
it is not only of interest whether the Hamiltonian
has imaginary eigenvalues, but also at which fre-
quencies these occur. Maximum singular values
are computed for a number of intermediate frequen-
cies and these often provide a major increase of the
lower bound. The so-called two step algorithm of
Bruinsma & Steinbuch (1990) is an efficient combi-
nation of

¢ the maximum singular value evaluation over a
dense frequency grid (no upper bound) and

¢ the bisection method that bounds the infin-
ity norm without using any maximum singular
values.
Almost at the same time Boyd & Balakrishnan
(1990) discovered the improved rate of convergence
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of the combined method.

This paper proposes some modifications to the two-
step algorithm that makes it better suited to high-
dimensional systems. The new algorithm makes
optimal use of the system poles to obtain a high
starting value for the lower bound. This reduces the
number of iterations needed. Besides the search for
imaginary eigenvalues of the Hamiltonian is per-
formed more efficiently; only eigenvalues close to
some value on the positive imaginary axis are cal-
culated.

In section 2 a short summary of the role of the
Hamiltonian in L.,-norm calculation is given, and
in section 3 the essentials of the two-step algorithm
are pointed out,

Section 4 discusses methods to compute eigenval-
ues selectively. A Hamiltonian eigenvalue compu-
tation scheme is presented that is based on inverse
and orthogonal iteration.

In section 5 the new algorithm is discussed, that
incorporates the selective eigenvalue computation
and the initial search for a high lower bound.

2 The Hamiltonian in
infinity norm calculation

Since the infinity norm cannot be computed di-
rectly, methods have been designed that compute
accurate upper and lower bounds by iteration.
Most algorithms make use of a Hamiltonian ma-
trix that is a function of an infinity norm estimate
in such a way that the Hamiltonian matrix has
no imaginary eigenvalues if the estimate is strictly
larger than ||G||e. If the Hamiltonian matrix does
have imaginary eigenvalues the estimate is a lower
bound. Several types of iteration are suggested to
find sufficiently narrow bounds within reasonable
time.

First the eigenstructure of the Hamiltonian is in-
troduced. Denote v > 0 as infinity norm estimate.
Let [A,B,C,D] constitute a minimal stable state-
space system. For 4 not a singular value of D (note
that ||G|lec = @[D]) a Hamiltonian matrix can be
defined,

A—-BR(y)"'DHC

2 - s |
1= onsiayic

— A" + CHDR()'B"

(3)
where R(y) = D" D—~2I and S(y) = DD? —~*1.
A crucial property of this matrix is that only if jw
(w € R) is an eigenvalue of H(7), G(jw) has a
singular value equal to 5 (Boyd et al., 1989 and
Bruinsma & Steinbuch, 1990). G(jw) may have
other singular values larger than +.




The eigenvalues of H are symmetric with respect
to both the real axis and the imaginary axis. The
structure in H is revealed by transforming H in the
following way:

=1 s A s I
T HE==—H" with T—-[_IU].

Since this transformation does not affect the eigen-
values we have

A[IT] = A[=H"] = —\[conj(H)"] = —conj(A[H])

from which the double symmetry of the eigenvalues
can be concluded. Standard eigensolvers do not
take advantage of this given structure; these com-
pute up to four times too many eigenvalues. A few
attempts have been made to solve the Hamiltonian
cigenproblem while preserving the structure men-
tioned above (Bunse-Gerstner & Mehrmann, 1986
and Byers, 1990). None of these methods is very ef-
fective, and the problem of calculating only eigen-
values on (part of) the positive imaginary axis is
not addressed.

3 Infinity norm calculation
(two-step algorithm)

The two-step algorithm (Bruinsma & Steinbuch,
1990) is an iterative method consisting of two steps
per cycle. Maximum singular value evaluations at
specific frequencies are used to obtain lower bounds
for the infinity norm. The specific frequencies
are obtained from Hamiltonian eigenvalue analysis.
The relationship between the two steps is shown in
the following scheme:

1. given a lower bound h, compute the eigenval-
ues of H(+) with  an infinity norm estimate

y=(1+20h 0<e<1 (4)

Store all positive imaginary eigenvalues jw;. If
no imaginary eigenvalues are found, % is an
upper bound: h = (1 + 2¢)h, and the relative
difference between upper and lower bound is
2e.

2. evaluate all 7[G(j@)] with {@} a series of inter-
mediate frequencies, (w; + wi41)/2. The maxi-
mum value is taken as new lower bound h.

Starting value for the lower bound hk is the maxi-
mum of &[D] and &[D — CA™'B] (G(jw) for infi-
nite and zero frequency). If Hamiltonian H(7y) has
imaginary eigenvalues jWmin,-..,JWmar We know
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that & €< Wnin, Wmaz >. The process of increasing
v is accompanied by a decreasing (wWpin, Wmaz) in-
terval until / has no more imaginary eigenvalues,
meaning that the infinity norm estimate 4 is an up-
per bound. Thus this algorithm returns an upper
and lower bound on the infinity norm (respectively
h and k) and an accurate estimate of @.

The first step in each iteration cycle involves an
eigenvalue computation that is quite demanding for
large systems. An alternative approach should take
advantage of the symmetry structure of the Hamil-
tonian eigenvalues, and the frequency interval infor-
mation, that in each cycle becomes more accurate.
Selective eigenvalue computation is discussed in the
following section.

4 Solution of selected eigenvalues
by iteration

The computation of a relatively small number
of eigenvalues and eigenvectors can be done effi-
ciently using iteration techniques. The eigenvalue
of largest modulus can be computed (together with
its eigenvector) by means of the well-known power
method. Inverse iteration can be used to calculate
the eigenvalue of smallest modulus and the corre-
sponding eigenvector.

Inverse iteration is often used to calculate eigen-
vectors of a matrix A once some eigenvalues are
approximately known. Assume ) is an approxima-
tion of some eigenvalue of A (not necessarily the
smallest or largest in modulus). Then inverse iter-
ation on (AI — A) returns, after convergence, the
eigenvalue A closest to A and the eigenvector v for

this A:
(AL — Ay = (A = ).

For our purpose a generalization of inverse iteration
is needed. All imaginary eigenvalues of H inside a
certain interval have to be computed. The problem
statement is thus: find a sufficient number of eigen-
values of H — j& with @ > 0 in the middle of the
frequency interval of interest.

Generalizations of the power method are numer-
ous. Golub & van Loan (1989) describe the most
important ones. For a general square matrix or-
thogonal iteration (Golub & van Loan, 1989, p.355)
can be used to find the eigenvalues of largest mag-
nitude and the orthonormal vector basis spanning
the corresponding invariant subspace. Convergence
is linear with rate |As, +1]/|An;| (JA| in decreasing
order and n; the number of eigenvalues wanted).
Stewart (1976) describes a simultaneous iteration




method in which the convergence is faster for the
largest eigenvalues. The rate is

IA"]'!'ll/i’\l'l Wit.h T— 1,...,‘?1.‘.

A reduced-order Schur decomposition is performed
every now and then to obtain this acceleration. Si-
multaneous iterationsis especially suifed to large
sparse eigenproblems, since it requires only matrix-
vector multiplications, that can be programmed
very efficiently for sparse matrices. In these cases
standard QR-based methods are less efficient.

To find eigenvalues of H close to jw a generalization
of inverse iteration is needed. Golub & van Loan
(1989) give an inverse orthogonal iteration scheme
(pp. 359-360) based on orthogonal iteration. Based
on Stewart’s acceleration of the orthogonal itera-
tion method, an accelerated inverse orthogonal it-
eration scheme can be derived straightforward.

Suppose the dimension of a general square matrix
Z is n. The following inverse orthogonal iteration
(IOI) algorithm computes n; (n; < n) eigenvalues
with [A, . ny| < |Ang41....n], and the associated in-
variant subspace @; (an (n x ny) matrix satisfying

Q0= I):

Algorithm (@1, Ba] = 101(Z,n1)
choose n; orthonormal vectors: Qio} (n x ny)
foriki=i22:A

zx® (=1 (5)
Q" Ry = X (6)
79 = @PF2e® ()
Z®Wy k) = vk gH (8)
QY = QY v (9)

end

The algorithm starts with the solution step (5),
showing the inverse (power) character of the al-
gorithm (depending on the sparsity of Z and the
expected number of iterations needed, this solu-
tion can be obtained directly or after an LU-
decomposition). In a QR-factorization step (6) an
orthonormal vector basis {C:_?l) is calculated for the
subspace spanned by the vectors in X. Steps (5)
and (6) state the original inverse orthogonal iter-
ation, the following steps are added for accelera-
tion. By means of vector basis @)y, the original Z is
reduced (7). The reduced-order Schur decomposi-
tion (8) yields an upper triangular matrix R; with
cigenvalue estimates of Z on the diagonal, and an
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orthogonal transformation matrix V' by which an
update of the orthonormal vectors in @; can be
achieved (9).

The diagonal of R, will eventually contain a num-
ber of n; eigenvalues of Z with smallest magnitude.
Besides, @; converges to the orthonormal basis of
the associated invariant subspace.

The iteration can be stopped when the maximum
relative change of the ordered diagonal elements of
R; drops below a given bound.

The convergence is best if a set of n; eigenvalues
exists with significantly smaller modulus than all
other n — n; eigenvalues. Theoretical convergence
is linear. In practice this means that convergence
is rapid provided QSG) is chosen properly.

101 can be used to calculate eigenvalues of H in
the vicinity of some j@, but there is no reason to
expect that these eigenvalues will be on the imag-
inary axis. All eigenvalues are calculated that lie
within a circle located symmetrically on the pos-
itive imaginary axis. Note that the Hamiltonian
eigenvalues with negative imaginary part are sim-
ply not computed.

5 Algorithm to compute
the infinity norm
for large systems

As discussed earlier, the two-step approach yields
upper and lower bounds on the infinity norm at the
expense of a relatively small number of Hamiltonian
eigenvalue evaluations (compared to the bisection
method that fully relies on Hamiltonian eigenvalue
computations).

For large systems it is particularly important to
limit the number of Hamiltonian eigenvalue evalua-
tions; 101 may provide some acceleration but even
more can be gained by searching a high initial lower
bound on the, infinity norm in order to reduce the
number of iterations. This can be done by evalu-
ating the maximum singular value of G(jw) at a
large number of frequencies, including the frequen-
cies that are related to the system poles. The max-
imum of these values is often a good approximation
of the infinity norm (lower bound). Besides it gives
an idea how each mode in the system contributes
to the transfer function matrix. This analysis has
only to be done once.

In some system realizations, such as. the modal
(Jordan) form and Schur form realizations, the sys-
tem poles are available and their imaginary parts
can be used as frequencies in the maximum singular
value computations. Besides it can be checked di-




rectly if the infinity norm exists (remember that the
Lo norm definition excludes systems with imagi-
nary poles).

Another advantage of such realizations is that the
maximum singular values can be computed faster,
since the inversion of [s] — A] is simplified consid-
erably.

Transformation to some modal or Schur realiza-
tion may be very effective in infinity norm com-
putation. Fortunately the modal form of a (large)
system representation is also used to analyse the
(open-loop) physical properties. Modes that are
questionable or input-output unimportant can be
truncated in this stage. Only if one has confidence
in the computed modes the model will be used for
controller design.

Nice examples can be found in structural dynam-
ics and particularly in large-space-structure appli-
cations. Hundreds of vibration modes may be of
importance for controller design and together with
a structural dynamicist the control engineer has
to decide which modes are reliable and on which
modes a controller design can be based. Perturba-
tion analysis and experimental verification are in-
dispensable. As stated earlier it is important to
compare different models and the modal form pro-
vides a nice basis.

A general (non-modal) model of very high dimen-
sion can also be transformed to Schur form; this can
be done by unitary transformations thus avoiding
most numerical problems in computing the system
modes.

It can be concluded that the system poles are di-
rectly available in most models of large systems. A
first modification of the two-step approach involves
the usage of pole-related frequencies in searching
a sharp lower bound on the infinity norm by scan-
ning the maximum singular values of G(s) for these
[requencies.

The second modification of the two-step algo-
rithm is the incorporation of IOI. In running
through the iteration cycles the search for & can
be constrained more and more. As opposed to
complete evaluation of the Hamiltonian eigenval-
ues, 101 takes advantage of the w interval informa-
tion built up in previous cycles. The function call

(@1, Ri] = IOI(j@I — H,n,) (10)

can be used to determine the eigenvalues of H that
deviate minimally from j& (@ chosen in the center
of a given interval and n; related to the number
of eigenvalues expected in the circle with center j&
and diameter equal to the interval size).

Yet there is no guarantee that IOI will find two
imaginary eigenvalues enclosing jw. First there is a
risk that a frequency interval is found that bounds
a local supremum of . Another problem occurs if
the I0I algorithm cannot find two imaginary eigen-
values at all. In both cases the remedy is calculating
all Hamiltonian eigenvalues. In this way all imag-
inary eigenvalues are determined, and if there are
none, the local supremum is the global supremum.

Since modal form or Schur form realizations do
not yield sparse Hamiltonian matrices, IOI is only
effective if indeed a very small part of the eigenval-
ues are calculated.

Algorithm
(modified two-step infinity norm calculation)

1. Search system poles. If non-repeating, com-
pute a modal realization otherwise some Schur
form realization.

2. Make {@}, a series of trial values for & out
of the damped frequencies, the zero frequency
and all intermediate frequencies.

3. Choose ¢, the relative accuracy

4. Choose ©(® that gives the largest 7[G(j@)].
O = 5(G(j0)]

5. if (a[D] > A),
0 = (1 +2¢)a[D], goto 8

end
6. 7 = (14 2¢)h@
T foriki=1,2

ZE — jrb(k_l)f—H('y[k‘”)
o, &P| = 101(2®,2)

)\{1*} X
0 AW

if (real(AM)

k
B

Il

0Areal(A) =0)

o® = &® _imag(AY +AP)/2
K® = 5(G(j0™)]

B = (14 2¢)a"

else
goto 8
end
end

8. Calculate all A[H(y®)]



9. if (real(\),...,real(A2,) #0),

h=4y

else
construct a series of @ from the imagi-
nary eigenvalues and intermediate val-

ues, goto 3
end

Some additional remarks on the algorithm are pre-
sented next.

o To obtain a sharp lower bound A the maximum
singular value of G(jw) is computed for all
damped frequencies and all intermediate fre-
quencies. In this way it is almost certain that
the two step algorithm starts at the global &
peak and that subsequent Hamiltonian eigen-
value computation only gives one pair of eigen-
values on the positive imaginary axis (meaning
that & has been located in an interval).

e [or simplicity the algorithm given above uses
two orthonormal vectors in IOI. This is a min-
imum, but usually sufficient as a result of the
dense search over the frequency in the second
step. If IOI does not give two imaginary eigen-
values the algorithm switches to full eigenvalue
computation. On the other hand, if the ‘for’
loop in step 7 continues to yield two imagi-
nary eigenvalues a local supremum will be ob-
tained eventually. In the verification step (8)
the character of the supremum is discovered.

¢ The converged orthonormal vector basis of a
previous iteration cycle can be used as starting
vectors QED] in the next 101 calculation.

¢ The modified two step algorithm has been im-
plemented in MATLAB™. The speed of in-
finity norm computation for lightly damped
high-dimensional systems has increased con-
siderably. A wider range of models may benefit
from the modified iwo step algorithm once the
MATLAB restrictions on implementing 101
are removed or circumvented; currently (5) is
solved directly in each iteration (ZX = Q).
One initial LU decomposition (Z = LU) and
subsequent solutionof LY = Qand UX =Y is
more efficient provided sophisticated solution
schemes are used (not available in MATLAB).

As the case ||G|lec = @[D] presents serious prob-
lems in computing the Hamiltonian eigenvalues due
to ncar singularity of D" D — 4?1, reliable upper
bounds can only be obtained by substituting a 7y
which is clearly larger than (D], meaning the rel-
ative error in upper and lower bounds is relatively
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large (large €). In the transmission zero approach
of Robel (1989) a QZ algorithm is used that does
not require the inversion of D¥ D — ~4%].

In the appendix eigenvalue derivatives of the Hamil-
tonian are derived and used to classify different
types of w intervals. Based on this information
more sophisticated @’s can be constructed.

In large systems analysis, eigenvalue routines that
compute only a specific invariant subspace can re-
duce the amount of computational work consider-
ably. This note has shown how inverse orthogonal
iteration can be used in infinity norm calculation
of large systems. In Wortelboer (1990) balanced
reduction algorithms for large systems have been
proposed based on similar subspace iteration rou-
tines.

6 Conclusions

A recently introduced two-step Lo,-norm calcula-
tion scheme has been analysed for its applicability
in large system analysis. Two modifications have
been proposed in this note. These include full us-
age of the system poles, and the replacement of full
eigenvalue computation of the Hamiltonian by se-
lective imaginary eigenvalue computation using in-
verse orthogonal iteration. Especially for mechani-
cal systems which are often in modal form and have
many lightly damped vibration modes this modified
Le-norm calculation scheme is very economical.
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Appendix

The use of Hamiltonian eigenvalue derivatives in
constructing new w’s is discussed. This goes be-
yond the original approach in the two step algo-
rithm that uses only the imaginary eigenvalues of
I. By means of a simple example it is shown that
using the derivative information, frequency inter-
vals with local suprema can be determined.

In Fig. 1 an example is given. The frequencies
wi,...,ws have been derived from the imaginary
eigenvalues of H for a v that is larger than both
o[D)] and &[D — CA~'B]. Having no derivative in-
formation, we can only say that @ €< wy,wg >.
With the derivative information we know exactly
how many singular values are larger than v in a spe-
cific frequency interval. This is indicated in Fig. 1
by means of ‘000’, ‘111" and ‘222’. Thus it can be
concluded that @ €< wy,wq > U < ws,wg >. Fig-
ures 2, and 3 show singular value functions that
satisfy both frequency interval and derivative con-
straints. In Fig. 4 a singular value function with
other local suprema is shown that satisfies the fre-
quency interval constraints but violates the deriva-
tive constraints.

Only if a 1-type interval is sandwiched between
0-type intervals the existence of a local supremum
can be concluded. In that case it makes sense to
choose a new @ in the middle of the interval. How-
ever, a sequence of non-zero type intervals should

/ / \ \ / \
73{]0000 11111 42222224 11111114 00000 /111111114 00000
T wy Twg Vw3 Ny T ws \we

I'ig. 1: Frequency intervals and derivatives
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Fig. 2:

First singular value function example
satisfying derivatives
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Second singular value function example
satisfying derivatives
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Fig. 4:

Singular value function example
violating derivatives



be treated as a whole. In the given example it is
advantageous to include w; and ws in the & series
(and not merely 1(w; +w2), 3(wz +ws), 3(ws +wa)).

The calculation of the eigenvalue derivatives is

Assume we have n; distinct
eigenvalue-eigenvector pairs available, and the
eigenvalues are given by a diagonal matrix A;, the
right eigenvectors by an (n X n;) matrix V; and the
left eigenvectors by an (ny x n) matrix W;. Differ-
entiating HV; = ViA; with respect to v and pre-
multiplication with W, yields:

discussed next.

dA, H dW dVi
L T e e
T 1d7%+ ¥ e Wi i Ay
d
- Wlﬁ'vi i A;‘W;ﬁ L wl‘ivlm
dry dy dy

Equating the diagonal terms yields

d\ _ dH
& Uy

(11)

with (A, w,v) the related eigenvalue and left and
right eigenvector respectively. dH/dy can be de-
rived from (3).

dH !
E?"—'BCACB (12]
with
B 0
n = [0 on]
a' e
s [0 B”]
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Xy = —-29|DED —4*17*D"

Xz = =[D"D 417! - 29} [DH D —4*1)7?
Xn = [DD¥ — 417" +29*[DD¥ - 4*1)7?
X2 = 21D[D”D - 721]"2

Since the X;; matrices may be of relatively small
dimension, the best order in computing (11) is

(wBe)X(Cpv).

The calculation of the eigenvectors for specific
imaginary eigenvalues of H is relatively simple. If
101 has been used, a set of orthonormal vectors @,
and an upper triangular matrix R, for the shifted
Hamiltonian are available:

[joI — H|Q1 = Q1 Ry

From Q¥ HQ, = joI — R, it can be concluded that
Q) also triangularizes H. By calculating the eigen-
vectors of joI — Ry,

(13)

&l — Rijo = vdiag(M, .-y Any) =vA1 (14)

the n, left (W) and right (V;) eigenvectors of H
can be obtained straightforward,

i= lea

with WiV, = 1.

W, =v'QH, (15)
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Abstract,

In literature the ['-control design problem has been formulated. Robustness

has been introduced into this setting using the small-gain theorem. For the purpose
of robust controller design it is necessary that an upper bound on the I'-norm of the
uncertainty is given as a measure of the difference between the system and the nominal
model. In this paper a procedure is developed that yields such an upper bound, given
measurement data and some a priori information, such as bounds on the noise. Therefore
the problem is reformulated to a (large scale) constrained optimization problem, related
to the Generalized Linear Complementarity Problem. The solution can be simplified to
linear programming at the price of conservatism.
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1 Introduction

In classical (e.g. prediction error) identification
schemes a dynamical model of a plant is estimated,
using measurement data and usually stochastic as-
sumptions on the noise corrupting the data. How-
ever in general a model does not give an exact de-
scription of the plant, there always is a model er-
ror. In these classical schemes no estimate is given
of this model error. Modern control theory how-
ever is able to cope with modelling errors, repre-
sented by perturbation (or uncertainty) blocks. In
H..-theory an H.-bound on the perturbations is
required. So new identification procedures are de-
veloped that yield an upper bound on the H,,-norm
of the uncertainty, see e.g. Helmicki et al. (1989)
and De Vries (1991).

Dual to the H, -theory the I'-controller design
problem has been formulated in literature, see e.g.
Dahleh and Pearson (1987). The small-gain theo-
rem can also be applied in this setting and so ro-
bustness of ['-controllers can be considered. In I'-
theory an !'-bound on the perturbation is required,
see e.g. Dahleh and Ohta (1988). This implies that

a1

robust identification, unstructured uncertainty, !'-norm

identification procedures are needed that are fit for
this setting, i.e. yield I'-optimal models and an es-
timation of the model error. Some work has already
been done in this field by Jacobson and Nett (1991),
where single input single output systems are con-
sidered and step or pulse responses are assumed to
be available.

In the present paper a procedure is presented that
yields an upper bound on the I'-norm of the (non-
parametric) uncertainty, given measurement data,
a nominal model and a priori information about
the amplitude of the noise and the pulse response
matrix of the uncertainty. There are no restrictions
on the experimental data or the dimension of the
input and output signals.

In section 2 some mathematical preliminaries are
presented, including the definitions of the relevant
norms. In section 3 a brief survey is given of I'-
(robust) feedback design, resulting in the problem
statement for this paper. In the next section the
required a priori information is established. In sec-
tion 5 a procedure is developed for the calculation of
an upper bound for the I'-norm of the uncertainty.
Three methods to solve the resulting optimization




problem are proposed in the following section. The
result is discussed in section 7 and in the final sec-
tion conclusions are drawn.

2 Mathematical Preliminaries

Operators are denoted by capital letters (e.g.
G, A), the corresponding pulse response sequences
(matrix valued for MIMO systems) by lower case
characters (e.g. g¢,8) and signal vectors also by
lower case letters (e.g. u,y,2). Thus

O () i

k=l

(1)

Gu = g *u,

where * denotes the convolution operator and g~'

the delay operator, ¢~ " u(t) = u(t — 1).

Let z be a real-valued m x 1 vector and A a real-
valued m x n matrix. Then z; is the 1th element of
z and A; the ith row of A. A, is the (4,7) entry of
A. Let in addition |a| be the absolute value of the
scalar a. Then the following norms are defined (see
e.g. Desoer and Vidyasagar, 1975)

n :_,
ll=ll, = (Z Im-'l") y 1 < p < oo,
=1
the p-norm of the vector «, and

2. = max|z,,
the co-norm of the vector «.

Let h be an infinite sequence of (real) numbers
h(k), k = 0,1,2,..., then the following norms are
defined.

Hhel

1], = (znhmﬂ'lsp<m,

k=t

the ["-norm of the sequence h.

Ifhel™

| Al = sup [A(k)[,

k>0
the [*-norm of the sequence h.

Let u be an infinite sequence of m x 1 vectors
u(k), and g an infinite sequence of m x n matrices

g(k), k = 0,1,2,..., then the following norms can
be defined.
Huel®
|u)|. = maxsup |u;(k)| = max |[u| , =
i k>0 i
= sup ||u(k)|| ,
k>u
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the [*°-norm.

And l{ g E l,""
“9” = max Z Z 'gu | — max Z ”g'_l'”| ==
=1 k=0

= max gl »

the ['-norm.

With A we denote the algebra of BIBO stable,
linear, time-invariant, causal operators on [;°. The
I'-norm (or A-norm for operators) is an induced
norm, for we have that, if G € A (or equivalently
g € z:lun)

(2)

IGILe = llgll, = 5upLIIGMII.,C-

[Jull o=
This means that the maximum peak amplification
of the system G is given by the ['-norm of the sys-
tem’s pulse response matrix.

3 ['~Optimal Feedback Controllers

The maximum energy amplification of a stable, lin-
ear system is equal to the H..-norm of the system.
So for systems with bounded energy signals the
H..-norm is the most suitable norm to use. The
H..-theory is concerned with minimizing the .-
norm of transfer functions (e.g. the transfer func-
tion of noise signal to output signal) through the
choice of a stabilizing controller. Moreover robust-
ness has been introduced into this setting with aid
of the small-gain theorem (see e.g. Maciejowski,
1989).

For systems with bounded magnitude signals the
more suitable norm is the A-norm or !'-norm, be-
cause of property (2). The I'-control theory is
concerned with minimizing the !'-norm of a sys-
tem through the choice of a stabilizing controller.
The I'-problem has been formulated by Vidyasagar
(1986) and is totally dual to the H.-problem. The
problem of designing an ['-optimal controller has
been completely solved for the MIMO discrete time
case in Dahleh and Pearson (1987), Mendlovitz
(1989) and McDonald and Pearson (1991). In these
papers the problem has been reformulated to a
linear programming problem. Nofice that due to
the specific norms used, the H.-problem is mainly
treated in the frequency domain and the /'-problem
in the time domain.

Robustness has also been introduced into the I'-
problem formulation by Dahleh and Ohta (1988),
using a variant of the small-gain theorem. Consider
the standard uncertainty configuration of figure 1.
In case of an unstructured uncertainty A the next




A

Tig. 1: Standard uncertainty configuration

theorem gives necessary and sufficient conditions
for robust stability of this closed loop.

Theorem 1 (Dahleh and Ohta, 1988) Let S €
A and suppose A is an [@-stable, strictly causal
(possibly non-linear or time-varying) operator with
SUP| =1 ||Au||, < 1. Then the operator I — SA
has an [*-stable inverse with bounded gain for all

A if and only if ||S]|, = ||s]l, < 1.

Khammash and Pearson (1991) extended the solu-
tion to the general case of a block diagonal struc-
tured uncertainty, where each block represents an
unstructured uncertainty of the kind of theorem 1.
In this setting the robust performance problem can
be addressed as well: If a nominal model, a block
structured uncertainty and bounds on the ampli-
tude of the input and disturbance signals are given,
then a bound on the amplitude of the output sig-
nal can be given. This is all analogous to the p-
analysis problem in the H..-setting (Maciejowski,
1989). However the problem of I'-robust controller
synthesis is still for the greater part unsolved.
Apparently it is useful to have an identification
technique that, starting from time domain data
yields a nominal model and a bound on the un-
certainty, fit for {'-robust feedback design. As we
are interested in guaranteed robust stability and
performance, it is necessary that the uncertainty
is represented by an upper bound on its maximum
signal peak amplification. On the other hand we
do not want an unnecessary conservative bound,
because this reduces the achievable performance of
a controller. The complete problem of identifying
an ['-optimal model and a non-conservative upper
bound on the uncertainty is so far unsolved. In this
paper only the problem is addressed of the com-
putation of a (non-conservative) upper bound on
the I'-norm of the uncertainty, given measurement
data, a nominal model and a priori knowledge of
the system, such as time-domain bounds on the
noise corrupling the data. We consider weighted
additive and weighted output multiplicative uncer-
tainty. Procedures are derived for the computation
of the worst-case uncertainty and the correspond-
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ing I'-norm. The obtained upper bound can then
be used for the analysis and design of I'-robust con-
trollers.

4 A Priori Knowledge

For identification purposes we need of course mea-
surements of the input signal u(¢) and the output
signal y(t) acting on the system, t = 0,1,2,...,N.
The data may or may not be generated in closed
loop.

We only consider discrete time, asymptotically
stable, linear, time-invariant systems G with addi-
tive bounded output noise. These restrictions are
not only meant to make the problem manageable,
but these or similar restrictions are also necessary
to obtain a sensible problem formulation. If the
system is not stable, it does not have a finite I'-
norm. If the system is non-linear, the {'-norm could
also be unbounded, for example if the system con-
tains an on-off switch. If the system is time-varying
no upper bound on the ['-norm can be given, for
it is always possible that the dynamics radically
change behind the measurement horizon. If finally
the noise is unbounded, the data could be explained
completely by either the noise or unstructured un-
certainty and no conclusions can be drawn from the
available data.

The input- output behaviour of the plant is as-
sumed to be given by the equation

y:Gu+H|e, HQEG [_eheh]‘! (3)

where u(t) is the measured input signal vector, y()
is the measured output signal vector, H (¢™"') and
Hy(¢™') are a priori known FIR (Finite Impulse
Response) sequences

h?

hy
Hi(g™') =Y hi(k)g™", Ha(q ') = ; hao(k)g™*

k=1l e=0)

and e/(t) and e, (t) are a priori known lower and up-
per bounds on the noise, possibly functions of time
t. The unknown quantities in (3) are the system
G € A, past data u(t) and y(t) (before the mea-
surements started, i.e. for ¢ < 0) and the noise e(t)
(only bounds on the noise are known a priori). The
system G is represented by the (unknown) pulse
response matrix g, see equation (1).

Notice that the noise representation is quite gen-
eral. If we have H, = H H;' and H, = HcHp',
we can introduce a new H; and H, as I:II = H,Hp
and Hy = HgHp, which yields the same noise
representation under the condition that HgH) =
HjyHy (which is always true in the SISO case). For




I'-feedback design a noise representation is chosen
with H, = I (Dahleh and Pearson, 1987), in which
case the transformation is possible as well.

In this paper we consider the estimation of an
upper bound on the /'-norm of the uncertainty. So
we already have a discrete time, asymptotically sta-
ble, linear, time-invariant nominal model G at our
disposal. This nominal model is the result of any
existent modelling or identification procedure.

We introduce the p x ¢ uncertainty matrix A and
consider the uncertainty structure:

G=G+AM, (4)

where the operators G, A and M are all elements
of A and have pulse response sequences g, § and
m respectively. The nominal model G and weight-
ing function M are known beforehand. Of course
the system G and the uncertainty A are unknown.
In this representation (4) weighted additive uncer-
tainty (M = W) and weighted output multiplica-
tive uncertainty (M = WG) are included, where W
is a weighting matrix. In this paper we will treat
the case of an unstructured uncertainty A. It is
however straightforward to extend the result pre-
sented to the case that a priori knowledge about
the structure of the uncertainty A is available.
From a data set of finite length (N + 1) we can
deduce no knowledge about the system’s pulse re-
sponse sequence g(k) for k > N. So we need a priori
information about the behaviour of the uncertainty
in order to be able to derive an upper bound on the
l'-norm of the uncertainty. Therefore we assume a
priori knowledge about the pulse respone sequence
of the uncertainty A. This means that we have a
matrix R and a matrix p, p;; > 1, such that

|‘5!J(k)| _<. RUP;—_jks V k’ 2 Oa (5)

see also Jacobson and Nett (1991). Of course one
could use this a priori information (5) directly to
derive an upper bound for the !'-norm of the un-
certainty, but in general this will yield a much too
conservative upper bound.

Finally, in order to be able to handle initial con-
ditions, we need an upper bound % on past (unmea-
sured) data u(t)

; = sup |u(t)|. (6)

1<

If the system is at rest at ¢ = 0, @, can be chosen
to be equal to 0.
5 Problem Reformulation

Given this a priori information we want to compute
a non-conservative upper bound on the I'-norm of
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the unstructured uncertainty A. For that purpose
we reformulate the problem to a finite dimensional
constrained maximalisation problem with a nonlin-
ear objective function and linear constraints. In the
next section three methods are proposed to solve
this problem.

In principle A has an infinitely long pulse re-
sponse sequence. We want to find the worst-case
uncertainty that is consistent with the data avail-
able. This is thus a problem with infinitely many
unknowns. In order to reduce the problem to a
finite dimensional one we split the uncertainty A
into two parts:

Alg™')=A(g™") +A(g"),

Aa) = Y8k, Ag)= 3 8k,

k=l k=n+1
(7)

where n is to be chosen by the user. We now try
{o find the worst-case A that is consistent with the
data and estimate the influence of A from equa-
tion (5). This is a problem with a finite number of
unknowns.

We substitute (4) into (3) and get

y=Gu+AMu+ Hye, Hye€ |[—e,en]. (8)

We write for the terms appearing in (8):

G(g"u(t) = o(t) + a(t), =(t) = i a(k)u(t — k),

k=U

st =3 Ryt~ k) =00 5 (9)
and

M(q™")u(t) = w(t)+b(t), w(t)

E m(k)u(t—Fk),

=

bt)= > m(k)u(t—k), t=—-n,—n+1,...,N,

F=r+41
(10)
where w(t) = 0 for t < 0. Using (7) we obtain
AMu = (A + A)(w +b) = Aw + ¢ + d,
c= Ab, d= .-ﬁ(w-i—b) (11)

In the appendix expressions are given for upper
bounds @(t), b(t), &(t) and d(t) on the signals a(t),
b(t), c(t) and d(t) respectively. In general the func-
tions a(t), b(t) and &(t) vanish for increasing ¢, but
d(t) will not vanish for increasing ¢, though it may
remain small if n is sufficiently large.




With these results equation (8) can be written as
y:w+Aw—|—H.e—|—r,

rel-a—é—d, a+e+d], He€ [—e,es.

By introducing a new noise representation

pa| T o = 2 vy = 2
= w25 L e td )70 laperd)]’

Vilg™) = [Hilg™") T],Valg™) = [H”(g_l] ?]

and introducing z = z —y, we finally get the system
representation
t) + Ag™")w(t) + Vila

Do(t) =0, t=0,...,N,

Va(g~")u(t) € [—uit), va(t)]. (12)

If H(g') = Hy(g™") = I it is simpler just to add
i+ &+ d to ef(t) and ex(t) and no new noise vec-
tor is needed. In the representation (12) the only
unknown quantities are the transfer function A and
the noise signal v(¢). In order to get to the new sys-
tem representation (12) extra uncertainty has been
added to the noise representation. So the reduction
of the number of unknowns in A naturally implies
an increase of the freedom in the remaining parame-
ters of A. This introduces some conservatism which
cannot be prevented, but only minimized by us-
ing accurate a priori information and choosing n as
large as possible.

When we now are able to compute an upper
bound on the I'-norm of each row of A, we also
have an upper bound on the I'-norm of A. Accord-
ing to the definition of the I'-norm we namely have
that

(13)

Moreover the problem of finding an upper bound
on the !'-norm of the ith row of A now boils down
to finding an upper bound ji; on the I'-norm of the
1ith row of .fi,

|A]l 4 = max [[Aill 4 -

-l' i < B (14)

From the definition of the ['-norm, equation (5) and
(7) we namely have that

8= [+ Jad <+ 3 3 Rarit =
k=n+1 j=1

q
= fi+ Y Rijp;"(pi; — 1)7".

=1

(15)
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Finally the value j, is obtained by finding the so-
lution to the maximization problem

n q

B = max 303 [6(k)

k=l j=1

(16)

such that (12) and (5) are (still) satisfied. In
this way the worst-case situation is calculated and
therefore inequality (14) will hold. We can deter-
mine the required upper bound directly by solving
the nonlinear programming problem (16). This is
generally however a difficult job. Therefore in the
next section this nonlinear programming problem is
reformulated to more tractable programming prob-
lems. But first we summarize the procedure we fol-
lowed till now for the calculation of an upper bound
on [|A]| 4

Procedure 1 Collect the required a prior: knowl-
edge (section 4), including measurement data,
noise-bounds, uncertainty representation, bounds
on the pulse response sequence of the uncertainty
and a bound on the amplitude of the input-signal in
the past.

Choose a value of n, the order of A, and de-
termine the new system representation (12) by fol-
lowing the steps in section 5 and using the signal-
bounds derived in the appendiz.

Solve for each row i the nonlinear programming

problem
n q

fi; = max Y Z 16,5 (k)|

et
under the (linear) constraints

hy
w(t—k)+ 3 Vi(k)u(t—k) =0, Vit
k=0

t)-l—zé

k=0

hy

3 Va(k)w(t —

k=1

fi=is s

k) g [—u;(t),‘u;.(t)], , N,

bi;(k) € i.-—R,_;[J,; 1 Upu I k=0,...,n

This problem has to be solved for the unknown ma-
trices 6(k), k = 0,1,...,n, and the unknown vec-
torsv(t), t=0,1,...,N.

Determine an upper bound on ||A||, using the
equations (18) and (15).

If the a priori information is correct this worst-
case ['-norm is a guaranteed upper bound for
the difference between the system and the model.
Moreover it is non-conservative in the sense that
the worst-case situation can actually occur, consis-
tent with the given a priori information. There is
however a source of conservatism not arising from



the presented procedure, but from the definition of
the {'-norm. The result of equation (13) is prob-
ably unnecessarily conservative because the maxi-
mum is only attained for one value of 7. This kind
of conservatism can however be banished easily by
introducing proper scaling matrices for the input
and the output.
Define the input scaling matrix

oo [(M)g[ )5

and then calculate ||All| 4 for all values of i after
Next define the output scal-

U = diag(||(Mu)|,. A= AU

proper substitutions.
ing matrix

T = diag(|| A%l 45+« +»

) A =174,
resulting in the uncertainty representation

A=TA"T Y |AY =1,

which is non-conservative in the sense that all en-
tries of input and output are active in the worst-
case situation.

6 Methods of Solution

We now reformulate the nonlinear programming
problem of procedure 1 to other, more tractable,
programming problems. Consider the ith row of A
and reparametrise

§,j(k) = z;(k) — y;(k), =i(k)y;(k) =0,
zj(k) >0, yi(k) 20, k=0,...

with the property
|8:;(k)| = =,(k) +y,(k),

where the z and y are of course different from those
previously used. Of course the matrix §(k) is now
for each value of k given by

3 Ty jz]'!""Q'.'

b,(k)

O |(k)
z' (k) —y" (k)
biv1(k)

\ 6®

If we finally define the parameter p; to be the sum
of all z;(k) and y;(k) we can formulate the first
method to solve the nonlinear programming prob-
lem of procedure 1.
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Method 1 Determine for each value of i, fi; =
max p; under the constraints (12) and (5) and the
additional constraints

n q

=22 (=i(k

k=0 =1

)+ yi(k)) =0,

T q

Z Z z;( k}y.r

k=0J=1

— 0, 2,(k) 2 0, y;(k) > 0.

This still is a nonlinear problem but it is closely re-
lated to the so-called Generalized Linear Comple-
mentarity Problem (GLCP), see De Moor (1988,
chapter 3). GLCP is actually concerned with find-
ing a description of the set of unknowns that satisfy
constraints of the form appearing in the optimiza-
tion problem stated here. The optimum is then
found by searching for ji;, the maximum value of
; appearing in the set of feasible solutions. This
largest value of y; is then equal to the desired upper
bound on ”A ”

Another approa.ch is to fix p; in the set of con-
straints and look iteratively for i;, the largest value
of p; such that there still is a feasible solution to
the set of constraints. This means that we are then
interested in existence of solutions and not in an
exact description of the whole feasible solution set.
We formulate this in the second method for the
solution of the nonlinear programming problem of
procedure 1.

Method 2 Determine iteratively for each row
i, f;, the mazimum value of p;, such that a fea-
sible solution exists for the set of constraints (12)
and (5) and the additional constraints

>3

k=0 j=1

+y) J) 2 iy

n q

Z z z(k)y;(k

k=t j=1

) =0, z;(k) >0, y;(k) >0.

This problem can again be solved using GLCP soft-
ware. Notice that if there is a p; for which there is
no feasible solution to the set of constraints, then
Bi< [

We notice that the methods presented require a
large computational effort, because the number of
constraints can be large (namely proportional to
the number of samples N). However it is possible
to obtain an approximating solution using linear
programming for which efficient software exists, see
Luenberger (1984). The procedure is then the same
as in the context of parameter-bounding algorithms
(Milanese and Belforte, 1982; Milanese, 1989) and




is simply to determine the maximum and minimum
possible values of each parameter of the pulse re-
sponse sequence of A without considering interac-
tion. We formulate the procedure.

Method 3 Determine for each value of 1,j and k
the solution to the linear programming problems:

max 6,;(k), miné;;(k)

subject to the (linear) constraints (12) and (5).
Call the mazimum absolute value of &;;(k), &;(k).
We then obtain the (conservatwe) upper bound

|24,

The advantage of this method is also that the cen-
tral estimate (the average of the lower and upper
bound on §;;(k)) is optimal in the sense that it mini-
mizes the estimate of the I'-norm of the uncertainty
resulting in method 3. Of course this estimate not
necessarily minimizes the upper bound calculated
in the methods 1 and 2.

n q

< 202 Gii(k)

k=0 3=1

7 Discussion

The procedure presented in section 5 in combina-
tion with either of the first two solution methods
of the previous section provide a way to determine
a guaranteed and non-conservative upper bound on
the I'-norm of the unstructured uncertainty. The
non-conservativeness arises from the fact that the
actual worst-case situation is calculated and there-
fore can occur consistent with the a priori informa-
tion given. The main drawback in the computation
is however the amount of unknowns and constraints
in the Generalized Linear Complementarity Prob-
lem, both of the order N + n. This may cause
computational problems, especially if the number
of samples N is large. Therefore also an approxi-
mating method is presented that makes use of linear
programming, for which efficient standard software
exists. Of course this introduces conservatism in
the computation of the upper bound.

The choice of a larger value of n will lead to
more unknowns and constraints in the computa-
tions, but will also lead to a tighter upper bound on
| Al 4, provided the a priori information is correct.
A tighter bound is obtained as well, if the noise is
small and the influence of the initial conditions (i)
is small.

If more a priori knowledge is available, it can
be taken into account by adding linear constraints
to either of the three programming problems. In
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theorem 1 it has been assumed that A is strictly
causal, so 6;;(0) = 0, V ¢,j. This can be taken
into account by either removing the §,;(0) from the
unknowns or adding the constraint that they are
equal to zero.

If the structure of A is known a priori (e.g. di-
agonal), this information can be used by again ei-
ther removing the unknowns or adding linear con-
straints. In the latter case it is also possible that
in the constraints inequalities are used instead of
equalities, that means that a certain interval can
be specified in which the parameters of the uncer-
tainty have to be.
equation (5). In the same way it is possible to im-
pose more restrictions on the noise v(t), for example
that the mean (absolute) value lies within a certain
region, etc.

Finally we notice that the resulting upper bound
on the ['-norm of the uncertainty is an upper bound
on the H.-norm as well, because the latter one is
always smaller than or equal to the former one, see
e.g. Boyd and Doyle (1987). This upper bound for
the H.-norm is of course conservative and tighter
bounds should be obtainable, given the same a pri-
ori information.

This is of course analogous to

8 Conclusions

In this paper a procedure has been developed that
yields a non-conservative upper bound on |A]| ,,
starting from measurement data and certain a pri-
ori information, such as bounds on the noise. The
computation can be performed using GLCP soft-
ware and is quite complicated due to the large num-
ber of constraints, especially if many data points N
have to be processed. Also a simplified though ap-
proximating method is proposed that requires the
solution of a set of linear programming problems,
Further research is necessary to investigate the ap-
plicability of the proposed methods and to extend
the results to identification of I'-optimal models.

Appendix Upper Bounds for a, b, ¢
and d

Using the a priori information of section 4 we can
give upper bounds for the signals a(t), b(t), c(¢) and
d(t) appearing in the equations (9) till (11).
Combining (9) and (6) yields

lai(t)] < a;(t) =

Z ZLqIJ(k ), t=0,..

k=t41 j=1

'?N!




so a;(t) is a decreasing function of ¢.
In the same way we get from (10)

|bi(t)] < Bi(t) Z Z[m., )&j, t=—ny...,N
k=t+1 j=I

with the property that for any ¢ > 1

Bi(—t) = -+ = Bi(—=1) > B;(0) > Bi(1) > --- > bi(t)

Combining (11) and (5) yields

n q

|cr(t | < ZZ |6:;(k)15;(t — k)| <

k=0 j=1

n q

= 3> Rijp;'bi(t — k),

k=l 3=1

t=0,1,...

so ¢(t) is also a decreasing function of £.
Finally we find

é

I ’\

)|(Jw;(t — k)| + [b;(t — k)I)

R

[\’Jx

b (wi(t — k)| +B;(t — k)) =

1+
f

> Z Rijpi*(|w;(t — k)| + B;(t — k))+

k=n+l j=I
i Z Z R’Jpl_r J( )
ke !+|Jh
I q 5
= > 3 Rijpi(lwilt — k)| + bi(t — k))+
k=n+1 j=1

q "
+ 3 Rioii (s — 1) 5i(=1), t=0,1,..

1=l

'TFV1

that will not vanish for increasing t, especially due
to the contribution of |w;(¢t — k)|.
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Abstract.

Experiments have been performed for MIMO system identification of a Ben-

son Boiler. Five input variables were perturbed simultaneously by excitation of the set
points with independent binary sequences. After preprocessing of the data, several signal
analysis and prediction error identification methods have beenapplied. Identified models
have been cross validated, with satisfactory results. The main issue of this research is to
investigate the feasibility of closed loop identification for large scale industrial processes.

Keywords.

1 Introduction

In spite of the attention which has been given to
the development of methods for system identifica-
tion in the past decades, the number of practical
applications on a real plant is relative small. This
applies especially to multivariable closed loop sys-
tem identification.

Most of the applications deal with the open loop
case (Katayama et al. (1977), Looy (1988), Suther-
land et al. (1976), Swaanenburg et al. (1985),
Tyssg (1981)), or with simulated data (Greco et al.
(1982)). Successful applications have been obtained
by Otomo, Nakagawa and Akaike (1972), Naka-
mura and Akaike (1981) who have applied AR mod-
eling methods to a cement rotary kiln and a power
plant. In both cases, successful results were ob-
tained by application of optimal control techniques
based on the open loop identified models.

References Zee (1981) and Eklund et al. (1973)
deal with closed loop identification of real data.
The former is based on stochastic realization and

Part of this work has been supported by the Department
of Trade and Industry. Experimental facilities: Stork Boilers
and EPON.
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prediction error methods applied to data of a pilot
plant, the latter deals with prediction error meth-
ods applied to a boiler system, but without explicit
reference to the closed loop nature of their exper-
iments. Surveys which contain a number of rec-
ommendations and some general information about
experiments performed on real plants, are given in
Isermann (1980), Gustavsson (1972).

We have applied identification to an industrial pow-
erplant, explicitly addressing the multivariable and
closed loop situation. Therefore, we have per-
formed a number of closed loop experiments on the
boiler system of a 600 MW coal-fired power plant
of the EPON in Nijmegen, the Netherlands. In this
paper we report the results of the final identifica-
tion experiment which was performed under partial
load operation. We intend to present a number of
the problems encountered in our particular applica-
tion, which we believe are fundamental from either
a practical or a theoretical point of view, and which
are common to most other large scale industrial ap-
plications of system identification. For details on
the underlying theory we will refer to the literature.

Because of the closed loop situation under which




the experiments had to be performed, we will first
discuss the closed loop identification problem in
section 2. Some characteristics of the boiler are
described in section 3. The experiment design is
brieflly treated in section 4. Especially in the multi-
variable closed loop situation, the choice of a correct
timestep and the selection of signals for identifica-
tion is complex. These problems and ways to attack
them are discussed comprehensively in sections 5
and 6. Results of the parametric identification are
given in section 7, and we will finish with conclu-
sions (section 8).

2 Closed loop system identi-
fication

In application of system identification techniques
to industrial processes, experiments are almost in-
evitably performed under closed loop conditions.
This is necessary for maintaining a sufficient level
of security and productivity. In most cases, three
kinds of observed variables can be distingnished.
Set point variables, which serve as references for
the output variables, controlled input variables
which can be set directly to any desired value and
which are used as controller outputs, and the sys-
tem output variables.

The disturbed feedback system, as depicted in
figure 1, is symbolically described by the following
equations:
y=Gu+d , u=Ky+n , n=n+ Kn;
Here, G and K represent transfer functions for
the deterministic part of the forward and back-
ward system. For ease of notation, the frequency-
dependence of these transfer functions and of the
signals has not been indicated explicitly.

d
-
u y

: e

na

ny
Fig. 1: Feedback system.

The measurable variables are: y (process output
variables), u (controlled input variables), n, (set-
point variables). The unmeasurable variables are:
ny (input disturbances), d (output disturbances).
n, can be used to introduce specific disturbances
to the system, determined by the experiment de-
sign for identification. Therefore, the variable n is
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considered as a disturbance with a measurable and
an unmeasurable part. Sometimes d is described by
d = He. H represents the transfer function for the
stochastic part of the forward system, e is noise.
The problem of identifying a model which repre-
sents the open loop behaviour of G and sometimes
also H, based on measured signals of the process,
is called the closed loop system identification
problem. In Anderson et al. (1982), Soderstrom
et al. (1976) and Ng et al. (1977), the problem is
treated in the frequency domain. in Aling (1990), a
state space approach towards the problem has been
formulated.

We will assume that some basic conditions are
satisfied. First, all identifiability results have been
proved under ideal conditions: the model structure
is assumed to be compatible with the underlying
data generating system. Secondly, the unmeasur-
able noise e is assumed to be independent in time
(white), to have a time-independent variance and,
with prediction error based identification methods,
to be Gaussian. Thirdly, the closed loop system is
assumed to be stable. We will use direct methods,
which are subject to a number of associated identi-
fiability conditions:

Direct methods. The identification is performed
using open loop methods with u and y as measured
model in- and output variables. A number of as-
sumptions with respect to the delay structure and
correlation between the noise sources on controlled

and output variables are required (Soderstrom et

al., 1976):

1) The product of transfer functions GIK is strictly
proper. In other words, there is a delay of one
discrete time step in the control loop.

2) The unmeasurable disturbance d is uncorrelated
with 7.

3) The external disturbance n is persistently ex-
citing. Persistency of excitation means that the
spectral density function of the disturbances has
a sufficiently broad bandwidth.

Recently condition 1 is relaxed. In Hof et al. (1990)
is shown that the closed loop transfer function GK
may not have any algebraic loops, which is less se-
vere then strict properness.

The noise conditions are hard to verify. Some
other conditions can be checked a posteriori; the
correlation between input excitation and noise (pre-
diction errors) is an example. We must bear in
mind that the results hold asymptotically, i.e. for
an infinite amount of data. Thus, small input exci-
tations will not automatically lead to good models
for a moderate observation time.




3 Process description

The boiler can be separated in the combustion cir-
cuit and the water-steam circuit. The behaviour of
the combustion circuit is primarily described by the
following signals: fuel flow, combustion gas damper,
primary and secondary air flow.

We will concentrate our identification efforts on
the water-steam circuit of the boiler, which is
schematicly presented in figure 2. Some properties

are discussed below.
o The Benson boiler is of the once-feedthrough

type, and therefore contains no drum. After the
medium pressure turbine the steam is condensed
and recirculated via the accumulator by the feed
water pump.

o The high pressure part consists consecutively of
economizer, evaporator, Benson bottle (see next
item) and three superheaters. After the high
pressure turbine the steam is reheated before it
enters the medium pressure turbine. A valve for
pressure controle is placed in front of each tur-
bine.

o The Benson bottle is a water buffer, with the pur-
pose of maintaining a minimal amount of circu-
lation in the evaporator during startup or partial
load. This minimal circulation flow is necessary
for preservation of the evaporator pipes of which
the temperature must remain below a safe limit.
Without the Benson circuit the evaporator would
not be able to evaporate the feed water with this
minimum flow and the feed water level would fi-
nally end up in the superheaters. The circulation
flow is controlled by a level controller which reg-
ulates the water level in the Benson bottle and
is effectuated by the circulation pump. During
normal full load operation this circulation circuit
should not affect the process.

o The boiler operates subcritical. As a conse-
quence, the temperatures in the evaporator are
directly related to the pressure.

Although we do not go into details of the com-
bustion circuit, we have to realize the following:
The sequence in which the steam passes through
different parts of the water-steam circuit does not
correspond with the flow of the combustion gases
through the combustion circuit. This leads to com-
plicated couplings via the combustion circuit, which
are not easily described. Basically, these couplings
will introduce additional dynamics in the model of
the water-steam circuit, caused by physical feed-
back or feedforward. We have assumed that the
influence of the combustion channel to the water-
steam circuit is one-sided.
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4 Experiment design

In order to maintain a 40% load operation, only
three of the six burners where used. The feedwa-
ter flow was increased slightly in order to enforce
circulation flow.

Contrary to the standard way of operation, where
the pressure is controlled primarily by the fuel flow,
a control scheme was chosen by which the pressure
was regulated by the turbine valve. This offered the
opportunity to excite the turbine valve by injecting
pressure set point perturbations to the control sys-
tem, which would have been impossible otherwise.
Unfortunately, the fuel flow had to maintain a con-
stant level by which it was not possible to excite
this input variable.

To avoid discontinuities in the data, the process
of cleaning the combustion area from smuts at dis-
crete time instances was stopped. The hereby in-
troduced slowly time-dependent effect of pollution
is expected to be removed from the data by means
of trend removal.

Almost all important input and output variables
are directly related to the high pressure part. Com-
pared to this, the influence of the dynamics of the
medium pressure part is considerably less. We will
summarize the most important signals related to
the high pressure part of the boiler and discuss
them later.

Input variables:

QFW feed water flow

QSC1 flow spray cooler 1

QSC2 flow spray cooler 2

VHP turbine valve aperture high pressure

CGD combustion gas damper aperture

QC  circulation flow

Output variables:

TSH3 steam temperature after third superheater
Az  temp. difference over the second spray coole
PHP average pressure in the high pressure part
LC  circulation water level

Intermediate variables:

QIE water flow inlet evaporator

TCJ temperature after circulation junction

TSH1 temperature after the primary superheater
TSH2 temperature after the secondary superheater
PFW pressure feedwater

Ap PFW-PHP

QF  [uel flow

QPA  primary air flow

QSA secondary air flow

Remark 1: The subdivision of the signals in input,
output and intermediate is based on a priori knowl-
edge, and is to some extent arbitrary. The results




of signal analysis and also the identification will fi-
nally prescribe which veriables can be regarded as
being inputs etcetera.

Remark 2: The turbine valve apertures which are
used for the model are not the actual apertures,
but so-called linearized apertures which relate in a
linear way to the pressure difference over the valves.

Chosen was for a 2 Hertz sampling rate. This rate
will certainly cover all the dynamics.

We have employed a new method for the gener-
ation of independent Pseudo Random Binary Se-
quences (PRBS, plural: PRBS’s), which requires
one shift register only and no specific initial state
information. This method, which is very practi-
cal for multivariable real-time applications, is de-
scribed in Aling (1990). The bandwith of each of
the following PRBS’s is according to the expected
dynamics in the subsystem it has to perturbe, and
is determined by the clock period A, given a basic
timestep of one second for the shifregister, which
has order 16, giving a PRBS length of 65535 (max-

imum length sequence).
PRBS QIE: excites the feed water flow through

the evaporator. A = 53.

PRBS QSC1 and PRBS QSC2: affects dif-
ferent temperatures in the process. A = 141,
A = 89 respectively.

PRBS VHP: excites the turbine valve. A = 1T7.

PRBS QC: excitation of the circulation flow.
A=23;

The combustion gas damper and the reheater spray
cooler were kept at fixed levels. Unfortunately a
step disturbance on the CGD took place half-
way the experiment, which forced us to include the
damper as an additional regression variable into
some of the models.

5 Data preprocessing

The total experimentation time was circa 18 hours, .

including load change from full load to partial load
and the adjustment of PRBS disurbances. After
the data preprocessing time series of 7.4 hours of
the process with circulation circuit active and per-
turbed by the 5 pertubations simultaneously where
at our disposal for signal analysis and identifica-
tion. In the following we will give a comment on
trend removal, and discuss extensively the choice of
a correct timestep for identification.

A difficulty with trend removal is the lack of a def-

inition of a trend. We carried out trend removal by
fitting a 15-th order Chebychev polynomial to each
time serie and subsequently substract this polyno-
mial from the time serie.

The choice of sampling interval for identifica-
tion was done based on the assumed time constants
of different parts of the boiler. Pressure phenom-
ena involve time constants in the order of seconds,
whereas thermal effects are much slower. With a
time step of 2 seconds, both high and low frequent
dynamics can be modeled. Unfortunately, such a
time step would probably be bad for the quality
of the low frequent part of the estimated models,
for which a sampling interval of 20 seconds would
be better. With this choice, fast dynamics would
have to be represented by a feedthrough term in
the model structure. As a compromise two mod-
els could be identified, one of which is better for
the high frequencies and the other one for the low
frequencies.

For the closed loop case however, such a proce-
dure is not possible. As was explained in section
2, we need a delay of one time step in the loop
for identifiability. Consequently, in case there is
a feedthrough term in the controller one should al-
ways incorporate a one time step delay in the model
structure for the forward part. A sampling interval
of 20 seconds would then be impossible because it
would lead to an intolerable bias for the high fre-
quent parts. For our closed loop case there are two
possibilities:

o A small sampling interval of (say) 2 seconds with
an imposed delay of one time step for the forward
model. The estimates are likely to be poor in the
low frequent region. :

o Partitioning of the model into different parts
which contains either high or low frequent dy-
namics and identification of models with a delay
of one time step based on sampling intervals of 2
or 20 seconds, respectively.

The conclusion is that in the closed loop case with

different time constants, we would be inclined to

perform the identification in parts, while in the
open loop case this is not necessary. In practice
this implies that, in the closed loop case, MISO
identification of different parts of the system is to
be preferred over MIMO identification of the total
system. Indeed, this is the case as will be shown in

section 7.

As a result of the former we performed the post
sampling twice to get a data set with sampling in-
tervals of 2 seconds and a data set with sampling
intervals of 20 seconds. Before sampling the data




has to be filtered to prevent aliasing. The design
of such a anti aliasing filter involves choices as fil-
ter order and relative cutoff frequency. In our case,
an autoregressive 4-th order Chebychev filter with
a relative cutoff frequency of 0.1 and a pass band
ripple of 0.05, gave satisfactory results for the post
sampling operation from 2 to 20 seconds dataset.

6 Signal analysis

The purpose of signal analysis is to get a rough im-
pression of the relationship between different sys-
tem variables in the form of coherencies, covari-
ance functions, nonparametric transfer function es-
timates etcetera prior to performing parametric sys-
tem identification. Although the estimates may be
far from exact, the role of signal analysis is signif-
icant. Especially for the choice of variables which
should be incorporated into the model and for the
choice of the sampling interval signal analysis may
be a key factor to success.

Usually, signal analysis is performed on a pair of
scalar signals. In multivariable applications how-
ever, contributions from an input variable to an
output variable will be considered as noise for any of
the other relevant input/output relationships with
the same output variable, when scalar methods are
applied. Thus, low coherencies are measured al-
though the relationship may be perfectly linear in
a multivariable sense. Rather than using scalar
methods, we would like to use a method which
decomposes the power of an output variable into
contributions from all input variables and a noise
component, on a relative scale from 0 to 1 over all
frequencies.

In this section we will describe such a parametric
method for multivariable signal analysis, which was
successfully applied by Otomo et al. (1972) for an
open loop problem, and we give an interpretation
of this method for the closed loop case. Then an
application of this method to our data set, in order
to find a signal selection for the total system, is de-
scribed. In the last part of this section the process
partitioning, which is motivated by the reasoning
at the end of section 5, is discussed.

The method is based on a simple autoregressive
(AR) model structure for the observed data y,
(ve € RP, t € Z). Let us assume that the data can
be described by an autoregressive model (¢ repre-
sents the innovation):

Ay = «
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This relationship is expressed in the frequency do-
main by

p=H(z)e=A"(z"")e

Let H;;(z) denote the (¢, j)-th element of H(z), and
let y,("’ and egi] be the i-th element of the output and
innovation vector, respectively. Also, assume that
EE') and €¥) be independent for any values i # j,

s # t and that €l) has variance o?. The spectral

density function of y" is given by
r
Si(z) = 3_ |Hij(2)[o?
=1

and the relative power contribution of €\’ to yt{"J by

() = MHii(2)[’o]
3‘3( )_ S,'(Z)

For fixed 7 these relative contributions sum up to
1 and are the frequency-dependent relative power
contribution from all innovation elements, includ-
ing innovation element ¢. In other words, the func-
tions s;; represent a parametric multiple coherence
estimate of output element i with the innovation
vector. The quantities s;; are scaling-independent,
which has been shown in Aling (1990). If y, is a
joint input/output vector of an open loop system,
these s;; are an measure for the influence of the
inputs (e.g. the excitation due to the testsignals)
on the outputs (e.g. the system variables). After
having identified the AR model, the independence
of the components of the innovation vector, which
was assumed, can be checked. With our open loop
application of this method, this asumption was al-
ways satisfied.

Let us consider what the interpretation of s;;(z)
is for multivariable closed loop situation. Again,
the analysis is done in the frequency domain. For
conciseness, we will drop the dependence on z and
use a new notation for a partitioned output vector:
Let the output y, be partitioned as

g

Ut =
y

Here, u is the first output component and y” is

the vector consisting of components 2,...,p of y.
Let the closed loop system be described by

y:“ = Gy

Hy )
(0) &
Y Go

0

= Uy +




v
U = ( Kl KD ) ()
Ui

+ LeE"]
The vectors e¥) and e are white noise distur-
bances on the output and input vectors, respec-
tively. The system is shown in figure 3a.
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Fig. 3: Feedback and alternative feedback represen-
tation of output element y().

After some calculations the following is de-
rived: (I = Gl{[‘- I{QGo)_l.Kl]y(n = Gl(f =
KoGo)™* (Let™ + Kane[y]) + Hie®), In accor-
dance with this formula, the system can also be
represented as in figure 3b, which represents the
same system as figure 3a.

Let us define
v = (I — KoGo)™ (Le™ + KoHoe™) Then, v*)
represents disturbances entering the loop at the in-
put signals. What matters for the identification
of MISO models with y(*) as output is the rela-
tive power of the signals Gv(") and Hye®). The
first signal represents the effect of independent in-
put disturbances at the output signal, the second
represents the amount of additional noise. If Gyv(*)
is sufficiently large, we will have a good signal to
noise ratio on the output and we may expect good
identification results.

The relevant issue here is that, if the paramet-
ric signal analysis procedure explained above is ap-
plied to the joint input/output vector yr0 where
y}}o = (yT uT )7, the power of y™*) effectuated
by these two disturbances, is expressed exactly by
815(z). For this, a number of assumptions must be
made:

ytl)
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o Hie") and Hge) are independent. Therefore, if
the analysis is to be performed for all output el-
ements, this condition can only be satisfied if H
is diagonal and all components of e are inde-
pendent. This is a rather restrictive assumption
which needs to be checked.

o Hye® and Le™ are independent. Again, if the
analysis is to be performed for all output ele-
ments, this implies that e(*) and ) must be in-
dependent.

Note that the first assumption vanish when the

joint ifo vector consists of only one output and

(more) inputs (dimension Hy is zero). This is of

importance for closed loop MISO analysis. If the

first condition mentioned does not hold, then a

lower bound for the power of Gyv(*) is obtained

by considering the total power due to the term

Gi(I — KoGo)~'Le™ only.

Under these assumptions, noting that

(I — Gi(I — K¢Go)™'K,) is a scalar quantity which
eliminates in the computation of s;;(2), it is easily
seen that the quantities s;;(2) represent the rela-
tive influence of the disturbances Gyv*) and Hyel¥)
decomposed in their individual innovation compo-
nents. If the s;;(z) are computed forallz =1,...,p
then an impression is obtained of the excitation by
other in- and output variables, which is relevant for
the corresponding estimates.

We have applied this parametric signal analysis to
our data set with 2 seconds sampling interval (high-
est frequency is 0.25 Hz), using as the joint I/O vec-
tor the variables: QFW, QSC1, QSC2, QC, VHP
(inputs) and TSH3, TSH2, TSH1, TCJ, PHP, LC
(outputs). An 10-th order autoregressive model is
estimated. The innovation components have been
checked on their mutual independence. For exam-
ple, such a check in a application previous to the
one discussed here, showed us clearly that the steam
flow and the steam pressure can not be seen as two
independent system variables, which is logical from
a physical point of view. Consequently, the steam
flow is not considered as a system variable.

Some of the results are shown in figure 4. The
power contributions, which sum up to 1, are rep-
resented in the figure by the height of the band
between adjacent pairs of plotted lines, The hor-
izontal axis is the logarithm of the frequency. As
expected, the power of signal PHP is obviously for
a great part due to VHP, and for a smaller amount
due to QSC1 and QSC2. The remainder represents
the power due to the PHP innovation. In the sec-
ond figure, the power distribution of QFW is shown.
The largest influence in the low frequencies is from




QC. Indeed, there is a strong interaction between
QFW and QC caused by the control system. As
QC is strongly related with LC because of the level
control, also the effect of LC is present. The contri-
butions from QSC1 and QSC2 are due to the fact
that the spray cooler flows are tapped directly from
the feed water pipe. Note that in the high frequency
part, the power contribution to QFW is merely due
to ils own innovation, whereas the power contri-
bution to PHP is not only due to its own innova-
tion, but also significantly due to VHP. In general
the pressure phenomena contain relatively high fre-
quent dynamics, whereas most other system parts
have bandwidths which are about ten times smaller.
In the present closed loop situation, this observa-
tion supports the idea of model partitioning as pro-
posed at the end of section 5, and consequently, to
perform MISO identification instead of the estima:
tion of one MIMO model.

With the knowledge over the correct system inputs
and outputs, gained by the foregoing parametric
signalanalysis, we will divide the process into parts.
At this moment we need the intermediate variables,
as they are declared in section 4. The partitioning
rests on: knowledge of the physical phenomena in
the process, results of (parametric) signal analysis,
also performed for the joint i/o vectors of each sub-
model, and results of the identification itself. The
latter means that if for example the process vari-
able TSHI is predicted much better by a model
taking also CGD as an input, then CGD is nom-
inated as being an input. Besides the foregoing
the following preconditions must be valid: the sig-
nal choice for a certain model must not contradict
with the signal analysis, checkable conditions as in-
dependence of the innovations of the inputs must
be fullfilled and the connection of all the submod-
els, in which outputs of some submodels are inputs
for other submodels, must result in a total model.
This total model has as inputs the possible con-
trolled input variables and as outputs the defined
output variables. The names and some aspects of
the ten submodels are:

I: Circulation junction, II: Water flow genera-
tion, III: Economiser,

IV: Evaporator, Benson bottle and first super-
heater. This is one of the most complicated and
crucial parts of the boiler system. The evapora-
tor stretches over the full height of the combustion
chamber, and therefore interacts with almost ev-
ery part of the water-steam and combustion circuit.
One of the problems for identification is that many
important variables cannot be measured. Temper-
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atures in the combustion chamber are not avail-
able at all, and temperatures in the evaporator are
equivalent with pressure measurements because in
the evaporating process temperature and pressure
are related by the phase transient curve of the pres-
sure/temperature diagram for water. For these rea-
sons we were more or less forced to consider the
temperature after the primary superheater as the
relevant output variable. Although there is no ex-
act water level in the evaporator, we think that
there is an effective one which is related with Ap.
Indeed, inclusion of Ap as an input variable re-
sulted in a significant improvement of the model
quality. Also CGD was needed as an additional re-
gression variable because of the step disturbance
which was mentioned earlier, and turned out to
be of considerable influence. Also inclusion of QF,
QPA and QSA resulted in improved validation re-
sults. The independency in the latter three process
inputs is in this case probably due to the nature of
the fuel; the quality of coal expressed in combus-
tion energie is irregular. Afterwards identification
of this submodel, the innovations can be checked
on their mutual independency.

V: Ap - subsystem. Because Ap is included as a
model input for subsystems IV and VII, we have to
describe it as the output of this auxiliary subsys-
tem. It turns out that Ap can be described fairly
well by a model with QIE, QC, QSC1, QSC2, VHP
and PHP as input variables.

VI: Spray cooler 1, VII: Secondary superheater,
VIII: Pressure subsystem, IX: Spray cooler 2, and
X: Third superheater.

The data set with 20 seconds sampling interval
is used to identify the submodels I, III, IV, VII and
X.

Altough the results of the parametric signal anal-
ysis give the impression that there should be infor-
mation related to the varaible LC in the data set,
we were not able to find a model to describe the
behaviour of LC, by means of closed loop identifca-
tion.

7 Identification results

In this section results of the parametric identi-
fication are given. First we discuss the used
model structures, identification- and validation-
techniques. Then we show time responses of 3
identified models. Two models are the result of
MISO closed loop identification, the last one con-
cerns MIMO identification in the open loop.




We use so-called "Talmon and van den Boom”
ABFCD model structure (see e.g. Aling (1990)),
which is of the form:

A(Q)ye = F~'(q)B(q)us + D7 (¢)C(g)e

A, B, FF, C and D are polynomial matrices in the
backward shift operator q. The identification was
based on the direct method, using Least Squares
(LS) and Recursive Prediction Error (RPE) tech-
niques. Equation error AB-models were identified
by means of LS, RPE was mostly used to estimate
BFCD models. However, several kinds of MIMO
ABFCD model structures have been identified. In
the closed loop situation, always a delay of one time
step is imposed on the forward part of the deter-
ministic part of the model.

The models were cross-validated on an indepen-
dent part of the data set. For this, the data set
was split into two parts of 3.7 hours, 666 or 6660
samples depending on the sampling interval. The
first part, where the step disturbance of CGD took
place, was used for identification and the second
part for validation based on the so-called output
error RMS values (Relative Mean Square, the sam-
ple variance of the output errors divided by that of
the corresponding output). The output error is de-
fined as follows. Consider a model structure of the
form y; = Gu¢ + He, where G and H represent the
deterministic and the stochastic part of the model
respectively. Then € = y, — Gu, is the output er-
ror. Although the identified models could have an
equation error structure, output errors are always
used for validation because we think that this gives
a better measure for the quality of the determin-
istic part of the model. In many practical cases
the user is interested in the deterministic transfer
function G. Surprisingly, the models identified with
an equation error structure often performed better
in output error validation sense then the identified
models with an output error structure, for example
BF-models. We will not give an interpretation of
this phenomenon.

Once the correct inputs and outputs for a model
are selected, the determenistic parts of the LS and
RPE models (AB and BFCD structures respec-
tively) performed equal, as well with the output
error validation as with the shape of the step re-
sponses. Often even the static endvalues of the step
responses of the different models are close to each

other. (See figures 6 and 8).

Figure 5, subsystem IV: Evaporator, Ben-
son bottle and first superheater. A 13-th order
BFCD model and a 15-th order LS model have been
identified. Only a record of the output error vali-
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dation is shown, over a time span of 8000 seconds.
RMS = 0.26 for both models. The solid line is the
measured output, the dashed line is the predicted
one by the model.

Figures 6, and 7, subsystem V: Ap. Step
responses are displayed over 100 seconds of a 6-th
order LS model (solid line) and a 4-th order BFCD
model (dashed line). An increase of QIE indeed
leads to an increase of Ap or, in other words, an
increase of the water mass in the evaporator. Also,
after opening the turbine valve (VHP), the pressure
(PHP) decreases by which again Ap increases. We
have no interpretation for the remaining responses.
The RMS value of the LS model is 0.14, 800 seconds
of the output error time serie is shown.

Remark: The representation af a submodel in the
form of a multivariable step response should not
lead to the conclusion that the auxiliary variables
used as input variable for the submodel can be ma-
nipulated directly and independently. Prudence is
called for by physical interpretations of the auxil-
iary variables as controlled input variables.

Figures 8, and 9, MIMO open loop model.
A model has been estimated with the five set point
disturbances as inputs and LC, TSH3 and PHP as
output variables. This concerncs an open loop iden-
tification, and the model does not only contain the
transfer function of the forward system G, but also
an unknown part of the backward system K (which
may be undesired). The resulting model step re-
sponses are shown in figure 8 over 1000 seconds for
a 7-th order BFCD model (solid line) and a 7-th
order LS model (dashed line). The RMS values for
the BFCD model are 0.40, 0.14 and 0.09 for LC,
TSH3 and PHP respectively (validation: figure 9,
over 10000 seconds). Note that, contrary to the
closed loop situation, no problems arised in esti-
mating a MIMO model and also the behaviour of
the variable LC is modelled.

Altogether, it seems that closed loop identification
of carefully selected subsystems as well as open loop
MIMO identification using RPE methods yields
satisfactory results, even for complicated industrial
processes.

8 Conclusions

An application of closed loop system identification
has been performed on a coal-fired boiler system.
Conditions have been formulated under which iden-
tification of (partial) models lead to meaningful re-
sults. A signal analysis method proposed by Akaike




has been reinterpreted and applied to the closed
loop case. Based on signal analysis and physical
insight, we made specific choices for the input and
output variables of different parts of the boiler. The
closed loop identifiability conditions, in combina-
tion with the fact that the time constants of the
system were quite different, required partitioning
of the boiler system and identification of partial
models (MISO). For these models, as well as for
MIMO open loop models, satisfactory validation
results have been obtained. Identification of closed
loop systems is considerably more complicated than
identification of open loop systems. It requires a lot
of expertise, not merely about the process itself, but
especially about the potentials and limits of closed
loop system identification.
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Identification of a pilot plant crystallization process
with output error methods ?
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Abstract. Results are shown of the identification of a three input two output pilot
plant evaporative crystallizer (970 litre), in which the Crystal Size Distribution (CSD) is
the main characteristic of the process to be modelled, and subsequently to be controlled.
The experimental situation is characterized by short observation times and a bad signal
to noise ratio of the C'SD measurement device. A three step identification procedure is
applied, consisting of high order ARX modelling, model reduction through approximate
realization based on step response matrices, and finally output error optimization in a
pseudo-canonical (overlaping) state space parametrization.

Keywords. system identification, state space methods, approximate realization, crys-
tallization, industrial production systems.

1 Introduction responding models based on first principles and a
priori knowledge appear to be very complex, hav-
ing a distributed nature; they are based on many
model assumptions that are hardly verifiable, and
they incorporate unknown coefficients. As a result

: Sl this type of theoretic models does not produce a
trum, called the Crystal Size Distribution or CSD, ahficiently accuratel descriphion of the process dy-

icta.tes t‘h.e behaviour of the 'crystals'm succeed- namics that can be used as a basis for control design
ing operations, such as filtration, drying, storage on an actual plant (De Wolf, 1990)
and transportation and is also important for the ;

marketability of the crystals produced. In many
industrial crystallizers the observed C'SD’s show
transients and oscillations due to (external) distur-
bances or instability of the process itself (Randolph
and Larson, 1988). Therefore it is desirable to con-
trol the C'SD produced in the crystallizer.

In order to design a controller for the CSD a com-
pact model of the C'SD dynamics is required. Cor-

Crystallization from solution is an important sep-
aration and purification technique in chemical in-
dustry. It is characterized by the formation of a
spectrum of differently sized crystals. This spec-

In order to arrive at compact models of the C'SD
dynamics that are appropriate as a basis for control
system design, black box models can be identified
on the basis of measured input/output data. In ap-
plying system identification methods to crystalliza-
tion processes a number of aspects that complicate
the identification procedure has to be specifically
mentioned:

e The measurement techniques available for the
on-line measurements of the CSD in a crys-
tallizer are still rudimentary, and consequently

!The original version of this paper is presented at the
9*h IFAC/IFORS Symposium on Identification and System
Parameter Estimation, July 8-12, 1991, Budapest, Hungary.

Copyright of this paper remains with IFAC. the signal to noise ratio of the data due to mea-
§Present address: Koninklijke/Shell-Laboratorium, Am- surement noise is rather bad.

sterdam (Shell Research B.V.), P.O. Box 3003, 1003 AA

Amsterdam, The Netherlands e The time constants of the process discussed in
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this paper range from 1 to 10 hours, which
makes it difficult to measure sufficiently long
data sets that are obtained under constant op-
erating conditions. This means that the length
of the available data sets will be relatively
small.

It has to be stressed that this situation puts fun-
damental limitations on the achievable accuracy of
the identified models.

This paper discusses the identification of a three
input two output pilot plant evaporative continu-
ous crystallizer (970 litre), available at the Delft
University of Technology. This system was build in
order to investigate control strategies for industrial
crystallizer systems. A brief sketch of this process
is given in section 2. In order to arrive at a compact
model suitable for control system design, a specific
- three step - identification procedure is presented,
resulting in the use of an output error model struc-
ture. This procedure, which is discussed in section
3, starts with the estimation of a a high order initial
model, which - after model reduction - can be used
as an initial estimate for a nonlinear optimization
algorithm, minimizing the sum of squared output
errors directly in a state space representation. In
this identification strategy a similar philosophy is
pursued as in Swaanenburg et al. (1985), Wahlberg
(1987), Backx and Damen (1989), starting the iden-
tification procedure with high order modelling. The
second step in this strategy, being the model reduc-
tion step, will be performed by applying a weighted
approximate realization algorithm based on step re-
sponses in stead of Markov parameters, showing an
improved preformance in the low frequency range
(Van Helmont et al., 1990). Special attention will
be given to the output error identification algorithm
in a state space form. Finally some of the identi-
fication results will be presented and will be com-
mented upon.

2 The Crystallization Process

Figure 1 shows a simplified process scheme of the
970 litre pilot plant crystallizer. The crystallizer
is operated with the ammonium sulfate water sys-
tem. The production rate is approximately 3500
kg of crystals per 24 hours. Crystal growth and
nucleation (the birth of new crystals) are driven by
supersaturation which is created by the evaporation
of the solute (water). The crystallizer is fed by an
undersaturated feed. Product is isokinetically re-
moved by a discharge tube in order to prevent that
the CSD in this flow differs from the one in the
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crystallizer. The large cilindric zone around the
crystallizer (the annular zone) is used to remove
small crystals present in the crystallizer. These
small particles removed from the crystallizer by the
annular zone are heated, send to the dissolving tank
and subsequently returned to the crystallizer. This
preferential removal of small crystals and their dis-
solution is an important input to affect the dynam-
ics of the C'SD (Randolph and Larson, 1988). Be-
sides this flow, which is referred to as the fines flow
@y , two other inputs are available for control of
the CSD. These are the product flow rate @, ,
which affects the residence time of the crystals in
the crystallizer, and the nett heat input to the crys-
tallizer P;,. The CSD in the product flow rate is
measured by a combined system of a dilution unit
and a Malvern 2600C particle sizer. The principle
of operation of the particle sizer is based on diffrac-
tion. The diffraction pattern of light emitted by a
monochromatic laser beam will depend on the size
distribution of the particle sample present in this
beam. The measured diffraction pattern is used to
reconstruct the CSD of the sample. The dilution
unit is required to dilute the slurry concentration
of a slurry sample below the maximum allowable
concentration that can be handled by the Malvern,
which is 1 volume percent of particles. The com-
bined system of the dilution unit and the Malvern
allows for a sample rate of one C'SD measurement
per two minutes. For purpose of modelling and con-
trol we distinguish two output variables that act as
measures for the performance of the C'SD: mga, be-
ing a measure for the slurry concentration in the
crystallizer, and volys, the volume fraction of crys-
tals in the size range (87.5 — 100um). More details
on the crystallizer and the on-line C'SD measure-
ment system can be found in De Wolf (1990) and
Jager (1990).

3 Identification Strategy

The identification strategy that will be pursued in
this paper is a three step procedure, where in the ul-
timate step an output error type of model structure
is applied. In view of the general class of predic-
tion error model structures, see e.g. Ljung (1987),
we will consider a linear, time-invariant finite di-
mensional system S:

St y(t) = G(q)u(t) + H(g)e(t) (1)
with y(t) € IRP the p-dimensional output signal,
u(t) € IR™ the m-dimensional input and e(¢) € IR?,
with {e(t)} a sequence of independent random vec-
tors with zero mean and covariance Ee(t)eT(t) = A.




G(q) and H(q) represent the proper rational. trans-
fer function matrices of the transfers from input
to output, and from noise contribution to out-
put. In (1) ¢ denotes the forward shift operator:
qu(t) = u(t +1).

A general type of prediction error model set is char-
acterized by:

y(t) = G(g,0)u(t) + H(q,0)e(t) 0 €6 cR?

2)
with G(q,0), H(q,0) proper transfer functions of
appropriate size, depending on a real-valued param-
eter vector @ that is varying over a set © of admis-
sible values, and &(t) € IR” the one step ahead pre-
diction error (Ljung, 1987). Throughout this paper
we will consider a quadratic type of identification
criterion:

M :

e
On = arg min —N—ga (,0)e(t,0) (3)

The output error model structure is represented
by the fixed choice: H(q,0) = I. The choice for
applying an output error model structure is moti-
vated by the fact that - in contrast with the very
popular linear regression type of model structures
- an output error model approximates a system to
be identified much more "balanced” over the whole
frequency range. It has been shown by various au-
thors that when considering identification in terms
of approximate modelling, linear regression type of
models may lead to very bad approximations, or
in other terms they often require very high order
models in order to provide good approximations,
see e.g. Wahlberg and Ljung (1985), Damen et al.
(1985), Van den Hof and Janssen (1987). However
the use of output error type of model structures
shows one main disadvantage: the numerical proce-
dure to generate optimal output error models gen-
erally relies on nonlinear optimization routines, and
consequently problems like occurrence of nonglobal
minima, and large computation times (especially in
the multivariable situation) have to be dealt with.
In this respect it is important to be able to start the
output error identification procedure with an accu-
rate initial estimate. The finale step in our strategy
will be directed towards the output error optimiza-
tion; the first two steps will be preformed in order
to generate such an accurate initial estimate.

The strategy that we will follow in this paper has
close relations with strategies as suggested by Swaa-
nenburg et al. (1985), Wahlberg (1987) and Backx
(1987), in the sense that an initial model is con-
structed having a very high order, using simple
identification methods based on linear regression
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models. Subsequently a model reduction procedure
will be applied in order to reduce the high dimen-
sion of the model to a tractable one. In fact this
means that the "approximating part” of the identi-
fication procedure has been deferred to a model re-
duction algorithm. Next we will briefly describe the
three different steps in our strategy, which are im-
plemented in the software packages of Aling (1989)
and Van den Hof (1991).

a. First Step - High Order ARX-Modelling

In the first step an ARX model structure is ap-
plied:

Mgy : A(q,ﬂ}y(t) = B(q,0)u(t) +&(t) (4)

for @ C © C IRY, with A(q,0), B(g,0) polynomial
matrices in the rings IRP*?[¢~!], R"*™[q~'], while
the entries of the coefficient matrices of the poly-
nomials act as the unknown parameters 6:

Alg, 0)
B(q,0)

= T+ A~ 4+ A7+ + Ang™
Bo+Big™' 4+ Bog ? 4 -4 Bug ™

I

Unless otherwise stated, the polynomial degrees n,
and n; will be chosen equal. Applying the ARX
model structure has the advantage that the iden-
tification result (3) can be calculated analytically,
and results will be available very fast even for large
(multivariable) models having very high polynomial
orders. In this first step the polynomial order will
be chosen very high in order to guarantuee that
the model transfer function A(z,0)"'B(z,0) is an
appropriate representative of the system transfer

G(z).

b. Second Step - Model Reduction through
Approximate Realization

The model transfer function A(z,0)~'B(z,0) gen-
erated by the high order ARX model obtained in
the first step can be realized by an equivalent state
space representation:

s(k+1) = Az(k)+ Bu(k) (5)
y(k) = Ca(k)+ Du(k) (6)

with A € R"*", B € R™™, C € RP*", and
D € IRP*™, Generically this equivalent state space
model will have a state space dimension equal to
n = n, X p, see e.g. Gevers and Wertz (1987).
In this second step of our identification strategy a
model reduction algorithm will be applied to this
deterministic model, in order to reduce its dimen-
sion to a realistic and tractable value.




Approximate realization based upon a block Hankel
matrix built from Markov parameters is a power-
ful and easy-to-use method for generating reduced
order models (Kung, 1979; Damen and Hajdasin-
ski, 1982), being very closely related to the bal-
anced model truncation method of model reduction
(Pernebo and Silverman, 1982). A test on the Han-
kel singular values also provides a simple means for
determining the order of the reduced order model
to be constructed. However, it is geneally known
that this approximate realization scheme shows a
preference for the high frequency behaviour of the
model, very often leading to a bad approximation
in the low frequency region, and specifically to a
bad approximation of the static model gain. In or-
der to improve this situation we apply an approx-
imate realization scheme based upon a weighted
block Hankel matrix, as equivalently presented in
Van Helmont et al. (1990). While a standard ap-
proximate realization method is based on a block
Hankel matrix, H =

M(1) M2 M(@3) M(N,)
M©2) M3 M) . M(N.+1)
M(3)  M@)

M(N,) M(N, +1)  M(N,+N.—1)

a weighted matrix is constructed according to:

) g oo i 1o
0" 1%,
H,=HU withU=| - 0 : (7)
0 o
leading to H,, =
S(1) 5(2) .S5(3) S(N.)
5(2) S(3) SM) . SN.+1)
S(3) S(4)
S(}v,) S(N,..-t-l) : S(N, +‘Nc—1)
5(0)
5(1))
— | SG) | [Indme..m] (8)
S(V,)

with S(k) := S5, M(i), the step response matrix
at time k. Since H,, and H have equal rank, an or-
dinary approximate realization algorithm based on

singular value decomposition can now be applied
to the weighted matrix H,,. Because of the spe-
cific weighting of the Hankel matrix an improved
low frequency behaviour of the aproximate models
is obtained.

c. Third Step - Output Error Identification
in State Space Form

As mentioned before, the model obtained so far is
used as an initial estimate in an output error iden-
tification method, dealing with the following model
structure:

z(k+1) = A(0)z(k)+ B(0)u(k); z(0) = zo(0)
(9)

j(k,0) = C(0)z(k)+ D(0)u(k) (10)
e(k,0) = y(k)—y(k,0) (11)

where the elements of the parameter vector 8 occur
as entries of the coefficient matrices A, B, C, D,
and possibly in the initial state vector z(0). Since
the output prediction y(k, @) generally will be non-
linear in the parameter vector 0, solving the iden-
tification criterion (3) will require a nonlinear opti-
mization algorithm.

In order to guarantee that the model structure (9)
- (11) is uniquely parametrized, the state space
form has to be restricted to a uniquely identifi-
able parametrization, see e.g. Gevers and Wertz
(1987). In our present implementation we are
able to use three different identifiable parametriza-
tions: the canonical observability form, the pseudo-
canonical observability (overlapping) form and the
minimal polynomial representation. The first two
parametrizations are surveyed in Gevers and Wertz
(1987); the latter form is applied and advocated in
Backx (1987) and Backx and Damen (1989). In
this paper we will show results obtained with the
second (overlapping) form. This parametrization
has the advantage that, within one single continu-
ous parametrization, it covers almost all models of
the specified minimal state space dimension. In or-
der to solve the optimization problem (3), a quasi-
Newton method has been implemented as the core
of the optimization algorithm. This algorithm em-
ploys the following special features:

o The first derivative of the loss function in (3)
is analytically determined using the fast algo-
rithm of Van Zee and Bosgra (1982).

e Parametrization of the initial state vector
z0(0), which is of importance especially when
dealing with short data sets.




e The parametrized state space form contains
parameters in A(0), B(0), D(0) and xzo(0).
Since the prediction error £(k,0) is a linear
function of the parameters in B(#), D(8) and
zo(0), the latter set of parameters can be op-
timized using linear (one shot) optimization
techniques. In the algorithm implemented it is
possible, in a very flexible way, to alternatingly
optimize nonlinearly with respect to a subset
of A(@), B(6), D(0), xo(0), and linearly with
respect to a subset of B(0), D(#), xo(0). This
linear optimization of part of the total parame-
ter set has appeared to be of major importance
with respect to both speeding up the optimiza-
tion procedure, and getting out of areas with
local minima.

The approach chosen gunarantees that we will end
the identification procedure with a model having a
prespecified minimal state space dimension, being
determined during the approximate realization in
the second step.

4 Results

The three step identification procedure presented
above will be applied to the data of a typical ex-
periment conducted with the 970 litre crystallizer.
A three input two output MIMO model (the heat
input Py, the fines flow rate Qs and the product
flow rate @, being the process inputs and the third
moment m3 and the volume fraction volys being the
outputs) is identified. The experiment lasted 85
hours, of which 68 hours were recorded with input
excitation applying PRBS (Pseudo Random Binary
Sequence) signals. The sampling rate employed in
the experiment was 1 sample per two minutes (the
maximum sampling rate of the C'SD measurement
device). For modelling purposes, a sampling inter-
val of 6 minutes was used, being equal to the clock
period of the PRBS chosen. This resulted in 686
samples recorded with PRBS excitation.

The 68 hours of PRBS excitation is relatively short
compared to the dynamics of the process. More
data could not be obtained because of limitations
on the experiment duration. Approximately 85
hours after start-up, incrustation in the crystallizer
blocks the slurry circulation and shutdown is re-
quired. In order to maximize the amount of data
with PRBS excitation, this excitation was started
17 hours after start-up, although at that moment
the process was not yet at steady state. Therefore,
the initial state vector x(0) is parametrized in the
state space model structure that is applied in the
third step.
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The quality of the estimated model will highly de-
pend on the quality of the data. Therefore, a data
preprocessing step is required to reduce the defects
in the recorded signals not being a part of the re-
sponse to the input signals. Such a preprocessing
procedure consists of peak shaving, detrending, fil-
tering, decimation, offset correction, scaling and
correction for time delays. The raw signals volys
and mg as recorded during the experiment are de-
picted in figure 2. The large peaks are caused by
failures of the C'SD measurement device and peri-
odic cleaning of the product flow line and the di-
lution unit. First these peaks were removed us-
ing a semi-automatic procedure (De Wolf, 1990)
which replaces each peak by a linear interpolation
between two samples around the peak. Detrend-
ing was not applied as low-frequency disturbances
causing trends were not detected. Next, the sig-
nals were decimated to the sample interval to be
used in the identification. In this decimation step,
extra digital filtering was applied in order to pre-
vent aliasing effects and to reduce the measurement
noise on the output signals. Decimation was re-
quired because the signals were recorded at the
maximum frequency allowed by the measurement
system. The resulting abundancy of information
was used in the repairs of the signals (peak shav-
ing and extra noise reduction by off-line filtering).
Minally, the signals were corrected for offset (zero
mean) and scaled (variance of 1).

In the first step of the identification procedure,
ARX models were estimated for different values of
the polynomial orders. An example of the results
is depicted in figure 3, which shows the response of
the model output volys on a step applied at input
P;, for estimated ARX models having polynomial
orders ranging from 10 - 50. The responses in this
figure show that even for very high orders the static
gain of the estimated models does not converge, and
remains to be rather uncertain. This problem ob-

viously is caused by the fact that the number of

data does not tend to infinity fast enough with in-
creasing polynomial orders. The example shown in
figure 3 is characteristic for the different transfers
estimated in the model.

Several of the ARX models identified have been
used as a basis for the next two steps in the identi-
fication strategy. However in view of the results fi-
nally obtained, the specific choice for an ARX poly-
nomial order did not appear to be a very critical
choice. Results presented in the sequel of this pa-
per are based on ARX models having a polynomial
degree of 40.

In the second step approximate realization was ap-




plied to the step response of the estimated ARX
model. The singular values of the weighted Han-
kel matrix (8) in the approximate realization algo-
rithm, gave rise to a choice for a 5th order model.
The result of this approximate realization is illus-
trated in figure 4 showing a comparison of the step
response of the original ARX model and of 5th or-
der approximations being obtained by either the
standard approximate realization algorithm and by
the weighted method. As indicated before, figure 4
shows an improved static gain approximation for
the realization algorithm based on the weighted
Hankel matrix (indicated by Step).

From earlier MISO identification results obtained
for the output signal mgs, it was found that this out-
put can be well described with a first-order state
space model. Consequently, this information was
used in the choice for appropriate structure indices
of the MIMO model to be used as an initial estimate
in the third step: optimization in an output error
model structure in state space form. The initial
state space model, obtained from approximate re-
alization is transformed to a pseudo-canonical form
having structure indices 1 and k — 1, where k is
the order of the MIMO state space model result-
ing from the approximate realization. Figure 5
shows the three step responses related to output
volys of the finally estimated output error model
for state space dimensions 4 to 7. In order to show
the improved convergence properties of this identi-
fication strategy, in relation to the first ARX step,
also other model dimensions than the suggetsed
value of 5 have been tried out. The figure shows
a good convergence of both fast and slow responses
in the model if the model dimension is chosen at
least equal to 5. It is therefore concluded that a
more powerful result is obtained by the output error
method as compared to the ARX model. Moreover,
equivalent results were found for the other ARX
model orders depicted in figure 3, which shows that
the addition of the third step in the identification
strategy is very essential for arriving at appropri-
ate models. Finally figure 6 shows the simulation
result of the identified state space model withn =5
on the available data set. Because of the very re-
stricted length of this data set it was not possible
to validate the identification result on an indepen-
dent data set. For final acceptance of the models
obtained for the crystallizer as a basis for controller
design, additional experiments will be required in
order to provide a means for model validation.

4

Conclusions

In this paper a three step identification strategy
is presented which is applied to data of a pilot
plant crystallization process. The avaialable data
set of the process is characterized by a low signal
to noise ratio, and by a relatively short observa-
tion time. In the three step identification strategy,
first high order ARX modelling is applied. The
resulting model is reduced in order through a mod-
ified approximate realization scheme, after which it
serves as an initial estimate in an output error iden-
tification algorithm, implemented in a state space
parametrization. As a model reduction procedure
use is made of an approximate ralization algorithm
based on a weighted Hankel matrix, showing im-
proved low frequency performance of the approxi-
mate model. The results obtained in this paper il-
lustrate that the third step in the procedure (output
error optimization) is a necessary step which shows
substantial improvements of the identified models
compared to the models obtained after the second
step.
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