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Editorial

This is t he t hird issue of Select ed Topics in Iden­
ti/kation, Modelling and Contro!. The publication
has shown to serve its purpose both as a progress
re po rt on research in our group and as au infor­
mal and fast means of publishing research results
most of whi ch will event ually appear in the open
liter ature in revised or expande d form after the un­
ev ita ble publication delays.

T he present issue contains a balan ced mixture
of theoretical and app lication-oriented papers. Thc
application arcas include aircraft flight control, t hc
dynamics of mechanical structures, the process dy­
namics of a power station bo iler and the dy na rnic
behaviour of au industria l crystallization plant .
Samir Bennani, Bob Mulder (both from th e De­
partment of Aerospace Engineering at Delft Un i­
versity) and Ton van der Weiden d iscuss the de­
sign of a robust aircraft flight control system us­
ing lIoo techniques. Pcpijn Wortel boer (now with
Phi lips Research Labs., Eindhoven, t he Netlier ­
lands) presents results on infini ty norm com put a­
t ion for very large dynamic mod els of mechanical
systems . Hans Hein tze and IIenk Aling (now with
Integr ated Systems lnc., Santa Clara, CA) report
on their exte nsive work involving system identifi­
ca tion of a power stat ion boiler under closed-Ioop

vi

experi mental conditioris. Sjoerd de Wolf and Paul
van den Hof report on the systern identification of
an industrial crystallization plant bascd on experi ­
ments on a large pilot plant located at the Labora­
tory for Process Equipment at Delft University.

The theoretical part of th is issue is covered by
papers on robust con trol and idcntification. Ruud
Schrama and Petcr Bongers investigate the pos si­
hiliti cs to assess the stability robustness of closed
loop sys tems on the basis of ex pe rimental da ta. Pe­
te r Bongers and ükko Bosgr a pr esent an algorithm
Ior t he com puta tion of normalized cop rime fact or ­
izat ions for pos sibly nonproper systems . Paul Lam­
brechts and ükko Bosgra pr ovide a parametriza­
tion for cont rollers t hat achi eve out put regulati on
a nd t rac king in the face of per sisten t dist urban ces
a nd relerenee trajectories. A solution for con troller
rednet ion with guaranteed stability margins is de­
rivod in a paper by Peter Bonger s an d ükko Bosgra.
Fiually, Richard Hakvoor t p reserits a t hco ry for the
assessment of an upper bound of the model uncer­
tainty in system identification expe rime nt s.

ükko Bosgr a
Paul Van den Hof

Editors
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Experimental robustness analysis based on
coprime factorizations

Ruud J .P. Schrama and Peter M.M. Bongers

M echanical Engineering Syst ems and Control Group
Delft Univers ity of Technology, Mekclweg 2, 2628 CD Delft, Th e Neth erlands.

Abstract . Th e performance of an existing feedback system may be increased by a re­
design of th e compensator. Befe re a ncw compensator is appli ed to th e plant we like to
ascertain that t he new feedback systcm will at least not be uns table. In fact we wish to
make surc wheth er the actual perform ance will be increascd. Our approach to this prob­
lem is based on the use of a recently dcveloped accurate robustness margin conceived in
te rms of a coprime fact orization of th e plan t. We apply this robustness margin in con­
junction with th e frequ ency response of a coprime factorization of the unknown plant.
We indi cat e how to est imatc such a frcquency response Irorn input and output measure­
ments of th e plant , while th e latter st ill operatos under the "old" feedback. We use th is
frequency domain data to determine t he disrance between the plant and its model in the
sense of th e robustness margin. This results in a spe etral cstimate of an upp er bou nd
on th e actual distance between plant and model. Stability of the plant und er feedb ack
by th e new compensator can be guaranteed if this upper bound is smaller one.

Keywords. feedback control; stability criteria: frequency response estirnation coprime

factorization.

1 Introduction

Ir an existing feedback system does not meet the
performance requirements, then we can try to de­
sian a better compensator. Before such a new com­
p:nsator is applied to the actual ~I.ant, we w~nt to
he sure that the plant will be stabilized by this ncw
compensator. A common approach to ascertaining
stability of the plant under the new feedback starts
from describing the plant by a so-called nominal
model and a perturbation. The nominal model is a
simple description of the characteristic dynamics of
thc plant. The differencc bet ween th is model and
the plant dynamics is regarded as an uncertainty
or a perturbation of the nominal model, We de­
not e this difference as the deficiency of the nominal
model. Further this deficiency is usually character­
ized by an upper bound. Now we can use the nomi­
nal mod el and th e deficiency to make sure whethcr

the new compensator will stabilize the plant. For
stability is guaranteed if the feedback systern com­
posed of the nominal model and the new compen­
sator is robustly stabie in the face of the deficiency.

By conducting robust control design the set of al­
lowable perturbations, i.e. perturbations th at still
yield an acceptable feedback system, is maximized
in terms of a robustness margin. Ir areliabi e up­
per bound on the deficien cy at hand is smaller
than th is margin , then stability is guaranteed . It
is well known that large robustness margins and
a good performance are conflicting requirement s
(Doyle and Stein, 1981; Maciejowski, 1989). Thus
in case the upper bound on the deficiency is conser­
vativc, it is not likely that stability can be guaran­
teed under high performance feedback. Since high
performance is desired, we need more accurate in­
formation on the actual deficiency and we might
have to remodel the plant. However first we like to



subject the designed control system to a less con­
se rvat ivo robustness analysi s. Morcover in case the
design paradigm is nol robust con trol, i.e . the de­
sign do es not explicitly provide a robustness mar­
gin, th cn such a robustness analysis is definitcly
rcquired .

w

y

+

fig. 1: feedback sy stcrn H(PT , Co),

Wc conside r ·t he feedback sys tem H(PT ,Co) of
Fig. 1 in whi ch the plant PT of interest operatcs
undcr Icedback! by a known com pensator Co' The
subsc rip t T indicates tb e presen ce of Two vector in­
pu ts to t he plant: there is an inner-loop plant input
u and a n exogeneous signal w . The latter is incor­
poratcd just to tolerate possible disturbances . Of
ma iu inter est is the relation between u and y . This
rc la tion is called the inner-loop plant , which is sig­
nificd by P. We assume t hat a nominal model Po of
P has been used to design a ncw and hopefully bet­
t er com pe nsat or C. Prior to the implementation of
C wc have to assess the robust stability of the feed­
ba ck sys te m H(Po , C) in the face of the deficiency
of Po.

A well established means for the ascertainment
of st.ability is the small gain theorem. One of its
most widespread applications in linear systerns the­
ory lies' with multiplicative uncert.ainties . In Doyle
anti Stcin (1981) a robustness margin has been de­
rived in terms of an upper bound on the multiplica­
tivc uncertainty. Notice that there exist plants that
are stabilized by C, while thc corresponding defi­
ciency is not contained within the largest bali of
allowed uncertainties . In th is sense robustness rnur­
gins are conservative in view of robustness analysis.
A typical example hereof is presented in Section 6.

A drawback of the robustness margin based on
multiplicative uncert.ainties is that the nominal
model Po must have as many unstable polcs as the
inner-loop plant P. However unless Co= 0 we can­
not . be sure about thc nurnber of unstable poles
of P. Thus we wish to obviate the above restric­
tion, This is accomplished by expressing the feed­
back systern in terms of coprime factorizations and
Uien applying the small gain theorem. In this pa-

10peralion in open-loop is a sp ecial case: Co=O.

2

per we will utilize the robustness margin of Bongers
(1991 a) , which is less conservative than a similar
margin in gap-metric sense. Furtherrnore for rea­
sons that are made deal' in Section 3, this robust­
ness margin is called the compensator-gap.

The ascertainment of stability by rneans of th e
compensator-gap requires the knowledge of a co­
prime factorization of the unknown plant. Such
knowledge can be obtained Irorn experimental data
by means of a recently developed framewerk for
the identification of a plant under known feedback
Schrama (1991b). This framework enables th e es­
tirnation of the frequency response of a parti cu1ar
right coprime faetorization of the inner-loop plant
Irorn measurernents of input u and output y, while
the plant operates under the initial feedback (see
Fig. 1). No information on the signals TI, 7' 2 and w is
need eel. Thus a frequency response is obtained un­
der the initial feedback and t he n used to conduct 1'0­

bustness analysis in regard of the new com pe nsator.
In th is paper we do not pursue gua ra nteed up per
bounds or confidence regions for the estimated fre­
quency responses as in Helmicki el al. ( 1991) an d
Webb el al. (1989) respectively Yuan a nd Ljung
(1984) , Loh el al. (1985) and Zhu (1990). In Sec­
tion 5 we will make deal' that suc h specific identi fi­
cat ion techniques can be readily applied within our
framework.

The paper is organized as foIIows. The next sec­
tion introduces notation and summarizes sever al
concepts of the algebraic theory. In Sectien 3 we
discuss robustness margins in terms of coprime fac­
tors and we incorporate the compensator-gap in­
troduced in Bongers (1991a). Subsequently in Sec­
tion 4 we recaII the framework for identification of a
plant under feedback from Schrama (1991b) . Fur­
ther we show how this framewerk can be used to
estimate the frequency response of a coprime Iac­
torization of the plant. Then Sectien 5 consid­
ers the determination of an upper bound on the
compensator-gap from the estimated frequen cy re­
sponses. Section 6 illustrates the utility of our ex­
perimental robustncss arialysis by means of an ex­
ample. Conduding rcmarks are listed in Section 7.

2 N otation and preliminaries

The basic results in the algebraic theory of linear
time-invariant finite dimensional systems have been
derived for the so-called single-varlate con trol sys­
tem J/(P, C) comprising an inner-loop plant Pand
a compensator C (Desoer et al., 1980). This feed ­
back systcm equals H( PT , C) of fig.lexcept that
the plant lacks the second vector input w. Note



Fig. 2: Fractional representation of H(P, C).

T(P,C) = [-:] (I+CPt1 [C I], (2)

nominal model Po, In order to examine robust sta­
bility in terms of coprime factorizations we adopt
the next expression from Vidyasagar and Kimura
(1986). The feedback transfer funct ion T(P, C) is
defined as

. ythat both control systems are signified by H(?., C)
and the index of the plant-term obviates any ambi­
guity. Further the signification Pis used to indicate
the inner-loop plant as weIl as its transfer function
P(s) .

In the algebraic theory of coprime factorizations
a plant P is expressed as the ratio of two stable
proper mappings: P = N D- I , with N and D
proper stabie rational functions . Particular classes
of factors N and D are specified below .

Definition 2.1 (Vidyasagar, 1985)

1. Let N, D be stable, then the pair (N, D) is
called right coprime if there exist stabie X, Y
such that XN +YD = J. Analogously (D,N)
is left coprime if there exist stabie X,Y such
that IVX+iJY = J.

11. (N, D) is a right coprime factorization (rcf)
ofP ifdetD=l-0, P=ND- I and(N,D) is
right coprime. Analogously (D, N) is a left co­
prime factorization (lef) of the P if det D =I- 0,
P = D- I N and (D, N) is left coprime.

lIl. (Nn, Dn) is called a normalized right copritne
factorization (nrcJ) of P if it is a rcf of Pand
additionally N~Nn+D~Dn=I with N~(s) tlie
transpose of Nn(-s). Analogously ib., Nn) is
a normalized lef of P if it is a lef of Pand
additionally NnIV~ +IJnb; = J.

Before we reeall th e main stability theorem we in­
troduce "A E .7" as a shorthand notatien for the
paraphrase "A is stabie and has a stabic inverse"
(sec Vidyasagar (1985) for the ring theoretic mean­
ing of .7).

Theorem 2.2 (Vidyasagar et al., 1982) Let plant
Pand compensator C have a re] (N, D) respective/y
a lef (De' NeL then the feedback system l1(P, C) is
stabie if and only if A E .7 with A defined as

(1)

which maps 1'2 and 1'1 into y and u. The feed­
back system H( P,C) is stabie if and only if its
transfer function T(P,C) is stabIe (Vidyasagar and
Kimura, 1986). We express T(P, C) in terms of the
rcf (N, D) of Pand the lef (De' Ne) of C.

T(P,C) = [ -;] (DeD+NeN)-1 [Ne De]'

As proposed in Bongers (1991) we replace the rcf
(N, D) by the factorization P= (NQ)(DQt l with
some stabIe Q:

:J [ -NQ] - - -I [- -]T(l,e) = DQ (DeDQ+NeNQ) Ne De .

(3)
Sincc Q is stabie, the two bleek-matrices at the
right hand side of (3) are stabie. Consequently if
(DeDQ+NeNQtl is stable, then T(P, C) is guarall­
teed stablo. Since the inverse of Q is not necessarily
stabIe, this condition is suflicient but possibly net
necessary for stability of H(P, C).

Next wc implicitly express (NQ, DQ) as a sta­
bIe perturbation of the rcf (No,DJ of the nominal
model Po:

With N D- I and iJ;1 Ne substituted for P respec­
tively C a block diagram of H(P, C) can be drawn
as in Fig. 2. In here ç=JJerl+Ner2 and x=A-1ç.
Hence stability of A-I and boundedness of ç guar­
antee x and all ot her signals to be bounded.

3 Sufficient conditions
for robust stability

This section discusses conditions that guarantee ro­
bust stability of the newly designed feedback sys­
tem H(Po , C) in the face of the deficiency of the

which will be signified as COI(ÖD, ÖN)' Now sta­
bility of H(P, C) is guaranteed if the designed
II(Po, C) is robustly stabie in the face of the stable
factor perturbations ÖD, ÖN of (4). In fact these
perturbations ÖD, ÖN embody the deficiency of thc
nominal model. By defining AA as

AA = DeDQ+NeNQ

= ib,o, +NeNo ) + [De Ne] [ ~~ ] (5)

3



we can formalize the following two sufficient condi­
ti ons for stability of H(P, C ).

Lemma 3.1 Let Al),. and A be defin ed as in (5) and
( I). Th en Al),. EJ if

be a nlc] of C and let (No, Do) be a rcf of Po sucli
tliai DneDo+NneNo=I. Th en C stab ilizes P if

(8)

4 Frequency response estimation

with D.D , D.N as in (4) for any siabie Q . Th e infi­
mum of tlie Hoo-norm bound in (8) over all stabie
Q 's is called tlie comp ensator-gap.

(9)

(10)
N ° = No +o.,«
DO = Do - NeoR

Np -=- [DeoS No+DeoR]

o, -=- [-:e05 Do-~VeoR ]

and by expanding PT = NpD;1 we get P =
N°(DO)-I. In Schrama (1991b) it is shown that

evcry pair of Co and (No, Do) induce an unique rcf

This pararneterization of the set P(C ) is call ed th e
(R, 5)-pammeterization and it has been depicted in
Fig. 3. We define the associated coprime Iactoriza­
tion (N°, DO) as

with stabi e R,S su cli thai det(Do- NeoR) =1= 0. Th en
the set of all plunis PT, that make a stable f eedback
system IJ(PT , C) like in Fig. 1, can be paranieter­
ized in the [orm

Theorem 4.1 (S chrama, 1991b ) Let tlie nominal
mod el Po o] tli e inn er-loop plant P be stabilized by
compensator Co' Let (No, Do) and (Nco , DeJ be a
re] of Po respeetively Co' Dejine (Np, Dp) as

In this sectien we show how measuremen ts of u and
y can be used to es t ima te th e Irequcn cy resp onse
of a partienlar rcf of the inner -loop plant P. These
measurements ar e taken while the plant ope rates
undcr feedback by the known compensa to r Co ' In
order to provide for cas es wher e th e plant of interest
is affccted by noise we consider the plan t PT of
Fig. I . Sin ce PT is stabilized by Co, it is an element
of th c se t of all plants, t hat are st abilized by Co' In
Sch ram a ( 1991b) this set has been par ameteri zed
in te rrns of co p rirne fact ori za ti ons.

This new metric is similar to the gap-rnetric, ex­
cept that it depends on the compensator at hand.
We will use th is compensator-gap in our robustness
arialysis based on cxperimental data.

P 1'0 of: From (3) we know that 11(P,C) is stabie if
A~ E:J with Al),. as in (5). Since Lemma 3.1 hold s
for a ny (No, Do), (De' Ne) we may choose these Iac­
tori zations such that A= I without loss of general ­
ity, And sin ce all eleme nt s in the left hand siJe of
(6) are stabie, we may apply th e t r ia ngle inequality
to accornplish (7). 0

Corollary 3.3 (Bongers, 1991a) Let compensator
C stabilize llie nominal model Po. Let (Dne,Nne)

prouided that the designed comp ensator C slabilizes
111 e nominal model Po,

Proof: By Theorem 2.2 stability of H(Po , C) im­
plies A E .1. With A E .1 th e inversion lemma
2.2.19 of says that Al),. E .1 if l/IIAl),.-Alioo <
IIA-11l00 ' Substitution of (5) and (I) in the left
hallel side of this inequality yic1ds (6). 0

Theorem 3.2 Lel l1(Po , C) be siable an d let
(No, Do), (Ne' DJ be rcf 's of Po respeclively C sucli
tliai 1\ = I . Furih er let plant P have rcf (N, D)
and D.D, D.N be as in (4). Then th e f eedback syslem
I1( P, C) is stabie if

111 Bongers (1991 b) it is shown that the robustncss
margin in (6) is the least conse rvat ive if 1\ = al,
whcr c Q may be any real scalar. This supports thc
cho ice of A = I in Thcorem :3.2. By this theerem
we can ascer t ain robus t stability of lI(Po , C ) in the
face of th e deficiency of Po as follows. We rninimize
D.v, D.N of (4) by selecting a.n appropriate stabie
Q. Notice that not only the magnitude but also
th e phase of Q is of importance here. Stability of
lI (P, C ) is guaranteed as soon as a stabIe Q has
been found, such that the inequality (7) is satisfied.
Bongers (1991 a) showcel that the robustness margi n
of Theerem 3.2 equals the e1irected gap in case the
nominal model factors are norrnalizcd , and that the
robustness margin of (7) is lcss conservative if the
compensator factors are norrnalized. The result is a
new robustness margin calleel the compensator-gap.



(12)

(N °, DO) of the inner-loop plant P. In the sequcl
we consider the identification of this particular rcf
of P. This identification is based on the variabie
x, that appears in Fig. 3 in be tween D;;l and No '
Two important properties of this variabie x , called
the inte rmediate, are listed below.

~- ------ -- --- ----pknt~

I

Fig. 3: (R, S)-paramet erization of PT Hl a stabie
feedback system lI(PT , Co),

Lemma 4.2 (Schra ma, 1991b) Let input u and
output y in H(PT, Co ) of Fig. 1 be m easured. Let Co
and (No, Do) of Fig. 3 be kn own . Then th e in lerme­
dial e x can be reconstructed from the measureme nls
of 11 and y via

wilhout any kno wledge of the planl PT , excepl the
[act ilia t H(PT , Co) is siable.

The latter paraphrase supports the practical util­
ity of our approach. Besides in Schrama (1991b)
an al ternative expression for (11) has been derived,
which enables to reconstruct x by stabie filters even
if Co is unstable. Inspeetion of the contribution of
w to y and u reveal s th e next corollary.

Corollary 4.3 (Schrama, 1991b) Th e intermedi­
al e x of Lemma 4.2 and out er-loop plant input w of
H(PT , Co) in Fig. 1 are uncorrelat ed, provided tluü
facit of lhe signals rl and r2 is uncorrelaied with w.

In summary the artificial intermediate x can be re­
constructed frorn measured u, y and it does not de­
pend on the noise disturbance w . For a full ex­
planation of this phenomenon we refer to Schrama
(1991b). The next theorem will enable the Ire­
quency response estimation of the unknown plant
rcf (N°, DO) . .

Theorem 4.4 (Schrama, 1991) Lel the f eedback
syslem H(PT , Co) of Fig . 1 be stabie and let com­
pensator Co wilh lcf (Deo' Nco) be knouni . Then
unlh. X reconstrucied via Lemma 4-2 ihe closed- Ioop

5

identificat ion of the inner-loop plant P from m ea­
su rements u, y is equivalent to the open-loop iden­
tificalion of (N °, DO) in

u DOx - NcoSw
y = N°x + DcoSw

provided that rl and r2 are both uncorrelaied with
w .

Since the identification of N ° and Do is conducted
in open-loop we may apply non-parametrie identi­
fication methods directly to the pairs X, y and x, u.

Corollary 4.5 L et H(PT , Co) wit h unknown PT

and known Co be siable. Then the frequency re­
sponse of ih e re] (N°, DO) of P as in (10) can be
estimaled [rom th e inner-loop signals u and y and
th e inlermediale x .

We end up by mentioning that the intermediat c x
can be spcc ificd a priori if thc signals rl and r2 are
at our proposal (Schrama, 1991a).

5 Estimation of
the compensator-gap

In Sect ion 3 we discussed robustness analysis in re­
gard of the new compensator. This ascert ainment
of st abili ty requires information on a right coprime
factorization of the unknown plant. By th e fram e­
work of Section 4 we can obtain such information,
while th e plants operates under the initial feedback
Co' We will use the frequency responses of N°
and Do over the frequency range of interest . In
order not to obscure the key objectives we will pro­
visionally assume that exact frcquency responses
are available. We return to this subject at th e end
of this section . Besides in this and subsequent sec­
tion we consider only single-input single-output sys­
tems.

By Corollary 3.3 robust stability of H(Po, C) in
the face of the deficiency col(6D, 6N) is guaranteed
if the lIoo-norm upper bound on the deficiency is
smaller than 1. The Hoo-bound of a stabie system is
the maximum over all frequencies of the largest sin­
gular value of its frequency response. Hence we may
as well consider the frequency response of th e de­
ficiency col(6D, 6 N ) , provided that the deficiency
is stable. The latter condition can be satisfied as
long as the in itial feedback system is stabie. Since
stability of H(PT , Co) implies the existence of the
stabie associated rcf (N°, DO) of (10), and hence by
Corollary 4.5 we can take the (N°, DO) for (N , D)
in (4). From there on any stabie Q yields a stabie
deficiency col(6 D , 6 N ).



By (4) t he frequency response of CO I ( ~D, ~N) de ­
pcnds all the stabIe term Q, whi ch is at our disere­
t ion . Motiva ted by Corollary :J.3 we seek for a sta­
bic Q su ch that the maximum singular value plot
of col( ~D , ~N) is smaller than 1 for all frequen cies.
'Ne start our search for an approxirnate stablo Q
with the determination of a lower bound of the sin­
gular value plot of the defi cien cy col(~D, ~N): wc

lel N°, ba and No, babe the Irequency responses of
(N°, DO) and (No, Do) and for each Irequency point
. . ..
z we rrumrru ze

where sine-wave experiments at various frequencies
are allowed (Schrama, 1991 b) .

6 Example

This section describes the application of our ap­
proach 1.0 robustness analysis based on frequency
response data. The inner-loop plant under consid­
eratien is given by

P(s) =
10.'+106.1.'+2016.3+1212.2+1104-*129

.6-f6.02.5+101.2.48.90.3+IIO.O.2+I.09s-W.87

and the norninal model Po is

Po = 1000
82+68+ 100

10 210 110°

19- 1- ')- QIC = . I S+_l. u ·

8+ÎI.Sl .

C = 0.014.708+0.112
° s+ 0.00 16

Fig. 4: Magnitude Bode-pl ot s of P and Po,

and tbc new compensator is

stabilizing thc plant Pis

Bath com pc nsat ors stabilizc IJ as well as Po,
Thc scnsi tivity function , i.c , th c bottorn right el­

ement of T( IJ, C) in (2) , lias been drawn in Fig. 5
for IJ and Po undcr feedback by Co as weil as C.
Notc that (I+C P)-I is not yct guarantecd to be sta­
ble but the " Irequcncy response" can be calculated
Iron: /\;0, IJ-> . We observe tlia; the performance of
the controlled plant has been improved (in the sense
of a lower scnsitivity at low Ircquencies) provided
that ll( P,C) is stablo. First we verify the robust­
lless by means of a mu1tiplicative uncertainty. Frorn

10 1

10 0

10 2

The magnitude Bode-plots of bath Pand Po ar e
depietcel in Fig. 4. The compen sator Co current ly

10 3

(13)

over the scalar qi E <C. This pr oduces a vector a, of
scala rs a t length of the nurnbcr of Irequency points
of inter est.

Substi tution of Qq for Q in th e frequen cy re­
spo nse a nal og of (4) yi elds t he small est maximum
va lue of ( 13) over all frequen cies. W ith any st.a blc Q
t bc maxi mu m of t he singu la r value plot of the dcfi­
ciency will be larger or equal. IIencc if ( 13) is largor
tliun onc for any frequency po int i, t he n sta bility
of IJ(P, C ) canno t be gu ar an tced . But if t his max­
imum is smalle r t han 1, t he n we model Qq as good
as poss ible by a stable QI ' We subst it ute QI for Q
in (ij) and check whether t bc incqual ity (8) is sat is­
ried . If not t he n we model Qq/QI by a stablo Q2 a nd
subst it ute Q,Q2 for Q in (4), an d rc peat t h is pr oce­
dure unt il (S) is sa tis fied. At every step wc ob t ain
all upper bound on the compensato r-gap . Sirree a,
provides only a. lower bound of thi s com pe nsa to r­
ga p, th c latter may happen 1.0 bc largor tha n 1 pre­
c!ud ing i l rolrust stability assessmeut ,

Finall v wc com ment on the use of estimated [re­
qu cncy respo nse data. As alludcd to in tbc in­
t roducti . .n cc rt ain identifi catiou teclmiques provide
such an cs t irnate togetber with a hounded region
or confidc ncc region, whi ch co ntaius th c 'tr uc' Irc­
qu cn cy res po nse . 'Nc point out tli at these tccli­
niques are all designed Ior op en -loop identifi cation .
Il owever t hcy ca n be applied 1.0 tb c feedback eon­
trolled plant since the framewerk of Section ·1 en­
a h les an ope n-loop idcntificati un of t he rcf (N°, DO).
Su ch an 'cst imate could be subj eetod 1.0 the above
procedure with the regions plugged in thc robust­
ncss ari al ysis. A prercquisitc is th at the region is
not 1.00 conscrvat ive , es pe cia lly in case of outliers
in the data (De Vries, I99 1). In th e examplc of the
ncxt seetion we will not utilize these tcclmiques,
Again wc will assume that exact Irequency response
data is available, or at least that the accuracy of
th e estimates is such that est.imatioll crrors arc ne­
glcct ablc. The latter can be achi cved e.g. in cases

6
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7 Concluding remarks

In this paper yve proposed a solution 1,0 the prob­
lem of robustness analysis based on experimental
data. The solution has been conceived in terms of
coprimc factorizations. First we have used coprime
factors 1,0 establish robustness margins and consec­
utively a sufficient condition for robust stability. By
this condition we can ascertain robust stability of a
feedback system in thc face of stabIe coprime factor
perturbations. Secondly we have provided a means
1,0 estimate the frequency response of a particular
coprime factorization of an unknown plant. This re­
quires measurements of only the input and output
of the plant, while it operates under known feed­
back. Then these frequency responses have been
used 1,0 verify the condition for robust stability for
this particular plant. That is, the frequency re­
sponse data of the coprime factors were used 1,0 as­
certain stability of the unknown plant under feed­
back by the new compensator. This application
of the small gain theorem 1,0 the specific frequency
response data is legitimate, since the underlying co­
prime factors of the unknown plant are stabIe. An
example shows the utility of our approach.

Issues for fut ure investigation are the develop­
ment of a frequency domain identification method
that yields only stabIe models as weIl as the robust­
ness analysis with the application of identification
techniques, that provide a bounded or confidence
region for the frequency response estimates.

over all frequencies and thus stability of H(P, C) is
guaranteed.

10 2

PIP a
( I+ P oC) PoC

100 - 10 1

we know that H(P, C) is stabIe if the multiplicative
uncertainty is smaller than the inverse of the rnagui­
tude of thc complementary sensitivity of H(Po , C)
(i.e. the negative top lefI, element of T(Po, C) of
(2)) . The m~lti'plicativeuncertainty has been cal­
culated as (P / Po) -1 and its magnitude is drawn
in Fig. 6 together with the inverse complernentary

Fig. 6: Multiplicative uncertainty and robustncss
margin.

scnsitivity. Clcarly the dcficiency of Po cxpressed
as a rnultiplicative uncertainty does not satisfy th e
condition for robust stability.

Now we turn 1,0 the robustness analysis in terms
of coprime factorizations . By the procedure de­
scribed in the previous section wc estimate a stabIe
Qof order 6 and subsequentlyanother Qof order 4.
Since we apply a general identification routine the
cstimated Q sometimes is unstable. Hence we have
1,0 eliminate the unstable part in some ad hoc man­
ner. The corresponding maximum singular value
of 16DI2 +16NI2 has been plotted in Fig . 7 (solid
line). This curve embodies an upper bound on the
compensator-gap. Clearly it is smaller than one
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Abstract. This note presents a statc-space algorithm for the calculation of a normal­
ized coprime factorization of continu~us-time generalized dynamical systems. It will be
shown that two Ricatti equations have 1,0 he solved 1,0 obtain this normalized coprime
factorization.

Keywords. normalized coprime factorization, generalized systems, algorithm

1 Introduction

Recent publications have shown the importance
of normalized coprime faetorization plant descrip­
tions in the field of control design (McFariane and
Clever (1989), Bongers and Bosgra (1990)), robust­
ness analysis , (Vidyasagar (1984), Vidyasagar and
Kimura (1986)) model reduction (Meyer (1988))
and identification for control (Schrama (1991)).

In Nett et al. (1984) the conneetion between the
state-space realization of a strictly proper plant
and a coprime faetorization has been established.
'file coprime factorization of a generalized dy­
namical system was presented in Wang and Balas
(1989). In Meyer and Franklin (1987) it has been
shown that in order 1,0 calculate a normalized co­
prime faetorization of a continuous-time strictly
proper plant one Ricatti equation has 1,0 be solved,
Vidyasagar (1988) extended these results 1,0 proper
plants. For discrete-time proper systems the con­
truction of a normalized coprime factorization has
been set up in Bongers and Heuberger (1990).

In this note we extend the results of (Meyer and
Franklin (1987), Vidyasagar (1988)) 1,0 generalized
dynamical systems. It will be shown that in the
calculation of a normalized coprime factorization
for systems in a generalized state-space form two
Ricatti equations has 1,0 be solved instead of one Ri­
cat ti equation as in the case for systems in a com­
mon state-space form. The procedure 1,0 achieve

9

a normalized coprime faetorization for systems in
generalized state-space form will be given as an ex­
plicit algorithm.

2 Preliminaries

In this note we adopt the ring theoretic set­
ting of Desoer et al. (1980), Vidyasagar et al.
(1982) 1,0 study stabie multivariable linear sys­
tems . That is we consider a stabie system as a
transfer function matrix with all its entries he­
longing 1,0 the ring 'H. We consider the class of
possibly non-proper and/or unstable multivariable
systems as transfer function matrices whose en­
tries are elements of the quotient field F of 'H
(F := {alb Ia E 'H, se 'H\O}). For the applica­
tion of our state-space algorithm we will identify
the ring 'H with IRH"", the space of stabie real
rational finite dimensional linear time-invariant
continuous-time systems. The set of multiplicative
units of 'H is defined as: .J := {h E 'H I h- l E 'H}.
In the sequel systems P E F"?" are denoted as
P E:F.

Factorizations

Definition 2.1 ( Vidyasagar et al. (1982))
A plant P E F has a right (left) fraetional repre­
sentation if there exist N, M(N, iJ) E'H such that
P = NM- l (= iJ-IN).



Th e pair M , N(M, N) is a right (left) coprim e
faclorization (rcf or Icf) iJ.. it is a right (left) [raciion
and there exists U, V( U, V) E 1{ such that: UN +
V M = 1 (NU +MV = I)

Th e pair M, N(M, N) is cal!ed a norma/ized riqlit
(lef t) coprime factorization (nrcf. or: nlcf) .if it is
coprim e and: M*M+N*N = J(MM*+NN* = I)
untli M* = MT(-s).

Proposition 2.2 Let P(s) be a real rationol pos­
sibly non-proper transfer function having McMil­
lan degree r. Then P( s) can be represenied by
P (s) = C (sE - Atl B, where:

E= [Ir 0] A= [All A1 2 ]o 0' A 21 A 22

B = [ ~: ] , C = [ Cl C2 ]

uiitli A12 Af2 = 0, A f2A 2l = 0 and botli B 2Bi ,C:[C2

non -sinqular. Th e matrix parl ii ions are assum ed to
be compatible with the part itioning of E.

Proof: Let P(s) = Psp(s ) + Pp(s ) wit h Psp =
ei»: - À)- l ÊJ strict ly proper and Pp = ë(l ­
sJt l Ï3 t he po lynomial part with (A, E,ê) an d
(1, Ï3, ë) cont rolIabie and observable matrix trip1c s
and Jin Jordan form (Rosenbrock (1974) ). Then

where r .s.e. denotes an operation of restrictcd sys­
tem cquivalcnce (Rosenbrock (1974)) . In th is case
the operations only involve interchanging rows and
columns containing an s, and sign changes. Con­
trollability/observability of systems in Jordan farm
implies non -singularity of B2 Bi and ciC2 (Chen
a:1d. Desoer (19.68)). The Jordan farm implies
J I 2Jf; = 0 and Jf;J21 = O. Dcfining the partitioned
system matrices as:

Secondly we will use this result to obtain a state­
space realization of a nrcf of P. This will he pr e­
sentcd in the form of an algorithm.

Theorem 3.1 Let P E F be given. Then the fol­
lowing slatements are equivalent

a) (N, M) is a nrcf of P

h) [~] E 1{ is a ful! rank speetral factor of

[ ~ ] (I + P*pr
l [I p*]

Proof: (a) --+ (b). Given an (N,M) as a nrcf of

P. Then [ ~] E 1{ is full rank and (1) can be

writtcn as:

[ N J{1- l ] (I + M*-IN* NM-lf
l

[I Ar-I N*]

= [ ~ ] (1\1 *M + N *N) - l [AI* N *]

[ ~ ] [M* N* ]

which pr oves th e first part of t he theo rem .
(h) --+ (a). Conver sely, let (Nj,A() E 1{ he a
rcf of P and let A E .J be a speetral factor of

(M ;" M j + N ;" N;) and define [ ~~ ] = [ ~: ] A- I .

Then [~] E 1{ and is a spee t ral factor of (1)

i.e. (b) holds. Moreover [1\1* N*] [ ~ ]

A*-I[M;" N;"] [~:]A-I = A*-IA*AA- l = J.

Hence [ ~ ] is a nrcf of Pand this proves th e sec­

ond part of the thcorem. 0

proves the proposition

3 Main result

o

Based on Theorem 3.1 an algorithm is con­
structed which will lead to a state- space represen­
tation of a nrcf of a generalized dynamical system.
The proof is given in Appendix 5.

begin Algorithrn
step 1 By proposition Proposition 2.2, we realize
thc systern P along thc lines of Roscnbrock (1974)
in terms of a generalized state-space systems with:

The main result consists of two parts. First we will
show that a nrcf of P is a full rank speetral factor
of

[~] (I+p*pr
l

[J p*] (1)

10

(2)



step 2 Calculate W2 as the stahilizing solution of
the Riccati equation:

step 3 Define Y, Z, c, E,Ä to he:

Y := -(W2A 22 + CJC2)-1(Af2 - W 2B2Bi)
Z := -(W2A 22 + CJC2)-1(CJCl + W 2A 12)
ë:= Cl - C2Z

Ä := Au + (A 12 + y TC J C2)Z

Ë := BI - (A12 - B lBJW2)(A22 - B 2B[W2t l B 2

step 4 Calculate Wl as the stahilizing solution of
the Riccati equation:

step 5 A state-space rcalization of [ ~~;j] IS

given hy:

(I - B 2 B 2)B[WI + B 2 A21

-(I - C2Bt)Cl + ct
T

Af2WI

with Bt = B[(B2Bi}-1 and ct = (CTC2)-lC2.
end Algorithm

The conneetion between a nref and a nlef of a
plant is given in the following corollary.

Corollary 3.2 If (M, N) is a nref of llie system
r", then (MT, NT) is a nlef of P

4 Example

Assume that our non-proper system is a differen­
tiator: P(s) = 5s. A generalized state-space form
can he written as:

[~ ~] (~:) = [~ ~] (:: ) + [ ~l ] u

y = [1 0] ( :: )

Using Proposition 2.2 we can write the ahove gener­
alized state-space form into the standard form used
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in the algoritm:

[~ ~] (~:) = [~ -~2] ( :: ) + [ ~1 ] u

y = [0 -1 1( :: )

Then following the steps outlined in the pro­

posed algorithm a state-space realization of [ ~ ]

[~
+ .2 .2]

can he written as: -1 0 . Therefore

1 1

M(s) = .:.2' N(s) = .;.2 and then M(s),N(s) E
'H, N(s)M(s)-l = P(s) and M*(s)M(s) +
N*(s)N(s) = J.

Remark 4.1 For systems P(s) ha ving an proper
inverse and using the theory described in Meyer and
Frank/in (1987), Vidyasagar (1988) we ean calcu­
late a nlef of p-I = i1- l N. Then a nref of P is

given by M = N, N = i1

(3)

5 Conclusions

In this note a state-space algorithm for the cal­
culation of a normalized coprime factorization of
continuous-time generalized dynamical systems is
given. It has been shown that two Ricatti equa­
tions have to be solved in the calculation of this
normalized coprime factorization.
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Appendix.

In th is appendix we proof th e const ruct ion of a nrcf
(!II, N ) of P E :F as proposed in th e a lgorit hm .

Let the generalized state-space reali zation of
the system be partitioned according to Propo­
si ti on 2.2 and apply a simil arity transforma­
tion to a gen er ali zed state-space realiz ation of

[ ~ ] (l + r:P)-' [I p. ]:

[~
- W r ere

-s ET _ AT 0

Tj X [ _~;T
0 ;];] x '~~A

- 13 13'1' B
I I

- IF 1
0

0 0
0

r,E - A 2lJB1W '
-sET - AT + W BBT -W13

TJ
-BBT B

(4)
B TWT _BT I

- C 0 0

Equation (4) defines a generalized state-space re­
alization of a speetral factor

of [ ~ ] (l + p.Pf' [I p.] provided that Q in

Schrama, R.J.P. (1991). A framework for cont rol­
oriented approximate closed- Ioop identifica­
tion. Ta appeal' at 9th Int. Symp. on
Mathematieal Theory of N etworks and Sys­
iems, Kobe, Japan.

Vidyasagar, M. and H., Kimura. (1986), Robust
controllers for uncertain linear multivariable
systems. Automatiea, vol.22, no.l, pp 85-94.
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with

Q = s(ETWT - WE) + CTC+
ATWT + WA - WBBTWT (5)



(5) ean be made zero.

Define W = [~l ~22] with W l = WT, W2 =

Wi, W partitioned aeeording to E. Then the first
part of (5): s(ETWT - WE}) equals zero . •
Define All = All +A l2X , A 21 = A21+A 22X , Cl =
Cl + C2X, X = YWl + Z with:

Y = -(W2A22 +C[C2t l (A f2 - W 2B2B[)
Z = -(W2A22 + C[C2 t l(C[C

l + W2A12)

where WI, W2 are the stabilizing solutions to thc
Rieatti equations (existenee ean be shown using
Proposition 2.2):

o = cic2 + W2A22 + Ar2W~ - W282B[ltV2

o = ëTë + ÄTW; + WIÄ - Wd3iFw;

with:

ë .- Cl - C2Z

Ä .- All + (A12+ y T C[ C2 )Z

Ë .- BI - (A12- B IB[W2)(A22 - B2B[W2)-11J2

Using F = [ eïw, - B[W2X B[W2 ] (4) ean be
written as:

r

0 -sET - AT + FT B T _FT CT]
sE-A+BF -BBT B 0

F _BT I 0

-C 0 0 0

whieh equals a generalized state-spaee real ization

of the transfer function [~] [M- N-] with

[ ~] = [SE - ~+ BF ~]. Now it ean be

-C 0
easily eheeked that P(s) = N(s)M-l(S). Us­
ing operations under restricted system equivalenee
(Rosenbroek (1974)) the generalized state-spaee re-

aiization of [ ~] is reduced to the state-space

form :
with Bf = B[(B2B[) - 1 and cf = (C[C2t lC2.

[
M(s) ]
N(s)

Hcnce [ ~{;j ] is proper and asymptoticly stabIe.
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Whieh proves that the presented algorithm willlead
to a state-space representation of a nrcf of a system
in a generalized state-space form.

o
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Abstract. This paper studies in a tutorlal way the application of Structured Singu­
lar value anal ysis and synthesis concepts, known as JL-synthesis, on the De Haviland
Beaver flight control system (FCS). Our goal is to present the general ideas behind the
mechanisms involved with JL-synthesis. The main idea is to show how JL as a robust
performance index arises from the General Nyquist stability criterion. The power of the
method will be demonstrated by bringing this concept into practice on a design example.

Keywords. Robust stability, nominal performance, robust performance.

(1990). In order to reveal how JL arises from the
general case, we first apply the main ideas on a
simple SISO ~ontrol structure. In figure 1, the ba­
sic feedback structure is enough to tackle the SISO
robust performance problem that we will review in
section 2 of this paper. The generalized robust per­
formance problem cannot be handled within this
basic feedback structure. In section 3, we will see
how, by introducing an alternative framework pro­
posed by Doyle (1984), consisting of a general in­
terconnection structure as in figure 4 and a ma­
trix norm, a necessary and sufficient condition for
the general robust performance problem can be ob­
tained. In section 4 is shown how within this new
framework analysis and synthesis can be carried out
on a design example of the Beaver DHC-2 aircraft
attitude-held auto-pilot at a speed of 35m/s and al-

Fig. 1: Basic feedback structure

1 Introduction

No mathematical model can exactly describe a
physical system. For this reason we must be aware
of how modelling errors might have an adverse ef­
fect upon theperformance of a control system. In
general, a property of a control system such as its
stability or performance, is said to be robust if it is
preserved under plant perturbations. In the last
decade much research has been done on the de­
sign of robust control systems. This has led to
the 1100 control design method (Doyle, Glover ,
Khargonekar and Francis (1988)), which is suited
for robust stability and nominal performance prob­
lems. For Single-Input-Single-Output (SISO) sys­
tems H oo control can also be used for the robust
performance problems. For multivariable systems
however the robust performance design problem is
more complicated because of its inherent structure.
Hoo control does not account for this structure and
for that reason Doyle (1982) introduced the notion
of Structured Singular Values (JL), first for analysis
and later for synthesis (Doyle (1984)). Main refer­
ences on theory and application of the structured
singular value concepts can be found in Williams
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titude of 6000ft . Two controllers are presented, one
achieved by the classical root-locus design method
of Evans and the other by JL-synthesis . Rather
than only showing superiority of the JL-controller,
thc design example is meant to show how valuable
thc information of the charaeteristics of the classi­
cal design can be, for a suitable choice of weight­
ing functions which is not always transparent, these
form the starting point of the JL-synthesis.

the plant and f}.(jw) a sealing factor in magnitude
between 0 and 1.

2.2 N omin al Performance

If we want to track a reference signal asymptot­
ically, or rejeet disturbances at the plant's out­
put, then the sensitivity transfer funtion is involved.
This can be expressed in a performance objeetive
as for example:

2.1 Introduction

G(jw) = G(jw) (1 + 6.(jw) W2(jw)). (2)

2 Robust Performance for
SISO Systems

(3)11 W 1 S 11 00 < 1.

N om inal Performance iff

This means that nominal performance is achieved
if the worst case response, over frequency, to dis­
turbances (fig. 2) is not amplified.

To get a satisfactory characterisation of robust sta­
bility we shall use aspecific uncertainty model
namely, multiplicative perturbations as defined
above. In order to obtain a consistent set of modeIs,
two conditions have to be satisfied:

I1 S 1100 < e

11 W1 S 11 00 < 1

More realistic is the situation when the weight­
ing function is frequency dependent. Assume that
W 1(s) is real-rational and st.able, we will show how
to come to an 00 -norm specification. In several ap­
plications, as flight control design, designers have
acquircd through experience desired shapes of the
Bode magnitude plot of S. In particular, suppose
good performance is achieved if and only if the plot
of IS(jw)1 lies under some curve. We could rewrite
this as

2 .3 Robust St a bilit y

IS(jw)1 < IWt(jw)I-1 Vw

or in ether words

which refleets the desire to keep the maximum am­
plitude of output errors, which is the oo-norm of the
sensitivity function, i.e . max; IS(jw)1 below some

. level f. Or if we define some weighting funetion
~Vl (s) = ~ the performance specification becomes

(I)S(jw) + T(jw) = I

Tbc response y(s) of the closed loop system in figure
1 to a reference r(s) or to a noise signal n(s) is givcn
by the complementary sensitivity function T(jw) .
On the other hand the response of the error signal
c(s) to a reference r(s) , or the response y(s) to a
disturbance signal d(s) as in figure 1, are givcn by
the sensitivity funetion S(jw). Taking into account
the faet that generally IT (jw)l --t 0 as w --t 00 and
tbc conservation law of equation (1), a fairly com­
man design rule arises, i.e. keep at low frequencies
IS(jw)1 small and keep IT(jw)1 small at sensor
noise frequencies. In order to trade off among the
frcquency ranges, weighting functions which form
the major design parameters in JL-synthesis are
rcquircd. For a more thourough trcatment on Ire­
quency domain properties of feedback systems we
refer to Freudenberg and Looze (1988).
In figure 1 the plant G( s) is only a model of real­
ity and to take account for a whole set of possible
plants, we introduce the multiplicative uncertainty
dcscription as shown in figure 2. Assuming this
uncertainty structure we consider a set of possible
plants given by :

Hefere definitions about robust performance are
tr eatcd , nominal performance and robust stability
are defined. As, if we choose a particular unccr­
t ainty model, robust performance is achieved if and
only if nominal performance and robust stabilty are
achieved. For SISO systems these plant properties
are related to the infinity norm,( i.c. maximum over
all frcquencies of a transfer function), of weil known
transfer funetions, as the scnsitivity and comple­
mcntary sensitvity which satisfy the relation:

Here W2 (jw) represents the uncertainty profile of Fig. 2: Multiplicative uncertainty structure

lG



(4)

1. G(s) and O(s) have the same number of un­
stabie poles.

2. 1I~(jw)lIoo ~ 1 .

When both conditions hold the perturbation is
called allowable. The idea behind the multiplicative
uncertainty model is that Ö(jw)W2(jw) represents
the relative plant perturbation:

O(jw) - G(jw) = "(' )HT (' )
G(jw) u JW rr2 JW •

Ilence, if 1I~(jw)lIoo ~ 1 , then Vw

IG(jw)[l + ~(j;lj:)(jW)l- G(jw) I$ IW2(j w)1 (5)

in this way the uncertainty profile IW2(jw)1 is ob­
tained. The main purpose of ~(jw) is to account
for phase uncertainty and to act as a sealing factor
for the perturbation, i.e., IÖ(jw)1 varies between 0
and 1.
Assume the nominal feedback system is internally
stabie. When is stability of a system robust,
i.e.,when is internal stability preserved under all al­
lowable perturbations ~(jw)? Using a theorem by
Doyle (1984) we get:

Theorem: Robust stability
A system is robustly stabie, for all ~(jw), with
1~(jw)1 < 1 , if and only if

IIW2(jw) T(jw)lIoo < 1. (6)

The last result can be obtained by stability consid­
erations of the closed loop system. The question we
ask ourselves is, when does the perturbation Ö(jw)
destabilize the closed loop system ? Therefore cut
the loop at the input and output of ~(jw) in fig­
ure 2 to obtain the transfer function that ~(jw)

"sees". Using the assumptions made on ~(jw) and
the Nyquist stability theorem we obtain the desired
result.

2.4 Robust Performance

Once nominal performance and robust stability are
achieved, we might ask ourselves if performance can
be made robust. Let S(jw) be the perturbed sen­
sitivity function, i.e., the sensivity function of the
plant under some allowable perturbation ~(jw).

Performance is robust if and only if it preserved
under all perturbations. This gives (Doyle (1984)):

Robust Performance A necessary and sufficient
condition for robust performance is

sup /I W 1(j w) S(jw) /100 < 1 (7)
161<1
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Fig. 3: Robust Performance as a Robust Stability
test

The last equation holds iff

11 IW1(jw)S(jw) I + IW2(jw)T(jw)11100 < 1 (8)

Which means that robust performance is achieved
if and only if nominal performance and rob.ist sta­
bility are both satisfied and that their absolute sum
is less than unity. Equation (8) follows with some
manipulations directly from equation (7). Equation
(8) can also be obtained in an ot her way, namely
as a stability test, this forms the crucial idea be­
hind the ft-analysis. Therefore introduce an extra
allowable .perturbation mostly called performance
block ~p on the performance as shown in figure 3.
To test stability with respect to simultaneous per­
turbations, again break theloop at the inputs and
outputs of both perturbations and determine which
transfer function matrix the simultaneous pertut­
bation "sees". Then applying the Nyquist stability
criterion we obtain the desired result. This machin­
ery forms the principle of the ft analysis which can
handle any complex valued uncertainty and perfor­
mance as a stability test. A detailled discussion on
the material presented in this section can be found
in Balas, Packard and Doyle (1990).

3 IL-Synthesis Methodology
in a General Framework

3.1 Introduction

In multivariable design performance and stability
objectives can not be refiected in terms of the sen­
sitivity and complementary sensitivity alone. More
complex transfer functions are involved so that a
condition for robust performance is hard to ob­
tain. Even when we obtain such a condition it can
be arbitrarly conservative so that the resulting de­
sign is far from satisfactory, (see e.g. Stein and
Doyle (1990)). The limitations can be overcome
partly with an alternative design framework which
has been developed in the past few years by Doyle,
Wall and Stein (1982), Doyle (1984) and Stein and
Doyle (1990). The alternative framework consist of
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l. Nominal performance is satisfied if and
only if

IIMn(jw)ll oo < 1 (10)

2. Robust stability is satisfied if and only

if
IIMll(jw)lIoo < 1 (11 )

Fig. 4: General interconnection structure

a more general problem description, a more suitable
mcasure of magnitude for matrix transfer functions,
and certain key arialysis and synthesis resulis . In
this paper we apply the aliernative framework on
a very simple SISO example in order 1.0 reveal the
involved mechanisms which can be helpful for the
understanding in dealing with more complex multi­
variabie problems. The general problem description
is shown in figure 4. lt consists of a general systern
P with three pairs of input/output variables. The
first pair consists of the measured outputs y, and
control inputs u. The second pair consists of per­
formance variables e, and external input signals
d , and the third pair consists of output signals z ,
and v through which unit-norm perturbations are
fcd back into the system. Any linear interconnee­
tion of inputs, outputs and commands along with
the perturbations and a controller can be viewed in
this context and can be rearranged 1.0 match this
diagram so that P can be chosen 1.0 reflect many
different problem specifications.

3. Robust performance is satisfied if and
only if

JL[M(jw)] < 1 V w (12)

(where JL is a function 1.0 be defined shortly)

The first result is true by definition since M22 rep­
resents any nominal performance transfer function
block. Already here we see that through this con­
struction we can capture any performance objective
not only the sensitivity, The second result follows
from a stability consideration with the perturba­
tion loop closed, i.e. det(1 - ~(S)Mll(S)) =f 0
along the imaginary axis for all allowable pertur­
bations. Again .M ll (s) can consist of any trans­
fer Iunction not just the complementary sensitivity.
The third result is the most significant one . lt pro­
vides a necessary and sufficient condition for robust
performance. 11. can be established from the defi­
nition that performance is robust if and only if th e
transfer function from d 1.0 e with the ~ loop
closed remains CXJ -norrn bounded by unity, that is
if and only if

F ig. 5: Analysis part General interconnection struc­
ture

E.q~ation (13) is also a necessary and sufficient con­
dition fo~ the system M (P, K) 1.0 remain sta­
bic even if we choose 1.0 conneet a second norm­
bounded perturbation ~p (performance block )
across the e and d terminals . In this view, robust
performance is exactly equivalent 1.0 robust stabil­
ity in face of two perturbations ~ and ~ con-p

n?cted around the system M(P, K) in the block
diagonal arrangement shown in figure 6. The 1'0­

bust stability is assured , if and only if the Iunc­
tion det(1- diag(~,~p)M(jw)) remains nonzero
along the imag!nary axis. This observation brings
us 1.0 the fun~tlOn Il., called the structured singu­
lar value. This Iunction was defined specifically 1.0
test the kind of determinant conditions identified
above. lts full definition for complex matrices is

3.2 Analysis Review

13cyond its generality, the alternative framework is
important because it comes equipped with a non ­
couservative necessary and sufficient condition for
robust performance. In order 1.0 describe this con­
~ition we first close the compensator feedback-loop
In fig 4 1.0 get the loop in fig 5. The system M( P, I()
in this figure has a 2 X 2 block-structured transfer
function M(s) whose blocks are defined in terms
of the original 3 x 3 partition of P(s) as follows:

Mjj(s) = Pjj(s) + Pj3(S)[I - J((S)P33(S)rl J((s)P3j(s)
for i.i» 1,2

(9)
Equation (9) is called a Linear Fractional Trans ­

[ormaiion of the system P through J{, therefore
thc notation M(P, K). Suppose that this system
is stable, then the following results apply:
Theorem (Doyle (1984)):
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(P,K Fig. 7: Syn thesis part General interconnection
structure

Fig. 6: IL-stability test

th e following (Doyle (1984)):

[ {

det[I - .xM] =0
Jl[M] ~ min c fo.r some X =diag(AJ, . . . , Am )

with IIAill "" < 1 , for all i

where

For the purpose of synthesis, the perturbation can
be normalized properly to unity so that the nor­
malizing factor can be absorbed into P. This re­
sults in the synthesis prob1em as shown in figure
7. The synthesis prob1em invo1ves finding a con­
troller K such that performance requirements are
satisfied under prescribed uncertainties. The inter­
conneetion structure P can be partitioned so that

the input-output map from d' = [ ~] to e' = [ : ]
can a1so be expressed as the following lower 1inear
fractiona1 transformation denoted F,(P, J( ) :

3.3 Synthesis Review - Hoo Opti­
mization

In Doy1e (1982) key theorems regarding IL are
proven; it is shown that the lower bound is a1ways
an equality, while the upper bound is an equa1ity
as long as n ~ 3. It has to be remarked that the
sets U and DIeave perturbations from the set X
invariant, in the sense that ä(6.U) = ä(U6.) and
D6.D- I = 6. , which is equivalent to say for the
last expression that p.(DM D-I

) = p.(M). Noticing
the fact that singular va1ues are not invariant un­
der sealing leads to a practical computation scheme
for IL(M) by minimizing a(DMD- 1

) (the upper
bound) over all D E D , resu1ting in the so called
optima1 D-sca1es. A1thoug a(DMD-1

) is con­
vex in In(D) the infimum is not necessarily equa1
to IL, but practice shows that the upper bound is
acceptab1y close to IL.

}f'
(14)

In words, p. is the reciprocal of the smallest value of
sca1ar f which makes the matrix 1- fXM singu1ar
for some X in a block-diagonal perturbation set.
If no such f exists , p. is taken to be zero. It is clear
from definition (14) that IL can be app1ied to the
t ransfer function matrix in figure 3.2 to test wet her
det (I - diag(6., 6.p)M) remains non-zero along the
imaginary axis. In fact the determinant remains
non-ze ro as long as IL[M] < 1 . Applying Schur Ior­
mu1a for determinants , both conditions, eq( 11) and
cq( 13) can be obtained at once; (in Maciejowski
(1989), pp 126-127 is shown how the robust perfor­
mance condition is obtained) . This is a tight con­
dition for robust stabi1i ty with respect to two per­
turbation bleeks, and equiva1ent1y a tight condition
for robust performance. Note that the definition is
not limited to 2 x 2 blo ck structures, so that it can
be used to test stabi1ity with respect to any num­
ber of diagonal blocks. This permits to establish
robust stabi1ity with respect to plant sets charac­
te rized by severa1 unstructured perturbations, and
simu1taneously, to estab1i sh robust performance.

For practical use, the function IL[M] has to
be evaluate d . This is done acro ss frequency, pro­
vid ing a Bode-1ike plot to analyse robust st abil­
ity/performance of any given design .

T he a1gorithms of IL are based on the following
inequa1it ies which are proven in Doyle (1982):

where ~ is the minimum norm of the perturba­
tion that destabilizes the closed-loop system. The

For the Hoo optima1 prob1em, the obj ective is
to find a stabilizing controller K which minimizes
11 F,(P,J() 11 00 . Thus find a controller J{ such that

sup p(M U) ~ Jl (M ) ~ inf a(DMD- I
) (15)

U EQ DEQ

wher e p denotes t he spectra! radius , a the maxi ­
mum singu1ar value and

u = {diag (UI,U2 , ••• ,Un ) IUtUi = I}

D= {diag(dII,d2I, . .. ,dn)ldi E R+}

with block dimensions of Ui and Di matching those
in X.

(16)
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minimization is carried out iterative1y and is called
,-ite rati on . An excellent reference on this mat­
ter is Francis (1987) , while the used algorithms to
ob tain H oo con trollers come from Doyle, Glover ,
Khargonekar and Francis (1988).

f-----.u
f---+ a

~

Fig . 8: Class. Feedback Configuration PAR Mode

where x represents state vector, u th e input vect or
and y the output vector.

[

U] (mis) forward speed
Q (dey) angle of attack

x =
8 (dey) pitch angle
q (dey Is ) pitch rate

u óe (dey) elevator deflection
y = 8

4.2 Problem Description

We consider the Linear Time Invariant (LTI) model
of the DHC2-Beaver aircraft for the longitudinal
motion as described in Tjee and Mulder (1988).
The plant can he represented in state space form
as:

(17)x(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

AIso, a third order actuator model denoted
GFCS(S) has been included as we can see in fig­
ure 8. With the root-locus design method from
Evans a two-Ioop controller has been synthesised.
The obtained controller as in figure 8, revealed to
have satisfactory characteristics during flight tests.
Then performance results of the classical cont roller
are used as requirements for the synthesis of the
jl-controller in order to obtain realistic weighting
functions. The Jl-control structure can be viewed
as a disturbance rejection problem as given in fig­
ure 2, which means that design can be carried out
following the results of section 2. The weighting
functions can be obtained from the sensitivity and
complementary sensitivity function of the classi cal
design as given in figure 9. This is due to the fact
that the complementary sensitivity, in our example,
through its inverse, directly can be related to the
uncertainty profile. In this view the complernen­
tary sensitivity in figure 9 tel1s us that the design
can tolerate an input multiplicative perturbation
of 125 percent. On the other hand the sensitivity
function tells us how fast and up to which handwith
errors due to disturbances or commands are elimi­
nated. At zero frequency of the sensitivity function

4.1 Introduction

3.4 jL-Synthesis Methodology

4 Application of J.L-Synthesis
to a FeS design

This section deals with an application of the pre­
scnteJ theory on a f1ight control system. 1'0 be
ab Ie to perform practical design all desired objec­
tives are translated into suitable weighting func­
tions and ahsorbed into the general interconnection
structure. Then comparison between classical and
the achieved jl-controller is made.

The Jl-synthesis methodology emerges as a practical
approach in designing control systems with robust
performance objectives. This technique essentially
integrates two powerfull theories for synthesis and
analysis into a systematic design technique involv­
ing Hoo optimization methods for synthesis and
the structured singular valu e jl for analysis. Recall
that Jl may be obtained by sealing and applying
all infimum over D. Extending this concept to
synt hes is, the problem of rohust controller design
bccomes that of finding a stabilizing cont roller J(

and a sealing matrix D such that the quantity
I1 DF/ (P,I< )D-1 11 00 is minimized , for more detail
see Doyle (1984).

One approach for solving t his pr oblem is that of
a.ltcrnaly mi nirnizing the above expression for ei­
ther I< or D while holdi ng the other constant .
Por fixed D, it becomes an Hoo optimal con­
t rol prohlem and ca n he solved using the the state­
space method of Doyle, Glover , Khargonekar and
Francis (1988). On the ot her hand, with fixed J( ,

th e above quantity can be minimized at each fre­
quency as a convex optimization in In(D). The
resulting data of D can be fit with an invertible,
stabie, minimum-phase, real-rational transfer func­
t ion. This proces is called D - K -iteration and
is carr ied out until a satisfactory controller is oh­
tained . For a deaper treatement of this procedure,
we rcfer to Balas, Packard and Doyle (1990) .
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For the performance is chosen a rejection factor 50
to 1 in the operating bandwith, i.e . output distur­
bances are attenuated over this frequency region.
Expressed differently, steady-state tracking error to
step references has to be in the order of 0.02 or
smaller. This performance requirement gets less
and less stringent as Irequency increases as shown
in figure 10. From equation (1), we know that this
performance level is the maximum achievable one
in front the chosen uncertainty level. The transfer
function associated with the performance goal is:

in figure 9, we get an indication of the steady state
error level. Having made t hese observations, we are
able to formulate our design objectives. Since we
know that the classical design does account for such
an high uncertainty level, we drop this down to fifty
percent in return of more performance.

The lower curve in figure 10 represents IW2(jw)l,
i.e. , the upper bound on the magintude of the rel­
ative plant perturbation with frequency w. So in
our case IW2(jw}1 starts at a level of 0.5 crosses
the zero dB axis at 100 rds- 1 and increases at a
rate of 20 dB /decade. The transfer function for the
input uncertainty is:

W (8) = 50(8 + 100)
2 (8 + 10000)

W1(8) = .5(8 + 3)
(8+.03)

(18)

(19)

4.3 Control Design and Results

In this section we present the synthesis results from
the D-K iterations. After having set up the problem
into the general form , the first design step consists
of synthesising an Hoo controller. Achieved with
the ,-iteration was , = 1.43, this corresponds to
an allowable unertainty level of 70 %. To analyze
whether robust performance is achieved, J.L is calcu­
lated and plotted against frequency as a Bode mag­
nitude plot. The resulting J.L is over the operating
region above one which means that the desired ro­
bust performance level yet is not achieved. At th is
stage optimal dynamic D-scales are introduced and
a new controller is synthesised. The new , value is
1.09, this corresponds to an allowable uncertainty
level of 91 %. The robust performance level is not
achieved as we see in figure 11. A new D-scale is
fitted, leading to , = .93 in the third iteration
step. At this stage the robust performance level,
i.e ., J.L < 1 is achieved by a l5th order controller

4.4 Comparison to the Classical
Design

In order to compare both designs, the classical con­
troller has been also absorbed with the weithing
functions into the open loop interconnection struc­
ture P.

Once, the weighting functions are obtained, the
general matrix interconnection structure has to be
built up .

In our example we have to break in figure 2 the
loop at the compensator and the perturbation ~ to
obtain the open loop interconnection structure rep­
resented by the transfer function matrix P. Then
through an LFT we get the object transfer function
Af (P, K) for synthesis and arialysis purpose:

The following analysis results apply:

Nominal performance

11 M 22 1100 = IIW1Slloo <
Robust Stability

IIMlliloo = IIW2Tli00 <
Robust performance

IIMIlIJ = II1W2TI + IW1Slil00 < 1

These results precisely match the earlier state­
ments (see sec. 2.4 and 3.2) and are used after
each synthesis step as performance indicators.
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1. Results Robust Stability.
Let us look at figure 12, where the robust stability
level with respect to the specified uncertainty model
is represented by the lower curve for the classical de­
sign. The curve lies far under unity, which means
that the control system is robustly stabie: The
perturbation which destabilizes the system, can be
seen in terms of classical gain margin , which means
in our case that the gain could be raised up to I
over 0.49 which is slightly more than a factor 2 to
make the closed loop unstable. For the J.L design ro­

bust stabiliy is represented in the same figure by the
upper curve. The result reflects precisely what we
included in the weighting function which intended
to allow 50 percent of uncertainty at low frequency,
the gain margin in this case is 2 as we expected.
Resuming, it can be said that, with respect to the
prescribed uncertainty profile, both designs behave
similarily.

2. Results Nominal Performance.
Remember that the performance specification for
the J.L-controller was more stringent than the clas­
sical controller. The steady state error for the clas­
sical controller is 0.2 while the objective for the



ft-Controller was to tolerate only an error of 0.05.
So we know in advance that the classical systcm
does not satisfy the nominal performance objcctive.
IC we look at the nominal performance plots in fig­
ure 13, the above curve goes far above unity at low
frequency as expected, while the lower curve repre­
sents the achieved nominal performance level of 0.5
as we introduced in the weighting function .

3. Robust Performance.
Since for the classical controller nominal perfor­
mance is not achieved, neithcr robust performance
could be. This can be seen in figure 14 where
thc upper figure represents the robust performance
level of the classical controller. The lower curve in
the plot represents the achieved robust performance
level for the 11 design, which is everywhere below
unity so that it could account for an unity pertur­
bation and still achieve the performance objective.

'1. Time Responses.
'1'0 give an impression what the frequency bounds
ref1ect in time domain, we made some step re­
sponses of the weighted sensitivity and weighted
complementary sensitivity functions for both con­
trollers. The weighted complementary sensitivity
can be seen as the response of reference distur­
bances or meesurement noise. Let the input signal
bc a step of level 0.1, then in figure 15 t he above
curve represents the response of the 11 design while
the lower curve represents the response of the clas­
sical design. These results are in accordance with
the chosen weighting function where we intended to
obtain a 50 percent robust stability level, reflecting
a rednetion by a factor 2 of reference disturbances
or rneasurement noise. Figure 16, represents the
step responses of the weighted sensitivity function,
which is the output error due to external distur­
bances. In the weighting function we addressed the
desire to keep the output error on a level of 50 per­
cent steady-state, which means that an 0.1 step dis­
turbance will be attenuated by a factor 2. We can
sec on the upper curve classical design nominally al­
rcady amplifies disturbances in order to attenuate
thern; we knew this al ready from frequency domain
considerations on performance.

5 Conclusion

'l'his paper reviewed the main mechanisms involved
witl. Il-synthesis. This method is a powerful tooI
that can handle in a non conservative way the gen­
eral robust performance problem. We chose this
particular simple SISO design configuration in or-

der to dernonstrate the mechanism of bringing the
basic control structure into the general interconnec­
tion structure, from which it is analytically easy to
obtain conditions for robust performance. It should
be said that for this example the whole 11 calcula­
tion is not necessary since robust performance can
be obtained from equation (8) . But if more pertur­
bations are involved and the system is multivari­
able, everything gets more complex. For example,
sensitivity at the systems input is not anymore the
same as at the output, also directionality of sig­
nals and the systems condition number begin to
play an important role. Therefore non conservative
analytical expressions for robust performance are
hard to obtain. In the view of this context ft turns
out to be a non conservative performance measure
which means that the methodology reviewed here is
very suitable for multivariable design. We showed
that selection of weighting functions to represent
design ojectives is quite natural when character­
ics of a classical controller are available. For this
SISO systcm the design specifi cation where cap­
tured in terms of S and T. This is certainly not the
case for multivariable systems, therefore analysis in
the general framcwork for a suitable choice of the
weighting functions is essential. Through a Linear
Fractional Transformation on the open loop inter­
conneetion structure P, both synthesis and analysis
where performed. With respect to robust stability,
both designs have the sarne characteristics, Superi­
ority of Il-synthcsis shows up, when also the per­
formance problem is considered. It can be said ,
that for the same uncertainty level, the Il-design
has a four times bet ter performance than the classi­
cal design while using only one feedback signal and
no gain scheduling. And even more, not only nom­
inal performance but as weil robust performance is
achieved.
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We present the system data as in the storage for­
mat of the Musyn Toolbox Balas, Doyle, Glover,
Packard and Smith (1990). A state space repre­
sentation (A, B, C, D) is given by a single compact
data structure containing all the relevant system
information:

The number of states is given by nx while the -00

in the last row tells us that we deal with a system
state space realization. The system matrix for the
symmetrie motion of the Beaver rigid body model
in the stability reference system at 35m/s, 6000 ft
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The parametrization of all controllers that achieve
output regulation and tracking
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Abstract. This paper considers frequency-dornain conditions for feedback compen­
sators that achieve output regulation and t racking in the presence of persistent set point
inputs. Using a standard plant approach it is shown that the property of internal sta­
bility must be relaxed to what is defined as 'tracking stability'. A characterization of
all controllers is formulated in terms of an extended plant description. The formulation
provides a framework for compensator design when both regulator and tracking objec­
tives have to be satisfied. It allows application of control design methods like H2 and
Hoc optimal control to consider trade-offs between tracking properties and other design
objeetives .

Keywords. linear multivariable systems; output regulation and tracking; controller
parametrization; H2 and Hoc control design methods

1 Introduction

Recent resul ts in the field of control system design
(e.g. H2 and Hoc optimal control methods) allow
a precise formulation of control performance goals
in conjunction with descriptions of the system, the
signals and the uncertainties involved. The vari­
ous control design goals may be conflicting; it may
be desirable to achieve stability but also to have
a certain amount of bandwidth, disturbance re­
jcct ion and robustness. Another important objec­
Live is output regulation and asymptotically track­
ing cert ain classes of reference signals, as has been
studied by many authors (Bengtsson 1977, Bhat­
tacharyya and Pearson 1972, Davison and Golden­
berg 1975, Davison 1976, Desoer and Wang 1980,
Francis 1977). Especially the robust control of the
so-called general servomechanisrn problem has been
considered; solvability conditions are available and
it is weIl known that candidate controllers must
have certain structural properties according to the
int ernol model principle (Francis and Wonham,
1975). Design procedures for this type of con-
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troll ers usually consist of two stages; first the con­
troller structure is partly determined by ext ending
the original control problem with an internal model
of the signals that are to be tracked, next a stabiliz­
ing controller is designed to achieve all ether.control
objectives (Desoer and Wang, 1980).

Recently, the (further) development of H2 and
Hoc optimal control theory, based on a renewed in­
terest in frequency domain methods and the ap­
plication of certain tools from operator th eory
(Vidyasagar, 1985), has led to the characteriza­
tion of all controllers that solve the robust tracking
problem: a class of controllers that is in principle
infinitely large (Francis and Vidyasagar, 1983). A
problem with the characterization given by Fran cis
and Vidyasagar however is that the requirement of
robust tracking is quite strict in the multivariable
case. The robustness property can only be achieved
with a sufficiently redundant internal mod el, often
leading to high order controllers in comparison with
the order of the plant . Above this , the robustness
property is derived for independent variations of all
the plants parameters, which is usually conservative



with respect to the actual perturbations that can
occur; this may therefore lead to insufficient per­
formance in other control objectives than tracking
and it is even possible that the problem becomes
unsolvable (see Grasselli and Longhi, 1991).

This paper will concentrate on deriving a charac­
tcrization of all acceptable controllers that achieve
a prespccified form of tracking and for which the
solution of the robust tracking problem can be con­
sidered as a special case. We will obtain this char­
acterization based on a 'standard plant' approach,
as used in many of the recent studies on regula­
tor problems mentioned above. The main advan­
tage of this approach is the possibility of apply­
ing standard I-h or Hoo optimization tools to se­
lect a controller that not only solves the tracking
problern , but also obtains a trade-off between other
control design goals. In comparison with another
rnethod to incorporate the tracking problem into
11 00 optimization theory, known as jw-axis shifting
(Xu and Mansour 1986, Wu and Mansour 1990),
this approach is much less restrictive, and will shift
the attention to the problem of choosing appropri­
ate weight functions. As for the servomechanism
problern, this then leads to a two-step design proce­
dure; first characterize all possible controllers that
acliieve tracking, next use H2 or Hoo optimization
tools to select one of them.

The tracking problem that we will consider here
will have some restrictions. We will look at the
problem of letting the plants output signal track
a. prespecified persistent reference signal, although
persistent disturbances can be dealt with in the
same way. Furthermore we will construct con­
trollers that can only use measured error signais;
this implies that we will only find one-degree-of­
frcedorn controllers.

Some preliminaries and notation followed by the
exact formulation of the tracking problem can be
found in section 2. The actual derivation of a char­
acterization of all controllers that achieve the track­
ing objective will follow in section 3. Sect ion 4
wil! then give a high level algorithm and show the
possiblity to apply standard optimization methods.
Next an example will be givcn in section 5 to illus­
trate some of the properties of the developed pro­
cedure. Finally, section 6 will give some concluding
rernarks.

2 Preliminaries and problem for­
mulation

We will adopt the standard plant approach as inves­
tigated by for instanee Doyle et al. 1984. Therefore
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Fig. 1: Standard control configuration

consider the standard control configuration given in
fig.2. Here P is the standard plant, J( is the con­
troller, z is a vector of control objectives-usually
error signals-that are to be minimized, y is a vec­
tor of measurement signais, w a vector of external
disturbances and u a vector of control inputs. Fur­
thermore the auxiliary signals VI and V2 are added
to be able to check internal stability. Many control
problems can be brought into this forrn; the control
objective is to find a controller J( that minimizes
the transfer from w to z in some sense. In many
cases th is minimization can be sensibly defined by
means of operator norms on function spaces in the
frequency domain (see Doyle et al. 1984, Francis
1987, Vidyasagar 1985). The function spaces used
in this paper may be defined as follows:

• R[s] is the set of polynomials in the indeterrui­
nate sEC with coëfficients in the field R of
real numbers.

• R(s) is the field of fractions associated with
R[s] and consists of real-rational functions in
s.

• RLoo is the subspace of R(s) for which
supw IF(jw)1 is bounded for all F E RLoo .

The least upper bound is called the 'oo-norm'
and makes RLoo a Banach space. F E RLoo

if it is a proper, real-rational transfer function
without poles on the imaginary axis.

• RHoo is the subspace of RLoo for which F is
analytic in the complex closed right half plane
C+ for all F E RH oo • F E RHoo if it is a
proper, stable, real-rational transfer function.

With abuse of notation we will identify the set of
matrices or veetors with elements in a previously
defined subspace with the subspace itself. Unless
explicitly stated otherwise, transfer function matri­
ces are considered as matrices over the field of real
rational functions.

Now consider the standard tmcking control config­
uration as given in fig.2. Here we want to min­
imize the effect of reference signals rand distur­
bances nl, n2 on the weighed error signal Zl and the
weighed control input Z2. We will assume that the
weights WI , W2 , NI and N2 are all in RHoo ' Typ­
ically r will consist of a combination of persistent



v

Pj---------------------------j
I I

I
effect must also appeal' in the control input Uj this
implies that the transfer from Ór to u must contain
C+ poles which is in contradiction with internal sta­
bility. In the next section we will therefore relax
the internal stability demand to look for solutions
in more general cases.

I I
L J
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Fig. 2: Standard tracking control configuration

signals like step-functions and sinusoids. These sig­
nals can be modelled as the time-domain responses
of a linear dynamic system with nonzero initial con­
ditions. In the frequency-domain this results in a
transfer function R E R(s) that has only imag­
inary poles and is driven by a q-dimensional con­
stant vector Ór E Rq. We will assume that this
vector lies in an arbitrary direction and can be nor­
malized to 1. We will also make a non-restrictive
technica] assurnption; if R is factorized as RR with
ft. strictly proper and R polynomial, we assume
th at rank(R) = rank([R I Rl). This assumption
ensures that the signal r = RÓr is persistent for
all s, E Rq.

It will be the intention to let the outputs YP
asymptotically track any signal r that can be gener­
ated this way, or in other words to make sure that
the error signals e are not persistent. It is well
known that this tirne-domain demand of tracking
a persistent signal can be stated within frequency­
domain terminology as the problem of stabilizing
the transfer function from ór • to e(s). Therefore, if
we write down the staridard plant of fig.2 without
auxiliary signals as:

3 A characterization of all con­
trollers that achieve the tracking
objective

From the observations given above it is clear that
C+ poles must be allowed in the transfer function
from S; to u. To concretise this we will make use
of the Iollowing two stability concepts.

Definition 3.1 (partial tracking stability)
Consider the standard tracking control config-

uration in fig.2, and let G, R . E R(s) and
NI, N2 , W1 , W2 E nn., be given, R having only ··
imaginary poles.
Then a controller J( is said to achieve partial track­
ing stability of the closed loop system if:

the transfer funetions from Ó., nt, n2, VI and
V2 to y are in RHoo •

the C+ poles that appear in the transfer [unc­
tions [rom Ó., nl, n2, VI and V2 to u are located
at the same positions in the complex plane as
the poles of R .

Definition 3.2 (tracking stability)
Consider the standard tracking control config­

uration in fig. 2, and let G, R E R(s) and
s.; N 2 , Wt,·W 2 E nn., be given, R having only
imaginary poles .
Then a controller J( is said to achieve tracking sta­
bility of the closed loop system ij:

it achieves partial tracking stability.

the transfer funetions from nl, n2, VI and V2

to u are in RHoo •
(1)

o W1GN2 WIG]
o W2N2 W2

NI GN2 G
[

- WIR
p= 0-----------i,...-----R

it can be verified that both the tracking objec­
ti ve and stability of the closed loop system can be
achieved with any controller J( that internally sta­
bilizes P.

The problem now is that there may not exist any
internally stabilizing controller for P, while in prae­
tice it is still possible to find acceptable solutions.
More specifically, if we want to compensate the ef­
fect of the C+ poles of R in the error signal e we
can only do so by creating the same effect in YP (of
course this actually is the objective of the tracking
problem). IC we assume for the moment that the
poles of Gare disjoint from those of R, the same
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Tracking stability is clearly more restrictive, but
also more desirable. We will start however by in­
vestigating a necessary and a sufficient condition for
existence of controllers that achieve partial tracking
stability in lemma 3.3.

Lemma 3.3 Consider the standard tracking con­
trol configuration in fig.2, and let G , RE R(s) and
NI, N2 , ~VI' W2 E nn., be given, R having only
imaginary poles.
Then a necessary condition for the existence of a
controller J( that achieves partial tracking stability
zs:

3M E R(s) s.t. GM = R



For sufficiency this can be extended to:
3M E R(s) s.t. GM = R arul
none of the C+ po/es of M is cancelled in GM.

Proof:
For neccss ity first suppose that thc condition does
not hold. We then must have:

From the stability properties of KG and KR sepa­
rately, it is 1I0W easy to verify that all these t ransfer

functions are in Rl I"".
Next consider the t.ransfer functions from 8r , VI and
V2 to u :

CM =I R, VM E R(s) {:::=:?

38r E R? s.t. (GM - R)8r =I 0, VM E R(s) (2)

Dcfine GK:= (I - GKG)-IG as the closed loop
tran sfer function with controller KG and note that
with GM = R we can write the closed loop trans­
fer lunetion from 8r to e as GKM.
Ncxt take any internally stahilizing controller J(R
Ior CK M ; similar to eq.3 we then have:

Givcn any such 8r E R" , thc persistent signal R8r

eau not be tracked by thc system G with any con­
trol input u, which proves necessity of the first con­
dition.

To prove sufficiency of the extended condition we
will con struct a suitable controller.
First take any internally stabilizing controller KG
Ior the system G, such that the transfer functions
Irom VI and V2 to u and y are stabie:

(10)- -I -
M = DMNM

M - (I - KGG)-I M(I - KRGKM )-l,
(I - J(GCn-1 + (I - KGGt l

·M(I - J(RGKMt l KRGK, (9)
(I - J(GGt l KG + (I - KGGt l

·M(1- I<RGKM)-I [(R(I - GKG)-I}

lt can now be verified that all these transfer func­
tions consist of sums and products of elements in
whi ch only (some of) the poles of M may appear
as unstable poles. Due to the sufficiency condition
we may furthermore conclude that all these poles
also occur in R. Finally it is straightforward to
check that all other transfer functions mentioned
in definition 3.1 have the desired properties . We
may therefore state that , under the sufficien cy con­
dition, the combine d controller J( = KG + M KR
achieves partial tracking stability. This concludes
the proof. 0

With th is lemma we now have the possibili ty to find
any controller achieving partial tracking st ability in
a two-step procedure. However, we will show th at
not all cont.rollers that can be derived this way will
have desirabie properties. For this we will bring in
a left copri me factorization of M:

Also these t ransfer functions can be rewritten:

(4)

(3)E RH""

(I - l\RGKMt l

(f - ](RGKMt l KR
(1 - Cl\ M K R)- IGKM
(f - GKMKR)-l

(1 - KGG)-I
(1 - KGG)-l KG
(I - CKG)-lG
(I - CKG)-l

From this we will prove that applica tion of the con­
Lroller J( := K G+ M /(R in fig.2 achieves partial
trackin g st ability.
First conside r the erro r signal e as a function of

{j" VI and V2 :

The combilied cont.roller can then be rewritten as :

(11 )

and we can defin e:

(5) (12)

we can rewrite the three transfer Iunctions respec­
tiv cly as:

Now, by in corporating D'l./ in the standard plant
and defining a new auxiliary disturbance input. sig­
nal V3 and a new control input Ü, we arrive at th e
block diagram givcn in fig.3 and a modified stan­
dard plant ÎJ given (without auxiliary signais) as :

J3y using the basic equalit ies

(f - CI<)-I = (I - GJ()-IGJ( +]

= G(I - J(GtIK -s- I

-(I - GKMKR)-IGKM,
(I - GKMKR)-IGK,
(I - CJ(MKRtl(I - GKG)-l

(6)

(7)

A [-WIR 0
P = 0 0

-R NI

(13)
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(18)

NI, N 2, W 1 , W 2 . E RHoo be given, R having only
imaginary poles. Furthermore suppose that G and
R meet the sufficient condition for partial tracking
stability given in lemma 3.3, let GM = R with
M E R(s) and let a left coprime faclorization of M
be: M = iJ'il NM. Finally let the modified siati­
dard plant ft be given by fig. 3.

• A ny controller Ie for which ihe closed loop
transfer funclions from V3 and V2 to ü and y
are in RHoo J also ensures that the closed loop
transfer funclions from nI, n2, S, and VI to ü
and y are in RHoo •

• For any such controller Ie we have that J( =
iJ"i}Ie wil! achieve partial tracking stability
according to definition 3.1 for the configuration
in fig.2.

Proof:
1'0 prove the first item, take any controller k such
that the four transfer funetions mentioned are sta­
bIe:

(I - kGiJJ.l)-I,

(I - kGiJ"i./}-l te,
(I- GiJ"})In-I,
(I - GiJ,) ktiGiJ'il

(15)

(16)

X,Y E nn.,

ft,---------------------- ---------,
I I

I

y = (I - GKM KR)-I(I - GKG)-IG

·{X +MY} V3

such that

L.--------J k I'------~~

y = (I - GKtIG iJi/V3
= (I - GKMKRtI(I - GKatIGiJ"i/V3 (14)

Left coprimeness of [iJMI NMl implies

I I

~---~---------------- -----------,

Fig . 3: Modified tracking control configuration

v

The transfer function from V3 to y can be found as:

Lemma 3.4 Consider the standard tracking con­
trol configuration in fig.2, and let G, R E R(s) and

and the transfer from V3 to y is again in RHoo

(sec eq.7). So any set of internally stabilizing
controllers, KG for G and KR for GKM, will
have the property that all transfer functions from
s., nl, n2, VI, V2 and V3 to y are in RHoo • The trans­
fer functions from the same inputs to ü however can
be given as:

and may not be stable due to possible unstable
poles in k .

From fig.3 it is however clear that the effect of
ór can be completely compensated by application
of the stabie control input ü:::::; NMór • Further­
more we have that any C+ pole appearing in the
behaviour of ü must also appear in u and thus will
have no desirabie effect in Z2. It seems therefore
that such C+ poles are both unnecessary and unde­
sirable and we will therefore restriet the class of de­
sirable controllers to those that stabilize all transfer
functions from the external inputs to both y and ü.
The next lemma will show that all internally stabi­
lizing controllers for the product GIJ"}) are in this
class, such that we can indeed always find a solution
without undesirable C+ poles.

ü = J(y + V3 (17)

Now define V3:= V3 + iJMvl + iJMN2n2 + NMÓr

and V2:= V2 + N1nl and notice that both sig­

nals are in RHoo • From fig.3 it is then clear that
application of all signals seperately is equal to only
applying V3 instead of V3 and V2 instead of V2 . With
this, stability of all transfer funetions mentioned is
established.

For the second item stability of the transfer func­
tions from all extcrnal inputs to y is already proven
(eq.7 and 16). Furthermore we have:

u = iJ;)ü + VI (19)

such that, under the sufficient condition of
lemma 3.3, the transfer funetions from all external
inputs to u can only have the poles of R as unsta­
ble poles. With definition 3.1 we may conclude that
partial tracking stability is indeed achieved. 0

With this lemma we are now able to clarify the
specific importance of C+ poles of M that cancel in
the product GM, as mentioned in the the sufficiënt
condition of lemma 3.3. Ir we consider the equation
GM = R with M = iJ"il NM the cancellation of
C+ poles of M can occur in three different ways:

1. We ean find an M sueh that GM = R, and
sueh that M has alesser McMillan degree than
M. Because GM = GM = R all poles of M
that do not appear in Mmust be cancelled in
GM.
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2. :3z E C+ such that rank(G(z)) < rank([G(z) I
R(z)]), but if we define R:= (s - z)R we
have that rank(G(z)) = rank([G(z) I R(z)])j
z is a C+ zero of G that does not coincide with
a zero of R, nor with a pole of R. M must
have C+ poles that eliminate the effect of such
zeros but do not appear in R; they must be
cancelled in GM.

3. :3z E C+ such that rank(G(z)) < rank([G(z) I
R(z)]), and if we define R:= (s - z)R we still
have that rank(G(z)) < rank([G(z) I R(z)])j
z is a C+ zero of G that does not coincide with
a zero of R, but does coincide with a pole of
R. M must have C+ poles that eliminate the
effect of such zeros and must cancel in GM, but
M must also have poles at the same location
that appear in R.

Cancellations of the first type can be prevcnted by
finding a solution M to the equation GM = R
such that M has minimal McMillan degree; this
problem is well known as the 'minimal design prob­
lcm ' and solutions areavailable in literature (see
Foster, 1979). Poles of the secend type can also
be removed. We can redefine R to have C+ ze­
ros that coincide with those of G, for instanee by
removing the poles from M that are cancelled in
Gi\! and defining R:= GM. Unfortunately it is
not possible to remove poles of the third type. lf
wc attcmpt to redefine R for these poles, we find
tlrat the poles of R at the same location are au­
tomatically removed. This then would imply that
thc persistent signals that were modelled by these
spccific poles are removed from the problem, thus
making it impossible to solve. On the other hand, if
we do not redefine R, we can not allow an unstable
cancellation occurring in GiJ}.} j we will therefore
consider these cases as unsolvable.

In the following theorem we will now state our main
result and show that the nccessary condition of
lemma 3.3 together with the demand that no pole­
zero cancellations of the third kind may occur is
nccessary and sufficient for existence of controllers
that achieve tracking stability.

Theorem 3.5 Consider the standard tracking con­
trol configuration in fig.2, and let G, RE R(s) and
NI, N 2 , ~Vl, W 2 E nn., be given, R having only
imaginary poles.
Then necessary and sufficient conditions [or the ex­
istence o] a controller K that achieves tracking sta­
bility are:

1. :3 M E R(s) such that GM = R
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2. ij there exists a z E C+ such that
rank(G(z)) < rank([G(z) IR(z)]),
we have with R:= (s - z)R that
rank(G(z)) = rank([G(z) IR(z)])

Furthermore all such controllers can be consirucied
by the procedure o] lemma 3.4

Proof:
First note that with the second condition we are
always able to prevent cancellations in the prod­
uct GM by a correct choice of Mand/or an al­
lowable redefinition of R. This then implies that
we can meet the sufficient condition for existence
of a controller that achieves partial tracking sta­
bility as given in lemma 3.3. According to defini­
tion 3.2 we therefore only have to prove that with
any controller K constructed by the procedure of
lemma 3.4, the transfer functions from nl, n2, VI

and V2 to u are all in RH oo if and only if the given
conditions are met.
From fig.3 we can find these transfer functions to be
(I - KG)-l K NI, (I - KGtl KGN2 , (I - KGtl

and (I - KGtl K respectively; clearly with
Nt, N2 E RH oo and (I - KGtl KG = (I­
KG)-l - 1 we only need to consider the latter
two.
First we will look at sufficiency for the transfer Iunc­
tion from VI to u:

(I - «cv:' = iJ;) (I - ](GiJft} r l iJM (20)

With (I - ](GiJ;'/)-l and iJM in RH oo we have
from lemma 3.4 that any C+ poles of this transfer
function must be poles of iJ;.}. Now none of these
poles is cancelled by G in the product GiJ;} so any

C+ pole of iJft}(I - kGiJft})-liJM is also a pole
of GiJ;.} (I - kGiJ;})-l iJM • However, we have:

GiJ"i.} (I - kGiJ"i.n-liJM = 2
(I - GIJ;.} in-IG = (I - GK)-lG E RH oo ( 1)

because of lemma 3.3 (the transfer function from VI

to e). We therefore must have that (I - KG)-l E

RH oo .

Next consider sufficiency for the transfer function
from V2 to u:

(I - tccv:' K = (I - iJ"i./ kGt l iJ;./ k (22)
= iJ;.} (I - ](GiJ;'/}-l](

Again, but now with (I - kGiJ"i./)-lk E RH oo ,

we have from lemma 3.4 that any C+ poles of this
transfer function must be poles of iJ;.}. So in this
case any C+ pole of IJ;}(I - kcIJ;.} )-1]( is also
a pole of GiJ;}(I - ](GiJft}tlj'c Now we have



(23)
E RH oo

R = a1q , a E R(s), (26)
ahaving only imaginary poles

The reference signal vector thus consists of q inde­
pendent signals a, with q being the number of error
signals, So any output signalof the plant G must
be able to track all possible signals generated by
a, and this independent of all other outputs. This
leads to the following corollary.

Corollary 3.6 Consider the standard tracking
control configuration in fig.2, and let G E R(s )qxn

and NI, N 2 , W}, W 2 E RH oo be given, R = «t, with
a E R(s) having only imaginary poles .
Then necessary and sufficient condiiions [or exis­
tence of a controller I< that achieves tracking sta­
bility are:

1. rank(G) = q, q is the number of outputs oj G

1'0 conclude this section we will consider a spe­
cial case, resulting in the well-known robust ser­
vomechanism problem (see Davison and Golden­
berg, 1975). For this, define R in fig.2 to have
the following structure:

Proof:
The proof presented here will be using the results
of lemmas 3.3 and 3.4 and theorem 3.5; the origi­
nal proof can be found in Davison and Goldenberg
(1975) .
First note that condition 1 implies rank(C) =
rank([G I Rl) which in its turn implies that there
exists an M E R(s) such that GM = R (see
Vidyasagar, 1985). Furthermore G has full row

2. G has no transmission zeros that are equal to
poles of a

Furthermore, tracking stability will be maintained
for perturbations of the system C as long as the
number of C+ poles in any of the transfer funetions
mentioned in definition 3.1 remains unchanged.

RH oo which is in contradiction with tracking sta­
bility.

.Finally we will prove that all controllers that
achieve tracking stability can be constructed by the
procedure of lemma 3.4. For this, take any con­
troller I< that achieves tracking stability and define
k := iJMI<. Now note from fig.3 that application
of V3 is equal to application of VI = iJMV3' and
that ü = iJMu. It is then possible to verify that k
stabilizes the transfer functions from V3 and V2 to
ü and y such that the controller I< can always be
constructed by the procedure of lemma 3.4. This
concludes the proof of the theorem. 0

(25)

(24)

from lemma 3.3 (the transfer function from V2 to
e):

GiJ;}(I - kGiJ;'/)-1k =
GiJ;./ k(I - GiJi)kt l =
GI<(I - GI<)-l = (I - GI<)-l - I

such that (1 - I<G)-lI< E RH oo •

Next we will prove necessity of the second condi­
tion (necessity of the first condition is obvious from
lemma 3.3). For this, consider the case that an un­
stable pole-zere cancellation of the type given in
condition 2 does occur in the product GiJ"i.f, such
that the offending zero has a corresponding pole in
R. It can then be verified from the equation:

that th is pole must appear in iJ;} with a mult i­
plicity that is at least one higher than that in R,
and that the cancellation does not remove the pole
under consideration completely but merely reduces
its multiplicity.
Now suppose that in spi te of this we can still find
a controller I< that achieves tracking stability. We
will use the fact that-among others-the following
transfer function matrices must then be stable:

First consider the case that none of the C+ poles
of iJ;} is cancelled in the product iJi) k, Clearly,

if iJ"i.f k(1 - GiJ})kt: E RH oo , we then must
have for any C+ pole of D;./ a corresponding zero
of (I - GiJi) kt l, that is, a pole of GiJi) k,
Due to the cancellation in GiJ"i,,/ however, we are
always at least one zero 'short' to cancel all C+
poles.
This implies that a pole-zero cancellation in G iJ}./
might only be allowable if there is a correspond­
'ing pole-zero cancellation in iJ}./ k, Now, be­
cause the cancellation in GiJ}) does not remove
the pole under consideration completely but merely
reduces its multiplicity, this implies that the num­
ber of C+ poles-counting multiplicities-in the
product GiJi) k would be at least one less than
that in GiJ"i.f. This then would make -(I­
CiJi) ktlciJ"i.f filM f/. RH oo according to the
same argument that was given before and coprime­
ness of [iJMI filM).
So any pole-zero cancellations in GiJi) results in ei­
ther -(1 -GI<tIGM f/. RH oo or I<(1 -G1()-1 f/.
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rank, so it has a right inverse GR E R(s) and we
can take M = GRR = aGR. Now suppose G has
no C+ zeros (otherwise condition 2 ensures that R
can be redefined). A left coprime factorization of

- 1 - -
M then is M = DM NM with DM = OI~! and

NA! = ~GR ((3 is some polynornial with zeros in

the open left half plane such that iJM and NM are
proper). Both conditions now ensure that there are
no C+ cancellations in the product G . a(3! and
lemma 3.4 and theorem 3.5 thus prove that all con­
trollers k that stabilize a(3G define a controller
J( = a(3k that achieves tracking stability.
'1'0 prove the second part of the corollary, consider a
pcrturbed system Gp and apply the same controller
]( = «sk, As long as

1. J( stabilizes a(3Gp and

2. Gp has full rank and no transmission zeros
equal to poles of a

tracking stahility is ensured due to lemma 3.4 and
theorem 3.5. It can he verificd that violation of
1) destabilizes one of the stabIe transfer functions
mentioned in definition 3.1, and that violation of 2)
makes the number of imaginary poles in the transfer
Irorn br to u decrease at least by one. The given
condition is therefore sufficient to achieve tracking
stability for the perturbed system. 0

lt is now deal' that the procedure given thusfar,
brings the unstahle hehaviour defined in R into
the control loop by means of iJ;). The resulting
incorporation of this term into the final controller J(

is also referred to as the 'internal model principle'
(Francis and Wonham, 1975); from this iJ;) itself
can be seen as the 'internal model' of the reference
signal's behaviour.

4 Application of optimal control
methods

We have shown that all controllers that achieve out­
put regulation and tracking for the control configu­
ration of fig.2 can be found by the procedure given
in lemma 3.4. This procedure can be summarized
as follows:

I. Construct the standard tracking configuration
according to fig.2, with G the plant to he con­
trolled and NI, N2 , WI , W2 some stabie weights
to account for performance objectives other
than tracking.

2. Model all occurring persistent reference signals
r as a comhination of sinusoids and polynomi­
als and construct a real-rational transfer func-
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Fig. 4: The two-stage actuator

tion matrix R with imaginary poles to generate
them.

3. Make sure R has C+ zeros that coincide with
those of G; if it is impossible to do this without
removing some of the poles of R the problem
is unsolvahle (condition 2 of theorem 3.5).

4. Find ME R(s) such that GM = Rand such
that M has minimal McMillan degree; this is
a minimal design problem (Foster, 1979).

5. Take a LeF M = b"ilNM and construct the
modified tracking configuration of fig.3.

6. Find a stabilizin~ controller ie for the modified
standard plant P.

7. Construct the controller ]{:= iJMI te that
achieves tracking stability.

An explicit parametrization of all controllers that
achieve tracking stability can he found if we ad­
just the weight W2 such that no persistent signals
can occur in Z2. This can be done by defining W2

as W2 := W~iJM with W~ E RH oo . The modi­
fied standard plant ft then becomes internally sta­
bilizable and a Youla-parametrization of all inter­
nally stabilizing controllers te can readily he found
(Youla et al. 1976). Next if we take R, NI, N2 , W1

and W2 such that the modified standard plant ft
is proper, we can use standard H2 or Hoo optimal
control theory to find an optimal k (or any other
design procedure based on a standard plant forrnu­
lation). This will then lead to a controller J( that
under the condition of achieving tracking stability,
simultaneously optimizes other performance objec­
tives like disturbance rejection or stahility robust­
ness. Although the exact influence on these other
performance objectives of the incorporation of C+
zeros mentioned in step 3 and the extra demand on
W2 is not yet completely clear, the exarnple con­
sidered in the next section will show some of the
advantages of th is unifying approach.

5 Example: the two-stage actuator

This example is derived from a two-stage actuator
as given in fig.5. It is intended to use a slow actu-



at or with a large operational range in combination
with a fast actuator with a small operational range.
The slow actuator is intended to let Xl asymptoti­
cally track step-like reference signals while the fast
operator is used for high frequency disturbance re­
duction. We assume that the system is governed by
the following simplified relations and signals:

Oooed loop transEer from r la eland e2

f:~: :~.~ 1
~ ~ ~ W ~ W

fRquency (radians/sec)

X2 = Xl + el !
Xl = ~2+~+1 (UI + n21) .S

!Zn = el = 8';10 (U2 + n22) j
Zl2 = e2 = X2 - r l>.

r = 18r (27)
~

YI = el + .0lnn
Y2 = e2 + .01n12
Z21 = UI + n21
Z22 = U2 + n22

Oooed loop RSPOnse ol el and e2 la unit-stepOD r

To bring this system into the standard tracking con­
trol configuration of fig.2 we define:

WI := [~ 1~]
With this we can immediately verify the second
condition of theorem 3.5, furthermore we can take:

Fig. 5: Closed loop behaviour of two-stage actuator

. [ 0 -~]G '- ~+IO
.- I ~

~2+~+1 ~+IO

[
.01 0 ]
o .01

R:= [ ~ ]

(28) ::f'.;' ."c -.-==----- ...
-0.60 0.2 0.4 0.6 0.8 L2 1.4 1.6

M ._ [ ~2+i±1 ]
(29)

to also satisfy the first condition.
As was suggested in the previous section we will
define W2 := w;bM and choose W; = I such
that the modified standard plant ft becomes inter­
nally stabilizable and optimal control theory can
be applied. From eq .13 we can find this modified
standard plant as

0 0 0 0 ~ 0 8
~+10 ~+10

-IQ 0 0 10 10~ IQ 108
~2+~+1 ~+10 ~ ~+10

0 0 0 ~ 0 1 0p= 82+8+1 (30)
0 0 0 0 1 0 1

0 .01 0 0 ~ 0 ~

~+10 ~+IO

_1 0 .01 I 8 1 ~

~2+~+1 8+10 8+10

r:or this plant a fourth order Hoo optimal controller
J( was determined, achieving an upper bound of

1.33 for the minimal oe-norm of the closed loop
system transfer from 8r , nl and n2 to ZI and Z2.

This then gives a fifth order controller J( = ÎJï./ k
that achieves tracking stability for the original sys­
tem. Fig.5 shows the tracking property both in the
frequency-domain and in the time-domain. Note
that a 'robust' solution according to corollary 3.6
does not exist due to the C+ transmission zero of G
at s = 0; the structural zero in the upper left corner
of G however, still ensures robustness against pa­
rameter variations (see Grasselli and Longhi , 1991).
Also note that next to the tracking property we can
establish a trade-off between properties like distur­
bance rejection (deterrnined by NI and Wd and
stability robustness (determined by N2 and W2 ) .

6 Conclusion

We have given necessary and sufficient conditions
for the non-robust asymptotic tracking problem
and have shown that the robust problem can be
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solved as a special case. Furthermore, the standard
plant formulation provides a framework for care­
fully (usually iteratively) selecting weights to spec­
ify design goals, and to use standard optimization
theory to find a controller to obtain them. Espe­
cially in comparison with available results on the
incorporation of the tracking probl em into Hoo op­
ti mizat ion th eory as for instanee given by Xu and
Mansour (1986) and Wu and Mansour (1990), the
given procedure is more general and re1ates better
to earlier results on the internal model principle and
the robust servomechanism problem.
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Abstract. In this paper a controller reduction scheme is proposed which provides a
guaranteed stability margin of the closed loop behaviour. A key role in the reduction
scheme is played by aspecific coprime factor representation of the controller. The coprime
factors of the controller are constructed using a coprime factor representation of the plant.
Thereby the closed loop behaviour is taken into account. Next reduced order coprime
factors, parametrizing the reduced order controller, are determined using a weighted
Ranke! norm approximation. For this reasons the proposed controller reduction method
will minimize the difference in closed loop behaviour induced by the full order controller
and the reduced order controller, secondly a stability margin on the closed loop can be
calculated.
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1 Introduetion

For various reasons low order controllers are pre­
ferred rather than high order controllers:

The advantage in computational requirements
of low order controllers are especially important in
consumer e!ectronics applications when a mass pro­
duction of the controller is necessary.

Another motivation sterns from controller de­
sign methods: R oo controllers are usually designed
on the plant model including weighting functions.
These weighting functions are used to shape for ex­
ample the desired sensitivity function. The order
of the controller equals the order of the plant plus
the order of the weighting functions. When for ex­
ample the Hoo design is based on a normalized co­
prime factor description of the plant, the order of
the controller equals the order of the plant and two
times the order of the weighting functions (McFar­
Ieme and Glover (1989)). Therefore the order of the
Boo-controller will be in general unnecessary high
and reduction seems useful.

The major difficulty in reducing the order of.the
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controller is to ensure that the reduction error does
not adversely affect the closed loop objectives. It is
assumed that the high order controller is designed
such that the closedloop objectives can be speci­
fied by the closed loop transfer function T(C, P).
For convenience we have denoted the closed loop
transfer function of a plant P controlled by the full
order controller C by T(C, P), the plant controlled
by the reduced order controller Cr will be denoted
by T(Cr , P).

An open loop approach like ( (Moore (1981),
Pernebo and Silverman (1982), Kabamba (1985))
to controller reduction will not take the closed loop
objectives into account.

A natural way of relating open loop properties to
closed loop properties is by making use of the graph
topology (Vidyasagar (1984)). For controller reduc­
tion this implies a right coprime factorization of the
high order controller is approximated by a right co­
prime factorization of the low order controller. In
the graph-topology the difference between the right
coprime factorization of the high order controller
and the right coprime factorization of the low or-



der controller is isomorph to the di fference between
their closed loop t ransfer functions. Therefore a re­
du etion problem stated in the graph-topology will
take the specified closed loop objectives into ac ­
count.

lf the high orde r controlle r is represented by a
uorrnalized rig ht cop rime factorizat ion the red uc­
ti ou error can be statod in the gap-metric and
will induce a bo und on the order of the low or­
der controller such that the closed loop rernains
st abie. T he reason for t his is that t he low or der
cont roller can be seen as a perturbation /deviat ion
of the full order controller, then results on rob ust
stabi lity in the gap-metric [Georgiou and Srn it h
(1000) , Bongers and Bosgra (1990)) d irectly app ly

to controlle r reduct ion. In t his respect, if desired ,
Lhc stability marg in derived in Liu et al. (1990)
cqll.(21) can be stated in the gap-metric.

l t is known that thc gap-merrie approach resu lts
Ircqucntly into "very" conservative robustness mar­
gin s. In this paper we will extend the results of
Bongers (1991 b) to controller rcduction in a closed
loop setting. Using these results we obtain a less
conservat ive robust ness margin and t he reby allow
the application of lower order cont rollers . This
margin is based on a coprirne fact oriza t ion of t he
controlle r deterrnined by t he closed loop trans fer
lunetion. II ence we take t he closed loop object ives
iuto acco unt and are a ble to guarentee stabilit y of
T (C" P ). A certain amount of perform ance will
also be ga ine d by the graph- to pology setting of the
whole reduction problem.

T he layout of this paper is as follows: aftel' the
preliminaries in Section 2 we will for mulate the con­
t ro ller reduction problern in Section 3. In Seeti on 4
t he mai n result of th is pap er is stated foll owed by
an cxample in Secti e n 6 an d Section 7 contains th e
conclus ions.

2 Preliminaries

In this note we adopt t he ring theoret ic sett ing of
(Desoer et al. (198 0), V idyasagar et al. (1982)) to
st udy stabie mult ivariable linear systems by consid­
ering them as t ransfer Iuncti on matrices having all
cntries belonging to a ring 'H. For the applicat ion
of state-space algo rithms we will idcnti fy the ring
'H wit h nUl"", t he space of stabie real rat ional fini to
di me nsierial lin ear time- invariant cont inuous-I ime
systcms . We cons ider t he c1ass of stablc/unstable
mul tivariablc systems as transfer funct ion m at ri ces
whose cnt r ies are elemcnts of the quot ierit field F
or 'H (F := {a/b Ia E 'H, b E 'H\ O} ). The set of
mu lt ip licative un its of 'H is defined as: :r := {h E
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'H l h- I E 'H} . In the seque l system s P E F '" ?"
are denot ed as P E F.

Proposition 2.1 Let P E 'H. The Hankel singular
values of Pare:

uih ere Wc, l-Vo ere ilie symmetrie positive definite
so lu iions to ih e controllable and obs eruable gmm­
m ians of P. Th e /lankel norm of P is defined as

I1 IJ 1111 =aIl
.

Ir P E F then the Il ankel singular va lues of P
are th e Hankel sing ular values of the proper stabie

part of P i.e. Plw
T he H",,-IIorm of P is defined as lIPII"" =

sUPw m ax adP(jw )).

Factorizations

Definition 2.2 ( Vidyasagar et al. (1982))
A plant P E F has a "ight (left) f m etional repre­
sen tation if there exist N, M (N, Û) E 'H sucli that
P = N M- I (= Û-I N ).

The pair M, N(Û, N) is riqh! (lef t) coprime (ref
or lef ) if it is a right (left) [ra ciioti and there exists
U, V(U, V) E 'H sueh tliat : UN + V M = I (f,ru +
Û V=I)

1'he pair M, N (l\:J, N) is called normalized l'ight
(left) coprime (nref or nlef ) if it is eoprime and:
M "M + N"N = I (ÛÛ" + Ni!" = I) with M " =
M T ( - s ).

3 Closed loop stability

In this sect ion we will study closed loop stability
according to Fig. 1, wh er e we ass ume that a stahi­
lizing con troller C has been designed for the plant
P. The transfer function I/ (C, P ) mapping the ex-

e 2 + U 2
C

+

p U I - e l

+

Fig. 1: close d loop configuration



givcn by:

l/(C,P) = [ I C ]-1
-P I

= [ I - C(I + PC)-I P
(I + PC)-Ip

-C(I + PC)-I ]
(I +.PC)-I

Remark 3.2 A-I is the transfer funetion from e
to 'IJ. Thus stability of the closed loop is equivalent
to stability of the transfer funetion A-I from e to
'IJ, whereas A is stabie by definition.

4 Controller reduction framework

Stability of the closed loop, i.e. the controller C
internally stabilizes the plant P, is guaranteed if
and only if H( C,P) E 'H. Define a cIosed loop
transfer function T( C,P) by

T(C,P) = H(C,P) - [~ ~]

= [-IC] (I + PC)-I [p I]

then using the definition of the ring 'H we have
ll(C, P) E 'H <=? T(C, P) E 'H. The advantage of
studying T(C, P) instead of H(C, P) becomes clear
when we use coprime factorizations for the plant
and controller. Now let C = Y X-I with (X, Y) a
ref of C and let P = M-I N with (M, N) a lef of P
then:

Using the coprime representation of plant and con­
troller the closed loop structure of Fig. 1 can be
redrawn as in Fig. 2 with ç = Me2 +Nel,

~ X-I ~ Y I-

Fig. 2: Closed loop structure with coprime rep re­
sentation

Lemma 3.1 ( Vidyasagar (1985» Let C E F
be given as C = Y X-I with (X, Y) a ref of C and
let the plant P E F be given as P = M-I N with
(M, N) a lef of P. Then stability of the closed loop
T(C, P) is equivalent to:

(2)
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Usually a full order controller (with the order of
the controller equal to the order of the plant and
weightings) is designed based on the plant model
P such that, the closed loop T(C, P) will be sta­
bIe and have a certain performance. For controller
reduction it is essential that the closed loop trans­
fer function remains stabie for reduced order con­
trollers Cr close to C. In a more precise formulation
of the controller reduction problem it is usefull to
determine the largest class S such that:

Cr E S := {Cr E F IT( Cr, P) E 'H}

In order to determine a large class S wewill ex­
ploid properties of a nlef of the plant in conjunct ion
with an associated ref of the full order controller.
Furthermore we will parametrize the reduced or­
der controller by the coprime factors of the Iull
order controller and additive transfer functions to
describe the difference between the full order con­
troller and the reduced order controller. In a robust
control setting these additive transfer functions ean
be seen as perturbationsjdeviations on eoprime fac­
tors of the controller. An upper bound on these
coprime factor deviations such that the closed loop
remains stabie is given in the following theorem.

Theorem 4.1 Let the plant P = M- IN be given,
with (M, N) a nlef ofPand let .the controller C E F
(internally stabilizing P) be given as C = Y X-I
with (X, Y) a ref such that:

and let the reduced order controller Cr E F be given
as:

Cr = Y,.X;I = (Y - ~y)(X - ~XrI (3)

Then a sufficieni condition for stability ofT(Cr, P)
is given by:

Proof: T(Cr , P) is stabie if Lemma 3.1 holds:



Using the factorization of the controller given by
(3) I\. can be written as :

App lying the small gain theorem we have a suffi­
cient condition for stability of T( Cr, P):

I1 [M N] 11 00 I1 [ ~~ ] 11 00 < 1

Using the fact that I1[M N ] 11 00 = 1 by defini­
tien of normalized left coprimeness, the theorem is
proved. 0

Ncxt we will use a transfer function Q E 1{ to char­
actcrize the class of reduced order controller fac­
tor izati ons and determine a Q E 1{ such that the
cop rime factor deviations are minimized . For this
reason the reduced order controller can also be Iac­
to rized as Cr = (Y,.Q)(XrQ)-1 with Q E 1{ such
that (Y,. Q, X rQ) is a right fra ction. Then the de­
viation between the full order controller and th e
reduced order controller ar e written as:

An uppper bound on all allowable deviat ions is de­
scr ibcd by:

Theorem 4.2 Gi ven a full order controller C =
}~IX;1 with (Xn, Yn) a nrcf stabilizing a plant P =
1\1 - 1N with (M,N) a nlef and defin e:

Corollary 4.3 Given Theorem 4.2 and the f act

that 11 1\.-11100 = IIT(C,P)lI oo [o r no rmalieed co­
prime factorization of plant and controller a suf­

ficient condition [or stabi/ity of (5) is

. f I1 [ x, ] [ x, ] all 1J~1t Yn - Y,. 00 < IIT(C, P)lI oo

The stability condition of Corollary 4.3 is equal
to stability in gap-metrio sense (Georgiou and
Smith (1990), Bongers and Bosgra (1990)).

Remark 4.4 Only in case of I\. = al the app/i­
cation of the muitip/icative Hoo-norm properties on
(5) implies that ihe stability margin defined in Th e­
orem 4.2 is as conservative as ihe margin in gap­
mettic sens e.

To provide an answer to the question wether I\. =
al occurs frequently in control design consider the
following remark.

Remark 4.5 If an (n - 1)Ih order cont roller has
been calculaied [or an nIh order plant using a nor­

malized coprime jacior approach (B ongers (1991a))
th en I\. = al. and th ere is no difJerence between th e
th e stabilit y margin in gap-metric sense and the
margin der iued in Th eorem 4.2. T lierefore when
a lotoer order con trolle r ha s been calculated or th e
controller has been designed with anoiher m etb od I\.
wil! in general not be equal to al .

Plant reduction

The presented framework of cont roller reducti on
can also be applied to plant model reducti on.

Remark 4.6 If ih e plant is unslable a contro ller
is necessarç to siabilize th e close d loop, since we
require stabi/ity of T( C, P) .

tlien th e class S of all stabilizing low order con­
t roll ers can be writt en as:

S = {Cr IT (C, P) E 1{ and

infÖE1t I1 ([ ~: ] - [ ~: ] a) 1\. -1/1 00 < 1}
(5)

Remark 4.7 If a cont rolle r is a oailabl e which sta­
bilizes tli e closed loop th eti m odel reduc iion is equiv­
alent with controller reduction. Th en th e inter­

change of plant and controller in Th eorem 4.2 yields
th e clos ed loop model redu ct ion,

Proof: Another coprime factor description (X, y)
of th e controller is given by:

Using this factorization sequential in Theorem 4.1
and in (4) proves this theorem. 0
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In the next remark we will show that open loop
model reduction is a special case of closed loop
model reduction.

Remark 4. 8 We assume a stabie plant without a
controller, i.e. a controller equal to O. A normal­
ized left coprime factori zation of the zero controller

C = X-I Y is Y = 0, X = I, th en according to



Theorem 4.2 A-I = M- 1 • The coprime factor rep­

resentation of the plant [ ~ ] A-I equals [ ~ ] I

which is the open loop plant reduction. Th erefo re
open loop model reduction is a special case of closed
loop model reduction,

5 Application to reduction

We will now apply the framework developed in the
previous section in an actual reduction scheme.

The freedom Q in (5) can not be used in the
actual reduction procedure but only in the stability
analysis phase. For this reasons in the reduction
scheme we will use a Q = 1. Given a plant and
controller by their normalized coprime factorization
as in Theorern 4.2 the controller reduction problem
is formulated as:

The reduced order controller Cr = y"X;l will sta­
bilize T(Cr, P) is (6) is less than one. This weighted
reduction scheme can be performed by balance and
truncate (Enns (1984)), Hankel norm approxima­
tion (Latham and Anderson (1985)) or an Hoo-norm
based reduction.

We prefer a Hankel norm approximation because
it provides the smallest upper bound on the Hoo­
norm of the model error which can be calculated
easily. In the reduction scheme two cases can be
disti nghuised:

1. A = al, a E IR
This is a special case of the presented frame­
work . The reduction problem is equivalent
to model reduction in the gap-metric (Corol­
lary 4.3). The balanced reduction approach
is described in Meyer (1988). If we view the
coprime factors as a normal plant description
we can apply a Hankel norm approximation
(Glover (1984)). In Glover (1984) an Hoo-norm
on the reduction error can be given in terms
of the neglected Hankel singular values of the
plant. This error bound is an upper bound on
(6).

2. A f:. al
In this general case there is a large benefit com­
pared to the case A = al since a lot of con­
servatism has been removed. The controller
reduction can be done by a weighted Han­
kel norm approximation (Latham and Ander­
son (1985)) in which A-I can he seen as the
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appropriate closed loop weighting. An Hoo­
norm bound of (6) can be calculated (Ander­
son (1986)) in terms of the neglected Hankel
singular values:

Theorem 5.1 Let Pand C be given by iheir
normalized coprime factorizations as in The­
orem 4.2 and denote the Hankel singular val-

ues a i ( [ ~: ] A·-
1

) as al ~ .. .a r ~ an > 0

then there ezisis a reduced order controller Cr
parametrized by (Y,., X r ) E 1-{ such that

Proof: Denote G := [~:] , G := [~: ]

then it is straight forward in (Latham and An­
derson (1985), Anderson (1986)) to prove this
theorem. 0

6 Example

In this section we will illustrate the presented
framework of controller reduction by an example
studied for example in (Enns (1984), Anderson and
Liu (1989), Liu et al. (1990)). This four disk exarn­
ple system can be described by an 8th order SISO
linear, time-invariant, minimum phase and open
loop unstable model. The two unstable poles are
located in the origin, therefore a controller is neces­
sary to stabilize the closed loop. In (Anderson and
Liu (1989)) different LQG controllers where calcu ­
lated and reduced by different techniques. In this
example we will use one of their LQG controllers
(the one with q2 = 200) to be able to compare the
results. In the paper by Anderson and Liu (1989)
stability of the closed loop is checked for ever y re­
duced order controller but no bounds on the stabil­
ity are determined before the reduced controller is
actually applied. However t he stability margin de­
rived in (Liu et al. (1990)) eqn.(21 ) can be stated
in the gap-metric if the factorization of the full or­
der controller is chosen to be normalized.

In order to apply the presented framework of
controller reduction we need to calculate the Hankel
singular values of the weighted controller factoriza­
tion in order to determine the least allowable order
of the controller. The hankel singular values of the

weighted controller coprime factors ai( [ ~: ] A.-1)
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In view of Theorem 5.1 and Theorem 4.2 the suf­
ficient condit ion for stability of T(Cr , P) is deter­
mined by the sum of the neglect ed singular values.
T herefore this sum is plot ted in Fig. 3 for different
cont roller orders. It can be seen in Fig. 3 that a
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Fig. 4: (1,2) element of the closed loop transfer
functionT(C;, P)
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Fig. 3: Hoo-norm bound on the coprime factor con­
troller deviations

plant and the full order stabilizing controller. The
actual reduction step is perforrned by a weighted
Hanke1 norm approximation. Compared to a gap
metric reduction it has been shown that for sig­
nificant lower order controllers the closed loop will
remain stable,

'l th order controller Cr (which has an error bound
sm aller than one) will still stabilize the plant P.
In Fig. 4 the (1,2) element of the closed loop trans­
fer function T(C;, P) being (I +PC;)-1 Pis given for
tlie full order controller and the 4th order controller.
lt can be seen that only a slight performance degra­
dation has occured due to the lower order of the
cont roller . When we calculate stability margins for
reduced order controllers using controller reduction
in the gap-m et ric (without the closed loop weight­
ing) it turned ou t that no stability of T( Cr, P)
can be guaranteed for any reduced order controller.
Thc IIoo-norm on thc error between 8th order con­
troller and the 7th order controller (t he minimal sin-

gu lar value of [ ~: ]) is O"min = 0.2, whil e thc al­

lowable deviation is I1 A_111 :,1 = 0.015.
IIcr cby we have illustated the importance of th is
presentcd controller reduction framewerk.

7 Conclusions

In tliis paper we have shown that using an appropri­
ate closed loop weighting, reduced order controllers
can be calculated with a guarantecd stability mar­
gin. The closed loop weighting is a function of the
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Notation

Le<> norm of G(s)
Hamiltonian matrix
lower- and upper bound of IIGIle<>
estimate of IIGIl e<>
maximum singular value

{w E IR IIIG(jw)lle<> = IIGIle<>}
estimation of w
Hermitian of A
inverse orthogonal iteration

In most cases the supremum in (1) is reached at
one specific frequency, denoted by w.

For G asymptotically st abie and proper , IIGIl e<>
can be interpreted as an upper bound on energy
transfer from input to output :

IIyll2 I1
s~p~ = liG oo

with II ull2 = J!::'e<> uT(t)u(t)dt finite.

The infinity norm ob eys standard operator norm
properties and besides it satisfies

1 Introduction

sup ër[G(s)]
Re(3)~O

provided G(s) does not have imaginary poles. For
st abie systems the He<> norm

cquals the Le<> norm. In the sequel the Le<> norm is
subject of discussion and simply denoted by IIGIIe<> '

In linear system theory and robust control, the in­
fiuity norm of a transfer function matrix is now
widely used: both in stability analysis and in per­
formance characterization, The infinity norm (Le<»
of a transfer function matrix G(s) is defined as

These properties are especially useful in robust con­
trol applications where a set of systems has to
be controlled (stabilized in first instance) . Repre­
senting the system variations in some way by an
auxiliary stabie perturbation system .6.(s) which
is free within an infinity norm bound, the set of
closed-loop systems can be concluded to be stable
if IIT(s).6.(s)lI e<> < 1, in which T(s) is an auxiliary
nominal closed-loop system. The larger 1I.6.(s)IIe<>,
the more serious the robust stabilization problem
in the infinity-norm setting. In this respect it is
important to realize that bounding system varia­
tions by means of infinity norm bounds on .6.(s)
is only attractive when little is known about the
origin of system variations. When the variations

(1)IIGIle<> = sup ër[G(jw)]
wEIR



only dep end on a re1atively small number of pa­
rameters (often called structured uncertainty) the
infinity norm bound may be much 1.00 crude (con­
scrvative) .

In the first stages of modelling for controller de­
sign purposes, littIe is known about the variations,
and infinity norm bounds on the uncertainty pro­
vide a valuable starting point in robustness issues.

In this note the problem of efficient computation
of tl.e infinity norm is considered. The purpose
is to make infinity norm approaches applicable 1.0

large systems which cannot be described accurately
by a single low-dimensional model. This means we
want to characterize i) differences between possibly
high-dimensional models in a model set and ii) con­
tributions of model reduction errors, both by means
of infinity norm bounds.

The difficulty in computing the infinity norm is
th at no direct methods exist and that the itera­
ti ve methods are time consuming. Several algo­
rithrns have been proposed in the literature 1.0 find
incrcasingly tight upper and lower bounds. Basic
idea is 1.0 first estimate the infinity norm b) and
thcn determine whether , is an upper bound or a
lower bound. Robel (1989) used the following re­
latiouship: iff,21- GT ( -s)G(s) has no .imaginary
transmission zeros and , > Ö"[D] than , > IIGlloo.
Thc transmission zeros are computed by means of
thc QZ algorithm. Independently Boyd et al.(1989)
proposed a biseetion algorithm in which the lower­
bouud propcrty was checked by means of the ex­
istcnce of imaginary eigenvalues of a Hamiltonian
11 b) in each iteration step. If the Hamiltonian
lias no imaginary eigenvalues ï is an upper bound.
Both methods are strongly related.

An important acceleration was found by
Bruinsma & Steinbuch (1990). They showed that
it is not only of interest whether the Hamiltonian
lias imaginary eigenvalues, but also at which fre­
qucncics these occur. Maximum singular values
are eomputed for a nu mb er of intermediate frequen­
cics and these often provide a major increase of the
lowcr bound. The so-called two step algorithm of
Bruinsma & Steinbuch (1990) is an efficient combi­
nation of

• thc maximum singular value evaluation over a
dense frequency grid (no upper bound) and

• the biseetion method that bounds the infin ­
ity norm without using any maximum singular
values .

Almest at the same time Boyd & Balakrishnan
(1990) discovered the improved rate of convergence

of the combined method.

This paper proposes some modifications 1.0 the two­
step algorithm that makes it better suited 1.0 high­
dimensional systems. The new algorithm makes
optimal use of the system poles 1.0 obtain a high
starting value for the lower bound. This reduces the
number of iterations needed. Besides the seareh for
imaginary eigenvalues of the Hamiltonian is per­
formed more efficiently; only eigenvalues close 1.0

some value on the positive imaginary axis are cal­
culated.

In section 2 a short summary of the role of the
Hamiltonian in Loo-norm calculation is given, and
in section 3 the essentials of the two-step algorithm
are pointed out.

Section 4 discusses methods 1.0compute eigenval­
ues selectively. A Hamiltonian eigenva!ue compu­
tation scheme is presented that is based on inverse
and orthogonal iteration.

In section 5 the new algorithm is discussed, that
incorporates the se1ective eigenvalue computation
and the initial search for a high lower bound.

2 The Hamiltonian in
infinity norm calculation

Since the infinity norm cannot be computed di­
rectly, methods have been designed that compute
accurate upper and lower bounds by iteration.
Most algorithms make use of a Hamiltonian ma­
trix that is a function of an infinity norm estimate
in such a way that the Hamiltonian matrix has
no imaginary eigenvalues if the estimate is strictly
larger than IIGlloo. If the Hamiltonian matrix does
have imaginary eigenvalues the estimate is a lower
bound. Several types of iteration are suggested 1.0

find sufficiently narrow bounds within reasonable
time.

First the eigenstructure of the Harniltonian is in­
troduced. Denote ï > 0 as infinity norm estimate.
Let [A,B ,C,D] constitute a minimal stabie state­
space system. For ï not a singular value of D (note
that IIGlloo ~ Ö"[DJ) a Hamiltonian matrix ean be
defined,

[
A-BR("()-IDHC -"(BR("()-IBII ]

H("() = "(CllS("()-IC _ All + CH DR("()-l Bil
(3)

where Rb) = Dil D_,2[ and Sb) = DD H _,2[.
A crucial property of this matrix is that only if jw
(w E IR) is an eigenvalue of Hb), G(jw) has a
singular value equal 1.0 ï (Boyd et al., 1989 and
Bruinsma & Steinbuch, 1990) . G(jw) may have
other singular values largor than ï.



The eigenvalues of H are symmetrie with respect
to both the real axis and the imaginary axis, The
structure in H is revealed by transforming H in the
following way:

Since this transformation does not affect the eigen­
values we have

,\[lf] = À[-HH] = -À[conj(Hf] = -conj(À[H])

[rorn which the double symmetry of the eigenvalues
can be concluded. Standard eigensolvers do not
take advantage of this given structure; these com­
putc up to four times too many eigenvalues. A few
attempts have been made to solve the Hamiltonian
cigcnproblem while preserving the structure men­
tioncd above (Bunse-Gerstner & Mehrmann, 1986
and I3yers, 1990). None of these methods is very ef­
Icctive, and the problem of calculating only eigen­
valnes on (part of) the positive imaginary axis is
not addressed.

3 Infinity norm calculation
(two-step algorithm)

The two-step algorithm (Bruinsma & Steinbuch,
1990) is an iterative method consisting of two steps
per cycle. Maximum singular value evaluations at
specific frequencies are used to obtain lower bounds
for the infinity norm. The specific frequencies
are obtained from Hamiltonian eigenvalue analysis.
The re1ationship between the two steps is shown in
the following scheme:

1. given a lower bound ll, compute the eigenval­
ues of H(-y) with 'Y an infinity norm estimate

'Y = (1 +2(.)1l, 0 < e~ 1 (4)

Store all positive imaginary eigenvalues jWi. If
no imaginary eigenvalues are found, 'Y is an
upper bound: h = (1 + 2(.)1l, and the relative
difference between upper and lower bound is
2(..

2. evaluate all ä[G(jw)] with {w} a series of inter­
mediate frequencies, (Wi + wi+d/2. The maxi­
mum value is taken as new lower bound ll.

Starting value for the lower bound II is the maxi­
mum of ä[D] and ä[D - CA -1B] (G(jw) for infi­
nite and zero frequency). If Hamiltonian H(-y) has
imaginary eigenvalues jWmin,'" ,jwmax we know
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that wE< Wmin,Wmax >. The process of increasing
'Y is accompanied by a decreasing (Wmin,Wma:z;) in­
terval until H has no more imaginary eigenvalues,
meaning that the infinity norm estimate 'Y is an up­
per bound. Thus this algorithm returns an upper
and lower bound on the infinity norm (respectively
ft and ll) and an accurate estimate of w.

The first step in each iteration cycle involves an
eigenvalue computation that is quite demanding for
large systems. An alternative approach should take
advantage of the symmetry structure of the Hamil­
tonian eigenvalues, and the frequency interval infor­
mation, that in each cycle becomes more accurate.
Selective eigenvalue computation is discussed in the
fol1owing section.

4 Solution of selected eigenvalues
by iteration

The computation of a relatively small number
of eigenvalues and eigenveetors can be done effi­
ciently using iteration techniques. The eigenvalue
of largest modulus can be computed (together with
its eigenvector) by means of the well-known power
method. Inverse iteration can be used to calculate
the eigenvalue of smallest modulus and the corre­
sponding eigenvector.

Inverse iteration is often used to calculate eigen­
veetors of a matrix A once some eigenvalues are
approximate1y known. Assume ~ is an approxima­
tion of some eigenvalue of A (not necessarily the
smallest or largest in modulus). Then inverse iter­
ation on (~I - A) returns , after convergence, the
eigenvalue À closest to ~ and the eigenvector v for
this À:

(5.I - A)v = (~ - À)v.

For our purpose a generalization of inverse iteration
is needed. All imaginary eigenvalues of H inside a
certain interval have to be computed. The problem
statement is thus: find a sufficient number of eigen­
values of H - jw with w> 0 in the middle of the
frequency interval of interest.

Generalizations of the power method are numer­
ous. Golub & van Loan (1989) describe the most
important ones. For a general square matrix 01'­

thogonal iteration (Golub & van Loan, 1989, p.355)
can be used to find the eigenvalues of largest mag­
nitude and the orthonormal vector basis spanning
the corresponding invariant subspace. Convergence
is linear with rate IÀnl+d/IÀn11 (IÀI in decreasing
order and nl the number of eigenvalues wanted).
Stewart (1976) describes a simultaneous iteration



metbod in which the convergence is faster for the
largest eigenvalues. The rate is

A reduced-order Schur decomposition is performed
cvcry now and then to obtain this acceleration. Si­
multaneous iteration-ds especially suited to large
sparse eigenproblems, since it requires only matrix­
vector multiplications, that can be programmed
very efficiently for sparse matrices. In these cases
standard QR-based methods are less efficient.

1'0 find eigenvalues of H close to jw a generalization
of inverse iteration is needed. Golub & van Loan
(1989) give an inverse orthogonal iteration scheme
(pp. 359-360) based on orthogonal iteration . Based
on Stewart's acce1eration of the orthogonal itera­
tion method, an acce1erated inverse orthogonal it­
eratien scheme can be derived straightforward.

Suppose the dimension of a general square matrix
Z is n. The following inverse orthogonal iteration
(lal) algorithm computes nl (nI < n) eigenvalues
with IÀ 1•...•n1 1< IÀn 1+1 ..... nl, and the associated in­
variant subspace Ql (an (n x nd matrix satisfying
Q{'QI = 1).

Algorithm [Ql, RIl = 10/(Z, nl)

choose nl orthonormal vectors: Q~O) (n x nd

for k = 1,2, ...

ZX(k) Q~k-l) (5)

Q~k) mk) = X(k) (6)
Z(k) [Q~k)]1fZQ~k) (7)

Z(k)V(k) = V(k) R(k) (8)I

Q~k) = Q~k) V(k) (9)

end

Thc algorithm starts with the solution step (5),
showing the inverse (power) character of the al­
gorithm (depending on the sparsity of Zand the
cxpccted number of iterations needed, this solu­
tion can be obtained directly or aftel' an LU­
dccomposition). In a QR-factorization step (6) an
orthonormal vector basis (Q d is calculated for the
subspace spanned by the veetors in X. Steps (5)
aud (6) state the original inverse orthogonal iter­
ation, the following steps are added for accelera­
tion. By means of vector basis QI, the original Z is
reduced (7). The reduced-order Schul' decomposi­
tion (8) yields an upper triangular matrix RI with
cigenvalue estimates of Z on the diagonal, and an
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orthogonal transformation matrix V by which an
update of the orthonormal veetors in Ql can be
achieved (9).

The diagonal of Rl will eventually contain a nurn­

ber of nl eigenvalues of Z with smallest magnitude.
Besides, Ql converges to the orthonormal basis of
the associated invariant subspace.

The iteration can be stopped when the maximum
re1ative change of the ordered diagonal e1ements of
H, drops below a given bound.

The convergencc is best if a set of nl eigenvalues
exists with significantly smaller modulus than all
other n - nl eigenvalues. Theoretical convergence
is linear. In practice this means that convergence
is rapid provided Q~O) is chosen properly.

101 can be used to calculate eigenvalues of H in
the vicinity of some jw, but there is no reason to
expcct that these eigenvalues will be on the imag­
inary axis. All eigenvalues are calculated that lie
within a circle located symmetrically on the pos­
itive imaginary axis. Note that the Hamiltonian
eigenvalues with negative imaginary part are sim­
ply not computed.

5 Algorithm to compute
the infinity norm
for large systems

As discussed earlier, the two-step approach yie1ds
upper and lower bounds on the infinity norm at the
expense of a relatively small numbcr of Hamiltonian
eigenvalue cvaluations (compared to the biseetion
method that fully relies on Hamiltonian eigenvalue
com pu tations).

For large systems it is particularly important to
limit the number of Hamiltonian eigenvalue evalua­
tions; 101 may provide some acce1eration but even
more can be gained by searching a high initial lower
bound on theinfinity norm in order to reduce the
number of iterations. This can be done by evalu­
ating the maximum singular value of G(jw) at a
large number of frequencies, including the frequen­
cies that are related to the system poles. The max­
imum of these values is often a good approximation
of the infinity norm (lower bound). Besides it gives
an idea how each mode in thc system contributes
to the transfer function matrix. This analysis has
only to be done once.

In some system realizations, such as. the modal
(Jordan) form and Schul' form realizations, the sys­
tem poles are available and thcir imaginary parts
can be uscd as frequencies in the maximum singular
value computations. Besides it can be checked di-



rect ly if the infinity norm exists (rememher that the
Loc norm definition excludes systems with imagi­
nar y poles).

Anothe r advantage of such realizations is that the
maximum singular values can he computed faster,
sincc the inversion of [sI - A] is simplified consid­
era hly.

Tr ansformation to some modal or Schul' realiza­
t ion may he very effective in infinity norm com­
putat ion. Fortunately the modal form of a (large)
syste m representation is also used to analyse the
(open-loop) physical properties. Modes that are
questionahle or input-output unimportant can he
t runcated in this stage. Only if one has confidence
in t he compute d modes the model will he used for
controller design.

Nice examp les can he found in structural dynarn­
ics and par ticularly in large-space-structure appli­
cations, Hu ndreds of vih ration modes may he of
im port ance for controller design and together with
a st ruct ural dynamicist the control engineer has
to decide which modes ar e reliahle and on which
modes a contro ller des ign can he hased. Perturba­
tien analysis and experimental verification are in­
dispcnsable. As stated earlier it is important to
compare different models and the modal form pro­
vides a nice basis.

A general (non-mo dal ) model of very high dimen­
sion can also be tran sformed to Schur form; this can
be done by unitary t ransformations thus avoiding
most numerical problems in comput ing the system
mo des .

It can be concluded that the system poles are di­
rcctly availab le in most mo dels of large systems. A
first mo dification of t he two-s te p approach involves
th e usage of pole-related frequen cies in searching
a sharp lower bound on the infinity norm by scan­
ning the maximum singular values of G(s) for these
frequencies.

T he second modification of the two-step algo­
rith m is the incorporation of 101. In running
through the iterat ion cycles the search for w can
bc const rained more and more. As opposed to
complete evaluation of the Hamiltonian eigenval­
ues, 101 takes advantage of the winterval inforrna­
tion built up in previous cycles. The function call

[Ql, Rl] = 101(jwI - H, nt} (10)

can be used to determine the eigenvalues of H that
deviate minimally from jw (w chosen in the center
of a given interval and nl related to the number
of eigenvalues expected in the circle with center jw
and diameter equal to the interval size) .

Yet there is no guarantee that 101 will find two
imaginary eigenvalues enclosing jw. First there is a
risk that a frequency interval is found that bounds
a 10cal supremum of Ö'. Another prohlem occurs if
the 101 algorithm cannot find two imaginary eigen­
values at all . In both cases the remedy is calculating
all Hamiltonian eigenvalues. In this way all imag­
inary eigenvalues are determined, and if there are
none, the local supremum is the global supremum.

Since modal form or Schur form realizations do
not yield sparse Hamiltonian matrices, 101 is only
effective if indeed a very small part of the eigenval­
ues are calculated.

Algorithm
(modified iuio-step infinity norm calculation)

1. Search system poles. If non-repeating, com­
pute a modal realization otherwise some Schur
form realization.

2. Make {w}, a series of trial values for wout
of the damped frequencies, the zero frequency
and all intermediate frequencies.

3. Choose e, the relative accuracy

4. Choose w(O) that gives the largest Ö'[G(jw)].
k(O) = Ö'[G(jw(O))]

5. if (Ö'[D] > k(O)),
ï(O) = (1 +2lO)Ö'[D] , goto 8

end

6. ï(O) = (1 + 2lO)k(0)

7. for k = 1,2, .. .

Z(k) = jw(k-l)1- H(-y(k-l))

[Q~k) , R~k)] = IOI(Z(k) ,2)

[À('} x ] R(k)
~ À~k) - I

if (real(À~k)) = 0 /\ real(À~k)) = 0 )

w(k) -(k-l) . (À(k) + À(k)) /2W -lmag 1 2

k(k) = Ö'[G(jw(k))]
ï(k) = (1 + 2lO)k(k)

else
goto 8

end
end

8. Calculate all À[H(-y(k))]
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9. if (real(>.d, . . . , real(À 2n ) i 0 ),
h=,

else
construct a series of wfrom the imagi­
nary eigenvalues and intermediate val-
ues, goto 3

end

Some additional remarks on the a!gorithm are pre­
scnted next.

• '1'0 obtain a sharp !ower bound b. the maximum
singular value of G(jw) is computed for all
damped frequencies and all intermediate fre­
quencies. In this way it is a!most certain that
the two step a!gorithm starts at the globa! it
peak and that subsequent Hamiltonian eigen­
va!ue computation on!y gives one pair of eigen­
va!ues on the positive imaginary axis (meaning
that !SJ has been !ocated in an interva!).

• For simp!icity the a!gorithm given above uses
two orthonorma! veetors in 101. This is a min­
imum, but usually sufficient as a resu!t af the
dense search over the frequency in the second
step. If 101 does not give two imaginary eigen­
values the algorithm switches to full eigenvalue
computation. On the ot her hand, if the 'far'
loop in step 7 continues to yie1d two imagi­
nary eigenvalues alocal supremum wiII be ob­
tained eventually. In the verification step (8)
the character of the supremum is discovered.

• Thc converged orthonorma! vector basis of a
previous it erati on cyc1e can be used as starting
veetors Q~O) in the next 101 ca1cu!ation.

• The modified two step algorithm has been im­
plemented in MATLABTM. The speed of in­
finity norm computation for lightly damped
high-dimensiona! systems has increased con­
siderab!y. A wider range of mode!s may benefit
from the modified two step a!gorithm once the
MATLAB restrictions on imp!ementing 101
are removed or circumventcd; current!y (5) is
solvcd direct!y in each iteration (ZX = Q).
One initia! LU decomposition (Z = LU) and
subsequent so!ution of LY = Q and UX = Y is
more efficient provided sophisticated so!ution
schemes are used (not availab!e in MATLAB).

As the case IIGlloo = ä[DJ presents serious prob­
lcms in computing the IIamiltonian eigenvalues due
to ncar singularity of DHD - ,2 I, re!iable upper
bounds can only be obtained by substituting a ,
which is c1early !arger than ä[DJ, meaning the rel­
ativc error in upper and lower bounds is re!atively
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large (large c). In the transmission zero approach
of Robe! (1989) a QZ a!gorithm is used that does
not require the inversion af DHD - ,2 I.

In the appendix eigenvalue derivatives of the Hamil­
toniart are derived and used to c1assify different
types of w interva1s. Based on this information
more sophisticated w's can be constructed.

In large systems analysis, eigenvalue routines that
compute on!y a specific invariant subspace can re­
duce the amount of computatianal wark consider­

ab!y. This note has shown how inverse orthogonal
iteration can be used in infinity norm ca1culation
of large systems. In Wortelboer (1990) balanced
reduction algorithms for large systems have been
proposed based on similar subspace iteration rou­
tines .

6 Conclusions

A recent!y introduced two-step Loo-norm calcula­
tion scheme has been ana!ysed for its app!icabi!ity
in large system analysis. Two modifications have
been proposed in this note. These inc1ude full us­
age of the system po!es, and the rep!acement of full
eigenva!ue computation of the Hamiltonian by se­
!ective imaginary eigenva!ue computation using in­
verse orthogonal iteration. Especially for rnechani­
cal systems which are often in moda! form and have
many lightly damped vibration modes this modified
Loo-norm calculation scheme is very economical.
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Appendix

Thc use of Hamiltonian eigenvalue derivatives in
constructing new w's is discussed. T his goes be­
yond the original approach in the two step algo­
ritlun that uses only the imagina ry eigenvalues of
IJ . 13y means of a simp le example it is shown that
using the derivative informatio n, frequency inter­
vals with local suprema can be determined.

In Fig . 1 an example is given. The frequencies
WI, • .. ,W6 have been derived from the imaginary
eigcnvalues of H for a 'Y that is larger t han both
ä[D] and ä[D - CA-lB]. Having no der ivat ive in­
format ion, we ean only say that w E< WI,W6 >.
With the derivat ive informa tion we know exactly
liow many singu lar values are larger than 'Y in a spe­
cific frequeney interval. This is indicated in Fig. 1
by means of '000', '111' and '222 '. T hus it can be
concluded that wE< WI,W4 > U < WS, W6 ». Fig­
ures 2, and 3 show singu lar value funct ions that
satisfy both frequeney interval and derivative eon­
straints. In Fig. 4 a singular value funct ion with
other local suprema is shown that satisfies the fre­
quency interval constraints but violates the deriva­
tive constraints.

Only if a I-type interval is sandwiched between
O-type intervals the existence of alocal supremum
can he concluded. In that case it makes sense to
choose a new win the middle of the interval. How­
ever, a sequence of non-zero type intervals should

'Y 00000 /111111222222 \ 1111111 \ 00000 1111 11 1111 000 00
/ Wl / W2 \W3 \ W4 / W~ \ W6

Fig. 1: Frequency intervals and derivatives
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\

Fig. 2: Fi rst singular value function example
satisfying derivatives

\

Fig. 3: Second singular value function example
satisfying derivatives

Fig. 4: Singular value function example
violating deri vati ves



he treated as a whole. In the given example it is
advantageous to include W2 and W3 in the wseries
(and not merely HWI +W2), !(W2 +W3), !(W3 +W4)).

The calculation of the eigenvalue derivatives is
discussed next. Assume we have nl distinct
cigenvalue-eigenvector pairs available, and the
cigcnvalues are given by a diagonal matrix Al, the
right eigenvectors by an (n x nd matrix Vi and the
left eigenveetors by an (nI x n) matrix Wl . Differ­
entiating llVi = ViA l with respect to ï and pre­
multiplication with Wl yields:

~l H dVi dVi
= Wl-

d
VI +WlH- - Wl-Al

dï ï dï dï
H dVi · dVi

= Wl dï VI + Al Wl--;[:f - Wl dï Al

Equating the diagonal terms yields

o. dl!
-=w-v
dï dï

(11 )

and

X l1 = -2ï[DH D - ï 2
It

2DH
X 12 = _[DHD - ï 2It l - 2ï2[DHD - ï 2Ij-2

X 21 = [DDH - ï 2Ij-I + 2ï2[DDH
- ï 2

It2

X 22 = 2ïD[DHD - ï 2Ij-2

Since the Xii matrices may be of relatively small
dimension, the best order in computing (11) is
(wBe)X(Cn v).

The calculation of the eigenveetors for specific
imaginary eigenvalues of H is relatively simple. Ir
lal has been used, a set of orthonormal veetors Ql
and an upper triangular matrix R, for the shifted
Hamiltonian are available:

(13)

From Q~HQl = jwI - Rl it can be concluded that
Ql also triangularizes H. By calculating the eigen­
vectors of jwI - Rh

with (À, w, v) the related eigenvalue and left and
right eigenvector respectively. dH / dï can be de­
rivcd from (3). the nl left (Wd and right (Vi) eigenvectors of H

can be obtained straightforward,

dH- = BeXCB (12)
dï

with

Be = [~ ~H ]
CB = [~ ;H ]
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W -lQH
1 = VI ' (15)
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Abs t ract . In literature the [I-control design problem has been formulated. Robustness
has been introduced into this setting using the small-gain theorem. For the purpose
of robust controller design it is necessary that an upper bound on the [I-norm of the
uncertainty is given as a measure of the difference between the system and the nominal
model. In this paper a procedure is developed that yields such an upper bound, given
measurement data and some a priori information, such as bounds on the noise. Therefore
the problem is reformulated to a (large scale) constrained optimization problem, related
to the Generalized Linear Complementarity Problem. The solution can be simplified to
linear programming at the price of conservatism.
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1 Introduction

In classical (e.g. prediction error) identification
schemes a dynamical model of a plant is estimated,
using measurement data and usually stochastic as­
sumptions on the noise corrupting the data. How­
ever in general a model does not give an exact de­
scription of the plant, there always is a model er­
ror. In these classical schemes no estimate is given
of this model error. Modern control theory how­
ever is able to cope with modelling errors, repre­
sented by perturbation (or uncertainty) blocks. In
Hoo-theory an Hoo-bound on the perturbations is
required. So new identification procedures are de­
veloped that yield an upper bound on the Hoo-norm
of the uncertainty, see e.g. Helmicki et al. (1989)
and De Vries (1991).

Dual to the Hoo-theory the [I-controller design
problem has been formulated in literature, see e.g.
Dahleh and Pearson (1987). The small-gain theo­
rem can also be applied in this setting and so ro­
bustness of [I-controllers can be considered. In tt ­
theory an [' -bound on the perturbation is required,
see e.g. Dahleh and Ohta (1988). This implies that
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identification procedures are needed that are fit for
this setting, i.e. yield tt-optimal models and an es­
timation of the model error. Some work has already
been done in this field by Jacobson and Nett (1991),
where single input single output systems are con­
sidered and step or pulse responses are assumed to
be available.

In the present paper a procedure is presented that
yields an upper bound on the [I-norm of the (non­
parametric) uncertainty, given measurement data,
a nominal model and a priori information about
the amplitude of the noise and the pulse response
matrix of the uncertainty. There are no restrictions
on t he experimental data or the dimension of the
input and output signals .

In section 2 some mathematica! preliminaries are
presented, including the definitions of the relevant
norrns. In section 3 a brief survey is given of [1­

(robust) feedback design, resulting in the problem
statement for this paper. In the next section the
required a priori information is established. In sec- .
tion 5 a procedure is developed for the calculation of
an upper bound for the tt-norm of the uncertainty.
Three methods to solve the resulting optimization



problem are proposed in the following section. The
result is discussed in section 7 and in the final sec­
tion conclusions are drawn.

2 Mathematical Preliminaries

Operators are denoted by capital letters [e.g.
G, ~), the corresponding pulse response sequences
(matrix valued for MIMO systems) by lower case
characters (e.g. g, ó) and signal veetors also by
lower case letters (e.g. u ,y,z) . Thus

00

Gu = 9 * U , G(q-') ~ L g(k)q-k, (1)
k= lI

where * denotes the convolution operator and q- '
the delay operator, q-' u(t) = u(t - 1) .

Let x be a real-valued m x 1 vector and A a real­
valued m x n matrix. Then Xi is the ith element of
x and Ai the ith row of A. A,) is the (i,j) entry of
A. Let in addition lal be the absolute value of the
scalar a. Then the following norms are defined (see
e.g. Desoer and Vidyasagar, 1975)

l

II x ll
"

= (~ Ixd") P, 1 :S p < 00 ,

the p-norm of the vector x, and

Il xll"" = max [e.],
I

the oo-norrn of the vector x.

Let h be an infinite sequence of (real) numbers
h(k), k = 0,1,2, ... , then the following norms are
defined.
If h E [I'

Ilhll" = (E, Ih(k)I") }, , 1 :S p < 00,

the ["-norm of the sequence h.
If u« ['"JO

Ilhll oo = sup \h(k)\,
k <::lI

the Zoo-norm of the sequence h.
Let u be an infinite sequence of m x 1 veetors

u(k), and g an infinite sequence of m x nmatrices
g(k), k = 0, 1,2, ... , then the following norms can
be defined.
If u E ['::;

II u ll"" = maxsup IU i(k)1 = max Iludloo =
I k<::lI I

= sup II u(k)lI"" ,
k <::U
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the Zoo-norm.
And if 9 E [:nn

n 00 ra

liglIl = maxL L Igij(k) I = maxL 11 gij 11 I =
I j=' k=u I j=1

= max IIgill, ,
I

the ['-norm.
With A we denote the algebra of BIBO stabie,

iinear, time-invariant , causal operators on [-:;'. The
[I-norm (or A-norm for operators) is an induced
norm, for we have that, if G E A (or equivalently

9 E [:/1")

II GII A = lI glI l = sup 11 Gull Q(o . (2)
11uI1"" = I

This means that the maximum peak amplification
of the system G is given by the [J -norrn of the sys­
tem 's pulse response matrix.

3 [l-Optimal Feedback Controllers

The maximum energy ampiification of a stabie, lin ­
ear system is equal to the H oo -norm of the system.
So for systems with bounded energy signals the
H "",-norm is the most suitable norm to use. The
Hoo-theory is concerned with minimizing the Hoo ­

norm of transfer functions (e .g. the transfer func ­
tion of noise signal to output signai) through the
choice of a stabilizing controller. Moreover robust­
ness has been introduced into this setting with aid
of the small-gain theorem (see e.g. Maciejowski ,
1989).

For systems with bounded magnitude signals the
more suitable norm is the A-norm or ['-norm, be­
cause of property (2). The [I-control theory is
concerned with minimizing the ['-norm of a sys­
tem through the choice of a stabilizing controller.
The [I-problem has been formulated by Vidyasagar
(1086) and is totally dual to the H'"JO-probiem. The
pr oblern of designing all [' -optimal controller has
been cornpletely solved for the MIMO discrete time
case in Dahleh and Pearson (1987), Mendlovitz
(1989) and McDonald and Pearson (1991). In these
papers the problern has been reforrnulated to a
linear programming problem. Notice that due to
the specific norms used, the HQ(o-problem is mainly
treated in the frequency domain and the ['-problem
in the time domain.

Robustness has also been introduced into the ['­
problem formulation by Dahleh and Ohta (1988),
using a variant of the small-gain theorem. Consider
the standard uncertainty configuration of figure 1.
In case of an unstructured uncertainty ~ the next



Fig. 1: Standard uncertainty configuration

theorem gives necessary and sufficiellt conditions
for robust stability of this closed loop.

Theorem 1 (Dahleh and Ohta, 1988) Let SE
A and suppose 11 is an [00 -siable, sirictlq eausol
(possibly non-linea» or time-varying) operator with

sUPllull",,=1 1I11uli00 :S 1. Then the operator I - Sl1
has an [00-stable inverse with bounded gain for all

11 ifand only ifllSll A = 118111 < 1.

Khammash and Pearson (1991) extended the solu­
tion to the general case of a block diagonal struc­
tu red uncertainty, where each block represents an
unstruct ured uncertainty of the kind of theorem 1.
In this setting the robust performance problem can
be addressed as well: Ir a nominal model, a block
structured uncertainty and bounds on the ampli­
tude of the input and disturbance signals are given,
then a bound on the amplitude of the output sig­
nal can be given. This is all analogous to the 11­
analysis problem in the H ",,-setting (Maciejowski,
1989). However the problem of [I-robust controller
synthesis is still for the greater part unsolved.

Apparently it is useful to have an identification
technique that, starting from time domain data
yields a nominal model and a bound on the un­
certainty, fit for ['-robust feedback design. As we
are interested in guaranteed robust stability and
performance, it is necessary that the uncertainty
is represented by an upper bound on its maximum
signal peak amplification. On the other hand we
do not want an unnecessary conservative bound,
because this reduces the achievable performance of
a controller. The complete problem of identifying
an ['-optimal model and a non-conservative upper
bound on the uncertainty is so far unsolved. In this
paper only the problem is addressed of the corn­
putation of a (non-conservative) upper bound on
the ['-norm of the uncertainty, given measurement
data, a nominal model and a priori knowledge of
the system, such as time-domain bounds on the
noise corrupting the data. We consider weighted
additive and weighted output multiplicative uncer­
tainty. Procedures are derived for the computation
of the worst-case uncertainty and the correspond-
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ing [J-norm. The obtained upper bound can then
be used for the analysis and design of U-robust con­
trollers.

4 A Priori Knowledge

For identification purposes we need of course mea­
surements of the input signal u(t) and the output
signal y(t) acting on the system, t = 0,1,2, ... , N.
The data mayor may not be generated in closed
loop.

We only consider discrete time, asymptotically
stable, linear, time-invariant systems G with addi­
tive bounded output noise. These restrictions are
not only meant to make the problem manageable,
but these or similar restrictions are also necessary
to obtain a sensible problem formulation. lf the
system is not stabie, it does not have a finite [1_

norm. Ir the system is non-linear, the [I-norm could
also be unbounded, for exarnple if the system con­
tains an on-off switch . Ir the system is time-varying
no upper bound on the [I-norm can be given, for
it is always possible that the dynamics radically
change behind the measurement horizon. Ir finally
the noise is unbounded, the data could be explained
completely by either the noise or unstructured un­
certainty and no conclusions can be drawn from the
available data.

The input- output behaviour of the plant is as­
sumed to be given by the equation

where u(t) is the measured input signal vector, y(t)
is the measured output signal vector, Hl (q-I) and
H2(q-l) are a priori known FIR (Finite Impulse
Response) sequences

hl h2

H1(q-l) = L h 1(k )q- k, H2(q-l) = L h2(k )q- k
A'=IJ k=IJ

and e,(t) and ei,(t.) are a priori known lower and up­
per bounds on the noise, possibly functions of time
t . The unknown quantities in (3) are the system
G E A, past data u(t) and y(t) (before the mea­
surements started, i.e. for t < 0) and the noise e(t)
(only bounds on the noise are known a priori). The
system G is represented by the (unknown) pulse
response matrix g, see equation (1).

Notice that the noise representation is quite gen­
eral, Ir we have Hl = H..,Hfjl and H2 = HcHi"/,
we can introduce a new Hl and H2 as Hl = H..1HIJ
and H2 = He HtJ , which yields the same noise
representation under the condition that HHH() =
HnHtJ (which is always true in the SISO case). For



5 Problem Reformulation

Given this a priori information we want to compute
a non-conservative upper bound on the [I-norm of

If the system is at rest at t = 0, Ü i can be chosen
to be equal to O.

(11)

6Mu = (Li + .6.)(w + b) = ~w + c + d,

c=flb, d=.6.(w +b)

In the appendix expressions are given for upper
bounds ä(t), b(t), ë(t) and d(t) on the signals a(t),
b(t), c(t) and d(t) respective1y. In general the func­
tions ä(t), b(t) and ë(t) vanish for increasing t, but
d(t) will not vanish for increasing t, though it may
remain small if n is sufficiently large.

and

1

C(q-' )u(t) = x(t) + a(t), x(t) = L g(k)u(t - k),
k=lI

We write for the terms appearing in (8):

ft 00

~(q-I) = L6(k)q-k, .6.(q-l) = L 6(k)q-k,
k=u k=n+1

(7)
where n is to be chosen by the user. We now try
to find the worst-case ~ that is consistent with the
data and estimate the influence of .6. from equa­
tion (5). This is a problem with a finite number of
unknowns.

We substitute (4) into (3) and get

y = Cu + 6.Mu + Hl e, H2e E [-el, eh] ' (8)

a(t) = L g(k)u(t - k), t = 0,1, ... , N. (9)
k=I+1

ex.

b(t) = :L m(k)u (t -k) , t = -n , -n +1 , ... ,N,
1.- =1 +1

(10)
where w(t) = 0 for t < O. Using (7) we obt.ain

1

M(q -l)U(t) = w(t)+b(t), w(t) = L m(k)u(t -k),
k=()

the unstructured uncertainty 6.. For that purpose
we reformulate the problem to a fini te dimensional
constrained maximalisation problem with a nonlin­
ear objective function and linear constraints. In the
next section three methods are proposed to solve
this problem.

In principle 6. has an infinite1y long pulse re­
sponse sequence. We want to find the worst-case
uncertainty that is consistent with the data avail­
able, This is thus a problem with infinite1y many
unknowns. In order to reduce the problem to a
finite dimcnsional one we split the uncertainty 6.
into two parts:

(6)

(4)G = C+ 6.M,

Üj = sup IUi(t ) l.
1< 1)

where the operators C, 6. and IvI are all e1ements
of A and have pulse response sequences g, 6 and
m respective1y. The nominal mode1 C and weight­
ing function IvI are known beforehand. Of course
the system G and the uncertainty 6. are unknown.
In this representation (4) weighted addi tive uncer­
tainty (M = W) and wei~hted output multiplica­
tive uncertainty (M = WG) are included, where W
is a weighting matrix. In this paper we will treat
the case of an unstructured uncertainty 6.. It is
however straightforward to extend the result pre­
sented to the case that a priori knowledge about
the structure of the uncertainty 6. is available.

From a data set of fini te length (N + 1) we can
deduce no knowledge about the system's pulse re­
sponse sequence g(k) for k > N. So we need a priori
information about the behaviour of the uncertainty
in order to be able to derive an upper bound on the
[I-norm of the uncertainty. Therefore we assume a
priori knowledge about the pulse respone sequence
of the uncertainty 6.. This means that we have a
matrix Rand a matrix P, Pij > 1, such that

16ij(k)1::; Rijpi/, V k ~ 0, (5)

see also Jacobson and Nett (1991). Of course one
could use this a priori information (5) directly to
derive an upper bound for the [I-norm of the un ­
certainty, but in general this will yie1d a much too
conservative upper bound.

Finally, in order to be able to handle initial con ­
di tions, we need an upper bound ü on past (unmea­
sured) data u(t)

[I-feedback design a noise representation is chosen
with H2 == I (Dahleh and Pearson, 1987), in which
case the transformation is possible as well .

In this paper we consider the estimation of an
upper bound on the [I-norm of the uncertainty. So
we already have a discrete time, asymptotically sta­
bIe, linear, time-invariant nominal mode1 C at our
disposal. This nominal model is the result of any
existent modelling or identification procedure.

We introduce the p x q uncertainty matrix 6. and
consider the uncertainty structure:
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With these results equation (8) can be written as

y = x + 6..w + H le +T,

v = [ : ] , VI = [ ä +~+ d ] , V" = [ a +e~,+ d ] ,

T E [-ä - ë -d, ä+ë+ d], H 2e E [- el,e,,].

By introducing a new noise representation

(16)
11 q

;ii = max L L IÓij(k )l,
k= o j= 1

under th e (lin ear) constrain ts

71 q

ti, = max L L IÓij{ k)1
k= lJj=1

Procedure 1 Colleet the required a priori knowl­
edge (section 4), including measurement data,
noise-bounds, uncertainty representation, bounds
on the pulse response sequence of the uncertainty
and a bound on the amplitude of th e input-signal in

the past.
.Choose a value of n , the order of 6.., and de­

termine the new system representation (12) by fol­
lowing the steps in seetion 5 and using the signal­

boutuls derived in th e appendix.
Solve for each row i the nonlinear programming

problem

"2L V2( k )v( t - k) E [- VI(t ), v ,,(t)], t = 0, ... , N ,
k=f1

Tl "J
z(t) + L ó(k)w(t - k) + L V,(k )v (t - k) = 0, V t

k=o k= lJ

such that (12) and (5) are (still) satisfied. In
this way the worst-case situation is calculated and
therefore inequality (14) will hold. We can deter­
mine the required upper bound directly by solving
the nonlinear programming problem (16). This is
generally however a difficult job. Therefore in the
next section this nonlinear programming problem is
reformulated to more tractable.programming prob­
lems. But first we summarize the procedure we fol­
lowed till now for the calculation of an upper bound

on 11~ 1I.4'

Finally the value ;ii is obtained by finding the 50­

lution to the maximizati on problem

(13)II~II A = max II ~dIA'
I

z(t) + 6..(q-1 )w(t) + VI (q -I)V(t) = 0, t = 0, ... , N,

VAq-l)v(t) E [- VI(t ),V,,(t )]. (12)

If Hl (q-I) == H2(q-I) == I it is simpler just to add
ä + ë + d to el(t) and e,,(t) and no new noise vec­
tor is needed. In the representation (12) the only
unknown quantities are the transfer function 6.. and
the noise signal v(t) . In order to get to the new sys­
tem representation (12) extra uncertainty has been
added to the noise representation. So the reduction
of the number of unknowns in ~ natural1y implies
an increase of the freedom in the remaining parame­
ters of~. This introduces some conservatism which .
cannot be prevented, but only minimized by us­
ing accurate a priori info rmation and choosing n as
large as possible.

When we now are able to compute an upper
bound on the ['-norm of each row of ~ , we also
have an upper bound on the [' -norm of~. Accord­
ing to t he definition of the [I-norm we namely have
that

VI(q-l) = [HI~q-') I], V2(q-l) = [ H
2(rl

) ~]

and introducing z = x - y, we finally get the system
representation

Moreover the pr oblem of finding an upper bound
on the [ I-norm of the i t h row of ~ now boils down
to finding an upper bound ;ii on the [ '-norm of the
ith row of 6.. ,

(14)

From the definition ofthe [' -norm, equation (5) and
(7) we namely have that

II~dIA = II6.. iL + II.&iII A :; ;ii + f i: Rijpi/ =
k=n+' j=l

'/

= ;ii +L Rijpijn(pii - i):". (15)
j =1

óij{k) E [_ R,jp;jk, Rij pif ], k = O, . .. ,n.

This problem has to be so lved f or th e unknown ma­
tr ices ó( k ), k = 0, 1, .. . , n, and th e unkno wn vec­
tors v( t), t = 0,1, ... , N .

Determin e an upp er beurul on I1~ 11...\ us ing the
equatio ns (13) and (15).

. If the a priori information is correct this worst­
case [I-norm is a guaranteed upper bound for
the difference between the system and the model.
Moreover it is non-conservative in the sense that
the worst-case situation can actually occur, consis­
tent with the given a priori information. There is
however a souree of conservatism not arising from
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the presented procedure, but from the definition of
the lr-norm. The result of equation (13) is prob­
ably unnecessarily conservative because the maxi­
mum is only attained for one value of i. This kind
of conservatism can however be banished easily by
introducing proper sealing matrices for the input
and the output.

Define the input sealing matrix

and then calculate II.6.iII A for all values of i after
proper substitutions. Next define the output scal- "
ing matrix

resulting in the uncertainty representation

.6. = T.6."U- I
, 11 .6. "11.4= 1,

which is non -conservative in the sense that all en­
tries of input and output are active in the worst­
case situation.

6 Methods of Solution

We now reformulate the nonlinear programming
problem of procedure 1 t o other, more tractable,
programming problems. Consider the ith rowof A
and reparametrise

Xj(k) ~ 0, Yj(k) ~ 0, k = O, ... ,n, j = 1, ... ,q,

with the property

where the x and Y are of course different from those
previously used. Of course the matrix ó(k) is now
for each value of k given by

ói_r(k)
ó(k) = xT(k) - yT(k)

Ói+1 (k)

Ir we finally define the parameter JLi to be the sum
of all xj(k) and yj(k) we can formulate the first
method to solve the nonlinear programming prob­
Iernof procedure 1.
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Method 1 Determine for eaeh value of i, {ti =
uiex u; under the constraints (12) and (5) and ihe
additional constraints

n q

JLi - L L(xj(k) + yj(k)) = 0,
k=llj=l "

Tl Cl

L L xj(k)Yj(k) = 0, xAk) ~ 0, yAk) ~ O.
k=llj=1 "

This still is a nonlinear problem but it is close1y re­
lated to the so-called Generalized Linear Cornple­

mentarity Probl~m (GLCP), see De Moor (1988,
chapter 3). GLOP is aetual1y concerned with find ­
ing a description of the set of unknowns that satisfy
constraints of the form appearing in the optimiza­
ti on problem stated here. The optimum is then
found by searching for {ti, the maximum value of
JLi appearing in the set of feasible solutions. This
largest value of JLi is then equal to the desired upper

bound on II A.II ..t'
Another approach is to fix JLi in the set of con­

straints and look iterative1y for {t" the largest value
of JLi such that there still is a feasible solution to
the set of constraints. This means that we are then
interested in existence of solutions and not in an
exact description of the whole feasible solution set.
We formulate this in the second method for the
solution of the nonlinear programming problem of

.procedure 1.

Method 2 Deiet-mine iteratively [or eaeh row
i, {ti, the maximum value of JLi , sueh that a [ea­
sible solution exists for the set of constraints (12)
and (5) and the additional constraints

n q

L L(Xj(k) + yAk)) ~ JLi,
k=llj=l

11 q

L L xj(k)Yj(k) = 0, xj(k) ~ 0, yj(k) ~ O.
~" = l l j= 1

This problem can again be solved using GLOP soft ­
war e. Notice that if there is a JLi for which there is
no feasi bie solution to the set of constraints, then
ti, < JL,.

We notice that the methods presented require a
large computational effort, because the number of
constraints can be large (namely proportional to
the number of samples N). However it is possible
to obtain an approximating solution using linear
programming for which efficient software exists, see
Luenberger (1984) . The procedure is then the same
as in the context of parameter-bounding algorithms
(Milanese and Belforte, 1982; Milanese, 1989) and



is simply to determine t he maximum and minimum
possible values of each parameter of the pulse re­
sponse sequence of ii without considering interac­
tion. We formulate the procedure.

Method 3 Det ermine for each value of i,j and k
the solution to the linea r programming problems:

max6, j(k) , min6ij(k)

subj ect to the (lin ear) constraints (12) and (5).
eau the maximum absolute value of 6ij(k), 8ij( k).
We then obtain the (cons ervative) upper bound

11 f/

IIiiil1 4 :s L L 5i j (k).
• A"= o j =1

The advantage of this method is also that the cen­
tral estimate (the average of the lower and upper
bound on 6ij(k)) is optimal in the sen se that it mini­
mizes the esti mate of the [I-norm of the uncertainty
resulting in method 3. Of course this estimate not
necessarily minimizes the upper bound calculated
in the methods 1 and 2.

7 Discussion

The procedure presented in section 5 in combina­
tion with either of the first two solution methods
of the previous section provide a way to determine
a guaranteed and non-conservative upper bound on
the l'-norm of the unstructured uncertainty. The
non-conservativeness arises from the fact that the
actual worst-case situation is calculated and there­
fore can occur consistent with the a priori informa­
tion given. The main drawback in the computàtion
is however the amount of unknowns and constraints
in the Generalized Linear Complementarity Prob­
lem , bo th of t he order N + n. This may cause
computati onal pr oblems, especially if the nu mb er
of samples N is large. Therefore also an approxi­
mating method is pr esented that makes use of linear
programming, for which efficient standard software
exist s. Of course this introduces conservatism in
th e computation of t he upper bound.

T he choice of a larger value of n will lead to
more unknowns and constraints in the computa­
tions, but will also lead to a tighter upper bound on
II~II A' provid ed th e a priori information is correct ,
A tighter bound is obtained as weIl, if the noise is
small and the influence of the initial conditi~ns (ü)
is small .

If more a priori knowledge is available, it can
be taken into account by adding linear cons traints
to either of the three programming problems . In
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theorem 1 it has been assumed that ~ is strictly
causal, so 6ij(0) = 0, V i,j. This can be taken
into account by either removing the 6i j (0) from the
unknowns or adding the constraint that they are
equal to zero.

If the structure of ~ is known a priori (e.g. di­
agonal) , t his information can be used by again ei­
ther removing the unknowns or adding linear con­
straints. In the lat ter case it is also possible that
in the constraints inequalities are used instead of
equalities, that means that a certain interval can
be specified in which the parameters of the uncer­
tainty have to beo This is of course analogous to
equation (5). In the same way it is possible to im­
pose more restrictions on the noise v( t), for example
that the mean (absolute) value lies within a certain
region, etc.

Finally we noti ce that the resulting upper bound
on the [I-norm ofthe uncertainty is an upper bound
on the H oe-norm as well, because the lat ter one is
always smaller than or equal to the former one, see
e.g. Boyd and Doyle (1987). This upper bound for
the H oe-norm is of course conservative and tighter
bounds should be obtainable, given the same a pri­
ori information.

8 Conclusions

In this paper a procedure has been developed that
yields a non-conservative upper bound on II~IIA'

starting from measurement data and certain a pri­
ori information, such as bounds on the noise. The
computation can be performed using GLCP soft­
ware and is quite complicated due to the large num­
ber of con straints, especially if many data points N
have to be processed . Also a simplified though ap­
proximating method is proposed that requires the
solution of a set of linear programming problems.
Further research is necessary to investigate the ap ­
plicabili ty of t he prop osed methods an d to ex tend
the result s to identification of [ I-op t imal models .

Appendix U pper Bounds for a, b, c
and d

Using t he a priori information of section 4 we can
give upper bounds for the signals a(t), b(t), c(t ) and
d(t) appearing in the equations (9) till (11).
Combining (9) and (6) yields

oe q

lai(t)1 :s äi(t) = L L Igij(k)lüj, t = 0, .. . , N,
k=t+l j =l



so ä;(t ) is a decreasing function of t .
In the same way we get from (10)

ex; q

Ib;( t)1 :s bi(t) = :L :L Imij( k )lüj, t = - n , ... ,N
k=I +1 j =1

with th e property t hat for any t > 1

b;( - t ) = .. . = b;( - 1) 2 bi(O) 2 b;(l ) 2 ... 2 bi(t).

Combining (11) and (5) yields

71 q

Ic;(t)l :s :L:L 16;j(k) llbj(t - k)1:s ëi(t) =
k=(Ij=1

u (I

"" "" - k -= ~ ~ RijP;j bj(t- k), t =O,l, . .. ,N,
~" = lt j=1

so ë;(t) is also a decreasing function of t.
Finally we find

00 'I

Id; (t )l :s :L :L 16ij(k )I (lwj( t - k)1+ Ibj(t - k) l)
k=II+lj=1

"" q

< :L :L Rijpi/( !wj(t - k)1+"bj(t - k)) =
k= II+1 j=1

1 q

= :L :L Rijpijk(lwj(t - k) j + bj(t - k))+
k=II+lj=1

00 q

+ :L :L Rijpijkbj(- 1) := di(t) =
k=I+1 j=1

1 q

:L :L Rijpijk(lwj(t - k)1 + bAt - k))+
k=,,+1 j=1

q

+:L R;jpi/ (Pij - 1r l bj( - 1) , t = 0,1, ... , N,
j=1

that will not vanish for increasing t, especially due
to the contribution of IWj(t - k)l.
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Abstract . Exp eriments have been performed for MIMO system identification of a Ben­
son Boiler . Five input variables were perturbed simultaneously by excitation of the set
points with independent binary sequences . Aftel' preprocessing of the data, several signal
analysis and prediction error identification methods have been ·applied. Identified models
have been cross validated, with satisfactory results. The main issue of this research is to
investigate the feasibility of closed loop identification for large scale industrial processes.

Keywords. Closed loop identification; Signal analysis; Application to power plant.

1 Introduction

In spite of the attention which has been given to
the development of methods for system identifica­
tion in the past decades, the number of practical
applications on a real plant is relative smal!. This
applies especially to mul tivariable closed loop sys­
tem identification.

Most of the applications deal with the open loop
case (Ka tayama et al. (1977) , Looy (1988) , Suther­
land et al. (1976), Swaanenburg et al. (1985),
Tysse (1981)) , or with simulated data (Greco et al.
(1982)) . Successful applications have been obtained
by Otomo, Nakagawa and Akaike (1972), Naka­
mur a and Akaike (1981) who have applied AR mod­
eling methods to a cement rotary kiln and a power
plant . In both cases, successful results were ob­
tained by application of optimal control techniqucs
bascd on th e open loop identified modeIs.

References Zee (1981) and Eklund et al. (1973)
deal with closed loop identification of real data.
Th e former is based on stochastic realization and

IPart of this work has been supported by the Department
of Trade and Indu stry. Experimental faciliti es: Stork Boilers
and EPON.
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prediction error methods applied to data of a pilot
plant, the latter deals with prediction error meth­
ods applied to a boiler system, but without explicit
reference to the closed loop nature of their exper­
iments. Surveys which contain a number of ree­
ommendations and some general information about
experiments performed on real plants , are given in
Isermann (1980), Gustavsson (1972).

We have applied identification to an indu strial pow­
erplant, explicitly addressing the mult ivariable and
closed loop situation. Therefore, we have per­
formed a number of closed loop experiment s on the
boiler system of a 600 MW coal-fired power plant
of the EPON in Nijmegen , the Netherlands. In this
paper we report the resul ts of th e final ident ifica­
tion experiment which was performed under par tial
load operation . \\Te int end to present a numb er of
the probl ems encountered in our particular applica­
tion, which we believe are fundament al from eith er
a practical or a theoretical point of view, and which
are common to most other large scale industrial ap­
plications of system identification. For details on
the underlying theory we will refer to the literature.

Because of the closed loop situation under which



the experirnents had to be performed, we wil! first
discuss the closed loop identification problem in
section 2. Some characteristics of the boiler are
described in section 3. The experiment design is
briefly treated in section 4. Especially in the multi­
variabie closed loop situation, the choice of a correct
timestep and the selection of signals for identifica­
tion is complex. These problems and ways to attack
thcm are discussed comprehensively in sections 5
and 6. Results of the parametrie identification are
given in section 7, and we wil! finish with conclu­
sions (section 8).

considered as a disturbance with a measurable and
an unmeasurable part. Sometimes dis described by
d = He. }[ represents the transfer function for the
stochastic part of the forward system, e is noise.
The problem of identifying a model which repre­
sents the open loop behaviour of G and sometimes
also H, based on measured signals of the process,
is called the closed loop system identification
problem. In Andersen et al. (1982), Söderström
et al. (1976) and Ng et al. (1977), the problem is
treated in the frequency domain. in Aling (1990), a
state space approach towards the problem has been
formulated.

2 Closed loop system identi­
fication

We will assume that some basic conditions are
satisfied. First, all identifiability results have been
proved under ideal conditions: the model structure
is assumed to be compatible with the underlying
data generating system. Secondly, the unmeasur­
able noise e is assumed to be independent in time
(white), to have a time-independent varianee and,
with prediction error based identification methods,
to be Gaussian. Thirdly, the closed loop system is
assumed to he stabie. We will use direct methods,
which are subject to a number of associated identi­
fiability conditions:
Direct methods. The identification is performed
using open loop methods with u and y as measured
model in- and output variables. A number of as­
sumptions with respect to the delay structure and
corre1ation between the noise sourees on controlled
and output variables are required (Söderström et
al., 1976):

1) The product of transfer functions Gf( is strietly
proper. In other words, there is a delay of one
discrete time step in the con trol loop .

2) The unmeasurable disturbance d is uncorre1ated
with n.

3) The external disturbance n is persistently ex­
citing. Persistency of excitation means that the
speetral density function of the disturbances has
a sufficiently broad bandwidth.

Recently condition 1 is relaxed. In Hof et al. (1990)
is shown that the closed loop transfer funetion G f{

may not have any algebraic loops, which is less se­
vere then strict properness .

The noise conditions are hard to verify. Some
other conditions can be checked a posteriori; the
correlation between input excitation and noise (pre­
dietien errors) is an example. We must bear in
mind that the results hold asymptotically, i.e. for
an infinite amount of data. Thus, small input exci­
tations will not automatically lead to good models
for a moderate observation time.

d

y

+

Fig. 1: Feedback system.

u

In application of system identification techniques
to industrial processes, experiments are almost in­
evitably performed under closed loop conditions.
This is necessary for maintaining a sufficient level
of security and productivity. In most cases, three
kinds of observed variables can be distinguished.
Set point variables, which serve as references for
the output variables, controlled input variables
which can be set directly to any desired value and
which are used as controller outputs , and the sys­
tem output variables .

The disturbed feedback system, as depicted in
figure 1, is symbolically described by the following
equations:

The measurable variables are: y (process output
variables), u (controlled input variables), n2 (set­
point variables). The unmeasurable variables are:
nl (input disturbances), d (output disturbances).
n2 can be used to introduce specific disturbances
to the system, determined by the experiment de­
sign for identification. Therefore, the variabie n is

y=Gu+d, u=/{y+n

Here, G and K represent transfer functions for
the deterministic part of the forward and back­
ward system. For ease of notation, the frequency­
dependenee of these transfer functions and of the
signals has not been indicated explicitly.

GO



3 Process description 4 Experiment design

The boiler can be separated in the combustion cir­
cuit and the water-steam circuit. The behaviour of
th e combustion circuit is primarily described by the
fol1owing signals: fuel flow, combustion gas damper,
pr imary and secondary air flow.

We will concentrate our identification efforts on
the wat er-steam circuit of the boiler, which is
schcmat icly presented in figure 2. Some properties
are discussed below.
o Thc Benson boiler is of t he once-feedthrough

type, and therefore contains no drum. After the
medium pressure turbine the steam is condensed
and recirculated via the accumulator by the feed
wat er pump.

o T he high pressure part consist s consecutively of
economizer, evapora tor , Benson bottie (see next
item) an d three superheat ers . After the high
press ure turb ine th e st eam is reheated before it
ente rs th e medium pressure turbine. A valve for
pressur e controle is placed in front of each tur­
bine .

o The Benson bottle is a water buffer, with the pur­
pose of maintaining a minimal amount of circu­
lation in the evaporator during startup or partial
load. This minimal circulation flow is necessary
for preservation of the evaporator pipes of which
the temperature must remain below a safe limit.
'Without the Benson circuit the evaporator would
net be able 1,0 evaporate the feed water with this
minimum flow and the feed water level would fi­
nally end up in the superheaters. The circulation
flow is controlled by a level controller which reg­
ulates the water level in the Benson bottie and
is effectuated by the circulation pump. During
normal full load operation th is circulation circuit
should not affect the process.

o The boiler operates subcritical. As a conse­
quence, the temperatures in the evaporator are
directly related 1,0 the pressure.

Although we do not go into details of the com­
bustion circuit, we have 1,0 realize the following:
The sequence in which the steam passes through
different parts of the water-steam circuit does not
correspond with the flow of the combustion gases
through the combustion circuit . This leads 1,0 com­
plicated couplings via the combustion circuit , which
are not easily described. BasicaIly, these couplings
will introduce additional dynamics in the model of
th e water-steam circuit, caused by physical feed­
back or feedforward. We have assumed that the
influence of the combustion channel 1,0 the water­
steam circuit is one-sided .
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In order 1,0 maintain a 40% load operation, only
three of the six burners where used. The feedwa­
ter flow was increased slightly in order 1,0 enforce
circulation flow.

Contrary 1,0 the standard way of operation, where
the pressure is controlled primarily by the fuel flow,
acontrol scheme was chosen by which the pressure
was regulated by the turbine valve. This offered the
opportunity 1,0 excite the turbine valve by injecting
pressure set point perturbations 1,0 the control sys­
tem, which would have been impossible otherwise.
Unfortunately, the fuel flow had 1,0 maintain a con­
stant level by which it was not possible 1,0 excite
this input variabie.

To avoid discontinuities in the data, the process
of cleaning the combustion area from smuts at dis­
crete time instances was stopped. The hereby in­
troduced slowly time-dependent effect of pollution
is expected 1,0 be removed from the data by means
of trend removal.

Almost all important input and output variables
are directly related 1,0 the high pressure part. Com­
pared 1,0 this, the influence of the dynamics of the
medium pressure part is considerably less. We will
summarize the most important signals related 1,0

the high pressure part of the boiler and discuss
them later.
Input variables:
QFW feed water flow
QSCI flow spray cooler 1
QSC2 flow spray cooler 2
VHP turbine valve aperture high pressure
CCD combustion gas damper aperture
QC circulation flow
Output variables:
TSH3 steam temperature after third superheater
Ó-T temp. difference over the second spray coole
PHP average pressure in the high pressure part
LC circulation water level
Intermediate variables:
QIE water flow inlet evaporator
TCJ temperature after circu lation junction
TSHI temperature after the primary superheater
TSH2 temperature after the secondary superheater
PFW pressure feedwater
Ap PFW-PHP
QF fuel flow
QPA primary air flow
QSA secondary air flow

Remark 1: The subdivision of the signals in input,
output and intermediate is based on a priori knowl­
edge, and is 1,0 some extent arbitrary. The results



of signal analysis and also the identification will fi­
nally prescribe which variables can be regarded as
being inputs etcetera.
Remark 2: The turbine valve apertures which are
used for the model are not the actual apertures,
but so-called linearized apertures which relate in a
linear way to the pressure difference over the valves.

Chosen was for a 2 Hertz sampling rate. This rate
will certainly cover all the dynamics.

We have employed a new method for the gener­
ation of independent Pseudo Random Binary Se­
quences (PRBS, plural: PRBS's), which requires
one shift register only and no specific initial state
information. This method, which is very practi­
cal for multivariable reai-time applications, is de­
scribed in Aling (1990). The bandwith of each of
the following PRBS's is according to the expected
dynamics in the subsystem it has to perturbe, and
is determined by the clock period .6., given a basic
timestep of one second for the shifregister, which
has order 16, giving a PRBS length of 65535 (max-
imum length sequence). .
PRBS QIE: excites the feed water flow through

the evaporator, .6. = 53.
PRBS QSCI and PRBS QSC2: affects dif­

ferent temperatures in the process. .6. = 141,
L\ = 89 respectively.

PRBS VHP: excites the turbine valve. .6. = 17.
PRBS QC: excitation of the circulation flow.

L\ = 23.

The combustion gas damper and the reheater spray .
cooler were kept at fixed levels. Unfortunately a
step disturbance on the CGn took place half­
way the experiment, which forced us to include the
damper as an additional regression variabie into
some of the models.

5 Data preprocessing

The total experimentation time was circa 18 hours, .
including load change from fullioad to partialload
and the adjustment of PRBS disurbances. After
the data preprocessing time series of 7.4 hours of
the process with circulation circuit active and per­
turbed by the 5 pertubations simultancously where
at our disposal for signal analysis and identifica­
tion. In the fol1owing we will give a comment on
trend removal, and discuss extensively the choice of
a correct timestep for identification.

A difficulty with trend removal is the lack of a def-
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inition of a trend. We carried out trend removal by
fitting a I5-th order Chebychev polynomial to each
time serie and subsequently substract this polyno­
mial from the time serie:

The choice of sampling interval for identifica­
tion was done based on the assumed time constants
of different parts of the boiler. Pressure phenom­
ena involve time constants in the order of seconds,
whereas thermal effects are much slower. With a
time step of 2 seconds, both high and low frequent
dynamics can be modeled. Unfortunately, such a
time step would probably be bad for the quality
of the low frequent part of the estimated modeis,
for which a sampling interval of 20 seconds would
be bet ter. With this choice, fast dynamics would
have to be represented by a feedthrough term in
the model structure. As a compromise two mod­
els could be identified, one of which is better for
the high frequencies and the other one for the low
frequencies.

For the closed loop case however, such a proce­
dure is not possible. As was explained in section
2, we need a delay of one time step in the loop
for identifiability. Consequently, in case there is
a feedthrough term in the controller one should al­
ways incorporate a one time step delay in the model
structure for the forward part. A sampling interval
of 20 seconds would then be impossible because it
would lead to an intolerable bias for the high fre­
quent parts. For our closed loop case there are two
possibilities:
o Asmall sampling interval of (say) 2 seconds with

an imposed delay of one time step for the forward
model. The estimates are likely to be poor in the
low frequent region.

o Partitioning of the model into different parts
which contains either high or low frequent dy­
namics and identification of modeIs with a delay
of one time step based on sampling intervals of 2
or 20 seconds, respectively.

The conclusion is that in the closed loop case with
different time constants, we would be inclined to
perform the identification in parts, while in the
open loop case th is is not necessary. In practice
this implies that, in the closed loop case, MISO
identification of different parts of the system is to
be preferred over MIMO identification of the total
system. Indeed, th is is the case as will be shown in
section 7.

As a result of the Iorrner we performed the post
sampling twice to get a data set with sampling in­
tervals of 2 seconds and a data set with sampling
intervals of 20 seconds. Before sampling the data



has to be filtered to prevent aliasing. The design
of such a anti aliasing filter involves choices as fil­
ter order and relative cutoff frequency. In our case,
an autoregressive 4-th order Chebychev filter with
a relative cutoff frequency of 0.1 and a pass band
ripple of 0.05, gave satisfactory results for the post
sampling operation from 2 to 20 seconds dataset.

6 Signal analysis

The purpose of signal analysis is to get a rough im­
pression of the relationship between different sys­
tem variables in the form of coherencies, covari­
anee functions, nonparametrie transfer function es­
timates etcetera prior to performing parametrie sys­
tem identification. Although the estimates may be
far from exact, the role of signal analysis is signif­
icant. Especially for the choice of variables which
should be incorporated into the model and for thc
choice of the sampling interval signal analysis may
be a key factor to suecess.

Usually, signal analysis is performed on a pair of
sealar signals, In multivariable applications how­
ever, contributions from an input variabie to an
output variabie will be considered as noise for any of
the other relevant input/output relationships with
the same output variable, when scalar mcthods are
applied. Thus, low cohcrencies are measured al­
though the relationship may be perfectly linear in
a multivariable sense. Rather than using scalar
rnethods, we would like to use a method which
decornposes the power of an output variabie into
eontributions from all input variables and a noise
component, on a relative scale from 0 to lover all
frcquencies.

In this section we will describe such a parametrie
method for multivariable signal analysis, which was
sueeessfully applied by Otomo et al. (1972) for an
open loop problem, and we givc an interpretation
of th is mcthod for the closed loop case. Then an
applieation of this method to our data set, in order
to find a signal selection for the total system, is de­
seribed. In the last part of this section the proeess
partitioning, which is motivated by the reasoning
at the end of section 5, is discussed.

The method is based on a simple autoregressive
(AR) model structure for the observed data Yt
(Yt E RP, t E Z). Let us assume that thc data can
be described by an autoregressive model (ft repre­
scnts the innovation):
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This re!ationship is expressed in the frequency do­
main by

Yt = H(Z)ft = A-1(z-l)ft

Let Hij(z) denote the (i,j)-th element of H(z), and
let y~i) and di) be the i-th element of the output and
innovation vector, respectively. AIso, assurne that
(~i) and (~j) be independent for any values i # i,
S # tand that (li) has varianee a}. The speetral

density function of y~i) is given by

P

Si(Z) = L IHij(zWo}
j=1

and the relative power contribution of dj) to y!i) by

..( ) _ IHij(zWo-;
S'1 Z - Si(Z)

For fixcd i these relative eontributions sum up to
1 and are the frequency-depcndent re!ative power
contribution from all irinovation e!ements, includ­
ing innovation element i. In other words, the furie­

tions Sij represent a parametrie multiple coherence
estimate of output element i with the innovation
vector. The quantities Sij are sealing-independent,
whieh has been shown in Aling (1990). Ir Yt is a
joint input/output vector of an open loop system,
these Sij are an measure for the influence of the
inputs (e.g. the excitation due to the testsignais)
on the outputs (e.g. the system variables). Aftel'
having identified the AR model, the independenee
of the eomponents of the innovation vector, whieh
was assumed, can be checked. With our open loop
application of this method, this asumption was al­
ways satisfied.

Let us consider what the interpretation of Sij(z)
is for multivariable closed loop situation. Again,
the analysis is done in the frequency domain. For
conciseness, we will drop the dependenee on zand
use a new notation for a partitioned output vector:
Let the output Yt be partitioned as

(
(I))

Yt = ~;o)

Here, y}J) is the first output component and y~O) is
the vector eonsisting of eomponents 2, ... , p of Yt.
Let the closed loop system be described by

_ ( y~1)) _( GI) + ( Hl) (y)Yt - - Ut et
(0)

u; Go Ho



o Hle(Y) and Hoe(Y) are independent. Therefore, if
the analysis is to be performed for all output el­
ements, this condition can only be satisfied if H
is diagonal and all components of etYl are inde­
pendent. This is a rather restrictive assumption
which needs to be checked.

o HIe(Y) and Le(u) are independent. Again, if the
analysis is to be performed for all output ele­
ments, th is implies that etyl and etui must be in­
dependent.

Note that the first assumption vanish when the
joint i]» vector consists of only one output and
(more) inputs (dimension Ho is zero). This is of
importance for closed loop MISO analysis, If the
first condition mentioned does not hold, then a
lower bound for the power of G I v(u) is obtained
by considering the total power due to the term
GI(J - I<oGo)-ILe(u) only.

Under these assumptions, noting that
(I - GI(I - I<OGot i I<d is a scalar quantity which
e1iminates in the computation of SIj(Z), it is easily
seen that the quantities SIj( z) represent the rela­
tive influence of the disturbances G I v(u) and Hl etYl
decomposed in their individual innovation compo­
nents. If the Sij(z) are computed for all i = 1, ... ,P
then an impression is obtained of the excitation by
other in- and output variables, which is relevant for
the corresponding estimates.
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Fig. 3: Feedback and alternative feedback represen­
tation of output element y(1).

The veetors etyl and etui are white noise distur­
bances on the output and input vectors, respec­
tively. The system is shown in figure 3a.

After some calculations the following is de­
rived: (I - GI(I - I<oGot l I<I)y(l) = GI(I­
I<oGot l (Le(u) + I<oHoe(Y») + Hle(Y). In accor­
dance with this formula, the system can also be
represented as in figure 3b, which represents the
same system as figure 3a.

Let us define
v(u) = (I - I<oGO)-I (Le(u) + J(oHoe(Y») Then, v.(u)

represents disturbances entering the loop at the m­
put signaIs. What matters for the identification
of MISO models with y(1) as output is the rela­
tive power of the signals G I v(u) and Hl e(Y). The
first signal represents the effect of independent in­
put disturbances at the output signal, the second
represents the amount of additional noise. If G I v(u)
is sufficiently large, we will have a good signal to
noise ratio on the output and we may expect good
identification results.

The relevant issue here is that, if the paramet­
rie signal analysis procedure explained above is ap­
plied to the joint input/output vector YI/O where
yf/o = (yT uT f, the power of y(I) effectuatecl
by these two disturbances, is expressed exactly by
Slj(z). For this, a number of assurnptions must be
made:

We have applied this parametrie signal analysis to
our data set with 2 seconds sampling interval (high­
est frequency is 0.25 Hz), using as thejoint 1/0 vec­
tor the variables: QFW, QSCI, QSC2, QC, VHP
(inputs) and TSH3, TSH2, TSHl, TCJ, PHP, LC
(outputs). An 10-th order autoregressive model is
estimated. The innovation components have been
checked on their mutual independence. For exarn­
ple, such a check in a application previous to the
one discussed here, showed us clearly that the steam
flow and the steam pressure can not be seen as two
independent system variables, which is logical from
a physical point of view. Consequently, the steam
flow is not considered as a system variable.

Some of the results are shown in figure 4. The
power contributions, which sum up to 1, are rep­
resented in the figure by the height of the band
between adjacent pairs of plotted lines. The hor­
izontal axis is the logarithm of the frequency. As
expected, the power of signal PHP is obviously for
a great part due to VHP, and for a smaller amount
due to QSCI and QSC2. The remainder represents
the power due to the PHP innovation. In the sec­
ond figure, the power distribution of QFW is shown.
The largest influence in the low frequencies is from
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QC. Indeed, there is astrong interaction between
QFW and QC caused by the control system. As
QC is strongly related with LC because of the level
control, also the effect of LC is present. The contri­
butions from QSCI and QSC2 are due to the fact
th at the spray cooler flows are tapped directly from
the feed water pipe. Note that in the high frequency
part, the power contribution to QFW is merely due
to its own innovation, whereas the power contri­
bution to PHP is not only due to its own innova­
tion, but also significantly due to VHP. In general
the pressure phenomena contain relatively high fre­
quent dynarnics, whereas most other system parts
have bandwidths which are about ten times smaller.
In the present closed loop situation, this observa­
tion supports the idea of model partitioning as pro­
posed at the end of section 5, and consequently, to
perferm MISO identification instead of the estima­
tion of one MIMO model.

With the knowledge over the correct system inputs
and outputs, gained by the foregoing parametrie
signalanalysis, we will divide the process into parts.
At this moment we need the intermediate variables,
as they are declared in section 4. The partitioning
rests on: knowledge of the physical phenomena in
thc process, results of (parametrie) signal analysis,
also performed for the joint ij0 veetors of each sub­
model, and results of the identification itself. The
latter means that if for example the process vari­
ab Ie TSHI is predicted much better by a model
taking also CGD as an input, then CGD is nom­
inated as being an input. Besides the forcgoing
thc following preconditions must be valid: the sig­
nal choice for a certain model must not contradiet
with the signal analysis, checkable conditions as in­
dependenee of the innovations of the inputs must
be fullfilled and the conneetion of all the subrnod­
eis, in which outputs of some submodels are inputs
for other subrnodeis, must result in a total model.
This total model has as inputs the possible con­
trolled input variables and as outputs the defined
output variables. The names and some aspects of
the ten submodels are:

I: Circulation junction, 11: Water flow genera­
tion, 111: Economiser,

IV: Evaporator, Benson bot tIe and first super­
heater. This is one of the most complicated and
crucial parts of the boiler system. The evapora­
tor stretches over the full height of the combustion
chamber, and therefore interacts with almost ev­
ery part of the water-steam and combustion circuit .
One of the problems for identification is that many
important variables cannot be measured. Temper-
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atures in the combustion ehamber are not avail­
able at all, and temperatures in the evaporator are
equivalent with pressure measurements because in
the evaporating process temperature and pressure
are related by the phase transient curve of the pres­
surejtemperature diagram for water. For these rea­
sons we were more or less forced to consider the
temperature after the primary superheater as the
relevant output variabIe. Although there is no ex­
act water level in the evaporator, we think th at
there is an effective one which is related with D.p.
Indeed, inclusion of D.p as an input variabie re­
sulted in a significant improvement of the model
quality. Also CGD was needed as an additional re­
gression variabie because of the step disturbance
which was mentioned earlier, and turned out to
be of considerable influence. Also inclusion of QF,
QPA and QSA resulted in improved validation re­
sults. The independency in the latter three process
inputs is in this case probably due to the nature of
the fuel; the quality of coal expressed in cornbus­
tion energie is irregular. Afterwards identification
of this submodel, the innovations can be checked
on their mutual independency.

V: D.p - subsystem. Because D.p is included as a
model input for subsystems IV and VII, we have to
describe it as the output of this auxiliary subsys­
tem. It turns out that D.p can be described fairly
weil by a model with QIE, QC, QSCl, QSC2, VHP
and PHP as input variables.

VI: Spray cooler 1, VII: Secondary superheater,
VIII: Pressure subsystem, IX: Spray cooler 2, and
X: Third superheater.

The data set with 20 seconds sampling interval
is used to identify the submodels I, Ill, IV, VII and
x.

Altough the results of the parametrie signal anal­
ysis give the impression that there should be infor­
mation relat~d to the varaible LC in the data set,
we were not able to find a model to describe the
behaviour of LC, by means of closed loop identifca­
tion.

7 Identification results

In th is section results of the parametrie identi­
fication are given. First we discuss the used
model structures, identification- and validation­
techniques. Then we show time responses of 3
identified models. Two models are the result of
MISO closed loop identification, the last one con­
cerns MIMO identification in the open loop.



We use so-called "Talrnon and van den Boom"
ABFCD model structure (sec e.g. Aling (1990)),
which is of the form:
A(q)Yt = F-1(q)B(q)Ut + D-l(q)C(q)ft
A, B, F, C and D are polynomial matrices in the
backward shift operator q. The identification was
based on the direct method, using Least Squares
(LS) and Recursive Prediction Error (RPE) tech­
niques. Equation error AB-models were identified
by means of LS, RPE was mostly used to estimate
BFCD models. However, several kinds of MIMO
ABFCD model structures have been identified. In
the closed loop situation, always a delay of one time
step is imposed on the forward part of the deter­
ministic part of the model.

The models were cross-validated on an indepen­
dent part of the data set. For this, the data set
was split into two parts of 3.7 hours, 666 or 6660
samples depending on the sampling interval. The
first part, where the step disturbance of CCD took
place, was used for identification and the second
part for validation based on the so-called output
error RMS values (Relative Mean Square, the sam­
ple varianee of the output errors divided by that of
the corresponding output). The output error is de­
fined as follows. Consider a model structure of the
form Yt = GUt + H ft where G and H represent the
deterministic and the stochastic part of the model
respectively. Then f~ = Yt - GUt is the output er­
ror. Although the identified models could have an
equation error structure, output errors are always
used for validation because we think that this gives
a bet ter measure for the quality of the determin­
istic part of the model. In many practical cases
the user is interested in the deterministic transfer
function G. Surprisingly, the models identified with
an equation error structure often performed better
in output error validation sense then the identified
models with an output error structure, for example
BF-models. We will not give an interpretation of
th is phenomenon.

Once the correct inputs and outputs for a model
are selected, the determenistic parts of the LS and
RPE models (AB and BFCD structures respec­
tively) performed equal, as weil with the output
error validation as with the shape of the step re­
sponses. Often even the statie endvalues of the step
responses of the different models are close to each
other. (See figures 6 and S).

Figure 5, subsystem IV: Evaporator, Ben­
son bottie and first superheater. A 13-th order
BFCD model and a 15-th order LS model have been
identified. Only a record of the output error vali-
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dation is shown, over a time span of 8000 seconds.
RMS = 0.26 for both models. The solid line is the
measured output, the dashed line is the predicted
one by the model.

Figures 6, and 7, subsystem V: 6.p. Step
responses are displayed over 100 seconds of a 6-th
order LS model (solid line) and a 4-th order BFCD
model (dashed line). An increase of QIE indeed
leads to an increase of 6.p or, in other words, an
increase of the water mass in the evaporator. Also,
after opening the turbine valve (VHP), the pressure
(PHP) decreases by which again 6.p increases, We
have no interpretation for the remaining responses.
The RMS value of the LS model is 0.14, soa seconds
of the output error time serie is shown.

Remark: The representation af a submodel in the
form of a multivariable step response should not
lead to the conclusion that the auxiliary variables
used as input variabie for the submodel can be ma­
nipulated directly and independently. Prudenee is
called for by physical interpretations of the auxil­
iary variables as controlled input variables.

Figures 8, and 9, MIMO open loop model.
A model has been estimated with the five set point
disturbances as inputs and LC, TSH3 and PHP as
output variables. This concerncs an open loop iden­
tification, and the model does not only contain the
transfer function of the forward system G, but also
an unknown part of the backward system J( (which
may be undesired). The resulting model step re­
sponses are shown in figure S over 1000 seconds for
a 7-th order BFCD model (solid line) and a 7-th
order LS model (dashed line). The RMS values for
the BFCD model are 0.40, 0.14 and 0.09 for LC,
TSH3 and PHP respectively (validation: figure 9,
over 10000 seconds). Note that, contrary to the
closed loop situation, no problems arised in esti­
mating a MIMO model and also the behaviour of
the variabie LC is modelled.

Altogether, it seems that closed loop identification
of carefully selected subsystems as weil as open loop
MIMO identification using RPE methods yields
satisfactory results, even for complicated industrial
processes.

8 Conclusions

An application of closed loop system identification
has been performed on a coal-fired boiler system.
Conditions have been formulated under which iden­
tification of (partial) models lead to meaningful re­
sults. A signal analysis method proposed by Akaike



has been reinterpreted and applied to the closed
loop case. Based on signal analysis and physical
insigh t , we made specific choices for the input and
output vari ables of different parts of the boiler. The
closed loop identifiability conditions, in combina­
t ion with the fact that the time constauts of the
system were quit e different , required partitioning
of the boiler system and identification of partial
models (MISO). For these models, as weil as for
MIMO open loop modeIs, satisfactory validation
results have been obtained. Identification of closed
loop systems is considerably more complicated than
identification of open loop systems. It requires a lot
of expertise, not merely about the process itself, but
especially about the potentials and limits of closed
loop system identification.
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Abstract. Results are shown of the identification of a three input two output pilot
plant evaporative crystallizer (970 litre), in which the Grystal Size Distribution (GSD) is
the main characteristic of the process 1,0 be modellcd, and subsequently 1,0 he controlled.
The experimental situation is characterizcd by short observation times and a bad signal
1,0 noise ratio of the CSD measurement device. A three step identification procedure is
applied, consisting of high order ARX modelling, model reduction through approximate
realization based on step response matrices, and finally output error optimization in a
pseudo-canonical (overlaping) state space parametrization.
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tallization, industrial production systems.

1 Introduction

Crystallization from solut ion is an important sep­
aration and purification technique in chemical in­
dustry. It is characterizcd by the formation of a
spectrum of differently sized crystals. This spec­
trum, called the Crystal Size Distribution or CSD,
dictates the behaviour of the crystals in succeed­
ing operations, such as filtration, drying, storage
and transportation -and is also important for the
marketability of the crystals produced. In many
industrial crystallizers the observed CS D's show
transients and oscillations due 1,0 (external) distur­
bances or instability of the process itself (Randolph
and Larson, 1988). Therefore it is desirabie 1,0 con­
trol the CSD produced in the crystallizer.
In order 1,0 design a controller for the GSD a com­
pact model of the GSD dynamics is required. Cor-

tThe original version of this paper is presented at the
9t h IFAC/IFORS Symposium on Identification and System
Parameter Estimation, July 8-12, 1991, Budapest, lIungary.
Copyright of this paper remains with IFAC.

§Present address: Koninklijke/Shell-Laboratorium, Am­
sterdam (Shell Research B.V.), P.O. Box 3003, 1003 AA
Amsterdam, The Netherlands
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responding models based on first principles and a
priori knowledge appear 1,0 be very complex, hav­
ing' a distributcd nature; they are based on many
model assumptions that are hardly verifiable, and
they incorporate unknown coefficients. As aresuit
this type of theoretic models does not produce a
sufficiently accurate description of the process dy­
namics that can be used as a basis for control design
on an actual plant (De Wolf, 1990).
In order 1,0 arrive at compact models of the GSD
dynamics that are appropriate as a basis for control
system design, black box models can be identified
on the basis of measured input/output data. In ap­
plying system identification mcthods 1,0 crystalliza­
tion processes a number of aspects that complicate
the identification procedure has 1,0 be specifically
mentioned:

• Thc mcasurement techniques available for the
on-line mcasurements of the CS D in a crys­
tallizer are still rudimentary, and consequently
the signal to noise ratio of the data due 1,0 mea­
surement noise is rather bad.

• The time constants of the process discussed in



this paper range from 1 to 10 hours, which
makes it difficult to measure sufficiently long
data sets that are obtained under constant op­
erating conditions. This means that the length
of the available data sets will be relatively
small.

It has to be stressed that th is situation puts fun­
damental limitations on the achievable accuracy of
the identified models.
This paper discusses the identification of a three
input two output pilot plant evaporative continu­
ous crystallizer (970 litre), available at the Delft
University of Technology. This system was build in
order to investigate con trol strategies for industrial
crystallizer systems. A brief sketch of this process
is given in section 2. In order to arrive at a compact
model suitable for control system design, aspecific
- three step - identification procèdure is presented,
rcsulting in the use of an output error model struc­
ture. This procedure, which is discussed in section
3. starts with the estimation of a a high order initial
model, which - after model reduction - can be used
as an initial estimate for a nonlinear optimization
algorithm, minimizing the sum of squared output
errors directly in a state space representation. In
tliis identification strategy a similar philosophy is
pursued as in Swaanenburg el al. (1985), Wahlberg
(1987), Backx and Damen (1989), starting the iden­
tification procedure with high order modelling. The
second step in this strategy, being the model reduc­
tion step, will be performed by applying a weighted
approximate realization algorithm based on step re­
sponses in stead of Markov parameters, showing an
improved preformanee in the low frequency range
(Van Helmont el al., 1990). Special attention will
be given to the output error identification algorithm
in a state space form. Final1y some of the identi­
fication results will be presented and will be com­
mented upon.

2 The Crystallization Process

Figure I shows a simplified process scheme of the
970 litre pilot plant crystallizer. The crystal1izer
is operated with the ammonium sulfate water sys­
tem. The production rate is approximately 3500
kg of crystals per 24 hours. Crystal growth and
nucleation (the birth of new crystals) are dri ven by
supersaturation which is created by the evaporation
of the solute (water). The crystallizer is fed by an
undersaturated feed. Product is isokinetically re­
moved by a discharge tube in order to prevent that
the GSD in this flow differs from the one in the
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crystallizer. The large cilindric zone around the
crystallizer (the annular zone) is used to remove
small crystals present in the crystallizer. These
small particles removed from the'crystallizer by the
annular zone are heated, send to the dissolving tank
and subsequently returned to the crystallizer. This
preferential removal of small crystals and their dis­
solut ion is an important input to affect the dynam­
ics of the GSD (Randolph and Larson, 1988). Be­
sides this flow, which is referred to as the fines flow
Q f , two other inputs are available for control of
the GSD. These are the product flow rate Qp ,
which affects the residence time of the crystals in
the crystallizer, and the nett heat input to the crys­
tal1izer Pin' The GSD in the product flow rate is
mcasured by a combined system of a dilution unit
and a Malvern 2600C particIe sizer. The principle
of operation of the particIe sizer is based on diffrac­
tion. The diffraction pattern of light emitted by a
monochromatic laser beam will depend on the size
distribution of the particIe sample present in th is
beam. The measured diffraction pattern is used to
reconstruct the GSD of the sample. The dilution
unit is required to dilute the slurry concentration
of a slurry sample below the maximum allowable
concentration that can be handled by the Malvern,
which is 1 volume percent of particles. The corn­
bined system of the dilution unit and the Malvern
allows for a sample rate of one GSD measurernent

per two minutes. For purpose of modelling and con­
trol we distinguish two output variables that act as
measures for the performance of thc GSD: m3, be­
ing a measure for the slurry concentration in the
crystallizer, and vo125, the volume fraction of crys­
tals in the size range (87.5 -100flm). More details
on the crystallizer and the on-line GSD measure­
ment system can be found in De Wolf (1990) and
Jager (1990).

3 Identification Strategy

The identification strategy that will be pursued in
this paper is a three step procedure, where in the ul­
tirnate step an output error type of model structure
is applied . In view of the general class of predic­
tion error model structures, see e.g. Ljung (1987),
we will consider a linear, time-invariant fini te di­
mensional system S:

S: y(t) = G(q)u(t) + H(q)e(t) (1)

with y(l) E IRP the p-dimensional output signal,
u(l) E IRm the m-dimensional input and e(t) E IRP,
with {e(l)} a sequence of independent random vee­
tors with zero mean and covariance Ee(t)eT(t) = A.



G(q) and H(q) represent the proper rational. trans­
fer function matrices of the transfers from input
to output, and from noise contribution to out­
put. In (1) q denotes the forward shift operator:
qu(t) = u(t + 1).
A general type of prediction error model set is char­
acterized by:

M: y(t) = G(q, O)u(t) + H(q,O)t:(t) °E 0 C IRd

(2)
with G(q,O), H(q,O) proper transfer functions of
appropriate size, depending on a real-valued param­
eter vector °that is varying over a set 0 of adrnis­
sibie values, and dt) E IRP the one step ahead pre­
diction error (Ljung, 1987). Throughout this paper
we will consider a quadratic type of identification
criterion:

1 N
0 N = arg min N "t:T(t, O)t:(t, 0) (3)

Oee L
1=1

The output error model structure IS represented
by the fixed choice: H (q, 0) == I. The choice for
applying an output error model structure is moti­
vated by the fact that - in contrast with the very
popular linear regression type of model structures
- an output error model approximates a system to
be identified much more "balanced" over the whole
frequency range. It has been shown by various au­
thors that when considering identification in terms
of approxirnate modeIling, linear regression type of
models may lead to very bad approximations, or
in other terms they often require very high order
models in order to provide good approximations,
see e.g. Wahlberg and Ljung (1985), Damen et al.
(1985), Van den Hof and Janssen (1987). However
the use of output error type of model structures
shows one main disadvantage: the numerical proce­
dure to generate optimal output error models gen­
erally relies on nonlinear optimization routines, and
consequently problems like occurrenee of nonglobal
minima, and large computation times (especially in
the multivariable situation) have to be dealt with.
In this respect it is important to be able to start the
output error identification procedure with an accu­
rate initial estimate. The finale step in our strategy
will be directed towards the output error optimiza­
tion; the first two steps will be preformed in order
to generate such an accurate initial estimate.
The strategy that we will follow in th is paper has
close relations with strategies as suggested by Swaa­
nenburg et al. (1985), Wahlberg (1987) and Backx
(1987), in the sense that an initial model is con­
structed having a very high order, using simple
identification methods based on linear regression
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modeis. Subsequently a model red uction procedure
will be applied in order to reduce the high dimen­
sion of the model to a tractable one. In fact this
means that the "approximating part" of the identi­
fication procedure has been deferred to a model re­
duetion algorithm. Next we will briefiy describe the
three different steps in our strategy, which are irn­
plemented in the software packages of Aling (1989)
and Van den Hof (1991).

a: First Step - High Order ARX-Modelling

In the first step an ARX model structure is ap­
plied:

M ARX : A(q,O)y(t) = B(q,O)u(t) +t:(t) (4)

for °C 0 C IRd
, with A(q,O), B(q,O) polynomial

matrices in the rings IRPXP[q-1J, IRPXm[q-1], while
the entries of the coefficient matrices of the poly­
nomials act as the unknown parameters 0:

A(q,O) = 1+ A1q-1 + A2q-2 + +An.q-n.

B(q,O) = Bo+ B1q-l + B2q-2 + + Bnbq-nb

Unless otherwise stated, the polynomial degrees na
and nb will be chosen equal. Applying the ARX
model structure has the advantage that the iden­
tification result (3) can be calculated analytically,
and results will be available very fast even for large
(multivariable) models having very high polynomial
orders. In this first step the polynomial order will
be ehosen very high in order to guarantuee that
the model transfer function A(z, ot l B(z, 0) is an
appropriate representative of the system transfer
G(z).

b. Second Step - M odel Reduetion through
Approximate Realization

The model transfer function A(z, ot l B(z, 0) gen­
erated by the high order ARX model obtained in
the first step can be realized by an equivalent state
space representation:

x(k + 1) = Ax(k) + Bu(k) (5)

y(k) = Cx(k) + Du(k) (6)

with A E \Rnxn, B E \Rnxm, C E IRPxn, and

D E lRPxm. Gcnerically this equivalent state space
model will have a state space dimension equal to
n = na X p, see e.g. Gevers and Wertz (1987).
In this second step of our identification strategy a
model reduction algorithm wil1 be applied to this
deterministic model, in order to reduce its dimen­
sion to arealistic and traetabie value.



S(O)
S(1 ))

S(3) . [fmfm . ..• fml (8)

A(O)x(k) + B(O)u(k); x(O) = xo(O)

(9)
(10)

(11)
= C(O)x(k) + D(O)u(k)

y(k) - y(k, 0)

fj(k,O)

é(k ,O)

x(k+I)

where the elements of the parameter vector 0 occur
as entties of the coefficient matrices A, B, C, D,
and possibly in the initial state vector x(O). Since
the output prediction y(k; 0) generally will be non­
linear in the parameter vector 0, solving the iden­
tification criterion (3) will require a nonlinear opti­
mization algorithm.
In order to guarantee that the model structure (9)
- (11) is uniquely parametrized, the state space
form has to be restricted to a uniquely identifi­
abie parametrization, see e.g. Gevers and Wertz
(1987). In our present implementation we are
able to use three different identifiabie parametriza­
tions: the canonical observability form, the pseudo­
canonical observability (overlapping) form and the
minimal polynomial representation. The first two
parametrizations are surveyed in Gevers and Wertz
(1987); the latter form is applied and advocated in
Backx (1987) and Backx and Damen (1989). In
this paper we will show results obtained with the
second (overlapping) form. This parametrization
has the advantage that, within one single continu­
ous parametrization, it covers almost all models of
the specified minimal state space dimension. In or­
der to solve the optimization problem (3), a quasi­
Newton method has been implemented as the core
of the optirnization algorithm. This algorithm em­
ploys the following special features:

• The first derivative of the loss function in (3)
is analytically determined using the fast algo­
rithm of Van Zee and Bosgra (1982).

c. Third Step - Output Error Identification
in State Space Form

singular value decomposition can now be applied
to the weighted matrix Hw. Because of the spe­
cific weighting of the Hankel matrix an improved
low frequency behaviour of the aproximate models
is obtained.

As mentioned before, the model obtained so far is
used as an initial estimate in an output error iden­
tification method, dealing with the following model
structure:

(7)

M(Ne )

M(Ne + 1)

M(Nr +Ne - 1)

S(Nr + Ne - 1)

M(3)
M(4)

.S(3)
S(4)

S(2)
S(3)
S(4)

M(2)
M(3)
M(4)

o

S(1)
S(2)
S(3)

M(1)
M(2)
M(3)

t.; i;
o i;

Hw = HU with U = 0

a weighted matrix is constructed according to:

leading to Hw =

Approximate realization based upon a block Bankei
matrix built from Markov parameters is a power­
ful and easy-to-use method for generating reduced
order models (Kling, 1979; Damen and Hajdasin­
ski, 1982), being very closely related to the bal­
anced model truncation method of model reduction
(Pernebo and Silverman, 1982). A test on the Ban­
kei singular values also provides a simple means for
determining the order of the reduced order model
to be constructed. However, it is geneally known
that this approximate realization scheme shows a
preferenee for the high frequency behaviour of the
model, very often leading to a bad approximation
in the 10w frequency region, and specifically to a
bad approximation of the static model gain. In or­
der to improve this situation we apply an approx­
imate realization scheme based upon a weighted
block Hankel matrix, as equivalently presented in
Van Helmont et al. (1990). While a standard ap­
proximate realization method is based on a block
Hankel matrix, H =

with S(k) := l:7=o M(i), the step response matrix
at time k. Since Hw and H have equal rank, an or­
dinary approximate realization algorithm based on

• Parametrization of the initial state vector
xo(0), which is of importance especial1y when
dealing with short data sets.
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• The parametrized state space form contains
parameters in A(0), B( 0), D(0) and xo(0).
Since the prediction error e(k,O) is a linear
function of the parameters in B( 0), D(0) and
xo(O), the lat ter set of parameters can be op­
timized using linear (one shot) optimization
techniques. In the algorithm implemented it is
possible, in a very flexible way, to alternatingly
optimize nonlinearly with respect to a subset
of A(O), B(O), D((J), xo(O), and linearly with
respect to a subset of B(O), D(O), xo(O). This
linear optimization of part or'the total parame­
ter set has appeared to be of major importance
with respect to both speeding up the optimiza­
tion procedure, and getting out of areas with
local minima.

The approach chosen guarantees that we will end
the identification procedure with a model having a
prespecified minimal state space dimension, bcing
determined during the approximate realization in
the second step.

4 Results

The three step identification procedure presented
above wil! be applied to the data of a typical ex­
periment conducted with the 970 litre crystallizer.
A three input two output MIMO model (the heat
input Pin, the fines flow rate QJ and the product
flow rate Qp being the process inputs and the third
moment m3 and the volume fraction vo125 being the
outputs) is identified. The experiment lasted 85
hours, of which 68 hours were recorded with input
excitation applying PRBS (Pseudo Random Binary
Sequence) signais. The sampling rate employed in
the experiment was 1 sample per two minutes (the
maximum sampling rate of the GSD measurement
device). For modelling purposes, a sampling inter­
val of 6 minutes was used, being equal to the doek
period of the PRBS chosen. This resulted in 686
samples recorded with PRBS excitation.
The 68 hours of PRBS excitation is relatively short
compared to the dynamics of the process. More
data could not be obtained because of limitations
on the experiment duration. Approximately 85
hours aftel' start-up, incrustation in the crystallizer
blocks the slurry circulation and shutdown is re­
quired. In order to maximize the amount of data
with PRBS excitation, th is excitation was started
17 hours aftel' start-up, although at that moment
the process was not yet at steady state. Therefore,
the initial state vector x(O) is parametrized in the
state space model structure that is applied in the
third step.
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The quality of the estimated model will highly de­
pend on the quality of the data. Therefore, a data
preprocessing step is required to reduce the defects
in the recorded signals not being a part of the re­
sponse to the input signals. Such a preprocessing
procedure consists of peak shaving, detrending, fil­
tering, decimation, offset correction, sealing and
correction for time delays. The raw signals vo125

and m3 as recorded during the experiment are de­
picted in figurc 2. The large peaks are caused by
fail ures of the GSD measurement device and peri­
odic cleaning of the product flow line and the di­
lution unit. First these peaks were removed us­
ing a semi-automatic procedure (De Wolf, 1990)
which replaces each peak by a iinear interpoiation
between two samples around the peak. Detrend­
ing was not applied as low-frequency disturbances
causing trends were not detected. Next, the sig­
nals were decimated to the sample interval to be
used in the identification. In this decimation step,
extra digital filtering was applied in order to pre­
vent aliasing effects and to reduce the measurement
noise on the output signais. Decimation was re­
quired because the signals were recorded at the
maximum frequency allowed by the measurement
system. The resulting abundancy of information
was used in the repairs of the signals (peak shav­
ing and extra noise reduction by off-line filtering).
Finally, the signals were corrected for offset (zero
mean) and scaled (variance of 1).
In the first step of the identification procedure,
ARX models were estimated for different values of
the polynomial orders. An example of the results
is depicted in figure 3, which shows the response of
the model output vo125 on a step applied at input
Pin for estimated ARX models having polynomial
orders ranging from 10 - 50. The responses in this
figure show that even for very high orders the statie
gain of the estimated models does not converge, and
remains to be rather uncertain. This problem ob­
viously is caused by the fact that the number of
data does not tend to infinity fast enough with in­
creasing polynomial orders. The example shown in
figure 3 is characteristic for the different transfers
estimated in the model.

Several of the ARX models identified have been
used as a basis for the next two steps in the identi­
fication strategy. I-Iowever in view of the results fi­
nally obtained, the specific choice for an ARX poly­
nomial order did not appeal' to be a very critical
choice. Results presented in the sequel of this pa­
per are based on ARX models having a polynomial
degree of 40.
In the second step approximate realization was ap-



plied to the step response of the estimated ARX
model. The singular values of the weighted Han­
kel matrix (8) in the approximate realization algo­
rithm, gave rise to a choice for a 5th order model.
The result of this approximate realization is illus­
trated in figure 4 showing a comparison of the step
response of the original ARX model and of 5tli or­
der approximations being obtained by either the
standard approximate realization algorithm and by
the weighted method. As indicated before, figure 4
shows an improved statie gain approximation for
the realization algorithm based on the weighted
Hankel matrix (indicated by Step).

From earlier MISO identification resu1ts obtained
for the output signal m3, it was found that this out­
put can be well described with a first-order state
space model. Consequently, this information was
used in the choice for appropriate structure indices
of the MIMO model to be used as an initial estimate
in the third step: optimization in an output error
model structure in state space form. The initial
state space model, obtained from approximate re­
alization is transformed to a pseudo-canonical form
having structure indices 1 and k - 1, wherek is
the order of the MIMO state space model result­
ing from the approximate realization. Figure 5
shows the three step responses related to output
vol25 of the finally estimated output error model
for state space dimensions 4 to 7. In order to show
the improved convergence properties of this identi­
fication strategy, in relation to the first ARX step,
also other model dimensions than the suggetsed
value of 5 have been tried out. The figure shows
a good convergence of both fast and slow responses
in the model if the model dimension is chosen at
least equal to 5. It is therefore concluded that a
more powerful result is obtained by the output error
method as compared to the ARX model. Moreover,
equivalent results were found for the other ARX
model orders depicted in figure 3, which shows that
the addition of the third step in the identification
strategy is very essential for arriving at appropri­
ate models. Finally figure 6 shows the simulation
result of the identified state space model with n = 5
on the available data set. Because of the very re­
stricted length of this data set it was not possible
to validate the identification result on an indepen­
dent data set. For final acceptance of the models
obtained for the crystallizer as a basis for controller
design, additional experiments will be required in
order to provide a means for model validation.
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Conclusions

In this paper a three step identification strategy
is presented which is applied to data of a pilot
plant crystallization process. The avaialable data
set of the process is characterized by a low signal
to noise ratio, and by a relatively short observa­
tion time. In the three step identification strategy,
first high order ARX modelling is applied. The
resulting model is reduced in order through a mod­
ified approximate realization scheme, aftel' which it
serves as an initial estimate in an output error iden­
tification algorithm, implemented in a state space
parametrization. As a model reduction procedure
use is made of an approximate ralization algorithm
based on a weighted Hankel matrix, showing irn­
proved low frequency performance of the approxi­
mate model. The results obtained in this paper il­
lustrate that the third step in the procedure (output
error optimization) is a necessary step which shows
substantial improvements of the identified models
compared to the models obtained aftel' the second
step.
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Fig. 1: Simplified Process Scheme of the 970 litre
Pilot Plant Crystallizer.
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Fig . 4: Step responses of estimated high order ARX
model of transfer function Fin --+ vol25 for ARX
polynomial order 40, and of approximate realiza­
tions with n = 5 based on th e standard approx­
imate realization algorithm (Markov) and on th e
weighted approximate realization (Step).
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