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ABSTRACT

Wave energy can provide significant benefits as renewables acquire more share in electricity production.
So far, focus for the development of wave energy is given to areas with resources > 25 kW/m, with
moderate resources often not considered. Furthermore, waves have larger uncertainties associated with
diverse portfolio of converters leading to higher Levelized Cost of Electricity (LCOE).

This study challenges the notion of economic viability for moderate resources, therefore the meth-
odology and results of this analysis are globally applicable. Several different types of wave converters
suggest multi-zonal applicability, underlying the dependence on the diverse wave energy resource that
can be harvested. It is clear that different zones favour alternative converters, common characteristic is
that all have nominal capacity below 1 MW. Optimally selected converters, attain capacity factors over
30%, with LCoE depending more on discount rate-capital pairs, mean LCoE values are from 150 to 250/
MWh with lowest value 60 €/MWh. Investment amortisation also depends on resource and LCoE pairs
with an offshore wave farm able to retrieve its capital in 3.8 years (optimal case), 10 years (average).
Projects with >3 Million €/MW and a higher risk discount of 10% are viable only for high performing
devices with capacity factors >40%.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The 2015 Paris Agreement set ambitious plans to curb the
catastrophic effects of Climate Change [1]. The European Commis-
sion developed a Green New Deal initiative, from which several
parts became European legislation in 2020 and onwards [2,3].
Major focus of this Green New Deal is to promote renewable en-
ergies, with novel technologies front and centre, for Europe to
maintain clear leadership, ensuring trade and services are carbon
free or near neutral. The European Commission is committed to
achieve the Paris Accord, translating this into tangible 2030 targets:
reduction > 55% greenhouse gas emissions,> 32.5% for share of
renewables in the electricity system, and > 21.5% energy efficiency.

Spearheading the first wave of the transition are mature
renewable energies, such as hydro, wind and solar. However, these
will not be enough to maintain flexibility and power stability [4,5].
Scenarios suggest that higher renewable penetration can be ach-
ieved partially by increasing interconnectivity, but it will still
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require short term power flexibility (< 48 hours) from storage. For
example in the Netherlands, certain scenarios proposed a
15—17 GW of storage capacity, without accounting for climate
change and alterations in climatic conditions [4].

Similar issues are facing several countries in Europe and glob-
ally, as they transit to electricity systems with high share of re-
newables. To actively reduce energy dependency from imports and
increase resilience, multi-generation has to be taken into account.
Scenarios have been simulated at global [6] and on local level [7,8],
with hourly and sub-hourly estimations of renewable energy pro-
duction. Arguably, multi-renewable generation offers significant
advantages in reducing the variability, especially at systems that
highly depend on wind and solar [9—12], and in the long-term
energy costs are decreased [13,14]. Multi-generation of renewable
energies can also address other issues such as water scarcity,
through desalination [15].

Wave energy is one of the most dense, predictable and persis-
tent energy sources, that has gone under-utilised [16], with many
countries exposed to it. Depending on orientation with regards of
coastal fronts to swells and global energy flux distribution, re-
sources can be characterised as high, moderate and low [17]. Fairley
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Nomenclature

AT Hours in a year

Cn Total expenses

Co Electricity price

e Energy reflation

Hmo Significant wave height

n Year(s)

Pwave Wave power

r Discount rate

Rn Revenues

T Lifetime

Tino2 Mean zero crossing wave period
Tin10 Energy wave period

Tpeak Peak wave period

AEP Annual Energy Production

AWS Archimedes Wave Swing

BOF Bottom Oscillating Flap

BSHB Bottom Submerged Heave Buoy
CapEx Capital Expenditure

CF Capacity Factor

D Diameter

ETS Emission Trading System
F2HB Floating two body Heavy Buoy
FHBA Floating Heave Buoy Array

FIP Feed-in premium

FOWC Floating Oscillating Water Column
GW Giga Watt

km Kilometers

kW/m Killowatt per meter

L Length

LCoE Levelised Cost of Energy

LNE Lagnlee

M Million

MW Mega Watt

NER New Entrants Reserve

NPV Net Present Value

NSWD North Sea Wave Database

S Salvage value

TRL Technology Readiness Level
WEC Wave Energy Converter

et al. [18] globally assessed the resource, and underlined the sim-
ilarity of wave period values between moderate and low classes
having higher presence. Wave resource persistence is region
dependent, but Climate Change effects have increased the resource
by 0.4% kW /m/year since 1948 [19], predominately at deeper ocean
regions where converters are not deployable.

Globally, the long term rate of change in global wave power
shows that high latitude regions (60° N—90° N) have experienced a
reduction in wave energy content, and lower latitudes (30° S—60°
S) have positive a increase [20]. In terms of metocean condition at
European coastlines high latitudes have increased [21], while the
Mediterranean Basin shows a higher stability with smaller varia-
tions [22]. Kamranzad et al. [23,24] used a Climate Stability Index to
assess the Southern Indian Ocean from 1979 to 2003 and a forecast
from 2075 to 2099. The findings showed an increase in Southern
Indian Ocean regions, up to 15 kW/m in some areas. However,
variability levels indicated lower monthly differentiations when
compared to the Northern Indian Ocean, that indicate a more
consistent resource.

The large presence of moderate wave power resources, has
prompted the suggestion of mild energy and low variability areas as
most suitable [18,25,26], suggesting that new devices should be
optimised for such areas. This can be done not only by differenti-
ating the size of a converter, but also by adjusting control strategies
to obtain higher amounts of extracted power at different conditions
[27—29]. Such optimisations in control strategies can differ per
converter type, but they can increase power production from 20 to
45% [30]. Lavidas [31] introduced a methodology to select wave
converts that account for energy production, resource variability
and survivability using high fidelity hindcast data from 1980 to
2017, establishing the method. Its application to moderate areas,
revealed that lower variability areas can indeed provide higher
energy production and attain better survivability, without
increasing capital expenditure.

Although, everything points to the high potential contribution
of wave energy systems, there are still significant obstacles in
accelerating their deployment, predominately associated with en-
ergy costs [32—34]. Initial studies estimated the cost (in Million €)
per installed MW (M€/MW) from 3 to 10 M€/MW [35,36], this
larger range represents the uncertainty that comes by wave energy
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converters of various TRL. However, as wave energy interest is
increasing and novel installations are financed [37,38], more spe-
cific cost data are analysed.

Encouragingly monetary requirements have reduced, within a
range of 2—6 M€/MW, dependent on device and infrastructure
works needed [39,40]. The Levelised Cost of Energy (LCoE) reported
has a range of values from = 120—500 €/MWh [25,41—43], un-
derlying the uncertainties which are dependent on device, resource
and assumptions. De Andres et al. [40] discussed the ranges for
capital and LCoE with a target price at 0.15 £/kWh. Several devices
were considered and costs from = 2 M€/MW to = 6 M€/MW. The
LCoE reduction potential of several subcomponents, was achieved
through a “reverse” approach that had as a starting point the
desired LCoE and identified potential cost reductions to achieve it.

This study explores whether mild resource can be cost-
effectively exploited, by properly attributing a “production-to-
resource” approach, that so far is not considered. The question
answered is whether mild resource are viable for wave energy. This
premise is often dismissed without much consideration or evi-
denced arguments. In terms of wave power production potential,
the wave density potential (kW/m) is not the determining factor.
Results indicate clearly, that the potential is significant and alter the
perception of non-viability for wave energy converters.

The difference of our analysis is that it seeks to “optimise”
economic performance by placing an optimal device, based on
long-term energy terms. The analysis compares available technol-
ogies on an equal footing with a 38 year metocean dataset, only
with a predefined limitation according to depth applicability. The
methodology presented showcases that conditions matter much
more than the nominal installed capacity or starting cost. As WEC
farms are installed, they will benefit immensely by learning rates
reductions [35]. In this study we assess a variety of costs and
concluded, if done correctly, that wave converters are comparable
with other mature renewables in energy production, and have high
potential to leverage capital expenditure reductions.

The energy capabilities at the North Sea remarkably have ca-
pacity factor ranges higher than previously thought, as the lack of
comprehensive dataset was a major limitation. The methodological
approach used is based on best-practises, minimising assumptions,
and extrapolations on economic feasibility only on single points.
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The results provide a holistic approach of what is feasible, what are
the most favourable WEC dimensions and regions they should be
deployed.

The results of our study provide a comprehensive multi-layered
techno-economic assessment that for the first time assessing wave
energy converters at the North Sea. It was found that techno-
economic viability depends on specific criteria, and it is shown
that for milder resource smaller wave energy converters are more
suitable. The outcomes and discussion can be easily transferred to
other similar resource regions as they tend to have analogous
operative conditions (i.e. Mediterranean, Black Sea), therefore
repeatability is high, with only sensitivity energy policy and market
push/pull mechanisms.

2. Materials & methods

Estimation of wave energy is dependent upon the quantification
of metocean statistical characteristics, and utilisation of a power
matrix [44]. For all locations within the NSWD occurrence proba-
bilities and propagated energy was estimated. Every seastate has
been clustered and occurrence probabilities have been calculated,
extracted locations indicate higher probabilities for significant
wave heights H;;;o 1.5—3.5 m and T;19 1-6 s, see (a) Fig. 1. The figure
shows mean energy contained per clustered event, it is important
to note that this is the theoretical.

To assess the economic and financial feasibility of devices,
within the study expected energy performance was used as indi-
cated by the power matrices. To estimate energy performance,
climate metocean data provide the probabilities of occurrence
(P(Hmo NTpeak/m10/02))- The North Sea Wave Database (NSWD)
which is thoroughly calibrated and validated for the North Sea from
1980 to 2017 [45,46]. The duration of the NSWD extents from 1980
to 2017 (end of 2017) and developed with a modified nearshore
spectral wave model, with a spatial resolution of = 2 Km in latitude
and longitude. The accuracy of the database is high, with validation
of results compared with in-situ Hpo measurements having
accordance of > 93—94% and positive biases of a few centimetres.
The model performance index for all years and location was above
> 95% indicating good performance. Lavidas [31] noted that the
North Sea wave energy flux at the area can be classified as mod-
erate, with persistent values at the nearshore between 7 and
12 kW/m, see Fig. 2.

Renewable Energy 170 (2021) 1143—1155

All devices used in the study are presented in Table 1 and can be
found in Ref. [31], the power production capabilities are estimated
by Equation (1), and the capacity factor from Equation (2). It has to
be noted that some WECs based on their type and principle of
operation depend on wave direction, i.e. they have to be perpen-
dicular to the wave front. This in turn may have effect in the joint
distribution of metocean conditions that will affect Equation (1).
However, directional matrix information are not usually publicly
shared, and therefore solely based on the type of WEC one may
infer the potential influence of directionality.

LCoE is a metric often used in energy comparisons with Tech-
nology Readiness Levels (TRL) [34,47,48]. LCoE can carry inherit
flaws based on assumptions around economic indices [34,49] and
most importantly Annual Energy Production (AEP) (see Equation
(3)), often based on single or limited (< 10) years which are highly
flawed. This is the reason why many researchers, groups and
organisation proposed > 10 years for reliable LCoE assessment
[34,50—52].

54°N

4 Netherlands 52“ N

——— 50N
0 2 4 6 8 10 12 14 16 18 20 22

kW/m

Fig. 2. Mean Pyq,e in kW/m based on analysis from the NSWD database from 1980 to
2017 (38 years).
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Fig. 1. The joint bivariate matrix for a location within the NSWD, with coordinates 4.72° longitude and 54.85° latitude. The colormap indicates energy contained within each bin.
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Table 1
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WECs used in this study, Depth (D): refers to depth of WEC deployment and not distance to shore, to 20 > D (Shallow), 20 < D < 60 (Nearshore), 60 < D < 150 (Deep).

Name Type Depth Application Directional Influence
WaveStar (600 kW) Point Absorber Nearshore Weak
F2HB (1000 kW) Point Absorber Nearshore & Deep Weak
AquaBuoy (250 kW) Point Absorber Nearshore Moderate
AWS (2470 kW) Point Absorber Nearshore Weak
BSHB (260 kW) Point Absorber Nearshore Weak
FHBA (3619 kW) Point Absorber Nearshore Weak
BOF 1 (290 kW) Surge Shallow Strong
BOF 2 (3332 kW) Surge Shallow Strong
Langlee (1665 kW) Surge Nearshore Moderate
OceanTech (500 kW) Attenuator Nearshore Strong
FOWC (2880 kW) Oscillating Water Column Nearshore & Shallow Moderate
WaveDragon (7000 kW) Overtopping Nearshore & Deep Weak

T HmU
AEP=> "> . (Pu,oNT), j+PM;;
i=1  j=1

AEP

CF:PO-AT

(2)

with the probabilities of metocean conditions (Py,,n T) for signif-
icant wave heights and corresponding wave period, that can either
be peak wave period (Tpeq), energy period (Tp10) Or mean-zero
crossing (Tpo2). PM is the power matrix of each corresponding
device as characterised in cartesian coordinates (i,j), and AT being
the time duration for the gathered probabilities.

CapEx + OpEx) — S]

_PV[(
LCoE = PV(AEP)

(3)

with AEP (see Equation (1)), CapEx and OpEx are considered in
Present Values for the expected lifetime of a WEC farm, hence the
final LCoE being discounted. AEP is a major parameter that de-
termines the LCoE behaviour. Although, LCoE is an indispensable
tool as it provides a level field for technology comparisons, it does
not directly dictate the economic viability.

Assessing the feasibility of an investment can be obtained by
estimating the detailed cash inflow and outflow, summarised with
a Cost-Benefit model [53]. However, for use of a Cost-Benefit model
several more parameters have to be defined such as the inflation
(g), energy escalation rate (e), annual taxation, etc., in order to
obtain more comprehensive and realistic results [54]. In both cases
for discounted LCoE (see Equation (3)) and Cost-Benefit modelling,
monetary values are adjusted to Present Values (PV) with a dis-
count rate (r) for the lifetime of operation (n), and payback
(amortisation) is estimated at the point for which the total reve-
nues (R;) are greater than total expenses per year (Cy).

A fixed annual cost for maintenance & operations is assigned as
a percentage of CapEXx, and values are estimated in PV terms. This is
the annual fixed cost (OpEx), variable (unforeseen) costs (V) can
be added but in this study they are considered as zero, with total
costs expressed per year (Cp).

1+r1 1+r\"
Cn = CapE OpEx - CapEx]- ; 4
= CapEx-+ 0pEx- CapE|- |1 -+ (157 | (4)
Revenues are estimated by providing the annual energy (AEP;),
that is sold with an electricity price (c,), the finalized earnings of
each year are adapted to current prices. In this analysis a constant
electricity price (c,) is considered as discussed in Ref. [55].
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Rn:AEPn *Coe {ﬂ+

1+i ®)

(1 + e) "}
1+i

As an analysis case study the Netherlands are taken into
consideration, since there is a suitable high spatio-temporal reso-
lution dataset covering 38 years (1980—2017), the North Sea Wave
Database (NSWD). The Dutch electricity system supports energy
investments by feed-in-premium (FIP) tarrifs (SDE+), which is
typically added to the market price [56]. In principle an FIP means
the energy producers (usually renewables) receive a top of the spot
market price for the electricity production delivered. The FIP can be
fixed or variable, and is usually combined with the electricity
selling floor or ceiling prices, acting as premium only if market
prices are lower than the FIP.

The SDE+ aims to support and strengthen production by
renewable energies, eligible technologies are wind, solar, biogas,
biomass and hydropower with several sub-divisions that have
different FIP. Wind has FIP 5.4—8.5 cent€/kWh depending on type,
size and wind speed resource. Solar from 9.9 to 10.6 cent€/kWh
depending on scale and hydropower from 9 to 13 cent€/kWh. A
type of ocean energy, tidal power is included in the hydropower
scheme with the given range. For our analysis the selling price of
electricity is assumed as constant and equal with an FIP 10 cent€/
kWh.

Energy prices are dependent on consumption patterns, Dutch
bidding prices had an increase of 33% from 39.3 €/MWh to 52.5
€/MWh. Similarly, the wholsale prices in Western North Europe
have also seen an increase and are between 45 and 55 €/MWh
[57,58]. A final component that will affect pricing in electricity, is
the Emissions Trading Scheme (ETS). This is part of a long-term
scheme based on a capped policy that favours “greener” solutions
with increases in emissions market prices, by annual imposing
emission restrictions (reducing allowed emissions). Since 2018 CO,
prices have seen dramatic increase from = 5 €/allowance (Tn) CO,
(2013 price) to near 25 €/Tn CO,, a fivefold increase, see Fig. 3.
Estimates are expecting the barrier of 35 €/Tn CO, to be exceeded
soon, and 2030 future values to be > 60 — 80 €/Tn CO,.

The North Sea is a moderate to high wave energy area, 99"
percentile indicated that H,;gp is < 7 m at Northern parts, furthest
from shore, and 99" wave period percentile Tpy0 is < 11 sec. At
central parts H;,,o and T;,19 percentile values are < 5 m and < 8 s,
respectively. Further down, at the English channel H,,,o is = 50%
lower than the highest Northern parts and T,;19p = 75% less, see
Fig. 5. Such values are found further ashore, nearshore regions that
are of higher interest for first generation wave farms, have almost
uniform values throughout the coastlines.

At the Netherlands close to shore values Hp,g are 3—4 m, with
high frequency periods every 5—6 s, this “uniformity” is due to the
fact that Dutch coastlines are predominately exposed to
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Fig. 3. CO, European Emission Allowances (€), showing the evolution of prices during the last 5 years [59].

transformed swells propagating downwards from the Norwegian
Sea, with little or no interference of significant land masses or
complex bathymetry that can influence the resource, and enhance
the occurrence of characteristics such as diffraction. Majority of the
wave resource that reaches the coastlines is predominately affected
depth friction, and nearshore triad interactions which modify
larger wave periods (low frequency) wave-swells, into higher fre-
quency, resulting in reduced H;,g. On the other hand, the United
Kingdom (UK) has smaller H,o values at latitudes below 52°
though exposed to similar swells, the Norwich area poses an
“obstacle” which propagated waves interact with. At latitudes >
520 the British coastlines have larger H,,g nearshore values 4—6 m,
with longer period waves (T;;109) at 8—10 s, with exception the
Wash natural reserve gulf, where waves are reduced due to sur-
rounding orography, see Fig. 5.

However, the North Sea whilst is not met with the high swell
waves, like the ones at the Atlantic coastlines, i.e Scotland, it shows
relatively small variations from its mean, see Fig. 4. Standard de-
viation of Hy,g along the Dutch coastlines is from 0.6 to 1.2 m and
from 0.2 to 0.6 m at the United Kingdom coasts. T;;1¢ standard
deviation shows a more distinct separation with the regions < 52°
showing identical values =0.8 — 1 sec. At latitudes > 52° there is a
slight increase in deviation from 1.2 to 1.6 s, both for the United
Kingdom and Dutch coastlines, see Fig. 6. Hence, regions with
smaller deviation can be more beneficial for a more persistent
energy production, as metocean conditions will not vary
significantly.

3. Results

Our main focus is to investigate financial WEC feasibility along
moderate resources with example the Dutch coastlines, available
WECs have been considered with depth limitation of D < 30 m.
Fig. 7 provides a clear indication for the performance of WECs, the
figure uses aggregates the values at all locations and WEC.

Nearshore devices, depend on transformed waves at low depths,
where the surge phenomenon is most prevalent, such example is
the Bottom Oscillating Flap (BOF1 & BOF2). In turn this means that
device size is larger (BOF2), therefore excitation surge forces will
require to be higher, BOF2 starts producing at 2 kW/m and reaches
its peak value at 291 kW/m, whilst the smaller BOF1 needs 0.6 kW/
m to start operation and reaches its nominal value at 123 kW/m. Of
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course at such depths the wave energy content is not as high all the
time. BOF1 achieves 50% of its nominal capacity at 14.6 kW/m (H,;,o
=~2.5 m), while the larger (BOF2) obtains same 50% P, value at
63.7 kW/m (H;,90 =4.5 m).

As per Fig. 5, at shallower waters 99" percentiles are consis-
tently < 5.5 meters, with small deviations predominately occurring
at the Wadden islands (53 — 53.5° N—4.5 — 5° W). Their perfor-
mance, both max and mean, has also a difference of about half, with
the best of BOF1 53.6% at 52° N - 4.5° W and BOF2 22% at 52.3° N -
4.5° W, with their means at 25% and 11.5% respectively (see Fig. 7).

Nearshore and deeper WECs, are less influenced by shallow
water dynamics, depending more on principal of operation and
WEC size (see Table 1). Remainder devices are a mixture of different
technologies predominately attenuators and heave buoys, with
small variations in their size, power-take-off (PTO) and placement
along the datum (submerged, floating, etc.). The optimal mean CF
attained by the attenuator (OceanTech) is 24%, followed by a point
absorber 22.3% (Wavestar), lowest maxima are observed by an
overtopping 5.4% (Wavedragon).

Highest CFs are OceanTech: 47.1%, Wavestar: 30.9% and BOF 1
with 53%. However, mean behaviour across the domain does not
reveal the same selection, the highest WECs are reduced to =22 —
25% a reduction of almost 50% by their maxima. OceanTech and
Wavestar, are devices with nominal capacities 600 kW and 500 kW,
both reaching peak production at =16kW /m. Larger devices (high
nominal capacity) usually depend on swell dominated seas, how-
ever, their design is often not accounting for reduction in the oc-
currences probabilities due to climate patterns. Issues of
production availability have been previously raised [22,60],
concluding that most of the time swell dependent devices cannot
operate due to the low percentage of conditions they need within a
year. With moderate metocean condition being more prevalent,
and can therefore benefit WEC operation.

Spatial distribution of most efficient WECs is given in Fig. 8,
which complements the aforementioned results and indicates that
no one WEC can obtain its highest across the whole region. A
double criterion has been applied that considered both depth
applicability and distance from the nearest shoreline Fig. 8 panel
(c). In subpanel (a) of Fig. 8, OceanTech exhibits better performance
at latitudes between 52 — 55°, while closer to the English channel
expected performance drops by 75%. A swell favourable device
(Tn10 = 11 sec) is not suitable for the moderate conditions, and
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Fig. 4. Mean metocean characteristics at the North Sea for Hy,g in meters and Ty,10 in
seconds. Statistical conditions are based on 38 years from the NSWD.

although it availability is high its maxima are seldom obtained,
therefore its capacity factors are well below the 10% region. Sub-
sequently, the optimal CFs across the domain was plotted to indi-
cate the regions of which a the best CF can be obtained, see
Figs. 9—-10.

3.1. Economics

Data necessary for economic analysis are divided in two main
parts: (i) device costs and (ii) revenue potential. Firstly, focus is
given on major WEC economics aspects, which are comprised by
CapEx and OpEXx. It has to be noted, each device has different sub-
divisions and requirements, depending on WEC type [40,61].
However, this analysis is mostly concerned on the economic per-
formance of the potential wave farms and not the effects on indi-
vidual components, for that the reader is refereed to de Andres
et al. [40].

The OpEx is dependent on CapEx values with a range from 8 to

Renewable Energy 170 (2021) 1143—1155

meters

(a) 99" Percentile H,y

54" N

52" N

50" N
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Fig. 5. Quantitative metocean characteristics at the North Sea 99" percentiles values
for Hy,g in meters and T, in seconds. Statistical conditions are based on 38 years
from the NSWD.

15% [62], depending on device and location similar to offshore wind
[25]. For OpEx considerations we abide by the definitions found in
Babarit et al. [63] and do not model un-expected costs (i.e. “unique”
failures of equipment). The ranges obtained align with the sug-
gestions in several studies [35,39,40].

For the sensitivity analysis of the revenue potential two main
parameters parameters were considered, which have an effect on
LCoE values, CapEx and discount rates. Power production is also a
vital, but in our analysis the power performance has been in-depth
estimated and “optimally” analysed through use of NSWD, which
allows us to estimate highly realistic expected AEP. The discount
rates used represent (i) a social discount rate value (r: 5%) (ii)
conventional to high risk investment rate (r: 10%). A social discount
rate is used for projects that are expensive, but can provide sig-
nificant added value to societies, with relevant marginal societal
benefits. Such projects often address pressing issues such as envi-
ronmental protection, reduction of emission, local employment,
increase in standard of living, health benefits, etc. In a recent
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(STD), for Hy;9 in meters and Tp,19 in seconds. Statistical conditions are based on 38
years from the NSWD.

estimation the Netherlands Environmental Assessment Agency
(PBL) assessed discount rates, for most renewables, and mature
technologies obtain values from = 1.5—4% [64], hence assumption
of our discount rates can cover all possible optimistic/pessimistic
scenarios.

For the detailed amortisation analysis, a selling price of elec-
tricity (co) has to assumed, that combines the FIP SDE + price
combined with the potential avoided CO, emissions, with emission
intensity (Tn/MWh) based on the U.S. Environmental Protection
Agency Greenhouse Gases Equivalences methodology [65]. Argu-
ably, with the decarbonisation of energy sector the benefits to so-
cieties by wave energy include reduction of emissions, local jobs
growth, better environmental quality, and reduced of health issues
associated to energy [53,66—68]. The assumptions for our eco-
nomic evaluation are given in Table 2.

The differences between LCoE are significant, and that indicates
the high dependence and sensitivity of LCOE on power production.
If the location selected is not suitable, then the economic viability
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can be severely hindered, between CFpeqn and CFnqx large differ-
ences occur for BOF1: 52%, followed by OceanTech: 49% and
Wavestar: 27.5%, underpinning the importance of WEC selected for
a location, and their dependence on climate conditions. In all in-
stances, and for all possible techno-economic LCoE configurations
based on CFpqy, the LCOE is smaller for any discount rate. Lower
variation is achieved by the BOF 1, however, it is noticeable that
CapEx changes have greater effects of the WaveStar range. When a
mean value is used then the CapEx sensitivity is higher, leading for
greater differences between upper and lower bounds, see Fig. 11.

4. Discussion

The suitability of WECs are based solely on power basis, how-
ever, the top three converters also are in line with the findings in
Ref. [31], where a detailed comprehensive index was used ac-
counting also for climate variations and extremes. The findings
corroborate that OceanTech and Wavestar are favourable in near-
shore water, shallow waters optimal is BOF 1. For moderate
resource devices should be acquire their maximum output in re-
gions of Hyg — Tipio < 5 meters—8 secs.

Although, NSWD covers majority of the North Sea we have
considered only regions that are < 30 m in depth and are relatively
close from the shore, therefore the effective available space rep-
resented = 27.2% of the domain, OceanTech represents 20.4%,
Wavestar 2.7%, and BOF1 4%. Although, an North Sea advantage as a
continental Shelf Sea, is that depths are quite small and without
large gradients. In this case the distance from shore is also
considered as a limiting factor, with furthest point at 100 Km, but
can benefit from the expected offshore wind farm developments,
sharing cabling cost since it is anticipated that the North Sea will
experience a boon in offshore wind installations.

Comparatively, some of these devices have also been simulated
to higher energetic environments, where device that in the North
Sea underperformed were superior at higher energy conditions.
Locations off the coast of Scotland and Norway showed that the
WaveDragon is amongst the best performing devices for long
swells, with CF from 35 to 45% and highest 65%. Devices such as
WaveStar had significant less performance from 10 to 15%, and the
Pelamis was from = 18—30%, with highest 47% [69—72]. This re-
affirms the fact that not all devices are globally applicable
without proper adjustments.

The size of each device can also assist in estimating, the packing
factor per WEC within a 1 km? spatial area. The packing factor
considered within this study can be representative and is used only
to establish what is the feasibility of a wave farm in terms of MW.
Spacing both in terms of latitude and longitude as well as the
packing order, will have serious and possible detrimental effects on
the performance of an array depending on type of WEC.

Gunn et al. [73] simulated the Pelamis considering a packing
density of 5 per Km with next line being 400 m apart, i.e. =11.5
MW /Km?. Veigas et al. [74] came to similar packing density along
longitudes, with a single row of WEC lengthwise and with lat-
itudinal spacing of 100 m, achieving a higher density factor but
without indicating technology. Bozzi et al. [75] performed a vari-
able sensitivity analysis on the design parameters for a WEC farm,
based on a circular design with varied diameter geometry (D), and
distance according to 5D-10D-20D-30D alongside different angles
of attack by the wavefront, pending on approximate WEC capacity
can be from =10 — 100MW /Km2. Delgado et al. [76], used also a
specific WEC long-spun WEC with 90 m length (L) and packed at
different spacings (2 L,3 L4 L), and pending on installed capacity
this can have =20 — 40MW /Km?.

With regards to the selected WEC there can be positive or
negative WEC array effects, either by improving energy production
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Fig. 7. Domain aggregated CF performance of the device, for all grid points within the domain and allowed depth. Near-zero values are not visible due to scale, depth applicability

for 10 < D < 30.

instead of reducing it [77]. This is subjective and has to be analysed
with further higher resolution time frequency domain models, after
a suitable location is selected. Therefore with regards to feasibility
of a wave farm, and keeping in mind the optimal power production.
One can safely assume a feasible packing density within is 10— 20
MW/KmZ. Henceforth, for the economic analysis we have consid-
ered a 10 MW wave farm as feasible per grid cell (although our
resolution is =2 Km?2), which also represent expected capacity
factor. Comparatively, modern wind turbines can accommodate 5—
8 MW/Km? [78].

The potential for wave energy is assessed both for LCoE and
payback. Unlike studies that use only point data relying on expert
advise, which may carry biases. The selected WECs were tested
along all available locations, the final top selection was also
corroborated by the use of an un-bias index (SIWED), which
quantifies the site suitability of a site based on energy variability,
extreme events necessary for economic considerations and energy
production. In both cases the best WEC for the regions are the same,
and are represented by moderate operative converters [31].

In terms of economic viability, the relationship between power
performance and CapEX, regardless of discount rate, exclude as
viable the WECs over < 4.5 M€/MW. Devices with CF < 30% are
potentially viable, but only when social rates are taken into ac-
count. WECs that follow a “production-to-resource” approach
obtain the highest potential using near CFpqy, as they are highly
viable regardless discount rate. On the contrary, as expected, a
high-risk discount rate (r : 10%) with CapEx < 3.5 M€/MW and CF
> 40% is viable throughout, with an increase in CF allows for sig-
nificant CapEx reductions = every 500 thousand € of decrease.
Although, CF < 20% are not viable under any condition for a dis-
count rate of 10% and above, see Fig. 12.

The analysis estimated payback based on the different CapEx,
CFs and discount rates, providing amortisation periods for all
different cases. It is important to highlight that the following two
assumptions are made (i) the CF are within a range of 20—50% as
these values are the mean and max of the analysis (ii) due to the
specificity of each WEC and the different components required
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CapEx is also considered representative. The specifics of each
technology can be “broken” down further, however, this analysis
offers the viable pairs of CapEx-discount rate-CF and corresponding
LCoE that can be considered viable, see Fig. 12. Table 3 estimates the
LCoE and counts the options which have a positive amortisation.
The range of LCoE is from = 60 €/MWh for the high CF of BOF1
with a social discount rate, with mean CF of the same WEC for
similar CapEX being 45% higher (131.2 €/MWHh). The results are
expected to be valid for similar resource regions globally, as WECs
performance will follow similar expectations.

Depending on “viable” couples this is also reflected in the spatial
LCoE, when CapEx is < 1.5 M€/MW and a WEC is optimally
selected, values range from 60 to 350 €/MWh, see Fig. 13. For a
social discount rate LCoE values are from =90 — 180 €/MWh, with
a small portion of Northern Dutch coastal shallower locations
having < 90 €/MWh. Increasing the discount rate, but retaining the
same CapEx and CF performance, LCoE increases to majority of the
central region from =160 — 240 €/MWh. Finally, when the dis-
count rate considers the investment as high risk, the LCoE is from =
140 — 280 €/MWh.

WEC have their economic attractiveness reduced for CapEx
values > 4.5 M€/MW for r: 5%, and > 3 M€/MW for r: 10%, see
Fig. 14. In such instances LCoE increase, reaches ranges of
~300 — 650 €/MWh, =250-500 €/MWh, and =350 - 500
€/MWHh for CapEx 4.5, 3 and 2.4 M€/MW, respectively. These re-
sults show the shift of viable CapEx-CF, which clearly shows that as
CF increases the CapEx can be marginally higher.

This leads to the suggestion that WEC size and conditions
“matching”, matters more than name plate capacity, it has also to
be clearly underlined that the monetary values discussed are based
on pre-commercial devices, with highest ranges corresponding
from literature and attributed to higher energetic environments.

Even in this case, if the converters are placed according to a
“resource-to-production” methodology it can achieve low LCoEs,
that can be the starting point for deployments and further capital
reductions. However, the analysis clearly shows that wave energy
sector, is a high capital intensive but with several societal benefits
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Fig. 9. Spatial representation of the optimal CF that was estimated for the domain, all
devices have been considered with depth applicable limitations (10 < d < 30 m), and
respective distance from shore < 100 km.
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WaveStar BOF 1 OceanTech

Fig. 10. Spatial representation of the optimal three CF per WEC as estimated for the

domain.

Table 2

Assumptions made on the economic modelling.
CapEx 1.5—5 m€/MW (500 k/incr.)
OpEx [35,39,40,63] 8%
Discount rate (r) [64] 5% (social) 10%
Project Lifetime 20 years

0 5 10 15 20 ng(%) 30 35 40 45 50 SDE + [56] 100 €/ MWh
co, 35 €/Tn
Co CO, + SDE+
(c) BOF 1

Fig. 8. Domain perfgrmgnce of two WE‘CS as analy'sed by Fig. 7, based on spatially for that often times are overlooked. Therefore, investments with dis-
10 < D < 30, exception is the BOF 1 which is applicable only at depths < 10 m. count rates over 10% will jeopardise the viability of capital payback,
and also lead to higher LCoE.
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Fig. 11. LCoE for different discount rates, the red box represent the best/optimal
selected device (max CF) and the blue box represent the mean CF of each WEC.

5. Conclusions

At shallower regions, surge devices with similar operating
principles like BOF1 appear more favourable, at “deeper” regions
two most prevalent devices are OceanTech and WaveStar. Inter-
estingly they showcase distinct regions of applicability, with an
almost inverse distribution. In Fig. 8 OceanTech is most favourable
in the upper regions of the North Sea (swell dominated), however,
regions where WEC efficiency drops (swell transformation) are
substituted by Wavestar with CF values similar to the ones
encountered in upper latitudes.

In terms of LCoE most studies so far classified the North Sea and
other moderate resource as non-viable, however, this analysis
clearly shows that by utilising a comprehensive methodology, LCoE
can attain low value as 60 €/MWHh. For average CF values there is a
larger dispersion of LCoE with upper and lower bounds (CapEx
dependence), regardless of discount rate used, with 55% upper and
lower bound differences. When the energy performance is opti-
mised either by device or location selected, then the variation be-
tween upper and lower bounds are reduced to 25—30%.

High energy environments, require much more capital to be
utilised, to ensure survivability as probability of extreme conditions
occurring is increased. Indicatively, extreme return wave differ-
ences for survivability between the most energetic wave locations
in Scotland, Brittany (France), and the Aegean can be 3—5 times less
[79,80]. Therefore most probable CapEx requirements for 15t TRL 7
devices suitable for milder environments, should be considered
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Fig. 12. Amortisation periods expressed in years for the different scenarios as pre-
sented in Table 2.

realistic between 2 and 3.5 M€/MW for social discount rates when
a25—35% CF is recorded, and < 2.5 M€/MW for a high risk (r: 10%).

The results clearly indicate the potential of some devices to
benefit by learning rate reductions [35,40,67] and reduce their LCOE
closer to 10 cents €/kWh in the next 10 years, if proper support and
development methodologies are followed moving closer and even
surpassing expectations of the wave energy industry. The sensi-
tivity analysis of the costs in this study can ensure that all possible
configurations have been explored and the results are applicable
for first generation devices, up to possible 2030 cost that will have
benefited by economies of scale.
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Table 3
LCoE €/MWh based on different discount rates, CapEx and performance (as estimated in Fig. 7).

Mean CF

r: 5% r: 10%
CapEx (Million €/MW) Wavestar BOF1 OceanTech Wavestar BOF1 OceanTech
1.5 149.9 131.3 1434 182.6 159.8 174.6
2 199.9 175.0 1913 2434 2131 232.8
25 249.9 218.8 239.1 3043 266.4 2911
3 299.9 262.5 286.9 365.1 319.6 349.3
35 349.9 306.3 3347 426.0 3729 407.5
4 399.9 350.0 3825 486.8 426.2 465.7
4.5 449.8 393.8 430.3 547.7 479.4 523.9
5 499.8 437.6 478.1 608.5 532.7 582.1

Max CF

r: 5% r: 10%
CapEx (Million €/MW) Wavestar BOF1 OceanTech Wavestar BOF1 OceanTech
1.5 104.2 60.1 68.4 126.9 73.1 83.3
2 139.0 80.1 91.3 169.2 97.5 1111
25 173.7 100.1 1141 2115 121.9 138.9
3 208.5 120.2 136.9 253.8 146.3 166.7
3.5 243.2 140.2 159.7 296.1 170.7 1944
4 278.0 160.2 182.5 3384 195.0 2222
4.5 312.7 180.2 205.3 380.7 2194 250.0
5 347.5 200.3 228.1 423.0 2438 277.8

(7
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Fig. 13. LCoE spatial distribution for different conditions, the energy performance as
estimated in Fig. 9 and CapEx 1.5 m€/MW.
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Fig. 14. LCoE spatial distribution for different conditions, the energy performance as
estimated in Fig. 9 and CapEx varies according to the threshold that makes it viable as
presented in Fig. 12 and Table 3.
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