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Abstract
We present an investigation into the relationship be-
tween the average depth of the first correct predic-
tion and the performance of CodeGen. This was
done on a dataset comprised of code files com-
prised of C++, Go, Java, Julia, Kotlin, and Python.
The analysis involved investigating the model’s
predictions at different layers using a Tuned Lens,
which enables examining the intermediate repre-
sentations. Additionally, attention heads were ex-
amined to gain insights into the model’s behavior.
We found that there is a subset of four layers in
which tokens are predicted correctly for the first
time. These peaks are evident in CodeGen’s per-
formance and come after a small dip, a dip that is
present in the last layer. The results shed light on
the varying performance of different layers and pro-
vide valuable insights into the strengths and weak-
nesses of CodeGen. These findings contribute to
our greater understanding of language model per-
formance in code completion tasks and provide im-
plications for future improvements in this domain.

1 Introduction
PLMs have made significant strides in code completion and
program synthesis, enabling developers to write code more
efficiently, access common patterns quickly, and problem-
solve more effectively, making software engineering more ac-
cessible to novices. Notable examples of this are GitHub’s
Copilot1, powered by OpenAI’s CodeX engine and Sales-
force’s CodeGen models.2

While these models make software engineering more ac-
cessible, our knowledge and understanding of their inner
workings, performance characteristics, and limitations re-
mains limited. Their ever-expanding architectures and train-
ing processes make it challenging to comprehend their atten-
tion mechanisms fully. These models may be complex and
diverse, but they share the same fundamental foundation—
the Transformer architecture.

Learning about a model solely on current performance
evaluations is limiting, as they are often limited to a small se-
lection of programming languages such as Java and Python,
which can be limiting in evaluation against a broader set of
languages. Therefore, we need additional ways to evaluate
the performance of PLMs which focus on the internal pro-
cesses and transformer architecture alongside the final output.

There is research into the behavior of attention heads
throughout the layers of a PLM, this has been focused on the
patterns found regarding parts of speech or code syntax [1]
[2]. Furthermore, general performance metrics focus solely
on the final predictions, rather than observing the intermedi-
ate steps that were taken to get there[3].

Given the patterns that have been found, we can try to con-
nect these two to evaluate a model’s performance based on

1https://openai.com/blog/openai-codex
2https://github.com/salesforce/CodeGen

the layers’ predictive patterns which may tell us something
about the efficiency of the model [1].

This research investigates the cross-lingual performance of
CodeGen. It aims to answer the following research question:
How does the average depth of the first correct prediction
relate to the performance of CodeGen? We generate a test
dataset of CodeGen’s hidden states on a multi-lingual corpus
of code files from the Stack and analyze the predictions at
each, translated by a Tuned Lens [4] [5]. We then observe the
attention heads at several points of interest to determine the
link between attention and performance.

Our findings suggest a weak correlation between the depth
of the first correct completion and CodeGen’s performance.
Further research is needed to explore how to adjust this new
metric to extend its potential and identify and understand the
model’s strengths and weaknesses more thoroughly through
attention.

The main contributions of this study are:
• A multi-lingual analysis of predictions made by Code-

Gen.
• Patterns found in the performance of CodeGen across its

layers.

2 Background and Related Work
2.1 Code Completion
Code comprises various components, including tokens, lines,
statements, functions, classes, and more. Code completion
can be applied to any of these components, where the goal
is to predict the next component of the same type. For this
research, we are evaluating code completion on the token
level.

2.2 CodeGen
Transformers
Transformers were proposed by Vaswani et. al. as the succes-
sor to Neural Networks (NN) in the field of language model-
ing [6]. It is a model architecture that utilizes attention mech-
anisms to establish global dependencies between input and
output, enabling parallel processing of long input sequences
and improving accuracy and efficiency [6].

Self-attention is an attention mechanism that computes a
sequence representation by relating different positions within
a given sequence with an attention function[6]. This func-
tion maps a query and a set of key-value pairs to an output,
a weighted sum of values based on the compatibility of the
query with the corresponding key [6]. Self-attention will be
advantageous as we can map out where it is going for clearer
insights [7].

We focus on autoregressive decoder transformers, trans-
formers with self-attention layers that enable each position
to attend to the current and preceding positions only [6].

Model Details
CodeGen is a set of transformer models with left-to-right
causal masking with next-token prediction language model-
ing as the learning objective[8]. They have a standard trans-
former decoder architecture with left-to-right causal masking,
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Model Summary
Parameters Training parameters 350M

Number of layers 20
Number of heads 16
Context length 2048

Training data
The Pile Natural language 1159.04 GiB

Code 95.16 GiB
BigQuery Java 120.3 GiB

C++ 69.9 GiB
Python 55.9 GiB

C 48.9 GiB
JavaScript 24.7 GiB

Go 21.4 GiB

Table 1: This is an overview of the CodeGen-350M-multi’s param-
eters and training data.

have rotary position embedding for the positional encoding,
and execute self-attention and feed-forward circuits in paral-
lel [8].

For this research, we work with the CodeGen 350M-multi
model. The details of this model can be found in Table 1. It
was initialized from another CodeGen model that was trained
in Natural Language Processing (NLP), on data from the Pile
dataset[9], and fine-tuned with programming data from Big-
Query [8].

The model’s tokenizer was trained with whitespaces and
treats them like parts of the tokens, meaning a word will
be encoded differently depending on if it starts with a
whitespace[8].

In the feed-forward passes, self-attention and the feed-
forward circuits are executed in parallel, with each com-
putation happening simultaneously. This is xt + 1 =
xt + attn(ln(xt)) + mlp(ln(xt)), where attn() is the self-
attention computation, mlp() is the feed-forward computa-
tion, and ln() is the layer-norm[8].

2.3 Tuned Lens
The Tuned Lens allows us to peek into the computational
process of a model. It comprises one translator for each
decoder layer, transforming the hidden states to ensure
that their unembedded representations closely match the
final layer logits [5]. Combining these with the pre-trained
unembedding maps the model’s hidden states, which contain
the current predictions and attention scores, to a probability
distribution over the model’s vocabulary [5]. With the Tuned
Lens, we can observe the predictions for each model’s layers.
In Figure 1, you can get a better idea of how the Tuned Lens
works with CodeGen.

Probing-Based Observation
Through a novel probing technique, Chen et al. developed
the CAT-score, a metric to relate token-level attention scores
and pair-wise distances between corresponding AST nodes,
and have found that the type of tokens that PLMs focus on
varies between programming languages and that there is a

Figure 1: This is how the Tuned Lens interacts with CodeGen. The
Tuned Lens takes the hidden state between layers and applies a learn
affine translation. This is then converted into logits with the unem-
bedding layer.

stark contrast in the PLM’s ability to recognize code struc-
ture across the layers [1]. This research is limited, however,
as they only researched this behavior on encoder-only mod-
els across Java, JavaScript, Python, and Go. The behavior of
token-level attention scores and structure across layers might
be very different in decoder models, as decoder models use
causal self-attention, which restricts the attention to the pre-
vious outputs only [10].

Attention-Based Explanation
There has been research into the behavior of attention by Vig
and Belinkov, in which they found that attention heads spe-
cialized to specific part-of-speech tags and that the tags tar-
geted changed at different layer depths [2]. This, however,
was done with a language model, the GPT-2 small pre-trained
model, on a text corpus from English Wikipedia [2]. This
indicates that the behavior of attention in PLMs may have
learned patterns that vary with their layers, but this could
be very different for programming languages and for models
with more layers.

In contrast with this, Wiegreffe and Pinter have demon-
strated that the behavior of attention in encoder models is not
as apparent as others have pointed out [11]. They provide ev-
idence that the relationship between feature importance and
attention of these encoder models is weak [11].

3 Methodology

CodeGen was used as-is to generate next-token predictions
on a multi-lingual code dataset.
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3.1 Data Collection
We collected a subset of code files in six languages, C++,
Go, Java, Julia, Kotlin, and Python, from the Stack dataset
[4]. From this subset, there are two languages that CodeGen
was not trained on, Julia and Kotlin [8]. Examining famil-
iar and unfamiliar languages asses CodeGen’s generalizabil-
ity and identifies potential biases or limitations.

3.2 Data Processing
We stripped the files of their comments, removed those that
could not provide at least 512 tokens of context, and took a
random section from files that were more than 1500 tokens
long.3

3.3 A Two-Part Exploration
To answer the research questions, we observed what was hap-
pening and then examined why. We first looked at CodeGen’s
predictions across all of its layers with a Tuned Lens, looked
at potential interesting samples or findings, and then analyzed
the behavior of the attention heads across all parts and at those
points of interest.

Phase 1: Tuned Lens Investigation
To determine if there is a relationship between the average
depth of the first correct completion and the performance,
we generated a multi-lingual dataset of predictions made by
CodeGen. The Tuned Lens translated the predictions for each
layer. With this data we could then find the average depths of
the first correct completion and the performance.

1. We compared the true values with the outputs from each
layer to determine when a prediction is correct.

2. We then found the token performance per layer and oc-
currence in the entire dataset.

3. We visualized our findings to assess the potential rela-
tionship between average depth and performance and lo-
cate potential points of interest to look at in part two

4. We found the correlation between average depth and per-
formance to decide if a relationship between depth and
performance could exist.

We excluded a set of standard tokens that appeared over
10,000 times in each dataset to keep the focus on potentially
more interesting tokens.

Phase 2: Attention Investigation
In addition to visualizing attention for individual inputs to the
model, we also analyzed attention in aggregate over a large
corpus.

1. We generated a set of attention matrices from random
samples and layers, to ensure an even distribution be-
tween sample language, layers, and attention heads.

2. We then found the number of null heads present in each
layer, as an aggregate of the random attention heads.

3. We then analyzed at the ratio of null heads and theorized
how it could explain the patterns found in phase 1.

3We determined this value by finding the average num-
ber of chars per token across multiple models, 6.5, and tak-
ing a random selection with char length 6.5 ∗ 512 + 6.5 ∗
number of tokens to predict ≈ 1750 tokens.

4 Experimental Setup
This work aims to provide insight into the relationship be-
tween the model’s architecture and model performance by
answering the question, How does the average depth of the
first correct completion relate to the performance of Code-
Gen? To accomplish this, we split the experiment into two
phases, with each phase answering its respective question:

R1: What is the relationship between the average depth of
the first correct completion and performance?

R2: Are there distinct, observable patterns in attention that
explain the findings from Phase 1?

4.1 Evaluation Metrics
The predictions are compared with the true values and evalu-
ated with several metrics across various scales.

Average Depth
For each token, we found the summation of the layers that
it was correctly predicted for the first time / its total number
of occurrences. To find the average depth of the first correct
completion

Performance
We use accuracy to measure the performance of tokens and
layers. For token accuracy, this is ct/nt, where ct is the num-
ber of correct predictions of a token t and nt is the total num-
ber of occurrences of the token t. This is cl/n for layer ac-
curacy, where cl is the number of correct predictions in the
layer l and n is the total number of tokens predicted.

Null Head Count
Vig and Belinkov have defined null attention as attention di-
rected towards the first token [2]. We have applied their def-
inition to determine if an attention head is a null head. We
define null heads as attention heads receiving more than 70%
or 80% of the total attention.

4.2 Dataset
There was a wide spread in the frequency of tokens. Sev-
eral tokens were present over 10,000 times per language in
the dataset while others were present once. To reduce any po-
tential noise in the performance metrics and keep the focus on
more interesting tokens, we removed tokens that were present
in the dataset less than 10 times and more than 10,000 times.

4.3 Environment and Tools
Configuration
To optimize the speed at which the predictions were gener-
ated, we utilized a CUDA setup on a GeForce RTX-3080
GPU. The experiments can also be done on a CPU.

Implementation
We batched our inputs for efficiency, combining eight differ-
ent context windows for eight next-token predictions. Each
context window was at least 512 tokens long. If the context
windows were not the same shape, we padded the shorter in-
puts with zeros. This way, we ensured that there was not any
right context provided for prediction.
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Statistics on CodeGen’s Next-Token Predictions
Language Average Depth Accuracy Token Freq.
C++ 5.97 90.23% 116
Go 5.67 91.96% 116
Java 6.10 92.08% 80
Julia 5.51 85.96% 106
Kotlin 5.82 85.92% 54
Python 5.91 89.45% 86
Combined - 89.33% -

Table 2: An overview of the statistics gathered on CodeGen’s next-
token completions for each language and a combined dataset.

5 Results
An overview of the overall statistics per language can be
found in Table 2. The performance of

5.1 Findings from Phase 1
Distribution of First Correct Completions
We found notable spikes across the distribution of the first
correct completion of tokens over CodeGen’s layers, at layers
1, 5, 8, 13, and 14. These spikes differed across the low-
resource languages that CodeGen was not trained on, Julia
and Kotlin. This difference can be seen in Figure 2.

Figure 2: The distribution of the first correct completions for each
layer. There are notable differences between Java, Kotlin, and Julia
in layers five and eight.

It is also visible that the tokens correctly predicted for the
first time in layers 0 and 4 were more likely to be correct
in the final prediction than tokens predicted correctly for the
first time in layers 12 - 19. This finding was consistent across
all languages and indicates that we should look closely at the
attention heads in these layers.

Performance
The performance, measured as accuracy, of the predictions,
increased as the layers got deeper. This trend is visible in
Figure 3. There were drops in performance in layers seven,
twelve, and twenty. These drops in layers seven and twelve
happen right before an increase.

Figure 3: The distribution of the first correct completions for each
layer. There are notable differences between Java, Kotlin, and Julia
in layers five and eight.

Relationship Between First Correct Completion and
Performance
There was a weak correlation between the average depth of
the first correct completion and the performance of CodeGen.
This is clear in Figures 4 and 5.

Figure 4: The average depth of the first correct completion and per-
formance on Julia files.

General Performance on New Languages
We have found that CodeGen’s predictions tend to be more
accurate for the languages it was trained on, compared to the
languages it was not (Julia and Kotlin).

5.2 Java

Token patterns in the Layers
There were clear patterns in the predictions of a select set of
tokens. For example, the token “s” was always predicted cor-
rectly for the first time in layer 0, and the token for “Column”
was always correct for the first time in layers 12-14.
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Figure 5: The average depth of the first correct completion and per-
formance on Java files.

Relationship Between Average Depth of the First Correct
Prediction and Performance
The languages that CodeGen was not trained on had lower
scores for the token predictions than the languages it was.
The tokens that it predicted most accurately for these lan-
guages were tokens that are more commonly found across the
set of languages.

5.3 Findings From Phase 2
Attention Patterns
We took a random subset of attention matrices across ran-
domly selected heads in aggregate. For each language, the
patterns were initially similar, however, there were noticeably
more null heads present in layers 12 and onwards, with Java
having the most.

Figure 6: The average number of null heads in each layer for each
language when the threshold was set at 70%. The data was sampled
from a random set of predictions across 100 files.

Figure 7: The average number of null heads in each layer for each
language when the threshold was set at 80%. The data was sampled
from a random set of predictions across 100 files.

6 Discussion
6.1 Limitations
Due to the limited time of the project, we needed to make
choices that were less involved than could be deemed neces-
sary. It took longer than initially thought to gather the correct
predictions and interpret them. It also took longer than ini-
tially thought to gather and process attention, a task that is
computationally very expensive. As a result, the conclusions
that can be drawn are not very definitive.

In order to really understand the relationship between at-
tention and predictions, we need to have a more robust mea-
surement of attention. Using the average number of null
heads per layer did not provide any new information beyond
what has already been discovered in previous work. Further-
more, the metric that was chosen, the definition of a null head,
missed out on the details regarding the attention to other to-
kens that ultimately may have had a larger impact than we
initially thought.

7 Conclusions and Future Work
The overall performance of CodeGen is relatively high, with
the accuracy for each language being greater than 85%.
The relationship between the average depth of the first cor-
rect completion was not very strong, with correlation values
around 0.3 and 0.4.

The performance tended to increase a cross the layers, and
having a lower or higher average depth did not contribute as
strongly. It is interesting to see the spikes in performance
correlating with the layers with the most significant amount
of tokens predicted correctly for the first time. Also interest-
ing that these happen right after a dip in performance, which
could indicate a relationship between the learning process be-
tween the layers. It also seems that CodeGen’s performance
would be improved if it had one less layer.

While there were notable spikes in the layers that tokens
were correctly predicted for the first time, looking at this as
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an average was not as insightful as hoped, there are still a lot
of things that can be explored with this topic.
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9 Responsible Research
9.1 Ethical Aspects
Sensitive information
The Stack has indicated that there may be personal or sen-
sitive information within the datasets, as it was taken from
public repositories [4]. As a result, this data may persist in
our local datasets, even if it is removed from the stack at a
later point.

If this information was located in the comments, then it
was not given to the model for predictions, as these were re-
moved. There may, however, be personal or sensitive infor-
mation within the dataset, as it was taken from public GitHub
repositories. If such information is found, this sample is re-
moved from the Stack, but we do not know when this hap-
pens. If we used this file within our own dataset, this infor-
mation would then persist.

9.2 Reproducibility
Our experiments have been designed to be completely repro-
ducible, as we documented all the decisions that we made and
we generated and saved all of our processed and generated
data to our own datasets.
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