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Abstract

This paper presents a conceptual model for enabling incremental compilation in
Hylo, a modern memory-safe systems programming language currently under devel-
opment. Drawing from a comparative study of existing incremental compilation tech-
niques, an in-depth analysis of Hylo’s front-end architecture, and exploratory experi-
ments, the model categorizes common types of program changes, introduces a scope-
aware AST diffing algorithm, and proposes a lightweight dependency tracking mecha-
nism tailored to Hylo’s needs.

1 Introduction
Efficient compilation is a fundamental requirement for modern programming languages,
particularly as software systems scale in both size and complexity. In today’s development
environments, rapid iteration and immediate feedback are vital to maintaining developer
productivity and sustaining momentum in software projects. Long compilation times intro-
duce friction into the development process, interrupting workflows and potentially discour-
aging experimentation or refactoring. Incremental compilation - where only the changed
portions of a program are recompiled - has emerged as a key strategy to mitigate this issue
[1]. This approach reduces unnecessary recomputation, allowing developers to benefit from
faster build times even when they are working on large and interdependent codebases.

Beyond the build process itself, the need for responsiveness also influences the design
of modern development tools such as language servers. Highly responsive language servers
must be capable of analyzing source code in real time, offering features like code completion,
diagnostics, and refactoring tools with minimal latency. Achieving this level of interactivity
requires sophisticated internal designs that can mirror some of the principles of incremental
compilation - for example, reusing previous analysis results, managing fine-grained depen-
dencies, and reacting efficiently to partial changes in code. As a result, both compilation
strategies and development tooling have evolved to meet the expectations of modern software
engineering workflows.

Hylo is a relatively new systems programming language that prioritizes performance
and safety. The focus on safety in particular is achieved through adopting mutable value
semantics [2] and incorporating expressive generic systems [3], both of which aim to prevent
many subtle programming mistakes. However, Hylo’s compiler currently lacks extensive
support for incremental compilation which could limit its future adoption in real-world
development environments. While the compilers of languages with a similar profile like Swift
and Rust have been extensively optimized for incremental behavior, their techniques are not
directly applicable to Hylo due to its unique language semantics and compiler infrastructure.
This leaves a gap in both practical tooling and academic understanding of how incremental
compilation can be adapted to newer, safety-focused languages. Advancing research and
tooling in this area - through comparisons to other languages and improvements in the
compiler design - could close this gap and bring Hylo’s development experience closer to
that of more mature systems languages.

The core research question of this project is to investigate how existing incremental
compilation techniques can be effectively adapted and optimized for the Hylo programming
language. This work answers that question by splitting it into three subquestions:

• RQ1: What are the current incremental compilation techniques, and how have they
been applied in modern programming languages?
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• RQ2: How are the semantics of the Hylo language defined, and what are the key
architectural features of the Hylo compiler front-end?

• RQ3: Which techniques are most suitable for integration into the Hylo compiler, and
how could such techniques be prototyped and evaluated?

By executing a comparative analysis of existing tooling approaches, designing a prototype
model tailored to the specific needs of Hylo, and assessing their applicability and the key
challenges associated with their implementation, this paper aims to lay the foundations for
more performant and adaptable language tooling in modern programming ecosystems.

2 Background
This section provides essential context for understanding incremental compilation in Hylo.
It begins by outlining the Hylo compilation model, which establishes the foundation of how
Hylo code is processed. This is followed by an overview of query-based compilation, a tech-
nique that enables efficient recomputation by modeling compilation as a set of interdepen-
dent queries. Lastly, the section discusses the granularity of compilation units, highlighting
how the size and scope of compilation units impact the effectiveness of incremental updates.

2.1 Hylo compilation model
In the Hylo compilation model [4], the front-end begins by parsing each source file separately,
in a sequential manner. During parsing, the compiler breaks down the raw code into a
detailed abstract syntax tree (AST) for the whole module. This process separates the
program’s syntactic structures into distinct categories - statements, declarations, patterns,
and expressions - capturing all necessary information for each. This rich representation
allows later stages to precisely understand and manipulate the program’s components.

Following parsing, the compiler constructs a comprehensive scope hierarchy spanning
the entire module. This step is performed partially in parallel for all files and focuses on
organizing declarations into nested scopes that define where identifiers can be declared and
accessed. Rather than resolving names at this point, the scoping phase sets up the lexical
framework of visibility rulesv.

Full name resolution happens on demand during the typing phase, where the compiler
treats the whole module as one unit and queries the name resolution system as needed.
Typing - covering both type-checking and type-inference - depends heavily on this on-the-
fly resolution to ensure all names are correctly bound and all types are consistent. The
expressiveness of Hylo’s generic system necessitates the use of constraint solving algorithm
to correctly identify the types referred in each context. The model of the front-end is
illustrated in Figure 1.

After successful typing, the back-end takes the fully annotated AST and emits the Hylo
immediate representation (IR). This stage effectively links the modules together by inte-
grating them one by one into the generated code for the whole program. Finally, the Hylo
IR is transpiled to the LLVM IR and LLVM is invoked for the last step of the process - the
generation of the machine code. The model of the back-end is illustrated in Figure 2.

It is important to note that Hylo’s compiler has limited support for incremental compi-
lation in the form of module-level caching of the results produced by the front-end. In other
words, once parsed and typed the AST for a given module can be reused in the subsequent
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stages of the compilation of various programs which use it. A prominent example of that is
Hylo’s standard library.

Figure 1: Scheme of Hylo’s front-end model

Figure 2: Scheme of Hylo’s back-end model

2.2 Query-based compilation
The query-based model of compilation represents a sophisticated approach to incremental
compilation, designed to optimize build times by intelligently reusing past computation [5].
This model fundamentally re-architects the compiler’s internal workings around a system
of “queries”, which are essentially pure functions meaning that given the same inputs, will
always produce the same output. This purity is crucial because it allows the compiler to
reliably cache the results of these queries and efficiently invalidate them when a relevant
change is introduced.

The compilation process is broken down into numerous, often fine-grained, tasks, each
represented by a query. For instance, a query might compute the AST for a specific file,
perform type checking for a function, or resolve a declaration’s value. The results of these
individual queries are then cached. When a subsequent compilation run occurs, the system
first checks if the inputs to a query have changed. If they haven’t, the cached result can
be reused, avoiding redundant computation. This caching mechanism is a primary driver of
efficiency in incremental builds, significantly reducing the “from-scratch” compilation time.
Modern IDEs, for example, often hold intermediate products in memory to avoid costly
re-parsing and loading, enabling faster feedback [6].

Some queries may need access to information from other, potentially distant, parts of the
program’s analysis. Therefore, a critical aspect of the query-based model is the explicit and
automated tracking of dependencies between these queries [7]. As one query invokes or ac-
cesses the result of another query, this interaction is recorded, building a dependency graph.
This graph is inherently acyclic (a directed acyclic graph or DAG), ensuring a resolvable
evaluation order. For example, in Rustc’s incremental compilation system, dependencies
are recorded between internal “queries”, making these relationships explicit [8]. This explicit
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dependency tracking allows the compiler to understand precisely what data contributed to
a query’s result by following the edges of the graph.

When a change occurs in the source code, the system needs to determine which cached
query results have been invalidated and thus require re-evaluation. This is typically achieved
through a combination of change detection and a propagation algorithm. Once a change is
detected, a propagation algorithm, such as the “red-green algorithm”, is employed [9]. Nodes
(query results) in the dependency graph are initially marked “red” if they are potentially
affected by a change. The system then attempts to re-evaluate these “red” queries. If a re-
evaluated query produces the same result as its cached version (even if its inputs changed),
it can be marked “green”, and its dependents do not need to be re-evaluated. If the result has
changed, it remains “red”, and its dependents are then considered for re-evaluation. This
interleaving of change detection and re-evaluation helps mitigate “false positives”, where
a query might be re-evaluated only to find its output hasn’t actually changed, avoiding
unnecessary downstream recompilations.

2.3 Granularity of compilation units
A significant design consideration in the query-based model is the granularity of the compi-
lation units (the “queries”). Smits et al. discuss this fundamental trade-off in [1]:

Smaller Units (Fine-grained): Breaking the compilation into very small, fine-grained
queries (e.g., function-level, statement-level, or even specific interface elements) allows for
highly precise dependency tracking. When a minor change occurs, only a minimal set of
these small units and their direct dependents need to be re-evaluated. This leads to faster
incremental builds because less unnecessary work is performed. However, managing a vast
number of small units introduces more dependency relations, increasing the overhead of
graph construction, storage, and traversal. The cost of computing fingerprints for many
small units can also be substantial.

Larger Units (Coarse-grained): Conversely, using larger, coarse-grained units (e.g., file-
level or module-level compilation) simplifies the dependency graph, as there are fewer nodes
and edges to manage. This can reduce the overhead associated with dependency tracking
itself. However, a change within a large unit might necessitate re-evaluating the entire unit,
even if only a small part was affected. This can lead to over-approximation of dependen-
cies and more time spent re-evaluating the larger unit than strictly necessary, potentially
negating the benefits of incrementality for small changes.

The optimal balance lies in choosing a granularity that minimizes the total cost of com-
pilation, considering both the overhead of dependency management and the time spent
on re-evaluation. Modern systems often strive for fine-grained dependencies to maximize
efficiency, especially in interactive development environments [6].

3 Methodology
This research followed an exploratory approach to assess the feasibility of integrating in-
cremental compilation into the Hylo programming language. A combination of methods -
including literature review, source code analysis, expert consultation, and compiler experi-
ments - was used to investigate the language’s architecture and existing compilation process.
These are described in subsection 3.1.

Early in the project, a conceptual model for incremental compilation in Hylo was devel-
oped. This model served as a basis for the main part of the research process and provided
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a framework for evaluating technical limitations and identifying areas for improvement. It
is explained in subsection 3.2.

3.1 Research methods
To investigate the feasibility of integrating incremental compilation into the Hylo program-
ming language, a mixed-method approach was adopted. This involved a combination of
theoretical research, direct interaction with the compiler’s codebase and developers, and
exploratory experiments aimed at identifying architectural constraints and informing the
design of a conceptual solution.

• Literature review and comparative analysis: Conducted an in-depth survey of aca-
demic literature, technical documentation, and existing compiler architectures to iden-
tify and analyze established techniques for incremental compilation. This provided a
conceptual foundation and a set of comparative results to guide the adaptation of such
techniques to Hylo’s unique architecture.

• Code review and expert consultation: Closely examined the front-end source code
of the Hylo compiler to gain a deep understanding of its parsing, desugaring, and
semantic analysis phases. Engaged in technical discussions with Hylo developers Dim-
itri Racordon and Ambrus Toth to clarify the rationale behind key design decisions,
uncover undocumented behaviors, and map out the internal compilation workflow.

• Experiments and conceptual design: Conducted exploratory experiments with the
Hylo compiler to better understand its behavior, internal architecture, and limitations
in the context of incremental compilation. These experiments involved modifying
and observing the compiler in controlled scenarios to identify potential shortcomings
and areas for improvement. Based on these findings, developed a high-level conceptual
model outlining how incremental compilation could be integrated into Hylo. No imple-
mentation of incremental techniques was performed; the focus remained on feasibility
analysis and architectural planning.

3.2 Conceptual model
The conceptual model for incremental compilation in Hylo was developed in the early stage
of the project as a theoretical framework to guide subsequent investigation. It emerged from
initial experiments with the compiler and technical consultations with core Hylo develop-
ers. These early findings highlighted the front-end of the compiler as the most promising
candidate for incrementalization.

In the experiments, a synthetic Hylo program, which contains relatively simple language
features, was generated. The program consisted of 100 structures, each of which conformed
to one of three traits requiring implementations for up to 3 methods (see Listing 1 in Ap-
pendix for details). As a result, the parsing and scoping stages were found to be sufficiently
fast to justify rerunning them in full on each compilation. The typing phase was found to be
more than 20 times slower than parsing and more than 30 times slower than scoping even
in such non-complicated situations. Consequently, it was established that the model should
focus on incrementalizing the typing phase.

The proposed model focuses on tracking and responding to changes at the level of the
abstract syntax tree (AST), enabling selective re-analysis of modified components in the
compilation pipeline. It consists of two main components: a mechanism for computing
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differences between successive ASTs, and an incremental approach to type checking that
limits recomputation to affected subtrees. An illustration of it can be found in Figure 3.

Figure 3: Scheme of conceptual model for incremental front-end

The two main ideas of the model are outlined in the following subsections.

3.2.1 AST diffing

Abstract Syntax Tree (AST) diffing [10] enables a structured comparison between two ver-
sions of a program by identifying the precise syntactic and semantic changes between their
tree representations. Rather than relying on raw textual differences, AST diffing captures
meaningful transformations such as changes in function signatures, addition or removal of
definitions, or the reordering of declarations - by aligning nodes and labeling edits (insert,
delete, update). In the context of Hylo, AST diffing can be used to systematically detect
and classify edits made between program revisions. This structured change model provides
a foundation for tools to understand not only what changed, but how those changes impact
the rest of the program’s semantics.

3.2.2 Incremental approach to type checking

By leveraging the results of AST diffing, Hylo’s type checker could be incrementalized,
avoiding full re-typechecking of the entire program on every change. When an edit is made,
the AST diff indicates the minimal scope of change, allowing the type system to invalidate
only those parts of the type environment and dependency graph that are directly affected.
For example, if a function’s return type is altered, only its call sites and dependents need
rechecking. Combined with caching and dependency tracking, this localized re-typechecking
process has the potential to dramatically reduce latency during development, improving re-
sponsiveness in IDEs or build systems. Thus, AST diffing serves as the backbone of a precise
invalidation strategy, which would enable Hylo to deliver both strong static guarantees and
interactive performance at scale.

4 Incremental Compilation in Hylo
This section presents the core results of the research, outlining a high-level model for inte-
grating incremental compilation into the Hylo compiler. It begins by classifying common
types of program changes and assessing their impact on the compilation process. Building
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on this, it introduces an AST diffing strategy tailored to Hylo’s syntax and semantics, ad-
dressing the limitations of naive index-based comparisons. Finally, it proposes a lightweight
dependency tracking mechanism designed to support precise and efficient invalidation during
recompilation.

4.1 Classification of program changes
To design an efficient incremental compilation system, it is crucial to classify the types of
program changes according to their semantic impact and the extent to which they propagate
through the compilation pipeline. In Hylo, changes can be broadly categorized based on their
visibility, disruptiveness, and detectability.

4.1.1 Implementation changes to functions

The most frequent type of change encountered in day-to-day programming is a modifica-
tion of a function’s implementation. In Hylo, methods are treated as syntactic sugar over
functions with an implicit self parameter, so both fall under the same category semantically.
These changes typically involve editing the function body without altering its signature (i.e.,
parameter types, return type, or labels). As such, they are entirely local to the function
itself and invisible to the rest of the program from the type-checking perspective.

Good coding practices in Hylo (and in general) encourage short and well-encapsulated
function bodies, which further limits the cost of reanalyzing such changes. Given that
the function’s interface remains unchanged, re-type-checking its body in isolation is both
feasible and sufficient, making this class of changes the most straightforward to support
incrementally.

4.1.2 Declaration reordering

Another class of benign changes includes reordering declarations within a single scope where
order is semantically irrelevant. In Hylo, this applies to the top-level declaration as well
as those introduced in the bodies of trait, extension, and struct declarations, where the
relative position of members does not affect their meaning. When such reorderings occur, the
abstract syntax tree (AST) remains structurally identical in terms of typing dependencies.

Since no identifiers are added, removed, or semantically altered, and lookup mechanisms
do not depend on declaration order in these contexts, these changes can be entirely ignored
by the type-checker. As a result, declaration reordering within reorderable scopes can be
treated as a no-op for incremental compilation.

4.1.3 Identifier renaming

Renaming an identifier may seem like a purely cosmetic transformation, but it introduces
subtle semantic and structural challenges. In Hylo, names of function parameters and
record members are significant - for instance, changing fun f(param1: inout A) to fun
f(param2: inout A) defines a distinct function [11]. Similarly, {a: {}} and {b: {}},
despite structural similarity, are not interchangeable. Therefore, renaming in these contexts
must be treated as replacing one declaration with a new, unrelated one.

The only safe and incremental-friendly form of renaming occurs when all references to
an identifier are simultaneously updated. This can typically be guaranteed only through
automated refactoring tools like a language server would normally support. Until such
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tooling is developed for Hylo, renames must conservatively be treated as a deletion followed
by an introduction, potentially triggering full reanalysis of affected scopes.

4.1.4 Public API changes

Changes to the public interface of declarations are the most disruptive to incremental com-
pilation. They require careful dependency tracking due to their potentially wide-reaching
impact. Two strategies are possible:

• Conservative invalidation: This approach invalidates all caches for scopes that are
transitively visible from the changed declaration. Although simple to implement, it is
coarse-grained and often inefficient. Even the addition of an unused top-level function
would cause unnecessary recompilation across unrelated modules.

• Dependency graph-based invalidation: A more precise strategy involves tracking ref-
erences to each declaration and using them to construct a dependency graph. When
a declaration’s public API changes, only the nodes (i.e., dependent scopes) reachable
via this graph are invalidated. This requires maintaining up-to-date and fine-grained
reference information but enables more targeted and efficient incremental recompila-
tion.

4.2 AST diffing approach
To enable effective incremental compilation in Hylo, the compiler must be able to detect
which parts of a program have changed following a code edit. This is accomplished through
AST diffing - a process of comparing the abstract syntax tree generated before the change
with the one generated after parsing the updated program. The goal of this process is to
identify and isolate the minimal set of modified constructs so that only the affected parts of
the program are re-analyzed.

4.2.1 Limitations of index-based comparisons

The straightforward comparison of ASTs is complicated by the fact that the AST nodes are
not stable across parses. Internally, each AST node has an identity which is a convenient
umbrella representation for the index of the module, the index of the file in the modules and
the index of the node in the corresponding file. Since these indices are given in the order they
are parsed, even a small edit - such as inserting a new declaration or modifying a function
body - can completely change the identities of the subsequent nodes. Consequently, relying
on these identities for detecting changes is infeasible and misleading, as even unchanged
parts of the program may appear different merely due to index shifts.

Furthermore, syntactic changes like reordering declarations, inserting comments, or for-
matting adjustments may not affect semantics at all, yet they can obscure the correspondence
between the old and new ASTs if structural information is not taken into account.

4.2.2 Hierarchical scope-based diffing algorithm

To address this, we can use a hierarchical and identifier-aware diffing approach, designed to
find matches even in case of identity mismatch. The steps are the following:
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1. Matching declarations by identifiers

The diffing process starts at the outermost level of the program structure - the top-level
of the files in the module. We attempt to match declarations (such as structs, traits,
extensions and givens) in the old and new ASTs on the basis of the signature which
includes the identifier and the other relevant attributes (such as type annotations,
access modifiers, conformances in case of structs or parameters in case of functions).
For each declaration encountered, we determine one of the following cases:

• The declaration is newly introduced (present in the new AST but not in the old
one).

• The declaration no longer exists (present in the old AST but missing from the
new one).

• The declaration continues to exist (present in both ASTs, with matching identi-
fiers).

In the first two cases, we keep track of the changes associated to the corresponding
scope.

Matching declarations by name provides a stable anchor point even in the presence of
unrelated edits elsewhere in the file or module.

2. Comparing declarations within matching scopes

For declarations that persist between the two versions, we then recursively compare
the sets of declarations contained in their inner scopes. The exception is made for
function declarations which are the base case for the recursion. If function declaration
is newly introduced or its body has changed, then we will analyze it again because of
the reasons explained in section 4.1.1. Otherwise, we will try to use as much of the
results of the previous analysis as possible.

To decide efficiently whether the body of a function has changed, we use hashes which
are computed during the parsing. The size of the hashes should be at least 128 bits
to make the risk of collision negligible. [9]

3. Pruning unchanged branches of the AST

To further optimize the traversal of the AST, we can again apply hashing to identify
whether we are entering a branch in the AST which has not changed at all. However, as
we have already discussed, the order of the declarations matters only in function scopes,
which means that we cannot directly apply hashing without allowing unnecessary work
in case of benign re-orderings. There are two ways to solve this problem:

• Sorting declarations inside each scope with stable ordering before hashing: By
sorting the declarations in scopes where order does not matter (such as module-
level or struct-level scopes), we can ensure that semantically equivalent but syn-
tactically reordered code produces the same hash. A stable sort guarantees that
declarations that are already in order are not arbitrarily moved, preserving rela-
tive order among equal elements where needed. This approach allows the hashing
function to treat benign reordering as unchanged code, thus avoiding redundant
traversal and reanalysis.
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• Using special hash functions that are position-independent: Alternatively, we can
design or use hash functions that are inherently insensitive to the order of items
within a collection. For instance, instead of hashing a list of declarations as a
sequence, we can hash the multiset of declarations, which ignores their order.
These kinds of hash functions can treat two declaration sets with the same el-
ements but in different orders as equivalent, provided the semantic meaning is
unaffected by the order (which is the case outside function bodies).

By applying these strategies, we can minimize unnecessary work and focus reanaly-
sis efforts only on genuinely modified parts of the AST, significantly improving the
performance of incremental compilation or transformation tools.

For pseudo code of this algorithm see Listing 2 in the Appendix.

4.3 Dependency tracking
During the typing phase of the Hylo compiler, dependency tracking can be implemented
by associating each declaration with a set of functions that depend on it. This is achieved
by recording, during the typing of a function body, the declarations resolved through name
lookup - these can be types used in annotations or functions invoked within the body. For
every such resolved declaration, the compiler updates its internal metadata to include a
reference to the current method as one of its dependents.

This reverse mapping - from declaration to dependent methods - enables efficient in-
validation when changes occur elsewhere in the codebase. When the AST diff signals that
a declaration has been added or removed, the compiler performs a name lookup from the
scope of the change. This lookup determines whether any existing declarations have been
shadowed or become visible as a result of the change. Both situations imply that a previ-
ously resolved name would now resolve to a different declaration, altering the meaning of
code that depended on the original.

For each declaration identified as being shadowed in this way, the compiler consults its
dependency map to retrieve all methods that previously referred to it. These methods are
then marked for reanalysis, as their typing results may no longer be valid under the new
resolution. This strategy allows the compiler to selectively re-type only the affected methods,
ensuring correctness while maximizing reuse of cached typing results for unaffected code.

5 Discussion
To contextualize the proposed incremental compilation model for Hylo, this section first
examines related work by outlining the approaches taken by established compilers such as
Swift and Rust. Following that, it discusses the limitations of the current proposal, partic-
ularly in light of its reliance on Hylo’s evolving compiler infrastructure and the potential
challenges involved in translating the conceptual model into a practical implementation.

5.1 Related work
This section presents details about the incremental features incorporated in the compilers
of Swift and Rust. Since these languages have similar profile to Hylo, their compiler’s inner
workings were a significant focus in the early stages of the research process.
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5.1.1 Rust’s compiler

Rust’s compiler (rustc) supports incremental compilation primarily through fine-grained
dependency tracking at the module and item level [9]. This is achieved using the incremental
compilation engine introduced in the MIR (Mid-level Intermediate Representation) phase.

• Parsing: Rust does not incrementally parse source files. Each modified source file is
re-parsed in full. However, unmodified files are skipped entirely.

• Semantic Analysis: The compiler uses metadata and dependency graphs to track defi-
nitions and references across crates. When a function or type changes, only the depen-
dent items are re-analyzed. This is facilitated by the Query System, which memoizes
the results of compiler queries (e.g., type checking a function) and invalidates them
only when their inputs change.

• Optimization: Rust performs MIR optimizations incrementally. The MIR is stored in
a cache and reused when possible. Only the affected MIR units are re-optimized upon
changes.

• Code Generation: Code generation (LLVM backend) is incremental at the codegen unit
level. Rust splits crates into multiple codegen units (CGUs), and only the modified
CGUs are recompiled and re-linked. This significantly reduces recompilation time,
especially for large projects.

The entire incremental process relies on fingerprinting and hashing of inputs and outputs,
stored in an on-disk cache under the target/incremental directory.

5.1.2 Swift’s compiler

Swift’s compiler also supports incremental compilation, though its model is centered around
source file boundaries and leverages driver-level orchestration rather than fine-grained item-
level tracking [12].

• Parsing: Swift recompiles and re-parses only the source files that have been modified.
This is made possible by file-level dependency tracking, which determines which files
depend on which others .

• Semantic Analysis: Like Rust, Swift employs a dependency graph to track inter-file
dependencies. However, it performs semantic analysis (e.g., name resolution, type
checking) only for changed files and their dependents. The granularity is coarser
compared to Rust’s item-level tracking.

• Optimization: Swift uses the LLVM optimizer, and optimizations are applied at the
module or whole-program level depending on the build configuration. For debug builds,
the optimizer is minimal, so incremental recompilation is faster. For release builds,
the entire module may be re-optimized unless whole-module optimization (WMO) is
disabled.

• Code Generation: Swift emits object files for individual source files. Only the changed
files are recompiled into object files, and the linker stitches them together. This object-
file-based strategy is analogous to traditional C/C++ build systems.
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Swift’s incremental builds are coordinated by the Swift driver, which determines which
files need to be rebuilt based on timestamps, module interfaces, and a persistent dependency
file (.swiftdeps).

In summary, Rust offers more fine-grained incrementality, especially in semantic analysis
and MIR-based optimization, using a sophisticated query-based model. In contrast, Swift
provides file-level incrementality, offering faster feedback loops with a simpler but coarser
approach. The trade-off is between the granularity of change detection and the complexity
of the compiler infrastructure required to support it.

With this in mind, the incremental compilation model proposed for Hylo combines char-
acteristics of both Rust and Swift. Like Rust, it avoids incrementally parsing source files, as
the potential performance gains do not justify the added implementation complexity. For
semantic analysis, Hylo adopts an approach more similar to Swift’s, relying on explicit de-
pendency tracking rather than a query-based system. This avoids the additional indirection
introduced by Rust’s query model while still enabling effective incremental analysis.

5.2 Limitations
While the proposed incremental compilation model for Hylo presents a conceptually solid
and pragmatic approach, several limitations must be acknowledged:

1. Implementation-dependent adjustments: Although the model is carefully designed
with practical trade-offs in mind, its theoretical soundness does not guarantee seamless
integration into the existing compiler. During implementation, unforeseen complex-
ities may arise, necessitating deviations or refinements to the model. Performance
bottlenecks, interface constraints, or interactions with other compiler subsystems may
lead to compromises in the design.

2. Dependence on the current compiler architecture: The proposed model is closely
aligned with the present structure and behavior of the Hylo front-end. However,
compiler development is an evolving process, and significant changes to the front-end
- such as modifications to the AST, type system, or module resolution mechanisms -
could render parts of the model obsolete or incompatible. As such, future adaptations
may be required to maintain coherence with ongoing infrastructure changes.

These limitations highlight the importance of treating the current proposal as a flexible
framework rather than a fixed implementation plan. Continued evaluation during the de-
velopment process will be necessary to ensure that the model remains robust and relevant
as the compiler matures.

6 Responsible Research
This research has been conducted with a focus on methodological transparency and re-
producibility. All methods employed are grounded in established academic practices. The
literature review and comparative analysis relied on publicly available academic papers,
compiler documentation, and open-source codebases, ensuring that the sources used are ac-
cessible for verification and further inquiry. In terms of reproducibility, the methodological
approach is designed to be repeatable by others. The Hylo compiler is open-source, and
the exploratory experiments described - though informal and qualitative in nature - were
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performed using publicly available versions of the compiler. Therefore, all observations and
conclusions are based on source-level inspection and documented behaviors. The conceptual
design is derived from reproducible steps: analysis of the compiler’s behavior, consultation
of public resources, and synthesis based on observable properties.

In addition to ethical and reproducibility considerations, this work contributes to a
broader security-conscious ethos by focusing on memory-safe programming languages like
Hylo. According to the February 26, 2024 US government report Back to the Building
Blocks: A Path Toward Secure and Measurable Software, adopting memory-safe languages
is a strategic measure to prevent entire classes of vulnerabilities at scale - an approach the
report directly encourages technical and academic communities to pursue [13]. By advancing
research in safe-by-design compiler architectures, we align with public policy goals aimed at
reducing cybersecurity risks at their root and promoting measurable software quality.

7 Conclusions and Future Work
This paper set out to explore how incremental compilation could be effectively introduced
into the Hylo programming language. The central research question was: What would an
incremental compilation model tailored to Hylo’s architecture look like, and what are the key
design challenges involved in building it?

To address this, we conducted a comparative analysis of existing approaches to incre-
mental compilation, examined the internal structure of Hylo’s front-end, and carried out
exploratory experiments to understand how typical source-level changes affect the compila-
tion process. The resulting conceptual model introduces three main components:

1. a classification of relevant code changes and their expected impact;

2. a hierarchical, scope-aware AST diffing algorithm to detect and isolate these changes
efficiently; and

3. a lightweight dependency tracking mechanism to determine the set of elements that
must be recompiled.

Together, these contributions lay a foundation for building more performant and adapt-
able tooling in modern language ecosystems. A key strength of the proposed model is that
it is designed to integrate smoothly with Hylo’s existing front-end, avoiding unnecessary
complexity while enabling meaningful compiler responsiveness improvements.

However, this work remains conceptual. The next steps involve implementing the pro-
posed techniques within the Hylo compiler, validating their performance impact, and refining
the model based on practical experience.

In conclusion, this research provides a structured, implementation-aware approach to
incremental compilation for Hylo and sets the stage for future advances in compiler perfor-
mance and tooling responsiveness in memory-safe language ecosystems.
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A Appendix

1 #include <fstream >
2

3 std:: ofstream test("prog.hylo");
4

5 std:: string traits [] =
6 {
7 "trait T1 { fun f() }",
8 "trait T2<T> { fun g() -> T }",
9 "trait T3<U, V> { fun h(x: U) -> V}"

10 };
11

12 std:: string conformances [] = {"T1", "T2<Void >", "T3 <Void , Void >"};
13

14 std:: string methods [] =
15 {
16 "public fun f() {}",
17 "public fun g() { self.f() }",
18 "public fun h(x: Void) { self.g() }"
19 };
20

21 int main()
22 {
23 int n = 100;
24

25 std:: string prog = traits [0] + "\n" + traits [1] + "\n" + traits [2]
+ "\n\n";

26

27 for (int i = 0; i < n; ++ i)
28 {
29 std:: string no = " ";
30 no[0] = i / 10 + 48;
31 no[1] = i % 10 + 48;
32

33 prog += "struct S" + no + " is " + conformances [0];
34 if (i % 3 > 0) prog += " & " + conformances [1];
35 if (i % 3 > 1) prog += " & " + conformances [2];
36 prog += " {\n";
37

38 prog += " " + methods [0];
39 if (i % 3 > 0) prog += "\n " + methods [1];
40 if (i % 3 > 1) prog += "\n " + methods [2];
41 prog += "\n}\n";
42 }
43

44 test << prog;
45 return 0;
46 }

Listing 1: Generation of a synthetic Hylo program (gen.cpp)
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1 function diff_modules(old_ast , new_ast):
2 // The top -level scope of the program
3 let old_top_level_scope = old_ast.top_level
4 let new_top_level_scope = new_ast.top_level
5

6 // Initialize a list to store the identified changes
7 let changes = []
8

9 // Begin the recursive diffing process from the top -level scope
10 diff_scopes(old_top_level_scope , new_top_level_scope , changes)
11

12 return changes
13

14 function diff_scopes(old_scope , new_scope , changes):
15 // Optimization: Prune unchanged branches using hash comparison
16 if calculate_scope_hash(old_scope) == calculate_scope_hash(

new_scope):
17 return // Scopes are identical , no further analysis needed
18

19 // 1. Matching declarations by identifiers
20 let old_declarations = create_map_of_declarations(old_scope)
21 let new_declarations = create_map_of_declarations(new_scope)
22

23 // Identify continuing declarations
24 for each identifier in old_declarations.keys():
25 if identifier in new_declarations.keys():
26 let old_decl = old_declarations[identifier]
27 let new_decl = new_declarations[identifier]
28

29 // 2. Comparing declarations within matching scopes
30 if is_function(old_decl):
31 // Base case: Handle function declarations
32 if has_function_body_changed(old_decl , new_decl):
33 add_change(changes , "MODIFIED", new_decl)
34 // else: Function body is unchanged , reuse previous

analysis results
35 else if is_scope_container(old_decl):
36 // Recursive step for nested scopes
37 diff_scopes(old_decl.scope , new_decl.scope , changes)
38

39 // Remove matched declarations to identify new and removed
ones

40 remove identifier from old_declarations
41 remove identifier from new_declarations
42

43 // Identify newly introduced declarations
44 for each identifier in new_declarations.keys():
45 let new_decl = new_declarations[identifier]
46 add_change(changes , "ADDED", new_decl)
47

48 // Identify removed declarations
49 for each identifier in old_declarations.keys():
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50 let old_decl = old_declarations[identifier]
51 add_change(changes , "REMOVED", old_decl)
52

53 function calculate_scope_hash(scope):
54 // 3. Pruning unchanged branches of the AST
55 // Hash calculation is order -insensitive for non -function scopes
56 // This can be achieved by either:
57 // a) Sorting declarations by a stable order before hashing
58 // b) Using a position -independent hash function
59 if is_function_scope(scope):
60 return hash_of_ordered_declarations(scope.declarations)
61 else:
62 return hash_of_order_independent_declarations(scope.

declarations)
63

64 function create_map_of_declarations(scope):
65 // Creates a map of declarations keyed by a unique signature (

identifier + attributes)
66 // This allows for efficient lookup of declarations
67 let declaration_map = new Map()
68 for each declaration in scope.declarations:
69 let signature = generate_signature(declaration)
70 declaration_map[signature] = declaration
71 return declaration_map
72

73 function has_function_body_changed(old_function , new_function):
74 // Compares the hash of function bodies to efficiently check for

changes
75 // Hashes are pre -computed during parsing
76 return old_function.body_hash != new_function.body_hash
77

78 function is_function(declaration):
79 // Checks if a declaration is a function
80 return declaration.type == "Function"
81

82 function is_scope_container(declaration):
83 // Checks if a declaration contains a nested scope
84 return declaration has inner_scope
85

86 function add_change(changes , change_type , declaration):
87 // Adds a record of the change to the list of changes
88 changes.append ({type: change_type , declaration: declaration })

Listing 2: Pseudo-code for the hierarchical scope-based diffing algorithm
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