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Abstract

This study aims to investigate the impact of various
denoising algorithms on the quality of visual stim-
ulus reconstructions based on functional magnetic
resonance imaging (fMRI) data. While fMRI pro-
vides a valuable, noninvasive method for assessing
brain activity, the reliability of this data can be im-
paired by multiple noise types, including thermal,
physiological, and scanner-related noise. Numer-
ous denoising methods have been proposed, such
as independent component analysis, confound re-
gression and filtering, and GLM denoise. However,
their efficiency, especially in the context of limited
task fMRI data, remains largely unexplored.
Using the Generic Objects Dataset (GOD),
our study explores three primary research sub-
questions: the effectiveness of different denoising
algorithms in improving reconstruction quality; the
impact of artificially induced noise on these algo-
rithms and whether combining different denoising
algorithms can further enhance image reconstruc-
tion quality.
The primary contributions of this research include
the evaluation of various denoising methods with
limited task fMRI data, determining the most ef-
fective denoising algorithms given a small dataset
size, and analyzing how these algorithms perform
in the presence of artificially introduced noise.
The results of this investigation showed an im-
provement in performance of reconstruction mod-
els given multiple denoising algorithm, the best
performer being kurtosis-based PCA used together
with nuisanse regression with constant and linear
terms bringing a 6.2% increase in score. The noise
ceiling is the worst performer, bringing the score
down by 4.4%.
Denoising algorithms fail to improve reconstruc-
tions poisoned with gaussian noise, however, ICA
manages to achieve a minor improvement of the
quality of reconstructed images given noise sam-
pled from the uniform distribution.
Keywords: Visual stimulus reconstruction, fMRI,
GOD dataset, fMRI on ImageNet, Denoising,
Noise elimination, Artificial noise

1 Introduction
Functional magnetic resonance imaging (fMRI) has revolu-
tionized our understanding of brain function by providing a
noninvasive method for measuring neural activity over time.

Despite its immense potential, the accuracy and reliability
of fMRI data can be severely compromised by various types
of noise, such as thermal, physiological, and scanner-related
noise. Denoising fMRI data is therefore a critical step in the
process of reconstructing visual stimuli from brain activity, as
it can enhance the signal-to-noise ratio of data used for image
reconstructions.

Numerous denoising algorithms have been proposed in
the literature, including independent component analysis [7],
confound regression and filtering [8], and GLM denoise [5].
While these methods have been successful to some extent,
there remains a significant knowledge gap in understanding
the impact of denoising algorithms for fMRI data on the per-
formance of reconstruction models. Furthermore, given lim-
ited availability of task fMRI data in some datasets, state of
the art techniques, such as GLM denoise, are not always ap-
plicable due to requiring extensive time series data. This gap
highlights the need for a systematic investigation of how dif-
ferent denoising algorithms impact the performance of visual
stimulus reconstruction models.

In light of these unanswered questions, the primary re-
search question of this study is: How does the denoising of
task fMRI data impact the performance of visual stimulus re-
construction models? To address this question, we will inves-
tigate the following sub-questions:

1. Which denoising algorithms are most effective in im-
proving reconstruction quality?

2. What is the impact of artificially induced noise on dif-
ferent denoising algorithms?

3. Can combining different denoising algorithms in a chain
improve image reconstruction quality?

In order to answer these questions, the Generic Objects
Dataset (GOD) will be employed as a testbed for our in-
vestigation. This dataset, which consists of fMRI data col-
lected while participants observed generic objects, will pro-
vide a comprehensive platform for our exploration. By imple-
menting various denoising algorithms and utilizing the self-
supervised RGB reconstruction model from ”Self-Supervised
RGBD Reconstruction From Brain Activity” by Gaziv et al.
[3] on the GOD dataset, this study aims to advance our under-
standing of the factors that contribute to the success or failure
of fMRI data pre-processing and visual stimulus reconstruc-
tion.

The main contributions of this research are the evaluation
of various denoising algorithms in the context of task fMRI
data, the determination of the most effective denoising algo-
rithms given limited data and a investigation of how denoising
algorithms act in a presence of artificially added noise. The
source code and the RGB-only model for the reconstruction
model can be found at this GitHub repository1.

The remainder of the paper is organized as follows: Section
2 provides a comprehensive review of the relevant literature;
Section 3 outlines the methodology employed in the study,
including the denoising algorithms, experimental design and
evaluation metrics; Section 4 presents the results and analy-
sis of the study; Section 5 includes a discussion of the find-
ings; Section 6 discusses responsible research and Section 7
concludes the work and establishes its implications for future
research.

2 Literature Review
The field of functional magnetic resonance imaging (fMRI)
has seen significant advancements in recent years, particu-

1https://github.com/WeizmannVision/SelfSuperReconst
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larly in the area of denoising and visual stimulus reconstruc-
tion. A number of studies have contributed to our understand-
ing of these processes.

The Human Connectome Project (HCP) has made signif-
icant contributions to the field of neuroimaging. Glasser et
al. (2016) [4] presented an integrated approach to data acqui-
sition, analysis, and sharing, building upon recent advances
from the HCP. Their work emphasizes the importance of col-
lecting multimodal imaging data from many subjects and ac-
curately aligning corresponding brain areas across subjects
and studies.

McKeown (2003) [7] discussed the use of independent
component analysis (ICA) in fMRI data analysis and the dif-
ferentiation between signal and noise. This study highlights
the potential of data-driven methods, such as ICA, in identi-
fying common features within fMRI data.

Tohka et al. (2008) [10] further expanded on the use of ICA
in fMRI data analysis by introducing an automatic indepen-
dent component labeling method for artifact removal. This
work provided an effective strategy to enhance the quality of
fMRI data and the accuracy of its interpretation.

St-Yves and Naselaris (2018) [9] presented a novel ap-
proach to visual stimulus reconstruction, introducing Gen-
erative Adversarial Networks (GANs) conditioned on brain
activity. This study signified an advancement in the field,
demonstrating the potential of deep learning techniques in
fMRI data analysis and interpretation.

Gaziv et al. (2022) [3] made a significant stride in vi-
sual stimulus reconstruction with their work ”Self-Supervised
RGBD Reconstruction From Brain Activity”. They pre-
sented a novel approach that uses self-supervised learning
techniques for reconstructing RGB images from fMRI data
using encoder-decoder model architecture. This study em-
phasized the power of high-level perceptual objectives with
self-supervision to improve the quality of reconstructed im-
ages, providing a compelling case for the potential of self-
supervised learning in advancing visual stimulus reconstruc-
tion.

Dubois and Adolphs (2016) [1] discussed the shift in focus
to individual subjects in fMRI research. They emphasized
the need for careful consideration of anatomical and vascu-
lar between-subject variability as well as sources of within-
subject variability. Their work underscores the importance of
individual differences in fMRI studies.

Erhardt et al. (2010) [2] provided extensive comparisons of
four multi-subject ICA approaches in combination with data
reduction methods for simulated and fMRI task data. Their
work provides valuable insights into the performance of dif-
ferent ICA methods in the analysis of fMRI data.

Mascali et al. (2021) [6] have conducted an evaluation
of denoising strategies for task-based functional connectiv-
ity, including pca and ica based methods, as well as global
signal regression.

In summary, the literature provides a rich source of infor-
mation on the denoising of fMRI data and visual stimulus
reconstruction. The studies highlighted in this review have
contributed to our understanding of these processes and have
laid the groundwork for further research in this area.

3 Methodology
3.1 Dataset
The Generic Objects Dataset (GOD), otherwise known as
fMRI on Imagenet, served as the primary dataset for this
study. The GOD contained fMRI data collected while par-
ticipants observed generic objects, as well as the images that
the participants observed.. A version of the GOD dataset,
pre-processed by by [3] with pre-calculated noise ceiling val-
ues was used in order to evaluate not only the efficiency of
ICA/PCA based methods, but also directly compare them to
processing methods used with the proposed visual reconstruc-
tion model.

3.2 Denoising Algorithms
Multiple denoising algorithms were implemented and eval-
uated to remove noise from the fMRI data. The selection
of denoising algorithms was based on a literature review and
established approaches such as independent component anal-
ysis (ICA), Principal Component Analysis (PCA), nuisance
regression and noise ceiling. These algorithms had shown
promising results in previous studies. The performance of
each denoising algorithm was assessed by comparing the
quality of the reconstructed images to the quality of recon-
structed images without any denoising algorithms applied.

Component-based methods - ICA and PCA
Both ICA and PCA allowed us to split a fMRI signal into mul-
tiple components. Given such a decomposition, noise compo-
nents can be identified using different measures. We decided
to use kurtosis in order to detect non-gaussian distributed out-
lier components, as high kurtosis indicates outliers that could
potentially be thermal, motion and physiological noise in a
given fMRI response.

Nuisance Regression
Due to the lack of motion data, only two nuisance regressors
were attempted - constant and linear terms - in order to pos-
sibly eliminate minor physiological trends over the course of
experiments. The regressors were fit to fMRI data, the predic-
tions of these regressors were later subtracted from the fMRI
data.

Noise ceiling
Authors of [3] implemented noise ceiling, which was also
used in evaluation and comparison of denoising algorithms
with an exception of artificially induced noise - no noise ceil-
ing was applied for such.

Combining methods
Besides standalone ICA, PCA, Nuisance Regression and
Noise ceiling, a combination of pca and ica, as well as ica
with regression and pca with regression and all of these com-
binations with and without noise ceiling were also employed
in evaluation and comparisons, in order to answer the third
research question.

3.3 One Subject
Due to possible differences in noise for different participants
in different scanning sessions, the analysis was performed on



Figure 1: Accuracy(the higher the better)

exp name clean ica ica pca ica regression pca ica pca pca regression regression
n way

5 0.888 0.878 0.900 0.880 0.888 0.854 0.920 0.880
10 0.810 0.794 0.836 0.844 0.814 0.786 0.854 0.806

Table 1: Accuracy for experiments without noise ceiling(the higher the better).

exp name clean ica ica pca ica regression pca ica pca pca regression regression
n way

5 0.856 0.880 0.836 0.884 0.876 0.904 0.822 0.892
10 0.766 0.816 0.752 0.812 0.796 0.790 0.760 0.838

Table 2: Accuracy for experiments with noise ceiling(the higher the better).

one subject - subject number 3, to eliminate possible physi-
ological and psychological differences between subjects that
could introduce additional complications in both implement-
ing and evaluating denoising algorithms.

3.4 Visual Stimulus Reconstruction Model

The RGB model utilized by Gaziv et al. is a part of their
broader self-supervised approach to brain activity recon-
struction. This model relies on both supervised and self-
supervised learning to handle the limitations of available
paired fMRI and image data.

The training process is divided into two stages: Encoder
training and Decoder training. The Encoder encodes the RGB
information into the corresponding fMRI responses, and the
Decoder translates fMRI recordings back to their correspond-
ing RGB information. Concatenating these two networks,
Encoder-Decoder, forms a combined network where the in-
put and output are the same RGB information. This structure
enables unsupervised learning on unpaired data (i.e., RGB
data without corresponding fMRI recordings), which is key
to adapting the network to the statistical properties of previ-
ously unseen RGB data [3].

3.5 Experimental Procedure

Participants who contributed to the collection of the GOD
dataset were not directly involved in this study. Instead, the
focus was on the analysis of the pre-collected fMRI data.
The denoising algorithms were applied to the full fMRI data,
which was later split into a training and a testing set and the
reconstructed stimuli were compared against the ground truth
stimuli using relevant metrics as well as performing a man-
ual inspection. The entire process was automated to ensure
consistency and reproducibility, as well as providing human-
centric details. The experiments were run on a single com-
puter with a ryzen 3700x CPU, RTX 3080 with 10 gigabytes
of virtual memory and 64 gigabytes of RAM.

The study followed a cross-validation design to assess
the performance of different denoising algorithms and visual
stimulus reconstruction models. The dataset was divided into
training and testing sets. The training set was used for train-
ing the reconstruction models, while the testing set was used
to evaluate their performance. The whole dataset was de-
noised using a variety of denoising methods. The original hy-
perparameters presented in the repository remain unchanged
to ensure ease of experiment replication, with an exception of
evaluating the effects of artificial noise, where the number of



Figure 2: Score(the lower the better)

exp name clean ica ica pca ica regression pca ica pca pca regression regression
n way

5 1.174 1.184 1.136 1.210 1.148 1.222 1.102 1.176
10 1.446 1.426 1.274 1.442 1.400 1.486 1.260 1.390

Table 3: Score for experiments without noise ceiling(the lower the better).

exp name clean ica ica pca ica regression pca ica pca pca regression regression
n way

5 1.228 1.176 1.288 1.146 1.178 1.128 1.272 1.186
10 1.502 1.332 1.624 1.340 1.412 1.388 1.612 1.386

Table 4: Score for experiments with noise ceiling(the lower the better).

training epochs of a decoder was decreased from 150 to 30.
Denoising algorithms were applied specifically to a complete
dataset, before a cross-validation split, in order to ensure con-
sistency of removed components.

3.6 Evaluation Metrics

To assess the performance of the denoising algorithms and
visual stimulus reconstruction models, a ranking system with
two evaluation metrics were employed, also used in [3]. The
original image, as well as a reconstructed image and a set of
3 and 8 distraction images, to form a total of 5 and 10 images
were ranked based on similarity to the original image. Later
on, two evaluation metrics are calculated. The first metric is
accuracy of correctly ranking the original image as the most
similar to itelf, which is used as a measure of how accurate
the ranking process is. The second metric is average rank,
that we later refer to as score. The higher rank on average
the reconstruction gets, the lower the score. This metric is
used to evaluate the quality of reconstructions keeping human
perception of results in mind. Furthermore, a manual recon-
struction image inspection was conducted in order to infer the
impact of noise reduction on high-level scene features such as
shape, main subject color and background color.

In evaluating the effectiveness of our reconstruction mod-
els, a critical component is quantifying the similarity be-
tween the original and reconstructed images. To achieve this,
we employ the Learned Perceptual Image Patch Similarity
(LPIPS) metric 2. LPIPS is a perceptual similarity metric that
uses deep learning to approximate human visual perception.
In essence, it measures the perceptual difference between two
images as a human observer might perceive them, rather than
simple pixel-to-pixel comparisons that traditional metrics rely
upon. This metric allows us to simulate human judgement
and evaluate results in a more interpretable way compared
to traditional machine learning metrics, such as accuracy and
loss.

Unlike some similarity metrics, the LPIPS score is not
strictly bounded; higher scores indicate greater perceptual
differences between images. As such, a successful model
would aim to minimize the LPIPS score in its reconstructed
images. This score provides an interpretable and human-
centric measure to evaluate the success of our reconstruction
models.

2https://github.com/richzhang/PerceptualSimilarity
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3.7 Artificial Noise
To investigate the effects of artificial noise on quality of re-
constructed images and study the possible negation of such
effects with denoising algorithms, two different noise models
were applied - gaussian noise sampled from a normal dis-
trubution with mean 0 and standard deviation of 1, as well as
noise sampled from a uniform distribution with a lower bound
of -1 and a higher bound of 1.

4 Results
4.1 Reconstruction performance with different

denoising pipelines
Figure 1 and tables 1 and 2 showcase a comparison of correct
ranking accuracy of the original image with different denois-
ing pipelines applied.

Figure 2, as well as tables 3 and 4 show an average ranking
score for reconstructed images given a denoising pipeline.

In both cases with and without the noise ceiling, two ver-
sions of metric calculation are presented - a 5-way and a 10-
way candidate comparison during ranking. Best performing
algorithm is indicated in bold for both a 5-way comparison
and a 10-way comparison

4.2 Reconstruction performance given artificially
induced noise sampled from a gaussian
distribution

Tables 5 and 6 show correct ranking accuracy of the original
image and average ranking score of a reconstructed image
respectfully in 5-way and 10-way variations given different
denoising pipelines. All denoising algorithms clearly failed
to improve reconstruction performance, which makes sense
given that our comparison includes constant, linear and non-
gaussian outlier noise identification techniques and no gaus-
sian noise identification techniques.

4.3 Reconstruction performance given artificially
induced noise sampled from a uniform
distribution

Tables 7 and 8 show correct ranking accuracy of the original
image and average ranking score of a reconstructed image
respectfully in a 5-way and 10-way variations given differ-
ent denoising pipelines. ICA performs the best, unlike pca,
that performs the worst, even though the noise component
selection method is the same for both component-based algo-
rithms.

5 Discussion
5.1 Analysis of denoising algorithms
The results found in chapter 4 section 1 suggest that even
with limited time-series data available, as well as a small
amount of images, it is possible to achieve significant im-
provements in reconstruction performance by utilizing tra-
ditional machine-learning techniques such as linear regres-
sion, pca and ica. However, after manually inspecting the
images, mixed results appear. For some images, denoising

has a highly positive impact, for example for an umbrella im-
age shown in Fig. 3, the color overall is closer to the original
image after performing pca and nuisance regression.

Figure 3: Original image of an umbrella next to reconstructed im-
ages without and with applying pca + nuisance regression

In contrast, the opposite situation happens with the picture
of an airplane showcased in Fig. 4 - applying pca and re-
gression results in a significant color distortion, as well as
no visible shape improvement. A similar situation happens
with other algorithms - for some pictures there is a visible
improvement, for others - visible distortion.

Figure 4: Original image of an airplane next to reconstructed images
without and with applying pca + nuisance regression

Several causes of such behavior are possible. First of all,
even though the size of the dataset is artificially increased dur-
ing the training process, many images of objects appear only
once in the dataset and there aren’t many similar pictures in
the training set, potentially causing very high or very low kur-
tosis leading to important components being removed from
the dataset. One possible way to address this problem is to
increase the dataset size, however it is difficult to do. More-
over, a new scanning session will likely introduce a different
variation of thermal and physiological noise, as well as new
head movement in a different machine. Another possible way
to address this problem is to introduce a more complicated
algorithm of identification of noise component, that not only
considers kurtosis, but also other measures of outliers to pre-
vent false positives from occurring, which causes the model
to perform worse.

5.2 Artificially induced noise
Artificially induced noise creates a significant danger to the
quality of reconstruction images, if specifics of noise are not
considered. For instance, since kurtosis of uniform noise
is significantly lower than kurtosis of a normally distributed
variable, ica manages to mitigate some of the negative ef-
fects of the noise. However, with noise sampled from a gaus-



exp name clean ica ica regression pca pca regression regression
n way

5 0.626 0.616 0.598 0.452 0.424 0.484
10 0.470 0.492 0.492 0.318 0.244 0.374

Table 5: Accuracy(the higher the better) for experiments with artificially induced noise sampled from a gaussian distribution.

exp name clean ica ica regression pca pca regression regression
n way

5 1.746 1.812 1.778 2.206 2.154 2.164
10 2.634 2.844 2.842 3.752 3.500 3.682

Table 6: Score(the lower the better) for experiments with artificially induced noise sampled from a gaussian distribution

exp name clean ica ica regression pca pca regression regression
n way

5 0.700 0.742 0.724 0.614 0.648 0.688
10 0.576 0.656 0.598 0.528 0.506 0.536

Table 7: Accuracy(the higher the better) for experiments with artificially induced noise sampled from a uniform distribution.

exp name clean ica ica regression pca pca regression regression
n way

5 1.568 1.404 1.460 1.770 1.750 1.572
10 2.250 1.852 2.038 2.646 2.700 2.266

Table 8: Score(the lower the better) for experiments with artificially induced noise sampled from a uniform distribution

sian distribution, applying ica leads to a further model perfor-
mance deterioration.

6 Responsible Research
Research ethics and reproducibility are fundamental aspects
of any scientific investigation. These principles ensure that
the research is conducted with integrity and that the findings
can be trusted and built upon by future studies.

In the current study, ethical considerations were upheld
throughout the research process. All used open-source data
adhered to the principles of informed consent, confidentiality,
and non-maleficence. This meant that all participants were
fully informed about the purpose of the study, the procedures
involved, and their right to withdraw at any point without
any negative consequences. Their privacy was protected by
anonymizing the data and securely storing all collected infor-
mation.

In terms of reproducibility, the research methods were de-
signed with transparency and replicability in mind. Detailed
information about the experimental design, data collection
and analysis procedures, and statistical methods were pro-
vided. This transparency will allow other researchers to un-
derstand the methods, reproduce the results, and extend the
findings in their own studies.

Furthermore, the use of validated measures and techniques,
such as the independent component analysis (ICA), princi-
pal component analysis (PCA), Linear Regression, as well
as noise ceiling and a Encoder Decoder model architecture,

contributes to the reliability and replicability of the findings.
The use of a publicly available dataset and a model further
enhances the reproducibility of this study.

In conclusion, the ethical considerations and reproducibil-
ity of the methods were thoroughly addressed in this research.
Future studies are encouraged to maintain these high stan-
dards of responsible research to ensure the continued ad-
vancement of the field of fMRI data analysis and visual stim-
ulus reconstruction.

7 Conclusions and Future Work
This study has provided new insights into the application of
denoising algorithms on functional magnetic resonance imag-
ing (fMRI) data given tight dataset size limits. Our findings
underscore that denoising can indeed lead to an enhancement
in visual stimulus reconstructions. Specifically, the kurtosis-
based PCA with nuisance regression employing constant and
linear terms emerged as the most effective algorithm, yield-
ing a substantial 6.2% increase in score. However, perfor-
mance was contingent on the image and noise type, with ar-
tificially induced noise posing a significant challenge to the
reconstruction quality.

The results indicate that PCA and ICA, while effective in
some instances, can benefit from further refinement. Future
work should consider different noise component identifica-
tion algorithms to enhance their performance, especially con-
sidering varying noise distributions. This conclusion is fur-
ther reinforced by our finding that the noise component iden-



tification algorithm choice is highly dependent on the size of
the dataset, indicating the need for tailored denoising strate-
gies.

During model selection, our research has experienced poor
replicability of existing algorithms and the state of open-
source denoising repositories is lacking, emphasizing the
need for more robust and consistent algorithm development
and reporting practices.

Given these findings, there are several clear avenues for
future work. More research is necessary to explore the effi-
ciency of denoising algorithms given different dataset sizes,
considering the implications of resource limitations and vary-
ing noise types. Furthermore, ongoing efforts should be made
to improve the reproducibility of denoising methods and the
robustness of open-source repositories to support the broader
research community.

In conclusion, this study offers a crucial step forward in un-
derstanding the impact of denoising algorithms on the quality
of visual stimulus reconstructions from fMRI data. However,
it also illustrates that there are still many challenges to over-
come, highlighting the need for ongoing investigation and de-
velopment in the field of neuroimaging.
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