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Summary

In this thesis a new efficient model has been developed in the thermal analysis of Laser Powder Bed
Fusion, an Additive Manufacturing (or: 3D-printing) method that is used to manufacture metal products.
During this process, a laser is used as a heat source to melt metal powder grains to each other, that are
solidified when cooled down. In Laser Powder Bed Fusion high temperatures changes arise at the laser
spot, that are in a scale smaller than the scale of the manufactured product. This requires a very fine
spatial discretization (or: mesh) if the thermal analysis is done purely numerical. A fine mesh leads to
high computational cost. Various methods have been previously developed to reduce this costs, like the
semi-analytic method. The new model in this thesis is based on a the previously developed thermal
model that uses the semi-analytic method.

In the semi-analytic approach a clever method has been developed to reduce the computational
costs of numerical thermal simulation, by adding a specifically chosen analytic solution to the numerical
solution in the thermal modelling of Laser Powder Bed Fusion. This analytic solution is chosen such that
the numerical solution is allowed to use a coarser mesh, and thus reduces the computational costs. The
reduction of computational costs is due to a mathematical tool, called the method of images, that is used
in this analytic solution. If the product that is manufactured by Laser Powder Bed Fusion has planar
boundaries, the method of images provides a high computational efficiency, as is shown by previous
researches. However, for products with circular boundaries, the method of images is not so efficient
as it is for planar boundaries. Therefore, another method has been developed for circular boundaries
that uses a certain scaling factor, a modulation, in the method images. In this thesis another approach
than modulation has been developed, in the search of a more efficient method than modulation. This is
done by using a different method of imaging, namely inverse imaging, that is inspired by the solution in
electrostatics for domains with circular boundaries.

The new model in this thesis uses an analytic solution with inverse imaging. This analytic solu-
tion is meant to be used in the semi-analytic modelling for thermal analysis in Laser Powder Bed Fusion.
A key criteria that makes an analytic solution appropriate for the semi-analytic method is that the
boundary fluxes of the analytic solution are smooth enough. The boundary fluxes are namely the input
for the numerical solution that is used in the semi-analytic method. In order for this numerical solution
to capture the behaviour of the boundary flux of the analytical solution, the spatial discretization should
be fine enough. A smooth boundary flux can be captured numerically by a coarser mesh, contrary to a
boundary flux with steep peeks, that requires a finer mesh. A finer mesh is thus computationally less
efficient.

The results in this thesis show that inverse imaging gives a smoother flux for circular boundaries than
the previously developed model that uses modulation. This is due to the fact that the heat flux is
reflected better through the circular boundary when inverse imaging is used. This better reflection is
caused by the geometrical parameters inspired from electrostatics. As a result of the better smoothness
of inverse imaging, a coarser mesh can be used in the numerical solution when the semi-analytic method
is applied, and thus the computational costs can be reduced. Therefore, this thesis shows that for the
thermal modelling of Laser Powder Bed Fusion with circular boundaries, inverse imaging is more
appropriate to be used in the semi-analytic method than modulation.
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1
Introduction

Manufacturing has been important in the life of human beings throughout history. Civilizations
have been developing manufacturing methods until today, and will continue to do that. One of the
breakthroughs in the history of manufacturing is a method called Additive Manufacturing (AM), where
products are produces layer by layer.

AM has various methods depending on the material that is used. For metals the AM method
used is called Laser Poweder Bed Fusion (LPBF). In LPBF each layer is produced by scanning a laser
on a metal powder bed at selected positions. As a result of the heat produced by the laser, the metal
powder melts and then solidifies, creating a solid metal part. This is done layer by layer. During this
process, the manufactured product undergoes thermal extensions and contractions. As a result of these
extensions and contractions stresses are built up in the metal part. These stresses are called residual
stresses. The load resistance can be limited by residual stresses [1].

In manufacturing, determining the load resistance is important. To reduce the residual stresses,
process parameters like the laser scan velocity or the power of the laser have to be optimized. To avoid
expensive physical experiments, models are developed that can provide much information without
wasting any material. However, to develop a model that is both accurate and computational efficient can
be a challenging task, especially for LPBF-processes. This is mainly because during the manufacturing
process the laser causes a steep temperature change on a laser spot radius that is much smaller than the
scale of the manufactured product. In order to catch the thermal behaviour within the product caused
by the heating laser source, the mesh size in the spatial discretization has to be very fine, which leads to
high computational costs.

Without giving much detail at this point in the thesis, one way to reduce the computational cost
is to use the semi-analytic method for the thermal modelling [2,3]. Various improvements of this
method have been made, such as using the method of (equidistant) images for planar boundaries. This
method however does not work very well on circular boundaries. Therefore, for circular boundaries an
improvement of the method of (equidistant) images has been made, that uses a certain modulation [4].
All these methods will be explained throughout this thesis in great detail.

Although several methods have been developed, improvement is still needed in the thermal analysis of
circular boundaries, in order to reduce the computational cost more. Therefore, in this thesis a new
method will be explored, that makes use of ’inverse imaging’, as will be explained later. The main
question that will be answered is: ’How appropriate is inverse imaging in the semi-analytic thermal
modelling of LBPF-processes for circular boundaries compared to modulated equidistant imaging
method?’ This research question will be explored step wise.

First, in chapter 2 the relevant background knowledge will be given. This will be done by explaining
what the LBPF-process exactly is and how thermal analysis is done for this process. Furthermore, the
semi-analytic method will be introduced and its advantages will be explained. Also, the application of
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the semi-analytic method on circular boundaries, by the use of a modulation method will be shown.
This will be the basis in understanding the state of the art of how the semi-analytic method is applied in
the thermal modelling of LBPF-processes for domains with circular boundaries. After that, inspiration
from the field of electrostatics will be sought, where inverse imaging is used to solve problems in
domains with circular boundaries.

After understanding the semi-analytic method in thermal modelling and knowing how inverse imaging
is applied in electrostatics, the methodology to answer the main question will be explained in details in
chapter 3. The problem description will be given and eventually the new model will be shown that uses
inverse imaging.

In chapter 4 the inverse imaging will be compared to the modulation method that is taken from
the state of the art. The results will be shown and discussed. Conclusions will be drawn in chapter
5 based on the results obtained from the previous chapter. After that relevant recommendations on
future research will be made.



2
Background

In this chapter relevant background information will be given in order to understand the relevance of
developing a new model for the thermal analysis of Laser Powder Bed Fusion. Having read this chapter,
one will understand where the interest of using inverse imaging comes from.

First, an explanation will be given on Additive Manufacturing in general and Laser Bed Powder
Fusion in specific. After that the necessity of thermal models in Laser Bed Powder Fusion will be shown.
Then, the mathematical and physical basics of the analysis in thermal modeling will be laid out by
explaining the governing equation, the heat equation, and how it is solved analytically and numerically.
This will bring us eventually to a very elegant and efficient method of solving the heat equation for Laser
Bed Powder Fusion processes, called the semi-analytic method. Both the advantages and limitations of
the semi-analytic method will be explained in detail.

For planar boundaries, the semi-analytic method can be made computationally efficient by applying a
specific method called the method of images, as will be explained. However, for circular boundaries
the method of images does not give the computational efficiency like it gives for planar boundaries.
This makes circular boundaries in the semi-analytic method for thermal analysis an important topic of
research. We will therefore discuss in this chapter one of the attempts that have been made for thermal
analysis, namely improving the the method of images by using a certain modulation.

Reading the mentioned topics in this chapter, the reader will have a clear vision of the state of
the art of applying the semi-analytic method for circular boundaries in LPBF-processes. In this thesis the
aim is to find another method that works better for the method of images than modulation. Therefore,
at the end of this chapter inspiration in the field of electrostatics will be sought, since electrostatics uses
a different method of imaging than in thermal analysis, namely inverse imaging, for solving problems
with circular boundaries.

2.1. Additive Manufacturing and Laser Powder Bed Fusion
Additive Manufactuting or 3D printing contains all production processes in which a product is built
by adding material layer by layer. AM is much more advantageous than traditional manufacturing
methods like moulding or machining. One of the advantages of AM is that complex shapes can be
produced, that could not have been made by traditional manufacturing methods [5]. This makes it
possible for designers to produce a single part with a complex shape for integrated functionalities,
that previously required separate parts. Another advantage of AM is the possibility to customize and
personalize products in low volumes for moderate costs. Also decentralization of the manufacturing
process is possible: one can make a product at every location and time. A key advantage of AM is that
during the most AM-manufacturing processes the material is added where it is needed, which results
in reduction of waste material [5].

AM has different methods for various material classes, as is illustrated in figure 2.1. One of them is

3



2.2. The necessity of the thermal modelling of the LPBF-process 4

Laser Powder Bed Fusion , also known as Selective Laser Melting, that is used for metals. In LPBF a
laser is pointed to a layer of metal powder and is utilized as a heat source. While the laser scans the
powder, the metal powder melts along the laser path, bonds with each other and then solidifies when it
cools down. The laser only scans the powder at the regions where one wants to produce the desired
product. When a layer of metal powder is scanned by the laser at the desired regions, the next layer of
powder is placed above the previously produced layer. Then the process starts all over again, until the
product is fully manufactured layer by layer. In this thesis, we will dive more in the thermal modelling
of the LPBF-process. Studying the thermal modelling of LPBF-processes can lead to improvements of
the process, as will be discussed next.

Figure 2.1: Note. Reprinted from "Invited review article: Metal-additive manufacturing - Modeling strategies for
application-optimized designs," by A. Bandyopapadhyay & Kellen D. Traxel, 2018 [7].

2.2. The necessity of the thermal modelling of the LPBF-process
Predicting the load resistance of a product that is manufactured in a LPBF-process, gives insight about
the product quality and about improving the the LPBF- process. These predictions are not only based
on experiments but also on mathematical and physical models. These models are largely dependent
or focused on the thermal behaviour inside the manufactured product during the LPBF-process.
The thermal behaviour is namely very critical in LPBF-processes, since the laser causes a very high
temperature rise at the spot it is pointed to. The heat that is released is conducted from the laser spot
to the rest of the product. However it takes time for the heat to get diffused in the product, which
leads to temperature differences inside the product during the LPBF-process. As a consequence of
these temperature changes and differences, large deformations and residual stresses occur during the
manufacturing process [6]. This can lead to a reduction in the load resistance of the product and thermal
cracks can be formed. Also the porosity inside the product can vary [2]. All these are consequences of
the thermal behaviour inside the product during the manufacturing process. Thus thermal modelling is
key in predicting and optimizing the product quality in LPBF.

2.2.1. Numerical models
Most of the models that are used to do the thermal analysis are numerical models, especially Finite
Element models . However, modelling the laser by Finite Elements (or any other numerical method) can
be computationally very inefficient, because of the fine mesh that is required to capture the thermal
behaviour around the laser spot. The laser namely causes a large temperature rise over a laser spot
radius, that is much smaller than the remaining domain of the product [2, 3]. More details about how
the mesh size influences the computational cost will be discussed later in this chapter.

2.2.2. Semi-analytic models
There is a method used in LPBF-processes that can reduce the high computational costs caused by the
numerical modelling of the laser, called the semi-analytic method [2, 3]. In this method, the laser is
not modelled numerically. Instead an analytic solution for a point source in infinite or semi-infinite
space is used to model the laser. However, during the LPBF-proces, most boundaries of the product are
modelled as insulated boundaries, and thus require a model that fulfill the boundary conditions of an
insulated boundary. The mentioned analytic solution does not fulfill these boundary conditions, since
it is in infinite of semi-infinite space. Therefore, a numerical field is introduced in the semi-analytic
method that uses the complementary boundary fluxes of the analytic solution. When the analytic and
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numerical field are added up, the boundary fluxes of the total field are zero, which fulfills the insulated
boundary conditions. Also, when adding the two field up, the behaviour of the laser is taken into
account by the analytic field, and since the laser is not modelled numerically a coarser mesh is allowed
in the numerical field [2, 3]. More details about the semi-analytic method will be explained later in this
chapter.

The semi-analytic method works good for planar boundaries [2, 3], by allowing the numerical field
to have a coarser mesh. This is mainly caused by the fact that the method of images is used in the
analytic field. The method of images forces the analytic field to have a zero flux at planar boundaries by
modelling an image source outside the domain [2, 3], as shall be discussed later. For circular boundaries,
the method of images does not give a zero flux along the boundary, as will explained in this chapter.
However there is a method developed that modifies the method of images, by modulating the image
source by a specific factor [4], as will come near the end of the chapter.

Circular boundaries arise a lot in products that are manufactured by LPBF. In this thesis, the aim is to
search for an analytic solution that is more appropriate for circular boundaries than the mentioned
model that uses modulation. This will be done by investigating how boundary conditions are fulfilled
for circular boundaries in fields outside heat conduction, especially electrostatics. To understand why
this approach is taken, it is important to know what the limitations are in the analytic and numerical
modelling in thermal analysis. It is also important to know what the limitations are of the semi-analytic
method for circular boundaries, and why a more suiting approach than modulation in the semi-analytic
method is desired. These topics will be explained in the remainder of this chapter. But first, it is
important to understand the basics of thermal analysis, by understanding the governing equation in
thermal analysis.

2.3. The governing equation
The heat equation is the governing equation in thermal analysis. Gaining insight about the heat equation
is the starting point of understanding how to improve the thermal modelling of the LPBF-processes.
Therefore, a short derivation based on energy balances will be given and the types of boundary
conditions that can occur in heat conduction will be explained. After that, a brief discussion will be
held about solving the heat equation.

2.3.1. Derivation of the heat equation
The thermal energy of a system 𝐸system is the energy as a result of the vibration and motion of it’s
molecules. The higher the temperature is in a system, the higher the thermal energy will be. The rate of
thermal energy in the volume 𝑉 of the system is given by the energy heat equation:

𝑑𝐸system

𝑑𝑡
=

∫
𝑉

𝑐𝑝𝜌
𝜕𝑇(x, 𝑡)

𝜕𝑡
𝑑Ω , (2.1)

where 𝑇 is the temperature, x is the position vector that contains the spatial coordinate variables ((𝑥, 𝑦, 𝑧)
in Cartesian coordinates), 𝑡 is the time variable, 𝑐𝑝 is the thermal capacity and 𝜌 is the material density.
The integration is done over the volume 𝑉 of the system using the dummy variable Ω.

The heat flux q is defined by the rate of energy transfer through the surface 𝑆 of the system. The total
energy that enters or leaves the system through the surface is:

𝑑𝐸surface
𝑑𝑡

=

∫
𝑆

q · n𝑑Γ , (2.2)

where Γ is the dummy variable that is used to integrate over the surface 𝑆 of the system and n is the
normal vector that is outer to the surface. By using the divergence theorem [11], this equation can be
rewritten as:

𝑑𝐸surface
𝑑𝑡

=

∫
𝑆

q · n𝑑Γ =

∫
𝑉

∇ · q𝑑Ω . (2.3)
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If an internal heat source or forcing term is present, the energy that is generated is given by:

𝑑𝐸internal
𝑑𝑡

=

∫
𝑉

𝑄𝑑Ω , (2.4)

where 𝑄 is the volumetric internal heat generation. In figure 2.2 an illustration of the system is given.

The energy of the system is a balance of the energy of the heat source and the energy that passes through
the surface of the system:

𝑑𝐸system

𝑑𝑡
=

𝑑𝐸internal
𝑑𝑡

− 𝑑𝐸surface
𝑑𝑡∫

𝑉

𝑐𝑝𝜌
𝜕𝑇

𝜕𝑡
𝑑Ω =

∫
𝑉

(𝑄 − ∇ · q)𝑑Ω . (2.5)

This gives: ∫
𝑉

(𝑐𝑝𝜌
𝜕𝑇

𝜕𝑡
+ ∇ · q −𝑄)𝑑Ω = 0 . (2.6)

Because this integral is zero for every volume 𝑉 , the local form of the equation is:

𝑐𝑝𝜌
𝜕𝑇

𝜕𝑡
+ ∇ · q −𝑄 = 0 . (2.7)

Heat flows by means of conduction in solid volumes. Heat flux by conduction is described by Fourier’s
law:

q = −𝑘∇𝑇 , (2.8)

were 𝑘 is the thermal conductivity. This gives us the following expression:

𝑐𝑝𝜌
𝜕𝑇

𝜕𝑡
− ∇ · (𝑘∇𝑇) −𝑄 = 0 , (2.9)

or:

𝑐𝑝𝜌
𝜕𝑇

𝜕𝑡
= ∇ · (𝑘∇𝑇) +𝑄 . (2.10)

This is expression is called the heat equation. In this thesis for simplicity it is assumed that the material
properties 𝑐𝑝 , 𝜌 and 𝑘 are isotropic, constant and linear. Therefore we will rewrite the heat equation as:

𝜕𝑇

𝜕𝑡
= 𝛼∇2𝑇 + 𝑄

𝑐𝑝𝜌
, (2.11)

where the diffusivity 𝛼 is defined as:

𝛼 =
𝑘

𝑐𝑝𝜌
. (2.12)
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Figure 2.2: Illustration of the system.

2.3.2. Initial and boundary conditions
Besides the governing equation, the initial and boundary conditions determine how the temperatures
and fluxes behave in the system. The initial condition 𝑇0(x) is the temperature field at the time 𝑡 = 𝑡0:

𝑇0(x) = 𝑇(x, 𝑡0) . (2.13)

Three possible boundary conditions that a system can have in heat transfer problems [8, 9] will be
discussed:

1. For Dirichlet or temperature boundary condition the surface has a prescribed temperature 𝑇𝑠 :
𝑇(x, 𝑡) = 𝑇𝑠(x, 𝑡), x ∈ 𝜕Ω.

2. For Neumann or flux boundary condition the surface has a prescribed normal flux 𝑞𝑠 . The
boundary conditions are: −𝑘 𝜕𝑇

𝜕n = −𝑘∇𝑇(x, 𝑡) · n = 𝑞𝑠(x, 𝑡), x ∈ 𝜕Ω.
3. For convective boundary condition the normal flux, boundary temperature and the fluid tempera-

ture𝑇fluid have the following relationship: 𝑘 𝜕𝑇
𝜕n = ℎ(𝑇(x, 𝑡)−𝑇fluid), x ∈ 𝜕Ω. Here ℎ is the heat transfer

coefficient. There is a similar boundary condition to convective called radiation boundary condi-
tions. For the radiation boundary condition the normal flux, boundary temperature and the ambi-
ent temperature 𝑇ambient have the following relationship: 𝑘 𝜕𝑇

𝜕n = 𝛽𝜅𝐵(𝑇(x, 𝑡)4 −𝑇4
fluid), x ∈ 𝜕Ω. Here

𝛽 is the emmisivity coefficient and 𝜅𝐵 is the Stephan-Boltzmann constant (5.67032×10−8W/m2/K4)
[8, 9].

These boundary conditions are illustrated in figure 2.3.
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Figure 2.3: The different types of boundary conditions in heat transfer.

2.3.3. Solving the heat equation
Solving the heat equation lies at the core of thermal analysis. Therefore, it is important to know
how to solve the heat equation. An exact solution of a problem can only be obtained by analytical
methods. However, since analytical methods often are available for limited domains and boundary
conditions, most of the time one has to use numerical methods instead. Numerical methods can give
good approximations of the solution. To know if analytical solutions are available, it is important to
know what some of the analytic methods are and what their limitations are.

2.4. Analytical methods to solve the heat equation
There are several ways to solve the heat equation analytically. Three analytical methods will be discussed
that can be used to solve the heat equation: seperation of variables, eigenfunction expansion and the
method of fundamental solution. However, it will come apparent that these methods are very limited to
use in practical cases like the LPBF-processes.

2.4.1. Separation of variables
The method of separation of variables can be used only for homogeneous problem. These are problems
where the boundary conditions, like the boundary flux, and the volumetric internal heat generation (or:
forcing term or source) are zero. When either boundary conditions or forcing term is not zero, there
is a non homogeneous problem [10]. These kinds of problems can be solved using an eigenfunction
expansion or the method of fundamental solutions [10].

2.4.2. Eigenfunction expansion
When using the eigenfunction expansion, the problem is first transformed to a homogeneous problem.
The solution of this transformed homogeneous problem is called the eigenfunction. This eigenfunction
is used to expand the non homogeneous boundary condition and forcing term. Integration is involved
in these expansion [8, 10].

2.4.3. Method of fundamental solutions
Another way to deal with non homogeneous problems is the method of fundamental solutions, also
known as Green’s function method [8, 10]. When using the method of fundamental solutions, the
solution is obtained by using the appropriate Green’s function as a kernel in a convolution integral
relation, called the Green’s formula. The Green’s function is the impulse response of the heat equation
[8, 10]:

𝜕𝐺(x, 𝝃, 𝑡 , 𝜏)
𝜕𝑡

= 𝛼
𝜕2𝐺(x, 𝝃, 𝑡 , 𝜏)

𝜕x𝜕x
+ 𝛿(x − 𝝃)𝛿(𝑡 − 𝜏) , (2.14)
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where 𝝃 and 𝝉 are a dummy variables for space and time, respectively. As one can see, the forcing term
is a delta Dirac function 𝛿(x− 𝝃)𝛿(𝑡 − 𝜏) that is activated at the spatial location x = 𝝃 and time 𝑡 = 𝜏. The
boundary conditions of the Green’s function are chosen such, that where the original problem has a
prescribed boundary conditions, the Green’s function has a homogeneous boundary condition. Also
the initial condition of the Green’s function is zero [10]. The solution can be calculated using the Green’s
formula [8, 10]:

𝑇(x, 𝑡) =
∫ 𝑡

0

∫
𝑉

𝑄(𝝃, 𝜏)
𝑐𝑝𝜌

𝐺(x, 𝝃, 𝑡 , 𝜏)𝑑Ω(𝝃)𝑑𝜏 +
∫
𝑉

𝑇(𝝃, 0)𝐺(x, 𝝃, 𝑡 , 0)𝑑Ω(𝝃)+

+𝛼
∫ 𝑡

0

∫
𝑆

(
𝐺(x, 𝝃, 𝑡 , 𝜏) 𝜕

𝜕𝝃
𝑇(𝝃, 𝜏) − 𝑇(𝝃, 𝜏) 𝜕

𝜕𝝃
𝐺(x, 𝝃, 𝑡 , 𝜏)

)
· n(𝝃)𝑑Γ(𝝃)𝑑𝜏 . (2.15)

The first term of this integral relation deals with the forcing term, the second one with the initial
condition and the third integral deals with the boundary conditions. The Green’s function that has to
be used depends on the geometry and boundary conditions of the problem. It is not always possible to
find the Green’s function of a function analytically [10].

2.4.4. Limitations of analytic methods
These analytic methods are only appropriate for very simple geometries, boundary and initial conditions
and forcing terms. For complex geometries and boundary conditions, the solution cannot be calculated
analytically, mainly because of the complex integrals involved. This makes pure analytic methods not
usable for practical problems like the thermal analysis of the LPBF-processes. Therefore, numerical
methods are to be used instead to solve the heat equation [10].

2.5. Numerical methods to solve the heat equation
Numerical methods can give an approximate solution if the analytic solution cannot be found or is too
complex, like is the case in LPBF. There are several methods to solve the heat equation numerically. Two
type of methods will be discussed: domain methods (in specific the Finite Difference, Finite Volumes
and Finite Element methods) and boundary methods (in specifically the Boundary Element Method).

2.5.1. Domain methods
Finite Difference Method (FDM) or Finite Volume Method (FVM) schemes have the advantage to
have relatively simple numerical implementations for heat transfer problems. However, one of their
disadvantage is that these methods are often restricted to simple geometries [11]. The Finite Element
Method (FEM) is more complex than FDM and FVM, but can be more accurate and can be used for
complex geometries [11]. In all these three methods the temperature field over the domain is discretized
into unknowns that have to be solved [11].

2.5.2. Boundary methods
There also boundary descretization methods, like the Boundary Element Method (BEM), that only
has the unknowns at the boundary [12]. By starting with the Green’s formula in equation 2.15, and
discretizing the integral equation in time and space, the only unknowns that have to be solved are at
the boundary. After solving these unknown boundary values, the internal temperature values can be
calculated by using the solved boundary values into the discretized version of the integral relation in
the Green’s formula. The Green’s function that is used in BEM is usually the impulse response in an
infinite domain [12]:

𝐺(x − 𝝃) =
exp

(
− | |x−𝝃 | |2

4𝛼(𝑡−𝜏)

)
[4𝛼𝜋(𝑡 − 𝜏)] 𝑛

2
, (2.16)

where 𝑛 is the spatial dimension.

2.5.3. Advantages and disatvantages of FDM, FVM, FEM and BEM
The advantage of FDM and FVM is that they are relatively simple, have less computation time and the
matrices involved are sparse and usually symmetric [11]. However, their level of accuracy is limited and
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they can mostly be applied in simple geometries. The advantage of FEM is that the matrices involved are
also sparse and usually symmetric. It can also have a higher level of accuracy than FDM en FVM. The
large advantage that FEM has over FDM and FVM is it can be applied to complex geometries. However
its implementation is a bit more complex than FDM and FVM [11]. The BEM has the great advantage
that the unknowns are only at the boundary. However it’s not so accurate as FDM, FVM or FEM.
Another advantage of BEM is that the matrices involved are usually not so large as FDM, FVM and FEM,
but they are fully populated and not symmetric [12], which makes solving the vector-matrix equations
not so efficient as is the case in sparse matrices in FDM, FVM and FEM [11]. Also the complexity of the
BEM is one of the greater disadvantage of the method, since one has to find the appropriate Green’s
function, calculate the discretized intergrals of both the Green’s function and its derivative [12]. For
the mentioned reasons FEM is mostly used in thermal analysis, especially for its capability to handle
complex geometries.

2.5.4. Mesh size
The physical input parameters for the numerical methods are the source, the boundary conditions and
the material properties. These have an effect on the numerical mesh size and time step that have to be
chosen in order to capture the behaviour of the quantity to be calculated like the temperature or flux. In
the problem of this thesis, the boundary flux will be the most important input parameter. In order to
capture the right behaviour of the boundary flux, the mesh along the boundary should be fine enough.
If this is not the case, the behaviour of the boundary flux will not be represented good enough in the
numerical solution. The steeper the boundary flux is, the finer the mesh should be. This concept is
illustrated in figure 2.4, where the behaviour of a steep boundary flux is attempted to be caught in to
ways: by a coarser mesh and by a finer mesh. It is very clear that the finer mesh catches the boundary
flux behaviour better than a coarser mesh. If the boundary flux is however not steep, but smooth, a
coarser mesh can be used, as is illustrated in figure 2.5.

In LPBF the laser causes very high temperature gradient near the laser spot [2, 3]. This laser is
often modelled as the source term in the numerical methods. Because the temperature is very steep near
the laser spot, a very fine mesh around the laser spot is required. This makes the numerical calculation
very inefficient [11]. There is however a computationally efficient way to do the thermal analysis in
LPBF-processes by decouple the laser modelling from the numerical method in a certain way. This is
called the semi-analytic method and will be discussed next.

Figure 2.4: On the left is a steep boundary flux that has to be represented in the numerical solution. The middle and right figures
show in green the numerical discretization of the original boundary flux. The red dots are the sampling points at which the

boundary flux is taken. The horizontal distance between the points is the mesh size. The middle figure uses a coarser mesh size,
while the right figure uses a fine mesh size.
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Figure 2.5: On the left is a smooth boundary flux that has to be represented in the numerical solution. The right figure shows in
green the numerical discretization of the original boundary flux. The red dots are the sampling points at which the boundary flux
is taken. The horizontal distance between the points is the mesh size. For this smooth boundary flux a coarser mesh can be used.

2.6. Semi-analytic method
Numerical methods are necessary in modeling the thermal behaviour of LPBF-processes, but for purely
numerical methods a very fine mesh is required to model the laser, since near the laser spot the
temperature rises immensely within a radius that has a scale that is much smaller compared to scale
of the domain. Because large amount of heat is concentrated on a small spot, very high temperature
gradients near the laser spot arise. This causes computational inefficiency, since a fine mesh is required
to capture the behaviour of these steep gradients. However, there is an alternative for purely numerical
modelling called the semi-analytic method [2, 3] that can resolve the problem of the requirement of a
fine mesh. The general idea of this method will be discussed next.

2.6.1. General idea of the semi-analytic method
The semi analytic method offers a way to decouple the modelling of the laser from the numerical
problem, by letting an analytic solution deal with the modelling of the laser instead [2, 3]. This analytical
solution is usually a known solution of a point source in an infinite or semi-infinite domain. Because
this analytic solution is for infinite or semi-infinite space, it does not take the boundary conditions into
account. Therefore a numerical field is introduced to correct for the boundary conditions, by taking
the negative value of the flux of the analytic solution at the boundary locations as an input. Then a
superposition of the analytical field and numerical field is done. When the boundary conditions of the
analytic solution and numerical solution are added up, the produce a zero flux boundary condition,
which is required for LPBF models. In figure 2.6 one can see a visualization of the general concept. Now
the general idea of the semi-analytic method is known, it is important to know how the semi-analytic
method is applied in the thermal modelling of LPBF-processes. This will be discussed next.
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Figure 2.6: The temperature for the superposition of an analytic solution in infinite domain and a numerical solution that corrects
for the boundary conditions. The numerical correction is done by taking the negative value of the flux of the analytic solution at

the boundary as an input.

2.6.2. Application of the semi-analytic method in LPBF-processes
In the thermal modelling of the LPBF-proces, the semi-analytic method uses the analytic solution of the
heat equation for a point sources in infinite space. It is important to gain insight about the analytic solu-
tion, since its temperature and flux values at the boundary are the input for the numerical correction field.

In LPBF the laser scan is a continuous line, but can be modelled by discretizing it into multiple
point sources [2] that are added up, as will be explained in detail in the next chapter. Therefore, having
insight in how the semi-analytic method works for a single point source, will give insight in how it works
for a laser scan. Suppose that within an infinite domain there is a point source that has a heat power
intensity 𝑄 and is activated at a position xs and on time 𝑡0. Then based on [8, 10, 12] the temperature
field for 𝑛-dimensions is:

𝑇analytic(x, 𝑡) = 𝑄

𝑐𝑝𝜌

exp
(
− | |x−xs | |2

4𝛼(𝑡−𝑡0)

)
(4𝜋𝛼(𝑡 − 𝑡0))

𝑛
2

. (2.17)

As one can see, the exponent contains an argument that depends on the distance between the source
point position xs and the field point position x. One can also see that the temperature depends on the
passed time 𝑡 − 𝑡0. The temperature has a maximum value at the source point location. When time
passes, the temperature gets more distributed over time [8].

After knowing how the analytic field looks like, it is possible to determine the boundary condi-
tions for the numerical field. The numerical field has boundary conditions that are related to the analytic
field. Based on [2, 3] the boundary conditions of the numerical field are as follows:

𝑇numerical(x, 𝑡) = 𝑇𝑆1 − 𝑇analytic(x, 𝑡) for x ∈ 𝑆1

n · ∇𝑇numerical(x, 𝑡) = −n · ∇𝑇analytic(x, 𝑡) for x ∈ 𝑆2 .

Where 𝑆1 is the part of the boundary where the desired temperature boundary conditions 𝑇𝑆1 are
prescribed, and 𝑆2 is the part of the boundary where the desired zero flux boundary conditions are
prescribed. As long as the source is not close to the boundary, the fluxes that have to be corrected at 𝑆2
are smooth enough and thus can be captured by a coarse mesh in the numerical solution. However,
when the point source is close to the boundary, the boundary flux loses its smoothness, as will be
explained next. In LPBF-processes the source is always close to the boundary.

2.6.3. Semi-analytic method when the laser is close to the boundary
The analytic solution for a single source has high gradients near the source point. By dealing with the
point source analytically, the numerical field does not require a fine mesh to capture the high gradient,
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as long as the laser is far away from the boundary. However, when the laser is close to the boundary the
gradients that need to be corrected become steeper, as can be seen in figures 2.7. It can be seen that
when the point source is close to the boundary, the temperature shows steeper gradients along the
boundary. This requires a finer mesh for the numerical correction field [2, 3]. Thus, the advantage of
the semi-analytic solution the using a coarse mesh in the semi-analytic method is lost. However, it is
possible to have an analytic solution with a smoother boundary flux, as will be discussed soon. But first,
what does it mean when the point source is ’close enough’?

The distance that determines if the point source is close to the boundary, when using the semi-
analytic method, is called the critical distance 𝐻𝑐 . The critical distance is the distance of the laser point
to the boundary, where the high flux gives a numerical temperature field with the maximum allowable
error. The critical distance is studied by [2] for a 1D domain, as can be seen in figure 2.8. How the
critical distance in figure 2.8 relates to the numerical error and mesh size is illustrated in figure 2.9. In
the next chapter, 𝐻𝑐 will be specified. Now it is known that the source point is close to the boundary if
it at the critical distance or closer the boundary, one can look at how the high gradients are dealt with
using the method of (equidistant) imaging for planar boundaries. Circular boundaries will be discussed
afterwards.

Figure 2.7: Temperature of a single source in a 3D infinite space, at the plane 𝑧 = 0. The left plots are for sources far from the
original domain boundary 𝑦 = 0, and the right plots are close to it. The lower plots are cut of at the boundary so that the

temperature contour along the boundary (the black thick line) can be seen.

Figure 2.8: Note: Reprinted from "Thermal modelling of Selective Laser Melting: a semi-analytic approach", by M.F. Knol, 2016.
This is a schematic illustration of a single source in a 1D domain that is bounded by the two boundaries 𝜕𝑉𝐴 and 𝜕𝑉𝐵 . The source
is a distance 𝐻 apart from the boundary, and the boundaries are a distance 𝑎 = 40 mm apart. The spot radius 𝑟𝑙 is 35 𝜇m. The

source energy is 5000 J and the material parameters are: 𝑘 = 40.5 W/(mK), 𝑐𝑝 = 963 J/(kgK) and 𝜌 = 4420 kg/m3.
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Figure 2.9: Note: Reprinted from "Thermal modelling of Selective Laser Melting: a semi-analytic approach", by M.F. Knol, 2016
[2]. The maximum value of the root-mean-square error (RMSE) for different distances of the laser source to the boundary 𝐻 in the
situation sketched in figure 2.8. In (a) the boundary conditions are enforced using standard finite differences with different grid
sizes Δ𝑥. In (b) we see a close-up of (a). In (c) the boundary conditions are enforced by using the method of images (equidistant).’

2.7. The method of images for planar boundaries
The method of images resolves the problem of having high gradients close to planar boundaries [2, 3].
This method is used in solving the heat equation for a point source in a semi-infinite domain [8, 10, 12].
This solution can have either a zero temperature or a zero flux boundary condition [8, 10, 12]. For the
problem in this thesis a zero flux boundary condition is needed. The idea of the method of imaging in
the semi-analytic method is that for the analytic solution an image source is placed outside the domain
boundary at a distance equal to the distance between the source inside the domain and the boundary.
This is why it will be called ’equidistant imaging’ in this thesis. This idea is illustrated in figure 2.10.
One can see a comparison of the situation where no imaging is used and when imaging is used. The
two top figures show the temperatures in infinite space. As one can see at the right plot, an additional
source, the image source, is added outside the boundary. The bottom figures show that the bound-
ary flux has steep gradients when no imaging is applied, but is zero when equidistant imaging is applied.

How does the analytic solution look if the method of images is used? If the source is located at
coordinates (𝑥𝑠 , 0, 0) and the boundary is at 𝑥 = 0, then according to [8, 10] for zero flux boundary
conditions the solution looks as follows::

𝑇analytic(𝑥, 𝑦, 𝑧, 𝑡) = 𝑄

𝑐𝑝𝜌

(exp
(
− (𝑥−𝑥𝑠 )2+𝑦2+𝑧2

4𝛼(𝑡−𝑡0)

)
(4𝜋𝛼(𝑡 − 𝑡0))

3
2

+
exp

(
− (𝑥+𝑥𝑠 )2+𝑦2+𝑧2

4𝛼(𝑡−𝑡0)

)
(4𝜋𝛼(𝑡 − 𝑡0))

3
2

)
. (2.18)

This solution is a superposition of two terms. The first term will be called the source term and the
second term the image term. In the next chapter, it will be relevant to also know the solution when
there is zero temperature boundary condition. According to [8, 10] the solution for zero temperature at
the boundary looks as follow:

𝑇analytic(𝑥, 𝑦, 𝑧, 𝑡) = 𝑄

𝑐𝑝𝜌

(exp
(
− (𝑥−𝑥𝑠 )2+𝑦2+𝑧2

4𝛼(𝑡−𝑡0)

)
(4𝜋𝛼(𝑡 − 𝑡0))

3
2

−
exp

(
− (𝑥+𝑥𝑠 )2+𝑦2+𝑧2

4𝛼(𝑡−𝑡0)

)
(4𝜋𝛼(𝑡 − 𝑡0))

3
2

)
. (2.19)

As can be seen, for a zero flux condition we have a + sign before the image term instead of a − sign.

The method of equidistant imaging works fine for planar boundaries, since the zero flux condi-
tions are satisfied exactly along the whole boundary. However, for circular boundaries, it is difficult or
even impossible to use the method of imaging to realise a zero flux along the whole circular boundary.
If one attempts to use the method of images, the flux is in general not zero along the boundary. This is
illustrated in figure 2.11. One can see that the contours for both the cases of no images and images are
not perpendicular to the circle. This means that the boundary flux is not zero. An analytic solution could
be sought that fulfills the zero flux condition at circles, but it will be too complex, since eigenfunction



2.8. Method of images for circular boundaries 15

expensions for three dimension have to be done [10]. Moreover, a coordinate transformation from
Cartersian coordinates to cylindrical coordinates has to be made. This will lead to having different
Bessel functions in the eigenfunction expansion, that require calculating the zero’s of multiple Bessel
functions. If this approach would be taken the computational cost would eventually rise. Instead of
the exact zero flux condition solution, an attempt has been made to smoothen the boundary flux of
equidistant imaging at circular boundaries my means of a modulation. This will be discussed next.

Figure 2.10: The source is applied on the positive side of 𝑥-axis, and the boundary is the line 𝑥 = 0. In the left plots no imaging is
applied, and in the right plots imaging is applied. The two top plots show temperature of the single source in infinite space, at the

plane 𝑧 = 0. The black line are the contours of the temperature along the boundary. The two plots below them the boundary
temperature at the boundary 𝑥 = 0 are shown. The lower plots are the boundary fluxes along the boundary.

Figure 2.11: Contour plots of the temperature, where a source is applied outside the circle. In the left plots no imaging is applied,
and in the right plots imaging is applied. The black circle is the circular boundary.

2.8. Method of images for circular boundaries
The method of images gives exactly a zero flux condition for planar boundaries. However if there is a
circular boundary and the original source and image source are placed equidistant to the boundary, the
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zero flux condition does not apply at the whole circular boundary. The fluxes could still be too steep for
the semi-analytic method, and a fine mesh would be required for the numerical correction field. An
attempt has been made by [4] to approach a zero flux boundary for a moving laser by using modulation
factor to scale the image term. If the laser is discretized into multiple source points, then based on [4]
the modulation factor 𝑓𝑑 is:

𝑓𝑑 =
𝑣𝑖

𝑣𝑠
, (2.20)

where 𝑣𝑠 is the velocity of the laser, and 𝑣𝑖 is the velocity of the laser scan that is formed by the image
sources. It was shown by [4] that this modulation gave good results and smoothens the flux along the
boundary.

However, if it is possible to obtain a smoother flux than is done by modulation, it would be pos-
sible to use a more coarser mesh in the semi-analytic method. Therefore, it would be interesting to
investigate how in other fields outside heat conduction is dealt with solving partial differential equations
for domains with circular boundaries. Perhaps that other fields could give an option or suggestion that
would be practical for thermal analysis for domains with circular boundaries. In electrostatics circular
boundaries are very common. Therefore, an investigation of the solutions in electrostatics will be made.

2.9. Method of images in electrostatics for domains with circular
boundaries

The method of imaging for planar boundaries is used in the field of electrostatics, in the exact same way
it is used in thermal analysis [12]. For circular boundaries however, there is a simple analytic solution
in electrostatics, contrary to thermal analysis. In electrostatics however, a different imaging method
than equidistant imaging is used for circular boundaries: inverse imaging. In this thesis, an attempt
will be made to construct an analytic expression for thermal analysis circular boundaries, inspired by
the solution of electrostatics with circular boundaries, where inverse imaging is used. But first, it is
important to have an idea of the electrostatics problem.

2.9.1. The electrostatics problem
The field quantity that occurs in electrostatics is the electric potential 𝜙. In the electrostatic problem,
that is interesting for this thesis, a point charge is placed outside an infinitely long cylinder with zero
potential at the cylinder [13, 14], as can be seen in figure 2.12.
The governing equation of this problem is:

∇2𝜙 = −𝐶𝛿(x − xs) ∈ Ω . (2.21)

Here 𝐶 is a constant that is a product of certain electrical material properties, which are irrelevant for
this thesis to specify. The point source is represented by a Delta Dirac function 𝛿(x − xs) that is activated
at the location x = xs. The boundary condition on the circular boundary that has a radius 𝑅 is:

𝜙 = 0 . (2.22)
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Figure 2.12: The plane at 𝑧 = 0 in an infinite domain with a infinitely long cylindrical cavity of radius 𝑅. At the cylinder the
electrical potential 𝜙 is zero. The point source 𝑆 is located at Cartesian coordinates (𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠 ) and polar coordinates (𝑟𝑠 , 𝜃𝑠 , 𝑧𝑠 ).

2.9.2. Inverse imaging
If there would be a planar boundary the solution in electrostatics would use equidistant imaging,
just like thermal analysis [13, 14, 12]. However in case of a circular boundary the image source in
electrostatics is not equidistant to the boundary, but at the inverse point with respect to the radius of the
circle [13, 14, 12]. This will be referred to in this thesis as ’inverse imaging’.

The way the inverse point is determined in polar coordinates is as follows. Suppose that the cylinder
has a radius 𝑅 and the source point has a radius 𝑟𝑠 . If inverse image is located at the inverse point of the
source with respect to the circle, then the radius of the image point 𝑟𝑖 is given by:

𝑟𝑖 =
𝑅2

𝑟𝑠
. (2.23)

The radius of the source term and image term have an inverse relation [12]. Therefore we call this type
of imaging: inverse imaging. Both the source and the image are at an angle 𝜃𝑠 [10, 12].

2.9.3. The solution
Knowing how the inverse point is determined, it is possible to construction of the solution in electrostatics
using the method of inverse imaging. This will be done in steps. First one has to know the infinite
solution of the electric potential 𝜙 in electrostatics for a single point charge in an infinite domain without
a circular cavity. According to [10, 12, 13, 14] this has the following form:

𝜙 = − 𝐶

4𝜋| |x − xs | |

=
𝐶

4𝜋
√
(𝑟2 + 𝑟2

𝑠 − 2𝑟𝑟𝑠 cos (𝜃 − 𝜃𝑠) + (𝑧 − 𝑧𝑠)2)
. (2.24)

The point source is located at xs with polar coordinates (𝑟𝑠 , 𝜃𝑠 , 𝑧𝑠).

However for a domain with a circular cavity, an additional image term should be added in or-
der to have a zero potential at the cylinder. This results in the second step: adding the inverse image
term. The solution then becomes:

𝜙(𝑟, 𝜃, 𝑧) = 𝐶

4𝜋
√
𝑟2 + 𝑟2

𝑠 − 2𝑟𝑟𝑠 cos (𝜃 − 𝜃𝑠) + (𝑧 − 𝑧𝑠)2
− 𝐶

4𝜋
√
𝛾(𝑟2 + 𝑟2

𝑖
− 2𝑟𝑟𝑖 cos (𝜃 − 𝜃𝑠)) + (𝑧 − 𝑧𝑠)2

,

(2.25)
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where 𝛾 is a geometrical scaling factor that is defined as:

𝛾 =
𝑟𝑠

𝑟𝑖
. (2.26)

The factor 𝛾 gives a relation between 𝑟𝑠 and 𝑟𝑖 . It is also to relate the boundary radius 𝑅 and the laser
radius 𝑟𝑠 . Equations 2.23 and 2.26 give us a relation between laser radius, the boundary radius and
gamma:

𝛾 =
𝑟2
𝑠

𝑅2 . (2.27)

Thus the factor 𝛾 allows this special relation between the boundary radius and the laser radius.

In equation 2.25 the image term has not only a different location of the image point than equidistant
imaging, but also the factor 𝛾 is involved. This factor is important to ensure the zero potential at the
boundary radius, as shall be shown now. Using both the expressions of 𝛾 in equations 2.26 and 2.27 in
equation 2.25 for 𝑟 = 𝑅, one gets the following results:

𝜙(𝑅, 𝜃, 𝑧) = 𝐶

4𝜋
√
𝑅2 + 𝑟2

𝑠 − 2𝑅𝑟𝑠 cos (𝜃 − 𝜃𝑠) + (𝑧 − 𝑧𝑠)2
− 𝐶

4𝜋
√
𝛾(𝑅2 + 𝑟2

𝑖
− 2𝑅𝑟𝑖 cos (𝜃 − 𝜃𝑠)) + (𝑧 − 𝑧𝑠)2

=
𝐶

4𝜋
√
𝑅2 + 𝑟2

𝑠 − 2𝑅𝑟𝑠 cos (𝜃 − 𝜃𝑠) + (𝑧 − 𝑧𝑠)2
− 𝐶

4𝜋
√
𝛾𝑅2 + 𝛾𝑟2

𝑖
− 2𝑅𝛾𝑟𝑖 cos (𝜃 − 𝜃𝑠) + (𝑧 − 𝑧𝑠)2

=
𝐶

4𝜋
√
𝑅2 + 𝑟2

𝑠 − 2𝑅𝑟𝑠 cos (𝜃 − 𝜃𝑠) + (𝑧 − 𝑧𝑠)2
− 𝐶

4𝜋
√

𝑟2
𝑠 + 𝛾 𝑟2

𝑠

𝛾2 − 2𝑅𝑟𝑠 cos (𝜃 − 𝜃𝑠) + (𝑧 − 𝑧𝑠)2

=
𝐶

4𝜋
√
𝑅2 + 𝑟2

𝑠 − 2𝑅𝑟𝑠 cos (𝜃 − 𝜃𝑠) + (𝑧 − 𝑧𝑠)2
− 𝐶

4𝜋
√
𝑟2
𝑠 + 𝑟2

𝑠

𝛾 − 2𝑅𝑟𝑠 cos (𝜃 − 𝜃𝑠) + (𝑧 − 𝑧𝑠)2

=
𝐶

4𝜋
√
𝑅2 + 𝑟2

𝑠 − 2𝑅𝑟𝑠 cos (𝜃 − 𝜃𝑠) + (𝑧 − 𝑧𝑠)2
− 𝐶

4𝜋
√
𝑟2
𝑠 + 𝑅2 − 2𝑅𝑟𝑠 cos (𝜃 − 𝜃𝑠) + (𝑧 − 𝑧𝑠)2

= 0 .

As one can see, the zero potential is ensured by means of using the inverse point as an image point and
using the factor 𝛾.

2.10. Similarities and dissimilarities between electrostatics and heat
conduction problem

In thermal analysis inverse imaging for circular boundaries in not used. However one could question if
inverse imaging would be applied for thermal analysis, would it give a boundary flux that is smooth
enough to be use in the semi-analytic method. The idea of using inverse imaging in heat conduction is
inspired by the similarities between the heat conduction problem of this thesis and the electrostatic
problem for circular boundaries. These similarities are: the geometrical shape of the boundaries, the
presence of the differential operator Laplacian ∇2 in both the Lapace’s equation (for electrostatics) and
the heat equation, and the fact that for planar boundaries both problems use the same imaging method,
namely equidistant imaging. The last similarity could suggest that if electrostatics and heat conduction
both use equidistant imaging for planar boundary, and electrostatics uses inverse imaging for circular
boundaries, it could be possible that inverse imaging could also be used in heat conduction in the case
of circular boundaries.

However, it is important to look at the dissimilarities between the electrostatic problem and the
heat transfer problem, that could cause different results. The dissimilarities between the electrostatic
problem and the heat transfer problem of this thesis is not only a dissimilarity in the type of governing
equation (i.e. Laplace’s equation for electrostatics and heat equation for heat conduction), but also the
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type of field quantity to be calculated. In the heat conduction problem the interest is namely on the
gradient of the temperature field, not the temperature field itself. While the electrostatic solution does
not ensure a certain the boundary gradient, but only ensures a zero electric potential. Nevertheless, it is
worth the effort to investigate inverse imaging for the heat conduction problem in this thesis, based on
the similarities. Because even if the inverse imaging does not give a zero heat flux at the boundary, it
still may be a useful imaging method if it can give a smooth boundary flux along the boundary. After
all, having an exact zero heat flux at the boundary is not our specific interest, but rather obtaining a
boundary flux that is smoother than the one obtained from modulation. The methodology how this
will be investigated will be explained in the next chapter.



3
Methodology

In chapter 1 the thesis question was formulated as: ’How appropriate is inverse imaging method in the
semi-analytic thermal modelling of LPBF-processes for cylindrical boundaries compared to modulated
equidistant imaging method?’ In this chapter the methodology for answer the thesis question will be
explained. In general the answer will be given by investigating how the smooth the boundary flux along
the boundary of the inverse imaging is.

First, an illustration of the geometrical domains of interest, the boundary conditions and the lo-
cation of the inverse images will be given. Next, the construction of the temperature profile that makes
use of inverse imaging, inspired by equation 2.25, will be derived. Firstly by explaining how the laser
scan is approximated by an appropriate discretization of point sources, and then showing the expression
of the temperature that uses inverse imaging method for a single source. The expression will be used
to add multiple sources together in order to form a scanning pattern. After the temperature profile is
known, the boundary flux can be derived from it. The expression of the boundary flux will be shown
at the end of this chapter. The smoothness of the boundary flux for inverse imaging will be further
analyzed in the next chapter.

3.1. Geometry of the domain and boundary conditions
As explained earlier, a new imaging method will be analyzed in order to find a smooth enough analytic
solution for cylindrical boundaries. In this thesis the geometry that will be considered is the boundary
of with quart circular shape, for both concave and convex boundary types.

3.1.1. Concave and convex domains
Concave domains in this thesis are defined by domains that have a circular boundary, and where the
laser scans the domain outside the radius of the circular boundary. Convex domains also have a circular
boundary, but the laser scans the domain inside the radius of the circular boundary. An impression of
these domains can be seen in figure 3.1.

20
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Figure 3.1: The domains of interest contain a quarter cylindrical boundary, one domain is concave, while the other is convex.

3.1.2. Boundary conditions
After knowing how the domain looks like, the boundary conditions on the circular boundaries can
be explained. Using the concave domain in figure 3.2 as an example (the same applies for convex
boundaries) the boundary conditions that apply to the eventual semi-analytic solution can be formulated
as follows [3]:

• The top plane 𝑧 = 0 is adiabatic, i.e. the normal flux to the plane 𝑞top should be zero.
• The bottom plane has a constant temperature 𝑇base = 230 K.
• The remaining sides of the domain are adiabatic, i.e., the normal flux to the sides 𝑞side is zero.

Figure 3.2: Schematic illustration of the semi-analytic method with the desired boundary condition. This is a concave domain.

3.1.3. The location of the sources and their images
After discussing the geometrical settings and defining the boundary conditions, it is important to know
where the sources are applied and how the locations of their images relate to the location the sources.
To determine these locations, the radius of the boundary will be denoted as 𝑅, and chosen to be 1 mm,
which is in a scale that is common in LBPF [3].

The radius from the origin of the circle to the laser spot will be denoted as 𝑟𝑠 . In figure 3.3 one
can see an illustration of the plane 𝑧 = 0 when a single source is applied, without image sources. An
illustration of the case where an image is introduced is given in figure 3.4. As can be seen, the image has
a radius 𝑟𝑖 and is always outside the boundary. It is also clear from the figures that the angle of both the
source and its image have the same value 𝜃𝑠 , as will be discussed later in this chapter.
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Figure 3.3: An illustration of the plane 𝑧 = 0 for a single source. The cylindrical boundary has a radius 𝑅. A single point source is
placed at point 𝑠, with Cartesian coordinates (𝑥𝑠 , 𝑦𝑠 , 0) and cylindrical coordinates (𝑟𝑠 , 𝜃𝑠 , 0).

Figure 3.4: An illustration of the plane 𝑧 = 0 for a single source 𝑠 with its image source 𝑖. The original source has a radius 𝑟𝑠 ,
while the image source has a radius 𝑟𝑖 . Both sources have the same angles 𝜃𝑠 .

The radius to the laser will be located at the critical distance 𝐻𝑐 to the boundary, since this distance
gives rise to more numerical error due to fineness of the mesh as was explained in chapter 2. Figure
2.9 will be used to choose an appropriate critical distance for a mesh size of Δ𝑥 = 0.05 mm. If criti-
cal distance of 𝐻𝑐 = 0.1 mm is chosen, an error of 6 K will be given, which is a reasonable numerical error.

If the laser radius is at the critical distance, then the laser radius 𝑟𝑠 should be equal to 𝑟𝑠 = 𝑅 + 𝐻𝑐 for a
concave boundary, and 𝑟𝑠 = 𝑅 − 𝐻𝑐 for a convex boundary. Knowing the radius of the source, one can
calculate the image radius for equidistant imaging 𝑟𝑒 as follows:

𝑟𝑒 = 𝑅 ± |𝑅 − 𝑟𝑠 | (3.1)
= 2𝑅 − 𝑟𝑠 .

The radius of an inverse image point was defined in equation 2.23. The inverse image point is therefore
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located at the radius 𝑟inv:

𝑟inv =
𝑅2

𝑟𝑠
. (3.2)

Based on the mentioned parameters and definitions, the values of 𝑅, 𝑟𝑠 , 𝐻𝑐 , 𝑟𝑒 and 𝑟𝑖𝑛𝑣 are calculated
and shown in table 3.1, for both concave and convex boundaries.

To illustrate how 𝑟𝑒 and 𝑟inv change with 𝑟𝑠 the graphs of the image position of both imaging methods
are plotted as a function of the laser scan position in figure 3.5. This figure shows nicely how 𝑟𝑠 and 𝑟𝑒
are related linearly, and how 𝑟𝑠 and 𝑟inv show an inverse relation. It also shows that 𝑟𝑒 and 𝑟𝑖𝑛𝑣 at the
critical distances are almost identical. One may think that the imaging methods should also have similar
fluxes. This reasoning is however not correct, because the inverse imaging does not only introduce a
(slightly) different imaging location, but also a new scaling factor 𝛾, as is applied in equation 2.25 for
electrostatics, and as will be shown later in chapter. The impact of this factor may play a role in the
smoothness of the boundary flux.

𝑅 𝐻𝑐 𝑟𝑠 (concave) 𝑟𝑠 (convex) 𝑟𝑒 (concave) 𝑟𝑒 (convex) 𝑟𝑖𝑛𝑣 (concave) 𝑟𝑖𝑛𝑣 (convex)
1 mm 0.10 mm 1.10 mm 0.90 mm 0.90 mm 1.10 mm 0.91 mm 1.11 mm

Table 3.1: Geometric parameters.

Figure 3.5: The position of the inverse point (vertical axis) as a function of the position of the laser scan (horizontal axis), in the
case of the chosen boundary radius 𝑅 = 1 mm and critical distance 𝐻𝑐 = 0.1 mm. The green curve represents the positions of the
image points for equidistant imaging. The blue curve presents the positions of the image points for inverse imaging expressed in
equation 2.23. The black lines are the chosen laser scan radii 𝑟𝑠 mentioned in table 3.1 for both concave and convex boundaries.
The red line is the boundary radius 𝑅 = 1 mm. The intersection of the black lines with the green curve gives at the vertical axis
the positions of the equidistant image positions for concave and convex boundaries. The intersection of the black lines with the

blue curve gives at the vertical axis the positions of the inverse image positions for concave and convex boundaries.

3.2. The temperature profile for inverse imaging with a single source
After having a clear vision of the geometrical parameters, the temperature profile for inverse imaging
will be constructed now for a single source. Multiple sources will be discussed later.

The aim is to construct a thermal image term that is similar to the image term in electrostatics
in two geometrical aspect:the inverse point as image point and the factor 𝛾. As can be seen in equation
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2.25, the distance in the image term is multiplied by 𝛾. Therefore the temperature profile that will be
constructed for inverse imaging has the following expression for a single source:

𝑇(𝑥, 𝑦, 𝑧, 𝑡) = 𝑄

𝑐𝑝𝜌

(exp
(
− 𝑟2+𝑟2

𝑠−2𝑟𝑟𝑠 sin (𝜃−𝜃𝑠 )+(𝑧−𝑧𝑠 )2
4𝛼(𝑡−𝑡0)

)
(4𝜋𝛼(𝑡 − 𝑡0))

3
2

+
exp

(
− 𝛾(𝑟2+𝑟2

inv−2𝑟𝑟inv sin (𝜃−𝜃𝑠 ))+(𝑧−𝑧𝑠 )2
4𝛼(𝑡−𝑡0)

)
(4𝜋𝛼(𝑡 − 𝑡0))

3
2

)
(3.3)

Contrary to the image term for electrostatics in equation 2.25, in this equation the image term has a plus
sign before it, instead of a minus sign. This is similar to planar boundaries: in equidistant imaging for
planar boundaries a minus sign before the image term is placed if the boundary conditions prescribe
zero temperature, but a plus sign before the image term is used, if the boundary conditions prescribe a
zero boundary flux. This is also the case for electrostatic problems with equidistant imaging for planar
boundaries: a minus sign before the image term for zero potential, and a plus sign before the image
term for zero normal gradients. Based on the temperature profile for a single source, one can construct
a temperature profile for a laser scan that is discretized into multiple sources. But first, one has to know
the correct process parameter in order to do a proper discretization of the laser scan.

3.3. Modelling the laser scan & process parameters
The laser scan in this thesis will be a circular arc near the boundary. It is not convenient to model the
laser as a continuous source, as shall be shown. Therefore, an appropriate approximation of the source
will be done by discretizing the laser scan into multiple point sources with specific distances and time
steps and certain power intensities.

3.3.1. Governing equation
The laser scan is represented in the heat equation by the source term. Properties of the laser scan are:
the scanning velocity vs that has a magnitude 𝑣𝑠 , the heat generation per meter 𝑃 and the absorbtivity
𝐴. Based on [8], the governing equation of a laser scan can be modelled as:

𝜕𝑇

𝜕𝑡
= 𝛼∇2𝑇 + 𝐴𝑃

𝜌𝑐𝑝
𝛿(x − vs(𝑡 − 𝑡0) − x0) . (3.4)

As can be seen, the source is modelled as a delta Dirac function 𝛿(x − vs(𝑡 − 𝑡0) − x0) that is activated
at starting position x0 and beginning time 𝑡0. In order to find the analytic solution in infinite domain,
Green’s formula [8, 10] in equation 2.15 can be used:

𝑇analytic(x, 𝑡) =
∫ 𝑡

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

exp
(
− | |𝝃−x| |2

4𝛼(𝜏−𝑡)

)
(4𝜋𝛼(𝜏 − 𝑡)) 3

2

𝐴𝑃

𝜌𝑐𝑝
𝛿(𝝃 − vs(𝜏 − 𝑡0) − x0)𝑑𝜉1𝑑𝜉2𝑑𝜉3𝑑𝜏

+
∫ ∞

0

∫ ∞

0

∫ ∞

0

exp
(
− | |𝝃−x| |2

4𝛼(𝜏−𝑡0)

)
(4𝜋𝛼(𝜏 − 𝑡0))

3
2
𝑇(𝝃, 𝑡0)𝑑𝜉1𝑑𝜉2𝑑𝜉3 , (3.5)

where 𝜉1, 𝜉2 and 𝜉3 are the components of the integration dummy vector 𝝃. Based on the nature of the
delta Dirac function [10, 12] the expression above can be simplified to:

𝑇analytic(x, 𝑡) =
∫ 𝑡

0

exp
(
− | |x−vs(𝜏−𝑡0)−x0 | |2

4𝛼(𝜏−𝑡)

)
(4𝜋𝛼(𝜏 − 𝑡)) 3

2

𝐴𝑃

𝜌𝑐𝑝
𝑑𝜏

+
∫ ∞

0

∫ ∞

0

∫ ∞

0

exp
(
− | |𝝃−x| |2

4𝛼(𝜏−𝑡0)

)
(4𝜋𝛼(𝜏 − 𝑡0))

3
2
𝑇(𝝃, 𝑡0)𝑑𝜉1𝑑𝜉2𝑑𝜉3 (3.6)

This continuous expression can be a very difficult if not impossible to solve, because of the complex
integrals involved, and is thus not practical to use for general cases. Therefore, a discretization of the
laser will be done by discretizing the laser path into a superposition of multiple point sources. An
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illustration of this discretization can be seen in figure 3.6 for the similar circular path to be analyzed in
this thesis. If the laser is discretized into 𝐽 number of sources, the new governing equation becomes:

𝜕𝑇

𝜕𝑡
= 𝛼∇2𝑇 +

𝐽∑
𝑗=1

𝐴𝑄
𝑗
𝑠

𝜌𝑐𝑝
𝛿(x − xs

𝑗)𝛿(𝑡 − 𝑡
𝑗

0) , (3.7)

where 𝑄
𝑗
𝑠 is the energy per meter of each discretized source. The heat generation per meter 𝑃 of the

laser and the energy per meter of each discretized source 𝑄
𝑗
𝑠 have the following relation:

𝑄
𝑗
𝑠 = 𝑃Δ𝑡 . (3.8)

Each disrectized source is modelled as a delta Dirac function 𝛿(x − xs
𝑗)𝛿(𝑡 − 𝑡

𝑗

0), that is activated at
location x = xs

𝑗 and time 𝑡 = 𝑡
𝑗

0. The value of the energy per meter 𝑃, the absorbtivity 𝐴, the laser
scan velocity 𝑣𝑠 and the material parameters (of the material Ti-6Al-4V, taken from [9]) 𝑘, 𝑐𝑝 and 𝜌 are
listed in table 3.2. These parameters are also used by [2]. Now it is clear how the continuous laser is
discretized into multiple point sources, it is important to know what the geometric parameters of the
laser scan are.

𝑃 A 𝑣𝑠 𝑘 𝑐𝑝 𝜌
400 W/m 0.818 0.3 m/s 42 W/mK 990 J/kgK 4420 kg/m3

Table 3.2: Material and some laser parameters

Figure 3.6: The continuous scan can be approximated by a superposition of discretized point sources.

3.3.2. The geometrical parameters of the laser scan
The discretized sources are a certain distance away from each other. Each source is activated at its own
activation position xs

𝑗 and at its own activation time 𝑡
𝑗

0. At each new time increment a new source point
is activated a distance 𝑣𝑠Δ𝑡 away from the previous one. Because the laser scn follows a circular path, it
would be more convenient to relate the scanning velocity 𝑣𝑠 to an angular velocity 𝜔 as follows:

𝜔 =
𝑣𝑠

𝑟𝑠
. (3.9)

As explained, an thermal image will be used, which means that each source will have an image.
Each source and its image will be activated at the same time. That means that the moving laser scan
will have a moving ’image laser scan’ that has an ’image velocity’ 𝑣𝑖 . This image should have the same
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angular velocity as the laser. This gives us the following relation between the image velocity and the
laser velocity:

𝑣𝑠

𝑟𝑠
=

𝑣𝑖

𝑟𝑖
. (3.10)

This gives the following expression for 𝑣𝑖 :

𝑣𝑖 = 𝑣𝑠
𝑣𝑖

𝑟𝑖
. (3.11)

The image velocity 𝑣𝑖 should be interpreted as the distance between successive image source divided by
the time step. For equidistant imaging the image velocity is denoted as 𝑣𝑒 , and for inverse imaging as
𝑣inv. These two velocities are defined as:

𝑣𝑒 = 𝑣𝑠
𝑟𝑒

𝑟𝑠
(3.12)

𝑣inv = 𝑣𝑠
𝑟inv
𝑟𝑠

. (3.13)

Furthermore, it is more convenient to use cylindrical coordinates, because the laser has a circular path.
The laser will be activated at the plane 𝑧 = 0. The position vector of each point source 𝑗 will be denoted
as xs

𝑗 . This vector can be expressed in cylindrical coordinates as follows:

xs
𝑗 = [𝑟 𝑗𝑠 cos (𝜃 𝑗

𝑠), 𝑟
𝑗
𝑠 sin (𝜃 𝑗

𝑠), 0]𝑇

= [𝑟 𝑗𝑠 cos (𝜃0 + 𝜔 𝑗Δ𝑡), 𝑟 𝑗𝑠 sin (𝜃0 + 𝜔 𝑗Δ𝑡), 0]𝑇 , (3.14)

where 𝑟
𝑗
𝑠 is the radius of source point 𝑗, 𝜃 𝑗

𝑠 is the angle at which each source is activated and 𝜃0 is the
angle at which the first source is activated. Because the scanning path is circular, it is evident that 𝑟 𝑗𝑠 for
each source is equal to the constant value of the scanning radius 𝑟𝑠 , mentioned in table 3.1.

In figure 3.7 one can see an illustration of the path of the laser. The starting angle 𝜃0 is at the
point where the laser is a distance 𝐻𝑐 apart from the 𝑥-axis. The final angle 𝜃𝐽

𝑠 is when the last source 𝐽
is activated. This angle is reached when the laser is a distance 𝐻𝑐 apart from the 𝑦-axis. In figure 3.7
one can see that based on symmetry, the starting and final angles have the following relation:

𝜃𝐽 = 90𝑜 − 𝜃0 . (3.15)

Based on figure 3.7, the starting angle is calculated as follows:

𝜃0 = sin−1 ( 𝐻𝑐

𝑅 ± 𝐻𝑐
) . (3.16)

In the argument of the inverse sine, one can see a ± sign. This sign is positive for a concave boundary
and negative for a convex boundary. In table 3.3 one can find the values of 𝜔, 𝜃0 and 𝜃𝐽 for both concave
and convex boundaries.

As can be seen in equation 3.14 each new activated source is shifted at an angle 𝜔Δ𝑡 away from
the previous activated source, and is shifted 𝜔 𝑗Δ𝑡 form the first source. This is illustrated in figure 3.8
for a concave boundary.

Knowing what the physical and geometrical parameters of the laser are, it is now possible to de-
termine how the point sources should be distributed.

𝜔 (concave) 𝜔 (convex) 𝜃0 (concave) 𝜃𝐽 (concave) 𝜃0 (convex) 𝜃𝐽 (convex)
15.6𝑜 s−1 19.1𝑜 s−1 5.21𝑜 84.79𝑜 6.37𝑜 83.63𝑜

Table 3.3: The angular velocity and starting and ending angles
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Figure 3.7: The scan has a circular path that starts at 𝜃0, when the laser scan has a distance 𝐻𝑐 to both the cylindrical boundary
boundary and the 𝑥-axis. The laser scan ends when the laser scan has a distance 𝐻𝑐 to both the boundary and the 𝑦-axis. Both

concave and convex boundaries are illustrated.

Figure 3.8: The scan has a circular path and is discretized into multiple sources. Each source 𝑗 is activated at time 𝑡
𝑗

0 at radius 𝑟 𝑗𝑠
and angle 𝜃

𝑗
𝑠 . For a circular path the radius is constant: 𝑟 𝑗𝑠 = 𝑟𝑠 .

3.3.3. Activation times and distribution of the point sources
The temperature profile that is caused by the laser will be modelled as a super position of point sources.
At 𝑡 = 𝐼Δ𝑡 the temperature profile is the superposition of the temperature profiles of each source 𝑇 𝑗

form the first source up until the 𝐽𝑡ℎ source ( for 𝐼 > 𝐽):

𝑇(𝒙 , 𝐼Δ𝑡) =
𝐽∑

𝑗=1
𝑇 𝑗(𝒙 , 𝐼Δ𝑡) (3.17)

Where 𝑇 𝑗(x, 𝑡) is defined as:

𝑇 𝑗(x, 𝑡) = 𝐴𝑄
𝑗
𝑠

𝜌𝑐𝑝

exp
(
− | |x−xs 𝑗 | |2

4𝛼(𝑡−𝑡 𝑗0)

)
(4𝛼𝜋(𝑡 − 𝑡

𝑗

0))
3
2

𝐻(𝑡 − 𝑡
𝑗

0) (3.18)

The function 𝐻(𝑡 − 𝑡
𝑗

0) is a Heaviside step-function that has a value of 1 for 𝑡 ≥ 𝑡0 and zero at other time
instances. Furthermore, it is clear that at time 𝑡 = 𝑡

𝑗

0, 𝑇 𝑗 has a singularity for source 𝑗 at x = 𝒙𝒔 . In order
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to avoid this singularity a time shift will be introduced, that activates the point source at time 𝜏
𝑗

0 [2, 3].
This new activation time is such that it allows the laser to have a spot radius 𝑟𝐿 = 35𝜇m [3]. The new
activation time [2, 3] is therefore:

𝜏
𝑗

0 = 𝑡
𝑗

0 −
𝑟2
𝐿

4𝛼 (3.19)

Having dealt with the singularities by using a time shift, it is also important to look at another aspect of
approximating the laser scan: the distribution of the point sources. In order to have an appropriate
approximation of the laser, the source points should be distributed well. Discretization gives namely a
certain error, and therefore not every number of sources gives a good approximation. In order to get a
proper approximation of the laser scan, the source density 𝜌𝑠 , the number of sources per unit length,
has to have an appropriate number [2]. The source density is defined as [2]:

𝜌𝑠 =
1

𝑣𝑠Δ𝑡
. (3.20)

Based on the studies of [2] a source density of 67 sources per millimeter approximates a straight line
with a difference of 3.5% from the exact solution. This source density gives a time step of Δ𝑡 = 5 × 10−5

s. These will be chosen as source density and time step in our thesis.

Up until now, it is explained what the geometrical parameters are of the domain and laser, the
physical quantities of the material and laser and the discretization method of the laser into multiple
sources. It is also shown how an inverse image for a single source is constructed. The next step is to
derive the boundary flux for the inverse imaging method by means of super position of the temperature
fields of the discretized sources.

3.4. The boundary flux for inverse imaging
The final step in this chapter is to derive the expression of the boundary flux for inverse imaging in
the thermal modelling of the LBPF-process. This boundary flux will be the input for the numerical
correction field and has to be smooth enough to be captured by a coarser mesh than is used in modulated
equidistant imaging. The first thing that will be explained is how the boundary flux is derived in
general from the temperature. Next, the expression of the temperature field will be shown, based on the
information that is mentioned before in this chapter. After that the boundary fluxes will be derived. At
the end, the method of analysis in the next chapter will be shortly explained.

3.4.1. Boundary flux for circular boundaries
The boundary flux is given by the inner product of the normal vector n and the flux vector q, that
are both illustrated in figure 2.2. As explained in chapter 2, the heat flux vector, is proportional to
the gradient of the temperature. The boundary flux can therefore be expressed as the product of the
absolute value of the gradient of the temperature and the direction cosine of the gradient [8, 9]:

𝑞(x, 𝑡) = −𝑘∇𝑇(x, 𝑡) · n(x) (3.21)
= −𝑘 | |∇𝑇(x, 𝑡)| | cos (𝜃𝑛) , (3.22)

where 𝜃𝑛 is the angle between the normal vector and the gradient. As can be seen in figure 3.9, the
direction of the normal vector is parallel to the direction of the variable 𝑟. Therefore the flux at the
circular boundary can be easily calculated by taking the derivative of the temperature with respect to
𝑟. The fact that the normal vector and the direction of the variable 𝑟 are parallel also means that the
directional cosine cos (𝜃𝑛) is either equal to 1 or −1, depending on if the boundary is concave or convex.
For a concave boundary the boundary flux is therefore:

𝑞(𝑅, 𝜃, 𝑧, 𝑡) = 𝑘
𝜕𝑇

𝜕𝑟

���
𝑟=𝑅

. (3.23)

For a convex boundary the boundary flux is:

𝑞(𝑅, 𝜃, 𝑧, 𝑡) = −𝑘 𝜕𝑇
𝜕𝑟

���
𝑟=𝑅

. (3.24)
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In order to calculate the derivative of the temperature, the expression of the temperature should be
known.

Figure 3.9: The normal vector is in the positive direction of 𝑟 for concave boundaries. For convex boundaries it is however in the
negative direction.

3.4.2. The temperature profile
Before one looks at the expression of the temperature profile of inverse imaging, it is worth to know how
the temperature profile looks like when no images are used and when modulated equidistant images
are used. This way it is possible to have a reference when analyzing the inverse imaging method.

The temperature field when no images are used will be denoted as 𝑇∞. When modulated equidistant
images are used the temperature field will be denoted as 𝑇mod

𝑒 . For inverse imaging the temperature
field will be denoted as 𝑇inv.

If the laser is discretized into multiple sources, the expression of 𝑇∞ is:

𝑇∞(𝑟, 𝜃, 𝑧, 𝑡) = 𝑇0 +
𝐴𝑃Δ𝑡

𝑐𝑝𝜌

𝐽∑
𝑗=1

exp
(
− 𝑟2+𝑟2

𝑒−2𝑟𝑟𝑒 cos (𝜃−𝜃 𝑗
𝑠 )+𝑧2

4𝛼(𝑡−𝜏𝑗0)

)
(4𝜋𝛼(𝑡 − 𝜏

𝑗

0))
3
2

𝐻(𝑡 − 𝜏
𝑗

0) , (3.25)

where 𝑇0 is the initial temperature equal to 230 K.

The expression of 𝑇mod
𝑒 is:

𝑇mod
𝑒 (𝑟, 𝜃, 𝑧, 𝑡) = 𝑇0 +

𝐴𝑃Δ𝑡

𝑐𝑝𝜌

𝐽∑
𝑗=1

exp
(
− 𝑧2

4𝛼(𝑡−𝜏𝑗0)

)
(4𝜋𝛼(𝑡 − 𝜏

𝑗

0))
3
2
𝐻(𝑡 − 𝜏

𝑗

0)
(

exp
(
− 𝑟2 + 𝑟2

𝑠 − 2𝑟𝑟𝑠 cos (𝜃 − 𝜃
𝑗
𝑠)

4𝛼(𝑡 − 𝜏
𝑗

0)

)
+

𝑓𝑑 exp
(
− 𝑟2 + 𝑟2

𝑒 − 2𝑟𝑟𝑒 cos (𝜃 − 𝜃
𝑗
𝑠)

4𝛼(𝑡 − 𝜏
𝑗

0)

))
. (3.26)

Here 𝑓𝑑 is the modulation for equidistant imaging, and is defined as:

𝑓𝑑 =
𝑣𝑒

𝑣𝑠
. (3.27)

For a circular path, where the angular velocity is constant, as is the case in this thesis, the modulation
factor can be rewritten as:

𝑓𝑑 =
𝑟𝑒

𝑟𝑠
(3.28)

It should be noted that the expression of 𝑇mod
𝑒 is a superposition of the temperature field of the original

source and of the equidistant image source, and not only of the image source.
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The temperature profile for inverse imaging 𝑇inv can be expressed as:

𝑇inv(𝑟, 𝜃, 𝑧, 𝑡) =𝑇0 +
𝐴𝑃Δ𝑡

𝑐𝑝𝜌

𝐽∑
𝑗=1

exp
(
− 𝑧2

4𝛼(𝑡−𝜏𝑗0)

)
(4𝜋𝛼(𝑡 − 𝜏

𝑗

0))
3
2
𝐻(𝑡 − 𝜏

𝑗

0)
(

exp
(
− 𝑟2 + 𝑟2

𝑠 − 2𝑟𝑟𝑠 cos (𝜃 − 𝜃
𝑗
𝑠)

4𝛼(𝑡 − 𝜏
𝑗

0)

)
+

exp
(
− 𝛾

𝑟2 + 𝑟2
inv − 2𝑟𝑟inv cos (𝜃 − 𝜃

𝑗
𝑠)

4𝛼(𝑡 − 𝜏
𝑗

0)

))
. (3.29)

It should also be noted here that the expression of 𝑇inv is a superposition of the temperature field of
the original source and of the inverse image, and not only of the image. In the appendix one can find
the contour plots of the temperature profiles 𝑇 inv

𝑒 and 𝑇inv, to have an idea about how the temperature
profile during the scanning process looks like. The contour plots of 𝑇mod

𝑒 can be seen in figure 6.1 for a
concave boundary and in figure 6.3 for a convex boundary. For 𝑇inv the contour plots can be seen in
figure 6.2 for a concave boundary and in figure 6.4 for a convex boundary. Now the expressions of the
temperature fields are known, the fluxes can be derived from them.

3.4.3. The boundary fluxes
The boundary fluxes for circular boundaries are proportional to the derivatives of the temperature with
respect to the radial variable 𝑟, as is explained. When no images are used, the boundary flux 𝑞∞ has the
following expression:

𝑞∞(𝑅, 𝜃, 𝑧, 𝑡) = ∓ 2𝑘𝐴𝑃𝜋Δ𝑡
𝑐𝑝𝜌

𝐽∑
𝑗=1

𝐻(𝑡 − 𝜏
𝑗

0)(𝑅 − 𝑟𝑠 cos (𝜃 − 𝜃
𝑗
𝑠))

exp
(
− 𝑅2+𝑟2

𝑠−2𝑅𝑟𝑠 cos (𝜃−𝜃 𝑗
𝑠 )+𝑧2

4𝛼(𝑡−𝜏𝑗0)

)
(4𝜋𝛼(𝑡 − 𝜏

𝑗

0))
5
2

. (3.30)

The sign before the expression depends on the type of cylindrical boundary. For a concave boundary,
the expression of 𝑞∞ has a minus sign before it. If the boundary is convex, the expression of 𝑞∞ has a
plus sign. For equidistant imaging the flux 𝑞mod

𝑒 is:

𝑞mod
𝑒 (𝑅, 𝜃, 𝑧, 𝑡) = ∓ 2𝑘𝐴𝑃𝜋Δ𝑡

𝑐𝑝𝜌

𝐽∑
𝑗=1

exp
(
− 𝑧2

4𝛼(𝑡−𝜏𝑗0)

)
(4𝜋𝛼(𝑡 − 𝜏

𝑗

0))
5
2
𝐻(𝑡 − 𝜏

𝑗

0)×(
(𝑅 − 𝑟𝑠 cos (𝜃 − 𝜃

𝑗
𝑠)) exp

(
− 𝑅2 + 𝑟2

𝑠 − 2𝑅𝑟𝑠 cos (𝜃 − 𝜃
𝑗
𝑠)

4𝛼(𝑡 − 𝜏
𝑗

0)

)
+

𝑓 𝑒
𝑑
(𝑅 − 𝑟𝑒 cos (𝜃 − 𝜃

𝑗
𝑠)) exp

(
− 𝑅2 + 𝑟2

𝑒 − 2𝑅𝑟𝑒 cos (𝜃 − 𝜃
𝑗
𝑠)

4𝛼(𝑡 − 𝜏
𝑗

0)

))
. (3.31)

The sign before the expression depends on the type of boundary, as is explained for 𝑞∞. For inverse
imaging the flux 𝑞inv is:

𝑞inv(𝑅, 𝜃, 𝑧, 𝑡) = ∓ 2𝑘𝐴𝑃𝜋Δ𝑡
𝑐𝑝𝜌

𝐽∑
𝑗=1

exp
(
− 𝑧2

4𝛼(𝑡−𝜏𝑗0)

)
(4𝜋𝛼(𝑡 − 𝜏

𝑗

0))
5
2
𝐻(𝑡 − 𝜏

𝑗

0)×(
(𝑅 − 𝑟𝑠 cos (𝜃 − 𝜃

𝑗
𝑠)) exp

(
− 𝑅2 + 𝑟2

𝑠 − 2𝑅𝑟𝑠 cos (𝜃 − 𝜃
𝑗
𝑠)

4𝛼(𝑡 − 𝜏
𝑗

0)

)
+

𝛾(𝑅 − 𝑟inv cos (𝜃 − 𝜃
𝑗
𝑠)) exp

(
− 𝛾

𝑅2 + 𝑟2
inv − 𝑅𝑟inv cos (𝜃 − 𝜃

𝑗
𝑠)

4𝛼(𝑡 − 𝜏
𝑗

0)

))
. (3.32)
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The scaling factor 𝛾 brings the advantage that this expression can be simplified to:

𝑞inv(𝑅, 𝜃, 𝑧, 𝑡) = ∓ 2𝑘𝐴𝑃𝜋Δ𝑡
𝑐𝑝𝜌

𝐽∑
𝑗=1

exp
(
− 𝑧2

4𝛼(𝑡−𝜏𝑗0)

)
(4𝜋𝛼(𝑡 − 𝜏

𝑗

0))
5
2
𝐻(𝑡 − 𝜏

𝑗

0)×(
((1 + 𝛾)𝑅 − 2𝑟𝑠 cos (𝜃 − 𝜃

𝑗
𝑠)) exp

(
− 𝑅2 + 𝑟2

𝑠 − 2𝑅𝑟𝑠 cos (𝜃 − 𝜃
𝑗
𝑠)

4𝛼(𝑡 − 𝜏
𝑗

0)

))
. (3.33)

The sign before the expression depends on the type of boundary, as explained for 𝑞∞ and 𝑞mod
𝑒 . Now

the expressions of the boundary fluxes are available, it is possible to analyze them.

3.4.4. Methodology of the analysis of the boundary flux
In the next chapter the smoothness flux of the inverse imaging will be analyzed and compared to the
smoothness of the flux of the modulated equidistant imaging. This will be done by showing the curves
along the boundary at the height 𝑧 = 0, and analyzing them visually for their smoothness.



4
Results and discussion

In this chapter the smoothness of the flux for inverse imaging (i.e. 𝑞inv in equation 3.33) will be compared
to that of modulated equidistant imaging (i.e. 𝑞mod

𝑒 in equation 3.31). All the simulations will be done
for both concave and convex boundaries. The fluxes will be plotted as function of the angle along the
boundary. After the simulations are shown and analyzed, their results will be discussed and explained.

4.1. Results
This section contains the simulations of the boundary fluxes for both concave and convex imaging. In
order to give a reference 𝑞∞ will also be shown. Their smoothness will be analyzed visually.

4.1.1. Concave boundary
For a concave boundary the boundary fluxes as function of the angle 𝜃 can be seen in figure 4.1 for no
imaging 𝑞∞, modulated equidistant imaging 𝑞mod

𝑒 and inverse imaging 𝑞inv, for different time steps. It
is clear that both imaging method reduce the large peak of 𝑞∞. In figure 4.2 we take a closer look at
only the fluxes that use an imaging method. There, two clear significant large peaks can be seen for
modulated equidistant imaging, while 𝑞inv seems to have only one significant large peak, similar to 𝑞∞,
but smaller and with a different sign. The flux for inverse imaging appears to be smoother than the flux
for modulated equidistant imaging. The latter one has namely a large jump.

32
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Figure 4.1: The boundary fluxes 𝑞∞ (red), 𝑞mod
𝑒 (green) and 𝑞inv (blue) for a concave boundary as a function of the angle of the

circular boundary, for multiple time instances during the scanning. In the next figure the fluxes 𝑞mod
𝑒 and 𝑞inv are zoomed in on.

Figure 4.2: Zooming in on 𝑞mod
𝑒 and 𝑞inv from figure 4.1. The boundary fluxes 𝑞mod

𝑒 (green) and 𝑞inv (blue) for a concave
boundary as a function of the angle of the circular boundary, for multiple time instances during the scanning.

4.1.2. Convex boundary
For a convex boundary the boundary fluxes as function of the angle 𝜃 can be seen in figure 4.3 for no
imaging 𝑞∞, modulated equidistant imaging 𝑞mod

𝑒 and inverse imaging 𝑞inv, for different time steps. As
was the case for a concave boundary, it is also clear for a convex boundary that both imaging method
reduce the large peak of 𝑞∞. In figure 4.4 a closer look is taken on only the fluxes that use an imaging
method. Like the concave boundary, two clear significant large peaks for the convex boundary can be
seen for equidistant imaging, while 𝑞inv seems to have only one significant large peak, similar to 𝑞∞, but
smaller. It is apparent that the flux for inverse imaging in convex boundaries is also smoother than the
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flux for modulated equidistant imaging. A similar jump as in the concave case can be seen in the latter
one.

Figure 4.3: The boundary fluxes 𝑞∞ (red), 𝑞mod
𝑒 (green) and 𝑞inv (blue) for a convex boundary as a function of the angle of the

circular boundary, for multiple time instances during the scanning. In the next figure the fluxes 𝑞mod
𝑒 and 𝑞inv are zoomed in on.

Figure 4.4: Zooming in on 𝑞mod
𝑒 and 𝑞inv from figure 4.3. The boundary fluxes 𝑞mod

𝑒 (green) and 𝑞inv (blue) for a convex boundary
as a function of the angle of the circular boundary, for multiple time instances during the scanning.

4.2. Discussion
The simulations show that for both concave and convex boundaries the inverse imaging gives a smoother
boundary flux than the modulated equidistant imaging. This means that at least where 𝑞∞ has a
significant large value, the imaging term in inverse image reflects 𝑞∞ better than equidistant imaging.
What is meant by reflection is measure at which the flux of the image term ’compensates’ the flux of the
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source at the boundary. To understand this better, the imaging terms for both imaging methods will be
investigated, and a measure for the flux reflection will be explored.

4.2.1. Investigating the imaging terms
The imaging terms reflect the flux of the original source term. Both imaging methods contain 𝑞∞ as a
term:

𝑞mod
𝑒 = 𝑞∞ + 𝑞̃mod

𝑒 (4.1)
𝑞inv = 𝑞∞ + 𝑞̃inv , (4.2)

where 𝑞̃mod
𝑒 is the image term for modulated equidistant imaging and 𝑞̃inv is the image term for inverse

imaging. Combining the above equations with equations 2.26, 2.27, 3.30 3.31 and 3.32 the imaging terms
can be expressed as:

𝑞̃mod
𝑒 = ∓2𝑘𝐴𝑃𝜋Δ𝑡
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(4.3)

𝑞̃inv = ∓2𝑘𝐴𝑃𝜋Δ𝑡
𝑐𝑝𝜌
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0)(𝛾𝑅 − 𝑟𝑠 cos (𝜃 − 𝜃
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𝑠)) exp
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− 𝑅2 + 𝑟2
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(4.4)

As a reminder we repeat that the minus sign in these expressions is for concave boundaries and a plus
sign is for convex boundaries.

For concave boundaries one can see in figure 4.5 the plots of 𝑞∞, 𝑞̃mod
𝑒 and 𝑞mod

𝑒 , and in figure
4.6 the plots of 𝑞∞, 𝑞̃inv and 𝑞inv. For convex boundaries one can see in figure 4.7 the plots of 𝑞∞, 𝑞̃mod

𝑒

and 𝑞mod
𝑒 , and in figure 4.8 the plots of 𝑞∞, 𝑞̃inv and 𝑞inv. The figures of the image terms do not clearly

show how inverse imaging reflects the flux from 𝑞∞ different from modulated equidistant imaging.
Both seem to have a reflecting effect to begin with, which can be seen by the fact that the imaging terms
have a large peak with the opposite sign around the large peak of the source flux 𝑞∞. Also the height of
the peaks of the image terms seam to have a reasonable size to reduce the peak of the source. The total
field 𝑞mod

𝑒 and 𝑞inv clearly show that the source flux is reduced by the image flux.

However it cannot be seen from the figures why 𝑞mod
𝑒 seems to have large fluctuations, which makes it

less smooth, and why 𝑞inv does not have these fluctuations. In order to understand this better, we will
dive deeper in analyzing the reflection, by studying the reflection behaviour for a single source.
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Figure 4.5: Boundary fluxes for concave boundaries. The red curve represents 𝑞∞. The image term for modulated equidistant
imaging 𝑞̃mod

𝑒 is represented by the black curve. The total field 𝑞mod
𝑒 is the green curve.

Figure 4.6: Boundary fluxes for concave boundaries. The red curve represents 𝑞∞. The image term for modulated equidistant
imaging 𝑞̃inv is represented by the black curve. The total field 𝑞inv is the green curve.
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Figure 4.7: Boundary fluxes for convex boundaries. The red curve represents 𝑞∞. The image term for modulated equidistant
imaging 𝑞̃mod

𝑒 is represented by the black curve. The total field 𝑞mod
𝑒 is the green curve.

Figure 4.8: Boundary fluxes for convex boundaries. The red curve represents 𝑞∞. The image term for modulated equidistant
imaging 𝑞̃inv is represented by the black curve. The total field 𝑞inv is the green curve.

4.2.2. Reflection ratio
As is explained, the laser is discretized into multiple sources. If an imaging method is used, each of
these sources is reflected by its image. Therefore, in order to understand more about how the fluxes are
reflected in the simulation of the laser scan, single sources will be analyzed.



4.2. Discussion 38

The flux for a single source with no images for a source 𝑗 is defined as:

𝑞̂∞ = ∓2𝑘𝐴𝑃𝜋Δ𝑡
𝑐𝑝𝜌

exp
(
− 𝑧2
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2
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𝑗
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4𝛼(𝑡 − 𝜏
𝑗

0)

))
.

(4.5)

When modulated equidistant imaging is applied, the image flux of a single source is:

𝑞̂mod,e = ∓2𝑘𝐴𝑃𝜋Δ𝑡
𝑐𝑝𝜌

exp
(
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.

(4.6)

When inverse imaging is applied, the image flux of a single source is:

𝑞̂inv = ∓2𝑘𝐴𝑃𝜋Δ𝑡
𝑐𝑝𝜌

exp
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(4.7)

We will define a ratio for the reflection of the boundary flux, the reflection ratio Φ. For convex boundaries
this ratio for modulated equidistant imaging Φmod,e is defined as:

Φmod,e =
𝑞̂mod,e

𝑞̂∞

= 𝑓𝑑
𝑅 − 𝑟𝑒 cos (𝜃 − 𝜃

𝑗
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𝑗
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exp
(
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. (4.8)

The reflection ratio for inverse imaging Φinv is defined as:

Φinv =
𝑞̂mod,e

𝑞̂∞

=
𝛾𝑅 − 𝑟𝑠 cos (𝜃 − 𝜃

𝑗
𝑠)

𝑅 − 𝑟𝑠 cos (𝜃 − 𝜃
𝑗
𝑠)

(4.9)

Because for convex boundaries the boundary radius is larger than the radius to the source (i.e. 𝑅 ≥ 𝑟𝑠),
the denominator of the ratios does not become zero. However, for concave boundaries the boundary
radius is always smaller than the radius to the point source (i.e. 𝑅 ≤ 𝑟𝑠). That means that the
denominator of Φ becomes zero at certain angles, which lead to singularities. Therefore, the inverse of
the reflection ratio Φ−1 is more appropriate for concave boundaries:

Φ−1
mod,e =
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exp
(
− 𝑟2

𝑠 − 𝑟2
𝑒 − 𝑅(𝑟𝑠 − 𝑟𝑒) cos (𝜃 − 𝜃
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)
, (4.10)

and:

Φ−1
inv =

𝑞̂mod,e

𝑞̂∞

=
𝑅 − 𝑟𝑠 cos (𝜃 − 𝜃

𝑗
𝑠)

𝛾𝑅 − 𝑟𝑠 cos (𝜃 − 𝜃
𝑗
𝑠)

. (4.11)
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In all the expressions of Φ and Φ−1 a phase difference 𝜃 − 𝜃
𝑗
𝑠 can be found. This phase difference will be

defined as:

Δ𝜃 = 𝜃 − 𝜃
𝑗
𝑠 . (4.12)

Since the problem in this thesis is only defined on a quarter circle, the minimum value of Δ𝜃 is −90𝑜 ,
and the maximum value is 90𝑜 . When Δ𝜃 is zero, we are at the angle where the source and image are
placed 𝜃 = 𝜃

𝑗
𝑠 . The reflection ratios and their inverses can therefore be expressed as:

Φmod,e = 𝑓𝑑
𝑅 − 𝑟𝑒 cosΔ𝜃
𝑅 − 𝑟𝑠 cosΔ𝜃 exp

(
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𝑗

0)

)
(4.13)

Φ−1
mod,e =
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)
(4.14)

Φinv =
𝛾𝑅 − 𝑟𝑠 cosΔ𝜃
𝑅 − 𝑟𝑠 cosΔ𝜃 (4.15)

Φ−1
inv =

𝑅 − 𝑟𝑠 cosΔ𝜃
𝛾𝑅 − 𝑟𝑠 cosΔ𝜃 . (4.16)

All these ratios (or their inverse) have in common that if they have a value of −1, the source flux is
perfectly reflected by the image.

If the value of Φmod,e and Φinv is between 0 and −1, the flux is partially reflected. A value larger
than 0 means that the flux is not reflected, and that the image even adds flux at the boundary, which can
make the boundary flux even more steeper. A value that is lower than −1 means that the image reflects
more than is required.

For the values of Φ−1
mod,e and Φ−1

inv there are different criteria. A value between 0 and −1 means
that the image reflects more heat than required. A value smaller than −1 means that the image reflects
the heat of the source partially. A value larger than 0 means that the heat is not reflected at all, and that
the image even adds flux at the boundary.

In figure 4.9 one can see how Φ−1 changes as a function of Δ𝜃. Because the peak of 𝑞∞ is at Δ𝜃 = 0, the
most interesting part to analyze for reflection is at this point and close to it, since the most significant
amounts of heat are released near this point. Angles that are farther away from Δ𝜃 = 0 are not so
important, since the value of 𝑞∞ decays rapidly farther away from the heat source as can be seen in
figures 4.7 and 4.8. Therefore, we will only analyze the region close to Δ𝜃 = 0.

The inverse ratio Φ−1
mod,e in figure 4.9 seems to intersect the line Φ−1

mod,e = −1 twice, when it is close to
Δ𝜃 = 0. Keep in mind that a value of −1 means total reflection, a value between 0 and −1 means that too
much is reflected, and a value smaller than −1 means that the flux is partially reflected. This means
that for modulated equidistant imaging in concave boundaries, the image term fluctuates between
reflecting too much and reflecting partially near Δ𝜃 = 0. A fluctuation can also be seen for convex
boundaries in modulated equidistant imaging, as can be seen in figure 4.10 for Φmod,e. This explains
why the boundary flux of the total field for modulated equidistant imaging jumps from a positive to a
negative value, as can be seen in figures 4.1, 4.2, 4.3 and 4.4.

For inverse imaging we see that both Φ−1
inv for concave boundaries and Φinv for convex boundaries stay

between 0 and −1 around the value Δ𝜃 = 0. Which means for concave boundaries that the flux is
always partially reflected around the peak, and for convex boundaries the flux is always reflecting too
much. In all cases fluctuations around the peak are absent, and because the reflection ratio or its inverse
are negative around the peak, a reduction of the peak flux is always done. This explains why inverse
imaging has a smoother boundary flux than modulated equidistant imaging.

The location of the inverse point and factor 𝛾 make it possible for the reflection ratio and its in-
verse to keep their values above the value of −1 and never intersect it. This will become more clear if we
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calculate the value of Φ−1
inv and Φinv are calculated at the Δ𝜃 = 0. Using equations 2.26, 2.27 4.15 and 4.16

and the definition of 𝑟𝑠 = 𝑅 ± 𝐻𝑐 , one gets for Φ−1
inv (concave boundaries):

Φ−1
inv(Δ𝜃 = 0) = 𝑅 − 𝑟𝑠

𝛾𝑅 − 𝑟𝑠
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= 𝑅
−𝐻𝑐
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= 𝑅
−𝐻𝑐

𝑟𝑠𝐻𝑐

= − 𝑅

𝑅 + 𝐻𝑐
≥ −1 .

For convex boundaries Φ−1
inv at the peak point gives:

Φinv(Δ𝜃 = 0) = 𝛾𝑅 − 𝑟𝑠

𝑅 − 𝑟𝑠

=
𝑟2
𝑠

𝑅
− 𝑟𝑠
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=
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𝑅𝐻𝑐

= −𝑅 − 𝐻𝑐

𝑅
≥ −1 .

The reflection ratio and its inverse for modulated equidistant imaging has always a value lower than −1
at the peak point Δ𝜃 = 0. Using equations 4.15 and 4.16 and the definitions of 𝑟𝑠 = 𝑅 ± 𝐻𝑐 , 𝑟𝑒 = 2𝑅 − 𝑟𝑠
and 𝑓𝑑 =

𝑟𝑒
𝑟𝑠

, the value of Φ−1
mod,e for concave boundaries at the peak point is:

Φ−1
mod,e(Δ𝜃 = 0) = 1

𝑓𝑑

𝑅 − 𝑟𝑠
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= − 𝑟𝑠

𝑟𝑒
≤ −1 .

For convex boundaries, the value of Φmod,e at its peak point is:

Φmod,e(Δ𝜃 = 0) = 𝑓𝑑
𝑅 − 𝑟𝑠

𝑅 − 𝑟𝑒

=
𝑟𝑒

𝑟𝑠

𝐻𝑐

−𝐻𝑐

= − 𝑟𝑒

𝑟𝑠
≤ −1 .
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Figure 4.9: Φ−1 for concave boundaries. The green curve represents Φ−1
mod, e, and blue curve represents Φ−1

inv. The red line
represents Φ−1 = −1, where perfect reflection takes place.

Figure 4.10: Φ for convex boundaries. The green curve represents Φmod, e, and blue curve represents Φinv. The red line represents
Φ = −1, where perfect reflection takes place.



5
Conclusions and recommendations

In the previous chapter the smoothness of the boundary flux of inverse imaging was analyzed and
compared to the smoothness of the modulated equidistant imaging. The smoothness of the boundary
flux in the application of the semi-analytic method for thermal analysis in LBPF is very important, since
a smoother curve allows the use of a coarser mesh in the numerical field. Based on the previous chapters
a conclusion will be drawn about appropriateness of inverse imaging is for the semi-analytic method
compared to modulated equidistant imaging.

5.1. Conclusions
The simulations in the previous chapter showed that the inverse imaging gave a smoother boundary flux
than the modulated equidistant imaging, because the reflection of inverse imaging had no fluctuations
near the source point, contrary to the reflection of modulated equidistant imaging that did have
fluctuations. The absence of fluctuations near the peak flux gave the inverse imaging the advantage
to be smoother than modulated equidistant imaging. This was both the case for concave and convex
boundaries. The fluctuations in modulated equidistant imaging between partially reflecting and
reflecting too much, cause large jumps in the boundary flux. The smoothness of the inverse imaging is
mainly caused by the choosing the image point to be at the inverse point, and by the factor 𝛾, which
are both inspired by electrostatics. Because the boundary flux of inverse imaging is smoother than
modulated equidistant imaging, it requires a courser mesh in numerical implementations to catch the
behaviour of the flux. This makes inverse imaging more appropriate to use in the semi-analytic method
for the thermal analysis of LPBF-processes.

5.2. Recommendations
For further research the following recommendations can be made:

• The effect of the curvature of the boundary on both equidistant and inverse imaging. Not only the
radii of the image points will differ, but also the modulation factor and 𝛾.

• Study the performance of inverse imaging for boundaries that are larger than quarter circles.
• Investigate how inverse imaging performs at elliptical boundaries. Perhaps a coordinate transfor-

mation could give similar expressions as expressions for circular boundaries.
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6
Appendix

6.1. Temperature contours for a concave boundary

Figure 6.1: The temperature contour plot in a concave boundary for modulated equidistant imaging at chosen time steps during
the scanning process. The black arc is the boundary, and the green line is the laser scan.
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Figure 6.2: The temperature contour plot in a concave boundary for inverse imaging at chosen time steps during the scanning
process. The black arc is the boundary, and the green line is the laser scan.

6.2. Temperature contours for a convex boundary

Figure 6.3: The temperature contour plot in a convex boundary for modulated equidistant imaging at chosen time steps during
the scanning process. The black arc is the boundary, and the green line is the laser scan.
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Figure 6.4: The temperature contour plot in a v boundary for inverse imaging at chosen time steps during the scanning process.
The black arc is the boundary, and the green line is the laser scan.
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