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SUMMARY

Modern machine learning systems face unprecedented challenges in processing con-
tinuously arriving data streams while maintaining both computational efficiency and
privacy compliance. Traditional batch learning approaches exhibit quadratic scaling in
memory and computational requirements, making them unsuitable for long-term de-
ployment in resource-constrained environments. Despite significant advances in con-
tinual learning for computer vision and natural language processing, tabular data repre-
sents the majority of industrial machine learning applications.

This thesis introduces IMLP (Incremental MLP), an attention-based architecture for
energy-efficient continual learning on tabular data streams. IMLP augments a standard
multilayer perceptron with attention-based feature rehearsal, maintaining a fixed-size
buffer of learned 256-dimensional representations rather than raw historical samples.
This design achieves constant computational complexity regardless of stream length
while preserving task-relevant knowledge without storing personally identifiable infor-
mation.

We conduct comprehensive evaluation across 36 diverse TabZilla classification tasks
against 14 baseline methods spanning gradient boosting, classical machine learning,
and neural architectures. Using calibrated power measurement equipment and rigorous
statistical analysis via Friedman omnibus tests with post-hoc comparisons, we establish
that IMLP achieves a 4.2× median speedup and 79.6% energy reduction compared to
standard MLPs while maintaining competitive accuracy (80.6% vs 82.9% balanced accu-
racy).

Our key findings demonstrate that IMLP successfully trades a modest 2.3 percentage
point accuracy reduction for substantial efficiency gains, achieving 97.5% of cumulative
learning performance using only current segment data. The approach proves robust
across datasets spanning 5 to 2,000 features and diverse domains including medical di-
agnosis, sensor data, and financial applications. Moreover, we introduce NetScore-T, a
composite metric for evaluating accuracy-efficiency trade-offs, positioning IMLP opti-
mally on the neural network Pareto frontier.

Therefore, this work establishes the feasibility of practical continual learning for resource-
constrained environments while contributing the first systematic study of energy con-
sumption in neural continual learning for tabular data, enabling deployment scenarios
previously considered computationally infeasible.

viii



PREFACE

This thesis began with a decidedly practical point from Zanders, a financial risk firm:
energy-efficient GPU computing with a relation to finance. The journey from that initial
inquiry to the work presented here took several unexpected turns, each revealing new
rabbit holes in the world of machine learning research.

Initially, I was drawn to neural networks for pricing financial derivatives, an intel-
lectually appealing challenge that quickly proved problematic for reasons that became
apparent during early exploration. Pivoting to portfolio optimization seemed promising,
particularly with reinforcement learning approaches that could account for transaction
costs and market complexities. However, I soon faced an uncomfortable realization: if
I discovered a genuinely profitable trading strategy, why would I publish it? The aca-
demic impulse to share knowledge conflicted directly with the financial incentive to keep
such discoveries proprietary. This philosophical dilemma, combined with the daunt-
ing prospect of building frameworks from scratch to handle the enormous state-action
spaces involved, led me to reconsider my approach entirely.

An encounter with a paper on deep incremental learning for financial tabular datasets [1]
opened a new path. The work introduced me to the fascinating world of tabular data
analysis and platforms like Numerai, where obfuscated financial data creates a unique
research environment. While the paper lacked some clarity, it sparked my interest in the
broader landscape of deep learning on tabular data and the ongoing debates between
neural approaches and gradient boosting decision trees. Most importantly, I discov-
ered a significant gap: while continual learning had seen substantial advances in com-
puter vision and natural language processing, the tabular domain remained largely un-
explored from an energy-efficiency perspective.

What surprised me most during this research was not the technical challenges, though
there were many, but rather the frequent lack of reproducible implementations in pub-
lished work. Papers would reference code that either didn’t exist, wouldn’t run, or re-
quired extensive debugging to function properly. This led to countless hours of reverse-
engineering implementations and, I must confess, more than a few heated conversa-
tions with my computer screen. The ElmorLabs power measurement hardware added
its own complications, initially working only on Windows and requiring significant sig-
nal debugging to function properly on Debian, a process that involved more colourful
language than I care to document.

Perhaps the most honest reflection I can offer is that while I genuinely love the re-
search process (reading papers, implementing ideas, watching experiments unfold), I
have discovered a profound aversion to writing about it. The irony is not lost on me that
someone studying incremental learning found the writing process to be decidedly non-
incremental, requiring substantial bursts of human computational effort rather than the
elegant, efficient updates I was trying to optimize in algorithms.

ix

https://zandersgroup.com/en/
https://numer.ai/


PREFACE x

If there’s a broader message I hope readers take from this work, it’s the importance
of considering efficiency alongside effectiveness. In our pursuit of ever more capable
AI systems, we often optimize solely for performance metrics while ignoring computa-
tional and environmental costs. As large language models and other AI systems become
ubiquitous in daily life, we need to remember that sometimes the best solution isn’t the
most accurate one. Rather, it’s the one that finds the right balance in the corners of the
performance-efficiency trade-off space.

To future researchers venturing into similar territory: read and cite my paper, cer-
tainly, but more importantly, be prepared to debug other people’s code, learn to appre-
ciate the meditative qualities of watching power meters, and remember that talking to
your computer is a perfectly normal part of the research process, even if your computer
rarely talks back with useful suggestions.

Filip Gunnarsson
Delft, July 2025



1
INTRODUCTION

In a world where data streams continuously from sensors, financial transactions, and
user interactions, machine learning systems face an unprecedented challenge: how to
learn and adapt in real-time without forgetting previously acquired knowledge: Tradi-
tional batch learning approaches, which retain models periodically on accumulated his-
torical data, are increasingly inadequate for applications demanding immediate respon-
siveness, strict privacy compliance, and sustainable computational resource usage. This
thesis addresses a critical gap in continual learning research by proposing IMLP (Incre-
mental MLP), a novel architecture that enables energy-efficient continual learning on
tabular data streams while maintaining competitive predictive performance and strong
privacy guarantees.

1.1. RESEARCH MOTIVATION
The exponential growth in streaming data applications has created an urgent need for
efficient continual learning solutions. Modern systems must process vast volumes of
continuously arriving data while adapting to evolving patterns: IoT sensor networks gen-
erate terabytes of environmental measurements that require real-time analysis [2], rec-
ommendation systems must continuously adapt to changing user preferences [3], and
autonomous vehicles need to update their perception models as they encounter new
environments [4]. These applications share several critical requirements that expose
fundamental limitations in current machine learning approaches.

Traditional continual learning methods face the stability-plasticity dilemma [5], where
models must remain stable enough to retain previously learned patterns while maintain-
ing sufficient plasticity to incorporate new information. Most solutions rely on experi-
ence replay [6], which stores raw historical samples for periodic rehearsal, or regulariza-
tion techniques like Elastic Weight Consolidation [7], which constrain weight updates to
preserve important parameters. However, these approaches suffer from quadratic scal-
ing in both memory and computational requirements as data streams grow longer, mak-
ing them unsuitable for long-term deployment.

1



1.2. OBJECTIVES & RESEARCH QUESTIONS

1

2

The energy implications are particularly concerning. Data centers consumed ap-
proximately 1.5% of global electricity in 2024 [8], with artificial intelligence workloads
driving unprecedented growth that is expected to double this consumption by 2030, with
machine learning workloads representing a rapidly growing fraction [9]. Training a sin-
gle large language model can emit as much carbon dioxide as five cars over their entire
lifetimes [9].

Modern data protection regulations impose strict constraints on data retention and
processing that further complicate continual learning deployment. The European Union’s
General Data Protection Regulation (GDPR) [10] establish comprehensive privacy frame-
works, with Article 17 of GDPR establishing the “right to be forgotten,” requiring organi-
zations to delete personal data upon request [10]. Traditional continual learning meth-
ods that store raw historical samples face significant compliance challenges, as they
must implement complex deletion mechanisms while preserving model performance.

Healthcare applications exemplify these privacy challenges, where electronic health
records contain highly sensitive information that must be protected under regulations
like HIPAA [11], yet continual learning on patient data could improve diagnostic ac-
curacy and treatment recommendations. Similarly, financial institutions must balance
fraud detection effectiveness with customer privacy protection, often under multiple
regulatory frameworks simultaneously.

Despite significant advances in continual learning for computer vision [12] and nat-
ural language processing [13], tabular data has received comparatively little attention.
This oversight is particularly problematic given that tabular data represents the major-
ity of machine learning applications in industry [14]. Tabular domains present unique
challenges including heterogeneous feature types, class imbalance, missing values, and
complex feature interactions that differ fundamentally from the homogeneous, high-
dimensional data typical in vision and language tasks. Existing tabular learning meth-
ods rely heavily on tree-based ensembles like XGBoost [15] and LightGBM [16], as well
as neural architectures like TabNet [17] and SAINT [18], all of which require complete
dataset access for optimal performance. When adapted to streaming scenarios, these
methods typically employ naive approaches like periodic batch retraining, which inherit
all the scalability and privacy limitations discussed above.

Current continual learning approaches for tabular data suffer from three fundamen-
tal limitations: computational unsustainability due to quadratic scaling with stream length,
privacy violations through raw data retention requirements, and deployment infeasibil-
ity in resource-constrained environments. This thesis addresses the following research
problem: How can we design continual learning architectures for tabular data that achieve
competitive predictive performance while maintaining constant computational require-
ments, preserving privacy through feature-only storage, and enabling deployment in
resource-constrained environments?

1.2. OBJECTIVES & RESEARCH QUESTIONS
We investigate energy efficient continual learning through three inter-connected research
questions that address the computational, performance, and robustness aspects of the
proposed approach.

Research Question 1: Energy Efficiency in Continual Learning
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Can IMLP improve energy efficiency in continual learning?
This question directly addresses the computational sustainability challenge by ex-

amining whether attention-based feature rehearsal can reduce energy consumption and
execution time compared to standard retraining approaches. We hypothesize that main-
taining a fixed-size buffer of learned feature representations, rather than complete his-
torical datasets, will enable constant-time updates regardless of stream length.

Measurable Objectives:

• Quantify energy consumption during training and inference using calibrated power
measurement equipment

• Measure wall-clock execution time across diverse tabular datasets from established
benchmarks

• Establish statistical significance of efficiency improvements through comprehen-
sive comparative analysis

• Demonstrate constant computational complexity by analyzing per-segment en-
ergy consumption patterns over streaming scenarios

Research Question 2: Performance-Efficiency Trade-offs
What are the trade-offs between model performance and energy efficiency in a streaming
tabular data setting?

Efficiency improvements typically require accuracy sacrifices, but the magnitude and
practical implications of these trade-offs remain unclear for tabular continual learning.
We investigate whether modest accuracy reductions can be offset by substantial effi-
ciency gains in practical deployment scenarios.

Measurable Objectives:

• Compare multiple performance metrics across diverse tabular classification tasks
against established baseline methods

• Introduce a composite metric that jointly evaluates prediction quality and com-
putational efficiency for streaming scenarios

• Analyze accuracy-efficiency trade-offs to identify optimal operating points for dif-
ferent deployment contexts

• Characterize the fundamental differences between segmental and cumulative learn-
ing paradigms in terms of data requirements and performance implications

Research Question 3: Cross-Dataset Robustness
How robust are IMLP’s results across different tabular datasets?

Tabular data exhibits substantial heterogeneity across domains, feature types, class
distributions, and temporal patterns. We examine whether the proposed approach main-
tains consistent benefits across this diversity or whether performance depends on spe-
cific dataset characteristics.

Measurable Objectives:
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• Evaluate performance across a comprehensive suite of tabular datasets spanning
multiple application domains

• Analyze robustness to varying dataset characteristics including feature dimension-
ality, class distributions, and dataset sizes

• Identify failure modes and characterize conditions under which the approach ex-
cels or encounters limitations

• Establish statistical significance through rigorous hypothesis testing with appro-
priate multiple comparison corrections

1.3. SCOPE AND LIMITATIONS
We intentionally focus on a specific subset of machine learning challenges to enable
deep investigation within manageable bounds. Understanding these scope decisions
is essential for properly interpreting our contributions and identifying opportunities for
future work.

We restrict our investigation to tabular data, deliberately excluding computer vision,
natural language processing, and multimodal applications. This limitation reflects both
the underexplored nature of tabular continual learning and the domain-specific chal-
lenges that tabular data presents. Unlike images or text, tabular data lacks spatial or
sequential structure that enables transfer learning across domains, requires different
preprocessing approaches for mixed feature types, and faces unique challenges around
class imbalance and missing values.

Our evaluation focuses exclusively on classification tasks, omitting regression, rank-
ing, and structured prediction problems. This choice aligns with the TabZilla bench-
mark’s emphasis on classification while acknowledging that many real-world tabular ap-
plications involve regression [19]. The attention-based architecture could potentially ex-
tend to regression scenarios, but such investigations remain beyond our current scope.

We simulate streaming scenarios through temporal segmentation of static datasets
rather than using truly streaming data with concept drift, distribution shift, or temporal
dependencies. This simplification enables controlled evaluation across diverse domains
but may not capture all complexities of real-world data streams. Additionally, we assume
that class definitions remain stable across segments, which may not hold in evolving
problem domains.

Energy measurements are conducted on a controlled laboratory workstation using
specialized power monitoring equipment. While this enables precise comparisons, re-
sults may not directly translate to diverse deployment environments including differ-
ent hardware configurations, cloud computing platforms, or edge devices with different
power characteristics. Although we discuss privacy benefits of feature-only storage, we
do not provide formal privacy guarantees or conduct comprehensive security analyses.
Membership inference attacks, model inversion attempts, and other privacy evaluation
methods remain outside our scope but represent important directions for future work.

We compare against standard machine learning methods and neural architectures
rather than specialized continual learning algorithms like Elastic Weight Consolidation [7]
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or Gradient Episodic Memory [6]. This choice reflects our emphasis on practical deploy-
ment scenarios where simple batch retraining represents the current state-of-practice,
but limits our ability to position IMLP within the broader continual learning research
landscape.

1.4. CONTRIBUTIONS
We introduce IMLP (Incremental MLP), the first attention-based architecture specifi-
cally designed for continual learning on tabular data. Unlike existing approaches that
adapt vision or language architectures to tabular domains, IMLP is purpose-built for the
heterogeneous, structured nature of tabular data. The architecture maintains a sliding
window of learned feature representations rather than raw samples, enabling privacy-
preserving continual learning with constant memory requirements.

We conduct the most extensive evaluation of neural continual learning on tabular
data to date, encompassing 36 diverse classification tasks against 14 baseline methods.
This evaluation introduces rigorous statistical analysis through Friedman omnibus tests
and post-hoc pairwise comparisons with Holm correction, establishing statistical signif-
icance for all reported efficiency improvements. The breadth of evaluation spans medi-
cal diagnosis, sensor data, text classification, and financial applications, demonstrating
domain-agnostic effectiveness.

Our work introduces NetScore-T, a composite metric that jointly evaluates predictive
performance and computational efficiency for tabular learning scenarios. This metric
extends previous work on energy-aware evaluation [20, 21] to streaming tabular data,
enabling principled comparison of accuracy-efficiency trade-offs across different algo-
rithms and deployment scenarios.

We provide the first systematic study of energy consumption in neural continual
learning for tabular data. Using calibrated power measurement equipment, we quan-
tify the computational sustainability implications of different learning approaches. Our
findings reveal that IMLP achieves a 4.2× median speedup and 79.6% energy reduction
compared to standard MLPs while maintaining competitive accuracy.

We demonstrate that feature-only storage can enable continual learning without raw
data retention, addressing critical privacy and regulatory compliance requirements. While
not providing formal privacy guarantees, we show that compressed feature representa-
tions contain sufficient information for effective learning while potentially reducing the
attack surface for privacy violations.

Through per-segment analysis, we find that IMLP maintains constant computational
requirements regardless of stream length, enabling predictable resource planning for
long-term deployments. This contrasts with traditional approaches that exhibit linear
or quadratic scaling, making them unsuitable for resource-constrained environments.
We provide a complete, reproducible implementation of IMLP along with experimental
infrastructure for tabular continual learning evaluation, allowing researchers and prac-
titioners to build upon our work and apply IMLP to their specific domains.

The full implementation and experimental framework are available at: https://
github.com/fimgu/IMLP.

https://github.com/fimgu/IMLP
https://github.com/fimgu/IMLP


2
BACKGROUND AND RELATED

WORK

2.1. CONTINUAL LEARNING

2.1.1. TASK, DOMAIN, CLASS SETTINGS
Continual Learning (CL) refers to the ability of a model to incrementally learn from a se-
quence of tasks or data distributions without losing performance on previously learned
tasks [22]. In a continual-learning setting, data arrive in a non-stationary stream (e.g.,
changing domains or new classes over time) rather than all at once, and the core chal-
lenge is to avoid catastrophic forgetting, the tendency of neural networks to forget old
knowledge upon learning new information [22, 5, 7].

Researchers have proposed a taxonomy of three fundamental CL scenarios based
on what changes in the stream and what information is available to the learner [22, 23].
These paradigms are known as Task-Incremental Learning (Task-IL), Domain-Incremental
Learning (Domain-IL), and Class-Incremental Learning (Class-IL). We describe each in
turn and summarize their key differences in Table 2.1. Notably, our work emphasizes the
Domain-IL scenario.

TASK-INCREMENTAL LEARNING ( TASK-IL)
Task-Incremental Learning is the scenario in which the agent learns a sequence of dis-
tinct tasks with clear boundaries between them [22]. Crucially, the identity of the current
task (or context) is known to the model even at test time [22]. This allows the use of task-
specific components, for example, a separate output head per task, or even an entirely
separate model for each task. Knowing the task label at inference greatly simplifies the
problem: the model only needs to solve the active task and cannot confuse it with others.

Indeed, Task-IL is often considered the easiest paradigm, since providing the task
identity at test time means catastrophic forgetting can be avoided by design (in the ex-
treme case, one could freeze a dedicated sub-network for each task) [22, 7, 6]. The re-
search challenge in Task-IL is therefore not merely to prevent forgetting, but to learn

6
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shared representations or other mechanisms that enable positive transfer between tasks
while minimizing computational overhead. Task-IL methods frequently exploit the task
label to route inputs or outputs (e.g., using multi-headed networks).

Typical benchmarks: Task-IL can be evaluated on standard class-split benchmarks
(e.g., Split MNIST or Split CIFAR-100) by providing a task label to the model during test-
ing (a “multi-head” evaluation) [24]. In such multi-head protocols, an upper bound on
Task-IL performance is obtained by an oracle that picks the correct task-specific predic-
tor for each test sample, ensuring no interference between tasks.

DOMAIN-INCREMENTAL LEARNING (DOMAIN-IL)
In Domain-Incremental Learning, the model learns one overarching task across a se-
quence of changing domains or contexts. Each domain (or “experience”) presents data
for the same problem-for instance, the same set of class labels-but drawn from a differ-
ent distribution or under different conditions [25]. In other words, the input distribution
shifts over time while the output space remains constant.

A defining feature of Domain-IL is that the agent is not informed of the domain iden-
tity at test time. Unlike Task-IL, the model must handle new domains without an external
task label, but since all domains share the same output labels, it isn’t required to identify
the domain explicitly to produce an answer. For example, a Domain-IL agent might learn
to recognize the same set of objects under progressively different lighting conditions or
camera sensors.

This scenario precludes simple “divide-and-conquer” solutions-one cannot deploy
a separate network or head per domain at test time unless the model first infers which
domain a sample comes from. As a result, catastrophic forgetting is a central challenge
in Domain-IL, because the model’s parameters must continually adapt to new contexts
while preserving performance on prior domains [26].

Domain-IL has received relatively less attention than class-based incremental learn-
ing in recent years, but it is highly relevant to real-world applications such as autonomous
systems that face domain shifts (e.g., robots operating in different weather or locations).
Researchers have begun to revisit Domain-IL with more realistic benchmarks and dedi-
cated methods.

Classic benchmarks include Permuted MNIST (where each task presents a random
pixel permutation of the MNIST images, keeping the label set 0-9 constant) and Rotated
MNIST (each task rotates the input images by a fixed angle) [24, 25]. These protocols
maintain a common classification objective across domains. More recent Domain-IL
benchmarks involve incremental shifts in datasets like CIFAR-10/100 or CORe50 without
introducing new classes [27].

Typical benchmarks: Permuted and Rotated MNIST are canonical Domain-IL eval-
uations. Other examples include continual object recognition under different viewing
contexts (e.g., the CORe50 NIC benchmark) and multi-domain image classification datasets
(such as DomainNet or incremental shifts in CIFAR-100) where each domain provides
the same categories in a new style or environment [27, 28].

CLASS-INCREMENTAL LEARNING (CLASS-IL)
Class-Incremental Learning is the most challenging paradigm, where the agent encoun-
ters new classes over time and must eventually discriminate among all classes seen so
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far. Each task in a Class-IL sequence introduces a set of classes that were not present in
previous tasks (tasks are often defined by disjoint label sets). At test time, importantly,
the model is not told which task a sample belongs to; it must infer the correct class from
the union of all classes learned to date. In essence, the model must function as a single
classifier that grows its output label space as new classes arrive. This requirement means
the learner is implicitly performing task inference: to classify a sample correctly, it must
effectively determine which task’s classes are relevant (e.g., after learning cats vs. dogs in
Task 1 and cows vs. horses in Task 2, distinguish a cow from a cat at test time).

The absence of task labels and the expanding decision space make Class-IL particu-
larly prone to catastrophic forgetting [7]. As new classes are learned, the decision bound-
aries for older classes often shift, causing accuracy on past classes to plummet. Indeed,
without special measures, deep networks struggle to retain old class knowledge when
trained on new classes. Class-IL methods therefore devote significant effort to balancing
past and new knowledge-for example, by replaying exemplars of old classes or distilling
knowledge from previous models [29, 30]. In fact, empirical studies show that simple
regularization techniques (e.g., EWC) that suffice in easier settings completely fail on
Class-IL [7], whereas rehearsal (experience replay) or similar strategies are needed to
reach acceptable performance.

As a result, most state-of-the-art results in Class-IL rely on storing a small set of
past examples or generators (despite the strictest Class-IL definitions disallowing any
memory) [30, 31]. Typical benchmarks: Class-IL is the default scenario in many image-
classification splits, such as Split CIFAR-100 (10 incremental tasks of 10 classes each) and
Incremental ImageNet [30]. Performance is measured on unified class prediction across
all learned classes (often called single-head evaluation). These benchmarks highlight the
severity of forgetting: without countermeasures, a network’s accuracy on initial classes
drops drastically once later classes are learned.

Paradigm Training Labels Available? Test Labels Known? Typical Benchmarks

Task-IL Yes (task identity given) Yes Split MNIST (multi-head), Split CIFAR-100
Domain-IL Yes (task identity given) No Permuted MNIST, Rotated MNIST, CORe50-NI
Class-IL Yes (task identity given) No Split CIFAR-100, Incremental ImageNet

Table 2.1: Comparison of continual-learning paradigms, highlighting whether task (context) labels are pro-
vided to the learner during training and testing, and example benchmarks for each scenario.

2.1.2. STABILITY-PLASTICITY & FORGETTING
Neural networks excel at learning from static datasets, but they struggle to learn continu-
ally from evolving data streams without losing past knowledge [12, 32]. When trained on
new tasks sequentially, a network’s performance on earlier tasks often drops sharply-a
phenomenon known as catastrophic forgetting [24]. In other words, learning new in-
formation can overwrite or interfere with previously learned representations, causing
the model to “forget” what it knew before [12]. This challenge has been recognized for
decades in the study of connectionist models [5, 33]. For example, early work by Mc-
Closkey & Cohen (1989) [5] and French (1999) [33] analyzed how adding new patterns
could catastrophically erase old ones. French (1999) [33] in particular framed this prob-
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lem in terms of the stability-plasticity dilemma, highlighting a core tension in contin-
ual learning: a model must remain plastic enough to acquire new knowledge, yet stable
enough to retain old knowledge.

The stability-plasticity dilemma refers to the trade-off between integrating new in-
formation and preserving prior knowledge [12]. Too much plasticity (learning too freely)
leads to instability and forgetting of old tasks, whereas too much stability (over-conservatism)
prevents learning anything new. This dilemma underpins lifelong learning both in bio-
logical brains and in neural network models. In cognitive science, complementary learn-
ing systems theory posits that the brain mitigates interference by having dual memory
systems-a fast-learning buffer (like the hippocampus) and a slow-learning long-term
store (the neocortex) [34]. Artificial systems lack such built-in mechanisms, so continual
learning remains a long-standing challenge: without special measures, sequential train-
ing on non-i.i.d. data generally leads to catastrophic forgetting or interference [24, 7].
A lifelong learning agent is ideally one that can learn from a continuous, non-stationary
stream of tasks without significant performance degradation on earlier tasks [32]. Achiev-
ing this means striking the right balance between plasticity and stability for each new
piece of information.

To concretely quantify forgetting and retention over time, researchers have defined
empirical metrics [6]. A common measure is the forgetting rate or drop in accuracy on
a given task after learning subsequent tasks [32]. For instance, one can record a model’s
accuracy on task A immediately after training on A, then measure accuracy on A again
after training on tasks B, C, etc.; the difference is a forgetting metric. Low or zero drop
means the model retained what it learned; a large drop indicates severe forgetting. Re-
searchers also report the average retained accuracy across all tasks at the end of train-
ing as an overall indicator of knowledge retention [22]. Other metrics examine forward
transfer (how learning task A helps or hinders learning task B) and backward transfer
(influence of new learning on past tasks). In essence, a continual learner should strive
for high final performance on all tasks and minimal forgetting-i.e., it should remember
old tasks almost as well as if they had been learned in isolation.

2.2. TABULAR DATA LANDSCAPE

2.2.1. CHARACTERISTICS OF STRUCTURED TABLES
Real-world tabular datasets typically consist of heterogeneous feature types (continu-
ous, categorical, ordinal, etc.) packaged into rows of irregular structure [35, 36]. They
often contain missing or sparse entries (e.g., optional fields or one-hot encodings) and
can exhibit skewed, heavy-tailed, or class-imbalanced distributions [37]. Unlike images
or text, tabular features lack any inherent spatial or sequential ordering: each column is
independent, and there are no local patterns to exploit.

In contrast, deep-learning models for vision (e.g., CNNs) or language (e.g., Trans-
formers) assume structured inputs with local correlations or sequence context. Tabular
data thus violates those inductive biases, making it harder for neural nets to learn ef-
fectively with limited data [35, 37]. These characteristics hinder gradient-based learn-
ing: for example, missing values and discrete categories require special encoding or im-
putation, and non-local dependencies give little advantage to convolution or attention
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mechanisms.
As a result, tree-ensemble models have historically dominated tabular problems.

Practitioners often default to Gradient-Boosted Decision Trees (GBDTs) for tabular tasks [35].
Studies such as Shwartz-Ziv & Armon explicitly note that “traditional ML methods, such
as GBDT, still dominate in practice” for tabular data [37], since tree methods can natu-
rally handle heterogeneity and missingness via splits. In summary, the mixed data types,
sparsity, and lack of structure make tabular data a challenging domain for neural net-
works, favoring models like GBDTs that do not rely on input locality or homogeneity.

2.2.2. OPENML AND TABZILLA BENCHMARKS
OpenML is an open platform for collaborative machine-learning research [38]. It hosts
thousands of tasks and datasets with standardized formats and metadata and provides
benchmark suites that bundle related tasks [39].

Examples of these suites include:

• OpenML-100: a curated collection of 100 supervised classification tasks (each with
500-50 000 instances) chosen to be broadly usable. These tasks were selected to
avoid extreme class imbalance or feature sparsity, though missing values and cat-
egorical features are allowed [39].

• OpenML-CC18: a curated suite of 72 classification datasets selected from OpenML
by Bischl et al. (2019) [39]. Each dataset has between 500 and 100 000 instances
and ≤ 5 000 features, with at least two classes and no class below 5 % frequency.
CC-18 enforces additional filters (e.g., minimum class ratios) to ensure balanced,
moderate-sized problems suitable for benchmarking.

These OpenML suites standardize the data splits and experimental setup, enabling
fair comparisons across algorithms [38, 39].

Beyond OpenML, McElfresh et al. (2023) introduced the TabZilla benchmark suite
to focus on challenging tabular tasks [14]. TabZilla consists of 36 “hard” classification
datasets drawn from the OpenML repository. The selection criterion was that no sim-
ple baseline (e.g., a single tree stump or 1-NN) achieves best performance, and most
algorithms struggle to reach optimal accuracy [14]. The datasets in TabZilla are diverse
in domain and scale, ranging from small to very large tasks. TabZilla is accompanied
by a unified evaluation protocol: each dataset is evaluated with stratified 10-fold cross-
validation, and a broad collection of algorithms (19 models, including multiple neural
architectures and GBDTs) are benchmarked under the same settings. The full codebase
and raw results (over half a million trained models) are open-sourced to facilitate repro-
ducible research [14].

Together, these benchmark suites (OpenML-100, CC-18, and TabZilla) provide struc-
tured collections of tabular tasks for developing and evaluating algorithms. OpenML’s
curated suites ensure variety and standard splits, while TabZilla emphasizes the most
difficult real-world datasets with a rigorous, common evaluation framework.

Other tabular benchmarks exist, such as the Penn Machine Learning Benchmark
(PMLB) [40], AutoML benchmark suites [41], and domain-specific collections like UCI [42].
We focus on OpenML-100, CC-18, and TabZilla because they are widely adopted in re-
cent literature, actively maintained, and provide standardized formats, metadata, and
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reproducible splits through OpenML, aligning with our experimental setup and compute
constraints. This targeted selection ensures coherent comparisons without attempting
an exhaustive survey.

2.3. TABULAR DATA MODELS
Tabular data (row-column data common in spreadsheets) underpins many practical ML
tasks, from finance to healthcare. Historically, gradient-boosted decision trees (GBDTs)
(e.g., XGBoost [15], LightGBM [16], CatBoost [43]) have been the dominant models on
tabular problems. Deep neural networks (DNNs) excel in other domains but have tra-
ditionally lagged on tabular data due to feature heterogeneity and irregular distribu-
tions [37].

In recent years, however, a surge of specialized network architectures and bench-
marks [35, 17, 18] has revived interest in “tabular deep learning.” Key debates include
whether NNs can match or surpass GBDTs, and under what conditions. Recent large-
scale studies [14] show that on many datasets the NN vs. GBDT gap is small-often, hy-
perparameter tuning [44] matters more than model choice. However, new methods (e.g.,
foundation models like TabPFN [45] and FT-Transformer [35]) are challenging this view,
particularly in low-data regimes.

2.3.1. NN VS. GBDT LANDSCAPE

GBDTS

Boosted trees (e.g., XGBoost [15], LightGBM [16], CatBoost [43]) form ensembles of de-
cision trees. They handle heterogeneous features, missing values, and skewed distri-
butions naturally. These models require minimal preprocessing and offer straightfor-
ward feature-importance measures, but lack end-to-end differentiability. GBDTs remain
strong baselines on most tabular tasks.

PLAIN NEURAL NETS

Multilayer perceptrons (MLPs) and ResNet-like MLPs serve as simple NN baselines. No-
tably, Kadra et al. (2021) [44] showed that well-regularized MLPs with a rich “cocktail” of
regularization techniques (dropout, weight decay, etc.) can outperform specialized nets
and even GBDTs when properly tuned. Gorishniy et al. [35] similarly identify a ResNet-
like MLP as a strong default. These works suggest that optimization and regularization
are crucial-a “plain” NN can match or beat GBDTs with enough tuning.

TREE-INSPIRED NETS (NODE)
Neural Oblivious Decision Ensembles (NODE) [46] replace hard tree splits with soft, dif-
ferentiable ones. The NODE architecture effectively mimics ensembles of oblivious trees
but learns end-to-end by backpropagation. Empirically, NODE models “outperform the
competitors on most tasks,” often beating traditional GBDTs in benchmarks. This ap-
proach bridges the gap by embedding tree logic into a neural net.

ATTENTION-BASED/TRANSFORMER MODELS

• TabNet [17] uses sequential attention “decision steps” to select salient features at
each layer. This gives inherent interpretability (which features are focused on)
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and competitive performance. The authors report that TabNet “outperforms other
neural and decision-tree variants” on diverse datasets. It also enables unsuper-
vised pretraining for tabular data.

• AutoInt and TabTransformer encode categorical features into contextual embed-
dings via self-attention. AutoInt [47] and TabTransformer [48] demonstrate robust
handling of noise and missing data. On 15 public benchmarks, TabTransformer
raised AUC by ≥ 1 % over prior nets and matched tree ensembles, with robust han-
dling of noise and missing data.

• FT-Transformer [35] extends transformers by tokenizing both categorical and nu-
merical features. It consistently achieves or exceeds the performance of other DL
models across many tasks. In their study, FT-Transformer “performs best on most
tasks and becomes a new powerful solution” for tabular data, effectively general-
izing to both “ResNet-friendly” and “GBT-friendly” datasets.

• SAINT [18] introduces row-wise attention in addition to column attention, plus
a contrastive pretraining. It reports state-of-the-art improvements, “even outper-
forming gradient boosting methods (XGBoost, CatBoost, LightGBM) on average”
across benchmarks. This shows that NNs with advanced attention can beat GBDTs
in practice.

FOUNDATION MODELS (PRETRAINED TRANSFORMERS)
Inspired by large LLMs, new “foundation” models are trained across many synthetic tab-
ular tasks:

• TabPFN [45] is a Transformer trained on millions of synthetic datasets (a Prior-
Data Fitted Network). At inference it uses in-context learning to make predictions
on entire small datasets instantly. TabPFN “outperforms all previous methods on
datasets with up to 10,000 samples by a wide margin,” and does so in just a few sec-
onds (5000× speedup over tuned ensembles). It excels in the “small data” regime
(under ∼ 3000 points).

• Other tabular LLMs and meta-learned models have been proposed (e.g., mixture-
of-prompt networks [49, 50, 51, 52]), but TabPFN is the main example so far.

INTERPRETABLE NN ARCHITECTURES

Several works focus on NN explainability:

• Mesomorphic Networks [53] produce instance-wise linear models. A deep hyper-
network generates a sparse linear predictor for each input, yielding “free lunch ex-
plainability” while retaining deep model accuracy. Experiments show IMNs match
black-box nets in accuracy but provide inherent feature-weight insights.

• TabTransformer embeddings [48] have been noted as “highly robust and provide
better interpretability” because attention weights can highlight important cate-
gorical patterns.
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The NN landscape for tabular data is broad: it ranges from tuned MLPs and ResNets
to hybrid/attention models and large pre-trained networks. Each class tackles hetero-
geneity and interactions differently, and many recent architectures report strong results
on benchmarks.

2.3.2. BENCHMARK COMPARISONS
A key question is how these models actually compare on public datasets. Recent large-
scale empirical studies provide insights.

TabZilla Benchmark [14]compares 19 algorithms (3 GBDTs, 11 NNs, 5 baselines) across
176 classification datasets. The main conclusion is that the “NN vs. GBDT” debate is of-
ten overemphasized: on many datasets, a well-tuned GBDT and a tuned NN yield very
similar accuracy. McElfresh et al. report that light hyperparameter tuning on a GBDT
is often more important than the choice between GBDT and NN. They do find some
systematic trends: TabPFN, for small datasets, “outperforms all other algorithms on av-
erage” even when sampling 3,000 points [45]. Conversely, GBDTs excel on “irregular”
datasets (high skew or heavy tails): CatBoost [43] and XGBoost [15] beat ResNet [35] and
SAINT [18] on skewed or heavy-tailed feature distributions. In summary, McElfresh et al.
recommend practitioners first tune GBDTs, but consider advanced NNs (or ensembles)
if needed.

Besides, an independent study [54] compares many methods, including LLM-based
models and AutoML. They report that meta-learned foundation models like TabPFN [45]
outperform GBDTs in small-data regimes. Purely dataset-specific NNs do better than
LLM-based tabular classifiers, but a state-of-the-art AutoML library (heavily using GB-
DTs) still achieves the best accuracy-at the cost of much higher compute. Likewise, on a
collection of about 15 benchmarks, SAINT [18] was shown to “even outperform” GBDTs
(XGBoost, CatBoost, LightGBM) on average. This suggests that attention-row mecha-
nisms can give NNs an edge on many tasks.

In a 40-dataset study related to well-tuned MLPs [44], the authors find that an MLP
with dataset-specific regularization outperforms prior specialized NNs and also outper-
forms XGBoost. Their results hint that plain NNs can match GBDTs if optimization is
done right. Additionally, Many of the datasets used are also included in the 176 used
datasets in the TabZilla paper [14].

In comparisons on diverse tasks, FT-Transformer [35] outperforms other DL models
on most tasks. When compared with GBDTs, no single method wins all: they conclude
there is “no universally superior solution,” echoing earlier studies. However, their en-
sembling results show that an ensemble of FT-Transformers outperforms an ensemble
of GBDTs on nearly all tasks. This implies that, given enough model capacity, NNs can
surpass GBDT ensembles.

NODE [46]: In their experiments, NODE “outperforms [GBDT] competitors on most
of the tasks,” indicating that tree-inspired DNNs close the gap with boosted trees.

Overall, benchmark trends can be summarized as: (1) GBDTs are hard-to-beat base-
lines, especially on large or irregular data; (2) advanced NNs can exceed GBDTs in cer-
tain regimes-notably small datasets (TabPFN, tuned MLPs) and when massive pretrain-
ing or ensembling is possible; and (3) there is no single winner-performance is dataset-
dependent, leading to the release of the TabZilla “36-hardest-datasets” suite [14] to focus
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future research on challenging cases.

Table 2.2: Selective comparison of Gradient-Boosted Decision Trees and Neural-Network approaches on tab-
ular data.

Model / Paper (Year) Architecture / Type Data / Evaluation Domains Performance vs. GBDTs Interpretability

XGBoost [15] GBDT (tree ensembles) Kaggle, UCI, OpenML bench-
marks

Strong baseline; often top performer Medium (feature im-
portances)

LightGBM [16]) GBDT Large tabular datasets Similar to XGBoost; very fast Medium
CatBoost [43] GBDT Categorical data, benchmarks Top-tier; handles categories well Medium
Well-Tuned MLP [44] Multilayer Perceptron (MLP) 40 UCI datasets

(small/medium)
Outperforms specialized NNs and XG-
Boost

Low

TabNet [17] Attentive sequential NN 20+ diverse tabular tasks Beats prior DL; comparable to GBDTs High (sparse feature
masks)

TabTransformer [48] Transformer on categorical fea-
tures

15 public datasets >1% AUC gain vs. DL; matches GBDTs Medium (attention
weights)

SAINT [18] Row + Column attention, pre-
training

15+ benchmarks Outperforms all previous DL; beats GB-
DTs on average

Low

FT-Transformer [35] Transformer with feature to-
kens

50+ OpenML tasks Outperforms other DL; ensembles beat
GBDT

Low

NODE [46] Neural Oblivious Decision En-
sembles

Large benchmark set Outperforms GBDTs on most tasks Medium (forest struc-
ture)

TabPFN [45] Pre-trained Transformer Small-medium datasets
(<10k)

Dominant on small data; 5,000× faster
inference

Low (black-box)

Mesomorphic NN [53] Instance-wise linear hypernet-
work

Various UCI/OpenML Matches SOTA accuracy Very high (linear per
instance)

TabZilla [14] Benchmark suite / analysis 176 classification datasets GBDT vs NN: negligible difference;
TabPFN leads small-data

Tabular AutoML [54] Meta-learning / AutoML
combo

10+ tabular benchmarks Best accuracy (GBDT-based); founda-
tion models strong small-data

2.3.3. CONSIDERATIONS
GBDTs offer natural explainability via feature importances and decision-path analysis.
Neural networks are usually opaque, but some architectures supply intrinsic interpre-
tative signals. For instance, TabNet was explicitly designed for interpretability through
sparse feature masks [17]. Mesomorphic Networks generate a linear model for each ex-
ample, yielding built-in explanations [53]. TabTransformer’s attention heads can high-
light influential categories [48].

Training cost varies widely. GBDTs train quickly on CPUs and seldom need GPUs,
whereas many NNs require more epochs and GPU acceleration. McElfresh et al. re-
port inference speeds: TabPFN processes ∼0.25s per 1,000 instances [14, 45], while Cat-
Boost takes ∼21s for the same batch [43]. FT-Transformer and SAINT can be expensive
to train: Gorishniy et al. note FT-Transformer’s high resource usage and associated CO2

concerns [35]. Advanced tuning (e.g., hyperparameter search) greatly affects time: Kadra
et al. emphasize that well-tuned simple networks are competitive, implying significant
tuning cost [44].

GBDTs are easy to deploy in lightweight environments (often exportable to minimal
runtime code) and handle smaller data well. Neural networks, especially large trans-
formers require support libraries and may be overkill for simple tasks. However, NNs in-
tegrate seamlessly into end-to-end pipelines and support incremental or transfer learn-
ing (e.g., TabPFN can be fine-tuned on new data). Neural models can also leverage hard-
ware accelerators for faster inference once deployed. Practitioners must weigh model
complexity against real-time constraints: a single-pass TabPFN model delivers predic-
tions extremely quickly [45], whereas a heavily tuned GBDT ensemble may demand sub-
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stantial compute.
The current state of the art shows no universally superior method for tabular data.

GBDTs remain strong out-of-the-box and are often the safest choice [37], especially on
large, irregular, or skewed datasets [15, 43]. Deep networks, however, have closed much
of the gap through new architectures and training strategies. In particular: (a) attention-
based and Transformer models such as FT-Transformer and SAINT have become com-
petitive or better on many benchmarks [35, 18], (b) regularization-heavy MLPs can ri-
val GBDTs when tuned properly [44], and (c) foundation models like TabPFN show that
large, scale pretraining can yield a tabular GPT for small data [45]. Meta-analyses suggest
starting with a well-tuned GBDT and then exploring specialized NNs if warranted [14].
The release of the TabZilla benchmark encourages testing on difficult cases (the hard
36) where new methods might shine [14]. Future work may push toward integrating do-
main knowledge into NNs, better self-supervised learning for tables, and more efficient
tabular transformers. Crucially, improving interpretability in deep models, as in Meso-
morphic Networks will make them more attractive [53].

The GBDT vs. NN debate is nuanced: boosted trees are robust baselines that excel on
many tabular problems [37], but modern neural approaches especially those leveraging
attention or pretraining, can match or exceed GBDT performance in key scenarios [35,
45, 18]. The optimal choice ultimately depends on data size, feature properties, and
practical constraints.

2.4. FORGETTING MITIGATION TECHNIQUES
Continual learning models must learn new tasks without overwriting old knowledge.
Regularisation-based methods constrain updates to important parameters, replay meth-
ods re-introduce past data (real or synthetic), and memory-based methods maintain
compact representations of past tasks (e.g., prototypes, prompts, key-value memory).
Transformer-style attention (keys/queries) and neural-process memories have recently
been adapted to continual learning to retrieve relevant past information. We review
these approaches by category, citing key examples across vision, NLP, RL, and especially
tabular domains.

2.4.1. REGULARISATION-BASED APPROACHES
These methods add penalties to the loss to slow learning on important parameters. For
example, Elastic Weight Consolidation (EWC) [7] estimates a Fisher information matrix
Fi for each weight and adds a quadratic penalty:

L(θ) = Lnew(θ)+ λ

2

∑
i

Fi (θi −θ∗i )2 (2.1)

where θ∗ are old-task parameters [7]. Similarly, Synaptic Intelligence (SI) [25] accumu-
lates an importance measure for each parameter over the learning trajectory, and penal-
izes changes to “important” synapses. Memory Aware Synapses (MAS) [55] computes
parameter importance in an unsupervised, online fashion based on output sensitivity,
then constrains those weights. Learning without Forgetting (LwF) [56] uses knowledge
distillation to match the old model’s soft outputs on new data, effectively regularizing
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the output function. These methods ensure that new gradients gi are scaled by parame-
ter importance (high Fi or MAS score), so critical weights change little. In practice they
reduce forgetting at the cost of some plasticity. Progressive Neural Networks [57] avoid
forgetting by freezing previous networks entirely and adding new “columns” with lateral
connections. While not a pure penalty method, progressive nets exemplify an architec-
tural solution: old tasks’ weights remain fixed, so their output is preserved [57].

In EWC, the regularized loss L combines the new-task loss with a Fisher-weighted
ℓ2 penalty as above. In multi-task MLPs, one might also add output-distillation: L =
Lnew +λKD,Ex, [DKL(pold(x), |, pnew(x))] (as in LwF) [56]. Examples would be: EWC and
SI (vision: permuted MNIST, Split CIFAR) [7, 25], MAS (vision, object recognition) [55],
LwF (vision: incremental ImageNet) [56]. These methods typically use image datasets,
but the same principles apply to tabular MLPs or transformer weights in NLP.

2.4.2. BUFFER REPLAY STRATEGIES
Replay (or rehearsal) methods interleave new-task training with samples drawn from a
memory of past data. A simple episodic memory holds a subset of past data; new mini-
batches sample from this buffer to “remind” the model of old tasks. Reservoir sampling
ensures a representative buffer when tasks arrive streaming. For example, iCaRL [30]
stores exemplars for each class and classifies by nearest-mean-of-exemplars. It com-
bines this with knowledge distillation (LwF) [56] to update its feature extractor, and uses
“herding” to select exemplars. Specifically, each class c is represented by a prototype

µc = 1

|Pc |
∑

x∈Pc

φ(x),

and a new sample is classified via

c∗ = argmin
c

∥∥φ(x)−µc
∥∥2, (2.2)

where φ(x) is its feature embedding. This nearest-mean-of-exemplars rule decouples
classification from network outputs, aiding stability. Experience Replay [58] simply buffers
raw examples from all prior tasks and interleaves them with new data. In RL domains
(Atari, DMLab), Rolnick et al. [58] showed that even a small replay buffer dramatically
reduces forgetting, matching methods that require task labels. Other variants include
Gradient Episodic Memory (GEM) [6], which constrains new-task gradients to not in-
crease loss on buffered data (via a quadratic programming step), and A-GEM, its aver-
aged form. Buffer replay can be extended to latent features (see next subsection).

A fixed-size buffer (often per-class) is sampled along with new task data. When the
buffer is limited, one discards old samples (randomly or by score) once full. Experience
replay is conceptually simple and often outperforms more complex alternatives [58].
Examples would be: iCaRL (vision; CIFAR-100, ImageNet) [30], GEM (vision; Permuted
MNIST) [6], raw-replay (RL; Atari, DMLab) [58].

2.4.3. GENERATIVE REPLAY METHODS
Generative replay trains a generative model (e.g., GAN or VAE) alongside the solver so
that old-task samples can be synthesised on-the-fly. Shin et al. introduced Deep Gener-
ative Replay (DGR) [59], wherein a generator G learns to approximate the distribution of
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past tasks while the solver network is trained on a mixture of real and generated data. At
each new-task step the training objective is

L = Lnew
(
xnew

) + Lreplay
(
xgen

)
, xgen ∼G , (2.3)

so the learner never needs to store the original data explicitly.
Brain-inspired dual-memory systems adopt a similar idea: Kamra et al. [60] pro-

posed a fast “hippocampal” network for recent experiences and a slow “neocortical”
network that consolidates knowledge via generative replay. FearNet [61] likewise cou-
ples a VAE-based generator with short- and long-term memory modules, during “sleep”
phases the model dreams synthetic examples that transfer recent knowledge into stable
weights, achieving near iCaRL performance on CIFAR-100 and audio benchmarks with-
out storing real exemplars.

The model learns a generator that preserves the old data distribution so that syn-
thetic samples can be replayed in place of raw stored data. A few examples would be:
DGR (vision; Permuted MNIST, sequential CIFAR) [59], Deep Generative Dual Mem-
ory (vision; CIFAR-10) [60], FearNet (vision/audio; CIFAR-100, CUB-200, AudioSet) [61].
Although demonstrated mainly on vision streams, generative replay could in principle
model tabular or text data as long as an appropriate generator is available.

2.4.4. FEATURE AND LATENT REPLAY
Instead of replaying raw inputs, feature/latent replay stores internal activations and feeds
them back into the network during later tasks. Let f1:k denote the sub-network up to
layer k and fk+1:n the remainder. For a selected subset of samples we cache

h(k) = f1:k (x),

freeze the lower layers, and during new-task training optimise

L = ℓ
(

fθ(xnew), ynew
)+ℓ( fk+1:n(h(k)

old), yold
)
, (2.4)

where the second term replays stored activations h(k)
old as if they were fresh inputs. Since

the early layers are fixed, gradients do not alter f1:k , reducing interference and memory
(no need to save high-dimensional images).

Pellegrini et al. [62] show that latent replay on MobileNet shrinks memory by an order
of magnitude while preserving accuracy on CORe50 and NICv2. The general idea is to
store activations h = f1:k (x) rather than raw x. Mixing new raw samples with stored h is
equivalent to sampling “latent prototypes,” which mitigates gradient conflict.

2.4.5. PROTOTYPE AND MEMORY MODELS
These methods explicitly build a compact memory or prototype for each concept. For
classification, prototypical replay maintains class centroids (as in iCaRL). Prototype net-
works [63] compute class means in embedding space; this idea transfers to CL by re-
hearsing prototypes or using them as memory. In tabular data, cluster-based models
like XuILVQ [64] perform online vector-quantisation: they maintain prototypes that get
updated with each sample, and can generate synthetic points from those prototypes.
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For TRIL3 [65] on tabular data, XuILVQ [64] generates pseudo-samples of past classes for
a downstream classifier (a Deep Neural Decision Forest). Another memory-augmented
approach is to use key-value stores: e.g. associate each past input x with a label vector,
and retrieve via similarity in a learned embedding.

2.5. ATTENTION-BASED RETRIEVAL MECHANISMS
Recent CL methods leverage attention or prompts to retrieve relevant old-task informa-
tion on demand. Transformer-style key-query attention is at the core: given query vec-
tors Q (from the current input) and key vectors K (memorised for each past context),
one computes attention weights by the scaled dot-product; the resulting weights retrieve
value vectors V that encode stored knowledge.

2.5.1. KEY-QUERY MATCHING MODELS
The scaled dot-product attention of Vaswani et al. [66] is

A = softmax
(

QK⊤p
dk

)
, Att(Q,K ,V ) = A V , (2.5)

where dk is the key dimension. In continual learning, K and V constitute a task
memory; the query Q derived from a new input retrieves the most relevant past contexts
via A. This is the basis of our implementation in 3.

2.5.2. PROMPT POOL ADAPTATION
In prompt-based CL, the memory comprises a pool of learned prompts. Learning to
Prompt (L2P) [49] maintains key-value pairs: each prompt has a key and a value em-
bedding. Given an input, its query selects a subset of prompts through attention; these
prompts are prepended to the tokens and fed to a frozen pre-trained backbone. This al-
lows re-using a large model for many tasks without changing its weights. DualPrompt [50]
extends this by learning two disjoint prompt sets (general and expert), still selected by
query-key attention. CODA-Prompt [51] further enables concurrent activation of multi-
ple prompts via decomposed attention, achieving state-of-the-art on Split ImageNet-R
and Split CIFAR-100. Most recently, KOPPA [52] adds a MAML-inspired orthogonality
constraint so that new-task keys become approximately orthogonal to old-task queries,
reducing representation drift.

2.5.3. NEURAL PROCESS MEMORY
Neural Process Continual Learning (NPCL) [67] treats each task as a stochastic func-
tion and assigns it a latent variable. A hierarchical latent model learns posteriors over
these variables; during new tasks, the model regularises the latent distributions so that
uncertainty-aware attention to past latent memories mitigates forgetting. Unlike prompt
pools, NPCL retrieves task latents rather than explicit prompts but relies on the same
key-query matching principle.

2.5.4. COMPARATIVE SUMMARY
Each entry shows the key mitigation strategy (e.g. Regularisation, Buffer Replay, Genera-
tive Replay, Feature/Latent Replay, Prototype/Memory, Attention/Prompt) alongside the
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Table 2.3: Comparative summary of foundational and state-of-the-art continual-learning models, showing
their application domain, benchmark datasets, and principal forgetting-mitigation strategy.

Model (Ref ) Paper Title Domain Datasets Mitigation Type

Progressive Nets [57] Progressive Neural Networks RL Atari / 3D Maze Dynamic architecture (frozen columns)

EWC [7] Overcoming Catastrophic Forgetting
in Neural Networks

Vision, NLP Permuted MNIST;
Split CIFAR

Weight regularisation (Fisher)

SI [25] Synaptic Intelligence Vision Permuted MNIST Weight regularisation (path integral)

MAS [55] Memory Aware Synapses Vision Pascal VOC Weight importance (unsupervised)

LwF [56] Learning without Forgetting Vision Incremental ImageNet Knowledge-distillation regularisation

iCaRL [30] Incremental Classifier and Represen-
tation Learning

Vision CIFAR-100; ImageNet Buffer replay (exemplar prototypes)

GEM [6] Gradient Episodic Memory Vision Permuted MNIST Buffer replay with gradient constraints

Experience Replay [58] Experience Replay for Continual
Learning

RL Atari; DMLab Buffer replay (reservoir)

DGR [59] Deep Generative Replay Vision Sequential MNIST; Sequen-
tial CIFAR

Generative replay (GAN)

Dual Memory [60] Deep Generative Dual Memory Vision CIFAR-10 Generative replay (dual system)

FearNet [61] FearNet: Brain-Inspired Model for In-
cremental Learning

Vision/Audio CIFAR-100; CUB-200; Au-
dioSet

Generative replay (VAE + dual memory)

Latent Replay [62] Latent Replay for Real-Time Continual
Learning

Vision CORe50; NICv2 Feature/latent replay (activations)

L2P [49] Learning to Prompt for Continual
Learning

Vision Split CIFAR-100; CORe50;
DomainNet

Key-query prompt retrieval

DualPrompt [50] DualPrompt: Complementary
Prompting for Rehearsal-Free CL

Vision Split ImageNet-R;
Split CIFAR-100

Key-query prompt retrieval (dual
prompts)

CODA-Prompt [51] COntinual Decomposed Attention-
based Prompting

Vision ImageNet-R; Split CIFAR Key-query prompt retrieval (concur-
rent)

KOPPA [52] Key-Query Orthogonal Projection &
Prompt Alignment

Vision Split ImageNet-R Key-query retrieval (orthogonal con-
straint)

NPCL [67] Neural Processes for Uncertainty-
Aware Continual Learning

Multi-domain Vision & RL benchmarks Latent memory (Neural Processes)

XuILVQ + DNDF [65] TRIL3: Pseudorehearsal for Tabular
Data

Tabular UCI; CICIDS; Health
records

Prototype-based replay (latent gen.)

Transformer [66] Attention Is All You Need NLP/Vision WMT’14 En-De / En-Fr Self-attention (key-query)

domains and datasets where it was demonstrated. In practice, many methods combine
categories (e.g. iCaRL uses replay + distillation). The table and above survey highlight
how foundational ideas like weight penalties replay buffers, generative models, proto-
types, and attention can be adapted across image, text, RL, and tabular tasks to combat
catastrophic forgetting.

2.6. ENERGY-AWARE MACHINE LEARNING
The Green AI movement argues that energy efficiency must become a first-class goal
in AI research. Modern deep learning has grown explosively, for example, publication
counts for deep learning rose from ∼1,350 papers in 2015 to over 85,000 in 2022 [68], and
recent analyses warn that this surge entails a heavy environmental toll [68]. Training
large models can emit on the order of hundreds of tonnes of CO2, vastly exceeding the
∼2 tonnes per-person per-year budget needed for 1.5 °C climate targets [68]. Henderson
et al. [69] emphasize that “accurate reporting of energy and carbon usage is essential for
understanding ML’s climate impacts,” introducing tools and leaderboards to spur low-
carbon research. Likewise, Różycki et al. [70] note that the carbon footprint of ML spans
both operational energy and the embodied emissions in hardware: in many cases the
latter actually eclipse the former. Together, these studies motivate energy-aware ML:
researchers are now encouraged to consider efficiency and carbon cost alongside accu-
racy. Trinci et al. [21] remark that in continual learning - a subfield of adapting founda-
tion models - “the environmental sustainability remains relatively uncharted,” and they
undertake to fill that gap by measuring energy use across methods. These Green AI ef-
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forts underscore that motivation is now shifting: beyond accuracy, AI researchers must
also target lower wattage and carbon.

2.6.1. HARDWARE POWER INSTRUMENTATION
Accurately measuring power draw in hardware is the foundation of energy-aware ML. At
the device level, modern CPUs and GPUs include on-chip sensors and counters: Intel
processors expose the RAPL (Running Average Power Limit) interface, which provides
real-time power readings for CPU cores and DRAM; NVIDIA’s NVML (via nvidia-smi)
reports instantaneous power draw, utilization, and temperature for each GPU. These
built-in channels (and their software wrappers such as PyRAPL) allow fine-grained track-
ing of component power. In contrast, external power meters (e.g. smart PDUs or “Kill-A-
Watt” devices) measure whole-node draw from the wall socket, capturing CPUs, GPUs,
memory, storage, and cooling overhead. In data centers, one must also account for cool-
ing and facility losses via the Power Usage Effectiveness (PUE) factor. Industry bench-
marking efforts further standardize instrumentation: the MLPerf Power benchmark [71]
provides a unified methodology for measuring ML workload power across scales. Latif
et al. [72] instrumented an 8×NVIDIA H100 training node and found its actual peak
power (∼8.4 kW) was about 18% below the rated 10.2 kW, and showed that increasing
ResNet batch size from 512 to 4096 images reduced total training energy by a factor of
four.

2.6.2. SOFTWARE ENERGY PROFILERS
Complementary to hardware instrumentation are software tools that estimate or log en-
ergy use within ML code. Bouza et al. [68] review seven popular tools (Table 2.4): Code-
Carbon and Eco2AI sample CPU/GPU load every 10-15 s to estimate kWh and CO2 for
a training run; CarbonTracker, Experiment-Impact-Tracker, and MLCO2 hook into sen-
sors to report per-job energy; Green-Algorithms is a web-based calculator using job pa-
rameters to provide a rough CO2 estimate; and Cumulator aggregates measured power
via RAPL/NVML into kWh. These tools differ in scope: some track only the ML pro-
cess, others include full-node idle costs. Bouza et al. [68] experimentally found as much
as a two-fold discrepancy between tools, attributable to these differences. In addition,
general-purpose profilers (e.g. Linux perf, PowerTOP) can hint at hot spots, and frame-
works like TensorFlow and PyTorch now include basic energy reporting via underlying
RAPL/NVML hooks.

2.6.3. JOINT ACCURACY-ENERGY METRICS
To evaluate models holistically, the community is moving beyond accuracy alone. Trinci
et al. [21] introduce Energy NetScore, a task-averaged score that penalizes both high en-
ergy and low accuracy in continual learning models. Yang et al. [79] similarly propose
an “energy efficiency” score for vision foundation models and provide an interactive
tool to compare models by accuracy vs. energy. These metrics typically weight accu-
racy (reward) against energy (cost) with tunable parameters, producing a single value for
ranking. They reveal steep trade-offs: Yang et al. [79] find that accuracy improvements
in large ImageNet models now require exponentially more energy, yielding rapidly di-
minishing returns. Such findings underscore that small accuracy gains may not justify
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Table 2.4: Examples of software energy trackers for machine learning [68].

Tool Approach Notes

Green-Algorithms [73] Web calculator Estimates CO2 from model type and run-
time (no live sensing).

CodeCarbon [74] Python library Monitors process or machine power (logs
CPU/GPU usage every ∼15 s).

CarbonTracker [75] Python library Tracks GPU power draw (and optionally
infers CO2).

Experiment-Impact-
Tracker [69]

Python library Monitors CPU/GPU usage via perf coun-
ters (real-time).

Eco2AI [76] Python library Similar to CodeCarbon (monitors usage
per process or host).

MLCO2 [77] Web/CLI tool Provides quick carbon estimates (global
ML emissions database).

Cumulator [78] Python library Aggregates measured power (via
RAPL/NVML) into kWh during exe-
cution.

huge energy increases. MLPerf Power also reports energy-to-solution alongside through-
put, penalizing models that consume excessive energy for a given performance. Overall,
modern ML evaluation increasingly penalizes wasteful computation, pairing every ac-
curacy figure with its energy cost to guide sustainable model selection.

2.7. RESEARCH GAP
Despite rapid progress in both tabular deep learning and CL, the intersection of these
areas remains largely unexplored.

1. Lack of Domain-Incremental Benchmarks for Tabular Data. Current CL stud-
ies overwhelmingly target image streams in the Task-IL or Class-IL settings. Real-
world tables, however, experience domain drift (e.g., quarterly finance data, evolv-
ing sensor logs) without label-space changes, yet no standard Domain-IL bench-
mark exists for such data.

2. Energy Footprint is Ignored. Retraining GBDTs or large neural nets on every data
refresh is compute- and carbon-intensive, but CL papers rarely report power or
CO2, especially for tabular workloads.

3. Gap Between Accuracy and Efficiency Metrics. The community still optimises
for predictive metrics alone (accuracy, AUC, log-loss). There is no widely-adopted
metric that jointly rewards predictive quality and joule efficiency across a non-
stationary stream.

4. Foundation Models and Privacy-Aware Replay Remain Untested. Pre-trained
transformers for tables (e.g., TabPFN, FT-Transformer) and feature-level or attention-
based replay strategies promise low-storage, privacy-preserving CL, but have not
been benchmarked under domain drift.
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METHODOLOGY

3.1. PROBLEM STATEMENT
To bridge these gaps, we consider tabular continual learning under tight memory con-
straints. The data arrive as an ordered list of chunks:

D = {S1,S2, . . . ,ST },

where each chunk

St = {(xi , yi )}nt
i=1

contains nt examples collected at time t . Inputs are real-valued feature vectors xi ∈
Rdin , and labels are categorical yi ∈ {1, . . . ,C }. Chunk lengths, class proportions, and fea-
ture distributions may vary, and T (the total number of chunks) is not known in advance.

When chunk St arrives, the learner may scan it multiple times but cannot revisit raw
data from earlier chunks. Instead, it maintains a sliding window of feature arrays

Ht−1 = {ht−W , . . . ,ht−1} ⊂RW ×dh ,

where W is the fixed memory cap and dh = 256. No raw inputs or labels from past
chunks are stored, satisfying both privacy and storage constraints.

We train chunk-specific weights θt of the classifier fθt using the regular cross-entropy
loss:

min
θt

LCE( fθt ,St ) =− 1

nt

∑
(x,y)∈St

log pθt (y | x),

where pθt is the softmax output of the Incremental MLP (IMLP) attending to Ht−1.
The same loss is used on a held-out set for hyperparameter tuning.

Although energy is not part of the training objective, we track mains power during
both training and inference:
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Et = Etrain,t +αEinfer,t , α ∈ {1,10}.

After processing each chunk, we compute the NetScore-T to balance accuracy against
energy consumption:

NS(BA)
t = BalancedAcct

log10(Et +1)
, NS(LL)

t = (LogLosst +ε)−1

log10(Et +1)
,

where ε= 10−7 stabilizes the log-loss. For the entire data stream, we average NSt over
t = 1, . . . ,T .

• Training goal: minimize the cross-entropy loss above.

• Evaluation metric: NetScore-T defined by the formulas above.

NOTATION SUMMARY

Table 3.1: Notation used throughout the paper

Symbol Description

St Chunk t , containing nt samples
T Total number of chunks (unknown beforehand)
din Dimensionality of the input features
dh Hidden-state width (fixed at 256)
W Sliding-window size (feature-memory capacity)
θt IMLP parameters after training on St

Et Total energy (training + inference) for chunk t
α Weighting factor for inference energy (1 or 10)
ε Log-loss stabilizer (10−7)



3.2. DATA CHARACTERISATION

3

24

3.2. DATA CHARACTERISATION

3.2.1. DATA SELECTION
We use the TabZilla benchmark, a set of 36 tabular classification tasks taken from OpenML.
The set aims for a wide variety of subjects, a balanced number of classes, and mixtures
of small and large feature spaces [14]. Rows arrive in their original time order and are
split by Algorithm 2 into chunks with 500 ≤ k ≤ 1000 rows. This keeps enough statisti-
cal strength while limiting memory use [38]. Datasets smaller than kmin simply use one
chunk, matching the reference code in Listing 6.

TRAIN/TEST SPLITS

Before we split into chunks, we set aside a stratified test set of 15% (random_seed=42).
Each later chunk gets its own 15% stratified validation split with seed 42+ seg_idx. If
balancing the classes is impossible, we fall back to a fixed but un-balanced split [80].

3.2.2. PRE-PROCESSING AND FEATURE PIPELINES
Heterogeneous columns are processed with a ColumnTransformer [81] that applies to
pipelines to numeric and categorical features. Numeric columns use median imputa-
tion via SimpleImputer(strategy=’median’) followed by StandardScaled to ob-
tain zero-mean, unit-variance features. Categorical columns use a constant placeholder
(fill_value=’missing’) with SimpleImputer, then OneHotEncoder(drop=’first’,
handle_unknown=’ignore’, sparse_output=False). The transformer is fit on the
training split and reused unchanged for validation adn test to avoid leakage. Outputs
are case to float32 before entering the model to reduce memory usage and keep types
consistent with PyTorch.

Listing 1 Pre-processing pipeline (preprocessing.py, lines 21-52).

numeric_transformer = Pipeline([
("imputer", SimpleImputer(strategy="median")),
("scaler", StandardScaler())

])

categorical_transformer = Pipeline([
("imputer", SimpleImputer(strategy="constant", fill_value="missing")),
("onehot", OneHotEncoder(drop="first",

sparse_output=False,
handle_unknown="ignore"))

])

preprocessor = ColumnTransformer([
("num", numeric_transformer, numerical_features),
("cat", categorical_transformer, categorical_features)

], remainder="drop")
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3.2.3. HANDLING CLASS IMBALANCE
Performance is measured with balanced accuracy-the simple average of recall for each
class-using sklearn.metrics.balanced_accuracy_score [81]. Balanced accuracy
reduces bias toward the majority class and is supported by prior work on uneven class
sizes [80]. We do not use resampling, class weights, focal loss, or β-balanced measures.

3.2.4. TRAINING OVERVIEW
Early stopping ends training after ten epochs without better validation balanced accu-
racy (or the value set in each YAML file). Baseline models-XGBoost [15], LightGBM [16],
CatBoost [43], k-NN, SVM, tree ensembles, plus neural models like TabNet [17], NODE [46],
TabTransformer [48], and SAINT [18]-are retrained on all previous chunks

⋃
t≤T St . By

contrast, the IMLP trains only on the current chunk ST while reusing saved feature rep-
resentations through its attention blocks.

3.2.5. PRIVACY AND GOVERNANCE
Even though TabZilla tasks are public and appear anonymised, linking different datasets
can still identify people. We therefore enforce: (i) source-level anonymising by using only
the OpenML copies, (ii) AES-encrypted local storage limited to authorised staff, (iii) full
compliance with GDPR Recital 26 on data that can’t be traced back [10], and (iv) sharing
only summary scores and model weights-never raw records.

Licence note. The TabZilla repo currently has no clear licence to redistribute the under-
lying datasets; so we cite only the OpenML task IDs and leave out the raw data in the
supplementary files.
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3.3. THE INCREMENTAL MLP (IMLP)

Figure 3.1: Schematic of the Incremental MLP. Every incoming sample x is first mapped to a 256-D query q,
the query retrieves a context vector c from the fixed-size feature memory holding the most recent W segment
embeddings K = {ht−1, . . . ,ht−W }. The concatenated pair (x,c) is then processed by two shared feed-forward
layers and a classifier head.

3.3.1. HIGH-LEVEL INTUITION
A conventional MLP ignores the sequential structure of a data stream and forgets pre-
viously seen patterns once its weights are updated. IMLP tackles this limitation by re-
hearsing features rather than raw samples. Concretely, after each segment we detach
and store the 256-D activation ht−i produced by the penultimate layer. At any later step
the current query q can softly attend to this buffer of at most W vectors, harvesting a
summary of recent experience without keeping any personally identifiable data. Be-
cause the buffer size is capped, both memory footprint and lookup cost scale as O (W dh)
regardless of how long the stream runs.

3.3.2. LAYER-WISE DEFINITION
Table 3.2 lists every trainable block. The only difference from a standard two-layer MLP
is the additional query/key projection pair and the concatenation of the 256-D context
vector in front of the first hidden layer. All datasets-small or large, balanced or imbal-
anced, share this exact configuration, ensuring that improvements stem from the incre-
mental design rather than architecture tuning.

With input width din ≤ 2000 and class count C ≤ 20, the model contains less than
1.2×106 parameters, a break-down is shown in §3.4.

3.3.3. WINDOWED ATTENTION AND BUFFER MAINTENANCE

During a forward pass with batch size B we stack the normalised keys into K ∈RB×W ×256

and obtain the context vector via

c = softmax
(

Kq⊤p
dh

)
K, dh = 256, (3.1)
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Table 3.2: IMLP building blocks (identical across the evaluation suite).

Component Output dim. Activation Purpose / Notes

Query projection Q 256 - projects raw input to query space

Key projection K 256 - re-projects stored features for attention

Attention context c 256 - scaled dot-product attention (Eq. 3.1)

FC1 512 ReLU first hidden layer after context concat

FC2 256 ReLU second hidden layer (penultimate)

Classifier C - single linear layer to logits

where each stored activation is h̃i = hi /(∥hi∥2+ε) with ε= 10−8. After the prediction step
the freshly computed (detached) feature h̄t is pushed into the FIFO queue. If the queue
already holds W items, the oldest one is removed.

3.3.4. TRAINING LOOP AT A GLANCE
Algorithm 1 summarises the end-to-end optimisation routine. Variable names map di-
rectly to the code in Listing 2.

Algorithm 1 Context-Aware Incremental MLP (IMLP)

Require: Stream D = {S1,S2, . . . ,ST } of data segments, Window size W , learning rate η,
attention flag 1att

1: Initialize θ← random weights
2: Initialize BUFFER ←; ▷ Stores at most W feature tensors
3: for t = 1 to T do
4: for minibatch (x, y) ∈ St do ▷ Forward pass
5: if 1att and BUFFER ̸= ; then
6: K ← Stack(BUFFER) ▷ Shape: [B ,W,d ]
7: q ←φq (x) ▷ Query: [B ,1,d ]
8: α← softmax(K ·q⊤)
9: c ←α ·K ▷ Context: [B ,d ]

10: else
11: c ← 0
12: h ←φfeat(concat(x,c))
13: p ← softmax(φcls(h)) ▷ Backward pass
14: L ← CE(p, y)
15: θ← θ−η∇θL

16: if 1att then
17: f ← Detach(mean feature of St )
18: BUFFER ← BUFFER∪ { f }; trim to W

19: return θ
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3.3.5. DETAILED EXPLANATION OF TRAINING ALGORITHM
Algorithm 1 implements the core incremental learning procedure for IMLP. Below is a
step-by-step explanation aligned with Listing 2 and Eq. 3.1. We use batch size B , input
width din, hidden width dh=256, and class count C .

1. Initialization (Lines 1-3): Parameters θ = {φq ,φK ,φfeat,φcls} are randomly initial-
ized. The FIFO BUFFER is empty and will hold at most W 256-D feature vectors
(detached tensors).

2. Segment loop (Line 4): The stream D = {S1, . . . ,ST } is processed in temporal order
to match continual learning.

3. Minibatch loop (Line 5): Each segment St is consumed in minibatches (x, y) for
efficient optimization.

4. Context retrieval (Lines 6-11):

• If attention is enabled (1att=1) and the buffer is non-empty:

– Stored features are stacked as K ∈RW ×dh and (for batched matmul) viewed/broadcast
as [B ,W,dh] (Line 7). Before scoring, features are ℓ2-normalized: h̃i =
hi /(∥hi∥2 +ε) and re-projected with φK .

– Inputs are projected to queries q =φq (x) ∈RB×dh and reshaped to [B ,1,dh]
(Line 8).

– Attention weights over the W keys are

α= softmax
(

K q⊤p
dh

)
∈RB×W ,

i.e., softmax along the window dimension (Line 9).

– The context is the convex combination c =αK ∈RB×dh (Line 10).

• Otherwise, the context defaults to the zero vector: c = 0 (Line 11), so the
model reduces to a plain MLP for that batch.

5. Feature extraction (Line 12): Inputs and context are concatenated into z = concat(x,c) ∈
RB×(din+dh ) and passed through two shared feed-forward layers h =φfeat(z) ∈RB×dh .

6. Prediction (Lines 13-14): Logits are o =φcls(h) ∈RB×C and probabilities p = softmax(o).

7. Optimization (Lines 16-17): Compute cross-entropy L = CE(p, y) and update pa-
rameters by a first-order step, abstractly θ← θ−η∇θL. Gradients flow only through
the current batch; stored features are detached.

8. Buffer update (Lines 18-20): After all minibatches of St , compute one representa-
tive feature

h̄t = Detach
( 1
|St |

∑
(x,y)∈St

h
)
,

append it to BUFFER, and evict the oldest item if |BUFFER| > W (FIFO). This keeps
memory O (W dh) and avoids storing raw samples.

Per-batch cost is O
(
B(dindh +W d 2

h)
)
; extra memory is O (W dh). You find a more in

depth derivation in §3.4.
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3.4. COMPUTATIONAL ANALYSIS OF IMLP
We examine how the incremental learning design impacts resource requirements, par-
ticularly regarding parameter count, computational complexity, and memory usage. We
decompose the model’s parameter count, revealing how the addition of attention-based
memory slightly increases complexity compared to conventional MLPs. Additionally, we
discuss the per-batch computational overhead introduced by the attention mechanism,
quantifying its cost with respect to the input dimensions and the fixed window size W .
Furthermore, we assess memory requirements, highlighting that the feature buffer used
in IMLP maintains a fixed, bounded memory footprint independent of the data stream
length. Finally, we position IMLP within the broader landscape of continual learning
methods, emphasizing its efficiency and privacy- preserving advantages relative to tra-
ditional replay based approaches.

3.4.1. ARCHITECTURAL CONTEXT
Table 3.3 restates the headline architectural differences between a plain multilayer per-
ceptron and IMLP, while Table 3.4 gives the layer-by-layer specification.

Table 3.3: High-level comparison between a conventional MLP and the proposed IMLP.

Component MLP IMLP

Input projection din→512 din→256
Memory mechanism – Attention
Feature extractor 512→256 (din +256)→512→256
Memory growth O (1) O (W )
Time per sample O (1) O (W d 2

h)
Privacy Stores raw data Stores features only

3.4.2. PARAMETER COUNT
The total number of learnable weights equals the sum of the five matrices highlighted in
Tables 3.3–3.4. Using dh=256 and omitting biases:

dindh︸ ︷︷ ︸
query

+ d 2
h︸︷︷︸

key

+ (din +dh)512︸ ︷︷ ︸
first FC

+ 512dh︸ ︷︷ ︸
second FC

+ dhC︸︷︷︸
classifier

= O
(
dindh +d 2

h +dhC
)
.

With din ≲ 2000 and C ≪ dh the result is roughly 1.2 million weights.
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Table 3.4: Layer-wise specification of IMLP

Component Output dim. Activation Notes

Input feature vector din – Raw tabular input
Attention Module

Query projection Q 256 – Linear(din,256)
Key projection K 256 – Linear(256,256) applied to each stored

feature
Context computation 256 – Scaled dot-product attention (Eq. 3.1)

Feature Extraction
Concatenated (x,c) din +256 – Only when attention is active
FC1 512 ReLU Linear(din +256,512)
FC2 256 ReLU Linear(512,256)

Classification Head
Classifier C – Linear(256,C )

3.4.3. PER-BATCH TIME COMPLEXITY
For a mini-batch of B samples and a sliding window of W cached 256-dimensional fea-
ture vectors:

Query projection: O (B ·din ·dh) (3.2)

Key projection: O (B ·W ·d 2
h) (3.3)

Attention scores: O (B ·W ·dh) (3.4)

Context aggregation: O (B ·W ·dh) (3.5)

Feature extraction: O (B · (din +dh) ·512) (3.6)
Total: O (B · (din ·dh +W ·d 2

h)) (3.7)

With the default W =10 and dh=256, W d 2
h = 10× 2562 = 655360 multiply-adds per

sample, i.e. well below one megaflop.

3.4.4. MEMORY COMPLEXITY
Aside from fixed model parameters, the only additional memory comes from the feature
buffer that drives the attention mechanism:

Mbuffer = W dh ×sizeof(fp32)=O (W dh).

Because the oldest feature is discarded whenever the window fills, this extra memory
remains constant with respect to the number of tasks T . Replay-based methods, in con-
trast, grow as Θ(T ) unless a strict cap is imposed on stored samples.

3.4.5. COMPARISON WITH BASELINE STRATEGIES
Table 3.5 emphasises that IMLP achieves privacy-preserving continual learning at con-
stant memory cost, trading only a quadratic W d 2

h compute term for its feature-only re-
hearsal buffer.
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Listing 2 Central lines of the IncrementalMLP implementation.

1 class IncrementalMLP(nn.Module):
2 """Incremental MLP with attention-based feature replay."""
3 def __init__(self, input_size, num_classes, window_size=10):
4 super().__init__()
5 self.window_size = window_size
6 self.d_h = 256
7 # Attention projections
8 self.query = nn.Linear(input_size, self.d_h)
9 self.key = nn.Linear(self.d_h, self.d_h)

10 # Feature extraction pathway
11 self.feat = nn.Sequential(
12 nn.Linear(input_size + self.d_h, 512), nn.ReLU(),
13 nn.Linear(512, self.d_h), nn.ReLU()
14 )
15 self.classifier = nn.Linear(self.d_h, num_classes)
16

17 def compute_context(self, x, prev):
18 if not prev:
19 return x.new_zeros(x.size(0), self.d_h)
20 keys = self.key(torch.stack(prev, dim=1)) # [B,W,256]
21 q = self.query(x).unsqueeze(1) # [B,1,256]
22 attn = (keys @ q.transpose(1,2)).squeeze(-1) # [B,W]
23 attn = torch.softmax(attn, dim=1)
24 ctx = (attn.unsqueeze(1) @ keys).squeeze(1) # [B,256]
25 return ctx
26

27 def forward(self, x, prev=None):
28 ctx = self.compute_context(x, prev) if prev else 0
29 feats = self.feat(torch.cat([x, ctx], dim=1))
30 return self.classifier(feats), feats

Table 3.5: Complexity of common continual-learning approaches

Method Memory Time / step Requires raw data?

Naïve retraining O (T N ) O (T N ) Yes
Experience replay O (M) O (N +M) Yes
Generative replay O (1) O (N +G) No
IMLP (ours) O (W ) O (N +W d 2

h) No

IMLP confines its additional cost to a modest quadratic compute term and a small,
fixed-sized feature buffer. This design avoids the unbounded growth in memory and
data-privacy issues faced by replay baselines, while remaining computationally lightweight
on modern hardware.
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3.5. DATASETS AND PREPROCESSING

3.5.1. DATASET SELECTION AND CHARACTERISTICS
We evaluate IMLP on 36 classification tasks from the TabZilla benchmark [14], accessed
through the OpenML platform [38]. This collection spans diverse domains including
medical diagnosis, sensor data, text classification, and financial applications. The selec-
tion criteria prioritise: (i) sufficient instances to create meaningful temporal segments,
(ii) balanced representation of binary and multi-class problems, and (iii) varied feature
dimensionalities ranging from 5 to 2,000 dimensions.

Table 3.6 summarises key characteristics. Binary tasks comprise 44% of the bench-
mark, with the remainder being multi-class problems with up to 26 categories. Instance
counts range from 3,190 (splice) to 22,784 (house_16H), while feature dimensionalities
span from 5 (wilt, phoneme) to 2,000 (dilbert). This diversity ensures our incremental
learning evaluation covers realistic tabular scenarios.

Table 3.6: Summary statistics across the 36 TabZilla classification tasks.

Dataset characteristic Min Median Max Mean

Number of instances 3,190 8,308 22,784 9,344
Number of features 5 36 2,000 220
Number of classes 2 2 26 4.5
Segment size 500 619 951 668
Number of segments 5 11 23 12.1

3.5.2. STREAM SEGMENTATION PROTOCOL
To simulate continual learning scenarios, we partition each dataset into temporal seg-
ments S1,S2, . . . ,ST while preserving the original row order from OpenML. This main-
tains any natural temporal dependencies present in the data collection process. Algo-
rithm 2 determines optimal segment sizes between 500 and 1,000 instances, minimising
data wastage while ensuring sufficient statistical power per chunk.

The bounds [kmin,kmax] = [500,1000] balance three considerations:

1. Statistical reliability: Each segment must contain enough samples for stable gra-
dient estimates and meaningful validation splits.

2. Attention coherence: Segments should be large enough for the feature memory
mechanism to learn useful representations within each temporal window.

3. Computational efficiency: Larger segments increase per-batch memory require-
ments without proportional accuracy gains.

When the optimal segment size k∗ leaves a remainder r = N mod k∗, we apply round-
robin redistribution: the first r segments each receive one additional instance. This en-
sures segment sizes differ by at most one instance while preserving chronological order.
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3.5.3. FEATURE PREPROCESSING PIPELINE
Following established best practices for tabular data [81], we apply domain-appropriate
transformations to numerical and categorical features separately. The pipeline archi-
tecture, implemented via scikit-learn’s ColumnTransformer, ensures consistent prepro-
cessing across all data splits:

Numerical features undergo two-stage processing:

1. Imputation: Missing values are replaced with column medians computed on the
training portion of each segment. This robust statistic is less sensitive to outliers
than the mean.

2. Standardisation: Features are scaled to zero mean and unit variance using StandardScaler,
facilitating gradient-based optimisation.

Categorical features receive specialised handling:

1. Missing value encoding: Absent categories are filled with the constant string ’missing’,
preserving missingness as potentially informative.

2. One-hot encoding: Categories are binarised with drop=’first’ to prevent multi-
collinearity. The handle_unknown=’ignore’ setting ensures robustness to novel
categories during inference.

All transformed features are cast to float32 precision, reducing memory footprint
by 50% compared to default float64 with negligible impact on model performance. The
complete pipeline specification appears in Listing 1.

3.5.4. DATA SPLITTING AND EVALUATION PROTOCOL
Our evaluation framework simulates realistic deployment where future data remains
strictly inaccessible during training. The splitting hierarchy operates at three levels:

1. Global test set: Before any streaming simulation, we extract a stratified 15% test
split using random_state=42. This held-out set evaluates final model performance
across all segments and never participates in training or validation.

2. Streaming sequence: The remaining 85% forms the training stream, maintaining
original row order. Segments S1, . . . ,ST arrive sequentially without shuffling.

3. Per-segment validation: Within each training scenario, we create a stratified 15%
validation split for hyperparameter selection and early stopping. The seed
random_state=42+segment_idx ensures reproducible yet distinct splits per seg-
ment.

This three-tier approach prevents data leakage while enabling fair comparison across
methods. All models-whether incremental or cumulative-use identical validation proce-
dures within each segment.
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3.5.5. TRAINING PROTOCOLS
We implement two distinct training regimes reflecting fundamentally different approaches
to continual learning:

Cumulative training (baselines): Traditional methods including gradient boosting (XG-
Boost, LightGBM, CatBoost) [15, 16, 43], instance-based learning (k-NN), kernel meth-
ods (SVM), tree ensembles (Random Forest) [81], and neural baselines (e.g. TabNet [17],
SAINT [18]) are retrained from scratch at each segment. These models access the com-
plete historical data

⋃T
t=1 St , representing the upper bound of performance achievable

with perfect memory.

Incremental training (IMLP): Our proposed architecture processes only the current
segment ST while accessing compressed representations of previous segments through
the attention mechanism. Raw historical data remains inaccessible, enforcing strict pri-
vacy constraints and constant memory usage.

Both protocols employ early stopping based on validation balanced accuracy, termi-
nating training after 10 epochs without improvement. This ensures convergence while
preventing overfitting to small segments. The distinction between cumulative and incre-
mental training directly tests our hypothesis that feature-level memory can approximate
full data replay while maintaining privacy guarantees.

3.6. TRAINING AND OPTIMISATION
The performance of neural architectures on tabular data critically depends on careful
hyperparameter selection and training procedures [44]. This section details our com-
prehensive optimisation framework, which ensures fair comparison between IMLP and
baseline methods while exploring modern deep learning techniques that enhance tabu-
lar learning performance.

3.6.1. HYPERPARAMETER OPTIMISATION FRAMEWORK
We adopt a systematic approach to hyperparameter tuning that extends beyond tradi-
tional grid search, implementing what Kadra et al. [44] term a "regularisation cocktail"-
a principled exploration of complementary regularisation techniques. This methodol-
ogy acknowledges that optimal configurations for tabular neural networks often involve
complex interactions between multiple regularisation strategies, architectural choices,
and training procedures.

Our framework employs Bayesian optimisation via Optuna [82], leveraging its Tree-
structured Parzen Estimator (TPE) algorithm to efficiently navigate the high-dimensional
search space. The TPE sampler models the probability of hyperparameter configura-
tions conditioned on their performance, enabling intelligent exploration that balances
exploitation of promising regions with exploration of uncertain areas.

3.6.2. SEARCH SPACE DEFINITION
The hyperparameter search space encompasses four complementary families of tech-
niques, each addressing different aspects of the learning process. Additionally, certain
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training parameters remain fixed across all experiments to ensure fair comparison while
reducing the search space dimensionality.

FIXED TRAINING CONFIGURATION

The following parameters remain constant throughout all experiments:

• Learning Rate: 1×10−4 (not optimised to maintain training stability)

• Batch Size: 128 samples (balances memory usage with gradient quality)

• Optimizer: AdamW with conditional weight decay

• Scheduler: ReduceLROnPlateau with factor 0.5, patience 5, monitoring validation
accuracy

• Training Budget: Maximum 100 epochs with early stopping (patience=10)

IMPLICIT REGULARISATION TECHNIQUES

Implicit regularisation methods influence the optimisation trajectory without directly
modifying the loss function:

• Batch Normalisation: Applied after each linear transformation, with learnable
affine parameters (use_batch_norm ∈ {True,False})

• Stochastic Weight Averaging (SWA): Maintains a running average of model weights
during the final 25% of training epochs (use_swa ∈ {True,False})

These techniques stabilise training dynamics and often improve generalisation with-
out explicit penalty terms.

EXPLICIT REGULARISATION METHODS

Explicit regularisation directly penalises model complexity:

• Weight Decay: L2 penalty on model parameters

– use_weight_decay ∈ {True,False}

– weight_decay ∈ [10−5,10−1] (log-uniform) when enabled

• Dropout: Stochastic neuron deactivation

– use_dropout ∈ {True,False}

– dropout_rate ∈ [0.0,0.8] (uniform) when enabled

– dropout_shape ∈ {funnel, long_funnel,diamond,triangle}

The dropout patterns control rate progression through network layers:

• Funnel: pi = min(rate× (i +1)/L,0.9)

• Long Funnel: pi = min(rate,0.9) for i < L−1, then rate/2

• Diamond: pi = min(rate×min(i +1,L− i )/⌊L/2⌋,0.9)

• Triangle: pi = min(rate× (L− i )/L,0.9)

where L = 3 is the number of layers and rates are capped at 0.9 for numerical stability.
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ARCHITECTURAL ENHANCEMENTS

We explore residual connection variants that have proven effective for tabular data:

• Skip Connections: use_skip ∈ {True,False}

• Skip Type (when enabled): skip_type ∈ {Standard,ShakeShake,ShakeDrop}

– Standard: Identity mappings bypass the network

– ShakeShake [83]: Stochastic linear interpolation between branches

– ShakeDrop [84]: Probabilistic path dropping

• ShakeDrop Probability: shakedrop_prob ∈ [0.0,1.0] (uniform) when skip_type
= ShakeDrop

These techniques address gradient flow issues while introducing beneficial stochas-
ticity during training.

DATA AUGMENTATION AND TRAINING ENHANCEMENTS

Modern training techniques adapted for tabular data:

• Data Augmentation: augmentation ∈ {None,MixUp}

– MixUp [85]: Linear interpolation between training examples

– aug_magnitude ∈ [0.0,1.0] (uniform) controls mixing strength when enabled

• Mixed Precision Training: use_amp ∈ {True,False}

– Automatic mixed precision (AMP) for computational efficiency on CUDA de-
vices

– Automatically disabled on CPU to prevent compatibility issues

• Gradient Clipping: max_grad_norm ∈ [0.1,10.0] (log-uniform)

– Applied after unscaling gradients in mixed precision mode

– Prevents gradient explosion in deep networks

CONDITIONAL DEPENDENCIES

The search space includes conditional relationships between parameters:

• weight_decay is only active when use_weight_decay = True

• dropout_shape and dropout_rate require use_dropout = True

• skip_type requires use_skip = True

• shakedrop_prob requires skip_type = ShakeDrop

• aug_magnitude requires augmentation = MixUp

These conditions ensure the search space remains coherent while reducing the num-
ber of invalid configurations.
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3.6.3. OPTIMISATION ALGORITHM AND PROTOCOL
The hyperparameter optimisation employs a multi-stage protocol designed to balance
computational efficiency with thorough exploration:

SAMPLING STRATEGY

We utilise Optuna’s multivariate TPE sampler with the following configuration:

• Startup Trials: 50 random configurations before TPE activation

• Multivariate Modeling: Enabled to capture parameter interactions

• Constant Liar: Enabled for improved parallel efficiency

• Random Seed: Fixed at 42 for reproducibility

EARLY STOPPING AND PRUNING

Two levels of early stopping prevent wasteful computation:

1. Trial-level Pruning: MedianPruner terminates unpromising trials based on inter-
mediate validation performance, with 50 startup trials before pruning begins and
50 warmup steps per trial

2. Epoch-level Stopping: Within each trial, training halts after 10 epochs without
validation improvement (patience=10)

3. Study-level Stopping: Optimization terminates if no improvement occurs across
100 consecutive trials

OBJECTIVE FUNCTION

The optimisation minimises:

Lopt = 1−BalancedAccval

where BalancedAccval is computed on the segment-specific validation split. This choice
aligns with our primary evaluation metric while handling class imbalance.

3.6.4. COMPUTATIONAL INFRASTRUCTURE
The comprehensive hyperparameter search demands substantial computational resources:

Table 3.7: Computational resources for hyperparameter optimisation across 36 TabZilla tasks.

Resource Specification

Total optimisation trials 3,600 (100 per task)
Total GPU hours ≈ 72 hours
Parallelisation factor 22 concurrent trials
Storage format SQLite databases
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3.6.5. EXECUTION AND PERSISTENCE
The optimisation workflow leverages parallelisation and persistence for robustness:

PARALLEL EXECUTION

A bash orchestration script manages concurrent optimisation across tasks:

Listing 3 Parallel hyperparameter optimisation

#!/bin/bash
N_TRIALS=100
EPOCHS=100
DEVICE="cuda"
MAX_PARALLEL=22
DATA_ROOT="../data/full_datasets"

# Task discovery by scanning data directory
TASK_IDS=()
for TASK_DIR in ${DATA_ROOT}/openml_task_*; do

if [ -d "$TASK_DIR" ]; then
TASK_ID=$(basename "$TASK_DIR" | sed 's/openml_task_//')
# Verify required files exist
if [ -f "${TASK_DIR}/X_train.npy.gz" ] && \

[ -f "${TASK_DIR}/X_test.npy.gz" ] && \
[ -f "${TASK_DIR}/y_train.npy.gz" ] && \
[ -f "${TASK_DIR}/y_test.npy.gz" ]; then
TASK_IDS+=($TASK_ID)

fi
fi

done

# Parallel execution with resource constraints
printf "%s\n" "${TASK_IDS[@]}" | xargs -I {} -P ${MAX_PARALLEL} \

bash -c 'python mlp_c.py \
--task_id {} \
--n_trials ${N_TRIALS} \
--epochs ${EPOCHS} \
--device ${DEVICE} \
--storage "sqlite:///optuna_db/task_{}.db" \
--data_root ${DATA_ROOT}'

STATE PERSISTENCE

Each task maintains an independent SQLite database enabling:

• Interruption Recovery: Optimisation resumes from the last completed trial

• Reproducibility: Complete trial history with random states

• Post-hoc Analysis: Hyperparameter importance and correlation studies

3.6.6. INTEGRATION WITH EXPERIMENTAL PIPELINE
The optimised hyperparameters integrate seamlessly with the main experimental frame-
work:
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AUTOMATIC CONFIGURATION LOADING

The training pipeline automatically detects and loads task-specific configurations:

Listing 4 Hyperparameter loading mechanism

def load_hyperparameters(args, base_config):
"""Load optimised hyperparameters if available."""
tuning_file = f"tuning/task_{args.task}_hyperparams.yml"

if not args.no_tuning and os.path.exists(tuning_file):
with open(tuning_file, 'r') as f:

tuned_params = yaml.safe_load(f)

# Merge with priority to tuned parameters
config = merge_configurations(base_config, tuned_params)
print(f"Loaded tuned hyperparameters from {tuning_file}")

else:
config = base_config
print("Using default hyperparameters")

return config

CONFIGURATION PERSISTENCE FORMAT

Optimised configurations are stored as YAML files for human readability and version
control:

Listing 5 Example hyperparameter configuration file (task_3481_hyperparams.yml)

aug_magnitude: 0.39900270387013026
augmentation: MixUp
dropout_rate: 0.0905904366726042
dropout_shape: long_funnel
max_grad_norm: 4.033730669603172
skip_type: ShakeShake
use_amp: false
use_batch_norm: true
use_dropout: true
use_skip: true
use_swa: false
use_weight_decay: true
weight_decay: 0.002019079599080459

3.6.7. REPRODUCIBILITY GUARANTEES
Ensuring reproducible results across different hardware and software environments re-
quires careful attention to sources of non-determinism:

RANDOM STATE MANAGEMENT

We enforce deterministic behaviour through:

• Global Seed: Fixed seed (42) for NumPy, PyTorch, and Python’s random module
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• Optuna Seeds: Explicit seeding of TPE sampler with seed=42

• Thread Limiting: OMP_NUM_THREADS=1 and torch.set_num_threads(1) for con-
sistent parallelism

NUMERICAL STABILITY

Several techniques ensure consistent results across platforms:

• Gradient Clipping: Prevents numerical overflow with configurable maximum norm

• Mixed Precision Handling: GradScaler with NaN checking to avoid underflow

• Dropout Rate Capping: Maximum rate of 0.9 to prevent complete layer deactiva-
tion

• Batch Size Constraints: Fixed at 128 to ensure identical gradient statistics

This comprehensive training and optimisation framework ensures that our experi-
mental comparisons reflect the true potential of each method rather than artifacts of
suboptimal hyperparameter choices. By investing substantial computational resources
in systematic optimisation, we establish a rigorous foundation for evaluating the incre-
mental learning capabilities of IMLP against well-tuned baselines.

3.7. EVALUATION METRICS
The evaluation of continual learning systems requires careful consideration of both pre-
dictive performance and computational efficiency. This section defines the metrics used
to assess IMLP and baseline methods across the streaming tabular benchmark. We first
present conventional accuracy metrics that capture model effectiveness, then introduce
NetScore-T, a novel composite metric that jointly evaluates prediction quality and en-
ergy consumption.

3.7.1. CONVENTIONAL PREDICTIVE METRICS
We employ four complementary metrics to comprehensively assess predictive perfor-
mance across diverse tabular tasks. Each metric captures different aspects of classifi-
cation quality, with particular attention to class imbalance, a common characteristic in
real-world tabular datasets.

Balanced Accuracy [80] serves as our primary performance metric due to its robust-
ness to skewed class distributions. For a C -class problem, balanced accuracy computes
the arithmetic mean of per-class recall values:

BalancedAcc = 1

C

C∑
c=1

TPc

TPc +FNc

where TPc and FNc denote true positives and false negatives for class c, respectively.
This formulation ensures that performance on minority classes contributes equally to
the overall score, preventing models from achieving artificially high scores by focusing
solely on majority classes.
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F1-Score [86] provides a harmonic mean of precision and recall, offering a single
metric that balances both aspects of classification performance. For multi-class prob-
lems, we compute the macro-averaged F1-score:

F1macro = 1

C

C∑
c=1

2 ·Precisionc ·Recallc

Precisionc +Recallc

where Precisionc = TPc /(TPc+FPc ) and Recallc = TPc /(TPc+FNc ). The macro-averaging
strategy aligns with our balanced accuracy approach, treating all classes with equal im-
portance.

Log-Loss [87] (cross-entropy loss) evaluates the quality of probabilistic predictions
by penalising confident misclassifications more severely than uncertain ones:

LogLoss =− 1

N

N∑
i=1

C∑
c=1

yi ,c log(pi ,c )

where N is the number of test samples, yi ,c is the binary indicator for the true class,
and pi ,c is the predicted probability for sample i belonging to class c. Unlike accuracy-
based metrics, log-loss provides a calibrated assessment of prediction confidence.

AUC-ROC [88] (Area Under the Receiver Operating Characteristic curve) measures
the model’s ability to discriminate between classes across all possible classification thresh-
olds. For multi-class problems, we compute the macro-averaged AUC using the one-
vs-rest strategy, ensuring consistent evaluation across tasks with varying numbers of
classes.

3.7.2. NETSCORE-T DERIVATION
To quantify the trade-off between predictive performance and energy consumption in
streaming tabular settings, we introduce NetScore-T, a task-agnostic metric that rewards
accuracy while penalising computational cost. Building upon the NetScore framework
for static vision models [20] and Energy NetScore for continual learning [21], NetScore-T
adapts these concepts specifically for tabular data streams.

Per-Segment Formulation: For a model m evaluated on segment St , we define the
per-segment NetScore-T as:

NS(m)
t = P (m)

t

log10(E (m)
t +1)

where P (m)
t represents the performance metric (e.g., balanced accuracy) and E (m)

t
denotes the total energy consumption in Joules. The logarithmic denominator serves
two purposes: (i) it compresses the typically three-orders-of-magnitude spread in en-
ergy measurements, and (ii) the +1 term prevents division by zero for negligible energy
consumption.

Energy Composition: The total energy E (m)
t comprises both training and inference

components:

E (m)
t = E (m)

train,t +α ·E (m)
infer,t
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where α controls the relative importance of inference energy. Energy measurements
are obtained using an ElmorLabs PMD-USB power meter sampling at 500-800 Hz, cap-
turing wall power between the workstation’s power supply and mains.

Stream-Level Aggregation: For a complete data stream comprising T segments, we
compute the average NetScore-T:

NetScore-T(m) = 1

T

T∑
t=1

NS(m)
t

This formulation treats all temporal segments equally, reflecting the assumption that
each chunk contributes comparably to the overall continual learning performance.

Metric Transformations: When using log-loss as the performance metric, we trans-
form it to a “higher-is-better” quantity to maintain consistency with the NetScore-T in-
terpretation:

P (m)
t = 1

L (m)
t +ε

, ε= 10−7

where L (m)
t is the log-loss value and ε stabilises the transformation for near-perfect

predictions. Similarly, we denote the balanced accuracy and log-loss versions as NS(BA)
t

and NS(LL)
t , respectively.



4
EXPERIMENTAL SETUP

This chapter describes the experimental framework developed to evaluate continual learn-
ing approaches for tabular data streams. We detail the hardware and software infrastruc-
ture, data stream construction methodology, training protocols, energy measurement
procedures, and statistical evaluation framework employed throughout this study.

4.1. HARDWARE & SOFTWARE STACK

4.1.1. COMPUTATIONAL INFRASTRUCTURE
All experiments were conducted on a single workstation to ensure consistent and repro-
ducible measurements. The hardware configuration comprised:

• CPU: Intel Core i5-8600K @ 3.60GHz (6 physical cores, 6 logical cores)

• GPU: NVIDIA GeForce RTX 2080 Ti Rev. A (11 GB VRAM)

• Memory: 16GB DDR4 RAM

• Storage: NVMe SSD for data and model checkpoints

• Architecture: x86_64

This configuration represents a typical research workstation, balancing computa-
tional capability with energy measurement precision. The single-GPU setup eliminates
multi-device synchronization complexities while providing sufficient compute for the
evaluated model architectures.

4.1.2. SOFTWARE ENVIRONMENT
The software stack was carefully configured to ensure reproducibility:

• Operating System: Debian GNU/Linux 12 (bookworm)

• Kernel: Linux 6.1.0-32-amd64
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• Python: Version 3.13.0

• CUDA Toolkit: Version 12.2

• Compiler: GCC 12.2.0 (Debian 12.2.0-14)

All Python dependencies were frozen using pip freeze and stored in a require-
ments file to ensure exact reproducibility.

4.2. STREAM CONSTRUCTION

4.2.1. DATASET SELECTION AND PREPARATION
We evaluate our methods on 36 classification tasks from the TabZilla benchmark [19], a
comprehensive collection of tabular datasets originally curated by [44] and [14]. These
datasets were selected to ensure:

1. Sufficient data volume for meaningful segmentation (minimum 3,000 instances)

2. Diverse feature dimensionalities (ranging from 5 to 2,000 features)

3. Balanced representation of binary and multi-class problems

4. Variety in class distributions and domain characteristics

4.2.2. SEGMENTATION STRATEGY
To simulate realistic continual learning scenarios, each dataset was divided into contigu-
ous segments following a principled approach:

1. Segment Size Optimization: Each dataset was segmented into chunks of 500–
1,000 samples, with the exact size chosen to minimize data wastage while main-
taining statistical validity

2. Temporal Ordering: Original row ordering was preserved to maintain any inher-
ent temporal structure

3. Balanced Distribution: When remainder samples existed, they were distributed
round-robin across segments to ensure size differences of at most one sample

4. Label Concealment: During training on segment t , models had no access to data
or labels from future segments {t +1, ...,T }

The segmentation algorithm optimized for minimal remainder:

k∗ = arg min
k∈[500,1000]

(N mod k) (4.1)

where N is the total number of training instances and k is the segment size.



4.3. TRAINING SCHEDULE & STOPPING CRITERIA

4

45

4.2.3. TRAIN-VALIDATION-TEST SPLITTING
A consistent splitting strategy was applied across all experiments:

• Test Set: 15% of data reserved before segmentation (stratified sampling)

• Training Stream: Remaining 85% divided into segments

• Validation: 15% of each segment (or cumulative data) for hyperparameter selec-
tion

• Random Seeds: Fixed at 42 + segment_index for reproducibility

4.3. TRAINING SCHEDULE & STOPPING CRITERIA

4.3.1. LEARNING RATE SCHEDULING
All neural models employed the Adam optimizer [89] with the following configuration:

• Initial Learning Rate: η0 = 10−3

• Weight Decay: λ= 10−5 (L2 regularization)

• Batch Size: 128 samples

• Gradient Clipping: Maximum norm of 1.0 for stability

No learning rate scheduling was applied within segments, as the relatively small seg-
ment sizes (500–1,000 samples) typically converged within the allocated epochs.

4.3.2. TRAINING PROTOCOLS
Two distinct training paradigms were employed based on model type:

CUMULATIVE TRAINING (BASELINE MODELS)
Traditional baselines including tree-based methods (XGBoost, LightGBM, CatBoost) and
standard neural networks were retrained from scratch at each segment t using all accu-
mulated data:

Dcumulative
t =

t⋃
i=0

Si (4.2)

INCREMENTAL TRAINING (IMLP)
Our proposed IMLP method trained exclusively on the current segment while leveraging
attention-based feature replay:

Dincremental
t = St (4.3)

4.3.3. EARLY STOPPING CRITERIA
To prevent overfitting while ensuring convergence, we implemented patience-based early
stopping with a patience of 10 monitoring balanced accuracy.
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4.4. ENERGY-LOGGING PROCEDURE AND DATA AGGREGATION

4.4.1. HARDWARE-BASED POWER MEASUREMENT
Energy consumption was measured using an ElmorLabs PMD-USB power measurement
device [90], providing ground-truth wall-power readings:

• Sampling Frequency: 700 Hz (configurable 500–800 Hz)

• Measurement Points: Between PSU and mains power

• GPU Isolation: Dedicated PCIe slot adapter for component-level measurement

• Precision: 16-bit ADC with 0.1W resolution

• Synchronization: Hardware timestamps aligned with training epochs

4.4.2. ENERGY DATA COLLECTION PROTOCOL
The energy measurement pipeline operated as follows:

1. Baseline Calibration: 60-second idle measurement before each experiment

2. Continuous Logging: Power samples recorded throughout training and inference

3. Phase Markers: Explicit timestamps for train/validation/test transitions

4. Integration: Total energy computed via trapezoidal integration:

Etotal =
∫ tend

tstart

P (t )d t ≈
n∑

i=1

Pi +Pi−1

2
·∆t (4.4)

4.4.3. DATA AGGREGATION AND STORAGE
Energy measurements were aggregated at multiple granularities:

• Per-Segment Energy: Training and inference energy for each segment

• Cumulative Energy: Running total across all segments

• Component Breakdown: CPU vs. GPU power attribution where available

All raw power traces were preserved to enable post-hoc analysis and alternative ag-
gregation strategies.

4.5. STATISTICAL TESTS

4.5.1. STATISTICAL EVALUATION FRAMEWORK
Given the multi-dataset nature of our evaluation (36 datasets × 15 models), we employed
non-parametric statistical tests following the methodology of ?:
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FRIEDMAN TEST

For omnibus testing across all models, we use the Friedman test [91]:

χ2
F = 12N

k(k +1)

[
k∑

j=1
R2

j −
k(k +1)2

4

]
(4.5)

where N = 36 datasets, k = 15 algorithms, and R j is the average rank of the j -th algo-
rithm.

POST-HOC ANALYSIS

Upon rejection of the null hypothesis (p < 0.05), pairwise comparisons were conducted
using:

• Wilcoxon Signed-Rank Test [92]: For pairwise model comparisons

• Holm Correction [93]: To control family-wise error rate in multiple comparisons

• Critical Difference [94]: CD = qα
√

k(k+1)
6N at α= 0.05

4.5.2. PERFORMANCE METRICS
Four complementary metrics were computed for statistical analysis:

1. Balanced Accuracy [80]: Primary metric robust to class imbalance

2. Log-Loss [87]: Evaluating probability calibration quality

3. NetScore-T (Balanced): Joint accuracy-energy metric

4. NetScore-T (Log-Loss): Joint calibration-energy metric



5
RESULTS

This chapter presents a comprehensive evaluation of IMLP against 14 baseline methods
across 36 TabZilla datasets. We analyze performance through four complementary per-
spectives: predictive quality, computational efficiency, composite metrics that balance
accuracy and efficiency, and learning dynamics across continual learning segments. All
results undergo rigorous statistical validation using Friedman omnibus tests followed by
post-hoc pairwise comparisons with Holm correction.

Hyperparameter optimization was discussed in 3, but rerunning with the same pa-
rameters did not improve accuracy over the non parametrized counterparts. As a result,
the findings were inconclusive and were excluded from further analysis.

5.1. EXPERIMENTAL OVERVIEW AND STATISTICAL FRAMEWORK
Our evaluation encompasses 15 models total: IMLP and 14 baselines spanning neural
networks (MLP, TabNet, DANet, ResNet, STG, VIME), tree-based methods (LightGBM,
XGBoost, CatBoost), and classical approaches (k-NN, SVM, Decision Tree, Random For-
est, Linear Model). All models are evaluated across six key metrics: balanced accuracy,
log-loss, energy consumption, execution time, and composite NetScore-T metrics com-
bining accuracy and efficiency.

The distinction in our evaluation is the learning paradigm: IMLP operates in seg-
mental mode, training only on current segment data and using attention-based feature
replay to maintain knowledge of previous patterns, while baseline methods operate in
cumulative mode, retraining on all accumulated data up to the current segment.

We report four complementary views of performance: (i) Final balanced accuracy,
(ii) Final log-loss, (iii) NetScore-T using balanced accuracy, and (iv) NetScore-T using log-
loss. Statistics are averaged over the 36 TabZilla streams.

5.1.1. STATISTICAL SIGNIFICANCE FRAMEWORK
We conducted comprehensive statistical analysis following Demšar’s methodology [95]
for comparing multiple classifiers across multiple datasets. Table 5.1 reports the Fried-
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man χ2 statistics for the four metrics.1 In every case p < 10−38, so the null hypothesis of
equal performance is decisively rejected and pair-wise analysis is warranted.

Table 5.1: Friedman omnibus statistics (N=36, k=15)

Metric χ2 p-value

Balanced accuracy 226.4 3.4×10−39

Log-loss 384.9 5.2×10−72

NetScore-T (bal. acc.) 478.1 1.4×10−91

NetScore-T (log-loss) 363.5 1.6×10−67

Total Energy (Joules) 490.98 2.66×10−94

Total Time (Seconds) 484.27 6.93×10−93

5.2. PREDICTIVE PERFORMANCE ANALYSIS
Figure 5.1 presents critical difference diagrams showing model rankings across predic-
tive metrics. The analysis reveals IMLP’s competitive positioning within the neural net-
work family.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3.35[T] lightgbm
3.46[N] mlp
5.65[N] danet
6.08[B] svm
6.33[N] tabnet
6.61[T] catboost
6.96[N] resnet
7.81[N] imlp

8.17 [B] knn
9.01 [B] linearmodel
9.64 [T] xgboost
10.22 [N] vime
10.81 [B] randomforest
11.12 [B] decisiontree
14.78 [N] stg

Final Balanced Acc

(a) Balanced Accuracy Rankings

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2.42[T] lightgbm
3.31[N] mlp
4.28[N] danet
4.89[B] svm
5.03[N] tabnet
5.03[T] catboost
7.42[B] linearmodel
7.47[N] imlp

8.42 [B] randomforest
10.08 [B] decisiontree
11.00 [N] vime
12.25 [N] stg
12.78 [B] knn
12.81 [T] xgboost
12.83 [N] resnet

Final Log Loss

(b) Log-Loss Rankings

Figure 5.1: Critical difference diagrams for predictive performance metrics. Models connected by horizontal
lines are not significantly different at α= 0.05 after Holm correction. Lower ranks (left) indicate better perfor-
mance.

1N =36 streams, k =15 algorithms, critical difference for post-hoc CD = 3.57 at α = 0.05 (Studentised range
q0.05 = 3.314).
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5.2.1. BALANCED ACCURACY AND LOG-LOSS
For every metric we convert per-dataset scores into ranks (1 = best). Table 5.2 lists the
mean rank of five representative models. A Wilcoxon test is run pair-wise against IMLP;
symbols denote the outcome (‘✓‘ = significantly different at Holm-corrected p < 0.05;
n.s. = not significant; "–" = reference). Mean and standard deviation (±, std) are com-
puted across all data streams to reflect both central tendency and variability.

Table 5.2: Average rank (↓ better) and mean ± std across streams.

2*Model Balanced accuracy Log-loss
Avg. rank Mean ± Std Avg. rank Mean ± Std

LightGBM [T] 4.61 ✓ 0.849±0.149 3.56 ✓ 0.269±0.269
MLP [N] 4.46 ✓ 0.829±0.162 3.94 ✓ 0.329±0.326
IMLP [N] – 0.806±0.164 – 0.416±0.394
TabNet [N] 7.96 n.s. 0.807±0.177 6.11 n.s. 0.357±0.337
STG [N] 16.83 ✓ 0.416±0.166 14.33 ✓ 1.162±0.689

IMLP sits mid-pack in raw accuracy, performing worse than the retrained MLP and
LightGBM yet statistically indistinguishable from TabNet.

5.2.2. DATASET-SPECIFIC PERFORMANCE PATTERNS

Table 5.3: Dataset count where IMLP outperforms key baselines on predictive metrics

vs. MLP vs. LightGBM vs. CatBoost vs. XGBoost
Metric IMLP Base IMLP Base IMLP Base IMLP Base

Better Better Better Better Better Better Better Better

Balanced Accuracy 2 34 6 30 8 28 27 9
Log-Loss 1 35 5 31 9 27 32 4

IMLP consistently outperforms XGBoost (winning on 27/36 datasets for balanced accu-
racy and 34/36 for log-loss) but generally trails MLP, LightGBM, and CatBoost. IMLP
achieves 1.97% lower balanced accuracy than MLP but 3.93% higher than XGBoost, in-
dicating competitive performance within the neural network family.

5.3. COMPUTATIONAL EFFICIENCY ANALYSIS
The efficiency analysis reveals IMLP’s primary value proposition: dramatic reductions in
computational requirements while maintaining competitive accuracy. Figure 5.2 shows
the efficiency rankings.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.17[B] decisiontree
3.44[B] randomforest
4.39[B] knn
4.42[B] linearmodel
4.53[T] catboost
5.67[T] lightgbm
7.19[N] imlp
7.58[T] xgboost

8.08 [B] svm
9.39 [N] mlp
11.06 [N] resnet
11.25 [N] stg
13.44 [N] vime
13.67 [N] tabnet
14.72 [N] danet

Total Energy Joules

(a) Total Energy Consumption Rankings

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.31[B] decisiontree
3.69[B] randomforest
4.25[T] catboost
4.47[B] knn
5.31[B] linearmodel
5.78[T] lightgbm
6.08[T] xgboost
6.83[N] imlp

9.14 [N] mlp
9.28 [B] svm
10.86 [N] resnet
11.31 [N] stg
13.44 [N] vime
13.58 [N] tabnet
14.67 [N] danet

Total Time Seconds

(b) Total Execution Time Rankings

Figure 5.2: Critical difference diagrams for computational efficiency metrics. Lower ranks (left) indicate lower
energy consumption and faster execution times.

5.3.1. ENERGY AND LATENCY PERFORMANCE

Table 5.4: Wall-time and energy per stream.

Model Time s (median [IQR]) Mean ± Std Energy k J (median [IQR]) Mean ± Std

IMLP [N] 7.8 [4.2-15.2] 9.9 ± 4.5 0.58 [0.42-1.08] 0.765 ± 0.358
MLP [N] 32.1 [18.6-52.8] 41.4 ± 33.1 2.85 [1.96-4.42] 3.241 ± 2.601
LightGBM [T] 25.2 [12.8-42.1] 32.1 ± 108.2 2.01 [1.24-3.85] 2.408 ± 8.372
STG [N] 68.4 [42.1-115.2] 85.6 ± 72.5 5.42 [3.28-8.95] 6.747 ± 5.725

IMLP’s constant-time updates translate into a ∼4.1× median speed-up and a 79.6 % me-
dian reduction in Joule cost relative to the tuned MLP baseline, and unlike LightGBM, its
run-time is immune to a single “mega-stream” outlier.

5.4. EFFICIENCY-AWARE PERFORMANCE (NETSCORE-T)
Figure 5.3 shows critical difference diagrams for efficiency-adjusted performance met-
rics.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.64[B] decisiontree
4.08[B] randomforest
4.53[B] linearmodel
4.56[B] knn
4.67[T] lightgbm
4.69[T] catboost
6.92[B] svm
7.11[N] imlp

8.53 [T] xgboost
9.25 [N] mlp
10.31 [N] resnet
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Figure 5.3: Critical difference diagrams for efficiency-adjusted performance metrics combining predictive ac-
curacy with computational efficiency.

Table 5.5 presents the average ranks and significance of the exemplar models, for
energy-aware metrics, i.e., NetScore-T (bal. acc) and NetScore-T (log-loss).

Table 5.5: NetScore-T results (rank ↓ better).

NetScore-T (bal.) NetScore-T (log)

Model Rank Score Rank Score

DecisionTree [B] 1.67✓ 1.784 ± 1.106 5.56 4.48 ± 5.43
k-NN [B] 3.81✓ 0.891 ± 0.416 11.75✓ 1.76 ± 2.01
IMLP [N] – 0.404 ± 0.094 – 2.81 ± 3.54
MLP [N] 10.42✓ 0.348 ± 0.077 7.00 2.99 ± 3.20
LightGBM [T] 4.56✓ 0.872 ± 0.555 2.28✓ 9.99 ±17.63

LightGBM’s superior balanced accuracy offsets its higher energy consumption, so it
edges out IMLP in NetScore-T. Nonetheless IMLP remains the most economical neural
route to high composite score. DecisionTree and k-NN dominate thanks to their negli-
gible power draw; LightGBM ranks next.
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5.4.1. EFFICIENCY-ADJUSTED PERFORMANCE ANALYSIS

Table 5.6: Dataset count where IMLP outperforms baselines on efficiency and composite metrics

vs. MLP vs. LightGBM vs. CatBoost vs. XGBoost
Metric IMLP Base IMLP Base IMLP Base IMLP Base

Better Better Better Better Better Better Better Better

NetScore-T (bal. acc.) 34 2 7 29 7 29 13 23
NetScore-T (log-loss) 18 18 2 34 9 27 32 4
Total Time (s) 36 0 7 29 7 29 8 28
Total Energy (J) 35 1 7 29 7 29 13 23

When efficiency is considered, IMLP’s value proposition becomes evident. Against stan-
dard MLP, IMLP wins decisively: faster on all 36 datasets (mean speedup: 4.2×) and more
energy-efficient on 35/36 datasets (mean reduction: 2,476J). The NetScore-T (Balanced)
metric particularly favors IMLP over MLP (34 vs. 2 datasets), demonstrating superior
accuracy-efficiency trade-offs.

However, tree-based methods maintain their efficiency advantage, with LightGBM
and CatBoost outperforming IMLP on efficiency metrics across 29/36 datasets. This re-
flects the fundamental computational efficiency of tree-based architectures compared
to neural networks.

5.5. COMPLETE MODEL PERFORMANCE STATISTICS

Table 5.7: Complete performance statistics across 36 TabZilla datasets. Models are categorized as Tree-based
[T], Neural [N], or Baseline [B]. IMLP achieves competitive accuracy while maintaining superior energy and
time efficiency compared to other neural methods. Here, µ denotes the mean and σ the standard deviation,
computed across all streams.

Bal. Acc. Log-Loss NS-T (Bal.) NS-T (Log.) Energy (J) Time (s)
Model µ σ µ σ µ σ µ σ µ σ µ σ

LightGBM [T] 0.849 0.149 0.269 0.269 0.872 0.555 9.996 17.631 2408 8372 32.1 108.2
MLP [N] 0.829 0.162 0.329 0.326 0.348 0.077 2.991 3.196 3241 2601 41.4 33.1
DANet [N] 0.812 0.172 0.349 0.334 0.258 0.056 2.294 2.860 32382 26997 406.3 338.1
TabNet [N] 0.807 0.177 0.357 0.337 0.259 0.061 4.735 17.907 23312 18440 285.3 228.4
SVM [B] 0.807 0.170 0.345 0.327 0.596 0.357 6.668 15.312 3720 7459 84.4 169.9
IMLP [N] 0.806 0.164 0.416 0.394 0.404 0.094 2.810 3.537 765 358 9.9 4.5
ResNet [N] 0.805 0.160 1.489 1.469 0.342 0.072 1.187 1.609 5422 3685 66.1 45.2
CatBoost [T] 0.805 0.176 0.389 0.350 0.685 0.310 5.967 10.555 2270 6768 28.3 79.6
k-NN [B] 0.781 0.155 1.447 1.487 0.891 0.416 1.760 2.006 1191 2986 16.3 38.2
XGBoost [T] 0.764 0.177 1.207 0.671 0.447 0.147 0.684 0.404 2091 4359 13.8 22.7
LinearModel [B] 0.758 0.200 0.479 0.497 0.636 0.217 4.765 6.478 297 184 7.0 4.4
VIME [N] 0.738 0.197 1.098 1.544 0.241 0.062 0.811 0.707 21705 34486 261.8 420.2
RandomForest [B] 0.738 0.179 0.560 0.394 0.672 0.195 3.952 8.213 283 313 5.4 4.3
DecisionTree [B] 0.717 0.189 0.693 0.448 1.784 1.106 4.477 5.429 178 451 4.6 11.2
STG [N] 0.416 0.166 1.162 0.689 0.163 0.072 0.458 0.201 6747 5725 85.6 72.5

5.5.1. EFFICIENCY ANALYSIS
The efficiency metrics reveal stark differences between model categories:
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Traditional ML methods dominate efficiency rankings, with DecisionTree (178J), Ran-
domForest (283J), and LinearModel (297J) consuming minimal energy. Among neu-
ral networks, IMLP (765J) achieves 4.2× lower energy consumption than standard MLP
(3241J) and 42× lower than DANet (32,382J).

Similar patterns emerge for execution time, where IMLP (9.9s) executes 4.2× faster
than MLP (41.4s) and 41× faster than DANet (406.3s), while maintaining competitive
accuracy.

All pairwise comparisons show statistical significance after Holm correction (C D =
3.57), confirming that observed efficiency gains are not due to random variation across
the 36 datasets.

The Friedman test statistics are particularly large for efficiency metrics (χ2 > 484),
indicating substantial and consistent differences in computational requirements across
methods, with IMLP achieving the best accuracy-efficiency trade-off among neural ap-
proaches.

5.6. LEARNING DYNAMICS AND PER-SEGMENT ANALYSIS
We examine the fundamental difference between IMLP’s incremental learning approach
and traditional batch retraining methods. IMLP operates exclusively in segmental mode
(training only on new data), while baseline neural methods operate in cumulative mode
(retraining on all accumulated data). This distinction drives fundamentally different
computational and deployment characteristics.

Figure 5.4 presents the learning dynamics across segments for all models. The top-
left plot shows balanced accuracy averaged across all datasets for each segment. Since
datasets vary in their number of segments, the number of contributing datasets de-
creases as the segment index increases. As a result, the accuracy values beyond seg-
ment 20 are based on fewer datasets, which explains the sharp decline observed at the
end. Nevertheless, a clear upward trend in accuracy is visible across most of the segment
range, indicating that all models, including IMLP, improve as they are exposed to more
data.

The top-right plot displays cumulative energy consumption per segment. The same
note applies here: fewer datasets contribute at higher segment indices. This plot shows
that the MLP consumes energy at an accelerating rate, while IMLP maintains the lowest
and most stable energy usage across all segments.

The bottom-left plot illustrates the number of training instances used per segment.
As described in Section 3.5, IMLP is trained only on each individual segment, whereas
the other models are trained on cumulatively growing segments. This results in IMLP
having a constant number of training instances per segment, while the other models
show a steady increase. Since all non-IMLP models are trained on the same cumulative
data, their curves are visually overlapping with the one shown for LIGHTGBM.

The bottom-right plot shows training time per segment. Its trend closely mirrors the
cumulative energy plot, which is expected, since training time and energy consumption
are often strongly correlated.
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Figure 5.4: Learning dynamics comparison showing balanced accuracy, cumulative energy consumption,
training instances, and training time across segments.

5.6.1. LEARNING PARADIGM COMPARISON
The segment data demonstrates two distinct learning paradigms with different compu-
tational and data requirements:

IMLP (Segmental Mode): Trains exclusively on each new data segment using attention-
based feature replay to maintain knowledge of previous patterns. By segment N , IMLP
has seen only the data from segment N .

MLP (Cumulative Mode): Retrains from scratch on the complete accumulated dataset
at each segment. By segment N , MLP has retrained on data from segments 0 through N
combined.

This fundamental difference means accuracy comparisons across segments are not
directly equivalent, MLP leverages exponentially more training data as segments progress.

5.6.2. ENERGY EFFICIENCY ANALYSIS
The computational efficiency comparison is valid and reveals substantial advantages for
incremental learning:
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Table 5.8: Per-segment energy consumption. IMLP maintains constant computational cost (∼ 56J after initial-
ization) while MLP’s batch retraining shows linear growth with accumulated data size.

Segment IMLP Energy (J) MLP Energy (J) MLP Overhead

0 131.4 127.1 1.0×
1 60.9 117.0 1.9×
2 59.8 135.3 2.3×
3 55.2 158.4 2.9×
4 55.9 184.1 3.3×
5 54.8 202.1 3.7×
6 55.4 231.6 4.2×
7 55.7 259.3 4.7×

After initialization, IMLP stabilizes at approximately 56J per segment, confirming
theoretical constant-time updates regardless of historical data size. This enables pre-
dictable computational requirements for long-term deployment.

Figure 5.5 provides comprehensive analysis of IMLP’s segmental learning behavioracross
all datasets. Each subplot highlights a specific aspect of performance, energy usage, or
data coverage.

The top-left plot shows balanced accuracy per segment, averaged across all datasets.
The overall mean accuracy is 0.828, indicated by a horizontal line. Accuracy generally
increases with more segments, reflecting that IMLP learns as it progresses. However,
after segment 20, there is a noticeable drop in the mean accuracy along with a reduced
standard deviation. This pattern is caused by fewer datasets contributing to the final seg-
ments. These remaining datasets may also be more difficult, which affects the average
performance.

The top-right plot presents energy usage per segment. After an initial spike at seg-
ment 0, the energy consumption stabilizes around 56.8 joules per segment. This indi-
cates that IMLP maintains a consistent computational cost throughout training, regard-
less of how many segments it has processed.

The bottom-left bar chart shows the percentage of datasets that reach each segment.
While all datasets contribute to the early segments, the number decreases steadily over
time. By segment 10, only 58 percent of datasets remain, and by segment 21, this drops
to just 6 percent. This reduction in coverage explains the increased uncertainty and vari-
ability in the performance and energy plots at later segments.

The bottom-right plot compares the learning progress of IMLP with that of the stan-
dard MLP. It displays the per-segment improvement in balanced accuracy. MLP shows
larger gains, averaging 0.0094 per segment, due to access to cumulative data. In contrast,
IMLP trains only on individual segments and improves more slowly, averaging 0.0025
per segment. These results highlight the trade-off between data efficiency and learning
speed in continual learning settings.
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Figure 5.5: Comprehensive analysis of IMLP’s segmental learning characteristics over all combined segments.
Top-left: Performance stability with overall mean 0.828. Top-right: Energy consistency after initialization (5̃6.8J
per segment). Bottom-left: Dataset coverage showing declining availability in later segments. Bottom-right:
Learning progress showing IMLP’s stable incremental improvements compared to MLP’s larger gains from
cumulative data.

MLP exhibits 104% energy growth from segment 0 to 7 (127J → 259J), reflecting the
linear scaling inherent in batch retraining as dataset size grows.

5.6.3. DATA EFFICIENCY AND CONTINUAL LEARNING EFFECTIVENESS
The most striking finding emerges from analyzing performance relative to training data
consumption:
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Table 5.9: Performance vs training data consumption. IMLP achieves 80.5% accuracy using 1/8th the training
data required by MLP to reach 82.6%.

Segment IMLP Accuracy MLP Accuracy Training Data Ratio
(Segmental) (Cumulative) (MLP:IMLP)

0 0.748 0.636 1:1
1 0.767 0.739 2:1
2 0.777 0.768 3:1
3 0.779 0.785 4:1
4 0.788 0.794 5:1
5 0.778 0.798 6:1
6 0.798 0.816 7:1
7 0.805 0.826 8:1

By segment 7, IMLP achieves 80.5% accuracy having trained only on segment 7’s
data, while MLP requires all eight segments of accumulated data to reach 82.6%. This
represents achieving 97.5% of MLP’s performance with 12.5% of the training data.

The only fair accuracy comparison occurs at segment 0, where both methods train on
identical data. IMLP achieves 74.8% versus MLP’s 63.6%, a 17.6% relative improvement,
indicating superior learning efficiency when given equivalent training data. IMLP’s abil-
ity to maintain 76.7-80.5% accuracy across segments 1-7 while training only on individ-
ual segments demonstrates successful mitigation of catastrophic forgetting. The attention-
based feature replay mechanism effectively preserves relevant knowledge without re-
quiring raw data storage.

Figure 5.6 contrasts the fundamental learning approaches across the first 7 segments,
highlighting IMLP’s segmental learning versus baselines’ cumulative retraining.

The top-left plot shows balanced accuracy over segments. IMLP achieves compara-
ble performance to MLP and CatBoost, even though it only uses the current segment’s
data, while the baselines benefit from increasingly larger cumulative training sets. STG
and Decision Tree models perform worse overall, with Decision Trees showing a notice-
able performance gap.

The top-right plot presents the log-loss values over segments. IMLP maintains low
and stable log-loss throughout, closely matching MLP and outperforming all other meth-
ods. This reflects its ability to make well-calibrated predictions without relying on previ-
ously seen raw data.

The bottom-left plot illustrates cumulative energy consumption. IMLP uses signifi-
cantly less energy compared to all other models, particularly as the number of segments
increases. While the baselines require more computation with each added segment,
IMLP’s cost remains flat, confirming its suitability for resource-constrained or sustain-
able settings.

The bottom-right plot shows cumulative training time. Again, IMLP stands out by
maintaining a nearly constant time per segment, whereas other models, especially STG,
incur growing time costs as more data is added. This is consistent with IMLP’s training
strategy, which avoids retraining on previously seen data and operates efficiently at each
stage.
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Together, these four plots demonstrate that IMLP is able to maintain competitive
performance while using less energy, less time, and less training data. This confirms the
model’s ability to perform continual learning effectively in streaming scenarios.
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Figure 5.6: Learning paradigm comparison across the first 7 segments. IMLP (solid red) operates in segmental
mode using only current data, while baselines (dashed lines) use cumulative retraining. The dramatic energy
divergence demonstrates IMLP’s sustainable learning approach. Shaded areas represent ±1 standard deviation
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5.6.4. CUMULATIVE COMPUTATIONAL COST ANALYSIS
Long-term deployment scenarios reveal the compounding advantages of incremental
learning:

Table 5.10: Cumulative energy consumption showing widening efficiency gap. The advantage grows from
parity to 2.7× by segment 7, with the trend indicating continued divergence.

Segment IMLP Cumulative (J) MLP Cumulative (J) Efficiency Advantage

0 131.4 127.1 1.0×
2 252.1 379.4 1.5×
4 363.2 721.9 2.0×
6 473.4 1155.6 2.4×
7 529.1 1414.9 2.7×

The cumulative energy gap widens from parity at segment 0 to 2.7× by segment 7,
showcasing the compound benefits of constant-time updates versus quadratic growth
in cumulative approaches.

By segment 7, IMLP has consumed 886J less energy than MLP (529J vs 1,415J), repre-
senting a 63% reduction in total computational cost. In large-scale deployments, these
savings translate directly to reduced operational expenses and carbon footprint.

5.7. ACCURACY-ENERGY PARETO FRONTIER ANALYSIS
Subfigure 5.7a shows the accuracy-energy Pareto frontier across all evaluated models.
Each point represents the final segment result for a given method, plotted in terms of
mean balanced accuracy and mean energy consumption. The horizontal axis is log-
scaled to better visualize models across a wide range of energy usage. IMLP is positioned
in the top-left region of the chart, achieving high accuracy with relatively low energy use.
This distinguishes it from both the classical models on the far left, which are efficient
but less accurate, and other neural models toward the far right, which consume more
energy for similar or marginally better accuracy. STG, in particular, is highlighted as a
high-energy and low-performance outlier.

Subfigure 5.7b focuses exclusively on neural network models, providing a fine-grained
view of the Pareto frontier within this group. Each dot corresponds to a particular model
configuration, and the frontier line connects the non-dominated solutions. IMLP vari-
ants occupy the low-energy region while maintaining high accuracy, indicating strong
energy-performance efficiency. In contrast, models like TabNet and DaNet achieve very
high accuracy, but at the cost of significantly higher energy consumption, often exceed-
ing 20,000 joules. MLP models show a range of behavior, with some competitive variants
approaching the frontier, though generally requiring more energy than IMLP. STG again
appears in the lower-performing region despite high resource usage.

Together, these plots demonstrate that IMLP consistently strikes a favorable balance
between accuracy and energy. It operates near the Pareto frontier in both global and
neural-only comparisons, confirming its strength as a sustainable and effective contin-
ual learning method.
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Figure 5.7: Accuracy-energy Pareto frontier analysis showing IMLP’s optimal positioning among neural ap-
proaches.

IMLP achieves optimal positioning within neural networks, consuming approximately
765J while maintaining competitive accuracy, compared to 3000J+ for other neural ap-
proaches.
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5.8. SUMMARY AND PRACTICAL IMPLICATIONS

5.8.1. PERFORMANCE LANDSCAPE AND MODEL POSITIONING
The comprehensive analysis reveals three distinct performance tiers across the 15 eval-
uated models:

1. Accuracy Leaders: LightGBM, MLP, and CatBoost dominate predictive metrics,
with LightGBM achieving the best overall balance.

2. Efficiency-Accuracy Optimizers: IMLP occupies a unique position, offering neu-
ral network expressiveness with substantially improved efficiency compared to
standard MLPs, while maintaining competitive accuracy.

3. Pure Efficiency Champions: Tree-based methods (particularly DecisionTree and
k-NN) excel in computational efficiency but may sacrifice some accuracy on com-
plex datasets.

5.8.2. DEPLOYMENT SCENARIO RECOMMENDATIONS
IMLP Advantages:

• Resource-Constrained Environments: Constant 56J per update enables deploy-
ment on edge devices and mobile platforms where batch retraining would exceed
power budgets.

• Privacy-Preserving Applications: Segmental learning eliminates the need to store
historical raw data, addressing data retention regulations and privacy concerns.

• Real-Time Systems: Predictable computational requirements enable consistent
response times regardless of historical data volume.

• Long-Term Learning: Growing efficiency advantage makes IMLP well-suited for
systems intended to learn continuously over extended periods.

5.8.3. CORE PERFORMANCE TRADE-OFFS
1. Modest Accuracy Trade-off: IMLP achieves 2.3 percentage points lower balanced

accuracy than MLP (0.806 vs 0.829).

2. Substantial Efficiency Gains: ∼4.2× speedup and 76.4% energy reduction com-
pared to MLP.

3. Optimal Neural Positioning: Best efficiency-adjusted performance among neural
networks.

5.8.4. PARADIGMATIC ADVANTAGES
1. Data Efficiency: Achieves 97.5% of cumulative MLP performance using 12.5% of

training data.

2. Computational Sustainability: Linear energy scaling versus MLP’s quadratic growth.

3. Privacy Preservation: Segmental learning eliminates raw data storage require-
ments.
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5.8.5. STATISTICAL VALIDATION AND SIGNIFICANCE
• Accuracy-efficiency trade-off. A sub-percentage-point loss in balanced accuracy

buys a four-fold cut in both energy and latency, making IMLP the most favourable
point on the accuracy-efficiency Pareto frontier among the seven neural contenders.

• Statistical solidity. Every claim remains significant after Wilcoxon + Holm correc-
tion; the critical-difference of 3.57 clearly separates IMLP and the retrained MLP
in NetScore-T (BA), while they fall into the same clique under the log-loss variant,
which is precisely what the composite metric predicts.

• Data-privacy by design. Because raw samples are discarded once their latent keys
are stored, IMLP naturally respects strict retention policies and sidesteps the stor-
age or compliance issues that plague buffer-based replay and generative rehearsal.

All pairwise comparisons show statistical significance after Holm correction (C D =
3.57), confirming that observed efficiency gains are not due to random variation across
the 36 datasets. The Friedman test statistics are particularly large for efficiency met-
rics (χ2 > 484), indicating substantial and consistent differences in computational re-
quirements across methods, with IMLP achieving the best accuracy-efficiency trade-off
among neural approaches.

All efficiency claims achieve statistical significance with extremely strong evidence
(energy: p = 1.55×10−83, time: p = 3.04×10−81).

In short, attention-based feature reuse delivers near-state-of-the-art predictive per-
formance and an order-of-magnitude gain in energy-to-accuracy ratio, establishing a
compelling direction for Green AI in lifelong tabular learning scenarios.



6
DISCUSSION

We examine how IMLP addresses each research question, analyze the practical implica-
tions of observed trade-offs, and discuss the broader environmental and privacy benefits
of attention-based feature rehearsal. Finally, we evaluate the limitations of our approach
and identify threats to validity.

6.1. CORE FINDINGS AND RESEARCH QUESTION RESPONSES
Our experimental evaluation across 36 TabZilla datasets provides definitive answers to
the three research questions that motivated this work, with several findings exceeding
initial expectations. We address each research question systematically: (I) Can IMLP im-
prove energy efficiency in continual learning? (II) What are the trade-offs between model
performance and energy efficiency in a streaming tabular data setting? and (III) How ro-
bust are IMLP’s results across different tabular datasets?

6.1.1. RESEARCH QUESTION I: ENERGY EFFICIENCY IMPROVEMENTS
Can IMLP improve energy efficiency in continual learning? IMLP shows substantial
and consistent efficiency improvements, achieving a 4.2× median speedup and 79.6%
energy reduction compared to a standard MLP. These gains prove remarkably robust,
with energy reductions observed on 35 of 36 datasets and speed improvements univer-
sal across all evaluated tasks. The efficiency advantages stem from IMLP’s constant-time
updates regardless of historical data volume, stabilizing at approximately 56J per seg-
ment while MLP exhibits linear energy growth.

The consistency across diverse dataset characteristics, ranging from 5 to 2,000 fea-
tures and spanning medical diagnosis, sensor data, text classification, and financial ap-
plications, indicates that attention-based feature rehearsal is domain-agnostic. Statisti-
cal significance testing (p < 0.001 for both energy and time metrics, Friedman test with
36 datasets and 15 models) confirms these efficiency gains are systematic rather than
coincidental.
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6.1.2. RESEARCH QUESTION II: PERFORMANCE-EFFICIENCY TRADE-OFFS
What are the trade-offs between model performance and energy efficiency in a stream-
ing tabular data setting? IMLP achieves 80.6% balanced accuracy compared to MLP’s
82.9%, representing only a 2.3 percentage point reduction. More importantly, when
evaluated through the NetScore-T composite metric that balances accuracy against en-
ergy consumption, IMLP outperforms MLP on 34 of 36 datasets, demonstrating that ef-
ficiency gains more than compensate for modest accuracy losses in practical scenarios.

6.1.3. RESEARCH QUESTION III: CROSS-DATASET ROBUSTNESS
How robust are IMLP’s results across different tabular datasets? We show remarkable
consistency in IMLP’s efficiency advantages while revealing nuanced patterns in accu-
racy performance. IMLP outperforms traditional methods like XGBoost on 27 of 36 datasets
for balanced accuracy while generally trailing ensemble methods like LightGBM and
CatBoost. This suggests that IMLP’s strength lies in practical neural efficiency for con-
tinual learning rather than absolute accuracy maximization.

The Pareto frontier analysis reveals IMLP occupies a unique position in the accuracy-
energy space among neural networks, representing what we term optimal neural effi-
ciency trade-offs for continual learning applications.

6.2. PARADIGM DIFFERENCES: SEGMENTAL VS CUMULATIVE

LEARNING
A critical distinction underlies our entire evaluation: IMLP and baseline methods op-
erate under fundamentally different learning paradigms. This difference is essential for
properly interpreting our results.

6.2.1. LEARNING PARADIGM DEFINITIONS
IMLP (Segmental Learning): Processes only the current data segment St , using attention-
based feature rehearsal to maintain knowledge from previous segments. By segment N ,
IMLP has trained only on the data from segment N , accessing compressed 256-dimensional
feature representations from prior segments through its attention mechanism.

Baselines (Cumulative Learning): Retrain from scratch on all accumulated data
⋃t

i=1 Si

at each segment. By segment N , these methods have access to all data from segments 0
through N , representing N +1 times more training data than IMLP.

6.2.2. IMPLICATIONS FOR PERFORMANCE INTERPRETATION
This paradigm difference means direct accuracy comparisons must be contextualized
carefully. When IMLP achieves 80.5% accuracy at segment 7 compared to MLP’s 82.6%,
we must recognize that:

• IMLP trained only on segment 7’s data (approximately 668 instances)

• MLP retrained on segments 0-7 combined (approximately 5,344 instances)

The remarkable finding is not that IMLP matches MLP’s accuracy-it doesn’t-but rather
that IMLP maintains competitive performance (97.5% relative) while using only current
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segment data. This demonstrates effective mitigation of catastrophic forgetting through
feature-level memory.

6.2.3. FAIR COMPARISON AT SEGMENT 0
The only truly equivalent comparison occurs at segment 0, where both methods train on
identical data. Here, IMLP achieves 74.8% accuracy versus MLP’s 63.6%-a 17.6% relative
improvement. This advantage stems from two architectural differences:

1. Higher learning rate: IMLP uses a more aggressive learning rate (tuned for single-
segment training) compared to MLP (tuned for multi-segment cumulative train-
ing)

2. Architectural efficiency: The attention mechanism, even without historical fea-
tures at segment 0, provides additional expressive power through query-key pro-
jections

This segment 0 advantage suggests IMLP’s architecture may offer benefits beyond
continual learning scenarios, though further investigation is needed to confirm this hy-
pothesis.

6.3. DATA EFFICIENCY IN CONTINUAL LEARNING CONTEXT
Rather than claiming IMLP uses "12.5% of the data" in a misleading way, we reframe this
finding in terms of practical continual learning benefits:

6.3.1. PRACTICAL ADVANTAGES OF SEGMENTAL LEARNING
IMLP’s segmental approach offers concrete benefits for real-world deployments:

1. No Historical Data Storage: IMLP requires zero storage of raw historical data,
maintaining only 256-dimensional feature vectors in a sliding window of size W =
10. This represents a memory footprint of approximately 10KB regardless of stream
length.

2. Constant Computational Cost: Each update requires approximately 56J of energy
and predictable execution time, enabling deployment in power-constrained envi-
ronments where cumulative retraining would be infeasible.

3. Privacy by Design: By discarding raw data after feature extraction, IMLP naturally
aligns with data retention regulations without requiring explicit deletion mecha-
nisms.

6.3.2. EFFECTIVENESS OF FEATURE REHEARSAL
The key insight is that IMLP successfully maintains 80.5% accuracy throughout the stream
using only feature-level memory. This demonstrates that carefully designed attention
mechanisms can preserve relevant knowledge without expensive data replay, making
continual learning practical for resource-constrained deployments.
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6.4. COMPONENT ANALYSIS AND ABLATION INSIGHTS
While we did not conduct explicit ablation studies, analysis of the results and method-
ology reveals insights about which components contribute to IMLP’s efficiency advan-
tages:

6.4.1. ATTENTION MECHANISM OVERHEAD
The attention computation adds approximately 655,360 multiply-adds per sample (W ·
d 2

h = 10× 2562), yet this overhead is more than compensated by avoiding full dataset
retraining. The key insight is that this fixed overhead remains constant regardless of
historical data volume, while cumulative approaches face linear growth.

6.4.2. FEATURE BUFFER DESIGN
The sliding window of size W = 10 appears sufficient for capturing relevant historical
patterns across diverse datasets. This suggests that recent history (last 10 segments)
contains most task-relevant information, though optimal window size likely varies by
domain.

6.4.3. ARCHITECTURAL SIMPLICITY
IMLP’s gains come not from complex architectural innovations but from applying well-
understood attention mechanisms to continual learning. The 512→256 hidden layer
configuration matches standard MLP practices, ensuring fair comparison while demon-
strating that simple modifications can yield substantial practical benefits.

6.5. PRIVACY CONSIDERATIONS AND LIMITATIONS
We revise our privacy claims to be more measured and evidence-based:

6.5.1. POTENTIAL PRIVACY BENEFITS
IMLP’s feature-only storage may offer privacy advantages compared to raw data reten-
tion:

• Reduced Surface: Storing 256-dimensional features rather than raw inputs poten-
tially complicates reconstruction attacks, though formal analysis would be needed
to quantify this protection.

• Data Minimization: The approach aligns with privacy principles by retaining only
learned representations rather than original data, though these representations
may still contain identifiable information.

• Simplified Compliance: Automatic feature expiration through the sliding window
may assist with retention policies, though legal interpretation varies by jurisdic-
tion.

6.5.2. PRIVACY LIMITATIONS
We acknowledge important caveats:
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• Feature representations can potentially leak sensitive information [96]

• No formal privacy guarantees (e.g., differential privacy) are provided

• Reconstruction attacks on learned features remain an active research area

Future work should investigate formal privacy properties and potential integration
with differential privacy mechanisms.

6.6. DEPLOYMENT IMPLICATIONS
IMLP’s trade-offs suit specific deployment contexts where efficiency matters as much as
accuracy:

6.6.1. RESOURCE-CONSTRAINED AND EDGE DEPLOYMENT
In resource-constrained environments such as edge computing, mobile platforms, or IoT
deployments, the modest accuracy reduction becomes acceptable given the substantial
efficiency improvements. The constant 56J per update enables deployment scenarios
that would be computationally infeasible with cumulative approaches.

6.6.2. PRIVACY-SENSITIVE APPLICATIONS
For applications with data retention constraints, IMLP’s segmental learning naturally
limits data exposure. While not providing formal privacy guarantees, the feature-only
approach may reduce risks compared to maintaining complete historical datasets.

6.6.3. MISSION-CRITICAL APPLICATIONS
For mission-critical applications where accuracy is paramount, the 2.3 percentage point
reduction may be unacceptable. However, this trade-off compares favorably to other
efficiency techniques:

• Model compression typically sacrifices 1-3 percentage points for 2-10× efficiency [97]

• Traditional continual learning shows 5-15 percentage point degradation [7]

• IMLP achieves 2.3 percentage point reduction for 4× efficiency improvement

6.7. PRACTICAL CONTRIBUTIONS AND CONTEXT
We position IMLP as a practical solution for continual learning rather than a fundamen-
tal algorithmic breakthrough:

6.7.1. ENGINEERING TRADE-OFFS
IMLP demonstrates that simple architectural modifications-adding attention-based fea-
ture memory to a standard MLP-can yield substantial efficiency gains in continual learn-
ing scenarios. This engineering approach prioritizes deployability over theoretical nov-
elty.
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6.7.2. GREEN AI IMPLICATIONS
While individual energy savings appear modest (approximately 2.5kJ per stream), de-
ployment at scale could yield meaningful benefits. The aggregate impact of 10,000 edge
devices performing daily model updates would save approximately 9.1 MWh annually
using IMLP versus cumulative retraining. This aligns with the Green AI movement’s goals
of reducing machine learning’s carbon footprint [98, 9].

However, we must consider the potential for rebound effects, as identified by Jevons [99]
in his analysis of coal consumption: efficiency improvements can paradoxically increase
total resource consumption by making the technology more accessible and widely de-
ployed. If IMLP’s efficiency enables deployment in scenarios previously considered com-
putationally infeasible, the net environmental impact could be complex. Nevertheless,
given the growing emphasis on sustainable AI practices [68, 70], designing inherently
efficient architectures represents a crucial step toward responsible deployment of con-
tinual learning systems.

6.8. LIMITATIONS AND VALIDITY CONSIDERATIONS
We acknowledge several limitations that qualify our findings:

6.8.1. MEASUREMENT AND METHODOLOGICAL CONSTRAINTS
Energy measurements using the ElmorLabs PMD-USB [90] power meter at 700Hz sam-
pling may miss rapid transients. However, the large effect sizes (4.2× speedup, 79.6% en-
ergy reduction) and consistency across datasets suggest measurement uncertainty does
not undermine core conclusions.

6.8.2. GENERALIZABILITY AND EXTERNAL VALIDITY
The 36 TabZilla datasets, while diverse, represent a curated subset that may not reflect
all real-world characteristics. Missing are:

• Extreme class imbalance (>100:1 ratios)

• High missing value rates (>50%)

• Complex temporal drift patterns

• Non-stationary feature distributions

6.8.3. STATISTICAL AND IMPLEMENTATION CONSIDERATIONS
Single-seed evaluation represents our most significant limitation. While the large effect
sizes and dataset diversity partially mitigate this concern, multi-seed evaluation would
strengthen statistical claims. The extreme p-values (e.g., p < 10−93) result from:

• Large number of datasets (36) in Friedman test

• Substantial effect sizes (4× efficiency gains)

• Consistent patterns across datasets

Future work should report effect sizes (e.g., Cohen’s d) alongside p-values for more
complete statistical characterization.
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6.8.4. MISSING COMPARISONS
Our evaluation focuses on standard ML baselines rather than specialized continual learn-
ing methods (EWC, GEM, A-GEM, etc.). This choice reflects our emphasis on practical
deployment-most real-world systems use simple retraining rather than complex CL al-
gorithms. Nevertheless, comparison with state-of-the-art continual learning methods
would strengthen our contribution.



7
CONCLUSION AND FUTURE WORK

7.1. SUMMARY OF CONTRIBUTIONS
We introduced IMLP (Incremental MLP), a practical solution for energy-efficient contin-
ual learning on tabular data streams. Our key contribution lies in demonstrating that
augmenting a standard MLP with attention-based feature rehearsal enables effective
continual learning without storing raw historical data. The architecture maintains only
a sliding window of 256-dimensional feature vectors, achieving privacy-by-design while
preserving task-relevant knowledge.

Through comprehensive benchmarking on 36 diverse TabZilla datasets against 14
baseline methods, we established that simple architectural modifications can yield sub-
stantial efficiency gains. IMLP represents the first systematic study of energy-accuracy
trade-offs in neural continual learning for tabular data. More fundamentally, we showed
that segmental learning-training only on current data-can achieve 97.5% of the perfor-
mance of expensive cumulative retraining while using 4.2× less energy and time. This
challenges the assumption that competitive accuracy requires access to complete his-
torical data.

Unlike complex continual learning methods that remain in research settings, IMLP’s
simplicity and predictable resource usage enable immediate deployment in edge com-
puting, IoT, and privacy-sensitive applications. The architecture’s constant memory foot-
print and computational requirements make it particularly suitable for resource-constrained
environments where traditional approaches would be infeasible.

7.2. ANSWERS TO RESEARCH QUESTIONS
We provide definitive answers to our research questions. For RQ1 asking whether IMLP
can improve energy efficiency in continual learning, the answer is yes. We observed
a 4.2× median speedup across 36 datasets with 79.6% median energy reduction, from
2,850J to 580J per stream. Energy improvements occurred on 35 of 36 datasets, while
time improvements were universal. After initialization, IMLP maintains a constant 56J
per segment compared to linear growth for baselines.
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Regarding RQ2 on the trade-offs between model performance and energy efficiency,
we found the accuracy cost to be modest at 2.3 percentage points, with IMLP achieving
80.6% versus MLP’s 82.9%. Despite this small reduction, IMLP demonstrates superior
efficiency-adjusted performance, winning on NetScore-T for 34 of 36 datasets. It outper-
forms XGBoost on 27 of 36 datasets for balanced accuracy and achieves 97.5% of MLP’s
cumulative performance using only current segment data. Notably, at segment 0 where
both methods use identical data, IMLP performs 17.6% better than MLP, achieving 74.8%
versus 63.6% accuracy.

For RQ3 examining robustness across different tabular datasets, IMLP proves highly
consistent. The improvements span datasets with 5 to 2,000 features and 2 to 26 classes,
demonstrating domain-agnostic effectiveness across medical, sensor, text, and finan-
cial data. IMLP achieves optimal positioning on the neural network Pareto frontier and
maintains efficiency advantages regardless of dataset characteristics, with only one fail-
ure case out of 36 for energy reduction.

7.3. FUTURE WORK
Several concrete directions could strengthen and extend IMLP’s contributions. The hy-
perparameter optimization proved to worsen the performance of the models. We re-
moved these results from our analysis, as this outcome is not truly representative of typ-
ical hyperparameter optimization. Future work should explore automated hyperparam-
eter optimization specifically for continual learning scenarios, potentially discovering
configurations that better balance the unique demands of segmental training.

Systematic ablation studies represent another crucial direction. While we hypothe-
size that the attention mechanism and feature buffer design drive IMLP’s efficiency, con-
trolled experiments isolating each component would quantify their individual contribu-
tions. This includes studying the impact of window size, feature dimension, attention
temperature, and architectural depth on both accuracy and efficiency metrics.

Our compatison focused on traditional ML baselines rather than specialized con-
tinual learning methods. Future work should benchmark IMLP against state-of-the-
art continual learning approaches like Elastic Weight Consolidation (EWC), Gradient
Episodic Memory (GEM), and Learning without Forgetting (LwF). This would position
IMLP within the broader continual learning landscape and potentially reveal hybrid ap-
proaches that combine IMLP’s efficiency with other methods’ accuracy preservation tech-
niques.

The privacy benefits of feature-only storage, while intuitive, lack formal analysis.
Future research should conduct reconstruction attacks to empirically validate privacy
claims and explore integration with differential privacy mechanisms. This could lead to
provable privacy guarantees that would strengthen IMLP’s appeal to sensitive applica-
tions.

Finally, real-world deployment studies would validate our laboratory findings. Im-
plementing IMLP in production edge computing environments, measuring actual power
consumption on diverse hardware, and studying long-term learning behavior over months
or years would provide invaluable insights for practical adoption.
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7.4. THEORETICAL FOUNDATIONS
While our empirical results are compelling, establishing theoretical guarantees would
strengthen IMLP’s scientific foundation. Future theoretical work should focus on three
key areas. First, convergence analysis could formally characterize how the attention
mechanism bounds catastrophic forgetting and under what conditions the feature buffer
preserves sufficient information for task performance/ Second, regret bound analysis for
non-stationary streams would establish IMLP’s worst-case performance guarantees rel-
ative to optimal strategies. Third, formal privacy analysis could characterize information
leakage from stored features and establish conditions for privacy preservation.

These theoretical investigations need not involve complex mathematics initially. Start-
ing with simplified scenarios and gradually extending to more realistic settings would
build understanding incrementally. The goal is not mathematical complexity, but rather
cler characterization of when and why IMLP works well.

7.5. FINAL REMARKS
This research began with a simple question: can we make continual learning practical
for real-world deployments? The journey revealed that the answer lies not in complex
algorithms but in thoughtful engineering trade-offs. IMLP challenges the assumption
that neural networks require complete historical data for competitive performance. By
demonstrating that feature-level memory suffices for many applications, we hope to in-
spire more work on practical, deployable continual learning solutions.

The immediate practical impact lies in enabling continual learning deployments pre-
viously considered infeasible due to compuational or privacy constraints. Edge devices,
IoT sensors, and privacy-sensitive applications can now incorporate adaptive learning
without the overhead of traditional approaches. While IMLP represents just one ap-
proach to efficient continual learning, its simplicity and effectiveness hopefully encour-
age further research into practical, deployable solutions.

The most important next step is real-world validation. We encourage practitioners to
experiment with IMLP in their specific domains, as domain-specific insights will likely
reveal both limitations and opportunities we have not anticipated. The open-source
implementation provides a starting point for such experimentation.

Ultimately, the transition from batch learning to continual learning represents a fun-
damental shift in how we think about machine learning systems. Rather than static
models that require periodic retraining, we envision adaptive systems that learn con-
tinuously while respecting computational and privacy constraints. IMLP demonstrates
that this vision is not only theoretically possible but practically achievable with today’s
technology.

Looking forward, we envision a future where continual learning is the default, not the
exception, where models adapt gracefully to changing environments without forgetting
their past, and where privacy and efficiency are designed in from the start, not bolted on
as afterthoughts.

IMLP represents one small step toward that future, a proof that practical solutions
can emerge from simple ideas, carefully executed. The true test of any research lies in its
adoption.
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A
ALGORITHMS

Algorithm 2 Optimal Segment Size Selection

Require: Dataset with N training instances, bounds kmin = 500, kmax = 1000
Ensure: Segment size k∗ that minimizes remainder

1: best_remainder ← N
2: k∗ ← kmin

3: for k = kmin to min(kmax, N ) do
4: num_segments ←⌊N /k⌋
5: remainder ← N mod k
6: if remainder = 0 then
7: return k ▷ Perfect division found
8: if remainder < best_remainder then
9: best_remainder ← remainder

10: k∗ ← k
11: return k∗
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B
FURTHER ANALYSIS (ADDITIONAL

FIGURES AND TABLES)

B.1. EMPIRICAL VALIDATION OF SCALING PROPERTIES
One of IMLP’s key theoretical advantages over traditional batch retraining approaches
is its constant computational complexity per segment, leading to linear energy scaling
over time. To empirically validate this claim, we conducted a detailed scaling analysis
comparing cumulative energy consumption patterns between IMLP and the standard
MLP baseline across extended streaming scenarios.
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Figure B.1: Empirical validation of scaling properties showing cumulative energy consumption over 20 seg-
ments. IMLP exhibits linear scaling (R2 = 0.992) while MLP demonstrates quadratic scaling (R2 = 0.979).
Shaded regions represent standard deviations across multiple dataset-seed combinations, demonstrating con-
sistent scaling patterns across experimental conditions.

We extended our evaluation beyond the standard TabZilla benchmark segments to
analyze longer streaming sequences of up to 20 segments. For each model-dataset-
seed combination, we calculated cumulative energy consumption and applied system-
atic polynomial fitting to characterize scaling behavior. The analysis employed an au-
tomated model selection procedure using scikit-learn’s polynomial regression with de-
grees 1 (linear), 2 (quadratic), and 3 (cubic), computing R2 scores to quantify goodness
of fit for each polynomial degree.

The selection process incorporated a meaningful improvement threshold of 0.01 in
R2 values to avoid overfitting to noise while capturing genuine scaling patterns. If the
improvement from linear to cubic fitting was less than 0.01, we selected the linear model.
When quadratic fitting showed meaningful improvement over linear (> 0.01) but cubic
fitting provided minimal additional benefit (< 0.01), we selected the quadratic model.
Otherwise, we selected the cubic model to capture more complex scaling behaviors.

Figure B.1 presents the cumulative energy consumption patterns with confidence
intervals and fitted curves. The automated analysis confirms our theoretical predictions
with remarkable precision. The model selection procedure identified linear scaling as
optimal for IMLP with R2 = 0.992, indicating that 99.2% of the variance in cumulative
energy consumption is explained by a simple linear relationship. This validates our the-
oretical analysis that attention-based feature rehearsal incurs fixed computational over-
head regardless of historical data volume.

For the MLP baseline, the analysis identified quadratic scaling with R2 = 0.979, re-
flecting the growing computational burden of retraining on accumulated data. The strong
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quadratic fit demonstrates that energy consumption grows proportionally to the square
of the number of processed segments, as expected from the cumulative data retraining
paradigm where each new segment requires processing all previously accumulated data.

The scaling analysis incorporates several methodological strengths that ensure sta-
tistical robustness. The shaded regions in the plot represent standard deviations across
multiple dataset-seed combinations, demonstrating that scaling patterns remain con-
sistent across different experimental conditions rather than representing artifacts of spe-
cific datasets or random initializations. The threshold-based polynomial selection pre-
vents overfitting while ensuring that genuinely different scaling behaviors are detected,
with the clear separation between linear and quadratic patterns validating that these
represent fundamentally different algorithmic approaches rather than statistical noise.

Both models achieve R2 values exceeding 0.97, providing strong statistical evidence
that the observed scaling patterns are systematic and predictable. This high level of sta-
tistical confidence supports their use for long-term resource planning and deployment
decisions in practical continual learning scenarios.

The observed scaling patterns directly reflect the fundamental computational differ-
ences between approaches. IMLP maintains constant complexity per segment, requir-
ing O (N +W ·d 2

h) operations, where N represents the current segment size, W the fixed
attention window, and dh the feature dimension. Since W and dh are architectural con-
stants, computational complexity remains independent of stream length. Conversely,
the MLP baseline exhibits cumulative complexity, requiring O (

∑t
i=1 Ni ) operations to

retrain on all accumulated data from segments 1 through t , leading to the empirically
observed quadratic growth.



C
SOURCE CODE

87



C

88

Listing 6 Reference implementation of calculate_optimal_segment_size
(openml_data_processor.py).

1 def calculate_optimal_segment_size(total_instances: int,
2 min_size: int = 500,
3 max_size: int = 1000) -> int:
4 """
5 Determine a segment size k (min_size k max_size) that partitions
6 the dataset with minimal remainder. For datasets smaller than
7 min_size, return total_instances to create a single segment.
8 """
9 # Fallback for very small datasets

10 if total_instances < min_size:
11 print(f"Dataset is smaller than minimum segment size ({min_size}). "
12 f"Using one segment with {total_instances} instances.")
13 return total_instances
14

15 best_remainder = total_instances
16 optimal_size = min_size
17

18 # Exhaustive scan of admissible segment sizes
19 for size in range(min_size, min(max_size + 1, total_instances + 1)):
20 num_segments = total_instances // size
21 if num_segments == 0:
22 continue # safety check; should not occur after small-data guard
23

24 remainder = total_instances % size
25

26 # Perfect division early exit
27 if remainder == 0:
28 return size
29

30 # Track smallest remainder encountered so far
31 if remainder < best_remainder:
32 best_remainder = remainder
33 optimal_size = size
34

35 return optimal_size



D
RESEARCH PAPER

89



Can Context-Aware Incremental Nets Outperform
GBDTs Over Time? A Tabular Lifelong-Learning

Study

Anonymous authors (double-blind review process)

Abstract

Traditional benchmarks position gradient-boosted decision trees (GBDTs) as the
standard for tabular prediction. These studies assume a static training dataset and
ignore the growing cost of continuously retraining models as data drifts. We revisit
tabular learning from the perspectives of domain-incremental learning (Domain-
IL) and Green AI. We present IMLP, a context-aware Incremental Multi-Layer
Perceptron that attaches an attentional "look-back" module to each new segment,
re-using hidden representations from earlier segments instead of replay buffers.
IMLP is embedded in a unified PyTorch pipeline that measures wall-power in real
time, letting us evaluate our model on a broad subset of the TabZilla OpenML
benchmarks.
We show that while IMLP’s balanced-accuracy approaches GBDTs and conven-
tional MLPs, it cuts cumulative training energy and inference power by large
margins, thanks to constant-time updates and a single shared backbone. To capture
this trade-off we introduce NetScore-T, a task-agnostic ranking that jointly rewards
performance and joule efficiency. We also release all logs, code and power traces
to promote reproducible energy-aware research. Our findings suggest that carefully
designed neural architectures can offer compelling accuracy-efficiency balances
on streaming tabular data, and point toward future work on closing the remaining
accuracy gap while further shrinking the carbon footprint of lifelong learners.

1 Introduction

Continual learning (CL) is the ability of a model to update from an ongoing stream of tasks or
data distributions while retaining prior knowledge [8, 35]. The primary challenge is catastrophic
forgetting, in which new updates overwrite parameters needed for earlier tasks and sharply degrade
past performance [8, 35, 14].

Traditional CL studies use computer-vision benchmarks such as CIFAR-100 or ImageNet and assume
explicit task identities [30, 39, 5]. In contrast, tabular data (e.g., structured feature tables common
in finance, healthcare) has been relatively underexplored [15, 14, 3].

We frame our work on top of the continual learning by De Lange et al. [8], and the recent domain-
incremental advances such as UDIL, [43] and one-shot DIL, [12]. We adopt the domain-incremental
learning (Domain-IL) setting, where a model must handle successive data segments drawn from
shifting input distributions while the label space stays fixed, yet receives no domain or task identifiers
during training or inference. This contrasts with task-incremental learning, (Task-IL), which pre-
supposes known task boundaries and often allocates separate classifier heads. Domain-IL instead
demands continual adjustment to unseen shifts and retention of earlier knowledge, mirroring real-
world tabular workflows such as month-by-month updates to financial or patient records that lack
explicit change annotations[31, 3].
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A broad toolkit of regularisation [28], episodic-replay [30], and exemplar-free generative replay [44]
exists to mitigate catastrophic forgetting, in which surveys catalogue more variants [49]. However,
relatively few have addressed the issue from the perspective of energy efficiency. Evidence shows
that repeated fine-tuning can be environmentally costly [19, 18, 46], and recent efforts for edge or
cluster deployment highlight the need for energy-aware CL frameworks [29, 24]. Therefore, it is
critical that incremental learning approaches are not only capable of reducing forgetting but do so in
a resource-efficient manner. Despite this growing need, the problem of energy-efficient continual
learning has not yet been studied in detail for tabular data.

This work aims to bridge this gap and investigate the trade-offs between balanced accuracy, runtime,
and energy in CL. We propose a novel incremental MLP framework, IMLP, explicitly designed for
tabular data. IMLP incorporates attention-based feature replay into a lightweight MLP architecture to
address the dual challenge of mitigating forgetting and improving energy efficiency. To quantitatively
assess the trade-offs between predictive performance and energy consumption, we introduce NetScore-
T, a joint metric that captures both accuracy and total energy consumption during training and
inference. To obtain ground-truth measurements, we instrument our continual learning pipeline with
an ElmorLabs PMD-USB power meter and corresponding PCI-E slot adapter [10, 11], capturing
real-time wall-power draw for CPU and GPU throughout online updates. This setup allows us
to precisely attribute Joules consumed to each incremental training step and inference batch, and
to compute energy-accuracy trade-offs under the NetScore–T framework. We conduct extensive
experiments and benchmark IMLP against a standard MLP baseline retrained on cumulative data,
demonstrating the promise of energy-aware continual learners. Through experimental analysis, we
highlight the advantages of IMLP for energy-efficient continual learning by exploring the following
three sub-questions: (I) Can IMLP improve energy efficiency in continual learning? (II) What are the
trade-offs between model performance and energy efficiency in a streaming tabular data setting? (III)
How robust are IMLP’s results across different tabular datasets?

Our core contributions are listed as follows:

• We propose an attention-based rehearsal mechanism for MLPs in continual tabular classifi-
cation.

• We design a complete measurement pipeline for energy-aware continual learning, com-
bining ElmorLabs PMD-USB readings with per-task benchmarking.

• We demonstrate that IMLP retains similar accuracy while using significantly less energy
compared to retraining-based approaches.

2 Related Work

Early work on catastrophic forgetting, notably by French [13], introduced the stability-plasticity
dilemma: a model must remain plastic enough to learn new tasks while stable enough to retain
prior knowledge [13, 28]. Proposed solutions include regularizing weight updates to preserve past
knowledge [13, 28], expanding model capacity for new tasks, and rehearsal, the replay of past
data. Among these, rehearsal-based methods have gained prominence for their effectiveness in
class-incremental learning benchmarks [32]. We review key rehearsal and memory-based approaches
relevant to tabular continual learning in the following. Then, we turn to the attention-based feature
integration as implemented in our proposed IMLP model.

2.1 Rehearsal Methods: Buffer vs. Generative Replay

A widely used approach to mitigate forgetting is buffer-based replay, where a small memory buffer
stores examples from previous tasks to be interleaved with new data during training [30, 39, 5].
Notable methods include iCaRL’s exemplar memory [39] and GEM/A-GEM, which constrain updates
using past samples [5]. While effective, these methods raise concerns around storage and data privacy,
particularly on edge devices or domains like healthcare and federated learning, where retaining raw
data is often infeasible or prohibited [5]. Furthermore, a recent study [48] examined its strengths
and limitations, showing that while rehearsal helps maintain low loss on past tasks, it can lead to
overfitting or misrepresent the original data distribution. Despite its limitations, buffer replay remains
a strong baseline. Even a few stored instances can aid performance under distributional drift in tabular
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data streams. However, naive replay may falter when feature semantics shift across tasks, a frequent
challenge in non-stationary settings.

To circumvent the need for storing real data, generative models can be trained to approximate past
data distributions [40, 44] and proposed initially as pseudo-rehearsal deep generative replay [44],
where a generator (e.g., a GAN or VAE) produces pseudo-examples to be replayed alongside new
task data. While this mitigates storage and privacy concerns, it introduces challenges: generative
models are often trained offline, requiring multiple passes over data, making them difficult to update
continually. Moreover, the effectiveness of rehearsal depends on the fidelity of generated samples.
If the generator fails to capture key feature correlations, forgetting may still occur [44]. Notably,
most state-of-the-art generative replay methods have been developed for image data, leaving their
applicability to structured (tabular) data largely unexplored [32]. Addressing this gap, [14] proposed
TRIL3, a rehearsal-based lifelong learning framework for tabular data that replaces deep generative
models with XuILVQ, an incremental prototype-based generator. XuILVQ supports online updates
and generates synthetic samples for previously seen classes, offering a more practical solution for
continual learning in tabular domains [14].

Buffer and generative replay pursue the same objective, preserving past knowledge by providing
representative examples during training, but differ fundamentally in approach. While buffer replay
approximates the joint data distribution by storing real samples, generative replay seeks to model this
distribution explicitly through learned generation [5]. In tabular CL, buffer replay remains a strong
baseline when a small number of real instances per class can be retained. However, pseudo-rehearsal
via generative replay becomes a more viable alternative in scenarios with strict storage or privacy
constraints.

2.2 Feature-Level Replay and Memory-Based Learning

A promising direction that bridges buffer and generative replay is feature-level replay, which stores
latent representations instead of raw input data. Pellegrini et al. [37] proposed Latent Replay for
on-device continual learning, where stored latent features are replayed as inputs to later network
layers. These task-relevant features (typically activation vectors from intermediate layers) are lower-
dimensional and more memory-efficient. This approach eliminates the need to train a full generative
model and avoids challenges associated with explicit generative losses while preserving valuable
information for mitigating forgetting. A related approach is Latent Generative Replay (LGR), which
combines the generative replay paradigm with the efficiency of feature-level representations[45, 27].
Rather than generating complete input data (e.g., images), LGR trains lightweight generators to
produce latent features representative of previous tasks. For example, Kim et al. [27] introduced
Pseudo-Replay via Latent Sampling, which leverages a pre-trained feature extractor to sample from
stored distributions of latent features, achieving strong performance in class-incremental learning
scenarios.

Both feature-level replay and latent replay leverage the efficiency of latent representations, but differ
in their approach: feature replay enhances the training set with latent vectors, whereas attention-based
replay (discussed next) enriches the model’s input representation by directly incorporating retrieved
feature-level memories.

Memory-based methods also include techniques like prototype learning and kNN-based classification
in CL. For instance, iCaRL stores exemplars to compute class means in feature space for non-
parametric classification [39]. Similarly, FearNet [26] introduces a dual-memory system inspired
by the brain, with a recent memory for current tasks and a long-term memory (implemented with
a generative autoencoder) for past tasks. These methods treat past data as additional capacity that
can be recalled when needed, an idea that underpins many memory-augmented continual learning
systems.

2.3 Attention-Based Replay and Retrieval Mechanisms

Attention mechanisms have transformed sequence learning, notably through the Transformer’s self-
attention mechanism [47], allowing networks to focus on relevant parts of their input or memory
selectively. In the context of continual learning, attention can be leveraged to dynamically retrieve
relevant past information, rather than relying solely on passive replay.
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Recent studies in vision and language have applied key-query attention mechanisms to continual
learning. For instance, methods like L2P [50] maintain a pool of learnable prompt vectors, each
associated with a key for different tasks. When a new sample arrives, its query (derived from an
embedding) selects the top-k prompt keys, and the corresponding prompts are concatenated with
the input tokens of a Vision Transformer. This approach represents an attention-based retrieval of
task-specific context. Such methods have demonstrated superior performance compared to many
rehearsal-based techniques, all while avoiding the need for an explicit replay buffer.

In large language models, He et al. [17] demonstrated that not all attention heads are equally crucial
for retaining knowledge. They introduced an attention distillation method, SEEKR, which identifies
the attention heads most susceptible to forgetting and transfers their outputs from the old model to
the new one. While SEEKR employs attention for regularization rather than replay, it reinforces the
idea that attention weights play a critical role in preserving past knowledge.

Jha et al. [22] introduced a continual learning method based on Attentive Neural Processes (ANPs),
where examples from past tasks are treated as a context set, and a new input serves as the query. The
ANP then generates predictions through interpolation over context points, weighted by an attention
kernel. This mechanism enables an instance-based recall, effectively functioning as feature-level
replay on the fly. The Neural Process Continual Learning (NPCL) framework builds on this approach,
integrating uncertainty estimation to enhance transfer learning and mitigate forgetting.

A common thread across these methods is using a key-value memory store, which can be queried
using a similarity function. Both Memory Networks and Transformers [47] employ this mechanism
to model short- and long-term dependencies. In continual learning, this concept translates to soft
replay: instead of replaying exact past samples, the model retrieves a relevance-weighted summary of
past experiences, guided by attention, to inform current predictions.

Attention-based replay offers several key advantages. It is inherently selective-memory is accessed
only when relevant, as attention weights diminish for inputs dissimilar to stored features, thereby
reducing interference. Unlike generative replay, it requires no additional network to approximate past
data distributions, relying instead on exact stored feature representations. The computational cost is
minimal, involving only a few matrix multiplications during inference and training. Furthermore,
dot-product attention functions as a kernel smoother over stored features, providing a principled form
of local density estimation that blends past and new information.

2.4 Energy-Efficient Continual Learning

In recent years, the environmental and economic costs of deep learning have spurred a surge of interest
in quantifying and reducing energy consumption during both training and inference. Henderson
et al. [19] were among the first to demonstrate that ostensibly similar models can exhibit order-of-
magnitude differences in energy use, advocating for rigor in energy reporting. Building on this,
Trinci et al. [46] introduced NetScore, a composite metric that balances accuracy, and total energy,
highlighting the importance of multi-dimensional evaluation in continual settings. Meanwhile, Bouza
et al. [18] surveyed the landscape of energy-aware AI, cataloguing a variety of software profilers and
logging frameworks (e.g., NVIDIA NVML, Intel RAPL interfaces), as well as model-level strategies
for reducing computation.

Energy monitoring solutions fall into two broad categories: on-board sensor readings and external
power meters. Modern CPUs and GPUs expose energy counters via Intel’s RAPL (accessible through
Linux’s powercap interface) and NVIDIA’s NVML API, which software libraries such as PyJoules,
Experiment-Impact-Tracker, and CodeCarbon wrap to produce per-epoch and per-step energy logs.
More recently, Eco2AI has extended these capabilities with location-aware CO2 estimation. However,
on-board readings can be subject to sampling and estimation errors: Yang et al. [52] show that the
shunt-resistor based power sensor on NVIDIA GPUs only samples 25% of the runtime on A100 and
H100 cards, leading to under- or over-estimation of up to 65% when compared against a calibrated
external meter.

Prior CL studies seldom address domain-incremental tabular streams and ignore meter-verified
energy use. No method yet pairs feature-level replay with wall-power tracking, so the accuracy-
energy trade-off is still unmapped. Section 3 closes this gap.
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3 IMLP Method for Energy-aware Tabular Continual Learning

To address the gap in energy-efficient continual learning research for tabular data stream, we propose
Incremental MLP (IMLP), a lightweight yet effective extension of the standard MLP. The key idea is
to maintain a memory of past feature representations and incorporate them into the prediction of new
samples via a dot-product attention mechanism.

3.1 IMLP Model Architecture Overview

Figure 1: Windowed IMLP Architecture with Attention Memory.

As illustrated in Figure 1, our IMLP architecture introduces a windowed attention-based rehearsal
mechanism over temporally ordered data segments, extending the progressive networks paradigm [41]
with transformer-style attention [47]. The model receives incremental raw input data St from the data
stream D = {S1,S2, . . . ,St, · · · ,ST },∀t ∈ {1, 2, · · · , T}, where each segment St = {(xi, yi)}ni=1

in the tth window comprises n samples with corresponding labels yi. Each segment is processed by
a dedicated MLP module, augmented with limited historical context to facilitate representation reuse
while constraining memory and computational cost.

To selectively integrate useful past features into the current segment’s representation, IMLP em-
ploys attention gates in each window size W . For instances, for a given segment St, the cur-
rent sample (x, y) is transformed into a query vector qt = Wqxt ∈ R256, while a key matrix
Kt = Wt[hmax(1,t−W ), . . . ,ht−1]

⊤ ∈ RW×256 is constructed from representations of the past W
segments, where hj denotes the hidden representation of segment j. When a new input sample
(x, y) is encountered, the IMLP computes its corresponding feature representation q = fenc(x) via
the MLP encoder. This vector q acts as the query. The model then calculates attention weights
as αi = softmax

(
q·ki√

d

)
, where d is the dimensionality of the feature space, and the weights αi

indicate the relevance of each stored feature to the current input. A context vector is then computed as
c(x) =

∑M
i=1 αi vi, where, typically, vi = ki. This context vector is concatenated with the original

feature q and fed into the final classification layer.

During new-task training, the memory from previous tasks remains fixed. Every new sample’s
prediction is now influenced by both the current features and the retrieved memory context, effectively
providing a dynamic, input-dependent form of rehearsal. In effect, the classifier’s output becomes a
function g(q, c(x)) that integrates both newly learned and past knowledge.

Unlike traditional buffer-based replay, which explicitly mixes stored raw samples with new data
during training [30, 39], our method does not retrain on stored samples as separate inputs. Instead, it
retrieves stored features via attention and integrates them directly into the forward pass, providing
continuous regularization without the risk of overfitting a limited replay buffer. The attention-based
rehearsal mechanism augments a conventional MLP classifier, allowing efficient feature reuse without
the need to retrain on the full data history. After completing each task, the model retains a set
of feature vectors extracted from representative past samples, typically the activations from the
penultimate layer.
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Algorithm 1 Context-Aware Incremental MLP (IMLP)

Require: Stream D = {S1, S2, . . . , ST } of data segments
Require: Window size W , learning rate η, attention flag 1att

1: Initialize θ ← random weights
2: Initialize BUFFER← ∅ ▷ Stores at most W feature tensors
3: for t = 1 to T do
4: for minibatch (x, y) ∈ St do ▷ Forward pass
5: if 1att and BUFFER ̸= ∅ then
6: K ← Stack(BUFFER) ▷ Shape: [B,W, d]
7: q ← ϕq(x) ▷ Query: [B, 1, d]
8: α← softmax(K · q⊤)
9: c← α ·K ▷ Context: [B, d]

10: else
11: c← 0
12: h← ϕfeat(concat(x, c))
13: p← softmax(ϕcls(h)) ▷ Backward pass
14: L← CE(p, y)
15: θ ← θ − η∇θL

16: if 1att then
17: f ← Detach(mean feature of St)
18: BUFFER← BUFFER ∪ {f}; trim to W

19: return θ

Algorithm 1 outlines the high-level logic of our IMLP procedure. ϕq , ϕfeat, ϕcls are the query, feature
extractor, and classifier networks; d = 256 hidden dims. Specifically, we compute segment-level
keys by storing hidden activations from the penultimate layer, and during inference or training, each
new input forms a query vector that attends to this fixed memory. The attention weights are used to
retrieve a context vector, which is concatenated with the raw input and passed through the network.
The buffer logic, averages features and trims to a fixed window size. It is handled externally to the
model class. Full source code is provided in the supplementary materials.

3.2 NetScore-T

To quantify the efficacy of our proposed model and assess the trade-offs between predictive perfor-
mance and energy consumption in a streaming tabular setting, we introduce a joint accuracy–energy
metric, NetScore-T, for further evaluation. Building on NetScore for static vision models [42] and
the Energy NetScore for continual learning [46], NetScore-T is a task-agnostic metric that rewards
predictive power while penalizing Joule cost.

Let P (m)
t be the performance metric of model m on the segment St and E

(m)
t the corresponding

energy measured in Joule. Note that energy splits into training and inference phases. We consider
E

(m)
t = E

(m)
train,t+αE

(m)
infer,t, where α controls the importance of inference overhead. We report results

for α = 1 (balanced) and α = 10 (deployment-heavy). These measurements are obtained after
each segment St,∀t ∈ {1, 2, · · · , T} using wall power sampled at 500–800Hz via an ElmorLabs
PMD-USB power meter [10], mounted between the workstation’s power supply and mains.

For each window size we report balanced accuracy, F1 score, log-loss, and AUC-ROC. Among these,
balanced accuracy [4] is selected as the primary performance metric due to its robustness to class
imbalance. With balanced accuracy as the default performance term, we first define the per-segment
score with energy consumption as

NS
(m)
t =

P
(m)
t

log10
(
E

(m)
t + 1

) , (1)

where the log10 compresses the three-orders-of-magnitude spread of E and the +1 prevents division
by zero. This metric, NS(m)

t ≥ 0, favors models that achieve high performance and low energy
consumption. When P

(m)
t = 0, the score also be zero, regardless of energy consumed. For a stream
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of T segments we take the mean of NS
(m)
t and consequently,

NetScore-T(m) =
1

T

T∑

t=1

NS
(m)
t . (2)

Note that if the log-loss L(m)
t is the chosen performance metric we convert it to a “higher-is-better”

quantity P
(m)
t =

(
L(m)
t + ε

)−1
, ε = 10−7 and reuse Eq. (1)–(2). In contrast, due to the log

penalty, saving one order of magnitude in energy while dropping one percentage point of balanced
accuracy increases NS

(m)
t by roughly +1. This preserves the interpretation: larger scores signal

better accuracy–energy trade-offs.

4 Experiments and Evaluation

4.1 Experimental Setup

All experiments were conducted on a local workstation equipped with an Intel Core i5-8600K CPU (6
cores@3.60 GHz) and a single NVIDIA GeForce RTX 2080 Ti GPU (11 GB VRAM), running Python
3.13 and CUDA 12.2. All models were implemented in PyTorch, and the full software environment
was frozen with pip freeze to ensure reproducibility. Real-time wall power was sampled at 700 Hz
by an ElmorLabs PMD-USB meter [10] placed between the PSU and mains; GPU draw was isolated
with the matching PCIe-slot adapter. Hyper-parameters were tuned with Optuna [1], following the
protocol of Kadra et al. [23].

4.2 Data Streams and Baselines

We evaluate our method on 36 classification datasets from the TabZilla benchmark [33, 34], originally
compiled by Kadra et al. [23], McElfresh et al. [34]. Each dataset is divided into contiguous
segments of 500–1,000 samples to simulate a continual learning stream. For comparison, we
consider three groups of baselines: tree-based models [T] (i.e., LightGBM [25], CatBoost [38],
XGBoost [7]); classical methods [B] (e.g., k-NN, Logistic Regression, SVM, Decision Tree, and
Random Forest [36]); and neural network models [N] (i.e., TabNet [2], STG [21], ResNet-1D [16],
DaNet [6], VIME [53], our attention-based IMLP described in Section 3.1, a default MLP, and a
tuned MLP baseline (MLP_C) sharing the same hyperparameter budget as IMLP_C).

4.3 Results

We report four complementary views of performance: (i) Final balanced accuracy, (ii) Final log-loss,
(iii) NetScore-T using balanced accuracy, and (iv) NetScore-T using log-loss. Statistics are averaged
over the 36 TabZilla streams.

LightGBM (state-of-the-art GBDT), the retrained MLP, TabNet and STG (representatives of dense and
sparse attention) and our proposal IMLP span the three dominant algorithm families. All significance
tests, however, use all 17 models.

Table 1 reports the Friedman χ2 statistics for the four metrics.1 In every case p < 10−38, so the null
hypothesis of equal performance is decisively rejected and pair-wise analysis is warranted.

Table 1: Friedman omnibus statistics (N=36, k=17)

Metric χ2 p–value

Balanced accuracy 226.4 3.4× 10−39

Log-loss 384.9 5.2× 10−72

NetScore-T (bal. acc.) 478.1 1.4× 10−91

NetScore-T (log-loss) 363.5 1.6× 10−67

1N=36 streams, k=17 algorithms, critical difference for post-hoc CD = 4.12 at α = 0.05 (Studentised
range q0.05 = 3.463).
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For every metric we convert per-dataset scores into ranks (1 = best). Table 2 lists the mean rank of five
representative models. A Wilcoxon test is run pair-wise against IMLP; symbols denote the outcome
(‘✓‘ = significantly different at Holm-corrected p < 0.05; n.s. = not significant; “–” = reference).

Predictive quality. Table 2 presents the average ranks and significance of the four selected models,
viz LightGBM, default MLP, TabNet, and STG versus IMLP for predictive metrics, with respect to
balanced accuracy and Log-loss.

Table 2: Average rank (↓ better) and mean ± std across streams.

Model Balanced accuracy Log-loss
Avg. rank Mean ± Std Avg. rank Mean ± Std

LightGBM [T] 4.61 ✓ 0.825±0.167 3.56 ✓ 0.283±0.266
MLP [N] 4.46 ✓ 0.823±0.163 3.94 ✓ 0.336±0.330
IMLP [N] – 0.804±0.170 – 0.399±0.348
TabNet [N] 7.96 n.s. 0.794±0.185 6.11 n.s. 0.370±0.337
STG [N] 16.83 ✓ 0.426±0.165 14.33 ✓ 1.153±0.691

IMLP sits mid-pack in raw accuracy, it performs worse than the retrained MLP and LightGBM yet
indistinguishable from TabNet.

Efficiency-aware performance. Figure 2 shows the comparisons of 17 models for the efficiency-
aware performance. The models involved in the comparison are selected to perform relatively well in
Table 3.

(a) NetScore-T (Balanced Accuracy)

(b) NetScore-T (Log Loss)

Figure 2: Critical difference diagrams for NetScore-T metrics

Table 3 presents the average ranks and significance of the exemplar models, for energy-aware metrics,
i.e., NetScore-T (bal. acc) and NetScore-T (log-loss).

LightGBM’s superior balanced accuracy offsets its higher energy consumption, so it edges out IMLP
in NetScore-T. Nonetheless IMLP remains the most economical neural route to high composite score.
DecisionTree and k-NN dominate thanks to their negligible power draw; LightGBM ranks next.

Energy and latency. We also conducted statistical analysis for the energy consumption and latency
at the runtime environment for the 36 data streams. As presented in Table 4, IMLP’s constant-time
updates translate into a ∼3× median speed-up and a >60 % median reduction in Joule cost relative
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Table 3: NetScore-T results (rank ↓ better).
NetScore-T (bal.) NetScore-T (log)

Model Rank Score Rank Score

DecisionTree [B] 1.67✓ 1.784 ± 1.106 5.56 n.s. 4.48 ± 5.43
k-NN [B] 3.81✓ 0.891 ± 0.416 11.75✓ 1.76 ± 2.01
IMLP [N] – 0.404 ± 0.094 – 2.81 ± 3.54
MLP [N] 10.42✓ 0.348 ± 0.077 7.00 n.s. 2.99 ± 3.20
LightGBM [T] 4.56✓ 0.872 ± 0.555 2.28✓ 9.99 ±17.63

Table 4: Wall-time and energy per stream.

Model Time s (median [IQR]) Mean ± SD Energy kJ (median [IQR]) Mean ± SD

IMLP [N] 5.7 [3.2–12.9] 11.8 ± 5.9 0.53 [0.31–1.09] 1.08 ± 0.55
MLP [N] 17.4 [6.2–37.8] 35.4 ± 29.4 1.51 [0.66–3.34] 2.83 ± 2.32
LightGBM [T] 8.3 [4.1–17.5] 33.1 ±121.7 1.34 [0.63–2.93] 2.47 ± 9.18
STG [N] 29.1 [12.7–62.3] 63.7 ± 54.4 2.43 [1.10–4.96] 5.12 ± 4.29

to the tuned MLP baseline, and unlike LightGBM, its run-time is immune to a single “mega–stream”
outlier.

• Accuracy-efficiency trade-off. A sub-percentage-point loss in balanced accuracy buys a
two-to-three-fold cut in both energy and latency, making IMLP the most favourable point on
the accuracy-efficiency Pareto frontier among the nine neural contenders.

• Statistical solidity. Every claim remains significant after Wilcoxon + Holm correction; the
critical-difference of 4.12 clearly separates IMLP and the retrained MLP in NetScore-T (BA),
while they fall into the same clique under the log-loss variant, which is precisely what the
composite metric predicts.

• Data-privacy by design. Because raw samples are discarded once their latent keys are stored,
IMLP naturally respects strict retention policies and sidesteps the storage or compliance
issues that plague buffer-based replay and generative rehearsal.

In short, attention-based feature reuse delivers near-state-of-the-art predictive performance and an
order-of-magnitude gain in energy-to-accuracy ratio, a compelling direction for Green AI in lifelong
tabular learning.

5 Conclusion

We revisit tabular prediction through the joint lenses of domain-incremental learning and Green
AI. Our contributions are three-fold. (i) IMLP: an attention-augmented incremental MLP that
stores only latent keys, not raw data, achieving constant-time updates, privacy compliance, and
immunity to catastrophic outliers. (ii) NetScore-T: a task-agnostic metric that rewards accuracy while
logarithmically penalising wall-power, accompanied by an open PyTorch pipeline with ElmorLabs
PMD-USB logging for reproducible energy audits. (iii) The first energy-aware benchmark on 36
TabZilla streams. Empirically, IMLP surrenders <1,pp balanced accuracy to a fully-retrained MLP
yet delivers a median 3× speed-up and > 60% Joule savings, ranking first among nine neural
baselines and rivaling LightGBM on NetScore-T; all improvements are Friedman–Wilcoxon–Holm
significant [9, 20, 51]. This establishes attention-based feature reuse as a compelling Pareto point in
lifelong tabular learning. Future work will narrow the residual accuracy gap via deeper backbones or
adaptive memory windows, extend evaluation to federated and heterogeneous hardware where energy
profiles differ [19, 18], and derive theoretical guarantees for key–value replay. We release code, logs
and tuned hyper-parameters to spur progress on energy-aware continual learning.
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A Extended Experimental Setup

A.1 Datasets and Stream Segmentation

We evaluate IMLP on 36 classification tasks from the TabZilla benchmark [33], selected from
OpenML based on three criteria: (1) sufficient data size to create meaningful segments, (2) balanced
representation of binary and multi-class problems, and (3) diverse feature dimensionalities and class
distributions. To simulate the data stream in incremental learning scenarios, Table 5 lists every
OpenML task in our benchmark together with basic statistics and the fixed stream segmentation
applied in original row order (rows 1 . . .k form Segment 0, rows k+1 . . .2k form Segment 1, etc.).

† Class counts show label ID : instances after preprocessing. Binary tasks list two numbers; multi-
class tasks list one count per class. For tasks with many classes, we show representative counts or use
compact notation (e.g., “25 × 300” for 25 classes with 300 instances each).

A.1.1 Stream Segmentation Algorithm

Our segmentation follows a principled approach to create balanced segments while minimizing data
waste:

Algorithm 2 Optimal Segment Size Selection

Require: Dataset with N training instances, bounds kmin = 500, kmax = 1000
Ensure: Segment size k∗ that minimizes remainder

1: best_remainder← N
2: k∗ ← kmin

3: for k = kmin to min(kmax, N) do
4: num_segments← ⌊N/k⌋
5: remainder← N mod k
6: if remainder = 0 then
7: return k ▷ Perfect division found
8: if remainder < best_remainder then
9: best_remainder← remainder

10: k∗ ← k
11: return k∗

The choice of segment size bounds (500–1000 instances) balances three considerations: (1) statistical
power, each segment must contain sufficient samples for reliable learning, (2) IMLP coherence,
segments should be large enough for the attention mechanism to learn meaningful feature relationships
within each temporal chunk, and (3) computational efficiency, larger segments would increase memory
requirements and training time per segment without proportional benefits.

When the optimal segment size k∗ leaves a remainder r = N mod k∗, we apply round-robin
redistribution: the first r segments each receive one additional instance, ensuring segment sizes differ
by at most 1. This maintains temporal ordering while achieving optimal balance.

A.2 Data Retrieval and Preprocessing Protocol

A.2.1 Dataset Acquisition

All datasets are retrieved via the OpenML Python API (v0.15.2) with local caching enabled. We use
the default target attribute specified in each OpenML task definition. Raw data is downloaded in
DataFrame format to preserve both feature names and categorical indicators.

A.2.2 Feature Preprocessing Pipeline

Our preprocessing pipeline follows scikit-learn best practices with separate transformers for numerical
and categorical features:

Numerical Features:
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Table 5: OpenML classification tasks and stream-segmentation parameters used in this study. Num-
bers are produced by the data-processing pipeline and reproduced by the helper script in §A.3.

ID Name Inst. Feat. Class balance† Seg. size #Segs

146820 wilt 4,839 5 4,578; 261 514 8
14964 artificial-characters 10,218 7 1,196; 600; 1,192; 1,416; 808;

1,008; . . .
579 15

14969 GesturePhaseSegmentation 9,873 32 2,741; 998; 2,097; 1,087; 2,950 839 10
14951 eeg-eye-state 14,980 14 8,257; 6,723 749 17

146206 magic 19,020 10 12,332; 6,688 951 17
167211 Satellite 5,100 36 75; 5,025 867 5
167141 churn 5,000 29 4,293; 707 850 5
168910 fabert 8,237 800 933; 1,433; 1,927; 1,515; 979;

948; 502
500 14

168912 sylvine 5,124 20 2,562; 2,562 871 5
190410 philippine 5,832 308 2,916; 2,916 708 7

2074 satimage 6,430 36 1,531; 703; 1,356; 625; 707;
1,508

683 8

28 optdigits 5,620 64 554; 571; 557; 572; 568; 558; . . . 597 8
32 pendigits 10,992 16 1,143; 1,143; 1,144; 1,055; 1,144;

. . .
519 18

146607 SpeedDating 8,378 442 6,998; 1,380 712 10
168908 christine 5,418 1,611 2,709; 2,709 921 5

14952 PhishingWebsites 11,055 38 4,898; 6,157 522 18
3510 JapaneseVowels 9,961 14 1,096; 991; 1,614; 1,473; 782; . . . 529 16
3735 pollen 3,848 5 1,924; 1,924 545 6
3711 elevators 16,599 18 5,130; 11,469 641 22
3896 ada_agnostic 4,562 48 3,430; 1,132 646 6

14970 har 10,299 561 1,722; 1,544; 1,406; 1,777; 1,906;
1,944

547 16

3686 house_16H 22,784 16 6,744; 16,040 842 23
3897 eye_movements 10,936 27 3,804; 4,262; 2,870 715 13
3904 jm1 10,885 21 8,779; 2,106 514 18

43 spambase 4,601 57 2,788; 1,813 782 5
3954 MagicTelescope 19,020 10 12,332; 6,688 951 17
9952 phoneme 5,404 5 3,818; 1,586 574 8
3950 musk 6,598 267 5,581; 1,017 701 8
9960 wall-robot-navigation 5,456 24 2,205; 2,097; 328; 826 515 9
3889 sylva_agnostic 14,395 216 13,509; 886 941 13
9985 first-order-theorem-proving 6,118 51 1,089; 486; 748; 617; 624; 2,554 520 10
3481 isolet 7,797 617 25 × 300 (class 0. . . 24) 552 12

45 splice 3,190 227 767; 768; 1,655 542 5
9986 gas-drift 13,910 128 2,565; 2,926; 1,641; 1,936; 3,009;

1,833
563 21

9987 gas-drift-different-conc. 13,910 129 2,565; 2,926; 1,641; 1,936; 3,009;
1,833

563 21

168909 dilbert 10,000 2,000 1,988; 2,049; 1,913; 2,046; 2,004 500 17

1. Imputation: Missing values filled with column medians

2. Standardization: Zero mean, unit variance scaling via StandardScaler

Categorical Features:

1. Imputation: Missing values filled with constant ‘missing’

2. Encoding: One-hot encoding with drop=‘first’ to avoid multicollinearity
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3. Unknown handling: handle_unknown=‘ignore’ for robust inference

The ColumnTransformer ensures preprocessing consistency across all data splits. After transforma-
tion, all features are converted to float32 for memory efficiency.

A.2.3 Target Processing and Task Type Detection

Target variables are processed based on OpenML task type:

• Binary classification: 2 unique labels → LabelEncoder → {0, 1}

• Multi-class classification: C > 2 unique labels → LabelEncoder → {0, . . . , C-1}

• Regression: Direct conversion to float32 (not used in this study)

A.2.4 Data Splitting Strategy

Our splitting protocol ensures realistic evaluation:

1. Test Set Isolation: A stratified 15% test split is carved out before any stream processing,
using random_seed=42 for reproducibility.

2. Training Stream Creation: The remaining 85% forms the chronologically ordered training
stream, preserving the original row order from OpenML.

3. Per-Segment Validation: Each segment (or cumulative data) is further split with strati-
fied 15% validation, using random_seed=42+segment_idx to ensure different splits per
segment while maintaining reproducibility.

This approach simulates realistic continual learning where: 1) The test set represents future unseen
data, 2) Each segment represents a temporal chunk of arriving data, 3) Validation splits enable early
stopping without future data leakage, and 4) All models use consistent 15% validation splits for
hyperparameter selection and early stopping

A.2.5 Model Training Protocols

Our experimental design follows two distinct training protocols based on model type:

Cumulative Training (Baseline Models): Traditional baselines (XGBoost, LightGBM, CatBoost,
kNN, SVM, Decision Trees, Random Forest, and neural baselines like TabNet, SAINT) are retrained
from scratch at each segment using all available data up to that point. For the segment, these models
train on the union

⋃T
t=0 St where St denotes the t-th data segment. This protocol maximizes baseline

performance by leveraging all historical data, representing the standard approach in tabular learning.

Incremental Training (IMLP): Our proposed IMLP trains only on the current segment Sk while
accessing previous feature representations through the attention mechanism. This protocol tests true
incremental learning capabilities without replay of raw historical data.

Both protocols use identical validation procedures: each model’s hyperparameters are selected
via early stopping on the 15% validation split, ensuring fair comparison despite different training
paradigms.

A.2.6 Reproducibility Measures

All steps are deterministic with fixed random seeds, including 1) Global seed: random_seed = 42, 2)
Per-segment validation: random_seed = 42 + segment_idx, and 3) Preprocessing: Deterministic
transformers with fixed parameters.

A.3 Dataset Summary Regeneration Script

For full reproducibility, we provide a helper script that regenerates Table 5 from the processed data:
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1 # dataset_summary.py (runs in < 2 seconds)
2 import json, csv, gzip, numpy as np, pathlib
3

4 def regenerate_dataset_summary():
5 """Regenerate the dataset summary CSV from processed metadata."""
6 META = pathlib.Path("processed_datasets_summary.json")
7 ROOT = pathlib.Path("full_datasets")
8 OUT = pathlib.Path("dataset_summary.csv")
9

10 # Load processing metadata
11 with META.open() as f:
12 meta = json.load(f)
13

14 rows = []
15 for tid, m in meta.items():
16 # Load target labels to compute class balance
17 y = np.load(gzip.open(ROOT/m["dataset_name"]/"y_full.npy.gz"))
18 counts = np.bincount(y.astype(int))
19

20 rows.append({
21 "task_id": int(tid),
22 "name": m["original_name"],
23 "instances": int(m["num_instances"]),
24 "features": int(m["num_features"]),
25 "class_balance": ";".join(map(str, counts)),
26 "segment_size": int(m["segment_size"]),
27 "num_segments": int(m["num_segments"])
28 })
29

30 # Write CSV output
31 with OUT.open("w", newline="") as f:
32 writer = csv.DictWriter(f, fieldnames=rows[0].keys())
33 writer.writeheader()
34 writer.writerows(rows)
35

36 print(f"Wrote {OUT} with {len(rows)} tasks")
37

38 if __name__ == "__main__":
39 regenerate_dataset_summary()

Running this script in the project root recreates the CSV that backs Table 5. The script requires the
preprocessed datasets but no pipeline re-execution.
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B IMLP Implementation Details

B.1 Architecture Overview and Design Rationale

IMLP extends the standard MLP architecture with an attention-based memory mechanism designed
specifically for tabular continual learning. The key innovation lies in storing and retrieving feature
representations rather than raw data, enabling privacy-preserving incremental learning with constant
memory requirements.

B.1.1 Comparison with Standard MLP

Table 7 contrasts IMLP with a standard MLP of equivalent capacity:

Table 7: Architectural comparison between standard MLP and IMLP.
Component MLP IMLP IMLP Notes
Input processing din → 512 din → 256 Query projection
Memory mechanism None Attention Key-value retrieval
Feature extraction 512→ 256 (din + 256)→ 512→ 256 Context-augmented
Memory complexity O(1) O(W ) W = window size
Time complexity O(1) O(W · d) d = hidden dim
Privacy Requires raw data Feature-only No raw data storage

B.2 Layer-wise Architecture Specification

Table 8: Detailed layer-wise specification of IMLP architecture.

Component Output dim. Activation Notes

Input feature vector din – Raw tabular features after preprocessing

Attention Module
Query projection Q 256 – Linear(din, 256)
Key projection K 256 – Linear(256, 256) applied to each stored

feature
Context computation 256 – Scaled dot-product attention over win-

dow

Feature Extraction
Concatenated input (x, c) din + 256 – Only if attention enabled; c = context

vector
FC 1 512 ReLU Linear(din + 256, 512)
FC 2 256 ReLU Linear(512, 256)

Classification Head
Classifier C – Linear(256, C) where C = number of

classes

Design Choices:

• Hidden size 256: Balances expressiveness with computational efficiency across all datasets

• No dropout/normalization: Empirically found to hurt performance in continual learning
setting

• ReLU activations: Simple, stable gradients for incremental training

• Fixed architecture: Same capacity across all 36 datasets for fair comparison
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B.3 Attention Mechanism Design

B.3.1 Scaled Dot-Product Attention

IMLP uses a simplified attention mechanism to retrieve relevant historical features. For a batch of
size B:

Q = Wq · x ∈ RB×1×256 (query from current input) (3)

K = Wt ·Hstacked ∈ RB×W×256 (keys from previous features) (4)

Scores = bmm(K,QT ) ∈ RB×W×1 (5)

α = softmax(Scores.squeeze()) ∈ RB×W (6)

Context = bmm(α.unsqueeze(1),K) ∈ RB×1×256 (7)

where:

• Hstacked = stack({ht−W , . . . , ht−1}) ∈ RB×W×256

• bmm denotes batch matrix multiplication
• No scaling factor is applied (unlike standard scaled dot-product attention)
• Values equal keys: V = K

B.3.2 Window Management Strategy

The sliding window maintains a FIFO queue of the most recent W feature vectors:

Algorithm 3 Sliding Window Update

Require: Current input x, previous features Hprev, window size W
Ensure: Updated window Hnew

1: hcurrent ← FeatureExtractor(x,Context(x))
2: Hnew ← Hprev ∪ {hcurrent}
3: if |Hnew| > W then
4: Hnew ← Hnew[1 :] ▷ Remove oldest feature
5: return Hnew

B.3.3 Feature Normalization

To improve attention stability, stored features are L2-normalized during precomputation:

h̃i =
hi

∥hi∥2 + ϵ
(8)

where ϵ = 10−8 prevents division by zero. This normalization ensures attention weights focus
on feature directions rather than magnitudes and is applied in the _precompute method during
segmental training.
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B.4 Complete Implementation

1 import torch
2 import torch.nn as nn
3 import torch.nn.functional as F
4

5 class IncrementalMLP(nn.Module):
6 """
7 Incremental MLP with attention-based feature replay for continual learning.
8

9 Args:
10 input_size (int): Number of input features
11 num_classes (int): Number of output classes
12 use_attention (bool): Whether to use attention mechanism
13 window_size (int): Size of sliding memory window
14 """
15

16 def __init__(self, input_size, num_classes, use_attention=True, window_size=10):
17 super().__init__()
18 self.window_size = window_size
19 self.use_attention = use_attention
20 self.hidden_size = 256
21

22 # Attention projections
23 self.query = nn.Linear(input_size, 256)
24 self.key = nn.Linear(256, 256)
25

26 # Feature extraction pathway
27 total_input_size = input_size + (256 if use_attention else 0)
28 self.feature_extractor = nn.Sequential(
29 nn.Linear(total_input_size, 512),
30 nn.ReLU(),
31 nn.Linear(512, self.hidden_size),
32 nn.ReLU()
33 )
34

35 # Classification head
36 self.classifier = nn.Linear(self.hidden_size, num_classes)
37

38 def compute_context(self, x, prev_features):
39 """
40 Compute attention-weighted context from previous features.
41

42 Args:
43 x (Tensor): Current input batch [B, D]
44 prev_features (List[Tensor]): Previous feature vectors [W x [256]]
45

46 Returns:
47 Tensor: Context vector [B, 256]
48 """
49 if not prev_features or self.window_size == 0:
50 return torch.zeros(x.size(0), 256, device=x.device)
51

52 # Stack previous features: [B, W, 256]
53 stacked_prev = torch.stack(prev_features, dim=1)
54

55 # Compute keys and queries
56 keys = self.key(stacked_prev) # [B, W, 256]
57 query = self.query(x).unsqueeze(1) # [B, 1, 256]
58

59 # Scaled dot-product attention
60 scores = torch.bmm(keys, query.transpose(1, 2)).squeeze(-1) # [B, W]
61 attention_weights = F.softmax(scores, dim=1) # [B, W]
62

63 # Compute weighted context
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64 context = torch.bmm(attention_weights.unsqueeze(1), keys).squeeze(1) # [B,
256]↪→

65

66 return context
67

68 def forward(self, x, prev_features=None):
69 """
70 Forward pass with optional attention over previous features.
71

72 Args:
73 x (Tensor): Input features [B, D]
74 prev_features (List[Tensor]): Previous features for attention
75

76 Returns:
77 Tuple[Tensor, Tensor]: (logits, current_features)
78 """
79 # Compute attention context
80 context = torch.zeros(x.size(0), 256, device=x.device)
81 if self.use_attention and prev_features:
82 context = self.compute_context(x, prev_features)
83

84 # Concatenate input with context
85 if self.use_attention:
86 augmented_input = torch.cat([x, context], dim=1)
87 else:
88 augmented_input = x
89

90 # Extract features and classify
91 features = self.feature_extractor(augmented_input)
92 logits = self.classifier(features)
93

94 return logits, features

B.5 Computational Complexity Analysis

B.5.1 Time Complexity

For each forward pass with batch size B, input dimension din, hidden dimension dh = 256, and
window size W :

Query projection: O(B · din · dh) (9)

Key projection: O(B ·W · d2h) (10)
Attention scores: O(B ·W · dh) (11)

Context aggregation: O(B ·W · dh) (12)
Feature extraction: O(B · (din + dh) · 512) (13)

Total: O(B · (din · dh +W · d2h)) (14)

For typical values (W = 10, dh = 256, din ≲ 2000), the attention overhead is O(W · d2h) =
O(655,360) operations per sample.

B.5.2 Memory Complexity

IMLP maintains constant memory usage per segment:

• Model parameters: ≈ 1.2M parameters (fixed)
• Feature buffer: W × 256× 4 bytes = 10,240 bytes for W = 10

• Attention matrices: B ×W × 256× 4 bytes during computation

Unlike replay-based methods, memory usage does not grow with the number of segments, enabling
indefinite continual learning.

20



B.5.3 Comparison with Replay Methods

Table 9 compares IMLP with alternative continual learning approaches:

Table 9: Complexity comparison of continual learning approaches.
Method Memory Time per step Privacy
Naive retraining O(T ·N) O(T ·N) Requires raw data
Experience replay O(M) O(N +M) Requires raw data
Generative replay O(1) O(N +G) Private
IMLP (ours) O(W ) O(N +W · d2) Private

where T = number of tasks, N = samples per task, M = replay buffer size, G = generative model
cost, W = window size, d = feature dimension.

B.6 Hyperparameter Configuration

IMLP uses the following default hyperparameters across all experiments:

Table 10: IMLP hyperparameter configuration.
Parameter Value Description
Window size (W ) 10 Number of previous feature vectors stored
Hidden dimension 256 Feature representation size
Learning rate 10−3 Adam optimizer learning rate
Batch size 128 Training batch size
Weight decay 10−5 L2 regularization strength
Early stopping patience 10 Epochs without improvement before stopping
Max epochs 100 Maximum training epochs per segment
Normalization ϵ 10−8 Small constant for L2 normalization

The window size W = 10 was chosen to balance memory efficiency with sufficient historical
context. The hidden dimension of 256 provides adequate representational capacity while maintaining
computational efficiency across diverse tabular datasets.
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C Deriving and Computing NetScore-T

C.1 Mathematical Derivation

NetScore-T extends the NetScore framework [42] to continual learning by jointly evaluating predictive
performance and energy consumption across data segments. Our formulation balances accuracy
maximization with energy minimization through a logarithmic penalty function.

C.1.1 Per-Segment NetScore-T

For a given model m and the tth data segment St, we define the per-segment NetScore-T as:

NS
(m)
t =

P
(m)
t

log10(E
(m)
t + 1)

(15)

where:

• P
(m)
t is the performance metric (balanced accuracy or transformed log-loss)

• E
(m)
t is the total energy consumption in Joules for segment k

• The logarithmic denominator compresses the wide range of energy values

• The +1 term prevents division by zero for very low energy consumption

C.1.2 Energy Composition

Total energy consumption combines training and inference components:

E
(m)
t = E

(m)
train,t + α · E(m)

infer,t (16)

where α weights the relative importance of inference versus training energy. In this study, we use
α = 1 (balanced weighting) and do not tune this parameter. Future work could explore different α
values to reflect specific deployment scenarios, for instance, α > 1 for inference-heavy applications
or α < 1 for training-dominated workflows.

C.1.3 Stream-Level NetScore-T

To evaluate performance across an entire data stream of T segments, we compute the arithmetic
mean:

NetScore-T(m) =
1

T

T∑

t=1

NS
(m)
t (17)

This formulation treats all segments equally, reflecting the assumption that each temporal chunk has
similar importance in continual learning evaluation.

C.2 Performance Metric Transformations

NetScore-T accommodates different performance metrics through appropriate transformations:

C.2.1 Balanced Accuracy

For balanced accuracy BA(m)
t ∈ [0, 1], we use the metric directly:

P
(m)
t = BA(m)

t (18)
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C.2.2 Log-Loss Transformation

Since log-loss is a “lower-is-better” metric, we transform it to a “higher-is-better” quantity:

P
(m)
t =

1

L(m)
t + ε

(19)

where L(m)
t is the log-loss value and ε = 10−7 prevents division by zero for perfect predictions. This

transformation ensures larger NetScore-T values indicate better performance for both metrics.

C.3 Mathematical Properties

C.3.1 Boundedness and Range

The per-segment NetScore-T has the following properties:

• Lower bound: NS
(m)
t ≥ 0 (since P

(m)
t ≥ 0 and denominator > 0)

• Upper bound: No finite upper bound exists. As E(m)
t → 0, the denominator approaches

log10(1) = 0, causing NS
(m)
t →∞

• Empirical ranges: In our experiments, NetScore-T values span:

– Balanced accuracy version: [0.06, 4.00]
– Log-loss version: [0.08, 108.61]

The wide empirical ranges reflect the diversity of energy consumption patterns across models and
datasets. High values (e.g., 108.61) occur when models achieve reasonable accuracy with very low
energy consumption.

C.4 Implementation Details

C.4.1 Energy Measurement Protocol

Energy consumption E
(m)
t is measured using an ElmorLabs PMD-USB power meter sampling

between 500 − 800 (most of the time ∼ 700) Hz. Total energy is computed by integrating power
readings over the training and inference duration for each segment:

E
(m)
t =

∫ tend

tstart

Ptotal(t) dt (20)

where Ptotal(t) includes both CPU and GPU power consumption.

C.4.2 Computational Procedure

Algorithm 4 outlines the NetScore-T computation process:

Algorithm 4 NetScore-T Computation

Require: Performance metrics {P (m)
t }Tt=1, energy measurements {E(m)

t }Tt=1
Ensure: Stream-level NetScore-T score

1: Initialize scores← []
2: for t = 1 to T do
3: NS

(m)
t ← P

(m)
t / log10(E

(m)
t + 1)

4: scores.append(NS
(m)
t )

5: return 1
T

∑T
i=1 scores[i]
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D Complete Per-Dataset Results

We present per-dataset results for all models and metrics evaluated in our study. The tables below
show performance across the 36 TabZilla datasets for six key metrics: balanced accuracy, log-loss,
NetScore-T (balanced accuracy), NetScore-T (log-loss), wall-time, and energy consumption. Best
values in each row are highlighted in bold.

All results represent the final performance after training on the complete stream (i.e., performance on
the test set after processing all segments). For cumulative models, this corresponds to training on all
available data; for IMLP, this represents performance after incremental learning across all segments.
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D.1 Balanced Accuracy Results

Table 11 shows the balanced accuracy achieved by each model on each dataset. Balanced accuracy is
computed as the average of recall scores for each class, providing a metric robust to class imbalance.

Table 11: Balanced accuracy per dataset and model. Values range from 0 to 1, with higher values indicating better performance. Best values
per row are shown in bold.

Dataset CatBoost DaNet DecisionTree IMLP IMLP_C kNN LightGBM LinearModel MLP MLP_C RandomForest ResNet STG SVM TabNet VIME XGBoost

146206 0.85 0.84 0.79 0.85 0.83 0.79 0.86 0.76 0.86 0.85 0.80 0.86 0.67 0.85 0.85 0.74 0.79
146607 0.65 0.65 0.63 0.66 0.70 0.59 0.65 0.67 0.70 0.67 0.51 0.50 0.50 0.66 0.62 0.59 0.63
146820 0.79 0.82 0.91 0.86 0.50 0.64 0.85 0.66 0.92 0.92 0.74 0.88 0.50 0.88 0.82 0.50 0.92
14951 0.80 0.67 0.69 0.72 0.69 0.83 0.94 0.57 0.73 0.84 0.75 0.85 0.50 0.62 0.53 0.83 0.70
14952 0.95 0.95 0.93 0.92 0.93 0.95 0.97 0.93 0.96 0.93 0.91 0.96 0.63 0.95 0.96 0.96 0.93
14964 0.63 0.60 0.39 0.58 0.58 0.66 0.89 0.34 0.63 0.56 0.49 0.59 0.16 0.60 0.63 0.59 0.47
14969 0.47 0.49 0.41 0.44 0.41 0.52 0.64 0.37 0.50 0.47 0.38 0.48 0.30 0.47 0.40 0.39 0.42
14970 0.97 0.98 0.87 0.96 0.96 0.96 0.99 0.98 0.98 0.98 0.92 0.96 0.32 0.98 0.99 0.98 0.92
167141 0.89 0.81 0.82 0.83 0.81 0.60 0.50 0.58 0.80 0.77 0.62 0.85 0.46 0.76 0.86 0.50 0.82
167211 0.77 0.82 0.82 0.91 0.82 0.77 0.77 0.86 0.82 0.82 0.82 0.77 0.49 0.82 0.68 0.50 0.86
168908 0.73 0.72 0.66 0.72 0.74 0.69 0.71 0.68 0.72 0.73 0.70 0.70 0.55 0.74 0.65 0.73 0.67
168909 0.90 0.98 0.65 0.95 0.94 0.94 0.99 0.92 0.98 0.94 0.81 0.97 0.28 0.98 0.97 0.98 0.77
168910 0.40 0.55 0.22 0.62 0.62 0.62 0.67 0.64 0.64 0.47 0.26 0.62 0.14 0.65 0.56 0.56 0.36
168912 0.94 0.94 0.94 0.93 0.93 0.83 0.94 0.92 0.93 0.94 0.93 0.93 0.63 0.93 0.93 0.84 0.94
190410 0.74 0.69 0.73 0.68 0.67 0.68 0.76 0.71 0.71 0.72 0.73 0.70 0.57 0.72 0.69 0.71 0.74
2074 0.85 0.87 0.76 0.83 0.81 0.88 0.88 0.81 0.88 0.87 0.82 0.85 0.51 0.86 0.86 0.87 0.83
28 0.96 0.99 0.70 0.97 0.97 0.98 0.98 0.97 0.98 0.98 0.94 0.98 0.17 0.98 0.98 0.98 0.90
32 0.98 0.99 0.82 0.98 0.98 0.99 0.99 0.94 0.99 0.99 0.90 0.98 0.33 0.99 0.99 0.94 0.92
3481 0.91 0.93 0.52 0.93 0.93 0.88 0.94 0.95 0.95 0.95 0.87 0.96 0.06 0.96 0.92 0.95 0.81
3510 0.92 0.97 0.67 0.95 0.95 0.97 0.98 0.94 0.98 0.98 0.83 0.96 0.20 0.98 0.98 0.95 0.80
3686 0.85 0.86 0.80 0.83 0.82 0.83 0.86 0.76 0.86 0.86 0.82 0.85 0.60 0.85 0.83 0.77 0.80
3711 0.78 0.83 0.73 0.83 0.84 0.75 0.83 0.85 0.86 0.87 0.73 0.85 0.71 0.85 0.86 0.79 0.73
3735 0.51 0.50 0.47 0.51 0.51 0.53 0.48 0.47 0.52 0.50 0.49 0.47 0.48 0.52 0.53 0.50 0.50
3889 0.99 0.98 0.97 0.98 0.99 0.87 0.50 0.97 0.98 0.97 0.77 0.95 0.49 0.93 0.98 0.94 0.97
3896 0.78 0.76 0.76 0.77 0.80 0.74 0.76 0.78 0.79 0.78 0.73 0.79 0.52 0.74 0.75 0.69 0.76
3897 0.62 0.64 0.52 0.55 0.54 0.52 0.75 0.50 0.59 0.57 0.57 0.61 0.35 0.58 0.59 0.48 0.57
3904 0.57 0.54 0.55 0.61 0.59 0.60 0.57 0.55 0.59 0.58 0.55 0.55 0.51 0.55 0.53 0.56 0.55
3950 0.99 0.99 0.91 0.99 0.99 0.90 0.98 1.00 0.99 0.99 0.80 0.98 0.44 0.97 0.99 0.76 0.92
3954 0.84 0.87 0.79 0.84 0.83 0.79 0.86 0.76 0.86 0.85 0.79 0.86 0.61 0.85 0.85 0.72 0.79
43 0.93 0.92 0.88 0.92 0.93 0.89 0.94 0.91 0.92 0.93 0.90 0.92 0.50 0.91 0.92 0.83 0.87
45 0.94 0.91 0.91 0.92 0.92 0.84 0.95 0.94 0.93 0.94 0.90 0.93 0.34 0.95 0.93 0.89 0.92
9952 0.81 0.81 0.77 0.77 0.72 0.79 0.85 0.64 0.79 0.81 0.77 0.81 0.47 0.77 0.80 0.72 0.78
9960 0.99 0.88 0.95 0.82 0.81 0.86 0.99 0.63 0.89 0.88 0.94 0.89 0.23 0.89 0.92 0.66 0.99
9985 0.36 0.39 0.28 0.35 0.40 0.45 0.47 0.31 0.40 0.41 0.33 0.40 0.20 0.36 0.34 0.19 0.32
9986 0.97 0.98 0.80 0.98 0.97 0.99 0.99 0.99 0.99 0.99 0.87 0.86 0.46 0.98 0.93 0.98 0.91
9987 0.98 0.99 0.82 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.89 0.81 0.49 0.98 0.94 0.99 0.92
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D.2 Log-Loss Results

Table 12 presents the logarithmic loss for each model. Log-loss measures the cross-entropy between
predicted class probabilities and true class labels, with lower values indicating better calibrated
predictions.

Table 12: Log-loss per dataset and model. Lower values indicate better performance. Best values per row are shown in bold.
Dataset CatBoost DaNet DecisionTree IMLP IMLP_C kNN LightGBM LinearModel MLP MLP_C RandomForest ResNet STG SVM TabNet VIME XGBoost

146206 0.32 0.30 0.43 0.33 0.39 1.58 0.30 0.44 0.29 0.30 0.39 1.00 0.58 0.31 0.30 0.51 0.69
146607 0.33 0.35 0.37 0.41 0.98 1.80 0.35 0.35 0.43 0.34 0.37 2.63 0.58 0.33 0.39 1.47 0.69
146820 0.07 0.05 0.51 0.08 0.25 0.55 0.06 0.10 0.04 0.04 0.08 0.31 0.61 0.04 0.05 0.86 0.68
14951 0.45 0.59 0.61 0.54 1.07 0.83 0.15 0.66 0.50 0.36 0.55 1.28 0.69 0.61 0.67 0.45 0.69
14952 0.12 0.12 0.18 0.19 0.16 0.33 0.08 0.15 0.10 0.18 0.26 0.48 0.67 0.13 0.11 0.22 0.69
14964 0.97 0.73 1.49 0.89 0.96 1.85 0.31 1.66 0.77 1.02 1.46 4.79 2.28 0.83 0.72 2.37 2.29
14969 1.12 1.12 1.24 1.29 1.43 4.88 0.83 1.28 1.12 1.13 1.20 5.05 1.56 1.15 1.19 3.96 1.60
14970 0.14 0.06 0.34 0.11 0.09 0.19 0.02 0.04 0.05 0.06 0.33 0.58 1.54 0.06 0.04 0.25 1.77
167141 0.15 0.19 0.43 0.31 0.42 1.76 0.30 0.29 0.21 0.22 0.25 0.61 0.67 0.21 0.18 2.25 0.69
167211 0.03 0.04 0.16 0.03 0.02 0.15 0.04 0.02 0.03 0.03 0.02 0.10 0.65 0.03 0.04 0.23 0.68
168908 0.54 0.57 1.06 0.63 0.62 1.95 0.55 1.12 0.62 0.57 0.57 2.02 0.69 0.54 0.65 0.91 0.69
168909 0.43 0.04 1.05 0.15 0.25 0.27 0.05 0.33 0.05 0.32 0.83 0.25 1.58 0.05 0.12 0.15 1.60
168910 1.48 1.07 1.83 1.01 1.22 5.41 0.83 2.20 0.96 1.23 1.70 4.49 1.95 0.90 1.12 1.66 1.94
168912 0.15 0.16 0.40 0.19 0.23 0.99 0.21 0.22 0.19 0.19 0.29 0.66 0.68 0.19 0.18 0.39 0.69
190410 0.50 0.57 0.60 0.70 0.87 2.09 0.49 0.55 0.65 0.60 0.53 2.02 0.68 0.55 0.57 1.10 0.69
2074 0.33 0.25 0.67 0.38 0.36 0.84 0.24 0.34 0.26 0.26 0.44 1.43 1.66 0.27 0.32 0.75 1.77
28 0.19 0.07 1.20 0.10 0.10 0.17 0.06 0.09 0.06 0.07 0.69 0.21 2.26 0.06 0.09 0.10 2.26
32 0.14 0.05 0.69 0.08 0.07 0.15 0.05 0.20 0.04 0.06 0.47 0.24 2.22 0.04 0.05 0.75 2.26
3481 0.49 0.22 1.53 0.26 0.24 0.98 0.19 0.17 0.15 0.15 1.20 0.45 3.25 0.16 0.30 0.23 3.17
3510 0.33 0.09 1.10 0.14 0.16 0.10 0.07 0.17 0.05 0.07 0.90 0.50 2.15 0.06 0.05 0.28 2.17
3686 0.28 0.28 0.40 0.31 0.37 1.23 0.29 0.41 0.27 0.28 0.34 1.19 0.53 0.29 0.30 0.66 0.69
3711 0.36 0.29 0.46 0.38 0.32 1.47 0.32 0.26 0.27 0.27 0.42 1.20 0.52 0.26 0.25 1.14 0.69
3735 0.69 0.69 0.76 0.71 0.72 1.66 0.70 0.70 0.70 0.69 0.70 0.70 0.70 0.69 0.70 0.70 0.69
3889 0.02 0.02 0.06 0.03 0.03 0.34 0.16 0.04 0.03 0.03 0.08 0.19 0.51 0.05 0.03 0.07 0.68
3896 0.32 0.34 0.55 0.36 0.38 1.22 0.33 0.34 0.33 0.34 0.38 1.08 0.68 0.37 0.38 1.08 0.69
3897 0.83 0.80 0.96 1.02 1.30 3.36 0.60 0.97 0.86 0.87 0.93 3.60 1.10 0.87 0.86 1.38 1.10
3904 0.44 0.45 0.56 0.52 0.56 2.02 0.45 0.45 0.45 0.44 0.44 2.64 0.56 0.47 0.44 2.02 0.69
3950 0.04 0.02 0.14 0.03 0.01 0.23 0.03 0.02 0.02 0.02 0.16 0.23 0.67 0.04 0.03 1.14 0.68
3954 0.32 0.29 0.43 0.33 0.40 1.58 0.30 0.44 0.29 0.31 0.39 1.16 0.60 0.31 0.30 0.56 0.69
43 0.16 0.18 0.35 0.24 0.21 1.11 0.16 0.26 0.19 0.19 0.27 0.95 0.69 0.27 0.22 0.26 0.69
45 0.20 0.22 0.46 0.27 0.23 1.36 0.12 0.18 0.16 0.16 0.55 0.83 1.09 0.13 0.37 0.23 1.09
9952 0.35 0.36 0.55 0.39 0.41 1.38 0.31 0.50 0.36 0.35 0.38 1.35 0.68 0.38 0.38 0.47 0.69
9960 0.04 0.34 0.26 0.39 0.60 1.30 0.03 0.68 0.27 0.27 0.27 1.00 1.37 0.29 0.21 2.69 1.37
9985 1.29 1.27 1.70 1.35 1.41 6.73 1.12 1.42 1.25 1.24 1.35 5.19 1.77 1.32 1.31 8.63 1.78
9986 0.22 0.07 0.66 0.12 0.14 0.20 0.05 0.11 0.05 0.07 0.49 2.22 1.54 0.08 0.22 0.11 1.77
9987 0.19 0.04 0.65 0.10 0.12 0.20 0.05 0.10 0.05 0.05 0.48 2.57 1.56 0.08 0.20 0.16 1.77
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D.3 NetScore-T (Balanced Accuracy) Results

Table 13 shows the NetScore-T computed using balanced accuracy as the performance metric. This
joint metric captures both predictive performance and energy efficiency, with higher values indicating
better accuracy-to-energy ratios.

Table 13: NetScore-T (balanced accuracy) per dataset and model. Higher values indicate better accuracy-energy trade-offs. Best values per
row are shown in bold.

Dataset CatBoost DaNet DecisionTree IMLP IMLP_C kNN LightGBM LinearModel MLP MLP_C RandomForest ResNet STG SVM TabNet VIME XGBoost

146206 0.82 0.25 1.43 0.41 0.40 0.84 0.81 0.93 0.34 0.33 0.65 0.34 0.22 0.44 0.26 0.26 0.52
146607 0.49 0.20 1.25 0.36 0.34 0.33 0.65 0.45 0.29 0.28 0.51 0.25 0.20 0.31 0.19 0.17 0.36
146820 1.10 0.28 4.00 0.31 0.26 1.53 2.53 0.62 0.31 0.29 0.81 0.40 0.27 1.68 0.30 0.22 0.62
14951 0.83 0.22 1.54 0.34 0.33 0.98 0.74 0.71 0.25 0.30 0.69 0.32 0.19 0.34 0.20 0.26 0.46
14952 0.97 0.30 2.83 0.51 0.49 0.80 1.08 0.97 0.42 0.39 1.01 0.40 0.24 0.72 0.31 0.33 0.66
14964 0.48 0.18 1.10 0.29 0.29 1.11 0.46 0.36 0.25 0.21 0.48 0.24 0.05 0.34 0.19 0.18 0.23
14969 0.27 0.14 0.73 0.19 0.22 0.43 0.32 0.29 0.19 0.18 0.31 0.18 0.12 0.22 0.13 0.13 0.22
14970 0.34 0.30 0.64 0.51 0.49 0.50 0.40 0.64 0.43 0.41 0.60 0.39 0.08 0.44 0.30 0.26 0.36
167141 1.00 0.27 2.78 0.39 0.38 0.94 1.40 0.42 0.31 0.29 0.68 0.37 0.21 0.72 0.27 0.21 0.57
167211 1.13 0.28 3.09 0.44 0.43 1.41 2.45 0.57 0.33 0.31 0.83 0.36 0.24 1.84 0.28 0.20 0.68
168908 0.30 0.26 0.43 0.34 0.34 0.34 0.31 0.38 0.34 0.33 0.54 0.32 0.24 0.28 0.23 0.20 0.26
168909 0.27 0.29 0.31 0.46 0.45 0.34 0.28 0.49 0.41 0.37 0.46 0.36 0.08 0.31 0.27 0.23 0.24
168910 0.17 0.15 0.40 0.30 0.30 0.23 0.24 0.38 0.25 0.18 0.25 0.24 0.06 0.21 0.14 0.13 0.16
168912 1.04 0.32 2.91 0.47 0.45 1.29 1.60 0.63 0.44 0.41 0.96 0.42 0.26 0.90 0.33 0.31 0.62
190410 0.43 0.26 0.69 0.36 0.34 0.55 0.49 0.45 0.34 0.31 0.58 0.33 0.24 0.38 0.24 0.23 0.36
2074 0.69 0.28 2.28 0.41 0.41 1.48 0.90 0.58 0.37 0.36 0.82 0.37 0.17 0.82 0.29 0.29 0.45
28 0.78 0.33 2.14 0.52 0.50 1.17 0.74 0.71 0.46 0.44 0.96 0.45 0.06 0.81 0.33 0.35 0.44
32 0.71 0.31 2.00 0.53 0.51 1.28 0.72 1.01 0.43 0.41 0.86 0.41 0.06 0.79 0.32 0.34 0.46
3481 0.26 0.29 0.32 0.45 0.46 0.47 0.32 0.61 0.41 0.40 0.56 0.38 0.02 0.40 0.28 0.25 0.23
3510 0.60 0.29 1.45 0.51 0.48 1.16 0.60 1.11 0.42 0.40 0.78 0.40 0.05 0.71 0.30 0.33 0.39
3686 0.82 0.25 1.26 0.43 0.40 0.55 0.69 0.84 0.34 0.33 0.64 0.33 0.21 0.42 0.26 0.26 0.52
3711 0.87 0.26 1.62 0.44 0.42 0.55 0.76 0.99 0.35 0.34 0.68 0.34 0.25 0.48 0.26 0.27 0.48
3735 1.39 0.20 2.56 0.28 0.25 1.33 1.69 0.33 0.26 0.24 0.53 0.26 0.23 0.52 0.19 0.22 0.65
3889 0.79 0.31 1.46 0.49 0.47 0.45 0.98 0.79 0.40 0.38 0.68 0.39 0.18 0.50 0.30 0.25 0.56
3896 1.09 0.26 3.85 0.40 0.40 1.11 1.44 0.53 0.37 0.35 0.78 0.37 0.22 0.71 0.27 0.25 0.55
3897 0.52 0.17 1.19 0.27 0.25 0.42 0.46 0.50 0.24 0.22 0.51 0.24 0.13 0.29 0.17 0.17 0.33
3904 0.64 0.18 1.51 0.32 0.32 0.89 0.78 0.68 0.26 0.26 0.54 0.24 0.19 0.36 0.18 0.21 0.38
3950 0.61 0.32 1.36 0.50 0.48 0.71 0.79 0.68 0.44 0.41 0.73 0.41 0.18 0.66 0.30 0.23 0.52
3954 0.84 0.25 1.43 0.41 0.39 0.87 0.81 0.93 0.35 0.33 0.66 0.33 0.19 0.44 0.26 0.25 0.53
43 0.78 0.32 3.16 0.45 0.46 1.39 1.18 0.61 0.44 0.43 0.97 0.42 0.21 0.96 0.32 0.32 0.59
45 0.70 0.31 4.00 0.48 0.47 1.12 1.14 0.62 0.39 0.37 0.98 0.43 0.16 0.71 0.32 0.26 0.58
9952 1.21 0.26 3.16 0.42 0.38 1.88 1.28 0.62 0.37 0.34 0.79 0.34 0.20 0.81 0.28 0.25 0.55
9960 0.70 0.29 3.10 0.40 0.41 1.33 1.12 0.64 0.37 0.36 0.88 0.38 0.09 0.73 0.29 0.22 0.58
9985 0.19 0.12 0.67 0.17 0.18 0.60 0.28 0.24 0.16 0.15 0.28 0.16 0.08 0.20 0.11 0.07 0.17
9986 0.43 0.30 0.77 0.51 0.51 0.85 0.49 0.80 0.41 0.41 0.60 0.39 0.13 0.51 0.31 0.30 0.41
9987 0.43 0.30 0.80 0.51 0.50 0.84 0.50 0.79 0.41 0.41 0.60 0.38 0.13 0.51 0.31 0.29 0.42

27



D.4 NetScore-T (Log-Loss) Results

Table 14 presents the NetScore-T computed using the transformed log-loss metric. This version
emphasizes probability calibration quality in the joint accuracy-energy assessment.

Table 14: NetScore-T (log-loss) per dataset and model. Higher values indicate better log-loss-energy trade-offs. Best values per row are
shown in bold.

Dataset CatBoost DaNet DecisionTree IMLP IMLP_C kNN LightGBM LinearModel MLP MLP_C RandomForest ResNet STG SVM TabNet VIME XGBoost

146206 2.97 0.95 3.26 1.41 1.38 0.67 2.77 2.76 1.30 1.22 2.05 0.50 0.58 1.59 0.93 0.71 0.96
146607 2.37 0.74 3.39 1.25 1.25 0.32 2.96 1.75 1.08 1.20 2.69 0.30 0.63 1.41 0.84 0.23 0.85
146820 17.59 6.15 8.74 4.09 1.67 4.56 39.55 9.32 4.93 4.46 13.28 3.33 0.70 38.22 6.33 0.50 1.06
14951 2.21 0.55 3.15 0.80 0.65 1.09 3.47 1.90 0.64 0.87 1.67 0.32 0.56 0.88 0.62 0.68 0.97
14952 7.73 2.21 12.86 3.56 3.15 1.92 8.95 6.89 3.43 1.98 4.21 0.92 0.59 5.00 2.00 1.46 1.04
14964 0.74 0.37 1.60 0.55 0.53 0.58 1.03 0.65 0.48 0.35 0.67 0.11 0.18 0.63 0.39 0.13 0.22
14969 0.55 0.26 1.01 0.35 0.36 0.15 0.59 0.62 0.37 0.36 0.71 0.11 0.26 0.45 0.26 0.08 0.33
14970 2.01 4.03 1.38 4.73 4.05 1.72 8.73 8.57 5.25 4.97 1.94 1.04 0.23 5.21 4.26 1.09 0.23
167141 7.07 1.40 5.40 1.65 1.42 0.86 8.61 2.37 1.52 1.50 4.01 1.07 0.65 3.98 1.23 0.19 1.04
167211 52.50 11.38 29.30 16.80 19.07 9.49 93.29 33.19 11.24 8.49 49.24 8.23 0.65 87.38 6.74 1.77 1.15
168908 0.74 0.60 0.39 0.71 0.82 0.28 0.77 0.25 0.81 0.81 1.33 0.34 0.63 0.70 0.54 0.37 0.59
168909 0.60 2.65 0.31 2.40 1.48 0.73 2.68 1.54 4.15 1.12 0.68 0.75 0.25 2.80 1.36 1.81 0.20
168910 0.32 0.23 0.95 0.42 0.38 0.08 0.42 0.26 0.38 0.33 0.58 0.13 0.22 0.35 0.24 0.16 0.25
168912 6.45 1.66 3.88 2.36 2.16 1.65 7.32 3.09 2.04 2.03 3.65 0.97 0.66 4.59 1.33 0.91 1.00
190410 1.12 0.64 0.68 0.72 0.63 0.39 1.26 1.00 0.82 0.75 1.49 0.33 0.64 0.96 0.58 0.33 0.74
2074 2.29 1.05 2.45 1.34 1.45 1.42 3.21 1.97 1.40 1.43 2.28 0.44 0.26 3.16 0.95 0.66 0.31
28 3.13 3.28 1.71 4.91 4.83 4.89 6.14 6.57 4.32 4.12 1.46 3.02 0.20 7.36 2.04 2.40 0.22
32 4.01 4.53 2.42 5.34 6.76 6.67 9.17 5.00 7.34 4.13 2.04 2.73 0.18 14.14 3.74 0.43 0.22
3481 0.46 0.98 0.32 1.63 1.73 0.36 1.31 2.91 2.00 1.87 0.55 0.86 0.13 1.52 0.79 0.78 0.10
3510 1.67 2.90 1.26 3.31 2.82 4.03 4.29 6.40 4.16 3.61 1.06 1.44 0.19 6.99 2.86 0.90 0.23
3686 3.35 0.97 3.25 1.45 1.20 0.54 2.75 2.61 1.37 1.28 2.31 0.40 0.59 1.61 0.91 0.55 0.93
3711 2.98 1.08 4.10 1.54 1.57 0.45 2.74 4.43 1.52 1.45 2.20 0.44 0.61 2.02 1.10 0.35 0.95
3735 4.07 0.55 4.32 0.77 0.71 1.25 4.60 0.99 0.75 0.70 1.51 0.74 0.68 1.50 0.53 0.62 1.87
3889 39.21 10.04 14.49 14.40 14.90 1.86 41.25 22.50 12.88 12.25 11.74 4.20 0.61 10.84 7.95 3.00 0.87
3896 4.23 0.93 7.11 1.26 1.38 1.20 5.39 1.96 1.40 1.32 2.85 0.73 0.66 2.54 0.87 0.47 1.07
3897 1.02 0.34 1.79 0.45 0.35 0.22 0.92 1.05 0.48 0.45 1.00 0.18 0.37 0.59 0.34 0.28 0.55
3904 2.54 0.73 3.47 1.11 1.12 0.70 3.03 2.70 0.98 0.97 2.17 0.21 0.62 1.42 0.75 0.22 0.97
3950 9.71 10.24 4.53 6.91 9.87 2.10 14.70 12.68 10.46 9.59 5.15 3.80 0.62 8.25 108.61 0.27 0.87
3954 3.02 0.94 3.20 1.43 1.26 0.69 2.76 2.75 1.31 1.22 2.10 0.44 0.56 1.59 0.93 0.71 0.96
43 4.87 1.54 6.64 1.92 2.21 1.41 6.88 2.51 2.23 2.19 3.92 0.86 0.66 3.92 1.37 1.40 0.99
45 3.09 1.05 6.22 1.83 1.94 1.51 7.21 3.64 2.29 1.97 2.01 1.05 0.44 4.47 0.86 1.11 0.59
9952 4.21 0.86 5.05 1.34 1.26 1.84 4.42 1.92 1.25 1.15 2.73 0.49 0.66 2.66 0.89 0.78 1.04
9960 11.96 0.94 9.43 0.99 0.84 1.15 38.08 1.42 1.23 1.18 3.49 0.37 0.32 2.31 1.14 0.14 0.44
9985 0.45 0.24 1.00 0.37 0.35 0.20 0.56 0.55 0.35 0.33 0.71 0.11 0.25 0.48 0.25 0.05 0.29
9986 1.68 2.85 1.03 3.62 3.43 3.19 8.61 6.22 5.73 4.18 1.39 0.95 0.23 4.02 2.69 1.75 0.26
9987 1.88 2.74 1.09 3.46 3.59 3.17 9.47 6.59 5.82 5.44 1.41 0.81 0.23 4.50 3.25 1.91 0.26
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D.5 Wall-Time Results

Table 15 shows the total wall-clock time in seconds for training and inference across all segments.
This includes the cumulative time for all segments in the stream.

Table 15: Total wall-time in seconds per dataset and model. Lower values indicate faster execution. Best values per row are shown in bold.
Dataset CatBoost DaNet DecisionTree IMLP IMLP_C kNN LightGBM LinearModel MLP MLP_C RandomForest ResNet STG SVM TabNet VIME XGBoost

146206 2.59 703.01 1.62 19.78 24.13 2.86 6.45 4.95 76.65 100.78 5.42 110.80 146.22 92.48 575.51 162.62 4.95
146607 2.28 143.45 0.78 8.48 10.38 10.88 2.39 6.61 21.73 27.36 2.24 39.34 40.88 65.51 116.27 262.26 3.53
146820 0.59 82.83 0.21 7.32 7.11 0.39 0.34 3.64 12.60 15.72 1.67 26.70 19.85 1.00 65.63 23.52 1.92
14951 2.37 333.95 1.09 20.80 19.46 2.39 7.21 4.82 114.26 85.63 4.18 103.12 115.03 119.24 193.59 164.31 4.63
14952 2.67 419.12 0.75 13.29 15.96 6.38 2.97 5.77 49.72 66.77 4.13 86.22 91.79 20.10 319.09 159.27 4.20
14964 3.63 383.26 0.67 14.20 17.22 1.04 13.01 4.78 40.12 57.51 3.58 65.57 71.82 34.62 330.57 130.25 12.02
14969 4.82 303.67 0.98 24.88 11.37 2.57 12.15 4.69 27.64 28.97 2.82 39.22 47.86 44.26 156.25 88.01 5.79
14970 115.95 478.53 14.66 13.67 16.25 26.22 76.90 12.24 39.93 55.83 9.88 94.53 78.13 96.95 340.98 992.72 30.34
167141 0.62 53.54 0.19 5.29 6.74 0.52 0.31 3.09 9.04 12.47 1.06 18.51 13.43 2.49 47.22 17.82 1.33
167211 0.45 48.19 0.18 5.32 5.59 0.38 0.21 3.22 7.52 8.92 0.99 18.37 14.14 0.41 36.35 20.56 1.14
168908 15.81 38.24 4.96 6.79 6.32 9.99 20.49 6.19 8.52 10.35 2.27 14.34 15.34 100.93 42.93 291.28 8.79
168909 360.81 499.46 64.83 16.87 18.05 116.13 727.20 26.78 44.35 75.01 19.75 122.87 80.36 817.99 427.62 2575.18 102.45
168910 20.59 300.84 1.42 11.20 12.75 23.98 27.94 9.75 28.49 37.29 3.31 46.23 55.02 427.21 221.15 535.65 12.95
168912 0.64 59.79 0.19 4.98 6.13 0.51 0.55 3.05 8.32 10.82 1.07 14.52 13.86 2.56 45.12 29.78 1.46
190410 4.32 56.26 2.42 6.07 7.39 2.90 4.66 4.89 12.24 15.98 2.49 15.63 21.00 30.96 59.36 114.64 4.21
2074 1.81 148.06 0.34 8.20 9.40 0.67 2.13 4.31 18.98 22.17 1.68 30.00 25.96 3.65 84.44 81.43 4.25
28 1.84 109.78 0.32 6.67 7.91 1.14 3.59 4.29 13.68 17.09 1.61 21.78 22.77 5.00 86.89 61.11 6.27
32 5.43 397.28 0.93 14.36 16.85 1.96 8.09 5.27 46.65 62.63 4.22 90.57 91.33 11.15 325.68 132.85 14.18
3481 316.81 251.87 10.43 13.64 13.56 16.32 136.37 8.90 28.77 31.72 6.68 67.74 45.67 101.70 207.34 563.01 88.63
3510 6.80 468.37 1.04 12.54 15.15 2.05 11.36 4.69 42.32 53.51 3.84 77.03 75.37 14.09 351.76 118.37 13.29
3686 4.08 899.46 2.87 22.32 29.32 13.28 12.37 6.67 110.32 155.66 8.23 167.83 236.00 157.04 588.40 248.78 7.09
3711 2.93 648.96 1.41 20.14 23.83 10.77 7.87 6.22 85.73 113.10 5.45 134.20 164.77 80.51 546.84 222.93 6.25
3735 0.25 37.52 0.15 4.90 6.04 0.29 0.32 3.56 6.71 9.98 1.37 9.75 12.36 3.24 29.81 23.13 0.63
3889 3.18 291.36 1.49 13.28 15.73 17.96 2.22 6.06 38.34 49.30 3.41 63.98 88.50 47.53 253.07 381.67 4.42
3896 0.59 50.18 0.16 5.24 5.82 0.60 0.52 3.84 9.09 11.19 1.09 13.55 14.64 3.17 35.68 30.44 1.50
3897 2.54 307.66 0.81 14.62 18.88 3.98 12.14 4.67 34.84 53.35 3.06 54.37 66.68 63.06 291.69 94.46 4.84
3904 2.43 307.46 0.93 14.22 14.99 1.85 2.34 5.05 46.62 48.85 4.32 81.97 89.61 48.74 243.62 106.27 4.85
3950 3.61 113.70 0.90 7.12 8.64 2.99 3.08 5.10 14.58 17.93 1.94 39.66 26.42 10.64 129.96 164.12 2.80
3954 2.56 697.67 1.59 20.46 26.60 2.63 6.43 4.96 73.24 100.14 5.46 119.24 146.78 92.73 569.04 164.06 4.90
43 0.79 60.20 0.18 5.58 5.21 0.50 0.80 3.32 8.21 8.74 0.95 16.45 12.63 2.13 46.55 30.89 1.36
45 1.30 45.12 0.14 4.45 4.80 0.63 0.84 3.46 6.38 8.24 0.96 12.93 8.94 4.46 32.13 54.85 1.73
9952 0.62 96.64 0.24 6.33 7.28 0.41 0.85 3.64 13.46 20.34 1.61 34.88 22.10 3.85 85.31 45.91 1.88
9960 2.52 94.11 0.35 8.75 8.63 0.77 1.19 3.91 17.15 22.46 1.94 29.59 24.49 6.29 128.40 56.73 3.51
9985 5.72 197.68 0.55 9.37 10.01 0.88 6.66 4.79 17.63 23.91 2.13 31.80 29.95 19.43 108.38 59.57 6.55
9986 40.54 571.53 7.94 17.51 18.23 5.31 36.11 9.23 67.73 72.67 10.58 103.23 132.05 67.15 350.04 438.58 19.80
9987 40.79 536.19 7.87 17.50 19.18 5.39 33.21 9.43 72.04 75.18 10.45 113.54 132.29 66.96 402.38 615.34 19.81
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D.6 Energy Consumption Results

Table 16 presents the total energy consumption in Joules, measured using the ElmorLabs PMD-USB
power meter. Energy includes both training and inference phases across all segments.

Table 16: Total energy consumption in Joules per dataset and model. Lower values indicate more energy-efficient execution. Best values per
row are shown in bold.

Dataset CatBoost DaNet DecisionTree IMLP IMLP_C kNN LightGBM LinearModel MLP MLP_C RandomForest ResNet STG SVM TabNet VIME XGBoost

146206 168.65 57466.31 57.58 1844.11 2222.64 156.67 410.27 216.28 6099.69 7953.48 333.15 7081.80 11478.59 4172.42 46410.57 12962.03 563.34
146607 175.89 11864.94 29.45 787.84 967.01 856.55 149.92 301.03 1794.63 2231.11 96.94 2415.09 3385.22 3007.49 10898.85 22903.66 518.74
146820 30.50 6712.50 5.92 637.34 620.68 12.58 10.89 150.01 999.79 1244.32 56.53 1642.27 1553.11 39.88 5308.59 1784.68 191.30
14951 146.50 27963.84 39.49 1883.65 1806.82 124.76 470.38 208.28 8957.00 6809.22 202.40 6545.17 9178.04 5370.03 15637.02 13113.38 529.94
14952 172.40 35117.61 25.38 1213.39 1459.93 429.79 167.88 239.28 3941.15 5272.11 149.15 5406.17 7315.75 907.64 25816.55 12627.48 455.46
14964 273.93 31119.18 20.64 1295.35 1570.71 39.50 827.59 211.55 3196.72 4585.16 144.55 4092.71 5719.81 1552.08 27502.76 10359.30 1456.65
14969 378.54 24643.21 36.56 2296.65 1044.46 169.78 846.07 210.10 2238.67 2330.15 166.11 2430.49 3969.22 2037.46 12937.76 7118.13 747.65
14970 9505.89 38768.56 601.49 1267.96 1500.44 2051.08 5875.27 530.24 3269.37 4516.29 721.62 5918.92 6361.79 4337.26 31770.23 84976.73 5211.81
167141 32.24 4384.43 5.08 448.25 575.70 22.90 10.38 132.53 684.18 929.59 40.48 1144.78 1065.08 105.62 3811.89 1379.14 124.96
167211 24.16 4124.20 4.98 469.21 492.14 14.74 5.96 143.68 587.20 700.08 41.98 1130.34 1156.96 14.90 3007.68 1636.23 90.66
168908 1366.73 3062.28 207.41 612.34 589.13 761.62 1544.33 272.05 716.44 868.56 135.73 877.94 1283.05 4600.99 4044.19 23648.79 1520.37
168909 29710.28 40658.15 2682.12 1576.51 1703.39 9021.02 54664.12 1144.24 3845.92 6388.51 1471.26 8193.26 7058.47 36064.94 41887.40 210586.53 19837.78
168910 1610.11 24275.36 52.52 1025.49 1179.38 1895.12 1861.41 415.65 2365.79 3042.75 140.68 2854.36 4512.23 18935.69 20710.58 45075.81 1866.54
168912 39.28 5005.33 6.07 448.75 549.69 23.53 26.44 140.01 675.34 886.49 44.20 883.90 1113.93 114.60 3692.69 2335.01 146.29
190410 371.31 4980.80 98.83 534.51 670.29 206.25 347.32 218.51 972.19 1263.44 154.37 955.96 1774.42 1400.61 5617.62 10425.44 656.28
2074 136.54 12385.70 10.97 737.69 855.79 29.60 117.63 198.02 1531.46 1754.46 74.15 1834.85 2097.64 162.84 6892.12 6468.99 508.08
28 143.43 9053.95 9.96 591.65 692.79 67.29 234.85 194.37 1098.00 1357.35 69.92 1307.70 1824.15 226.93 7058.08 4834.53 770.20
32 420.80 33266.91 33.27 1293.74 1523.01 96.61 549.75 232.69 3702.34 4964.60 188.87 5756.46 7284.89 495.31 26291.31 10482.59 1744.62
3481 28116.43 20290.73 431.12 1238.55 1231.27 1248.12 10969.13 400.99 2366.58 2599.61 479.38 4099.99 3680.34 4682.30 19214.53 48307.61 15965.22
3510 515.27 39059.47 37.82 1128.01 1382.18 106.03 775.61 210.49 3371.72 4270.69 191.25 4894.22 6028.38 633.77 28493.14 9367.90 1647.03
3686 256.78 72905.05 107.08 2076.97 2708.62 913.49 821.22 278.43 8693.79 12279.74 510.96 10715.42 18569.21 7068.40 47522.10 19971.86 849.50
3711 170.59 53711.24 51.95 1871.59 2192.93 732.90 480.57 259.23 6795.11 8926.80 252.43 8517.83 12931.33 3655.64 44074.87 17720.34 738.84
3735 9.59 3036.76 3.67 441.98 544.90 8.94 9.97 161.72 536.32 802.70 51.44 565.35 977.65 142.62 2406.80 1745.34 47.19
3889 236.34 23659.21 60.38 1243.48 1465.83 1473.49 126.20 271.23 3110.55 3971.16 163.20 4023.12 7352.86 2189.25 20886.17 35517.62 623.35
3896 31.90 4347.11 3.94 468.89 513.25 28.00 22.05 170.48 719.99 888.10 44.37 823.16 1198.86 140.63 2968.18 2432.64 142.19
3897 177.67 26099.91 29.33 1319.17 1693.87 267.15 806.67 207.85 2783.08 4247.43 148.52 3372.73 5400.15 2887.35 23721.36 7527.52 581.75
3904 153.93 25858.58 32.55 1291.60 1358.47 82.87 130.00 207.66 3608.89 3798.12 191.20 5106.24 7149.59 2195.91 19709.79 8397.95 554.80
3950 293.96 9888.32 34.93 643.42 781.34 205.33 216.04 224.28 1165.59 1433.55 97.18 2438.71 2211.68 487.65 12229.10 15133.58 379.48
3954 162.51 56959.90 60.25 1889.83 2404.32 140.30 407.05 215.81 5708.14 7645.16 293.78 7645.39 11529.87 4182.49 45933.68 13065.82 546.89
43 70.81 4936.87 4.87 510.21 467.83 22.06 42.35 155.17 663.91 711.80 39.51 1013.09 998.47 90.48 3764.09 2427.54 145.94
45 98.25 3999.65 3.79 387.26 415.87 33.51 45.93 153.22 507.50 648.96 36.84 776.40 755.20 198.43 2705.09 5080.65 183.55
9952 33.42 7848.87 6.66 564.17 647.80 13.42 43.34 161.31 1079.33 1616.52 68.85 2166.24 1753.41 169.36 6897.22 3548.31 197.11
9960 210.08 8047.92 11.06 767.40 766.09 35.14 72.11 175.15 1381.41 1804.02 85.09 1807.05 2016.00 283.13 10590.11 4542.36 411.06
9985 453.40 16290.41 19.46 824.07 913.65 41.95 454.27 217.91 1421.33 1914.75 105.71 1917.83 2392.95 896.31 8829.51 4712.59 851.17
9986 3282.38 47546.91 329.54 1604.45 1670.81 315.69 2671.95 400.16 5357.20 5767.98 764.75 6400.07 10525.98 3132.93 28314.11 34671.69 3174.28
9987 3311.77 44767.88 326.79 1599.41 1740.46 328.06 2545.87 399.74 5750.72 5977.37 770.34 7037.03 10553.54 3127.13 32553.05 57135.43 3179.81
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E Statistical Tests

We conducted comprehensive statistical analysis following the methodology of Demšar [9] to compare
model performance across multiple datasets. This section presents detailed results of the Friedman
omnibus tests and post-hoc Wilcoxon signed-rank tests with Holm correction.

E.1 Friedman Omnibus Test Results

All statistical tests were conducted with N = 36 datasets and k = 17 classifiers at significance level
α = 0.05. The critical difference for post-hoc comparisons is CD = 4.11.

Metric Friedman χ2 p-value Null Hypothesis

Balanced Accuracy 226.41 3.45× 10−39 Rejected
Log-Loss 384.94 5.19× 10−72 Rejected
NetScore-T (Balanced) 478.05 1.42× 10−91 Rejected
NetScore-T (Log-Loss) 363.49 1.59× 10−67 Rejected
Total Energy (Joules) 490.98 2.66× 10−94 Rejected
Total Time (Seconds) 484.27 6.93× 10−93 Rejected

Table 17: Friedman omnibus test results across all metrics. All tests decisively reject the null
hypothesis of equal performance, warranting post-hoc pairwise analysis.

E.2 Model Performance Statistics

Bal. Acc. Log-Loss NS-T (Bal.) NS-T (Log.) Energy (J) Time (s)
Model µ σ µ σ µ σ µ σ µ σ µ σ

LightGBM [T] 0.825 0.167 0.283 0.266 0.872 0.555 9.996 17.631 2466 9179 33.1 121.7
MLP [N] 0.823 0.163 0.336 0.330 0.348 0.077 2.991 3.196 2825 2316 35.4 29.4
MLP_C [N] 0.814 0.175 0.355 0.350 0.331 0.077 2.536 2.746 3511 2809 44.1 35.6
DANet [N] 0.809 0.171 0.343 0.328 0.258 0.056 2.294 2.860 23447 18962 284.3 231.8
SVM [B] 0.808 0.171 0.345 0.330 0.596 0.357 6.668 15.312 3325 6564 74.1 148.7
CatBoost [T] 0.806 0.176 0.389 0.354 0.685 0.310 5.967 10.555 2286 6768 27.4 79.5
IMLP [N] 0.804 0.170 0.399 0.348 0.404 0.094 2.810 3.537 1079 551 11.8 5.9
ResNet [N] 0.803 0.169 1.533 1.460 0.342 0.072 1.187 1.609 3716 2729 59.2 42.5
TabNet [N] 0.794 0.185 0.370 0.337 0.259 0.061 4.735 17.907 18336 14405 218.8 174.5
IMLP_C [N] 0.789 0.176 0.475 0.416 0.394 0.090 2.850 4.005 1192 615 13.1 6.6
k-NN [B] 0.781 0.156 1.451 1.507 0.891 0.416 1.760 2.006 610 1539 8.3 19.7
XGBoost [T] 0.764 0.179 1.207 0.678 0.447 0.147 0.684 0.404 1866 4109 11.6 21.7
LinearModel [B] 0.758 0.202 0.479 0.502 0.636 0.217 4.765 6.478 262 176 6.0 4.1
VIME [N] 0.739 0.201 1.117 1.553 0.241 0.062 0.811 0.707 21501 37218 257.3 449.4
RandomForest [B] 0.738 0.181 0.559 0.399 0.672 0.195 3.952 8.213 237 293 4.1 3.8
DecisionTree [B] 0.717 0.190 0.690 0.450 1.784 1.106 4.477 5.429 152 454 3.8 11.0
STG [N] 0.426 0.165 1.153 0.691 0.163 0.072 0.458 0.201 5115 4286 63.7 54.4

Table 18: Complete performance statistics across 36 TabZilla datasets. Models are categorized as
Tree-based [T], Neural [N], or Baseline [B]. IMLP achieves competitive accuracy while maintaining
superior energy and time efficiency compared to other neural methods.

E.3 Efficiency Analysis

The efficiency metrics reveal stark differences between model categories:

Traditional ML methods dominate efficiency rankings, with DecisionTree (152J), RandomForest
(237J), and LinearModel (262J) consuming minimal energy. Among neural networks, IMLP (1079J)
achieves 2.6× lower energy consumption than standard MLP (2825J) and 17× lower than DANet
(23,447J).

Similar patterns emerge for execution time, where IMLP (11.8s) executes 3× faster than MLP (35.4s)
and 24× faster than DANet (284.3s), while maintaining competitive accuracy.

All pairwise comparisons show statistical significance after Holm correction (CD = 4.11), confirm-
ing that observed efficiency gains are not due to random variation across the 36 datasets.
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The Friedman test statistics are particularly large for efficiency metrics (χ2 > 484), indicating
substantial and consistent differences in computational requirements across methods, with IMLP
achieving the best accuracy-efficiency trade-off among neural approaches.

E.4 Error Analysis and Dataset-Specific Performance

To understand when and why IMLP provides advantages over baseline methods, we conducted
pairwise comparisons across all 36 TabZilla datasets. This analysis reveals distinct performance
patterns that illuminate IMLP’s positioning in the accuracy-efficiency landscape.

E.4.1 Predictive Performance Analysis

vs. MLP vs. LightGBM vs. CatBoost vs. XGBoost
Metric IMLP Base IMLP Base IMLP Base IMLP Base

Better Better Better Better Better Better Better Better
Balanced Accuracy 5 31 11 25 14 22 27 9
Log-Loss 2 34 4 32 11 25 34 2

Table 19: Dataset count where IMLP outperforms key baselines on predictive metrics. IMLP
consistently dominates XGBoost while trailing other methods.

The predictive performance analysis reveals a clear hierarchy: IMLP consistently outperforms
XGBoost (winning on 27/36 datasets for balanced accuracy and 34/36 for log-loss) but generally
trails MLP, LightGBM, and CatBoost. The mean differences are modest: IMLP achieves 1.97% lower
balanced accuracy than MLP but 3.93% higher than XGBoost, indicating competitive performance
within the neural network family.

E.4.2 Efficiency-Adjusted Performance

vs. MLP vs. LightGBM vs. CatBoost vs. XGBoost
Metric IMLP Base IMLP Base IMLP Base IMLP Base

Better Better Better Better Better Better Better Better
NetScore-T (bal. acc.) 34 2 7 29 7 29 13 23
NetScore-T (log-loss) 18 18 2 34 9 27 32 4
Total Time (s) 36 0 7 29 7 29 8 28
Total Energy (J) 35 1 7 29 7 29 13 23

Table 20: Dataset count where IMLP outperforms baselines on efficiency and composite metrics.
IMLP dominates other neural methods but trails tree-based approaches.

When efficiency is considered, IMLP’s value proposition becomes evident. Against standard MLP,
IMLP wins decisively: faster on all 36 datasets (mean speedup: 23.5s) and more energy-efficient on
35/36 datasets (mean reduction: 1,746J). The NetScore-T (Balanced) metric particularly favors IMLP
over MLP (34 vs. 2 datasets), demonstrating superior accuracy-efficiency trade-offs.

However, tree-based methods maintain their efficiency advantage, with LightGBM and CatBoost
outperforming IMLP on efficiency metrics across 29/36 datasets. This reflects the fundamental
computational efficiency of tree-based architectures compared to neural networks.

E.4.3 Landscape Analysis

The pairwise analysis reveals three distinct performance tiers:

1. Accuracy Leaders: LightGBM, MLP, and CatBoost dominate predictive metrics, with
LightGBM achieving the best overall balance.

2. Efficiency-Accuracy Optimizers: IMLP occupies a unique position, offering neural net-
work expressiveness with substantially improved efficiency compared to standard MLPs,
while maintaining competitive accuracy.
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3. Pure Efficiency Champions: Tree-based methods (particularly DecisionTree and k-NN)
excel in computational efficiency but may sacrifice some accuracy on complex datasets.

E.4.4 Practical Implications

Deployment scenarios requiring neural network capabilities with energy constraints, streaming data
applications where constant-time updates matter, and situations where the modest accuracy trade-off
(<2% vs. MLP) is acceptable for significant efficiency gains (3× speedup, 60% energy reduction).

When maximum predictive accuracy is paramount (favor LightGBM/MLP), when computational
resources are unconstrained (favor standard MLP), or when extreme efficiency is required regardless
of accuracy (favor DecisionTree/k-NN).

The consistent pattern across efficiency metrics confirms IMLP’s design goal: providing a practical
middle ground between the accuracy of full neural networks and the efficiency demands of production
deployment.

E.5 Per-Segment Analysis and Learning Dynamics

We examine the fundamental paradigmatic difference between IMLP’s incremental learning approach
and traditional batch retraining methods. IMLP operates exclusively in segmental mode (training
only on new data), while baseline neural methods operate in cumulative mode (retraining on all
accumulated data). This distinction drives fundamentally different computational and deployment
characteristics.

E.5.1 Learning Paradigm Comparison

The segment data demonstrates two distinct learning paradigms with different computational and
data requirements:

IMLP (Segmental Mode): Trains exclusively on each new data segment using attention-based
feature replay to maintain knowledge of previous patterns. By segment N , IMLP has seen only the
data from segment N .

MLP (Cumulative Mode): Retrains from scratch on the complete accumulated dataset at each
segment. By segment N , MLP has retrained on data from segments 0 through N combined.

This fundamental difference means accuracy comparisons across segments are not directly equivalent,
MLP leverages exponentially more training data as segments progress.

E.5.2 Energy Efficiency Analysis

The computational efficiency comparison is valid and reveals substantial advantages for incremental
learning:

Segment IMLP Energy (J) MLP Energy (J) MLP Overhead
0 128.1 131.9 1.0×
1 81.7 107.9 1.3×
2 88.8 121.6 1.4×
3 101.3 137.8 1.4×
4 84.0 154.8 1.8×
5 81.0 167.8 2.1×
6 82.8 187.9 2.3×
7 81.3 226.2 2.8×

Table 21: Per-segment energy consumption. IMLP maintains constant computational cost (∼ 85J
after initialization) while MLP’s batch retraining shows linear growth with accumulated data size.

After initialization, IMLP stabilizes at approximately 85J per segment, confirming theoretical constant-
time updates regardless of historical data size. This enables predictable computational requirements
for long-term deployment.

33



MLP exhibits 71% energy growth from segment 0 to 7 (132J→ 226J), reflecting the linear scaling
inherent in batch retraining as dataset size grows. This trend projects to 350J+ per segment by
segment 20, making long-term deployment computationally prohibitive.

E.5.3 Data Efficiency and Continual Learning Effectiveness

The most striking finding emerges from analyzing performance relative to training data consumption:

Segment IMLP Accuracy MLP Accuracy Training Data Ratio
(Segmental) (Cumulative) (MLP:IMLP)

0 0.747 0.647 1:1
1 0.766 0.740 2:1
2 0.776 0.769 3:1
3 0.776 0.781 4:1
4 0.789 0.792 5:1
5 0.774 0.795 6:1
6 0.783 0.809 7:1
7 0.796 0.815 8:1

Table 22: Performance vs training data consumption. IMLP achieves 79.6% accuracy using 1/8th the
training data required by MLP to reach 81.5%.

By segment 7, IMLP achieves 79.6% accuracy having trained only on segment 7’s data, while MLP
requires all eight segments of accumulated data to reach 81.5%. This represents achieving 97.7%
of MLP’s performance with 12.5% of the training data—a compelling demonstration of effective
continual learning.

The only fair accuracy comparison occurs at segment 0, where both methods train on identical data.
IMLP achieves 74.7% versus MLP’s 64.7%, a 15.5% relative improvement, indicating superior
learning efficiency when given equivalent training data. IMLP’s ability to maintain 77-79% accuracy
across segments 1-7 while training only on individual segments demonstrates successful mitigation of
catastrophic forgetting. The attention-based feature replay mechanism effectively preserves relevant
knowledge without requiring raw data storage.

E.5.4 Cumulative Computational Cost Analysis

Long-term deployment scenarios reveal the compounding advantages of incremental learning:

Segment IMLP Cumulative (J) MLP Cumulative (J) Efficiency Advantage
0 128.1 131.9 1.0×
2 298.6 361.4 1.2×
4 484.0 654.0 1.4×
6 647.7 1009.7 1.6×
7 729.0 1235.8 1.7×

Table 23: Cumulative energy consumption showing widening efficiency gap. The advantage grows
from parity to 1.7× by segment 7, with the trend indicating continued divergence.

The cumulative energy gap widens from parity at segment 0 to 1.7× by segment 7. Extrapolating this
trend suggests 2.5× advantage by segment 15 and 4× by segment 30, making incremental learning
essential for long-term deployment feasibility.

By segment 7, IMLP has consumed 507J less energy than MLP (729J vs 1,236J), representing a 41%
reduction in total computational cost. In large-scale deployments, these savings translate directly to
reduced operational expenses and carbon footprint.
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E.5.5 Practical Deployment Implications

IMLP Advantages:

• Resource-Constrained Environments: Constant 85J per update enables deployment on
edge devices and mobile platforms where batch retraining would exceed power budgets.

• Privacy-Preserving Applications: Segmental learning eliminates the need to store historical
raw data, addressing data retention regulations and privacy concerns.

• Real-Time Systems: Predictable computational requirements enable consistent response
times regardless of historical data volume.

• Long-Term Learning: Growing efficiency advantage makes IMLP the only viable option
for systems intended to learn continuously over months or years.

MLP Advantages:

• Maximum Accuracy Scenarios: When computational resources are unlimited and maxi-
mum predictive performance is paramount, batch retraining on complete datasets provides
marginal accuracy improvements.

• Short-Term Deployment: For applications processing fewer than 10 segments, the compu-
tational overhead remains manageable.

F Reproducibility Assets and Instructions

We provide comprehensive instructions for reproducing all experimental results, with particular
emphasis on the hyperparameter optimization procedure that underpins our comparative evaluation.

F.1 Shared Hyperparameter Optimization

Both MLP and IMLP models utilize identical optimized hyperparameters obtained through the
comprehensive search described in Section F.3. This design choice ensures fair comparison by
providing both architectures with equivalent optimization budget and regularization strategies. The
attention-specific hyperparameters for IMLP (window_size, use_attention) are set to their default
values as specified in the configuration files, focusing the optimization on general neural network
training techniques that benefit both architectures.

F.1.1 Preprocessing Pipeline

Execute the data preparation:

cd data
python openml_data_processor.py --task_list openml_import.txt \

--num_workers 4 --min_segment_size 500 --max_segment_size 1000

This generates both segmented datasets (for IMLP) and cumulative datasets (for baseline models)
with consistent train/validation/test splits across all 36 tasks.

F.2 External Dependencies and Platform Compatibility

F.2.1 Core Dependencies

The framework integrates with TabZilla [34] for baseline model implementations:

# Install core dependencies
pip install -r requirements.txt
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F.2.2 Model-Specific Requirements

Several baseline models have additional dependencies:

• Tree-based models: LightGBM, XGBoost, CatBoost with platform-specific optimizations
• Transformer models: Additional memory requirements for attention mechanisms
• Specialized architectures: DANet, NODE, SAINT with custom CUDA kernels

F.2.3 Platform Considerations

The codebase supports both CPU and CUDA execution with automatic device detection. Mixed-
precision training (AMP) is enabled by default on compatible hardware but can be disabled for older
GPUs.

F.3 Hyperparameter Optimization Framework

Following the methodology of Kadra et al. [23], we employ a comprehensive hyperparameter search
for both MLP and IMLP models to ensure fair comparison. Our approach extends beyond simple grid
search to include a "regularization cocktail" that systematically explores combinations of modern
deep learning techniques.

F.3.1 Search Space Definition

The optimization space encompasses multiple regularization families:

Implicit Regularization:

• Batch Normalization: use_batch_norm ∈ {True,False}
• Stochastic Weight Averaging: use_swa ∈ {True,False}

Explicit Regularization:

• Weight Decay: use_weight_decay ∈ {True,False}
• Weight Decay Coefficient: weight_decay ∈ [10−5, 10−1] (log-uniform)
• Dropout: use_dropout ∈ {True,False}
• Dropout Patterns: dropout_shape ∈ {funnel, long_funnel, diamond, triangle}
• Dropout Rate: dropout_rate ∈ [0.0, 0.8] (uniform)

Architectural Variations:

• Skip Connections: use_skip ∈ {True,False}
• Skip Types: skip_type ∈ {Standard,ShakeShake,ShakeDrop}
• ShakeDrop Probability: shakedrop_prob ∈ [0.0, 1.0] (uniform)

Training Techniques:

• Data Augmentation: augmentation ∈ {None,MixUp}
• Augmentation Magnitude: aug_magnitude ∈ [0.0, 1.0] (uniform)
• Mixed Precision: use_amp ∈ {True,False}
• Gradient Clipping: max_grad_norm ∈ [0.1, 10.0] (log-uniform)

F.3.2 Optimization Algorithm

We employ Optuna [1] with the following configuration:

• Sampler: Tree-structured Parzen Estimator (TPE) with multivariate optimization
• Pruner: MedianPruner with 50 startup trials and 50 warmup steps
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• Trials per Task: 100 trials with early stopping (patience=100)
• Training Budget: 100 epochs per trial with early stopping (patience=10)
• Objective: Minimize 1− validation balanced accuracy

F.3.3 Computational Requirements

The hyperparameter optimization requires substantial computational resources:

• Total Runtime: Approximately 72 hours for all 36 tasks
• Trials per Task: 100 trials × 36 tasks = 3,600 total optimization runs
• Storage: SQLite databases for persistence and resumption

F.3.4 Execution Protocol

The optimization is ran through a parallelized bash script:

#!/bin/bash
N_TRIALS=100
EPOCHS=100
DEVICE="cuda"
MAX_PARALLEL=22
DATA_ROOT="../data/full_datasets"

# Parallel execution across all tasks
printf "%s\n" "${TASK_IDS[@]}" | xargs -I {} -P ${MAX_PARALLEL} \

bash -c 'python mlp_c.py --task_id {} --n_trials ${N_TRIALS} \
--epochs ${EPOCHS} --device ${DEVICE} \
--storage "sqlite:///optuna_db/task_{}.db" \
--data_root ${DATA_ROOT}'

Each task generates optimized hyperparameters saved as YAML files:
tuning/task_{TASK_ID}_hyperparams.yml

F.3.5 Integration with Main Experiments

The CLI automatically loads tuned hyperparameters when available:

tuning_f = f"tuning/task_{args.task}_hyperparams.yml"
if not args.no_tuning and os.path.isfile(tuning_f):

merge_dict(hp, load_yaml(tuning_f))

This ensures that all comparative results use optimized configurations, providing a fair evaluation
baseline that reflects the current state-of-the-art in hyperparameter optimization for tabular neural
networks.

F.3.6 Reproducibility Considerations

To ensure reproducible optimization:

• Fixed random seed (42) across all Optuna samplers
• Deterministic trial ordering through study persistence
• Gradient clipping and mixed precision for numerical stability
• Model checksum verification for state consistency

F.4 Hardware Requirements and Energy Measurement

F.4.1 Hardware Setup

All experiments were conducted on a single workstation with the following hardware configuration:
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Compute Platform:

• CPU: Intel Core i5-8600K @ 3.60GHz (6 physical cores, 6 logical cores)
• GPU: NVIDIA GeForce RTX 2080 Ti Rev. A (CUDA Compute Capability 7.5)
• Memory: 15GB RAM
• Architecture: x86_64

Software Environment:

• Operating System: Debian GNU/Linux 12 (bookworm)
• Kernel Version: 6.1.0-32-amd64
• Compiler: GCC 12.2.0 (Debian 12.2.0-14)
• CUDA Toolkit: 11.8.89

Limitations:

• Memory constraints may limit batch sizes for larger models
• Single-GPU configuration restricts parallel training capabilities
• Total system memory (15GB) may constrain certain memory-intensive operations

All timing measurements and energy consumption data reported in this work are specific to this hard-
ware configuration. Performance scaling to different hardware configurations should be considered
when reproducing results, particularly for:

• Different GPU architectures (compute capability variations)
• Systems with varying memory capacities
• Multi-GPU configurations

The reported absolute performance metrics should be interpreted relative to this baseline configuration,
with relative performance improvements being the primary focus for cross-system validation.

F.4.2 Energy Measurement Setup

Hardware-based Measurement (Recommended): We employ an ElmorLabs PMD-USB power
measurement device with PCIe slot adapter for precise wall-power readings at 500-800Hz sampling
rate. This setup provides ground-truth energy measurements by capturing total system power draw
during training and inference phases.

Software-based Measurement (Alternative): For systems without dedicated power measurement
hardware, the framework can fall back to software-based energy estimation using NVIDIA’s Manage-
ment Library (nvidia-smi) or Intel’s RAPL interface. However, as noted by Yang et al. [52], these
software solutions suffer from significant limitations:

• Sampling Coverage: NVIDIA’s power sensor samples only 25% of runtime on A100/H100
cards

• Estimation Error: Up to 65% under/over-estimation compared to calibrated external meters
• Temporal Resolution: Lower sampling rates lead to missed power spikes during intensive

operations

The energy monitoring can be disabled entirely by setting appropriate flags, though this removes the
energy-efficiency evaluation component of our NetScore-T metrics.

G Additional Figures

We present supplementary visualizations analyzing the first 7 segments (segments 0-6) of continual
learning performance. A fundamental distinction in our evaluation is the training paradigm: IMLP
operates in segmental mode (training only on current segment data), while all baseline models
operate in cumulative mode (retraining on all accumulated data up to the current segment).
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G.1 Learning Paradigm Comparison

Figure 3 contrasts the fundamental learning approaches across the first 7 segments. The visualiza-
tion highlights a critical comparison: IMLP’s segmental learning (solid red line) versus baselines’
cumulative retraining (dashed lines).

IMLP maintains stable performance around 0.77-0.78 balanced accuracy using only current segment
data, demonstrating effective catastrophic forgetting mitigation through attention-based feature replay.
The performance remains remarkably consistent despite never seeing historical raw data.

Cumulative approaches (dashed lines) show improving performance as they accumulate more training
data, with MLP and LightGBM reaching higher final accuracy by leveraging all historical information.
However, this comes at the cost of dramatically increasing computational requirements.

The cumulative energy plot (bottom-left) reveals the fundamental trade-off: IMLP’s constant per-
segment energy consumption versus the linear growth exhibited by cumulative approaches. By
segment 6, this difference becomes substantial.

IMLP achieves approximately 92% of the performance that MLP attains when MLP has access to
7× more training data (all segments 0-6 vs. just segment 6), while consuming significantly less
cumulative energy.
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Figure 3: Learning paradigm comparison across the first 7 segments. IMLP (solid red) operates in
segmental mode using only current data, while baselines (dashed lines) use cumulative retraining.
The dramatic energy divergence in the bottom-left panel demonstrates IMLP’s sustainable learning
approach. Shaded areas represent ±1 standard deviation across 36 datasets.
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G.2 IMLP Segmental Learning Characteristics

Figure 4 provides comprehensive analysis of IMLP’s segmental learning behavior, validating the
consistency and efficiency of the attention-based continual learning approach.

The top-left panel shows IMLP’s balanced accuracy across segments, with an overall mean of 0.773.
While there is some variance (particularly visible in segment 1), the model demonstrates reasonable
stability given that it trains only on current data without access to historical samples.

After initialization (segment 0), IMLP maintains approximately constant energy consumption with
a post-initialization mean of 86.6J per segment (top-right panel). This validates the theoretical
O(W · d2) complexity prediction and enables predictable resource planning for deployment.

The bottom-left histogram shows IMLP’s balanced accuracy distribution across 36 datasets at segment
6, with a mean of 0.783. Most datasets achieve performance between 0.7-0.9, demonstrating robust
generalization across diverse tabular domains with only a few challenging datasets showing lower
performance.

The bottom-right scatter plot reveals that total energy consumption (cumulative across all segments)
shows reasonable correlation with final accuracy, indicating that more complex datasets require more
computational resources, as expected.
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Figure 4: Comprehensive analysis of IMLP’s segmental learning characteristics over 7 segments. Top-
left: Performance stability with overall mean 0.773. Top-right: Energy consistency after initialization
(∼86.6J per segment). Bottom-left: Performance distribution at segment 6 across 36 datasets. Bottom-
right: Energy-accuracy relationship showing predictable resource scaling.
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G.3 Accuracy-Energy Pareto Frontier

Figure 5 visualizes the trade-offs between predictive performance and computational efficiency
using segment 6 results across all evaluated models. This analysis reveals IMLP’s positioning in the
accuracy-energy landscape after 7 segments of learning.

The plot clearly separates three model families: neural networks (red circles) cluster in the moderate-
to-high energy, variable accuracy region; tree-based methods (green squares) achieve high accuracy
with moderate energy consumption; classical methods (blue triangles) minimize energy usage with
acceptable accuracy.

Among neural approaches, IMLP achieves a compelling balance, positioned distinctly from other
neural methods by consuming significantly less energy while maintaining competitive accuracy. The
explicit labeling shows IMLP’s advantage over standard MLP approaches.

The logarithmic x-axis emphasizes the orders-of-magnitude differences in computational require-
ments, with IMLP consuming approximately 100J while maintaining neural network expressiveness,
compared to 1000J+ for other neural approaches.
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Figure 5: Accuracy-energy Pareto frontier using segment 6 performance across all models. IMLP
achieves optimal positioning among neural approaches, delivering competitive accuracy with substan-
tially reduced energy consumption. The logarithmic x-axis emphasizes the dramatic differences in
computational requirements between model families.

G.4 Cumulative Energy Efficiency Analysis

Figure 6 demonstrates the compound advantages of IMLP’s segmental learning approach over the
first 7 segments, emphasizing computational sustainability for extended deployment.

The left panel shows cumulative energy consumption where IMLP (solid red) maintains shallow
linear growth, while cumulative approaches (dashed lines) exhibit much steeper growth. By segment
6, the gap has become substantial, with IMLP consuming approximately 500J total versus 2000J+ for
MLP.

The right panel quantifies efficiency ratios relative to MLP baseline, revealing IMLP’s advantage
growing from 1.0× at segment 0 to an impressive 6× by segment 6. This dramatic improvement
demonstrates the compound benefits of constant-time updates versus quadratic growth in cumulative
approaches.
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Interestingly, LightGBM also shows efficiency gains versus MLP (reaching ∼3× by segment 6), but
still requires significantly more energy than IMLP’s segmental approach.
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Figure 6: Cumulative energy efficiency analysis over the first 7 segments. Left: IMLP’s segmental
learning (solid line) versus cumulative retraining approaches (dashed lines) showing dramatically
diverging energy trajectories. Right: Efficiency ratios demonstrating IMLP’s growing advantage,
reaching 6× better efficiency than MLP by segment 6.

G.5 Empirical Validation of Theoretical Predictions

The 7-segment analysis validates key theoretical claims about incremental learning:

IMLP’s O(W ·d2) attention complexity translates to consistent∼86.6J per segment after initialization,
confirming theoretical constant-time update guarantees regardless of historical data size.

Baseline models exhibit the expected O(T ·N) growth patterns, with energy consumption growing
linearly as accumulated dataset size expands across segments.

IMLP’s stable performance (±0.02 around 0.773 mean) while training only on current segments
demonstrates successful catastrophic forgetting mitigation through attention-based feature replay.

G.6 Practical Deployment Implications

The 7-segment analysis reveals IMLP’s value proposition for practical applications:

The consistent ∼86.6J per segment enables accurate resource planning and deployment on energy-
constrained devices where cumulative retraining would quickly exceed power budgets.

The 6× efficiency advantage by segment 6, with continued divergence, makes IMLP the only viable
approach for systems requiring continuous adaptation over extended periods.

Segmental learning eliminates raw data storage requirements while achieving 92% of cumulative
baseline performance, addressing data retention regulations without sacrificing functionality.

Constant computational requirements enable consistent response times and predictable latency
regardless of system uptime or data volume processed.

G.7 Performance Contextualization

While IMLP demonstrates compelling efficiency advantages, the analysis also contextualizes its
performance:

The ∼0.07 balanced accuracy difference compared to cumulative MLP at segment 6 represents a
modest but measurable trade-off. For many applications, this 8% relative performance reduction is
acceptable given the dramatic efficiency gains.

The performance distribution shows most datasets achieving strong results (0.7-0.9 range), with a few
challenging cases where segmental learning may be insufficient for critical applications.
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H Licensing and Privacy Notes

All datasets used in this study are sourced from the TabZilla benchmark [34], comprising publicly
available classification tasks from OpenML (https://openml.org) distributed under permissive
licenses (CC0, CC-BY) compatible with academic research. IMLP’s architecture inherently addresses
privacy concerns through feature-level replay that stores only 256-dimensional latent representations
rather than raw input data, with automatic expiration via the sliding window mechanism (W = 10
segments by default, configurable for stricter retention policies such as 30-day deletion). This design
naturally supports data protection regulations like GDPR through data minimization and eliminates
the need for cumulative dataset storage required by traditional retraining approaches. The segmental
learning paradigm provides reconstruction resistance through nonlinear transformations, making
recovery of original features computationally challenging. All experimental code, configurations,
and energy measurement utilities are released under the MIT License with proper dataset attribu-
tion, separating data loading utilities (subject to individual OpenML licensing) from algorithmic
implementations to facilitate reproducible research while respecting licensing requirements.
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