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Abstract

This thesis explores the convergence of the mixing method, an iter-
ative algorithm for solving diagonally constrained semidefinite programs
[13]. In this paper we first give an exposition of the convergence proof
for the mixing method based on the proof by Wang, Chang, and Kolter
[13], where we restructure some parts of the proof and provide extra de-
tails. Then we construct an example where the linear convergence rate of
the mixing method is close to one when near the optimal solution. The
mixing method is then compared for convergence speed to a semidefinite
programming solver and gradient descent on random max-cut instances.
For instances of the max-cut, it is found that the mixing method outper-
forms other methods.

1



Contents

1 Introduction 3
1.1 The Mixing Method . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 5
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Norm cookbook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Lagrange dual function . . . . . . . . . . . . . . . . . . . . . . . . 8

3 The Gauss-Seidel method 10

4 Convergence of the mixing method 16
4.1 Convergence to a first order critical point . . . . . . . . . . . . . 17
4.2 Instability of non-optimal first order critical points . . . . . . . . 20
4.3 Proof of Linear convergence . . . . . . . . . . . . . . . . . . . . . 25

5 Numerical convergence analysis of the mixing method 29
5.1 Maximizing the sum of squared pairwise distances on the unit

sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Applying the mixing method to maximizing the sum of squared

pairwise distances on the unit sphere . . . . . . . . . . . . . . . . 32

6 Comparing the convergence speed of the Mixing method to
gradient descent and SDP solvers 35

7 Conclusion 38

2



1 Introduction

As one of the more generally formulated convex problems, semidefinite prob-
lems (SDPs) are used to solve a great variety of different optimization problems.
One of the most important foundations for semidefinite programming was the
relaxation bound from Goemans and Williamson for approximating the maxi-
mum cut problem (max-cut) [6]. In his paper [6], he showed that the max-cut
problem, which in general is an NP-hard problem, can be formulated as an SDP
using a relaxation. Goemans et al. showed that the optimal objective value of
this relaxation has a 0.878 approximation guarantee. This in turn spurred on
more interest and research into finding tight approximations to NP-hard prob-
lems. Goeman’s relaxation of the max-cut problem belongs to a subclass of
SDPs, namely diagonally constrained SDPs. SDPs are part of the set of con-
vex problems and are desirable as convex problems can be solved in polynomial
time since locally optimal points of a convex problem are globally optimal. So
convex formulations can be solved efficiently. However, there are instances in
which a non-convex formulation of an optimization problem can be solved more
efficiently than a convex one. This paper presents such a case for diagonally
constrained semidefinite problems. Diagonally constrained SDPs are SDPs of
the form

minimize ⟨C,X⟩
subject to ⟨X,Ei,i⟩ = bi ∀i ∈ [n],

X ⪰ 0, bi ∈ R
(1)

where Ei,i is the zero matrix except for a 1 at index (i, i). Pataki [10] showed
that when X ∈ F , where F is a face of the feasible region, then the rank k of
X can be bounded as follows:

k(k + 1)

2
≤ p+ dim(F ),

where p is the number of constraints. Hence, by taking a face of dimension 0 in
the optimal face, we obtain that an SDP always admits an optimal solution of
rank

k(k + 1) ≤ 2p.

Since this problem contains n constraints, it is evident that that whenever
k(k+1) ≥ 2n, there is an optimal solution X∗ that can be written as X∗ = V TV
with V ∈ Rk×n. This allows us to rewrite the SDP as

minimize ⟨C, V TV ⟩

subject to ∥vi∥22 = bi ∀i ∈ [n],

V ∈ Rk×n, bi ∈ R
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where vi are the columns of V . Since the diagonal of X is fixed we can remove
the diagonal of C out of the optimization problem as this adds no further value.
Also without loss of generality we can pull in the right-hand constant value bi
into the norm on the other side by dividing by bi. Therefore throughout the
rest of the paper we assume that the diagonal of C is zero and we write the
problem as

minimize ⟨C, V TV ⟩

subject to ∥vi∥2 = 1 ∀i ∈ [n],

V ∈ Rk×n

This problem can then be solved heuristically with a coordinate descent ap-
proach. This brings us to the ’mixing method’.

1.1 The Mixing Method

To solve this optimization problem we optimize over a single column vi, where
we fix the rest of the columns of V . When only optimizing over a single vector,
the SDP objective value becomes

⟨C, V TV ⟩ = 2
∑
j ̸=i

Ci,jv
T
i vj + E,

where E ∈ R is a constant value and there a no quadratic terms for vi as
Ci,i = 0. Let ci denote the i-th column of C. Then the minimization problem
can be simplified to

minimize 2vTi V ci

subject to ∥vi∥22 = 1,

vi ∈ Rk

(2)

We now have linear optimization problem with a single quadratic equality con-
straint to solve. Given that V ci is a constant as it does not depend on vi
(Ci,i = 0), we can solve this optimization problem by noting that∥∥∥∥vi + V ci

∥V ci∥2

∥∥∥∥2
2

≥ 0,

which implies that
2vTV ci ≥ −2 ∥V ci∥2 ,

since vT v = 1 and (V ci)
TV ci

∥V ci∥2
2

= 1. Now if we let

vi = − V ci
∥V ci∥2

,
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then we have found a feasible solution (vTi vi = 1) which achieves equality for
this lower bound of our objective function. Hence this feasible solution found
for the optimization problem when optimizing over a single column must be
optimal. This process can be done iteratively, where in each iteration the next
column is updated as above. This leads to an algorithm that we call the ‘mixing
method’. A sketch of such an algorithm is given by

Data: C ∈ Rn×n symmetric and zero on the diagonal, k ∈ Z>0

Result: Optimal V
Randomly initialize V ;
while V not yet converged do

for i = 1 : n do
vi = −V ci
vi =

1
∥vi∥vi

end

end
Algorithm 1: The mixing method

Linear convergence for the mixing method has been proven in Wang, Chang
and Kolter’s paper [13] for any random starting point V . They then showed that
the mixing method performs better than other state of the art SDP solvers for
the maximum cut problem. They also showed that for the maximum satisfibility
(Max-SAT) problem there exists a similar approximation algorithm. Although
the bounds were not fully proven, numerically the mixing method outperformed
state of the art competitors from the 2016 Max-SAT competition for certain
instances[1]. This thesis aims to build on their result, refining some of the proofs
and provide key insights into the convergence dependencies of this algorithm.
In chapter 3 and 4 of this thesis we provide the proof regarding convergence
of the mixing method. These chapters provide more of a restructuring of the
proof from Wang, Chang and Kolter’s paper, adding extra details to the proof
in some areas. In chapter 5 the convergence rate of the mixing method is
compared to its theoretical bound numerically. Chapter 6 compares the mixing
method’s speed of convergence to gradient descent and a state of the art SDP
solvers from Leijenhorst et al [4], which is specialized in solving SDPs with
sparse constraint matrices. We end the thesis with a conclusion and future
study recommendations. Before starting the proof let us first cover some of the
basic notation that is used throughout the paper.

2 Preliminaries

2.1 Notation

Here we introduce some notation that will be used throughout the paper. Let
Sn denote the set of n × n symmetric matrices and Sn

+ to be the set of n × n
positive semidefinite matrices. For a vector y ∈ Rn let Diag(y) denote the zero
matrix with y on the diagonal. Let σmin(A) denote the smallest singular value
of the matrix A and σmin−nz(A) to be the smallest nonzero singular value of A.
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The commonly used norms in this paper are defined as follows

Definition 2.1. For x ∈ Rn, define the Euclidean norm as

∥x∥2 =

√√√√ n∑
i=1

x2
i

Definition 2.2. For X ∈ Rn×n, define the Frobenius norm as

∥X∥F =
√
tr(XTX) =

√√√√ n∑
i=1

n∑
j=1

X2
i,j

Definition 2.3. For X ∈ Rn×n, define the spectral norm as

∥A∥2 = max
x ̸=0, x∈Rn

∥Ax∥2
∥x∥2

2.2 Norm cookbook

Below we provide lemmas with proofs for some of the most commonly used
tricks when it comes to bounding the Frobenius matrix norm ∥ · ∥F , spectral
norm and Euclidean vector norm ∥ · ∥2

Lemma 2.1. Let A ∈ Sn. Then,

∥A∥2 = ρ(A)

Proof. Squaring the norm allows us to write the norm as

∥A∥22 = max
x ̸=0, x∈Rn

∥Ax∥22
∥x∥22

= max
x ̸=0, x∈Rn

xTATAx

xTx

= λmax(A
TA)

= ρ(ATA),

where the third equality follows from the Courant–Fischer–Weyl min–max prin-
ciple. See e.g. [12, Chapter 12].

As another consequence of this lemma we can bound the vector two norm

Lemma 2.2. For a symmetric matrix S ∈ Sn and x ∈ Rn we have

∥x∥22 ≥ |xTSx|
ρ(S)
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Lemma 2.3. For A ∈ Rm×n and x ∈ Rn,

∥Ax∥2 ≤ ∥A∥F ∥x∥2

Proof. We have

∥Ax∥22 =

m∑
i=1

n∑
j=1

A2
i,jx

2
j

≤
m∑
i=1

n∑
j=1

A2
i,j ∥x∥

2
2

= ∥A∥2F ∥x∥22

Taking the square root on both sides gives the desired inequality.

Lemma 2.4. Let A ∈ Sn and x ∈ Rn. Then,

∥Ax∥2 ≥ σmin(S) ∥x∥2 .

Furthermore, when x ∈ range(S)

∥Ax∥2 ≥ σmin−nz(S) ∥x∥2 .

Proof. First note that A can be decomposed in its singular value decomposition
A = UΣV T . Also note that for orthogonal matrices X it holds that ∥Xv∥2 =
∥v∥2 for any v ∈ Rn Then

∥Ax∥2 =
∥∥UΣV Tx

∥∥
2

=
∥∥ΣV Tx

∥∥
2

=
∥∥V TΣx

∥∥
2

= ∥Σx∥2

=
√

σ2
1x

2
1 + · · ·+ σ2

nx
2
n

≥
√
σ2
min(x

2
1 + · · ·+ x2

n)

=σmin ∥x∥ .

When x ∈ range(S) it is not hard to see that then

∥Ax∥2 =
√
σ2
1x

2
1 + · · ·+ σ2

nx
2
n

≥
√
σ2
min−nz(x

2
1 + · · ·+ x2

n)

=σmin−nz ∥x∥ .

Lemma 2.5. Let A,B ∈ Sn
+. Then,

tr(AB) ≥ 0.
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Proof. Note that since A ⪰ 0 there is a cholesky decomposition L such that
LTL = A. Then

tr(AB) = tr(LTBL)

=

n∑
i=1

eTi L
TBLei (ei being the i-th unit vector)

≥ 0,

since B ⪰ 0.

This theorem is often used in the proof by noting that for any A ∈ Sn
+ and

C ∈ Sn, when we pick B = C − λmin(C)In, then B ⪰ 0. So we obtain the
inequality

tr(AC) ≥ λmin(C)tr(A).

Similarly setting B = λmax(C)In − C ⪰ 0 which results in the inequality

tr(AC) ≤ λmax(C)tr(A).

Another consequence of this lemma is the following

Lemma 2.6. Let A,B ∈ Sn
+. Then,

tr(ABB) ≥ tr(AB)λmin−nz(B)

Proof. Take any eigenvector v of B corresponding to the eigenvalue α. Then

B(B − λmin−nz(B))v = α2v − λmin−nz(B)αv.

Since B ⪰ 0, either α = 0 or α > 0. For α = 0 the above sum equals zero. For
α > 0 we know that α ≥ λmin−nz(B) hence

α2 − λmin−nz(B)α ≥ 0.

Since this holds for any eigenvector and eigenvalue pair of B we have shown
B(B − λmin−nz(B)) ⪰ 0. So by Lemma 2.5 we find

tr(ABB) ≥ tr(AB)λmin−nz(B),

completing the proof.

2.3 Lagrange dual function

To gain full understanding of the paper, the reader must also be partially un-
derstanding of the Lagrangian dual function. Suppose we have a nonlinear
optimization problem of the form
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minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

x ∈ Rn

(3)

Then the Lagrangian function is defined as

Definition 2.4. The Langragian of 3 is the function L : Rn ×Rm given by

L(x, λ, µ) = f(x) +

m∑
i=1

λigi(x) +

p∑
j=1

µhj(x)

The Langrangian function is used to set up the langrange dual problem which
is defined as

Definition 2.5. The Langrage dual problem of 3 is the optimization problem

maximize inf
x∈Rn

L(x, λ, µ)

subject to λ ∈ Rm
≥0, µ ∈ Rp

(4)

For minimization problems, feasible solutions of the Langrange dual function
(4) always yield a lower bound for feasible solutions of the initial minimization
problem (3). The gap between the optimal objective value of the original prob-
lem and the dual problem is known as the duality gap. When this duality gap
is 0, we have that strong duality holds. Strong duality means that both the
optimization problem (3) and its respective dual problem (4) have the same op-
timal objective value. When strong duality holds, the KKT conditions provide
criteria to which any optimal solution must hold. For the general optimization
problem (3), the KKT conditions look as follows for a feasible point x∗:

1. Feasibility: All constraints are satisfied

g(x∗) ≤ 0,

h(x∗) = 0.

2. Dual feasibility: The penalization is towards feasibility

µ ≥ 0.

3. Complementary slackness: Either µi=0, or gi(x
∗) = 0

µ · g = 0.
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4. Stationarity: The cost function lies tangent to each active constraint

∇f(x∗)−
∑
i

µi∇gi(x
∗)−

∑
i

λi∇hi(x
∗) = 0.

These KKT conditions are often vital for finding optimal solutions when
strong duality holds. For example, the system of equations (2) in the intro-
duction can also be solved by noting that for this optimization problem strong
duality holds. Then combining the feasibility and stationarity yields the same
closed form solution.

3 The Gauss-Seidel method

Before starting with the main convergence proof of the mixing method let us first
shortly discuss the Gauss-Seidel method (see e.g., [7, page 512]) as it possesses
some similar qualities to the mixing method and will be useful to prove some of
the theorems in the main proof. This chapter is a restructuring of Wang, Chang
and Kolter’s lemma 3.10 [13]. The Gauss-Seidel method is a basic iterative
solution method aimed to solve linear systems of the form

Ax = b,

where we assume A to be invertible. The method is named after Carl Friedrich
Gauss who invented the method in 1820. Later the iterative algorithm was
rediscovered by Philipp Ludwig von Seidel in 1874 and is therefore known as the
‘Gauss-Seidel’ method. For a system of the form Ax = b, write A = L+D+U ,
where L is the strictly lower triangular component of A, D is the diagonal,
and U is the strictly upper triangular component of A. Then the Gauss-Seidel
method is an iterative method that performs the operation

xk+1 = (L+D)−1(b− Uxk).

Interest for basic iterative methods grew in the 1950s as large sparse systems of
the form Ax = b had to be solved for instance in weather prediction and nuclear
diffusion calculations. For example very difficult partial differential equations
can be approximated in an area by finitely discretizing the problem into a chosen
mesh. That results in a system Ax = b which can be solved with a basic iterative
method.

For this paper, the Gauss-Seidel method is relevant as it allows us to prove
a theorem that aids us in proving the convergence of the mixing method. First
consider the lemma

Lemma 3.1. Let S = C + Diag(y), where C ∈ Rn×n is a symmetric matrix
zero on the diagonal and y ∈ Rn

>0 is entrywise strictly positive. Suppose there
exists a vector xk with xT

k Sxk < 0. Let z0 = xk and let z1, ..., zn be the vectors
obtained through n coordinate updates of the Gauss-Seidel method. Then there
exists ω ∈ (0, 1

2n ) and an index j ≤ n such that
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1

yj
|eTj Szj | ≥ ω ∥zj∥

Proof. Assume for contradiction that

1

yi
|eTj Szj | < ω ∥zj∥ ∀j and ∀ω ∈

(
0,

1

2n

)
.

First we show by induction that for j = 1, . . . , n

∥xk − zj∥ < 2jω ∥xk∥

For j = 1,

∥xk − z1∥ = ∥z0 − z1∥ =
1

y1
|eT1 Sz1| < ω ∥z1∥ < 2ω ∥xk∥ .

Now suppose the inequality holds for a 0 ≤ j ≤ n− 1. Then for j + 1

∥xk − zj+1∥ = ∥xk − zj + zj − zj+1∥
≥ ∥xk − zj∥+ ∥zj − zj+1∥

< 2jω +
1

yj
|eTj Szj |

< 2jω + ω(2(j − 1)ω + 1) ∥xk∥
= 2jω ∥xk∥+ ω(2jω − 1) ∥xk∥ .

Pick ω ∈
(
0, 1

2n

)
, then

2jω − 1 < 2j
1

2n
− 1

=
j

n
− 1 < 0.

Hence, when ω ∈
(
0, 1

2n

)
∥xk − zj+1∥ ≤ 2jω ∥xk∥ .

Then for each j = 1, . . . , n

1

ymax
|eTj Sxk| ≤

1

yk
|eTj Sxk|

=
1

yk
|eTj S(xk + zj − zj)|

≤ 1

yk
(|eTj Szj |+ |eTj S(xk − zj)|)

< ω ∥zj∥+
1

yk
|eTj S(xk − zj)|
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≤ ω ∥zj∥+
1

yk
∥Sej∥ ∥xk − zj∥ by the Cauchy inequality

< ω(1 + 2jω) ∥xk∥+
1

yk
2jω ∥Sej∥ ∥xk∥

≤ ω

(
1 + 2nω +

2n ∥Sej∥
ymin

)
∥xk∥ .

Squaring both sides and summing over all j = 1, . . . , n we obtain the inequality

nω2

(
1 + 2nω +

2n ∥Sej∥
ymin

)2

∥xk∥2 >
1

y2max

(

n∑
j=1

|eTj Sxk|2) =
1

y2max

∥Sxk∥2 .

√
nω

(
1 + 2nω +

2n ∥Sej∥
ymin

)
∥xk∥ >

1

ymax
∥Sxk∥

≥ σmin−nz(S)

ymax
∥xk∥ ,

by lemma 2.4 as xk ∈ range(S). So we found the inequality

√
nω

(
1 + 2nω +

2n ∥Sej∥
ymin

)
≥ σmin−nz(S)

ymax
.

Note that the right side stays constant whereas the left hand side converges to
0 as ω → 0. Hence we have arrived at a contradiction.

Theorem 3.2. Let C ∈ Rn×n be a symmetric matrix, zero on the diagonal and
let L be the lower triangular part of C. Let y ∈ Rn

>0. Suppose

JGS = −(L+Diag(y))−1LT .

Then ρ(JGS) > 1 if the matrix S = C +Diag(y) is not positive semidefinite.

Proof. Consider the minimization problem

minimize f(x) = xT (C +Diag(y))x,

subject to x ∈ Rn,

The gradient of the cost function is.

∇f(x) = 2(C +Diag(y))x.

As this is a convex optimisation problem, we can apply the KKT conditions to
this minimization problem which yields the optimality criteria

(C +Diag(y))x∗ = 0.
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Then, applying the the Gauss-Seidel method to this problem generates the it-
erative sequence

xk+1 = −(L+Diag(y))−1LTxk.

Equivalently the Gaus-Seidel method provides a coordinate update of the form

xk+1,i =
−1

yi
(

i−1∑
j=1

ci,jxk+1,j +

n∑
j=i+1

ci,jxk,j).

We can also show that the difference between Gauss-Seidel steps is

f(xk)− f(xk+1) =xT
k (C +Diag(y))xk − xT

k+1(C +Diag(y))xk+1

=

n∑
i=1

yi(x
2
k,i − x2

k+1,i) +

n∑
i=1

n∑
j=1

ci,jxk,ixk,j

+

n∑
i=1

n∑
j=1

ci,jxk+1,ixk+1,j

...

=

n∑
i=1

yi(x
2
k,i − x2

k+1,i)

+ 2

n∑
i=1

(

i−1∑
j=1

ci,jxk+1,j +

n∑
j=i+1

ci,jxk,j)(xk,i − xk+1,i)

=

n∑
i=1

yi(x
2
k,i − 2xk,ixk+1,i + x2

k+1,i)

=

n∑
i=1

yi ∥xk,i − xk+1,i∥22 ,

where the proof runs parallel to the proof of Lemma 4.2 (Substitute V with xk).
Suppose now that S ⪰̸ 0. This implies that there exists an eigenvector q ∈ Rn

such that qTSq < 0. Let x0 = q such that f(q) < 0. From the decreasing
property of the Gauss-Seidel method showed above we can identify two cases of
convergence: Either the sequence converges to a cost of −∞ or it converges to
a number below 0.

Case 1: First let’s assume that the Gauss-Seidel method converges to a
constant value in cost. Then there is a subsequence that converges. Denote the
limit of this sequence by x̄. This means that x̄ is a fixed point however that also
means that x̄TSx̄ = 0 which contradicts the monotonic decreasing property of
Gauss-Seidel and the fact that f(x0) < 0.
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Case 2: So xT
k Sxk must converge to −∞. Hence suppose xT

r Sxr converges
to −∞. Note that one iteration of the Gaus-Seidel method can be subdivided
into smaller steps zki where instead only 1 coordinate is updated at a time

xk = zk1 → zk2 → · · · → zkn → zkn+1 = xk+1

where in step i the i-th coordinate of zki,i is updated to

zri+1,i =
−1

yi

n∑
j=1

ci,jzi,j .

Then the cost function can be rewritten to

f(xk)− f(xk+1) =

n∑
i=1

yi
∥∥xk

i − xr
k+1

∥∥2
2

=

n∑
i=1

yi ∥zi − zi+1∥2 .

The cost difference of a single step between zi and zj can be written explicitly
as

f(zi)− f(zi+1) = yi ∥zi − zi+1∥2

= yi

zi,i +
1

yi

n∑
j=1

ci,jzi,j

2

=
1

yi

yizi,i +

n∑
j=1

ci,jzi,j

2

=
|eTi Szi|2

yi
.

Where ei ∈ Rn is the i-th standard basis vector. Now by lemma 3.1, as xk is in
the range of S because of our initial starting value x0 = q, we have

f(xk)− f(xk+1) =f(z1)− f(zn+1)

≥
|eTj Szj |2

yj

≥yjω
2 ∥zj∥2 ,

for some ω ∈ (0, 1
2n ). Then by lemma 2.2

f(xk+1) ≤ f(xk)− yjω
2 ∥zj∥2
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≤ f(xk) +
yjω

2

ρ(S)
zTj Szj

≤ (1 +
yminω

2

ρ(S)
)f(xk).

Applying these steps recursively yields

f(xk+1) ≤
(
1 +

yminω
2

ρ(S)

)k+1

f(x0)

Now by lemma 2.5, since S − λminIn ⪰ 0 we can upper bound f(xk+1) as

f(xk+1) = xT
k Sxk

= tr(xkx
T
k S)

≥ λmin(S)tr(xkx
T
k ) by lemma 2.5

= λmin(S) ∥xk∥22
= λmin(S)

∥∥(JGS)
k+1x0

∥∥2
2

≥ λmin(S)
∥∥(JGS)

k+1
∥∥2
F
∥x0∥22 by lemma 2.3.

Combining the previously lower and upper bound we obtain

λmin(S)
∥∥(JGS)

k
∥∥2
F
∥x0∥22 ≤

(
1 +

yminω
2

ρ(S)

)k

f(x0).

Taking the equation to the power 2
k yields

λmin(S)
2
k

∥∥(JGS)
k
∥∥ 1

k

F
∥x0∥

1
k
2 ≤

√
1 +

yminω2

ρ(S)
f(x0)

2
k .

As k goes to infinity, we obtain

lim
k→∞

∥∥(JGS)
k
∥∥ 1

k ≥

√
1 +

yminω2

ρ(S)
.

However the left hand side is exactly the spectral norm of JGS by Gelfand’s
formula [2] (Which holds for any Banach algebra) so we obtain

ρ(JGS) = lim
k→∞

∥∥(JGS)
k
∥∥ 1

k ≥

√
1 +

yminω2

ρ(S)
.

Hence since ρ(S), ω, ymin > 0, we can conclude that ρ(JGS) > 1.
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4 Convergence of the mixing method

Now that the preliminaries have been covered, the convergence proof of the
mixing method can be given. The proof closely follows the proof of Wang,
Chang and Kolter’s paper [13]. Proofs where a significant details have been
added, have been made without reference. For proofs without or only slight
changes we reference the original lemma or theorem from Wang, Chang and
Kolter’s paper. Before we can analyze the convergence of the mixing method,
we must first write the mixing method in matrix notation. First consider the
following notation that will be used throughout the paper. As shown in section
1.1, the mixing method updates every column vi of V as

vi = − V ci
∥V ci∥

,

where ci is the i-th column of C. Denote V ci by gi and define y ∈ Rn by
yi = ∥gi∥. Let L be the matrix containing the strictly lower triangular part of
C. Then one full iteration of the mixing method such that each column of V is
updated once, can be written as

Lemma 4.1. One iteration of the mixing method M : Rk×n → Rk×n can be
written as

M(V ) = −V L(LT +Diag(y))−1 (5)

Proof. To work out this proof we begin by writing the claim as

M(V ) = −V L(LT +Diag(y))−1 = V̂

V L = −V̂ (LT +Diag(y))

V L+ V̂ LT = −V̂Diag(y).

For the last equation, every row can be written out as

∑
j<i

cij v̂j
T +

∑
j>i

cijv
T
j = gTi .

So indeed equality (1) holds as for one iteration of the mixing method we have
exactly that

gi =
∑
j<i

cij v̂j +
∑
j>i

cijvj ,

completing the proof.

The strategy of the convergence proof will be to first prove that iterations of
the mixing method M(V ) converge to a critical (fixed) point of the optimization
problem. Then, we prove that this critical point is optimal by showing that non-
optimal critical points are unstable. Finally the convergence speed is considered
by proving linear convergence with a given convergence rate.
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4.1 Convergence to a first order critical point

First we prove that the mixing method is monotonically nonincreasing. We can
show the difference in the objective function between iterations of the mixing
method is equal to

Lemma 4.2. Let V̂ = M(V ) and yi = ∥gi∥2, where gi = V ci. Then,

f(V )− f(V̂ ) =

n∑
i=1

yi ∥vi − v̂i∥22 .

Proof. The difference in the objective function between iterations of the mixing
method is

f(V )− f(V̂ ) =tr(V TV C)− tr(V̂ T V̂ C)

=

n∑
i=1

n∑
j=1

ci,jv
T
i vj −

n∑
i=1

n∑
j=1

ci,j v̂
T
i v̂j

=

n∑
i=1

vTi (

n∑
j=1

ci,jvj +
∑
j<i

ci,j v̂j)−
n∑

i=1

v̂Ti (

n∑
j=1

ci,j v̂j +
∑
j>i

ci,jvj)

+

n∑
i=1

v̂Ti
∑
j>i

ci,jvj −
n∑

i=1

vTi
∑
j<i

ci,j v̂j

=

n∑
i=1

vTi gi −
n∑

i=1

v̂Ti gi + (

n∑
i=1

v̂Ti
∑
j>i

ci,jvj +

n∑
i=1

vTi
∑
j<i

ci,jvj)

− (

n∑
i=1

vTi
∑
j<i

ci,j v̂j +

n∑
i=1

v̂Ti
∑
j>i

ci,j v̂j),

since ci,i = 0 for i = 1, . . . , n. Now note that

n∑
i=1

vTi
∑
j<i

ci,j v̂j =

n∑
i=1

∑
j<i

ci,j v̂
T
j vi

=

n∑
j=1

v̂Tj
∑
j<i

ci,jvi

=

n∑
i=1

v̂Ti
∑
j>i

ci,jvj ,

where the last equality holds provided that C is symmetric. So,

f(V )− f(V̂ ) =

n∑
i=1

(vi − v̂i)
T gi +

n∑
i=1

vTi (
∑
j<i

ci,j v̂j +
∑
j>i

ci,jvj)

−
n∑

i=1

v̂i(
∑
j<i

ci,j v̂j +
∑
j>i

ci,jvj)
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=2

n∑
i=1

(vi − v̂i)
T gi

=− 2

n∑
i=1

yi(vi − v̂i)
T v̂i

=

n∑
i=1

yi(2− 2v̂Ti vi)

=

n∑
i=1

yi ∥vi − v̂i∥22 .

To ensure that the objective value does not just monotonically decrease
but strictly decreases until reaching a fixed point we need to assert that each
yi = ∥V ci∥2 never becomes zero. Following this lemma the next theorem is
proven.

Theorem 4.3. Suppose that there exists δ > 0 such that ∥Mk(V )ci∥2 > δ for
all k ≥ 0 and i = 1, . . . , n. Then the mixing method on the given SDP problem
is strictly decreasing and always converges to a first order critical point.

Proof. Under the fact that f(V ) − f(V̂ ) =
∑n

i=1 yi ∥vi − v̂i∥22 ≥ 0 from lemma
4.2 we have that the sequence f(Mk(V )) is a cauchy sequence. By the definition
of a cauchy sequence, note that for every ϵ > 0, for sufficiently large n,m ∈ N>0

we have

|f(Mn(V ))− f(Mm(V ))| =
∑

yi∥v(n)i − v
(m)
i ∥22 < ϵ.

As yi > δ > 0 by our assumption, we have that for each column of V , vi, that

∥v(n)i − v
(m)
i ∥22 <

ϵ

δ
.

So each sequence v
(k)
i is also a cauchy sequence. Hence, the sequence Mk(V )

converges to unique limit (critical) point V̄ such that M(V̄ ) = V̄ . This equation
can be rewritten to

−(L+Diag(ȳ))−1LT V̄ T = V̄ T

−LT V̄ T = −(L+Diag(ȳ))V̄ T .

Transposing the equation and subtracting the right hand side from both sides
yields

−V̄ L = V̄ (LT +Diag(ȳ))

V̄ (C +Diag(ȳ)) = 0.

Now let’s compute the projected gradient of our cost function f(V ) = ⟨C, V TV ⟩.
First note that the euclidean gradient of f(V ) is

∇f(V ) = 2V C,
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where this identity is obtained from the the matrix cookbook [11]. Following
the proof of Boumel et al. [3], the Riemannian gradient of f on the manifold is
related to this gradient as

gradf(V ) = ProjTV M∇f(V ),

which is the projection onto TV M , where M is the manifold Sk−1 × · · · × Sk−1

n-times. This manifold M can be represented by

M = {V ∈ Rk×n : V ei is a unit vector for i = 1, . . . , n}.

The tangent space then becomes

TV M = {X : (XTV )i.i = 0 for i = 1, . . . , n}.

This means that there exists Z ∈ (TV M)⊥ such that

gradf(V ) = ∇f(V ) + Z.

The space (TV M)⊥ is simply the orthogonal space of TvM and can be repre-
sented by:

(TvM)⊥ = {VDiag(µ) : µ ∈ Rn}.

So if we let µ ∈ Rn then the projected gradient is of the form

gradf(V ) = ∇f(V ) + 2VDiag(µ)

= 2V C + 2VDiag(µ).

Multiplying by V T on the left provides us with the expression

V T gradf(V ) = 2V TV C + 2V TVDiag(µ).

Now µ can be obtained by relating this expression to the constraints of our
semidefinite program (⟨Ei,i, V

TV ⟩ = 1) and equating them to zero

⟨Ei,i, 2V
TV C + 2V TVDiag(µ)⟩ = 0

⟨Ei,i, 2V
TVDiag(µ)⟩ = −⟨Ei,i, 2V

TV C⟩.

For each constraint ⟨Ei,i, V
TV ⟩ i = 1, .., n, we find that this equation equates

to

µiv
T
i vi =

∑
j ̸=i

ci,jv
T
j vi,

which for the converged mixing method exactly equates to
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µiv̄
T
i v̄i = gTi v̄i

µiv̄
T
i v̄i = −∥gi∥2 v̄

T
i v̄i

µi = −∥gi∥2 .

Hence the projected gradient of the cost function for the converged mixing
method is

gradf(V̄ ) = 2V̄ C + 2V̄Diag(ȳ).

From the equation V̄ (C + Diag(ȳ)) = 0 it becomes clear that the projected
gradient of our cost function ⟨C, V TV ⟩ is zero for the converged mixing method
which implies that the mixing method converges to a critical point.

4.2 Instability of non-optimal first order critical points

So the mixing method indeed converges to a critical point. However, this critical
point need not be optimal. Let S denote the matrix C+Diag(y). For the mixing
method, we can identify two cases. Either S ⪰ 0 or S ⪰̸ 0. When S is positive
semidefinite, then the mixing method converges to an optimal point. Consider
the following theorem.

Lemma 4.4. For a critical solution V , let S = C +diag(y), where yi = ∥V ci∥.
Then

S ⪰ 0 ⇒ V is optimal

Proof. Following Wang, Chang and Kolter [13, lemma 3.12], the strategy for
this proof is to first write the dual of the original SDP 1

maximize − 1Tny

subject to C +Diag(y) ⪰ 0

y ∈ Rn

Then one can show that for a fixed point V , where S ⪰ 0, that the duality gap
between the optimization problem and the dual is 0. Theorem 4.3 showed that
for fixed points V of the mixing method we have

V (C +Diag(V )) = 0

Multiplying by V T , then bringing V TVDiag(V ) to the other side and taking
the trace on each side we obtain

tr(V TV C) = −1Tny.

So, taking y as the solution for the dual problem leads to a feasible solution as
C +Diag(y) ⪰ 0. Hence the solution is indeed optimal, thereby completing the
proof.
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Now we only have to show that the mixing method does not converge to
a fixed V with S ⪰̸ 0. To show the mixing method converges to an optimal
feasible point first note that the Jacobian of the mixing method can explicitly
be written as the following.

Lemma 4.5. The Jacobian of the mixing method is:

J(V ) = −((L+Diag(y))−1 ⊗ Ik)P (LT ⊗ Ik),

where P is the matrix

P = diag(P1, ..., Pn) ∈ Rnk×nk where Pi = Ik − v̂iv̂
T
i ∈ Rk×k.

Proof. The strategy of this proof will be to utilize the implicit function theorem
to obtain the Jacobian from the partial derivatives of the updated columns of
V , since the derivatives of the columns of V are quite easy to compute. The
implicit function theorem provides a set of conditions, under which a system
of equations can be solved for certain dependent variables. In our case the
dependent variables are the updated variables v̂i whereas the vectors vi are
independent. The theorem states that if the v̂i can be represented by vi in some
vicinity (v0, v̂0), where (v0, v̂0) satisfies our system of equations, M(V ), then if

the Jacobian with respect to v̂ JM(V ),v̂ = [∂M(V )
∂v̂i,i

] is invertible we can calculate

the Jacobian of M(V ) as

JM(V ) = J−1
M(V ),v̂JM(V ),v

The following is a slightly adjusted proof from Wang, Chang and Kolter’s
paper [13, Lemma 3.7]. First consider each column of M(V ) = v̂i separately.
The update of the mixing method for a v̂i is

∥gi∥2 v̂i = −gi.

Applying implicit differentiation and the product rule we obtain

∥gi∥2 ∂v̂i +
gi

∥gi∥2
v̂Ti ∂gi = −∂gi

∥gi∥2 ∂v̂i = −Pi∂gi(= −Pi(
∑
j<i

ci,j∂v̂j +
∑
j>i

ci,j∂vj))

∥gi∥2 ∂v̂i + Pi

∑
j<i

ci,j∂v̂j = −Pi

∑
j>i

ci,j∂vj .

To apply the implicit function theorem we first write the derivatives of ∂v̂i and
∂vi as one vector ∂v̂ and ∂v respectively. Stacking the vectors obtained by the
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previous equation yields

y1Ik 0 0

c1,2P2 y2Ik
. . .

...
...

. . . 0

c1,nPn c2,nPn · · · ynIk


∂v̂ =



0 c1,2P1 · · · c1,nP1

...
...

. . .
...

0 0 · · · cn−1,nPn−1

0 0 · · · 0


∂v

The left hand side is always invertible so by the implicit function theorem the
Jacobian of the mixing method is

J(V ) = −



y1Ik 0 0

c1,2P2 y2Ik
. . .

...
...

. . . 0

c1,nPn c2,nPn · · · ynIk



−1

0 c1,2P1 · · · c1,nP1

...
...

. . .
...

0 0 · · · cn−1,nPn−1

0 0 · · · 0


.

This equation for J(V ) is equivalent to

J(V ) = −(P (L⊗ Ik) + Diag(y)⊗ Ik)
−1P (LT ⊗ Ik),

where P is the zero matrix with the projection matrices Pi on the diagonal.
Therefore P is also a projection matrix, meaning P = PT and that the Moore-
Penrose inverse P † = P . So the Jacobian J(V ) can be written as

(P (L⊗ Ik) + Diag(y)⊗ Ik)
−1P = (P (L⊗ Ik) + Diag(y)⊗ Ik)

−1P †

= (P 2(L⊗ Ik) + P (Diag(y)⊗ Ik))
†

= (P (L⊗ Ik) + P (Diag(y)⊗ Ik))
†

= (P ((L+Diag(y))⊗ Ik))
†

= ((L+Diag(y))⊗ Ik)
−1P

= ((L+Diag(y))−1 ⊗ Ik)P.

Hence,
J(V ) = −((L+Diag(y))−1 ⊗ Ik)P (LT ⊗ Ik).

Although we have now obtained a formulation of the Jacobian, from this it
is still challenging to evaluate the eigenvalues. Fortunately we can analyze a
smaller Jacobian instead. Consider the following lemma.
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Lemma 4.6. Assume V ∈ Rk×n has rank(V ) < k. Let P = diag(P1, ..., Pn),
where Pi = Ik−viv

T
i . Then for any A,B ∈ Rn×n, any eigenvalue of AB is also

an eigenvalue of

J = (A⊗ Ik)P (B ⊗ Ik).

Proof. The following is a slightly adjusted proof fromWang, Chang and Kolter’s
paper [13, Lemma 3.9]. Since rank(V ) < k there is an orthogonal vector r such
that rT vi = 0 for all columns of V vi. Now suppose λ ∈ C is an eigenvalue of
AB with eigenvector q ∈ Cn. Then note that,

Jvec(Z) = (A⊗ Ik)P (B ⊗ Ik)vec(rq
T )

= (A⊗ Ik)Pvec(rqTBT )∗

= (A⊗ Ik)Pvec(r(Bq)T )

= (A⊗ Ik)vec(P1r(Bq)T1 , . . . , Pnr(Bq)Tn )

= (A⊗ Ik)vec(r(Bq)T1 , . . . , r(Bq)Tn ) (Pir = r)

= (A⊗ Ik)vecr(Bq)T )

= vec(r(Bq)TAT )∗

= vec(r(ABq)T

= vec(r(λq)T )

= λvec(Z),

where at * we use the identity (BT ⊗ A)vec(X) = vec(AXB) (See the matrix
cookbook [11] for this identity). Hence we showed that vec(Z) = vec(rqT ) is the
corresponding eigenvector for J with eigenvalue λ, completing the proof.

Hence if we take the matrices from the lemma to be A = −(L+Diag(y))−1

and B = LT , then analyzing the eigenvalues of −(L + Diag(y))−1LT is suf-
ficient for proving divergence. Thus we need to show that for the matrix
−(L + Diag(y))−1LT , there is an eigenvalue λ > 1. This brings us to the
next lemma that covers the criteria for which the mixing method diverges.

Lemma 4.7. Let L be the lower triangular part of C and let y ∈ Rn
>0. Let

JGS = −(L+Diag(y))−1LT .

Then ρ(JGS) > 1 if the matrix S = C +Diag(y)) is not positive semidefinite.

Proof. This lemma follows directly from theorem 3.2.

Note that for lemma 4.6, a necessary condition for JGS to contain the same
eigenvalues as J(V ) is that V cannot be of full column rank. This leads to the
following necessary lemma.

Lemma 4.8. Let k(k+1)
4 > n. Then, for almost all C ∈ Rn×n/{0 on the diagonal},

all first order critical points V ∈ Rk×n have rank smaller than k
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Proof. Proven in Wang, Chang and Kolter’s paper [13, Appendix E]. There is a
slight difference in the proof as we assume here that the values on the diagonal
of C are zero. The strategy for this proof involves bounding the rank of V by
noting that for critical points

V (C +Diag(y)) = 0.

Therefore, the rank of V is upper bounded by

rank(V ) ≤ null(C +Diag(y)).

Now suppose that V has full row rank rank(V ) = k. We can show that C is
part of a set S ⊆ Sn with the dimension of S bounded by

Dim(S ) ≤ n(n+ 3)

2
− k(k + 1)

2
.

If we take k such that k(k+1)
4 > n, then

Dim(S ) <
n(n− 1)

2
.

Since almost no C fulfills this, as C ∈ {X ∈ Sn|Xi,i = 0 ∀i} where Dim({X ∈
Sn|Xi,i = 0 ∀i} = n(n−1)

2 so for almost no C, rank(V ) = k. Hence we have that
for almost all C, rank(V ) < k, completing the proof.

This is the final detail needed to show that fixed points V with S ⪰̸ 0 are
unstable. With ’unstable’ we mean a point of which the Jacobian of the mixing
method at that point has eigenvalues higher than 1. This is indicative of a point
that the mixing method diverges from in at least 1 coordinate. So no matter
how close the mixing method gets to this unstable point, it will always diverge
away from it in the next iteration. Hence, the only way the mixing method ends
on a unstable fixed point is when it immediately ’jumps’ to it, which in practice
is extremely unlikely. Combining the previous lemmas yields the critical point
theorem

Theorem 4.9. Let k(k+1)
4 > n and suppose that there exists δ > 0 such that

∥Mk(V )ci∥2 > δ for all k ≥ 0 and i = 1, . . . , n. Then, for almost all C, all
non-optimal first order critical points are unstable fixed points for the Mixing
method.

Proof. From theorem 4.3 it is clear that the mixing method always converges
to a fixed point V . Lemma 4.4 proves that for this fixed point V , if S =
C + Diag(y) ⪰ 0 then V must be optimal. Therefore we only need to consider
fixed points V with S ⪰̸ 0. Lemma 4.8 shows that when when we take k

such that k(k+1)
4 > n, then V is not of full column rank. Hence by lemma 4.6
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the eigenvalues of the Jacobian of the mixing method J(V ) can be partially
evaluated with the eigenvalues of

JGS = −(L+Diag(y)))−1LT .

Lemma 4.7 proves that ρ(JGS) > 1 when S ⪰̸ 0. So ρ(J(V ))) > 1 meaning that
the mixing method will never converge to points where S is not semipositive
definite, completing the proof.

4.3 Proof of Linear convergence

Now that it is shown that the mixing method only allows for optimal critical
points we can show that the method converges asymptotically linear to a critical
point under certain conditions. First we need the following three lemmas. First
it can be shown that the mixing method is Lipschitz continuous.

Lemma 4.10. Suppose that there exists δ > 0 such that ∥Mk(V )ci∥2 > δ for

all k ≥ 0 and i = 1, . . . , n. Then, the mixing method is
2
√∑n

i=1∥ci∥
2

δ -Lipschitz
continuous.

Proof. First note that for each updated column vi that∥∥∥∥ −V ci
∥V ci∥2

− −V ∗ci
∥V ∗ci∥2

∥∥∥∥
2

=

∥∥∥∥ −V ci
∥V ci∥2

− −V ∗ci
∥V ci∥2

− V ∗ci
∥V ci∥2

+
V ∗ci

∥V ∗ci∥2

∥∥∥∥
2

=

∥∥∥∥ −V ci
∥V ci∥2

− −V ∗ci
∥V ci∥2

−
(
∥V ∗ci∥2
∥V ∗ci∥2

−
∥V ∗ci∥2
∥V ci∥2

)
∗ −V ∗ci
∥V ∗ci∥2

∥∥∥∥
2

=

∥∥∥∥ −V ci
∥V ci∥2

− −V ∗ci
∥V ci∥2

− (
∥V ci∥2
∥V ci∥2

−
∥V ∗ci∥2
∥V ci∥2

) ∗ −V ∗ci
∥V ∗ci∥2

∥∥∥∥
2

=
1

∥V ci∥2

∥∥∥∥−V ci + V ∗ci − (∥V ci∥2 − ∥V ∗ci∥2)
−V ∗ci
∥V ∗ci∥2

∥∥∥∥
2

≤ 1

∥V ci∥2
(∥−V ci + V ∗ci∥2 + ∥∥V ci∥2 − ∥V ∗ci∥2∥2

∥∥∥∥ −V ∗ci
∥V ∗ci∥2

∥∥∥∥
2

)

≤ 1

δ
(∥V − V ∗∥F ∥ci∥2 + ∥V ci − V ∗ci∥2)

≤
2 ∥ci∥2

δ
∥V − V ∗∥F .

Now note that
M(V ) = (V c1 . . . V cn).

From this it becomes clear that

∥M(V )−M(V ∗)∥2F =

k∑
j=1

n∑
i=1

((v̂i − v̂∗i )j)
2

=

k∑
j=1

n∑
i=1

((
−V ci
∥V ci∥2

− −V ∗ci
∥V ∗ci∥2

)j)
2
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=

n∑
i=1

∥∥∥∥ −V ci
∥V ci∥2

− −V ∗ci
∥V ∗ci∥2

∥∥∥∥2
2

≤
4
∑n

i=1 ∥ci∥
2

δ2
∥V − V ∗∥22 .

Hence,

∥M(V )−M(V ∗)∥F ≤
2
√∑n

i=1 ∥ci∥
2

δ
∥V − V ∗∥F .

Now note that for any iteration of the mixing method, the difference between
two iterations can actually be bounded by the difference in objective value
between an optimal solution V ∗.

Lemma 4.11. Suppose V ∗ is an optimal solution and let S∗ = C + Diag(y∗).
For an iteration of the mixing method we obtain the upper bound

∥V −M(V )∥2F ≥ (
λmin−nz(S

∗)

y2max

−
2 ∥y − y∗∥2

y2min

)(f(V )− f(V ∗)).

Proof. Let R = (L+Diag(y))−1 and S = C +Diag(y). Then

∥V −M(V )∥2F =
∥∥V (LT +Diag(y))(LT +Diag(y))−1 + V L(LT +Diag(y))−1

∥∥2
F

=
∥∥V S(LT +Diag(y))−1

∥∥2
F

= ∥V (C +Diag(y)−Diag(y∗) + Diag(y∗))R∥2F
= ∥V S∗R∥2F + 2tr(V S∗RRT (Diag(y)−Diag(y∗)))

+ ∥V (Diag(y)−Diag(y∗))R∥2F
≥ ∥V S∗R∥2F + 2tr(V S∗RRT (Diag(y)−Diag(y∗)))

= tr(S∗V TV S∗RRT ) + 2tr(V S∗RRT (Diag(y)−Diag(y∗))).

As S and V TV ⪰ 0, evidently S∗V TV S∗ ⪰ 0. We also have that RRT −
λmin(RRT )In ⪰ 0. Then applying lemma 2.5 yields

tr(S∗V TV S∗RRT ) ≥ λmin(RRT )tr(S∗V TV S∗).

Similarly, noting that ∥y − y∗∥ In+(Diag(y)−Diag(y∗)) ⪰ 0 and V S∗RRT ⪰ 0
we obtain

tr(V S∗RRT (Diag(y)−Diag(y∗))) ≤ ∥y − y∗∥2 tr(V S∗RRT ).

Hence,

∥V −M(V )∥2F ≥ λmin(RRT )tr(S∗V TV S∗) + 2tr(V S∗RRT (Diag(y)−Diag(y∗)))

≥ λmin(RRT )tr(S∗V TV S∗)− 2 ∥y − y∗∥2 tr(V
TV S∗RRT )

≥ σ2
min(R)tr(S∗V TV S∗)− 2σ2

max(R) ∥y − y∗∥2 tr(V
TV S∗)
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≥ σ2
min(R)λmin−nz(S

∗)tr(V TV S∗)− 2σ2
max(R) ∥y − y∗∥2 tr(V

TV S∗)

= (
λmin−nz(S

∗)

y2max

−
2 ∥y − y∗∥2

y2min

)tr(V TV S∗)

= (
λmin−nz(S

∗)

y2max

−
2 ∥y − y∗∥2

y2min

)(f(V )− f(V ∗)),

where the 4th inequality follows from lemma 2.6.

Lemma 4.12. Suppose that there exists δ > 0 such that ∥Mk(V )ci∥2 > δ for
all k ≥ 0 and i = 1, . . . , n. Then, there is a constant τ > 0 such that for any
optimal solution V ∗ we have

∥y − y∗∥22 ≤ τ(f(V )− f(V ∗)).

Proof. Recall that one iteration of the mixing method can be subdivided into n
steps where each column vi gets updated individually to v̂i in step i

V = Z1 → Z2 → · · · → Zn → Zn+1 = M(V ).

Let S∗ = C +Diag(y∗) for an optimum V ∗ and let si denote the i-th column of
S∗. Then first observe that

(yi − y∗i )v̂i = ∥V ci∥2 v̂i − y∗i v̂i

=
√
cTi V

TV civ̂i − y∗i v̂i

=
∑
j<i

ci,j v̂j +
∑
j>i

ci,jvj − y∗i v̂i

= −Zici − y∗i v̂i

= −Zi(s
∗
i + (0 . . . yi . . . 0)

T )

= −Zis
∗
i + y∗i (vi − v∗i ).

To bound this we first note that

f(V )− f(V ∗) ≥ f(Zi)− f(V ∗)

= tr(ZT
i ZiC

T )− tr(CTV ∗TV ∗)

= tr(ZT
i ZiS

∗)

≥ 1

λmax(S∗)
∥ZiS

∗∥22

≥ 1

λmax(S∗)
∥Zis

∗
i ∥

2
2 .

Similarly we find,

f(V )− f(V ∗) ≥ f(Zi)− f(Zi+1)

≥ δ ∥vi − v̂i∥22 .
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Taking the norm squared on both sides for the equation (yi − y∗i )v̂i = −Zis
∗
i +

y∗i (vi − v∗i ) yields

∥(yi − y∗i )v̂i∥
2
2 = ∥−Zis

∗
i + y∗i (vi − v∗i )∥

2
2

(yi − y∗i )
2 ≤ (∥−Zis

∗
i ∥2 + ∥y∗i (vi − v∗i )∥2)

2

= ∥Zis
∗
i ∥

2
2 + ∥Zis

∗
i ∥2 ∥y

∗
i (vi − v∗i )∥2 + ∥y∗i (vi − v∗i )∥

2
2

≤ 2 ∥Zis
∗
i ∥

2
2 + 2y∗i ∥vi − v∗i ∥

2
2 (∥a− b∥22 ≥ 0)

≤ (2λmax(S
∗) +

2y∗i
δ

)(f(V )− f(V ∗)).

Hence when we sum over all columns

∥y − y∗∥22 ≤ (2nλmax(S
∗) +

2
∑n

i=1 y
∗
i

δ
)(f(V )− f(V ∗)).

This lemma actually shows a very interesting geometrical property of the
mixing method. Namely that for any two optimal solutions V ∗

1 and V ∗
2 , we

have that the respective y∗1 and y∗2 are equal. Using the previous two lemmas,
we can now prove linear convergence for the mixing method.

Theorem 4.13. Suppose V is sufficiently close to an optimal solution and there
exists δ > 0 such that ∥Mk(V )ci∥2 > δ for all k ≥ 0 and i = 1, . . . , n. Then
the mixing method with as initial point V converges linearly with a convergence
rate µ bounded by

µ ≤ 1− δκ,

where 0 < κ < λmin−nz(S
∗)

ymax
− 2∥y−y∗∥2

y2
min

.

Proof. By Lemma 4.11, for any optimal solution V ∗ we have

∥V −M(V )∥2F ≥
(
λmin−nz(S

∗)

ymax
−

2 ∥y − y∗∥2
y2min

)
(f(V )− f(V ∗)).

By Lemma 4.12, since ∥y − y∗∥2 ≤ τ(f(V ) − f(V ∗)), we can take f(V ) and
f(V ∗) close enough such that

λmin−nz(S
∗)

ymax
>

2 ∥y − y∗∥2
y2min

.

So there exists κ > 0 with

λmin−nz(S
∗)

ymax
−

2 ∥y − y∗∥2
y2min

> κ.

Hence,

f(V )− f(M(V )) =

n∑
i=1

yi ∥vi − v̂i∥22 By Lemma 4.2
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≥ min
i=1,...n

yi ∥V −M(V )∥2F

≥ δ ∥V −M(V )∥2F
≥ δ ∥V −M(V )∥2F .

≥ κδ(f(V )− f(V ∗))

This implies

(1− δκ)(f(V )− f(V ∗)) ≥ f(M(V ))− f(V ∗).

5 Numerical convergence analysis of the mixing
method

In section 4.3 we proved that the mixing method converges linearly with rate
1− δκ. We noted that

δ ≤ min
i=1,...n

yi,

and

κ <
λmin−nz(S

∗)

ymax
−

2 ∥y − y∗∥2
y2min

.

Note that lemma 4.12 guarantees that for any two optimal solutions V ∗
1 , V

∗
2

we have that y∗1 = y∗2 . Hence also λmin−nz(S
∗
1 ) = λmin−nz(S

∗
2 ). This allows us to

provide a theoretical convergence rate for the mixing method and compare that
with the practically achieved convergence rate. Note that the linear convergence
factor of the mixing method is bound by the smallest non-zero eigenvalue of S∗.
Hence if the optimal solution space of our problem only admits solutions with
small eigenvalues, convergence can be slow with the convergence rate being close
to 1. Take for example the problem of maximizing the sum of squared pairwise
distances.

5.1 Maximizing the sum of squared pairwise distances on
the unit sphere

The problem of maximizing the sum of squared pairwise distances can be for-
mulated as follows

maximize

n∑
i=1

n∑
j=1,j ̸=i

∥xi − xj∥22

subject to ∥xi∥2 = 1 ∀i ∈ [n],

xi ∈ Rk.

The optimal solution of maximizing the sum of squared pairwise distances
is trivially obtained by the following formula
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Lemma 5.1. Let n ∈ Z>0 denote the amount of points on the sphere and
k ∈ Z>1 the dimension. Then one of the optimal solutions of maximizing the
sum of squared pairwise distances is given by:

When n is odd, n−1
2 points of the form(

1

n− 1
,

√
1− 1

(n− 1)2
, 0, . . . , 0

)
,

n−1
2 points of the form(

1

n− 1
,−

√
1− 1

(n− 1)2
, 0, . . . , 0

)
,

1 point of the form
(−1, 0, 0, . . . , 0),

with objective value f(x) = n2.
When n is even, an optimal solution is given by n

2 points of the form

(1, 0, 0, . . . , 0),

n
2 points of the form

(−1, 0, 0, . . . , 0),

with objective value f(x) = n2.

Proof. Consider the problem statement of this problem as before

maximize

n∑
i=1

n∑
j=1,j ̸=i

∥xi − xj∥22

subject to ∥xi∥2 = 1 ∀i ∈ [n],

xi ∈ Rk.

Note that
n∑

i=1

n∑
j=1

xT
i xj =

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

2

≥ 0,

hence,
n∑

i=1

n∑
j=1,j ̸=i

xT
i xj ≥ −n.

Trivially, ∥xi − xj∥2 = 2− 2⟨xi, xj⟩ for xi, xj ∈ Rn such that ∥xi∥ = ∥xj∥ = 1.
So this lower bound is equivalent to the upper bound

n∑
i=1

n∑
j=1,j ̸=i

∥xi − xj∥2 ≤ 2n2.
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Now suppose n is even. Then, by setting half the points to (1, 0, . . . , 0) and
the other half to (−1, 0, . . . , 0) we obtain

n∑
i=1

n∑
j=1,j ̸=i

∥xi − xj∥22 = 2n2,

which means that this solution is optimal. Now suppose n is odd. Then setting

1 point to (−1, 0, 0, . . . , 0), n−1
2 points to ( 1

n−1 ,
√
1− 1

(n−1)2 , 0, . . . , 0) and
n−1
2

points to ( 1
n−1 ,

√
1− 1

(n−1)2 , 0, . . . , 0), we similarly obtain

n∑
i=1

n∑
j=1,j ̸=i

∥xi − xj∥22 = 2n2.

This problem can actually be written as a diagonally constrained SDP prob-
lem for which the mixing method is applicable. First note that we can write the
norm ∥xi − xj∥2 as

∥xi − xj∥22 = ⟨xi − xj , xi − xj⟩
= ⟨xi, xi⟩+ ⟨xj , xj⟩ − 2⟨xi, xj⟩
= 2− 2⟨xi, xj⟩.

Hence solving the problem of maximizing the sum of squared pairwise distances
is equivalent to solving

minimize
∑

i,j∈[n] i̸=j

⟨xi, xj⟩

subject to ∥xi∥2 = 1 ∀i ∈ [N ].

This can be rewritten to a rank constrained semi definite program, by taking
the matrix X ∈ Sn

+ with Xi,j = ⟨xi, xj⟩. Then the problem becomes

minimize
∑

i,j∈[n] i ̸=j

Xi,j

subject to Xi,i = 1, ∀i ∈ [n]

rank(X) ≤ k.

which can be written formerly as:

minimize ⟨Jn − In, X⟩
subject to Xi,i = 1, ∀i ∈ [n],

rank(X) ≤ k,

X ⪰ 0

where Jn is the n× n matrix consisting of only 1’s
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5.2 Applying the mixing method to maximizing the sum
of squared pairwise distances on the unit sphere

In section 5.1 we showed that the linear convergence rate of the mixing method
is dependent on the smallest eigenvalue of S∗. Recall that S∗ is given by

S∗ = C +Diag(y∗),

where y∗i =
∥∥∥∑j<i ci,jvj +

∑
j>i ci,jvj

∥∥∥. From the previous construction of the

solution for maximizing the sum of squared pairwise distances it is trivial to
show that for the even and uneven case, the optimal solution provides a y∗ with

y∗i = 1 for i = 1, . . . , n.

Hence that means that the matrix S∗ is

S∗ = Jn,

with Jn being the all one matrix. This matrix S∗ therefore has a smallest
non-zero eigenvalue of λmin−nz(S

∗) = 1. However to qualify for the mixing
method we need a generic enough C for lemma 4.8 to hold. Hence we add a
random perturbation ϵi,j ∈ Unif(− 1

210
−m, 1

210
−m) to every index except for

the diagonal. The smallest nonzero eigenvalue of S∗ is then almost surely in the
range of [10−(m+1), 10−m]. What this means for the convergence of the mixing
method is that the convergence rate µ is

µ = 1− δκ ≤ 1− σmin(S
∗)

ymax
+

2 ∥y − y∗∥2
y2min

= 1− σmin(S
∗) + 2 ∥y − y∗∥2 ,

as yi was determined to converge to 1. We assume to already be near the
optimal solution so ∥y − y∗∥ ≈ 0. Hence we obtain

µ ≤ 1− σmin(S
∗)

= 1− cϵ,

with c ∈ [ 1
10 , 1]. Hence convergence can be as slow as how small we make the

perturbation. We have no guarantee in this case on fast linear convergence
as the convergence rate converges to 1 as we decrease ϵ. To test practical
convergence, we implemented the mixing method in Julia. To each non diagonal
entry of the matrix C a perturbation ϵi,j ∈ Unif(− 1

210
−m, 1

210
−m) is added for

m = 6, 8, 10, 12, 14, 16. To compute the convergence rate we randomly generate
V and run the mixing method in which with each iteration we approximate the
convergence rate with

µ ≈ |f(V ∗)− f(Vk+1)|
|f(V ∗)− f(Vk)|

.
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Here the optimal solution V ∗ is obtained by running the SDP solver from Lei-
jenhorst et al. [4]. This SDP solver is very efficient for solving SDPs with sparse
constraint matrices, and is not dependent on the eigenvalues of S∗. As every
constraint in our SDP problem consists of ⟨X,Ei,i⟩ = 1 with only 1 digit of Ei,i

the matrix nonzero, this SDP solver runs very efficiently and calculates solutions
with high precision.

For comparison of the convergence rate in a general case, the mixing method
is first run on a random symmetric C matrix. As it rarely occurs that the
smallest nonzero eigenvalue of S∗ is near 0 we expect the mixing method’s
solution to converge to the manually set machine precision. Figure 1 shows the
average random convergence rate for the mixing method on a random symmetric
matrix C.

Figure 1: Convergence rate of the mixing method for a random symmetric
matrix C

The converge rate is sitting at µ = 0.5 meaning that the difference between
subsequent iterations gets halved every iteration. For the random example, the
mixing method continuously decreases until the difference between it and the
optimal solution is 10−80, which is our machine precision.

Now consider running the mixing method on maximizing the sum of squared
pairwise distances on the unit sphere with a variable perturbation ϵ. The first
15 iterations of the mixing method’s convergence rate are shown in figure 2.
The figure is made on a logarithmic plot where 1 − µ is plotted on the y-axis
with the iteration count on the x-axis. After 15 iterations, the convergence rate
stays constant (For at least 105 more iterations).
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Figure 2: Convergence rate of the mixing method for a variable perturbation ϵ

For any ϵ the mixing method initially converges very fast converging almost
superlinearly (µ = 0). However, once the mixing method draws closer, the
convergence slows down comparatively with the perturbation. This can be seen
in figure 3, where the absolute difference between the current and optimal cost
is plotted against the iterations.

Figure 3: Difference in objective value between the optimal objective value and
the mixing method’s objective value for a variable perturbation ϵ

The convergence rate is in practice very close to the theoretical slowest con-
vergence. The average convergence rates after 15 iterations is shown in table
1.
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Perturbation ϵ Convergence rate µ

10−6 1− 3.09683 ∗ 10−6

10−8 1− 1.53072 ∗ 10−8

10−10 1− 8.51954 ∗ 10−10

10−12 1− 1.28965 ∗ 10−12

10−14 1− 2.33799 ∗ 10−14

10−16 1− 1.95822 ∗ 10−16

Table 1: Average convergence rate for the mixing method when applied to
maximizing the sum of squared pairwise distances for variable perturbation ϵ

It is interesting to note that had we not added any perturbation to our matrix
C, the mixing method does converge super linearly to the optimal solution, as
the smallest eigenvalue is 1. The mixing method however does not guarantee
this as our C is not generic. After running the mixing method on the matrix C =
Jn − In numerous times it also shows that the obtained optimal solution is not
rank deficient meaning that the theorems in place do not guarantee convergence
for this C.

6 Comparing the convergence speed of the Mix-
ing method to gradient descent and SDP solvers

The previous section has given insight into when the mixing method has slow
convergence. These examples however, are rare. To evaluate the speed of con-
vergence of the mixing method more generally, we test the method against a
general SDP solver and gradient descent for a practical problem. Note that
all computations in this section have been performed in high precision. This
is because with high precision it is easier to determine whether a method has
truly converged or not. In the previous section we have seen that the mixing
method can be close to the optimal solution but also not have converged yet so
this is a valid concern. High precision also reduces issues with memory locality.

We compare these three methods in their efficiency in solving a relaxation of
the ’max-cut’ problem problem, specifically the Goemans Williamson relaxation
[6]. The max-cut problem is an NP-hard optimisation problem which tasks to
find the greatest cut δG(V,E)(S) in weight for a given undirected weighted graph
G(V,E); see the book by Laurent et al. [9, Chapter 5] for a full explanation.
Each vertex is assigned a binary variable vi ∈ {−1, 1} denoting whether the
vertex is in S or not. Let wi,j ∈ R> denote the weight between vertices i and
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j. If there is no edge between the two vertices, let wi,j = 0. Then the max-cut
problem can be written as the following optimization problem.

minimize
1

2

∑
i,j∈[n]

wi,j
1− vivj

2

subject to vi ∈ {−1, 1}, ∀i ∈ [n]

The Goemans and Williamson algorithm is an approximation algorithm that
turns this binary optimization problem into an SDP. Instead of optimizing over
binary variables, the variables vi are transformed into vi ∈ Rn such that ∥vi∥ =
1. This relaxation is the following minimization problem.

minimize
1

2

∑
i,j∈[n]

wi,j
1− vivj

2

subject to ∥vi∥ = 1 ∀i ∈ [n]

vi ∈ Rn

This is and SDP with only constraints on the diagonal and can hence be solved
by the mixing method. The Goemans and Williamson algorithm then employs
a rounding algorithm to obtain a feasible solution of the max-cut problem.
Goemens et al.[6] proved that when all the weights wi,j are positive, the optimal
objective value of the max-cut problem f(S∗) is bounded by

f(Ŝ∗) ≥ f(S∗) ≥ 0.878f(Ŝ∗),

where Ŝ∗ is the solution found by the Goemans and Williamson algorithm.
This practical problem can be used to test the convergence speed of the mixing
method against other solvers. For this we generate a random graph. To generate
a random graph we employ the well-documented Erdös-Rényi model popularized
by Erdös et al. [5]. Given the amount of vertices n and a probability p, the
model adds an edge between two vertices with probability p.

The SDP solver that will be used is once again the SDP solver from Lei-
jenhorst et al. [4]. For gradient descent we employ a backtracking line search
algorithm (See e.g. Kochender et al. [8, Section 4.3]). Each of the three meth-
ods will be tested against a random instance of the Goemans and Williamson
max-cut relaxation. Instances are randomly generated using the Erdös-Rényi
model with p = 0.7. The weights wi,j between edges are uniformly picked from
the interval [0, 100]. 5 random instances are run for each algorithm to calculate
an average speed of convergence for the node sizes n = [5, 40]. A method is con-
sidered to have completely converged once the objective value is within 10−22

of the the optimal objective function. Figure 4 shows the average computation
time for each of the three methods.
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Figure 4: Convergence speed for variable node sizes of the max-cut problem.
The figure represents the time it takes for each of the three algorithms to reach
a distance of 10−22 in the neighbourhood of the optimal objective value.

From figure 4 it is evident that the gradient descent method is significantly
slower than the other two methods. Gradient descent also doesn’t always con-
verge to the optimal solution. In fact, in only 80% percent of cases did gradient
descent converge to the set standards, when averaged over all n. The figure does
not yet show a strong difference in convergence between the mixing method im-
plementation and the SDP solver from Leijenhorst et al. To test the scalability
of these two methods, the convergence speed is again computed for node sizes
n = [50, 250] and presented in figure 5.

Figure 5: Convergence speed for variable node sizes of the max-cut problem.
The figure compares the time it takes for the mixing method and the SDP solver
to reach a distance of 10−22 in the neighbourhood of the optimal objective value.
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From figure 5 it becomes more apparent that the mixing method is faster
and scales better with an increase of the node size n, than the SDP solver does.
Previously in section 5, the mixing method converged very slow for specific con-
structions of C. The SDP is not constrained by the smallest nonzero eigenvalue
of C + Diag(y) whereas the mixing method is. In general however, the mixing
method converges faster than any other state of the art SDP solver.

7 Conclusion

In this thesis we have closely examined the mixing method; an iterative op-
timization algorithm that optimizes one column at a time. Surprisingly, even
though the mixing method turns a convex problem into a non-convex problem,
it becomes easier to solve reaching faster solving speeds than conventional SDP
solvers. This is because one property this class of problems has is that when
optimizing over only a single vector vi, we can find a closed form solution. Hence
the optimal solution is immediately found for this heuristic allowing an algo-
rithm such as the mixing method to still have fast convergence even when the
problem is non-convex.

We also saw that there is a class of symmetric matrices C, for which the
convergence rate of the mixing method rate is linear but can be arbitrarily
slow as the rate is bounded by the smallest eigenvalue of C + Diag(y). These
examples were generated from a problem of finding the maximal sum of squared
pairwise distances for points on the unit sphere. This is one example of finding
optimal spherical configurations, but there are a whole range of formulations
for maximizing the distance between points on an k-dimensional sphere. For
example the class

minimize
∑

∥vi − vj∥m2 ,

subject to ∥vi∥2 = 1 ∀i ∈ [n]

vi ∈ Rn,

where m ∈ Z ̸=0. This class of optimization problems also contains the problem
discussed in section 5. However, if we attempt to find a similar closed form
solution for m ≤ 1, we find that no such optimal solution can be derived. Hence
we see that the mixing method and other coordinate descent methods with
similar qualities, still only have some niche applications.

It could therefore be interesting to find different applications for the mixing
method. Wang, Chang and Kolter’s paper already discussed other areas in which
the mixing method can be applied such as relaxations for the Max-SAT problem
as well as machine learning problems discussed in the Appendix. The promising
numerical results they found for these examples can perhaps be consolidated
with a proof of an approximation bound to bring more insight into the qualities
of such SDP problems and spark further research to find real world applications
for the mixing method.
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