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Abstract 8 

A stepwise experimental design procedure to obtain reliable data from wastewater treatment plants (WWTPs) 9 

was developed. The proposed procedure aims at determining sets of additional measurements (besides 10 

available ones) that guarantee the identifiability of key process variables, which means that their value can 11 

be calculated from other, measured variables, based on available constraints in the form of linear mass 12 

balances. Among all solutions, i.e. all possible sets of additional measurements allowing the identifiability of 13 

all key process variables, the optimal solutions were found taking into account two objectives, namely the 14 

accuracy of the identified key variables and the cost of additional measurements. The results of this multi-15 

objective optimization problem were represented in a Pareto-optimal front. 16 

The presented procedure was applied to a full-scale WWTP. Detailed analysis of the relation between 17 

measurements allowed the determination of groups of overlapping mass balances. Adding measured 18 

variables could only serve in identifying key variables that appear in the same group of mass balances. 19 

Besides, the application of the experimental design procedure to these individual groups significantly 20 

reduced the computational effort in evaluating available measurements and planning additional monitoring 21 

campaigns. The proposed procedure is straightforward and can be applied to other WWTPs with or without 22 

prior data collection. 23 

 24 

Keywords: experimental design; data validation; mass balances; data reconciliation; wastewater treatment 25 

plant;   26 
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1 Introduction 27 

The importance of reliable data for wastewater treatment plant (WWTP) design, process optimization, 28 

operator training, developing control strategies, benchmarking and simulation is commonly advocated 29 

(Meijer et al., 2015, 2002; Puig et al., 2008; Rieger et al., 2010; Spindler, 2014; Villez et al., 2013a). Typical 30 

data in this respect concern flows and concentrations of components. Depending on the objectives, available 31 

historical data are complemented with additional data obtained through one or more intensive monitoring 32 

campaigns using classic sampling followed by laboratory analyses and/or online sensors.  33 

Data reconciliation is a proven technique to evaluate the consistency of collected data (Crowe, 1996; Ozyurt 34 

and Pike, 2004). It involves a procedure of optimally adjusting estimates for variables such that these 35 

estimates satisfy the conservation laws and other constraints (Crowe, 1996) and are therefore more accurate 36 

than the original values. Data reconciliation is often accompanied by statistical tests for gross error detection 37 

(measurement validation), which verify whether the deviation between each estimate and its measurement is 38 

acceptable compared to the measurement error.  39 

Even though data reconciliation has been widely applied in (bio)chemical engineering for decades (Madron 40 

et al., 1977; Madron and Veverka, 1992; van der Heijden et al., 1994b), this concept so far has received 41 

relatively little attention in wastewater treatment process engineering. Some studies applied the concept of 42 

redundancy analysis and variable classification, which are closely related to the principles and objectives of 43 

data reconciliation, for sensor fault detection (Villez et al., 2016, 2015, 2013b) or for describing redundancy 44 

in the data set (Spindler, 2014). In other studies, data reconciliation was directly applied for the validation of 45 

a WWTP process data set for modelling, process optimization or plant performance evaluation (Behnami et 46 

al., 2016; Meijer et al., 2015, 2002; Puig et al., 2008). The effects of erroneous data on modelling errors was 47 

investigated by Lee et al. (2015), applying gross error detection. Rieger et al. (2010) put the concept of data 48 

validation by mass balancing in a general data collection framework, stressing the importance of 49 

measurement planning to guarantee a successful subsequent data validation for WWTP. Besides full-scale 50 

processes, data reconciliation was also applied to long-term data of a lab scale wastewater treatment reactor 51 

to identify different anabolic reactions pathways (Lotti et al., 2014). 52 

The abovementioned studies explicitly or implicitly pointed out that it is vital for a measurement plan to satisfy 53 

the redundancy and steady-state conditions, as important prerequisites for successful data reconciliation. 54 

While obtaining data fulfilling the steady-state condition was discussed in detail by Meijer et al. (2015), this 55 

work focuses on the redundancy requirement. 56 
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Redundancy of variables means that their measured values can also be calculated from other (measured) 57 

variables. However, for many WWTPs, there are often not sufficient initially measured data available and 58 

additional measurements typically need to be carried out (in a monitoring campaign) to ensure the required 59 

degree of redundancy for data reconciliation. In this respect, “overlapping mass balances” and “closed mass 60 

balances” are typically aimed at. The term “overlapping mass balances” refers to mass balances over single 61 

or combined subsystems that share one or more mass flows or have at least one variable in common. The 62 

term “closed mass balances” refers to mass balances in which all variables are measured and which can 63 

typically be set up for conserved quantities such as total mass flows or total phosphorus mass. This practice 64 

of adding overlapping and closed mass balances increases the overall system redundancy and has therefore 65 

been commonly applied for data reconciliation in wastewater process engineering (Lee et al., 2015; Meijer et 66 

al., 2015, 2002; Puig et al., 2008). 67 

However, increasing the overall system redundancy does not guarantee the possible identification of 68 

specified key variables (van der Heijden et al., 1994a). The approach of Meijer et al. (2015, 2002) and  Puig 69 

et al. (2008), aiming at increasing redundancy by adding measurements to set up overlapping and closed 70 

mass balances, therefore, involved the risk of adding trivial mass balances and associated unnecessary 71 

additional measurements. For WWTP data reconciliation, the question remains in what manner and to which 72 

extent additional measurements, entailing additional overlapping and closed mass balances, effectively lead 73 

to reliable and improved estimates of the key variables under concern.  74 

This work provides a practical stepwise procedure to determine sets of additional measurements that 75 

guarantee the possible identification of key process variables, which means that their value can be 76 

calculated from other, measured variables. More specifically, these sets of additional measurements satisfy 77 

the required degree of redundancy for data reconciliation considering constraints in the form of linear mass 78 

balances. The focus of this work is on the experimental design, i.e. the determination of additional 79 

measurements allowing the identification of key variables. The actual application of data reconciliation to 80 

obtain reliable and improved estimates for key variables is the topic of a follow-up paper. The redundancy of 81 

measurements was analysed to gain insight in the way measured variables are related through linear mass 82 

balances. Particular attention was paid to the contribution of additional overlapping and closed mass 83 

balances. Through this comprehensive redundancy analysis, shortcomings of previous studies in selecting 84 

meaningful additional measurements were overcome. Moreover, the accuracy of the reconciled results and 85 

the cost of additional measurements were considered in finding optimal sets of additional measurements. 86 

The procedure was demonstrated for a full-scale WWTP.  87 
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2 Experimental design procedure  88 

An experimental design procedure for practical application to wastewater treatment processes was derived 89 

(Figure 1).  90 

 91 

Figure 1. Experimental design procedure for the selection of sets of additionally measured variables that 92 

allow the identification of key variables. 93 

The key variables are defined first (Step 1), followed by the set-up of an incidence matrix and mass balances 94 

based on the process flow diagram (Step 2) and the inventory of available data (Step 3). Even though these 95 

3 steps have been addressed previously in an intuitive approach for data collection (Meijer et al., 2015), they 96 

were now included in a more formal experimental design procedure, focusing on key variables, simplifying 97 

the mass balance set-up and reducing associated efforts. Moreover, a comprehensive redundancy analysis 98 

has been added in this study (Steps 4-6), to overcome the shortcoming of previous studies. It is now 99 
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checked up-front that the list of key variables and/or the set of set up mass balances are relevant in the 100 

sense that key variables are identifiable (Step 4). Mass balances and their corresponding variables are 101 

clustered (Step 5), which greatly improves the efficiency of finding all solutions, i.e. sets of additionally 102 

measured variables that satisfy the defined main goal (Step 6). Finally, a procedure to select the optimal 103 

solution in terms of additional measurement costs and accuracy of identified key variables has now been 104 

provided as well (Step 7). Step 4 to Step 7 were implemented in MATLAB 2014b (MathWorks®). More 105 

details on the individual steps are given below. Details on the applied procedures and on the theoretical 106 

background are provided in Supplementary Material A and B, respectively. 107 

Step 1. Main goal definition - listing key variables 108 

Data reconciliation can be applied to identify key process variables and at the same time detect possible 109 

gross errors. Key variables may be measured or not; their identification means that improved estimates of 110 

their values are obtained. These new estimates meet all the constraints (i.e., fit all mass balances) and are 111 

therefore considered more reliable and accurate (have a smaller standard deviation or error) than the original 112 

values. In case a key variable is measured, the new estimate is considered improved compared to the 113 

original measurements. In case the key variable is not measured, the new estimate is considered improved 114 

compared to the value directly calculated from original measurements (using the available set of mass 115 

balances).  116 

In this step, all key process variables are listed. Typical examples of key process variables in a WWTP that 117 

need to be known with high accuracy concern influent and effluent mass flow rates of the activated sludge 118 

process (biological reactor) as well as the waste activated sludge mass flow rate. The oxygen requirements 119 

for chemical oxygen demand (COD) and nitrogen removal are also important process variables and 120 

therefore typically need to be calculated – they are typical unmeasured key variables.  121 

The constraints which the new estimates of key variables need to meet, are in the form of linear mass 122 

balances, consisting of mass flow terms. For this reason, key variables, denoted as �∗ are expressed in 123 

terms of total mass flows and mass flows of individual components (as indicated by the superscript *). It is 124 

important to note that the mass flow of a certain component at a certain place is only considered measured if 125 

both the corresponding flow rate and component concentration are measured.  126 

The experimental design procedure aims at determining one or more sets of additional measurements that 127 

guarantee the identification of all key variables, while minimizing the cost of additional measurements and 128 

maximizing the accuracy of the identified key variables.  129 
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Step 2. Incidence matrix and mass balance setup 130 

The process flow diagram of WWTP is translated into a so-called incidence matrix, which is a mathematical 131 

description of the flow network. The columns of the incidence matrix represent process streams and the rows 132 

represent individual or combined unit processes. The elements of this matrix are: 133 

• 1, if stream enters a unit process, 134 

• -1, if stream leaves a unit process, 135 

• 0, if stream is not incident with a unit process. 136 

To visualize the spatial distribution of the interrelated subsystems, it is advised to number and arrange the 137 

flows and unit processes in the matrix following the water line, starting from the influent and primary tanks 138 

and ending towards the dewatered sludge. In this way, the matrix diagonal represents the water flow through 139 

the WWTP (Meijer et al., 2015).  140 

Following the setup of the incidence matrix, linear mass balances of total mass flows ( ρ×Q, or Q when 141 

assuming the same density ρ for all streams in that mass balance) and individual mass flows, e.g. total 142 

phosphorus (mTP), COD (mCOD) and total nitrogen (mTN), are set up for all subsystems considered. These 143 

subsystems could either be individual or combined unit processes. The resulting mass balances need to 144 

contain all key variables listed in Step 1. More detailed practical guidance on the selection of conservative 145 

quantities is provided by Meijer et al. (2015).  146 

Step 3. Data inventory and variable classification 147 

Once the mass balances are set up, an inventory is made of initially measured and initially unmeasured 148 

process variables that appear in the mass balances. The values of measured variables are obtained from 149 

routine lab analyses or through online monitoring. These are typically flows (Q) and concentrations of 150 

individual components such as COD, total nitrogen (TN) and total phosphorus (TP).  151 

For optimization purposes, the expected measurement costs of all unmeasured variables (in the form of flow 152 

and concentration) and the measurement errors (standard deviation of the mean of the measurements in the 153 

form of mass flow) of all variables are also inventoried. In case the measurement error of a variable is not 154 

known or cannot be realistically estimated from expert knowledge, one could use a small error compared to 155 

those of other variables, essentially assuming a relatively good measurement, which still allows to track the 156 
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error propagation to the identifiable variables. Note that the relative magnitude of the measurement errors is 157 

of importance, rather than their exact values. 158 

Let � be the set of initially measured variables and � be the set of initially unmeasured variables resulting 159 

from the data inventory. Part of the initially unmeasured variables are unmeasurable; they constitute the 160 

subset � of �. The remaining initially unmeasured variables could potentially be measured and constitute a 161 

complementary subset �	 of � (�	 = � – �). The aforementioned variables are typically expressed in terms of 162 

(volumetric) flows and concentrations.  163 

Step 4. Feasibility evaluation 164 

The feasibility of satisfying the main goal, i.e. of identifying all listed key variables, is evaluated for two 165 

extreme cases of measurement availability: 166 

(i) All potential additionally measured variables �	 are measured additionally. It is thus checked whether 167 

all key variables are identifiable for the largest set of potential (additional) measurements and for the 168 

given set of mass balances. In case one or more key variables are not identifiable, it is recommended 169 

to first review the set of mass balances. The mass balances need to contain all key variables. 170 

Besides, non-identifiability could also result from mistakenly neglected flows or because of an 171 

oversimplified plant layout. If revising mass balances does not result in the identifiability of all key 172 

variables, there is insufficient redundancy in the system and it is advised to remove unidentifiable key 173 

variables, i.e. to return to Step 1. Once all key variables are identifiable considering the largest 174 

possible set of additional measurements, possibly after revising mass balances and/or key variables, 175 

the second extreme case of measurement availability is evaluated.  176 

(ii) Only initially measured data are available. If all key variables are identifiable from the set of initial 177 

measurements, the main goal is fulfilled a priori and there is no need for additional measurements. If 178 

this is not the case, the procedure proceeds to Step 5 and Step 6 to determine sets of additional 179 

measurements resulting in the identifiability of all key variables. The existence of such sets of 180 

additional measurements is guaranteed by (i), which ensures the best possible definition of mass 181 

balances and removed key variables that are not identifiable a priori. 182 

The identifiability of key variables is checked through redundancy analysis, based on the procedures of van 183 

der Heijden et al. (1994) and Klamt et al. (2002), as detailed in the Supplementary Material (section B1 for 184 

the theoretical background and section A1 for the practical implementation).  185 
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Step 5. Clustering and variables reclassification 186 

Once the identification of key variables has been evaluated feasible, it will be investigated which set(s) of 187 

additional measurements are required to this end. This procedure is simplified by clustering the mass 188 

balances in groups of overlapping mass balances, i.e. mass balances that have at least one variable (total or 189 

individual mass flow rate) in common.  190 

Clustering is based on redundancy analysis, involving the set-up of redundancy equations (see 191 

Supplementary Material B1). The redundancy equations are obtained from the original set of mass balances 192 

by eliminating all unmeasured variables, such that only measured variables remain. Variables that appear in 193 

a single redundancy equation will be used in data reconciliation to identify each other. When redundancy 194 

equations are interrelated by one or more variables, they will also be used to identify the variables in the 195 

related equations. The identifiability of variables in a group of interdependent redundancy equations is 196 

independent from the identifiability and measurement availability of variables in the other groups.  197 

In order to cluster the mass balances in groups of overlapping mass balances, the redundancy equations are 198 

derived assuming all variables are measured. In this way, the maximum number of relations between 199 

(measured) variables can be identified, allowing subsequent variable reclassification clustering in groups of 200 

interdependent variables. First, the redundancy equations are clustered in groups of redundancy equations 201 

that are related by one or several variables. Second, groups of variables that belong to the corresponding 202 

groups of redundancy equations are formed (variable reclassification). Finally, based on groups of variables, 203 

the mass balances are clustered in group of overlapping mass balances that only contain variables of the 204 

corresponding groups.  205 

After clustering the mass balances in groups of overlapping mass balances, variable classification was 206 

retaken for each group. Each group has its own measured variables (� ), unmeasured variables (� ), 207 

potential additionally measured variables (�	 = � − �), unmeasurable key variables (�), and key variables 208 

(�∗) that contribute to mass flow terms in the overlapping mass balances of that group. It is important to 209 

realize that flow variables (Q) are implicitly taken up in the individual mass flows (mTP, mCOD, mTN). For 210 

this reason, concentration variables (TP, COD or TN) always appear together with the flow rate (Q) of the 211 

corresponding stream while clustering. It is thus possible that a single (flow) variable appears in multiple 212 

groups. 213 

The routine of clustering and variable reclassification is provided in Supplementary Material A2. 214 
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Step 6. Finding solutions 215 

Clustering mass balances into groups of overlapping mass balances significantly simplifies the procedure of 216 

finding solutions. Indeed, the identifiability of key variables in one group of overlapping mass balances is 217 

independent from the measurement availability of variables in other groups; the measurement availability of 218 

a variable in a group of overlapping mass balances only helps identifying other variables in that group. The 219 

solutions for each group of overlapping mass balances can thus be derived separately and then combined. 220 

Solutions are found by checking for all potential sets of additional measurements (per group) whether they 221 

guarantee the key variables (of that group) to be identifiable. The identifiability of key variables is checked 222 

through redundancy analysis, based on the procedures of van der Heijden et al. (1994) and Klamt et al. 223 

(2002), analogously as in Step 4 (see Supplementary Material B1). Since the key variables of all groups 224 

need to be identified simultaneously, the overall solutions are derived by combining the solutions for the 225 

individual groups of overlapping mass balances, while discarding duplicates. Step 6 is detailed in 226 

Supplementary Material A3.  227 

Step 7. Optimization 228 

In Step 7, the costs and accuracy are calculated for all solutions. Each set of additional measurements that 229 

guarantees all key variables �∗ to be identifiable, is referred to as a solution and is characterized by a 1 ×230 

�� row vector � = ��� … ����  consisting of binary decision variables  ��  that indicate whether the 231 

corresponding potential additionally measured variables in �	 were selected to measure additionally (�� = 1) 232 

or not (�� = 0).  233 

For every solution, the corresponding cost of additional measurements is calculated as the sum of the 234 

individual costs �	�  of additional measurements ��, similar to the approach of Villez et al. (2016): 235 

����� = ∑ �	� . �� =  	. �!��
�"�            (Eq.1) 236 

 	 = ��� … ���� is a 1 × �� weighing vector, in which each element is �	� .  237 

The average variance of new estimates of key process variables (inversely related to accuracy), is calculated 238 

relative to the variance for the so-called reference solution, according to Eq. 2, and is termed �#���. The 239 

reference solution, expressed as a 1 × ��  vector �$  = �1�, is the solution obtained when all possible 240 

additional measurements �	 are measured additionally. 241 
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�#��� = �

�&
∑ '(/'(

$  �&
("� = �

�&
∑ �*( . '( = �

�&
 * . +! �&

("�        (Eq.2) 242 

+ = �'� … '�,� denotes a 1 × �, vector of variances of new estimates �'( ≥ 0) of the key variables (hereafter 243 

referred to as variance of key variables) when the solution � is implemented. The calculation of + is detailed 244 

in the Supplementary Material (B2 for theoretical background and A4 for practical implementation).  * =245 

��*� … ��,� is a 1 × �, vector of non-negative weights, �*( = 1/'(
$, in which '(

$ represents the variance of the 246 

key variables . when the reference solution is implemented. 247 

Adding measurements to an existing set of measurements results in a smaller variance of new estimates 248 

obtained through data reconciliation (van der Heijden et al., 1994). Therefore, the reference solution �$ is a 249 

best known solution, which results in the smallest variance '(
$  (highest accuracy) of new estimates of the 250 

key variables (∀. ∈ 11,2, … , �34: '(
$ ≤ '(). The objective function �#�7� is a variation on the V-optimality choice  251 

in the experimental design theory (Pukelsheim, 2006). Essentially, the use of relative variances of a solution 252 

to a best known solution is a relevant choice to circumvent the problems due to the different units in which 253 

different key variables are expressed. The division by number of key variables (�3) makes this objective 254 

such that in the best case the objective function �#��� equals unity.  255 

Finding an optimal solution is a multi-objective optimization problem consisting of finding the solution that 256 

minimizes both ����� and �#���. In this study, the Pareto-optimal solutions were determined, for which a 257 

lower cost can only be obtained at the expense of a lower accuracy and vice versa. The implementation of 258 

this step is detailed in Supplementary Material A4.  259 

  260 
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3 Application to a full-scale WWTP 261 

WWTP under study 262 

The proposed experimental design procedure was applied to WWTP Houtrust, The Hague, The Netherlands. 263 

Figure 2 displays a simplified configuration of this plant including all important streams; comprising a “three 264 

stage Phoredox process” or A2/O design. The full configuration of this plant is given in Supplementary 265 

Material C1; a more extensive plant description can be found in Meijer et al. (2015). 266 

 267 

 268 

Figure 2. Simplified process flow diagram of WWTP Houtrust. 269 

 270 

Step 1. Main goal definition - listing key variables 271 

The experimental design procedure aims at determining one or more sets of additional measurements that 272 

guarantee the identifiability of all key variables, while minimizing the cost of additional measurements and 273 

maximizing the accuracy of the identified key variables. More specifically, key variables in the form of total 274 

mass flow and individual mass flows (COD, total nitrogen and total phosphorus) of the following streams had 275 

to be identifiable:  276 

− Settled influent, i.e. influent of the activated sludge process (stream 7),  277 

− WWTP influent (stream 4) and effluent (stream 17), 278 

− Waste activated sludge (stream 26), 279 
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− WWTP waste sludge (stream 36), 280 

− Reject water (stream 5), 281 

− Biogas (stream 43, in this case only the mass flow of COD had to be identified). 282 

Besides, the following unmeasurable key variables related to process performance had to be identifiable: 283 

− Required oxygen for the oxidation of COD (OCcod, kg.day-1),  284 

− Amount of denitrified nitrogen (DENI, kg.day-1), 285 

− Primary sludge flow and associated mass flows of COD, total nitrogen and total phosphorus (stream 286 

28). 287 

Step 2. Incidence matrix and mass balance setup 288 

The incidence matrix of WWTP Houtrust was set up based on the simplified process flow diagram (Figure 2), 289 

representing the WWTP layout by the minimum numbers of subsystems and streams but still contained all 290 

the variables of interest. The resulting matrix (Table 1) contained 8 rows (or subsystems) and 17 columns (or 291 

streams).  292 

Table 1. Incidence matrix of the WWTP Houtrust. Ingoing and outgoing streams are denoted by ‘1’ and ‘-1’, 293 

respectively. 294 
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Stream number in process flow diagram 
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Primary settler (PS) 1 1 -1      -1         

Activated sludge units (AS)   1 -1  1           1 

Secondary clarifiers (CL)    1 -1 -1 -1           

Waste sludge thickener (ST) 
   

 
  

1 -1 
    

-1 
    

Primary sludge thickener (PT) 
   

 
    

1 -1 
    

-1 
  

Digester (DIG)        1  1 -1     -1  

Dewatering centrifuge (DEW)           1 -1  -1    

Reject water flow combiner (INT)  -1           1 1 1   

 295 
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In simplifying the full process flow diagram (Supplementary Material C1), the activated sludge unit processes 296 

(selector, predenitrification, anaerobic, anoxic, aeration and de-aeration tanks) were grouped into a 297 

combined unit (AS, Figure 2), since they involve the unmeasured loss and supply of components through the 298 

gas phase (N2, CO2 and O2), which do not need to (and cannot) be distinguished among them. Buffer units 299 

were not explicitly considered, reasonably neglecting accumulation, separation and/or conversion of 300 

components in these units. The small streams, such as clean water stream (stream 40), ferric chloride 301 

sulfate (FeClSO4) added for phosphorus removal (stream 44 to selector and 46 to digester) and grit removed 302 

from the primary sludge (stream 41), were neglected. Bypass streams not used during normal operation 303 

(Q18, Q19 and Q20) were not considered either. 304 

Based on the incidence matrix, 32 linear mass balances were set up (Supplementary Material C2). Four 305 

main types of mass balances were accounted for, describing the conservation of total flow (Q) and individual 306 

mass flows of total phosphorus (mTP), chemical oxygen demand (mCOD) and total nitrogen (mTN) around 307 

individual subsystems. The external carbon source (stream 45) and the biogas (stream 43) were reasonably 308 

assumed to represent only COD; their total mass flow rates were neglected (in mass balances #2 and #6, 309 

respectively). The oxygen required for COD removal (OCcod) and the amount of denitrified nitrogen (DENI) 310 

were taken into account in the COD balance of the activated sludge unit (mass balance #18). Note that, the 311 

resulting set of mass balances contains all key variables, as required.  312 

The question may arise whether adding mass balances containing off-gas measurements would lead to 313 

additional solutions. This will be the case when the added mass balances contain key variables or stay in the 314 

same group with other mass balances that contain the key variables. Sampling in the gas phase, however, is 315 

typically difficult and associated with a large uncertainty (all the reactors are open and off-gas is dispersed 316 

over a large surface area) and significant costs. For these reasons and to limit the complexity of the given 317 

example, it was therefore decided not to consider mass balances containing off-gas measurements for 318 

demonstrating the experimental design procedure in this study.  319 

Step 3. Data inventory and variable classification 320 

An overview of the initially measured and initially unmeasured data of WWTP Houtrust in terms of flows and 321 

concentrations is given in Table 2. 322 
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Table 2. Data inventory in terms of flows (Q) and concentrations of total phosphorus (TP), chemical oxygen 323 

demand (COD) and total nitrogen (TN) for WWTP Houtrust. mTP, mCOD and mTN present mass 324 

flow terms. 325 

PFD(*) Short Name 
Q TP mTP COD mCOD TN mTN 

m c σ m c σ m p σ m p σ 

4 WWTP influent 1 11 2,000  1 75 20 1 35 1500 1 75 40 

5 Reject water 1 11 100  1 75 35 1 35 900 1 75 60 

7 Settled influent   11 2,000    75 35   35 100   75 70 

15 Inflow secondary clarifiers 1 11 3,000    75 15 1 35 2000 1 75 35 

17 WWTP effluent   11 2,000  1 75 10 1 35 150 1 75 50 

23 Return activated sludge 1 11 2,000    75 15 1 35 1500   75 50 

26 Waste activated sludge 1 11 15    75 15 1 35 550   75 30 

27 Thickened WAS   11 50    75 65   35 1500   75 100 

28 Primary sludge   11 100    75 40   35 1500   75 45 

31 Thickened primary sludge   11 15    75 20 1 35 600   75 50 

34 Digested sludge   11 50    75 80 1 35 1200   75 35 

36 WWTP waste sludge 1 11 15  1 75 80 1 35 2000 1 75 40 

37 Centrate WAS thickening   11 50    75 35   35 600   75 25 

38 Centrate dewatering   11 50    75 55 1 35 400   75 30 

39 Overflow primary thickener 1 11 100    75 90   35 300   75 25 

43 Biogas 1 11 100  1 75 2 1 35 200 1 75 2 

45 External carbon source 1 11 2  1 75 2 1 35 150 1 75 2 

(*) Stream number in process flow diagram (Figure 2).  326 
m = indicating whether this flow/concentration variable is initially measured (1) or not (empty);  327 
σ = estimated error of the corresponding mass flow of the measurements (standard deviation of the mean, used in Step 328 
7);  329 
c = weighing factor represents the cost of a single measurement.  330 
Unit: flow and concentration = m3.day-1 and g.m-3; mass flow: kg. day-1 331 

Errors of the measurement or the standard deviations of the mean measurements of all variables (in terms of 332 

total and individual mass flow) were estimated based on previous monitoring campaign (Meijer et al., 2015). 333 

From initial data, variables were classified into 4 groups: initial measured variables (�), initial unmeasured 334 

variables (�), unmeasurable variables (�) and potential additionally measured variables (�	) (Table 3). 335 

Table 3. Variable classification 336 

 Description Corresponding variables 

� 
Initially measured 
variables 
��8 = 34� 

Q4, Q5, Q15, Q23, Q26, Q36, Q39, Q43, Q45,  
TP4, TP5, TP17, TP36, TP43, TP45,  
COD4, COD5, COD15, COD17, COD23, COD26, COD31, COD34, COD36, COD38, COD43, COD45,  
TN4, TN5, TN15, TN17, TN36, TN43, TN45 

� 
Initially unmeasured 
variables 

��; = 34� 

Q7, Q17, Q27, Q28, Q31, Q34, Q37, Q38,  
TP7, TP15, TP23, TP26, TP27, TP28, TP31, TP34, TP37, TP38, TP39,  
COD7, COD27, COD28, COD37, COD39,  
TN7, TN23, TN26, TN27, TN28, TN31, TN34, TN37, TN38, TN39 

� 
Unmeasurable 
variables 

��< = 4� 

Q28 
TP28 
COD28 
TN28 

�	 
Potential additionally 
measured variables 

(�� = 30) 

Q7, Q17, Q27, Q31, Q34, Q37, Q38,  
TP7, TP15, TP23, TP26, TP27, TP31, TP34, TP37, TP38, TP39,  
COD7, COD27, COD37, COD39,  
TN7, TN23, TN26, TN27, TN31, TN34, TN37, TN38, TN39 

�∗ 
Key variables 
(�3 = 31) 

Q4, Q5, Q7, Q17, Q26, Q28, Q36 
mTP4, mTP5, mTP7, mTP17, mTP26, mTP28, mTP36 
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mCOD4, mCOD5, mCOD7, mCOD17, mCOD26, mCOD28, mCOD36, mCOD43,  
mTN4, mTN5, mTN7, mTN17, mTN26, mTN28, mTN36,  
DENI, OCcod 

OCcod = required oxygen for COD removal; DENI = denitrified nitrogen 337 

While the classification of variables and the measurement cost quantification are rather straightforward, the 338 

estimation of the measurement accuracy may be more difficult. Any expert knowledge and/or information 339 

from previous monitoring campaigns is most useful in this respect. Keeping in mind that the relative 340 

magnitude of the error terms is more important than their absolute values, it is interesting to note that, e.g., 341 

the error term on the volumetric mass flow of the influent (Q4) is of the same magnitude as the error term on 342 

its COD mass flow (mCOD4), on its turn being one magnitudes higher then COD mass flow in the effluent 343 

(mCOD17). 344 

Step 4. Feasibility evaluation 345 

The feasibility evaluation for the WWTP Houtrust confirmed that the identification of key variables is feasible, 346 

at least in the case that all potential additionally measured variables (all variables in �	  ) are measured 347 

additionally. However, the initial data were not sufficient to identify all key variables. Therefore, the procedure 348 

is continued to find all sets of additional measurements that allow the identification of key variables and 349 

select the optimal solutions in terms of cost and accuracy.  350 

Step 5. Clustering and variable reclassification 351 

The redundancy equations were set up and analysed in view of clustering (Supplementary Material C3). A 352 

first group of redundancy equations contains only variables in terms of flows (equations #1-8 in), a second 353 

group express the relations between total phosphorus loads (equations #9-16). A third group of redundancy 354 

equations (equation #17-32) contains variables from both the COD and nitrogen balances; they can be used 355 

to identify both mCOD and mTN variables. The COD and total nitrogen balances need to be considered 356 

together because they are related through the amount of denitrified nitrogen, DENI.. Consequently, the mass 357 

balances were also clustered into three corresponding groups. 358 

Variable classification was retaken for each group (Table 4). Each group has its own measured variables (�), 359 

unmeasured variables (�), potential additionally measured variables (�	), unmeasurable key variables (�), 360 

and key variables (�∗) that appear in the set of (overlapping) mass balances of that group. Consider, for 361 

example, the group of overlapping mass balances of flow Q (Supplementary Material C3, mass balances #1-362 

8). In this group, seven key variables �∗ need to be identifiable are flow measurements: WWTP influent (Q4), 363 
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reject water (Q5), settled influent (Q7), WWTP effluent (Q17), waste activated sludge (Q26), primary sludge 364 

(Q28) and waste sludge (Q36). Their identifiability needs to be checked for all subsets of potential 365 

additionally measured variables �	 = (Q7, Q17, Q27, Q31, Q34, Q37, Q38) in this case being 27 = 128 (with 366 

7 the number of elements in �	 of this group) . 367 

For the group of total phosphorus mass balances (Supplementary Material C3, mass balances #9-16), there 368 

are seven key variables �∗, namely, the total phosphorus mass flow in the influent (mTP4), reject water 369 

(mTP5), settled influent (mTP7), WWTP effluent (mTP17), waste activated sludge (mTP26), primary sludge 370 

(mTP28) and waste sludge (mTP36). Their identifiability needs to be checked for all subsets of potential 371 

additionally measured variables �	 = (Q7, Q17, Q27, Q31, Q34, Q37, Q38, TP7, TP15, TP23, TP26, TP27, 372 

TP31, TP34, TP37, TP38, TP39) in this case being 217 = 131,072 (with 17 the number of elements in �	). 373 

Analogously, variable classification was applied to the group of chemical oxygen demand and total nitrogen 374 

balances. Note that, as the volumetric flows Q contribute to all individual mass flow terms, they are part of 375 

potential additionally measured variables of each group (Table 4). 376 

Table 4. Variable classification for each group of overlapping mass balances. �8, �;, �<, ��and �3 represent 377 

the number of measured variables � , unmeasured variables � , unmeasurable key variables, 378 

potential additionally measured variables �	, key variables �∗ 379 

Description 

Group of overlapping mass balances 

Flow (Q) 
 
 

Total phosphorus (TP) 
 
 

Chemical oxygen demand and total nitrogen 
 (COD & TN) 

 

� Set of measured 
variables 
 
 
 

��8 = 34� 

Q4, Q5, Q15, 
Q23, Q26, Q36, 
Q39, Q43, Q45  
 
 

��8 = 9� 

Q4, Q5, Q36, Q43, Q45 
TP4, TP5, TP17, TP36, 
TP43, TP45 
 
 

��8 = 11� 

Q4, Q5, Q15, Q23, Q26, Q36, Q39, Q43, Q45  
COD4, COD5, COD15, COD17, COD23, COD26, 
COD31, COD34, COD36, COD38, COD43, COD45,  
TN4, TN5, TN15, TN17, TN36, TN43, TN45 
��8 = 28� 

� Set of unmeasured 
variables 
 
 
 

��; = 34� 

Q7, Q17, Q27, 
Q28, Q31, Q34, 
Q37, Q38 
 
 

��; = 8� 

Q7, Q17, Q27, Q28, Q31, 
Q34, Q37, Q38 
TP7, TP15, TP23, TP26, 
TP27, TP28, TP31, TP34, 
TP37, TP38, TP39,  

��; = 19� 

Q7, Q17, Q27, Q28, Q31, Q34, Q37, Q38 
COD7, COD27, COD28, COD37, COD39,  
TN7, TN23, TN26, TN27, TN28, TN31, TN34, TN37, 

TN38, TN39  
 

��; = 23� 

� 

Set of unmeasurable 
key variables 
 
��< = 4� 

Q28 
 
 
��< = 1� 

Q28 
TP28 
 
��< = 2� 

Q28,  
COD28,  
TN28 
��< = 3� 

�	 

Set of potential 
additionally measured 
variables 
 
 

(�� = 30) 

Q7, Q17, Q27, 
Q31, Q34, Q37, 
Q38 
 
 

��� = 7� 

Q7, Q17, Q27, Q31, Q34, 
Q37, Q38, 
TP7, TP15, TP23, TP26, 
TP27, TP31, TP34, TP37, 
TP38, TP39,  

��� = 17� 

Q7, Q17, Q27, Q31, Q34, Q37, Q38 
COD7, COD27, COD37, COD39,  
TN7, TN23, TN26, TN27, TN31, TN34, TN37, TN38, 

TN39  
 

��� = 20� 
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Description 

Group of overlapping mass balances 

Flow (Q) 
 
 

Total phosphorus (TP) 
 
 

Chemical oxygen demand and total nitrogen 
 (COD & TN) 

 

�∗ 

Set of key variables  
 
 
 
(�3 = 31) 

Q4, Q5, Q7, Q17, 

Q28, Q26, Q36 (*) 
 

 ��3 = 7� 

mTP4, mTP5, mTP7, 
mTP17, mTP26, mTP28, 
mTP36 
 
��3 = 7� 

mCOD4, mCOD5, mCOD7, mCOD17, mCOD26, 
mCOD28, mCOD36, mCOD43, OCcod,  
mTN4, mTN5, mTN7, mTN17, mTN26, mTN28, 
mTN36, DENI 
��3 = 17� 

 (*) Key variables expressed in volumetric flows are directly equivalent to key variables in total mass flows as the same 380 
density is assumed for all streams. 381 

Overall, three distinct groups of overlapping mass balances and associated groups of variables were 382 

determined: the flow (Q), the mass of total phosphorus (mTP) and the combined group of mass of chemical 383 

oxygen demand (mCOD) and mass of total nitrogen (mTN). Each group of mass balances can be effectively 384 

used to identify variables that appear in that group – only those and no other ones.  385 

Step 6. Finding solutions 386 

The determination of sets of additional measurements that guarantee the identification of key variables was 387 

performed separately for each group of overlapping mass balances and the obtained results were merged 388 

subsequently.  389 

For instance, the set of overlapping mass balances for total phosphorus contains seventeen potential 390 

additionally measured variables (�� = 17, Table 4), corresponding to 217 = 131,072 subsets (combinations of 391 

variables) of �	 to be analysed. By applying the algorithm (Supplement Material A3), 337 out of 131,072 392 

subsets of �	 were found as the solutions � allowing the identification of key variables �∗ (Table 4) of this 393 

group. Similar interpretation can be done for other groups.  394 

Since the key variables of all groups need to be identifiable simultaneously, 80,004 overall solutions 7 were 395 

derived by combining the solution vectors of one group to the ones of others, considering all possible 396 

combinations.  397 

A non-clustering approach, analysing all possible combinations of initially unmeasured variables and the 398 

complete set of mass balances, without distinguishing between groups – essentially skipping Step 5 - was 399 

also performed for comparison. The results are summarized in Table 5.  400 

Table 5. Summary of solution of clustering and non-clustering approach. 401 

 Group @A
(1) possible subsets  Number of solution(2) Execution 
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of BC (2�D) EF  G time(3) 

Clustering Q 7 128 100 

80,004  47 s  TP 17 131,072 337 

  COD & TN 20 1,048,576 200 

Non-clustering 30 1,073,741,824  80,004  7486 s 

(1) �� is number of potential additionally variables in terms of flow and concentration 402 
(2) �H is solutions for each group of overlapping mass balances  403 

� is final solution after combining solutions of individual groups (duplicates were removed) 404 
(3) Procedures were implemented by using Matlab 2014a on desktop CPU i7-4770, RAM 8GB. 405 

The total number of subsets to be analysed (total number of �	  of each group) in the clustering approach 406 

amounted to 1,179,776 (= 128 + 131,072 + 1,048,576), compared to all 230 = 1,073,741,824 subset of �	 in 407 

non-clustering approach (Table 5). It is clear that clustering significantly reduced computational effort, which 408 

enables the finding solutions to perform much faster, in this case by a factor of about 150 (47s versus 7486s).  409 

The more potential additionally measured variables the system has, the greater advantage of clustering will 410 

be. For example, in case of 20 initially measured variables and 40 potential additionally measured variables 411 

(compared to 30 initially measured variables and 30 potential additionally measured variables in the 412 

presented case study), the number subsets of �	 to be checked in the non-clustering approach would be 240 413 

(about 1 x 1012). With an average speed of analysing of 150,000 subsets/s with available computational 414 

resources, it would take about 80 days for non-clustering approach to solve the problem, while the clustering 415 

approach took about 2 hours to complete. The execution time for finding solution greatly depends on the 416 

number of initial measurements and the number of key variables. 417 

From the 230 = 1,073,741,824 combinations (subsets) of additional measurement analysed, 80,004 of them, 418 

i.e. a fraction of less than 10-4, were found to be solutions that will allow key variables to be identified.  419 

Step 7. Optimization 420 

The cost and accuracy objective functions were calculated for all 80,004 solutions and are displayed in 421 

Figure 3. The Pareto-optimal front is also visualized, containing thirty-four (34) optimal solutions. For these 422 

Pareto-optimal solutions, a lower cost can only be obtained at the expense of a lower accuracy and vice 423 

versa, a higher accuracy can only be obtained at the expense of a higher cost. The specifications of the 424 

Pareto-optimal solutions are listed in Supplementary Material C4. 425 

 426 
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  427 

Figure 3. Solutions A are expressed in terms of cost ���7� (the lower, the better) and accuracy �#�7� (the 428 

lower the value, the higher accuracy of the solution or smaller variance of new estimate of key variables). 429 

Each x represents a solution; the line with filled circles (red) represents the Pareto-optimal front, containing 430 

all optimal solutions. The green filled circle denotes the optimal solution #6 selected by the simple additive 431 

weighting method (SAW), see Supplementary Material C4 (for interpretation of the references to colour in 432 

this figure, the reader is referred to the web version of this article). 433 

The most accurate (but also most expensive) Pareto-optimal solution is the reference solution #34, for which 434 

all 30 potential additionally measured variables �	  are measured additionally. The reference solution is 435 

characterized by an accuracy �#�7� = 1.00 and cost ���7� = 1642. The cheapest and least accurate Pareto-436 

optimal solution is solution #1 with a = 14, �#�7� = 1.35 and ���7� = 650. An accuracy of 1.35 means that the 437 

average variance (�#���, see Eq. 2) identified through this solution is 35% higher than the lowest possible 438 

variance, i.e. that of the reference solution and the cost of 650 is the total cost of 14 additional 439 

measurements. An analogous interpretation holds for the other solutions.  440 

From the 34 Pareto-optimal solutions, the user can select a favourite one. For instance, applying the additive 441 

weighting method (SAW) results in optimal solution #6 (green-filled circle, Figure 3), requiring a = 15 442 

additional measurements and characterized by an accuracy �#�7� = 1.22 and cost ���7� = 725. While a 443 

minimum number of 14 additionally measured variables is required to have enough redundancy to identify all 444 
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key process variables, the SAW optimal solution only requires one more additional measurement to offer a 445 

better accuracy.   446 
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4 Discussion 447 

Experimental design procedure in view of data reconciliation for wastewater treatment plants.  448 

This contribution presents an experimental design procedure to determine set(s) of additional measurements, 449 

which should be carried out to guarantee the identifiability of key variables, meaning that their value can be 450 

calculated from other variables based on available constraints – in this case linear mass balances. The 451 

identifiability of key variables is a prerequisite for subsequent data reconciliation, through which the reliable 452 

and improved estimates for key variables are obtained. The focus on a predefined (limited) number of key 453 

variables is very relevant for monitoring campaigns at WWTPs since typically only a few volumetric flow rates 454 

and/or components mass flows should be estimated with high accuracy and high reliability while others are 455 

not of interest. 456 

Experimental design for WWTP data collection has been addressed previously, e.g. by Meijer et al. (2015), 457 

Puig et al. (2008) and Rieger et al. (2010). In these studies, measurements and/or mass balances were 458 

added such that the number of constraints (independent mass balances) was higher than the number of 459 

unknown variables, i.e. aiming at an overdetermined system. In this way, redundancy was considered as a 460 

“global property” of the system. This approach, however, does not guarantee the identifiability of all specified 461 

key process variables, which is required for the subsequent improvement of their estimates through data 462 

reconciliation. It also involves the risk of adding measurements without added value in planned monitoring 463 

campaigns. Redundancy is indeed not a “global property” but rather is a property of individual variables (van 464 

der Heijden et al., 1994a).  465 

In this study, the shortcomings of previous studies (Meijer et al., 2015, 2002; Puig et al., 2008; Rieger et al., 466 

2010) are overcome by unambiguously checking the identifiability of all key variables through the application 467 

of redundancy analysis. The feasibility of identifying key variables for the given set of mass balances is 468 

checked upfront; mass balances and/or key variables are redefined if needed. The proposed procedure also 469 

simplified the set-up of mass balances. In previous studies, it was not always clear to which extent additional 470 

mass balances actually provided additional information, i.e. whether they were linearly independent from the 471 

previous ones. By applying a feasibility evaluation through redundancy analysis as proposed in this study, 472 

one can be confident that the key variables are identifiable for the given set of mass balances. 473 

In this work, redundancy analysis was performed following the method of van der Heijden et al. (1994a) and 474 

Klamt et al. (2002). This analysis comprises the set-up of redundancy equations, which are derived by 475 
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eliminating unmeasured variables and linear dependencies from the set of mass balances. Graph-based 476 

methods (Kretsovalis and Mah, 1988), as applied by Villez et al. (2016) to determine the optimal layout of 477 

flow sensors, constitute an alternative way to analyse redundancy. Graph-based method is intuitive (directly 478 

related to topology) and may avoid numerical problems in matrix inversion (particularly when dealing with 479 

larger and sparse matrices). Nevertheless, the set-up of redundancy equations and mass balances will still 480 

be required as they make up a fundamental part of the data reconciliation procedure. In addition, setting up 481 

redundancy equations (redundancy matrix R) allows the identification of groups of overlapping mass 482 

balances (clustering) and allows quantifying the accuracy by which key variables can be identified (variance 483 

matrix V). For all of these reasons, equation-based redundancy analysis is preferred in this work. 484 

Clustering mass balances in groups of overlapping mass balances  485 

In this work, clustering mass balances in groups of overlapping mass balances was proposed for the first 486 

time as an essential part of the experimental design procedure. Clustering significantly reduces the 487 

computational effort in finding sets of additional measurements that allow the identification of key variable. 488 

Solutions are determined independently for each group and the results for individual groups are 489 

subsequently combined. This decomposition makes that a much smaller number of sets of potential 490 

additionally measured variables need to be analysed. The advantages of clustering are more pronounced as 491 

the number of potential additionally measured variables increases. The number of additional measurement 492 

layouts to be analysed exponentially increases (2n) with the increasing number of potential additionally 493 

measured variables (n).  494 

In addition, clustering reveals dependencies between variables. The identifiability of variables in one group of 495 

overlapping mass balances is independent from the measurement availability of variables in other groups. 496 

Therefore, increasing the number of measured variables in one group only helps identifying other variables 497 

in the same group. There was not always full awareness of this in previous studies. Moreover, additional 498 

measurements of conservative quantities are not always as useful as they were thought to be. For instance, 499 

mass flow measurements of total phosphorus, combining measured flow and concentration, are often added 500 

to increase system redundancy (Meijer et al., 2015, 2002; Puig et al., 2008). While those measurements 501 

increased the number of total phosphorus mass flow variables that could be identified, however, they do not 502 

have a direct influence on the identifiability of COD and total nitrogen mass flow variables. An additional 503 

measurement of total phosphorus mass flow (flow rate and concentration) could, however, help identifying 504 

the key variables in other groups in the coincidental case that the (volumetric) flow rate of the corresponding 505 
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stream was not initially measured and corresponds to key variables in other groups (mass flows of COD and 506 

total nitrogen) of which the concentrations were already measured. Flow measurements contribute more to 507 

the identifiability of key variables than concentration measurements in the sense that they contribute to all 508 

mass flows of individual components and thus appear in more groups of overlapping mass balances. 509 

Selecting the optimal solutions among alternatives 510 

Among all solutions, the optimal solutions were found considering two objectives, namely the costs of 511 

additional measurements and the accuracy of identified key variables. The results of this multi-objective 512 

optimization problem were represented in a Pareto front. It is interesting to note that number of Pareto-513 

optimal solutions is very small compared to total number of solutions (fraction of less than 10-3) and 514 

represents an even smaller fraction of the total number of possible combinations of additional measurements 515 

(less than 10-7). The Pareto-front is a valuable decision tool from which the user can simply select the 516 

preferred optimal solution based on expected accuracy and/or monitoring campaign budget. Alternatively, 517 

the trade-off between cost and accuracy could be made based on mathematical methods such as simple 518 

additive weighting (SAW), multiplicative exponent weighing (MEW), grey relational analysis (GRA), technique 519 

for order of preference by similarity to ideal solution (TOPSIS), etc. (Wang and Rangaiah, 2016).  520 

The Pareto-optimal solutions are guaranteed to be globally optimal because an exhaustive search was 521 

applied: (1) all possible combinations (230 in total) of additional measurements were analysed (through 522 

redundancy analysis) to find the solutions for the given set of mass balances and given data inventory, and 523 

(2) an accuracy �#�7� and a cost ���7� were calculated for every possible solutions (80,004) found under (1) 524 

to find the Pareto-front (i.e., a discrete optimization problem). 525 

To maximize the accuracy, this work aims to minimize the average variance of key process variables relative 526 

to those of the reference solution (i.e., the solution for which all possible additional measurements are 527 

measured additionally, leading to the smallest variance). Other options to maximize accuracy could be to 528 

maximize the determinant of the covariance matrix of key variables (D-optimality) or to maximize its minimum 529 

eigenvalue (E-optimality). This objective function then needs to be reformulated accordingly. 530 

Application to other WWTPs 531 

The proposed experimental design procedure is simple to apply to other similar WWTPs since it consists of a 532 

fixed sequence of steps, all of which are fully explained and documented. Step 1 to step 3 require inputs 533 

from the user (for listing key variables, setting up mass balances and inventorying data) following the 534 
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guidelines. Step 4 to step 7 are fully automated for any problem that can be formulated in the first 3 steps; 535 

these steps do not require user intervention except in case there is one or more key variables that cannot be 536 

identified for the given set of mass balances and key variables following the indication of Step 4.  537 

The procedure was described as a retrofitting problem, in which initial measurements are already available 538 

and standard error of variables could be estimated/collected easily. The proposed experimental design 539 

procedure remains applicable in case no initial measurements are available, e.g. in case of a WWTP in the 540 

design phase. In this case, the standard error of the variables need to be estimated relying on expert 541 

knowledge, keeping in mind that their relative values are more important than the absolute values.  542 
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5 Conclusions 543 

− An experimental design procedure for WWTP is proposed to determine sets of additional 544 

measurements, which guarantee that key variables can be identified in the sense that they can be 545 

calculated from other measurements and therefore, more reliable and improved estimates of these 546 

variables can be found through reconciliation.  547 

− The comprehensive redundancy analysis takes advantage of independent groups of overlapping 548 

mass balances to decompose a large system to smaller independent sub-systems, which then 549 

significantly reduces computational effort for finding sets of additional measurements that allow the 550 

identification of key variables. 551 

− The search for optimal sets of additional measurements is solved as a multi-objective optimization 552 

problem involving cost of additional measurements and accuracy of the improved estimates of key 553 

variables. The final result is the enumerated Pareto-optimal front of additional measurements, which 554 

is valuable for monitoring planning. 555 

− The proposed procedure is straightforward and demonstrated for a case study and can easily be 556 

applied to other WWTPs, even if no initial measured data are available.  557 

558 
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− Step-wise measurement planning procedure to obtain reliable data from wastewater treatment 
plants (WWTPs)  

− Right combinations of measurements guarantee improvement of key variables  
− Clustering in groups of overlapping mass balances speeds up calculation 
− Optimal solutions are trade-off between measurement cost and variable accuracy 
− Procedure is demonstrated for case study and straightforward to apply to other WWTPs 


