

Localising objects with drones: A case study on the localisation of fisher boats in restricted areas

P5 Presentation Lisa Geers 5351421 January 17, 2023

Table of contents

Introduction

Theory & Related work

Methodology

Experiments

Results

Discussion

Conclusion & Future work

Introduction inspections

- Monitoring in-person time consuming
- Develop integrated method for more efficiency

Why drones?

- High resolution imagery
- Agile data collection
- Unmanned inspections

Research goals

- Integrate different components into prototype
- To what extent can drones be used to localise objects in real time?
 - Deep learning
 - Positioning
 - Real time

Theory & Related work

- Object detection widely researched
 - Al
 - Deep learning models
 - Object detection
- Localisation vs Positioning
 - Positioning: numerical coordinates
 - Localisation: coordinate context
- Aim is how to integrate into one prototype

Methodology

Data acquisition

Object detection

Positioning

Real time connection

Localisation

Results evaluation

Data collection

- Den Oever
 - Nadir
 - Predefined path

Den Oever data collection area

Data collection

- Ameide
 - Nadir & oblique
 - Boat movement
 - GPS tracker

9

Object detection

- YOLOv3 detection model
- ArcGIS Python API
- Pretrained on COCO dataset

Training the detection model

- Train pretrained YOLOv3 model
- Imagery input

Nadir positioning

- Metadata: camera pose and drone position
- Meters per pixel

Nadir positioning

- Metadata: camera pose and drone position
- Meters per pixel
- Rotation with yaw

Camera and drone principal axes

Oblique positioning

- Added pitch parameter
- Different approach x and y-axis

Real time connection

- Controller connection to cloud
- Python connection to cloud

Localisation with a dashboard

- Map with polygons and restricted areas
- Statistics
- Updates

Input: link to Google Drive **Output:**

 $M \leftarrow$ deep learning model Fill stack with image IDs

Input: link to Google Drive **Output:**

 $M \leftarrow$ deep learning model Fill stack with image IDs while IDs in stack **do** Get ID from stack Download image bytes *img* with ID

Input: link to Google Drive **Output:**

 $M \leftarrow$ deep learning model Fill stack with image IDs while IDs in stack **do** Get ID from stack Download image bytes *img* with ID $p \leftarrow$ inference using *M* and *img* filter boat features *b* from *p*

Input: link to Google Drive **Output:**

 $M \leftarrow \text{deep learning model}$ Fill stack with image IDs **while** IDs in stack **do** Get ID from stack Download image bytes *img* with ID $p \leftarrow \text{inference using } M \text{ and } img$ filter boat features b from p**for** each b **do** $c \leftarrow \text{positioning } b$

Input: link to Google Drive **Output:**

 $M \leftarrow$ deep learning model Fill stack with image IDs **while** IDs in stack **do** Get ID from stack Download image bytes *img* with ID $p \leftarrow$ inference using *M* and *img* filter boat features *b* from *p* **for** each *b* **do**

 $c \leftarrow \text{positioning } b$ write c into online layer end for

Input: link to Google Drive **Output:**

 $M \leftarrow$ deep learning model Fill stack with image IDs while IDs in stack **do** Get ID from stack Download image bytes *img* with ID $p \leftarrow$ inference using *M* and *img* filter boat features *b* from *p* **for** each *b* **do**

 $c \leftarrow \text{positioning } b$ write c into online layer

end for

remove current ID from stack add new image IDs from drive to stack end while

Experiments

- 3 main components
 - Detection models
 - Positioning algorithms
 - Speed real time connection

Experiments - Detection

- Difference ground truth and detected labels
- Ground truth drawn manually

Den Oever

Ameide - nadir

Ameide - oblique

Experiments - Detection

True Negative

Experiments - Detection

- Recall = TP / (TP + FN)
- Precision = TP / (TP + FP)
- AP = Area under the curve

Example precision-recall curve

Experiments - Positioning

- Difference ground truth and positioned coordinates
- Conversion to meters

Experiments - Positioning

Motionless

Nadir

Moving

Oblique

Experiments – real time connection

- Measure time main components
- Stopwatch and Python

Stopwatch

00:00.00

Lap	• •	Star

Used stopwatch

Results – pretrained detection model

- Difference nadir & oblique datasets
- Den Oever boat parts

30

0	boa	at					
1000 -							66-
2000 -						*	-
3000 -			boar //		•	3.0	SIE
4000 -			*				
5000 -	6					4	
				Contract of the second		3	
0	1000	2000	3000	4000	5000	6000	7000

Dataset	Average Precision
Den Oever	25.15%
Ameide – nadir	6.06%
Ameide – oblique	74.29%

Detection result Den Oever

Results – pretrained detection model, all classes

- Increase in true positive and false positives
- Proves misclassification in pretrained model

Dataset	Average Precision
Den Oever	23.84%
Ameide – nadir	50.47%
Ameide – oblique	76.91%

Misclassification Ameide dataset

Results – trained detection model

- Predicted bounding boxes too big
- Training increases accuracy

Dataset	IOU	Average Precision
Den Oever	0.5	42.83%
	0.1	68.55%
Ameide –	0.5	12.12%
nadir	0.1	42.42%
Ameide –	0.5	4.44%
oblique	0.1	4.44%

Detection result IOU: 0.1

Results - Positioning

• Motionless & nadir perform better

Euclidean absolute average error in meters					
	Motionless	Moving			
Ameide – nadir	5.6	9.7			
Ameide – oblique	8.2	19.6			

Results – nadir positioning

Nadir images – motionless boat

10 . **0**050 0 058 0064 0051 Latitude error -100053 0054 0055 0057 **0**056 -20 -30 -30 -20 -10 10 0 Longitude error

Nadir images – moving boat

Results – oblique positioning

Oblique images – motionless boat

Oblique images – moving boat

Results – real time

- 25.72 seconds one image
- Downloading and uploading time consuming

Processing time in seconds						
Download full size	To Drive	From Drive	Detection	Positioning	Write to file	Code total
2.53	9.97	0.31	1.01	0.0	3.49	13.21

Discussion

- Detection improvement with training
- Positioning improvement with better metadata
- Real time improvement with processing on drone or controller
- Privacy

Conclusion

- How can deep learning be used to detect objects on drone images?
- How can detected objects be automatically positioned in a geographical coordinate system?
- What hardware and software is needed for this method to be carried out in real time?

• To what extent can drones be used to localise objects in real time?

Future Work

- Tracking
- Full motion video
- Processing on drone or controller

Thank you for your attention!