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Abstract

Schistosomiasis is an intravascular infection with major public health consequences in de-
veloping countries. It is one of the major Neglected Tropical Diseases with more than 240
million people infected and 800 million people at risk in 2015, mostly in sub-Saharan Africa.
It is caused by trematode parasites of the genus Schistosoma, in this report the focus was on
Schistosomiasis Haematobium since it is the most prevalent form of the disease.

One of the limiting factors of the control program is the standard diagnostic procedure set
by World Health Organization, which is based on counting the parasite’s eggs in a person’s
urine. Examination by microscopy requires the use of expensive microscopes, is prone to
human errors and inconsistency, is time consuming, and uses filters which are often not
available. The research objective was identified from these shortcomings:

"Develop a low-cost, smart diagnostic method for Schistosomiasis Haematobium
based on detecting eggs in urine by combining lensless imaging and flow cytometry,
and developing Artificial Intelligence models for automated detection."

In-line planar wavefront digital holography was identified as the most suitable lensless imaging
method. A sample will be analyzed by the following repetitive procedure: (1)mechanically
press the piston of a syringe by a small volume, (2)wait for the flow to stop, (3)record a
hologram, (4)detect eggs. The implemented egg detection procedure consisted of a series of
image processing algorithms: (1)apply Foreground detection, (2)localize the moving objects
with a Blob detector, (3)locally reconstruct the hologram at the found locations, (4)classify
the reconstruction as egg or not egg. The imaging method provided accurate reconstructions
of eggs and the object detection algorithm was able to locate moving objects with sufficient
accuracy and computational time. On the other hand, the lab and field tests showed that
the data set of the classifier did not contain enough images to train a generalized model and
that the local reconstruction and classification takes increasingly more time during analysis.
As of now the method is an order of magnitude slower than an expert microscopist.

The diagnostic method is not yet able fulfill the research objective. However, there are some
promising aspects such as the low-cost imaging method, fast object detection algorithm, and
absence of sample preparation which makes further research worthwhile.
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Preface

The dissertation “Digital holography integrated with flow cytometry for detection of urinary
schistosomiasis”, is written to fulfill the graduation requirements of the Systems & Control
Master program at the Technical University of Delft. It is a feasibility study and preliminary
design of a new diagnostic method.

The research was performed under supervision of Temitope Agbana and professor doctor Gleb
Vdovin, and in collaboration with the Smart Optical Diagnosis Of urinary Schistosomiasis
(SODOS) group. I chose the topic in early 2017 because of its social relevance and the
potential impact it could have on developing countries with limited resources. Before this
I was not aware of the existence of Schistosomiasis, and even now I find it surprising how
problems like these are not discussed more openly in western society.

The scope of the research was broad, covering many interesting topics such as tropical diseases,
lensless imaging, and computer Vision. It suffices to say that it has been eye-opening in many
ways.

I am happy to have been a part of this field of research as it has provided me ample of
experience in a variety of subjects and put me in contact with some great people. The road
has not been one without scientific and personal hurdles, but I would not want to have had
it any other way.

Enjoy your reading!
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Introduction

Chapter 1

Introduction

Figure 1-1: A male and female pair of
Schistosoma.[1]

Schistosomiasis Haematobium (SH) affects
more than 100 million people worldwide.
Poor hygiene conditions, expensive and in-
accessible diagnostic procedures are the ma-
jor reasons for the uncontrollable spread of
this Neglected Tropical Disease (NTD). To
provide accurate and effective drug prescrip-
tion to infected patients, the infection load
must be well defined. This thesis reports on
the development of a new optical diagnos-
tic method that will potentially provide la-
bel free quantitative diagnosis of SH. This
chapter provides a quick overview of SH and
also outlines the goal and objective of this
report. First the biological characteristics of
the disease are presented along with the cur-
rent state of the art of the diagnostic meth-
ods. Next, the development of new quantita-
tive diagnostic methods for SH is researched.
The chapter concludes by presenting the re-
search objective and by proving a brief layout
of what will be discussed in each chapter of
this report.

Section Title Page
1-1: Schistosomiasis 2
1-2: Diagnostic standard for SH 2
1-3: Previous work on diagnostics for SH 4
1-4: Research objective 6
1-5: Report layout 8

Master of Science Thesis P.M. Nijman



2 Introduction

1-1 Schistosomiasis

Schistosomiasis, also called bilharzia, is a major intravascular infection with major public
health consequences in developing countries. It is one of the major NTDs with more than 240
million people infected and 800 million people at risk in 2015. Disease burden assessment for
schistosomiasis has shown that the annual number of disability adjusted life years (DALYs)
list is around 70 million, with around 300.000 deaths annually in Africa.[15]

Figure 1-2: Kids playing and bathing in water[2].
Waters like these are often filled with cercariae which
will hatch into the schistosoma blood flukes in case
they manage to infect a person.

Schistosomiasis is caused by trematode par-
asites of the genus Schistosoma, of which
3 major species cause the disease in hu-
mans: Schistosoma mansoni, Schistosoma
japonicum, and Schistosoma haematobium.
People contract the disease by contact with
water, hence it prevails in areas of poverty
where people do not have direct access to
sanitary facilities. Local inhabitants wash
themselves in rivers and lakes as shown in
Figure 1-2, which results in the high preva-
lence mentioned earlier.[2] In this report the
focus is on SH since it is the most prevalent
of the three.[2] Schistosoma have a complex
life-cycle which is schematically depicted in
Figure 1-3, a distinct part of the life cycle of
Schistosoma haematobium is that the eggs
are laid in the bladder and exit the body along with urine.
The World Health Organisation (WHO) has been putting effort into controlling Schistosomi-
asis with the end goal of eventually eradicating the disease. The current strategy for control
aims to prevent morbidity in later life through regular treatment with praziquantel, which is
currently the only recommended drug for treatment of Schistosomiasis. Praziquantel kills the
parasitic worms but does not prevent reinfection, therefore continuous treatment is needed in
endemic areas. Infection rates and intensity of infection have reduced since the introduction
of control programs in endemic countries[3]. However, detecting low intensity infections has
been difficult especially for people that have already been treated. This makes it hard to
identify the prevalence of SH in endemic regions.

1-2 Diagnostic standard for SH

There are several ways to determine whether a person is infected with SH, most of which
rely on the presence of some substance in urine. The current standard for in-field Point of
Care (POC) diagnostics set by the WHO relies on counting eggs in a persons urine. There are
diagnostic methods reliant on other factors in urine such as anti body DNA or worm DNA
however these methods are not accepted by the WHO as a standard. Therefore this section
will only elaborate on the standard diagnostic method set by the WHO.[2]
As shown in Section 1-1, a person infected with SH has the parasite’s eggs in their urine.
The eggs from Schistosoma haematobium are approximately 135[µm] × 50[µm] in size and
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Figure 1-3: Visualisation of the lifecycle of SH[3].

are unique in shape, making them a key indicator for presence of the disease[16]. The WHO
dictates that the infection intensity is quantified as the amount of eggs present in a person’s
urine[3]. The infection intensity is determined according the amount of eggs present in 10 mL
of urine. The absence of eggs is noted as uninfected, if there are between 0 and 50 eggs it
is diagnosed as a light infection, any egg count beyond 50 is diagnosed as a heavy infection.
Since the amount of eggs in urine can vary throughout the day often multiple samples are
examined for a more accurate diagnosis. Due to its simplicity, syringe filtration is preferred
in community and school surveys as it requires less equipment than urine concentration with
centrifugation[15].

A study done in Ghana by A. Koukounari et al concluded that the best diagnostic test for the
detection of the prevalence of SH out of 5 tested methods was examination by microscopy.
The study tested diagnosis with the following methods: Urine-antigen detection, Serology
anti-IgG, Ultrasound examination, and parasitological examination through microscopy and
haematuria. With microscopy they were able to reach a sensitivity of 92.5% and a specificity
of 97.9% from a single urine sample passed between 10:00 and 14:00, which is the time of
optimum egg passage. [17][18]

To give an impression of what the eggs look like, Figure 1-4 shows a Schistosoma haematobium
egg stained with iodine. Egg counting is performed in the following manner:

1. A midday urine sample is collected.

2. 10 mL of urine is drawn from the sample.

3. A nylon, paper, or polycarbonate filter(12− 20[µm] pore size) is used to filter the eggs
from the sample [3].
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4. The eggs are stained by using Lugol’s iodine[2].

5. The filter is put under a microscope.

6. A trained professional counts the number of eggs.

Figure 1-4: Schistosoma hamatobium egg stained with iodine [4]

The current diagnostic standard comes with the following drawbacks which makes it unsuit-
able for diagnosing large populations:

• Filters are not always available in field settings and often have to be imported from
Western countries.

• Expensive equipment (microscope) is necessary.

• Human expertise needed for reliable diagnoses which is not commonly available in low
resource settings with high disease prevalence.

• The method is prone to Human error due to a combination of large volume of samples
and fatigue, and lack of concentration.

These drawbacks emphasize the need for a low cost, smart diagnostic device for infield use.

1-3 Previous work on diagnostics for SH

In 2014, Bogoch et al. experimented with a mobile phone microscope for the diagnosis of
Schistosomiasis mansoni, SH, and soil-transmitted helminths. They concluded that the mobile
phone microscope had only modest sensitivity with their experimental set-up. They also
mention that the development of portable diagnostic technologies that can be used at point-of-
sample collection will enhance diagnostic coverage in clinical and epidemiological settings[19].
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In 2015, Ephraim et al. experimented with a mobile phone-mounted Foldscope and reversed-
lens CellScope combined with paper towel filtration for SH diagnosis. These experiments
were performed in order to support the movements to affordable diagnostic methods in low
resource settings. Locally produced paper towels were used as filters in order to save on
conventional filters which are generally not available in those regions. They reported that
the mobile phone-mounted Foldscope had limited sensitivity but excellent specificity for the
diagnosis of SH. The reversed-lens CellScope showed similar results. Based on the report,
the need for robust, simple, and inexpensive diagnostic tests in resource-constrained settings
is cogent. Their tests with toilet paper filtration showed that it was not possible to detect SH
by filtering the urine with single-ply paper towels. The paper is not smooth enough which
causes the light to refract, making it impossible to distinguish the eggs[20].
There have been several studies on automating the process of counting the eggs in recorded
images of samples. In 2017, Holmström et al researched automated detection using a deep
learning-based algorithm in combination with a digital microscopy scanner. The eggs were
visually identified for training of the neural network. Usage of the neural network showed
a sensitivity ranging from 83.3% − 100% in the test set of manually labeled helminth eggs,
however the images only contained up to 12 eggs. The study showed the imaging performance
of a mobile, digital microscope was sufficient for visual detection of soil-transmitted helminths
and Schistosoma haematobium. Furthermore, it also showed that deep learning-based image
analysis can be used for the automated detection of SH[21]. The analyzed images were ob-
tained from 4 20µL samples which were examined under a microscope, so the method is not
suited to replace the current diagnostic standard since the sample preparation is too com-
plex. In 2016, Q. Li explored an automatic detection method for Schistosomiasis Japonicum
miracidia, consisting of a real-time video detection algorithm. The method showed better
accuracy and efficiency than human eye recognition for Schistosomiasis japonicum miracidia,
but is not aplicable for diagnosing Schistosomiasis Japonicum[22]. Linder et al have investi-
gated low cost on-chip imaging to see if using this is a feasible method in order to diagnose
Schistosomiasis. This research showed that Schistosomiasis can be detected using an inexpen-
sive imaging device such as a webcam. It also showed that computer vision algorithms can be
used for detection, removing the human intervention. The images of the eggs are not up to the
standard as can be seen in Figure 1-5, the absence of reconstruction limits the image quality
and the sensors have to be replaced after every use because it is based on contact imaging
(more on this in Section 2-1). However, it is a study which shows that imaging sensors can
be used to image eggs directly without lens[5].
In 2012, Gao et al. applied an automatically microscopic scanning system in the etiological di-
agnosis of Schistosomiasis in order to partially automate the counting of eggs. The movement
of the slide under the microscope was automated, but the egg counting was still performed
manually. In the control group, professionals analyzed 20 intestinal Schistosomiasis samples
by manually moving the slide. The sensitivity, specificity, and overall accuracy of the diag-
nosis of Schistosomiasis of the automatically microscopic scanning system was higher than
that of the traditional manual microscopy detection. However, human expertise and sample
preparation were still required for this method of egg counting.[23]
In short, there have been several efforts to make the quantitative diagnosis based on egg
counting more affordable and/or less labor intensive. However, so far the efforts have not
resulted in a method which could improve on conventional microscopic egg counting done by
a trained individual to an extend to where it could be replaced.
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Figure 1-5: Image of an SH egg which was put on top of the imaging chip[5].

1-4 Research objective

This section will emphasize the research gap and present the reader with the research objective
of this report. First the diagnostic technology gap is elaborated on and next some methods
are introduced which could be used to fill the technology gap.

1-4-1 Diagnostic technology gap

Current parasitological tests are subject to shortcomings which leave room for improvement.
The need for a novel diagnostic method is clearly stated by Kosala G. A. D. Weerakoon[15]:

"It is a sobering thought that despite extensive efforts, as indicated earlier, the
global disease burden of schistosomiasis still remains unacceptably high. This per-
sistence of the disease despite massive and integrated control programs over the
last few decades may be due in part to the lack of accurate diagnostic tools for case
detection and community screening in areas where schistosomiasis is endemic.
...
It is imperative to develop more effective approaches for the prevention, control,
and elimination of schistosomiasis. Morbidity reduction and parasite elimination
are the two main pillars of current control programs. Effective diagnosis plays
a key role in control strategies, with wide applications in case detection in areas
with a high prevalence as well as those with a low prevalence, where the main
aims are elimination of infection, evaluation of disease intensity, and assessment
of therapeutic responses as well as the overall effectiveness of the interventions
employed."

Two methods that raise interest for diagnosing SH through detection of eggs are lensless
imaging and flow cytometry. As mentioned in Chapter 2, lensless imaging can be a low cost
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and robust alternative to lens based microscopy, while flow cytometry will not require any of
the sample preparation methods mentioned in Section 1-2 since the sample can administered
directly from the syringe. The combination of these two techniques can make diagnosing SH
low cost and user friendly, therefore this application should be investigated. Combining these
methods for quantitative diagnosis will reduce the materials needed for field testing since
sample preparation materials will be reduced.

Quantitative field testing is a labor intensive procedure which requires a person’s concen-
tration throughout the day in order to accurately count eggs. There have been examples of
artificial intelligence based counting of red blood cells, which hints at its application to egg
counting[24][25][26]. Automating the counting procedure will give the following advantages:

• No need for technical expertise for in-field testing.

• Save on training cost and time.

• Time savings, ability to do other tasks.

• Removal of human error.

• Improved data collection.

1-4-2 Research objective

This chapter has discussed the shortcomings of diagnosing SH, what should be done to address
these, and present lensless imaging and flow cytometry as a possible solution. Combining this
leads to the following research objective:

"Develop a low-cost, smart diagnostic method for SH based on detecting eggs in
urine by combining lensless imaging and flow cytometry, and developing Artificial
Intelligence (AI) models for automated detection."

This objective naturally splits up into several minor objectives since digital holography and
flow cytometry have not been applied in this field before, and it concerns the development of
a new method for this application. The objective can be partitioned as shown below:

• Verify whether a combination of lensless imaging and Flow cytometry can be used to
image SH eggs in flowing urine samples.

• Develop a model for automated detection and estimation of infection load.

• Validate the method according to medical standards.

• Implement the developed method on a mobile device suitable for in field testing.

These steps give an idea on how the research will be performed during this research.

Master of Science Thesis P.M. Nijman



8 Introduction

1-4-3 Future effects

The value of research does not depend purely on the results, but rather on the implications
those results have on future research. Successfully completing the research objective will add
the following knowledge to the field of research:

• Digital holography can be combined with flow cytometry for analyzing the presence of
SH eggs in urine.

• Artificial intelligence can alleviate the responsibility of manually counting and quanti-
fying the SH eggs in a given infected sample.

• Field testing for SH will be cheaper and less time intensive as the new method will be
simple to use, cheap to maintain, and not need any sample pre-processing.

• The result serves as a catalyst for other research related to NTD diagnosis automation.

1-5 Report layout

How is the research objective, mentioned in the previous section, handled in this report? This
section provides insight about the structure of this report.

First, Chapter 2 will provide background information on the methods used to design the new
diagnostic method. Concepts such as lensless imaging, flow cytometry, and machine vision and
their application to this topic will be discussed. Then Chapter 3 will present the experimental
results of the validation tests of the aforementioned concepts, including a resolution test of
the holographic microscope and benchmark results of the detection algorithm. Next, Chapter
4 presents a case study in which a prototype based on the detection algorithm will be used
for field tests in Ivory Coast. The results of these field tests will be analyzed in this chapter.
Finally the report concludes with Chapter 5 which contains a discussion on the results of the
research and recommendations for its continuation.
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Chapter 2

Diagnostic Method Proposal

Figure 2-1: Sample preparation and examination by
microscope, the research objective is to eliminate this
procedure[6].

The previous chapter presented the research
objective and along with it concepts such
as lensless imaging, flow cytometry, and
Artificial Intelligence (AI) were introduced.
This chapter presents the background infor-
mation on these concepts and shows how
they can be applied to fulfill the research
objective. In other words: A new diagnos-
tic method is proposed. First, Section 2-1
presents a short review of lensless imaging
methods and selects the most appropriate
one for the purpose of this research. Next,
Section 2-2 discusses flow cytometry and how
it can be applied in order to record urine
flow. The egg detection algorithm is then
presented in Section 2-3, followed by a dis-
cussion on how a diagnosis can be performed
in Section 2-4. Finally the Chapter is con-
cluded in Section 2-5.

2-1: Lensless Imaging 10
2-2: Flow Cytometry 14
2-3: Egg detection 16
2-4: Diagnosis 23
2-5: Method overview 25
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2-1 Lensless Imaging

Lensless imaging is an emerging field of research for high resolution imaging in low-resource
settings. This Section will briefly discuss the various lens-less imaging methods and decide
which method is most applicable in this case.

2-1-1 Digital Holographic Microscopy

Digital holography is an imaging technique where the magnitude and phase information of
an object wave is captured as an interference pattern. In this report only inline holography
is considered since it is the least complex and does not require any lenses, a schematic of this
imagin method is shown in Figure 2-2.

Figure 2-2: Depiction of the setup for obtaining a Gabor
hologram[7]

For an in-line holographic setup
only one source of illumination is
used, the portion of the illumi-
nation unperturbed by the object
is considered to be the reference
wave R(x, y, z). A small por-
tion of the illumination hits the
transparent object, causing some
of the illumination light to scatter,
which constitutes the object wave
O(x, y, z). The measured interfer-
ence between the un-scattered ref-
erence wave and the scattered object wave is called the hologram, which is shown in Equation
(2-1). The interference appears as a fringe pattern perpendicular to the direction of prop-
agation. The most important terms of this equation are the last two, which represent the
dominant interference terms. The hologram is reconstructed by illuminating the recorded
hologram with the reference wave.[27]

|R+O|2 = |R2|+ |O2|+R ∗O +O ∗R (2-1)

In digital holography the hologram is recorded on an electronic image sensor-array, while the
reconstruction step is done numerically. This yields a digital image which ideally contains
both phase and magnitude information of the object. Since the reference wave is necessary
for reconstruction this has to be simulated properly when doing numerical reconstruction.
Measuring the phase distribution of an arbitrary wave with the required precision for high
resolution imaging is problematic. Therefore an illumination source with known wavefront
should be used, this is usually a spherical or planar wavefront. Both these types are being
used for holographic microscopy, but their merits and reconstruction methods differ. The
wave propagation algorithms which are used to reconstruct digital holograms are based on
the scalar diffraction theory and are the numerical solutions of either the Fresnel-Kirchhoff, or
the Rayleigh-Sommerfeld diffraction integrals. The latter out of the two being considered the
most accurate because it does not rely on any approximations unlike the Fresnel-Kirchhoff
diffraction integral which uses the Fresnel approximation. [7]
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The Rayleigh-Sommerfeld diffraction integrals results in a reconstruction algorithm which uses
the angular spectrum method shown in equation (2-2). In this equation h(x, y, z) represents
the propagation kernel which depends on the reference wavefront, E1(x, y, 0) the scalar electric
field in the hologram plane, and E2(x, y, z) the scalar electric field in the object plane.

E2(x, y, z) = F−1{F{h(x, y, z)} · F{E1(x, y, 0)}} (2-2)

Equation (2-3) shows the distance condition for no aliasing when using Angular Spectrum
Method (ASM) while Equation (2-4) shows the distance condition for no aliasing when using
Fresnel-Kirchhoff diffraction integrals[7]. In these equations z represents the distance between
object and sensor, λ the illumination wavelenght, ∆x the pixel pitch, n the image width in
pixels, and n′ the width of the area containing nonzero pixel values. It is evident that the
ASM is better suited for short distances, as the propagation distance has to be smaller than
some value.[7]

z ≤
√

4∆2
x − λ2

2λ (n− n′)∆x (2-3)

z ≥ 2n∆2
x

λ
(2-4)

The fringes contain information on the transparency of the object as well as the thickness,
as these properties affect the intensity of light as well as the phase. With this information
it becomes possible to image transparent objects without labeling them. Over the years this
has caused the rise of Digital Holographic Microscope (DHM), also called 3D microscopy or
quantitative phase microscopy, which can be used to image microscopic biological specimen
which are often transparent. [28] During the reconstruction of in-line holograms the object
wave and the conjugate object wave represent optical fields traveling in opposite directions.
As a result, upon propagation of the recorded hologram toward the object plane, one of
these terms converges to an image of the object, while the other further diverges, forming a
weaker defocused twin-image related artifact that is concentric with the actual image. This
spatial artifact is caused by the fact that the image sensor only measures the intensity of the
light, and thus, the phase of the scalar electric field at the hologram plane is lost. There are
methods to remove the twin-image artifact, however; these require extensive computational
time, control over the object, or a more complex setup.[29] An important drawback of the
discussed holographic system is the need for transparent samples since these microscopes work
in transmission mode.

There are two ways, based on the illumination wave, in which digital in-line holography can
be applied in order to capture images of microscopic particles. These will be discussed in the
following two paragraphs.

Digital in-line holographic microscopy with spherical wavefront illumination

In this method, a pinhole with a size smaller than 1.22 ∗ λ is illuminated in order to create a
coherent spherical wavefront. The spherical wavefront is used to illuminate the target object,
where the distance between aperture and object(z1) is smaller than the distance between
object and sensor(z2). The spherical wave in combination with the distance between object
and sensor leads to a fringe magnification of M = 1 + z2/z1. Numerical reconstruction
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has shown to produce images of specimen with sub micron resolution, fringe magnification
overcomes the sampling limit introduced by the pixel size of the sensor.[27] The object wave
has a high diffraction angle when it hits small objects/details, the spatial resolution is then
limited by the sensor dimensions due to relatively large distance between the object and sensor
planes. This also limits the Field of View (FOV) since the scattered light of objects located
outside of the center is not captured by the sensor. Consequently the whole sensor surface
needs to be coherently illuminated, requiring a large spatial coherence diameter as well as
the use of a narrow band light source in order to get sufficient temporal coherence. On the
other hand, an increase in spatial and temporal coherence can cause unwanted interference
terms due to the reflective surfaces in the system and is a source of multiple reflection and
speckle noise. LEDs can also be used for illumination, as demonstrated by Repetto [27], but
their coherence length is in the micrometer range so the spectral characteristics of the used
LED for an optical set-up have to be considered. One practical limitation of these systems is
that pinholes of such small size tend to get blocked by dust or other particles easily, and the
proper adjustment of such pinhole to a focused laser beam requires high precision and could
also require relatively expensive optical and mechanical elements.[27]
The strict requirements of the illumination light combined with the limited FOV due to fringe
magnification limit applicability for the purpose of this research.

Digital in-line holographic microscopy with planar wavefront illumination

In this method the illumination light consists of a planar wavefront. A key difference compared
to spherical wavefront illumination is that a smaller sample to sensor distance is required.
The fringe magnification of this method is approximately 1, which results in a FOV equal to
the sensor area. Therefore this method is suited for applications that demand for a large FOV
and high throughput. Any light that hits the sample can be considered to be a plane wave
because the distance between the illumination source and the sample is much larger than the
distance between sample and sensor and, therefore the digital reconstruction does not have
the same sampling and aliasing related issues that spherical wavefronts have. Additionally,
spatial and temporal coherence of the light source can be significantly lower due to smaller
path length between sample and sensor. The main limiting factor for spatial resolution is the
physical pixel size and not the width of the sensor.
Biomedical use of this platform has already been demonstrated for blood analysis, imaging
antibody microarrays, semen analysis, and the detection of waterborne parasites [27]. The
pixel size at the detector array now place an important role in spatial resolution, it may cause
under sampling of high frequency fringes of a lense free hologram. Another limitation can
be considered the need for computation in order to reconstruct images. The application of
planar wavefront digital holography for imaging Schistosomiasis Haematobium (SH) eggs has
already been shown by T.E. Agbana [8], of which the resulting image is shown in Figure 2-3.
It has shown to provide sufficient resolution in order to visually identify the eggs, and can be
applied with low cost off-the-shelf components.

2-1-2 Shadow Imaging

Shadow imaging is a method where images are obtained by recording the diffraction pattern
of an incoherent or partially incoherent illuminated object. The main difference between this
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Figure 2-3: Reconstruction of Schistosoma haematobium eggs made from a holographic
recording[8].

method and that of Digital Holographic Microscopy is that the diffraction between the object
and detector plane is left unprocessed. The recording is not identical to the object itself since
diffraction is unavoidable. However, the image does contain characteristic information about
the object so it can still be of use for classification. Shadow imaging has similarities with
planar wavefront holography since the FOV is equal to the active sensor area. However the
non coherent and uncontrolled nature of the illumination prevent the use of wave propagation
algorithms to digitally undo the effect of diffraction. The spatial resemblance of the object to
its shadow strongly depends on:

• 3D nature of the object since only 2D shadow is measured without the ability to digitally
refocus or reconstruct

• the sample to the detector distance

• pixel size

The main advantage of shadow imaging is its simplicity for screening a large FOV and the
reduced computational power needed compared to other lens-free method. On the other
hand, the microscopic spatial features cannot be distinguished from the shadow because of
diffraction. To mitigate this shortcoming and contain high microscopic images using inco-
herent shadow imaging one has to significantly decrease the sample sensor distance in order
to minimize the effect optical diffraction. The specimen could be put directly onto the sen-
sor surface this is also called contact imaging. A contact imaging geometry can only image
object directly at the surface and as such not suited for imaging objects in a 3D geometry.
Additionally only a limited amount of samples can be analyzed by one sensor if they are put
directly on the surface.[27]

2-1-3 Lens-free Fluorescent Imaging on a Chip

Fluorescent imaging works by exciting an object with a specific wavelength, this light is then
absorbed by the fluorophores present in the material. The light emitted by the fluorophores is
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captured while the excitation light is filtered out. Since no lenses are involved in this imaging
modality , the fluorescent emission of cells or particles will diverge, potentially causing overlap
at the sensor plane. This also limits the attainable resolution. These problems can be worked
around by applying reconstruction algorithms as well as utilizing specialized optical elements
such as nanostructured surfaces or tapered fiber optic face plates.[27]

2-1-4 Method selection

This section has presented several methods for lensless imaging. Shadow imaging does not
provide sufficient resolution nor is it capable of imaging 3 dimensional space. Fluorescent
imaging does not provide the spatial resolution for identifying the distinct features of the
eggs. In-line Digital holography is a lensless imaging method capable of imaging microscopic
specimen with a resolution limited by sensor area for spherical wavefront illumination and
pixel size for planar wavefront illumination. Spherical wavefront holographic microscopy
requires a coherent wavefront and sufficient distance between the sensor and the object. The
planar wavefront digital holography can be performed with simple LED’s and a very short
sensor to object distance which means it requires less space. Additionally it has been shown
that the eggs can be reconstructed with sufficient resolution. Lensfree on chip holography
lends itself to make compact cost-effective and mechanically robust architecture which can
especially useful to build microscopes for field use in low resource settings.

2-2 Flow Cytometry

This section provides the information needed for implementation of a flow cytometry system
for recording a urine sample. First background information is presented on the basics of
flow cytometry. Next the sample administration method and its requirements are discussed.
Lastly the recording method will be considered.

2-2-1 Background information

Flow cytometry is a technique that employs an optical-electronic detection device to analyze
the physical and chemical properties of microscopic particles suspended in a liquid medium.
Generally, a light beam is directed through a continuous flow of suspended particles which
are often marked with fluorescent substances. The light beam is scattered by the suspended
particles and subsequently captured by sensors. Flow cytometry is routinely used in clinical
diagnostics, biotechnology, and research[30].

The main components of a flow cytometer are a flow chamber, a light source, a detector, and
a digital analogical converter which processes the relevant parameters. In the flow cytometer,
the particles of interest are carried to the laser interception point in a fluid stream. Any
suspended particle or cell from 0.2 − 150[µm] in size is suitable for analysis. The portion of
the fluid where the sample particles are is called the sample core[9].

The sample core is usually injected into a stream of sheath fluid within the flow chamber.
The flow chamber is designed to cause the sample core to be focused in the center of the fluid
to ensure it is hit by the light source, this can be seen in Figure 2-4. [9]
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Figure 2-4: Hydrodynamic focusing of the sample core through a flow cell[9]

Imaging Flow Cytometry (IFC) combines the high-throughput, multi-parameter capabilities
of conventional flow cytometry with morphological and spatial information. [31] M. Doan
et al note that IFC has many potential clinical uses especially when it comes to diagnostics.
Furthermore, they mention that deep learning is well suited for diagnostic tasks such as
identifying colon cancer cells and disease progression. So far IFC is primarily used in research
rather than clinical practice. This is caused by the variation of results, manual tuning, and
interpretation. These issues might be overcome with machine learning approaches. [31] The
literature hints at the validity of flow cytometry to the application of this research. However,
as M. Vendel pointed out sample preservation might be preferred. Therefore combining the
flow with sheath fluid is not desired. The effect of this on the flow properties of the sample
core should be assessed[32]. If this turns out to be a problem, concessions should be made
for example by using saline solution as sheath fluid.

2-2-2 Sample administration through the flow cell

In order to reduce human interaction the sample should be administered automatically with-
out human contact. This ensures consistent recording for every sample. This can be achieved
by using a stepper or servo motor to automatically pump urine samples through a flow cell
using a standard syringe. The following points should be accounted for when implementing
this system, as they are necessary to obtain an accurate hologram:

• The occurence of air bubbles should be minimized by airtight seals

• Air bubbles that have appeared should be removed from view automatically

• Control of the syringe should be steady such that the image quality is not affected by
vibrations

2-2-3 How to record and flow

Next to the method of sample administration, the way to record the flow should also be
considered. The recording method influences the amount of data generated and the amount
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of objects that can be captured. The following two recording methods are considered.

Continuous recording

By recording a continuous video of the urine flowing through the flow channel most objects
are captured in multiple frames while moving through the flow channel. This method has
a better chance at capturing an egg at the right orientation, with the terminal spine being
in view. Additionally the eggs can be tracked through multiple frames to ensure that no
eggs are double counted. The downside of this method is that a large amount of data is
generated which slows down the analysis of the video. Diagnostic time is important in a
Point of Care (POC) setting since it limits the population size that can be diagnosed in a
single day. Application of this method would require implementation of tracking algorithms
as well as optimization of computing time by selecting the proper microcomputer. This was
deemed out of the scope of this research, therefore this method will not be used.

Piece wise recording

By neglecting fluid friction, the complete volume of the syringe can be captured by moving
the piston of the syringe by the amount of volume in view of the sensor and subsequently
capturing an image. Doing this iteratively until the syringe is empty yields a batch of images
containing the entire volume of the sample. Ideally, this means that any egg which may have
been present in the sample has been captured. The advantage of this method is that it is the
fastest way to capture the whole volume of the sample. However, the negligence of friction
does not hold true causing the urine to flow slow at the boundaries of the flow cell and fast
in the middle. Some eggs flowing near the boundaries maybe captured over multiple frames
while eggs flowing in the middle might be missed completely. This can be compensated by
adjusting the flow speed but one of these two problems will always exist. This is the preferred
method as the implementation is the least complex whilst still showing the practicality of
flow cytometry.

2-3 Egg detection

This section will elaborate on how the eggs can be found in the images in an efficient manner.
First, the order of computational steps is laid out, next the method of object localization is
presented and finally the classification of objects is discussed.

2-3-1 Algorithm layout

It is necessary to look into the order in which the computational steps are performed in order
to design an efficient detection algorithm. There are several computational steps which need
to be performed before a urine sample has been analyzed completly. These are in no particular
order:

• Flow sample and record video
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• Make image reconstructions across several planes over the depth of the flow channel

• Determination of object locations

• Classification of objects

The time it takes to determine a diagnosis is essential for a diagnostic device [32]. Therefore,
these steps should be performed in a way in which computational time is minimized. Simply
reconstructing whole images will take too long so the reconstruction and classification process
will have to be performed in a different way. The eggs are expected to be sparsely represented
in a sample, so unnecessary reconstructions and classifications should be avoided. Therefore,
some processing needs to be done before the eggs can be counted.

For the diagnosis, the heaviest computational steps should be limited in the amount of times
they are run. Reconstruction is unavoidable and should therefore be performed on a smaller
area. The same goes for object location determination, which would take too long when
performed on the full resolution video. By considering this and the computational analysis
presented in Chapter 3, the following optimal algorithm flow is obtained:

1. Record interference pattern.

2. Keep original pattern and create a reduced resolution version.

3. Pick out the moving objects from the reduced resolution version of the pattern.

4. Locally reconstruct the original frame at the object location.

5. Classify the reconstructed object.

The reason of this order of operations has been chosen is in order to apply the heavy compu-
tational algorithms such as image reconstruction and classification on smaller images which
saves time. From this it can be inferred that reconstruction and classification should be used
last, and that potential objects should be selected from the fringe patterns in the raw image
data and not from the reconstructions. The following subsections are dedicated to elaborating
on how steps 3− 5 in the list above will be realized.

2-3-2 Object location determination

The following paragraphs discuss the methods that are applied in order to localize the sparse
amount of objects present in the urine sample.

Foreground detection

The recorded images will have a view of the flow-cell and the urine that is flowing through
it. The eggs will appear as fringe patterns occasionally moving over the view, which means
that there is a relatively small area of interest compared to the FOV. The detection of the
moving Foreground (FG) in a scene is an active field of research, as shown by T. Bouwmans
[33]. By using these methods it becomes easier to find the areas of interest since moving
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objects are distinguished clearly from the stationary Background (BG). There are several
methods which can be used to perform this task, all with their specific advantages in certain
situations. However, these will not be looked into extensively because implementing all these
and finding the most optimal method is outside of the scope of this research. Instead, the
methods provided by the OpenCV library will be used for the initial algorithm design[11].
The literature points at the Gaussian Mixture Model (GMM) being the most applied method
for similar applications over the years [33]. This method is available for use in the OpenCV
library, and as such it will be used to model the BG of the recorded frames. The other
methods of the OpenCV library mainly focus on FG detection with shadows or dynamic
scenes, both of which do not apply in this case. The GMM method is a pixel based BG
subtraction method which involves a pixel-wise decision on whether it belongs to the BG
or FG. Each pixel is modeled by a mixture of K Gaussian distributions. The probability
that a certain pixel has a value of xN at a time N is described by Equation (2-5)[34][35]. It
is because of this pixel-wise decision that a downsized video is being used for detecting the
foreground, as this can significantly reduce the computational load of this step.

p(xN ) =
K∑
j=1

wjη(xN ; θj) (2-5)

Where wk is the weight parameter of the kth Gaussian component and η(x; θj) the Nor-
mal distribution of the kth component. For the method being implemented according to P.
KaewTraKuPong [34], the K distributions are ordered based on a fitness value and the First
B distributions are used as a model of the background of the scene where B is estimated
according to Equation (2-6).

argb min(
b∑

j=1
wj > T ) (2-6)

Where the threshold T is the minimum fraction of the BG in the model, or the minimum
prior probability that the background is in the frame. BG subtraction is then performed
by marking any pixel that is more than 2.5 standard deviations away from any of the B
distributions as a FG pixel. The Gaussian component that matches the test value will then
be updated[34]. The result is a binary FG mask which indicates which pixels are marked
as FG. The FG mask marks the fringe patterns caused by moving objects while ignoring
stationary fringe patterns due to dents and objects that are stuck. It is therefore well suited
for determining the exact location of eggs as they move accros the sensor area.

Blob Detection

Blob detection methods are aimed at detecting regions of images that differ in properties such
as brightness or color compared to their surrounding region. The FG mask consist of a black
image with white spots at the location of moving objects, therefore blob detection is suitable
for the determining the locations of these areas. The three most common methods depend
on the Laplacian of Gaussian, difference of Gaussians, or the Determinant of Hessian (DOH).
Out of these three, the latter has been shown to have scaling properties as well as a lower
computational load. The former two perform better on less distinct regions however this is
not required because of the FG properties that were mentioned earlier. Therefore a DOH
blob detector will be used to locate the moving objects in the images.
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A DOH blob detector finds regions of interest by looking at the determinant of the local
Hessian Hσ according to Equation (2-7). In this equation σ denotes the scale parameter of
the image, Hσ denotes the Hessian matrix at a specific image location in level σ and ∂ denotes
the second order derivative of the image along the axis indicated in subscript. A scale space
is built by blurring the image repeatedly with a Gaussian function in order to achieve scale
invariance. If the value computed by Equation (2-7) is above a certain positive threshold the
region is labeled as a blob.

σ4 · det(Hσ) = σ4 · (∂xx · ∂yy − ∂2
xy) (2-7)

The original image will be reconstructed locally at the locations found by the blob detec-
tor. These reconstructions will be fed to classifier after some processing depending on which
classifier is being used, this processing will be discussed next.

2-3-3 Classifier input features

The reconstructions will show an object surrounded by the semi-white background of the flow-
cell similar to the reconstruction in Figure 2-3. Adding to this, not every area of the egg is of
interest when classifying it. Some classifiers are able to deal with this reconstruction just fine,
however; other classifiers may not and will require some preprocessing of the data to remove
redundant information. For this reason the dimensionality of the data will be reduced. A
useful method for this is Principal Component Analysis (PCA), which is a method to reduce
the amount of features while retaining as much information as needed[36]. G. Şengül has
shown that eggs can be classified by using the co-occurrence matrix as features [37]. Both
of these methods shall be tested as input feature generators for the classifiers that do not
perform well with the redundant information that is present in the reconstructions. The
implementation of these methods will be discussed in the following paragraphs, starting with
the general image alterations.

General image alterations

All the pixel values will be remapped to be in a range between 0 − 255 regardless of which
classifier is being used in order to enhance the contrast. After reconstruction the images will
be of relatively high resolution in terms of classifications (> 100× 100pixels). Although this
resolution results in a detailed image, it will also require a large amount of training data. For
instance if the image is fed directly to a classifier and at least one training sample is required
for each feature, at least 10000 training samples would be preferred (this depends on which
classifier is being used). In order to account for this, the images will be reduced in size for
classifiers that have the image as input.[38]

PCA features

PCA is a statistical method which uses orthogonal transformation in order to convert a set
of, possibly correlated, variables into a set of linearly uncorrelated variables called principal
components. This is done by determining the set of singular value - singular vector pairs from
the covariance of the set. Each singular value then represents a portion of the variance of the
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dataset. The datapoints can then be represented by the variance along each singular vector.
At this point the amount of singular value - singular vector pairs is equal to the amount of
variables in each observation. However, most of the variance of the set is often represented
by a portion of the pairs. Therefore, much of the data can be retained when dropping some
singular value-singular vector pairs. This is called dimensionality reduction. This procedure
is performed on n× n gray-scale images as follows:

1. Flatten each image into a n2 length array.

2. Subtract the mean of each pixel value from the corresponding pixel in each image.

3. Determine the n2 × n2 covariance matrix of the pixel values.

4. Perform Singular Value Decomposition (SVD) on the covariance matrix (Equation
(2-8)). The singular vectors in U represent the axes of maximum variance, while the
singular values in Σ represent the variance of the set along that axis.

5. Select the singular value - singular vector pairs which represent about 90− 95% of the
variance. The reduced set of singular vectors is called Ureduced.

6. Principal components can be determined by multiplying new flattened images with
the singular vectors according to Equation (2-9). The resulting values are called the
principal components and represent the image with less information needed.

C = UΣW T (2-8)

Components = Iflattened · Ureduced (2-9)

The variance accounted by every principal component should be analysed in order to select
the amount of components. This can be done by ordering the singular values contained
in Σ by their magnitude. By plotting the accumulated variance, starting from the highest
variance, over the amount of singular values a visualization is obtained which shows the
total variance accounted for by the singular vectors when representing the original data. An
example of this is shown in Figure 2-5. With this dimensionality reduction a significant
portion of the variance of the data can be compressed in a few parameters. The amount of
components should be selected such that 90− 95% of the variance is accounted for. This way
the distinguishing features are retained within less data, resulting in less training data needed
and faster classification[36]. The amount of components that are dropped from the singular
value - singular vector pairs are a tuning parameter which can be changed in order to control
the model accuracy and run time.
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Figure 2-5: The amount of variance accounted for in the data set by the number of singular
vectors, starting from the singular vectors that account for the most variance. The dataset
consisted of images with a resolution of 50× 50 pixels

.

Co-occurence matrix features

A co-occurrence matrix is defined as the distribution of co-occurring pixel values at a given
offset within an image. By looking at the way pixels appear next to each other, a measure of
texture is obtained. The resulting matrix is often sparse and can be used to generate features
using other methods. However, the matrix entries themselves can also be used as features[37].
The list below shows how a co-occurrence matrix can be obtained from an image.

1. Rescale the pixel values as integers between 0 and a desired value(k).

2. Analyze the images pixels for neighboring values according to equation(2-10).

3. flatten the k+ 1× k+ 1 array into a (k+ 1)2 array. This array can be used as features
for a classifier.

C∆x,∆y(i, j) =
n∑
x=1

m∑
y=1

{
1, if I(x, y) = i and I(x+ ∆x, y + ∆y) = j
0, otherwise (2-10)

This method of feature generation adds another parameter, The pixel values described in
step 1 in the list above, which can be tuned in order to optimize the model’s accuracy and
runtime.
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2-3-4 Classification

There exist a variety of classifiers, each with a specific purpose[39]. The selection of a clas-
sifier for the algorithm prototype will be based on classifiers in similar research. There has
been research on the classification of red blood cells, which are round in shape[40][26]. Ad-
ditionally, recently there have been efforts to classify Schistosoma eggs as well as mentioned
in Chapter 1[41][21]. The most commonly applied classifiers in these kinds of research are
Support Vector Machine (SVM) and Convolutional Neural Network (CNN). These classifiers
are widely used, and expecially CNN are flexible and can be tailored to fit almost any appli-
cation regarding image classification. Lastly, a Random Forest Classifier (RFC) will be tested
since it is a flexible algorithm which sees application in many different fields including image
classification[42]. These classifiers are briefly discussed in the following three paragraphs.
There are many more methods which could be tested but they will not be considered for this
prototype[43].

SVM

SVMs are techniques for data classification first mentioned by Cortes and Vapnik in 1995[44].
The goal of an SVM is to produce a model predicting the target values of the input data.
Input data of any kind is flattened into a vector which represents a point in a hyperspace,
in this case the hyperspace will consist of pixel values, principal components, or the co-
occurence matrix. The SVM then draws a hyperplane between the set of points labeled as
egg and the set of points labeled as not egg[41][40]. An SVM can be tailored by selection
of the kernel: linear, polynomial, or Radial Basis Function (RBF) as well as by tuning the
hyperparameters γ and C[44]. C is the penalty term for the error during optimization and
γ the kernel coefficient. The γ parameter represents the variance of the set, with low values
representing a high variance within the data. When γ is very small, the model will be similar
to a linear model. On the other hand, when γ is very large the model will overfit. Of all the
kernels, RBF is the most used because of it’s flexibility. Therefore RBF shall be used as the
kernel function during this initial implementation[39]. γ And C are then the relevant tuning
parameters which will affect the performance.

RFC

A RFC consist of a large number of individual decision trees that operate as an ensemble.
Each tree returns a classification with a final classification being the class with the most votes.
The idea behind the random Forest classifier is that a decision made based on many simple,
inaccurate classifiers will be accurate. RFC make use of bagging and feature randomness when
building each individual tree to try to create an uncorrelated forest of trees whose prediction
by majority vote is more accurate than that of any individual tree. The main hyperparameters
are the amount of trees in a forest, the number of decisions made in a tree, and the amount
of features that are considered for each tree. Later on the RFC implementations will make
use of the principal components and co-occurrence matrix as input features.
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CNN

CNNs are a class of supervised deep learning techniques. CNNs are mainly used for image
classification and are therefore suited for recognizing Schistosoma haematobium eggs as well.
Adding to this: CNNs have been applied to detection of Schistosoma eggs and similar cases in
the past, though these efforts have not made it past the testing stages [24][26][21]. Designing
an optimal CNN for this is a complex procedure which requires expertise on the subject. For
the sake of simplicity the CNN that will be implemented in this thesis will be based on other
implementations that are similar in complexity. There are several options which fall outside
of this scope such as MobileNets introduced by A.G Howard in 2017[45] or Faster R-CNN[46],
which should be considered in a later design stage. One of the standard databases is called
MNIST[47], and is frequently used to train new classifier models without spending effort on
gathering data. The dataset consists of low-resolution grayscale images of handwritten digits.
These digits are relatively simple in shape, much like the eggs that have to be recognized.
There are examples of CNN implementations using this dataset which achieve an out of sample
accuracy of more than 98%. Several of these implementations will be tested for detecting eggs
in order to assess the applicability of CNN to classify reconstructed images, these will use the
pixel values as inputs. [47] Three models were selected for testing, their architechtures and
accuracies are shown in Table 2-1. Details of these models can be found in appendix 5-2-5.

Table 2-1: Three CNN models that were used as examples for testing the applicability of CNN
for detecting eggs. All of these architectures will have their input and output layers modified to
suit the purpose of classifying eggs. Details of these models can be found in appendix 5-2-5.

Model name Architecture
Yalcin [47] Conv2D−MaxPooling2D−Flatten−Dense−Dropout−

Dense

Ghouzam [48] Conv2D−Conv2D−MaxPooling2D−Conv2D−Conv2D−
MaxPooling2D−Dropout−Flatten−Dense−Dropout−
Dense

Keras [49] Conv2D−Conv2D−MaxPooling2D−Dropout−Flatten−
Dense−Dropout−Dense

2-4 Diagnosis

The algorithm designed so far in this chapter finds results on a microscopic level: an x amount
of eggs and y amount of other objects. This section will discuss how these results should be
interpreted in order to draw a diagnosis comparable to the World Health Organisation (WHO)
standard. First the general procedures for evaluating new diagnostic test is laid out. Then the
complications of basing a diagnosis on classifier count is presented, and a solution is proposed.

2-4-1 Diagnostic evaluation

In diagnostics, the accuracy of a newly developed method is usually compared with an in-
dependently established standard diagnosis, usually this is called the "Gold standard". As
the name implies, the gold standard should provide a full certainty diagnosis, but this is
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rarely actually the case. Table 2-2 is an example of a comparison between a golden standard
and another method. Such a table can be used to determine statistical characteristics of a
diagnostic method. The two most important metrics are a test’s sensitivity and specificity,
shown in Equation 2-11, which are independent of prevalence within the test population[50].
They represent the probability of a correct positive and negative diagnosis respectively(true
positive and negative rates).

sensitivity = a

a+ c

specificity = d

b+ d

accuracy = a+ d

n

(2-11)

Table 2-2: Table comparing the results of an evaluated method compared to the gold standard.

Gold standard
Evaluated method positive negative total
positive a b a+ b

negative c d c+ d

total a+ c b+ d a+ b+ c+ d = n

The sensitivity and specificity of a test determines its usefulness. For diagnosis, having just
a high sensitivity is alright because a positive outcome will be reliable. On the other hand,
having just a high specificity makes it useful for screening because a negative outcome will
likely be true and therefore rules out people who do not have the disease [50].

2-4-2 Diagnostic problem

The analysis of the sample results in an egg count and not egg count, however; the classifier
is not perfect. In fact, Table 2-2 can be used for a classifier as well except now it contains
the correct and incorrect classifications, this is called a confusion matrix. Depending on
the classifier and the training data there is a different accuracy for positive and negative
predictions. For positive predictions there is a probability that not all of those predictions
are actually true, the same goes for a negative prediction. Consider the following hypothetical
situation:

The algorithm has 95% accuracy and detects 50 eggs and 950 other objects. Find-
ing 50 eggs in a sample usually means that the patient is heavily infected[3].
However, the algorithm seems to have found plenty of other objects. No direct
diagnosis can be drawn from this since the 50 eggs that were detected could be
false positives, judging from the algorithm’s performance.

As described above, the diagnosis drawn from the result of the algorithm is not equivalent to
the WHO procedure as described in Chapter 1. High accuracy (99%+) can provide accurate
counts most of the time but outliers should be considered nonetheless, such as when a lot of
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blood or dust is present in the sample. By applying statistical methods an estimate can be
made of the egg count with a certain Confidence Interval (CI) based on the confusion matrix
of the classifier.

2-4-3 Statistical method for automated diagnosis

Consider a classifier trained with a diverse, uncorrelated sample pool with a sensitivity p and
a specificity q determined from an independent data set. This classifier has a probability p
of correctly detecting an egg and probability 1− q of mistaking a different object for an egg
(type 1 error). Therefore the egg count resulting from a sample analysis is not the true egg
count present in the sample. A CI of the actual amount of eggs would provide better insight
in the quality of the test. The egg count can be modeled as a Poisson binomial distribution
where there are n eggs that can be classified as eggs with probability p and m other objects
that be classified as eggs with probability 1− q. The variance of the outcome of this test can
be calculated according to Equation (2-12).[51]

V ar = σ2 = n · p(1− p) +m · (1− q)q (2-12)

Although we cannot determine the real egg count, we can use the outcome of the test in
conjunction with Equation (2-12) to determine a CI of what the actual egg count may be.
The CI of the egg count can be calculated according to Equation (2-13). In this equation
nclassifier represents the egg count found by the algorithm, c a multiplier based on what CI
is being used (z value), and σclassifier the standard deviation based on the algorithm output
(calculated using Equation (2-12)).[52]

CI = nclassifier ± c · σclassifier (2-13)

The magnitude of this CI provides a measure of reliability of the test with large values
indicating an unreliable outcome. This is shown by the simulations shown in Table 2-3. How
this should be interpreted will have to be derived from actual tests.

Table 2-3: Table showing the confidence intervals of simulated test outcomes from a classifier
with 0.96 sensitivity and 0.91 specificity (values arbitrarily chosen). Lower bounds have been
rounded down and upper bounds have been rounded up.

Test outcome CI actual egg count
Eggs /Not eggs 90% 95% 99%
20/10 17 − 23 17 − 23 16 − 24
50/50 45 − 55 45 − 55 43 − 57
50/200 42 − 58 41 − 59 38 − 62
50/1000 34 − 66 32 − 68 26 − 74
20/1000 5 − 35 2 − 38 −4 − 44

2-5 Method overview

This chapter presented the background information needed for the implementation of a low
cost, smart diagnostic device for SH. First, in-line planar wavefront digital holography was
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found to be the most applicable lensless imaging method when combined with flow cytometry.
Next, the initial diagnostic algorithm was discussed. The moving objects will be found by a
combination of FG detection and blob detection. The objects are then locally reconstructed
in order to obtain images for the classifier. These images will then be fed to the classifier, of
which three types will be tested: SVM, RFC, and CNN. Finally the result of these classifiers
will be interpreted in order draw a diagnosis. A schematic overview can be seen in Figure
2-6The next step is to verify the use of digital holography and flow cytometry experimentally,
and to test the potential results on the implemented algorithm.

Figure 2-6: Simplified block diagram of the proposed diagnostic method.
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Chapter 3

Diagnostic Method Verification

Figure 3-1: In-line Digital Holographic Microscope
(DHM) setup, from top to bottom: sensor chip, ob-
ject on glass slide, illumination source.

Chapter 2 presented a possible automatic di-
agnostic method for Schistosomiasis Haema-
tobium (SH). In this chapter, a preliminary
version of this method is implemented for
verification purposes. To start off, Section
3-1 will verify the optical setup by showing
that SH eggs can be imaged in flow using a
DHM. Section 3-2 follows by presenting the
result of the implementation of the object de-
tection algorithm. Next, the performance of
the various classifiers that were proposed is
discussed in Section 3-3. The various steps
of the algorithm are benchmarked in Section
3-4. Finally the observation are discussed in
Section 3-5.

3-1: Recording method 28
3-2: Moving object detection 34
3-3: Object classification 37
3-4: Algorithm benchmark 41
3-5: Discussion 46
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3-1 Recording method

This section presents the experimental results obtained from the setup combining a DHM
and a flow cytometer, which constitutes the recording method. First the experimental setups
are described in detail, then the optimal performance of the DHM is determined, and lastly
the proposed recording method is verified for its applicability for imaging SH eggs.

3-1-1 Setup specifications

Two setups were built: one in order to determine the attainable resolution of the DHM, and
one to verify whether SH eggs can be recorded in flow. Both setups used the same illumination
source and sensor chip: A S1FC635 Fiber-Coupled Laser Source from Thorlabs[53] and a IDS
UI-1492LE-M Complementary Metal-Oxide Semiconductor (CMOS)[54] respectively. The
specifications of these instruments are listed in Table 3-1.

Table 3-1: The specifications of the holographic imaging setup[14].

Property Value
Sensor resolution[pixels] 3840× 2748
Sensor dimensions[mm] 6.413× 4.0589
Pixel pitch ∆p [µm] 1.67

Framerate [fps] 3.2
Minimum exposure time[ms] 0.340
Laser wavelength λ [nm] 635

Laser spectral linewidth [nm] 2.5
Maximum output power [mW] 8.0

Setpoint resolution[mW] 0.01

Resolution test setup

The resolution test setup consists of the illumination source and sensor chip mentioned before,
with a stationary object placed in between. The first object to be tested is a USAF1951 reso-
lution target which is commonly used to determine the resolution of optical instruments[10].
Afterwards a sample containing SH eggs in saline solution between two microscopic glass
slides shall be used as an object to verify the resolution. This setup is shown in Figure 3-2.
The minimum object - sensor distance of this setup is physically limited to 4[mm].

Flow imaging setup

The flow imaging setup is similar to the resolution test setup but has a flow cell at the object
location. The flow cell is provided by ibidi[55] and has a channel width of 5[mm] and depth
of 0.8[mm]. A sample of SH eggs in saline solution shall be administered by hand using a
syringe. The flow is stopped once eggs are in view of the sensor after which an image is
captured. The sample has to be imaged when it is stationary, recording while the sample was
still flowing resulted in distorted images.
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Figure 3-2: The initial configuration of the DHM setup for imaging stationary samples. In this
image the object consists of SH eggs between two microscopic glass slides.

The exit of the flow cell will have a cup below in order to catch the sample for potential
reuse. An airtight seal between the syringe - tube, and tube - flow cell is required to prevent
air bubbles from entering the flow. Additionally, the setup is built such that the flow is
descending at all times to prevent air bubbles from getting stuck in the system. The entire
flow setup can be seen in Figures 3-3a and 3-3b. At first the flow shall be administered by
hand, however; to avoid any inconsistencies and mistakes this process shall be automated in
later stages.

In Chapter 2 it was determined that the sample will be imaged by the piece wise recording of
fluid elements. Therefore it is important to know the amount of volume in view by the sensor,
this is determined by the channel and sensor dimensions. The area in view of the sensor is
5.0000[mm]× 4.0589[mm] and the depth is 0.8000[mm], which combines to a volume in view
of 16.236[mm3] = 0.016236[mL]. The sample will be analyzed by pressing the piston of the
syringe by this amount of volume and taking an image when the content of the flow cell is
stationary. This is performed repeatedly until 10[mL] of the sample has been administered
by the syringe. The syringe will be controlled by a stepper motor which ensures that every
step is the same. In order to analyze the entire volume at least 10

0.016236 = 616[−] images will
need to be taken. This recording method shall be implemented in the prototype presented in
Chapter 4.
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(a) Global view of the setup. (b) Side view of the setup.

Figure 3-3: Two views of the flow setup. The sample is administered by a syringe through a
silicone tube, it is then caught in a coffee cup after flowing through the flow cell.

3-1-2 DHM resolution test

The next two paragraphs will verify the use of a DHM for the new diagnostic method. First
the spatial resolution shall be determined, then an actual sample will be examined in order
to verify the capability to reconstruct SH eggs.

USAF1951 resolution test

The USAF1951 resolution target contains a pattern which will be imaged, consisting of 9
groups each containing 6 line elements. The spatial resolution of the setup can be determined
from the smallest discernible element. The target was put in front of the sensor at a distance
of 4[mm], 10[mm], and 18[mm]. Multiple distances were used in order to verify whether a
closer distance will result in better resolution. The recorded fringe patterns are shown in
Figures 3-4a - 3-4c.

With the fringe patterns captured, the next step is to reconstruct them by using Equation
(2-2). When reconstructing the images the aim is to be able to discern the smallest possible
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(a) 4mm (b) 10mm (c) 18mm

Figure 3-4: Captured fringe patterns of the USAF 1951 resolution target[10]. The fringes become
more apparent when recording and a larger distance.

line. For reconstruction the object - sensor distance should be known within micron precision.
The optimal reconstruction distance was found according to the following iterative procedure:

1. Initiate range of reconstruction distance, e.g. 0− 20[mm].

2. Reconstruct the image at several planes over the range.

3. Select the sharpest reconstruction.

4. Narrow the range of reconstruction down around the distance of the selected reconstruc-
tion.

5. return to step 2 until the differences in the reconstruction quality is negligible. Generally
this occurs when the range of distances is within 20[µm], which is less than the thickness
of an egg.

This procedure was performed for each of the holograms, and resulted in the reconstructions
shown in Figures 3-5a - 3-5c. As can be seen, the reconstruction of the image taken at 4[mm]

(a) 4mm (b) 10mm (c) 18mm

Figure 3-5: Reconstructed images of the USAF 1951 resolution target[10]. The images have
been zoomed in to show the smallest discernible elements. Element 5 of group 7 which can be
seen in figure (a) has a line thickness of 2.46[µm].

distance shows the thinnest lines(group 7, element 5) which have a width of 2.46[µm][10].
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As mentioned in Chapter 1 the eggs are about 135[µm]× 50[µm] in size, so they will appear
with sufficient detail to be recognized by eye when using the DHM. The full image of the
reconstruction is shown in Figure 3-6, which is a reconstructed version of Figure 3-4a. Some
fringes are still visible which is caused by twin image contamination, however; this effect does
not contaminate Figures 3-5a-3-5c to the point of hindering recognition. Next the setup will
be used to examine a sample containing actual SH eggs.

Figure 3-6: Reconstruction of the fringe pattern shown in figure 3-4a. Note that the elements
of group 4 and beyond were very distorted in the original image, while the elements up to group
7 can be distinguished in the reconstruction.

SH sample examination

The previous paragraph showed that a spatial resolution of 2.46[µm] can be achieved with
the set up, this will now be verified by examining SH eggs. A microscopic pipette is used
to extract a small volume of saline solution containing the SH eggs. This sample was then
put between two microscopic glass slides. Putting the sample in front of the sensor and
illuminating it produced the image shown in Figure 3-7.

The sample is reconstructed according to the same procedure as explained earlier, resulting in
the image shown in Figure 3-8. The eggs have a length of about 50 pixels in the reconstruction,
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Figure 3-7: Fringe pattern of a sample containing SH eggs. The reconstruction will be shown
on the location with the yellow encirclement. Fringe patterns resulting from a SH egg have a
particular shape which is different from other objects observed in the sample such as dust.

supporting the obtained resolution of 2.46[µm] found earlier with help of the USAF 1951
resolution target. The reconstruction shows sufficient resolution to recognize the SH egg by
eye.

3-1-3 Flow test

The time it takes to record the sample partly determines the diagnostic time. This is limited
by the cross-sectional area of the flow cell, area of the sensor, and the data-rate of the camera
(recording a lower quality image can result in a higher imaging rate assuming the data-rate
stays constant). The flow cell and sensor cannot be changed, however the imaging rate can be
changed. In order to account for this and obtain optimal image quality the following factors
will be tested:

• The resolution: recording at a lower resolution makes it possible to have higher frame-
rates.

• Camera - object distance: this influences spatial aliasing and resolution as shown in
Section 2-2.

These factors will be analyzed by recording at two different settings: The resolution was
put at 3840 × 2748 and 1920 × 1080 pixels, and camera - object distance was put at 1[mm]
and 10[mm]. Images were recorded under circumstances described by each of the mentioned
settings, all of these are shown in Figures 3-9a - 3-9d.

The fringes are more concentrated with a low object - camera distance, which is in line with
the theory presented in Section 2-1. However, the fringe frequency is not high enough for
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Figure 3-8: Reconstructed image containing two SH eggs caught between two microscopic glass
slides. The image was reconstructed from Figure 3-7 at the yellow encircled area. The detail of
the reconstruction is comparable to that of conventional microscopy (see Figure 1-4).

the occurrence of spatial aliasing. Each frame has been zoomed in on an egg location and
reconstructed, the result of this is shown in Figures 3-10a - 3-10d. These images can be
used for a comparative analysis in order to select the optimal recording circumstances for the
reconstruction of SH eggs.

From the reconstructions in Figures 3-10a - 3-10d can be seen that Figure 3-10b contains the
sharpest reconstruction of an egg. The two images taken at 1[mm] distance were all sharper
than their counterparts taken at 10[mm] distance. Furthermore, recording at higher resolution
shows more detail which is expected. However, recording at low resolution can result in a
higher maximum flow rate so this should be kept in mind at a later design stage. For this proof
of concept the images shall be recorded at the maximum resolution with minimal distance
between object and sensor.

3-2 Moving object detection

For testing this implementation, images were recorded using the automatic sample administra-
tion method mentioned in Section 3-1. The following 4 paragraphs show the implementation
Foreground (FG) detection, blob detection, and local reconstruction to these images.
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(a) High resolution, 0.08 mW, 10
mm

(b) High resolution, 0.08 mW, 1
mm

(c) Low resolution, 0.08 mW, 10
mm

(d) Low resolution, 0.08 mW, 1
mm

Figure 3-9: Recorded holograms of samples with different setup settings. Recording and a short
distance results in distinct fringes however the spatial frequency is reduced which might cause
aliasing to affect the quality of the reconstruction.

3-2-1 Resolution reduction

The methods used find the object locations by analyzing the pixel values of an image. Since
the resolution of the sensor is 3840 × 2748[pixels] these computational steps can negatively
affect the time it takes to analyze a sample. Therefore the resolution shall be decreased 16-
fold to 960 × 687[pixels] by averaging the pixel values. The objects shall be found in these
smaller images, their location is then traced back in the original image in order to perform
local reconstruction.

3-2-2 FG detection

AGaussian Mixture Model (GMM) was used to extract the moving objects from the stationary
background. This resulted in a black canvas with white spots at the locations of moving fringe
patterns as shown in Figure 3-11b, this is known as the FG mask. The fringes appearing on
the FG mask are speckled which can be solved by dilating the image as shown in Figures
3-12a and 3-12b. Dilation enlarges the area of bright spots at the cost of amplifying the areas
of the FG that were caused by noise and vibrations. However, this prevents the blob detector
from detecting a fringe pattern coming from a single object as multiple objects.
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(a) High resolution, 0.08 mW, 10
mm

(b) High resolution, 0.08 mW, 1
mm

(c) Low resolution, 0.08 mW, 10
mm

(d) Low resolution, 0.08 mW, 1
mm

Figure 3-10: Reconstructions of the snapshots shown in Figures 3-9a - 3-9d.

3-2-3 Blob detection

A blob detector [56] was used to automatically locate the white spots in the dilated FG mask.
Figure 3-13b shows an example of this, all the white spots have been found and encircled
automatically. The coordinates found by the blob detector correspond to the locations on the
resized image. These are first translated back to the original image before reconstruction.

3-2-4 Local reconstruction

A clear image of the reconstruction at the object location is desired. The propagation distance
is needed in order to obtain a sharp reconstruction. Since the object freely flows through the
flow cell there is no exact knowledge of this distance, only that it is located along the depth
of the flow cell. This is made clear in Figure 3-14, where eggs appear at different distances
from the sensor. This means they have to be reconstructed at different distances for them to
appear as sharp images. The least complex way of making sure a sharp image of the object
exists is to reconstruct over several distances across the depth of the channel. This should
be done in a way in which at least one of the reconstructions of an egg would be a sharp
image. The depth of the channel that is being used is 800[µm] while the average egg width,
its shortest dimension, is 50[µm]. According to these values at least 17 images are needed
to have part of the egg exactly on the reconstruction plane. However, the egg does not have
to be reconstructed perfectly for it to be recognizable by eye or by a classifier. Hence, less
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(a) Original video frame. (b) FG mask extracted from the vide-
oframe.

Figure 3-11: Example of the application of FG detection, resulting in a distinct FG masks[11].
This application makes it possible to detect moving fringe patterns while disregarding stationary
ones. This prevents unnecessary reconstructions and classification of stationary fringe patterns.

reconstruction planes can be used to find a sharp enough image of the object. To verify this,
a fringe pattern from an egg in a video-frame was reconstructed over 3,5, and 9 propagation
distances (Reconstruction distance pitches of 400, 200, 100[µm]). The sharpest and second
sharpest reconstructions were selected and are shown in Figures 3-15a until 3-15f.
The figures show that having more than 5 reconstruction planes over the channel depth
of 800[µm] does not show significant improvement. Therefore, the objects found will be
reconstructed for 5 different distances (distance pitch 200[µm]).

3-3 Object classification

So far the algorithm is able to locate particles in urine and reconstruct them locally. This
section presents several classifier implementations which will tell whether these objects are SH
eggs or not. Classifiers require training data as well as validation data, the collection of these
is discussed first. This is followed by the feature generation implementations. The classifiers
are then described and evaluated on their performance, concluding with a comparison.

3-3-1 Data acquisition

The initial training dataset consists of approximately 1600 manually labeled reconstructions,
which are then rotated 90, 180, 270 degrees and mirrored. This resulted in a total dataset
size of approximately 12800 labeled images. This total dataset was imbalanced because there
were more images labeled as eggs than not eggs, this was accounted for by discarding the
surplus of images after shuffling the dataset. This resulted in a total of 10000 labeled training
images, 90% of which is used to train the models and the remaining 10% is used to verify
model accuracy.
The models will be tested with an independent dataset after training in order to test if the
model is generalized. A dataset consisting of 1000 labeled images from a different recorded
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(a) closeup of FG mask (b) FG mask after morphological dila-
tion.

Figure 3-12: Example of the application of morphological dilation to a FG mask. the fringes
that appeared speckled are connected after dilation.

sample was created for this purpose. This set will be used to test the model accuracy after
verification has been done, and will provide a more accurate representation of the model
accuracy since it is completely independent of the training dataset.

3-3-2 Feature generation

The reconstructed images will contain an object surrounded by a transparent background
as shown in Figure 3-16. The Convolutional Neural Network (CNN) and Support Vector
Machine (SVM) can both use images like this as input, however Random Forest Classifier
(RFC) needs some input processing which was described in Section 2-3. The paragraphs below
describe the parameters used during this processing, the SVM and RFC use these processed
images as input.

Principal Component Analysis (PCA)

The images are resized to 50 × 50 pixels for the PCA. Covariance matrix matrix was deter-
mined for the complete set of images. The singular vectors in U resulting from the Singular
Value Decomposition (SVD) of this covariance matrix then spanned the variance of the im-
ages. The variance accounted for by the sets of singular vectors is shown in Figure 2-5. Figure
3-17b shows that the image reconstructed from 120 principal components is similar to the
original image.

Co-occurrence matrix

Similar to the principal component input features, the images were resized to 50× 50 pixels.
Next, the pixel values were scaled as integers between 0 − 9. The co-occurence matrix was
then calculated according to the procedure described earlier in section 2-3.
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(a) FG mask after morphological dila-
tion.

(b) Objects found by blob detector are
encircled.

Figure 3-13: Example of the application of blob detection on a processed image. The objects
that were found are encircled, this figure shows that not a single white spot has been overlooked.

Figure 3-14: Depiction of way eggs appear at different depths in the flow channel. Note that
each reconstruction plane (a, b, c, d) only overlaps with one egg each.

3-3-3 SVM

The SVM was implemented with pixel values, principal components, and the co-occurrence
matrix as inputs. The classifier was optimized separately for the input modes, the model
parameters can be found in Table 3-2 and the resulting performance is presented in Table
3-5.

3-3-4 RFC

The RFC was implemented with principal components and the co-occurrence matrix as inputs.
The classifier was optimized for both inputs separately, the model parameters can be found
in Table 3-3 and the resulting performance is presented in Table 3-5.
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(a) (b) (c)

(d) (e) (f)

Figure 3-15: Sharpest egg reconstructions at reconstruction distance pitches 400[µm](a, d),
200[µm](b, e), and 100[µm](c, f) with d, e, and f being the sharpest. This shows that the eggs
do not have to overlap directly with the reconstruction planes to result in reconstructions.

3-3-5 CNN

The accuracy of a CNN depends on various factors such as the architecture, learn rate, and
the amount of epochs. For simplicity the learn rate and architecture are kept constant when
evaluating the methods. The CNNs will be trained for 3 and 10 epochs and have their
performance on the training and validation set evaluated. The best model will be selected
for further testing. Table 3-4 shows the result of this, and presents the test and validation
accuracy.

The table shows that the model based on Y. Ghouzam’s model performs the best of the three
tested models, reaching a validation accuracy of 96% after only 10 epochs. Another feature
that stands out is that Ghouzam’s model does not have a disproportionate difference between
false-positives and false-negatives[48]. Ghouzam’s model will be perturbed by changing layers
in order to see whether the accuracy can be improved.

The layers have been perturbed by changing kernel sizes, dropout rates, pool sizes, layer
densities, and dropping out complete layers. However, with no more than 6 training epochs
the accuracy does not seem to increase.
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Figure 3-16: A randomly picked egg from the training dataset. This is 100 × 100[pixels] and
will be rotated and mirrored in order to augment the dataset. The resolution will be reduced for
some classifiers in order to speed up training and require less training data.

Table 3-2: Model parameters of the various SVM with different inputs.

Model input C γ

Pixel values 103 10−6

Principal components 10 10−6

Co-occurrence matrix 100 10−4

3-3-6 Comparison

So far this section has presented a range of classifiers and feature descriptors. This subsection
shows the performance of the classifiers on the dataset of SH eggs. The best models were
determined by varying the hyperaparameters and model structures, with their results shown
in Table 3-5.

The table shows that the RFC with the co-occurence matrix as input features has the best
performance on the validation and test set. As will be shown in the next section, the RFC
performs the worst when it comes to computational time and is therefore not suited for this
diagnostic method.

The CNN models perform similar to the SVMs on validation accuracy but have better test
accuracy, which is a more reliable indicator of a model’s performance[43]. The most accurate
classifier when ruling out RFC is the CNN based on Ghouzam’s model[48], which is then the
most suited classifier for further testing. The model shall be retrained in the next Chapter
with more representative training data from the prototype.

3-4 Algorithm benchmark

Finally, the complete algorithm shall be evaluated on its computational efficiency. Table 3-6
shows the environment on which the algorithms were designed and tested.
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(a) (b)

Figure 3-17: Showcase of the effect of reduction of dimensionality. The original image (a) was
converted to 120 components, the image was then reconstructed from these values (b).

Table 3-3: The amount of trees used for the two RFC.

Model input Decision trees
Principal components 20
Co-occurrence matrix 10

3-4-1 Results

Figures 3-18a and 3-18b presents the computational time of reconstruction and classification
for various window sizes in order to give an impression of the magnitude of computational time.
Simply reconstructing whole images will take too long so the reconstruction and classification
process will have to be performed in a different way. To give an example, a video for diagnosis
generally contains 616 images of 3840× 2748 pixels. Extrapolating from Figure 3-18a, it will
take approximately 4.4 seconds to reconstruct such an image with the specified setup. At
least 5 reconstructions are needed for each captured image in order to have a sharp view of
every object present in the flow cell, so reconstruction will take 22.5 seconds for each frame.
This means it will take 616× 22.5 = 13860 seconds, or 3.9 hours, just to get a clear view
of one sample using a desktop computer. This is without actually finding the objects and
classifying them.

Image resolution reduction

The input of the object detection algorithm is a shrank version of the recorded frame. The
effectiveness of this was tested by running the algorithm with various amounts of window
shrinking. The results of these tests are shown in Table 3-7 which shows its effect on compu-
tational time as well as the amount of objects found.

The table shows that there is a significant time-save when reducing the resolution, but the
amount of objects found reduces as well. This reduction of found objects could either be caused

P.M. Nijman Master of Science Thesis



3-4 Algorithm benchmark Diagnostic Method Verification

Table 3-4: CNN classifier model verification and validation accuracies for several trained models
with different amounts of epochs and shuffled training dataset.

Model Model accuracy
Verification Validation

Yalcin (3 epochs) 0.9329 0.9115
Yalcin (10 epochs) 0.9454 0.9300
Ghouzam(3 epochs) 0.8465 0.8236
Ghouzam (10 epochs) 0.9416 0.9645

Keras (3 epochs) 0.8584 0.9339
Keras (10 epochs) 0.9611 0.9136

Table 3-5: Classifier performances on the prepared dataset. Each of the CNN models were
trained for 10 epochs, while the other classifiers were trained with different amounts of data in
order to ensure the models did not overfit.

Classifier Model accuracy
Validation Test

Yalcin CNN 0.9454 0.930
Ghouzam CNN 0.9416 0.965
Keras CNN 0.9611 0.914

SVM pixel values 0.948 0.92
SVM PCA 0.930 0.902

SVM co-occurence 0.944 0.943
RFC PCA 0.965 0.835

RFC co-occurence 0.998 0.973

by the algorithm missing detections because of the size reduction, or the algorithm finding a
single object multiple times because of the fringe patterns being detected as multiple objects.
The detected objects were encircled in the video to see which case is the most prominent.
The video was analyzed, and the latter case seems to be happening: high resolution fringe
patterns cause multiple detections of a single object. Figures 3-19a-3-19d shows an area of a
snapshot in the video which is representative for explaining the variation in object counts. It
can be seen that the same objects are detected, but at high resolution the objects are detected
multiple times. Judging from the images, the resolution reduction of 16× has some double
counts but no missed detections.

Object detection

Table 3-8 shows the computational time of the algorithm designed in this report compared
with a sliding window algorithm. Both perform similar tasks: they generate images which can
be fed into the reconstruction algorithm and then into the classifier. The method proposed in
this report takes longer to complete for each frame, but produces less frames for reconstruction
and classification. The time it takes to find the objects in a video of 625 frames is about
27 seconds for the method described in this report, while it takes the sliding window only
0.5 seconds. On the other hand, the images fed into the reconstruction and classification
algorithms are respectively 0− 10000 compared to > 300000. Figures 3-18a and 3-18b show
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(a) Square root of reconstruction time
over input image dimension.

(b) Square root of classification time
over input image dimension.

Figure 3-18: Two plots showing the square root of the computational time of two essential
operations that have to be performed when counting eggs. The square root of the computational
time has been used as y-scale in order to show that the relation between computational time and
amount of input pixels is approximately linear.

(a) No resolution reduction. (b) 4× Resolution reduction.

(c) 16×Resolution reduction. (d) 64× Resolution reduction.

Figure 3-19: Showcase of the effect of reducing the image size before determining the object
locations. Having a high resolution seems to result in more double counts. The objects found in
every frame can all be distinguished in the image that was reduced 64×, showing that the moving
objects can be detected even after significant resolution reduction.
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Table 3-6: Specs of the desktop computer and design environment used for the initial design
and bench-marking of the algorithm

Component Product Specifications
Operating system Windows 10 pro
Motherboard MSI B350 PC Mate
CPU AMD ryzen 3 1200 AM4, 3.1GHz
GPU GeForce GTX 1050 Ti 4GB, GDDR5, 7.008GHz
RAM Crucial Ballistix Sport LT 8GB DDR4
Python IDE Pycharm Community edition
Python version 3.7 All packages up to date as of 16-5-2019

Table 3-7: Time taken by the object detection algorithm for various amounts of window shrinking
as mentioned in the previous section. There seems to be a disparity in the objects found between
the various resolution reductions. Note that an actual sample will contain less eggs than the
sample used while making these recordings.

size reduction Computational time for 10 frames[ms] Objects found
64 115.6 199
16 518.5 303
4 2239 713
1(No reduction) 7666 1988

that reconstruction and classification of a 256 × 256[pixel] image takes respectively 0.0225
and 0.09 seconds. For this particular analysis it is assumed that only one reconstruction and
classification is needed for every window. This results in the sliding window taking at least
300000× 0.60 = 180000[s] compared to an estimated analysis time of 500× 0.6 + 27 = 327[s]
for object detection(assuming 5 reconsructions and classifications per window/object). This
approximation shows that using an object detection algorithm before reconstruction and
classification can cut computational time by several orders of magnitude.

Table 3-8: Computational time taken per frame by a sliding window(256× 256 pixel resolution,
128 pixel stride) and by the foreground detector + blob detector. The implemented algorithm
takes about 50 times longer for generating the object images than it takes to move a sliding
window over each image. The flip-side is that only a fraction of the images are generated for
analysis.

Operation/Algorithm Computational time [ms] results
Foreground detection + blob detection 43 0− 100 images to analyze
Sliding window 256× 256 pixels 0.86 > 500 images to analyze

Classification

Table 3-9 shows the computational time of reconstructing and classifying 100 objects as well
as the computational time of a single classification. The computational time of the CNN and
SVM implementation are of similar orders of magnitude, while the RFCs take significantly
longer. The RFC will take more than one second if it has to classify 5 frames for every object,
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which is too long. A urine sample from a person with a heavy infection load (> 50 eggs) can
take more than 1 minute just to reconstruct the local images and classify them. Diagnostic
time is crucial when doing mass surveys, and so the RFC, although being the most accurate,
is not suitable for implementation in the actual algorithm. It is for this reason that a CNN
was selected in the previous section.

Table 3-9: The time taken by reconstruction(256× 256[pixels]) and classification using 50× 50
pixel windows for the classifier/feature input for 100 objects, 5 reconstructions and classification
per object. A total of 500 reconstructions are performed during each simulation which takes
approximately 11.5[s].

Classifier Total computational time [s] Mean time per classification [ms]
CNN (Ghouzam) 30.19 37.4
SVM pixel values 30.43 37.9
SVM PCA 23.35 23.7
SVM co-occurence 25.47 27.9
RFC PCA 132.4 242
RFC co-occurence 132.8 243

3-5 Discussion

This chapter presented the implementation and initial performance evaluation of a new diag-
nostic method. each step has been verified to be working but the exact performance remains
unknown, this will be tested in the next chapter. This section discusses the considerations
made when designing the algorithm and concludes with a brief reflection on the chapter.

3-5-1 Other algorithm considerations

The algorithm presented in this chapter is a result of iterative procedure where various algo-
rithms and combinations were tested. The end result was considered to be the most efficient
in computational time while accurately finding the objects and classifying them. Below are
some of the the ideas which were tested but were found to hinder the performance of the
diagnostic method.

Phase reconstruction

Holographic reconstruction results in an image with complex values, the phase of this complex
number represents the thickness and material of the object the light is passed through while
the magnitude represents the impedance of the object. The classifier uses the reconstruction
magnitude as input since this the closest resemblance to how the eggs are viewed through a
microscope by the human eye. Using a phase image was considered, however this was not
applied since accurate phase Retrieval requires iterative reconstruction procedures .[57]
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Automatic focusing of the reconstructions

Right now the algorithm produces 5 reconstructions for every found object, all of which are
then fed to the classifier. A first order difference focusing algorithm was tested to see if it
was possible to automatically find a sharp reconstruction. The focusing algorithm needed
at least 15 reconstructions in order to work for some objects, while it failed to find a sharp
reconstruction for other objects. An image focusing algorithm requires more reconstructions
and takes more than double the computational time when it is performed. Therefore the use
of such algorithms them was omitted.

Continuous recording of the flow cell

The diagnostic method records the content of the flow cell step wise: the syringe is pressed and
stopped, an image is then recorded. Continuous recording of the flow while taking images was
attempted however this resulted in blurry images. Therefore the step wise recording method
was used.

Classification of fringe patterns

The classifier can also so have the fringe pattern as input which would circumvent reconstruc-
tion. This would increase the computational speed of the algorithm, however; The World
Health Organisation (WHO) requires the eggs to be identified by eye and therefore at this
stage reconstruction cannot be omitted. If this were to be implemented, reconstruction should
still need to be used for labeling the training data. The training data will then consist of the
fringe patterns instead of reconstructions. This will not be considered as it is out of the scope
of this preliminary design, but should be considered in the future.[2]

3-5-2 Reflection

The diagnostic method is able to record the sample, find particles of interest, reconstruct them
locally, and classify them as egg or not egg. The algorithm was evaluated on its computational
speed and not on its capability to find eggs in a sample. Although it performed the latter task
adequately judging from the images. The exact amount of eggs present in the sample was
unknown and could therefore not be used to test the performance. This will be done in the
next chapter where the algorithm will be implemented on a prototype device. This prototype
is then subject to a field test where its performance is compared to that of an expert egg
counter.
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Chapter 4

Prototype validation study

Figure 4-1: Working prototype assembly.[12]

The previous chapter was dedicated to veri-
fying the imaging method and the egg detec-
tion algorithm. These are to be integrated
into a single device which can quantitatively
diagnose urinary Schistosomiasis. The ca-
pability to perform this task will be evalu-
ated in this chapter. First Section 4-1 will
elaborate on how the algorithm is integrated
with the prototype device and present results
of laboratory tests. The prototype is then
brought to the field for testing where its per-
formance is compared to that of an expert
microscopist, which is discussed in section 4-
2. Finally the Laboratory and in-field perfor-
mance of the prototype is reviewed in Section
4-3.

4-1: Prototype integration 50
4-2: Field test processing 54
4-3: Performance reflection 56
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(a) Rendering of the prototype. (b) The actual prototype.

Figure 4-2: Showcase of the prototype used for testing the prototype-algorithms interaction and
performance[12]. Note the syringe holder, which is situated above the recording chamber.

4-1 Prototype integration

The algorithm was implemented on a prototype device which uses a Raspberry pi 3 Model
B, Figures 4-2a and 4-2b show a rendering and picture of the prototype[12]. The sample is
analyzed by consecutively moving the syringe with a stepper motor and recording a hologram,
this method was developed with support of Section 3-2.

The holograms will be captured by the prototype but the images will not yet be analysed,
images will be analyzed on the the computer setup mentioned in Chapter 3. The chamber
in which the holograms are recorded is insulated from all outside light sources, the only il-
lumination hitting the the sensor comes from the monochromatic illumination source within
the chamber itself. An image captured by the prototype can be seen in Figure 4-3. Varia-
tion in environmental light did not show observable differences in the holograms. For more
information on a prototype see M. Hoeboer’s report.[12]

The prototype was tested with Schistosomiasis Haematobium (SH) eggs in saline solution
in order to find the range of reconstruction distances. Figure 4-4b shows an egg that was
reconstructed from a hologram capture with the prototype. The mean reconstruction distance
was determined from reconstructing 100 eggs, and turned out to be 3.0[mm].

P.M. Nijman Master of Science Thesis



4-1 Prototype integration Prototype validation study

Figure 4-3: The flow cell as captured by the sensor within the imaging chamber of the prototype.

(a) Hologram of an egg captured
by the prototype

(b) Reconstruction

Figure 4-4: Showcase of the reconstruction performance of the prototype. The reconstruction
shows more detail than the verification tests shown in chapter 3.

4-1-1 Data acquisition

A sample containing approximately 12000 SH eggs in saline solution was used by a lab tech-
nician to create new samples with various approximate egg counts mixed with either saline
solution or urine from an uninfected person. Some of these samples were used for creating a
training and testing dataset for the classifier while the others were used for testing the algo-
rithm. Table 4-1 shows the samples with their approximate amount of eggs, the fluid it was
mixed with, and the purpose of the sample. Each sample measured 12[mL] which is equal
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Table 4-1: Samples containing SH eggs. The samples will be used to train the classifier and
analyse its performance in the lab.

ID Eggs Fluid Purpose
1 200-300 Saline Analysis
2 400 Saline Analysis
3 400 Saline Analysis
4 0 Urine Analysis
5 200-300 Urine Analysis
6 200-300 Urine Analysis
7 400 Urine Analysis
8 400 Urine Testing
9 1000 Urine Test data
10 1000 Urine Training
11 2000 Urine Training
12 2000 Urine Training

to the 10[mL] defined by the World Health Organisation (WHO) standard, the remaining
accounts for dead volume within the device. Training and testing data was generated by us-
ing the prototype to capture holograms of the entire sample and running the algorithm. The
reconstructions were examined by the author and labelled manually, instead of classifying
automatically. This resulted in a training and test dataset of which the numbers are shown
in Table 4-2. The data was shuffled and balanced in order to have a generalized dataset with
equal amounts of eggs and not eggs.

Table 4-2: The amount of training and test data available to the Convolutional Neural Network
(CNN). The training data will further be split into training and validation data.

Dataset Eggs Not eggs
Training 12087 12208
Testing 352 9016

4-1-2 Classifier evaluation

Ghouzam’s CNN model was trained on the dataset with a training-validation split of 2:1,
the training results are shown in Figures 4-5a and 4-5b. The model was then tested on the
test data whose results are shown in Table 4-3. The training curves show that the maximum
accuracy is reached within 15 epochs and that there are fluctuations in the validation accuracy.
This is an indicator of a lack of generalization. This can be explained by the fact that
there is not enough data available to represent the variation in egg transparency, size, shape,
orientation, and depth. This is further proven by Table 4-3 which shows a sensitivity of 0.506,
specificity of 0.986, and overall accuracy of 0, 968 has been achieved on the independent data
set. The purpose of the classifier is to provide an accurate eggs count, for which it needs both
a high sensitivity and specificity. A data set is needed with more representative examples of
eggs in this setting in order to achieve this goal, however this data is not available.
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(a) Classifier training and validation accu-
racy.

(b) Classifier training and validation loss.

Figure 4-5: Accuracy and loss charts during training of the CNN. The amount of epochs should
be selected such that the loss is minimal and the training and validation accuracy like closely
together.

Table 4-3: Confusion matrix of the classified test data, from an independent sample. The test
has a sensitivity of 0.506, specificity of 0.986, and overall accuracy of 0, 968 on this data set.

Labeled
CNN egg not egg total
egg 178 126 304
not egg 174 8890 9064
total 352 9016 9368

4-1-3 Lab test processing

The samples mentioned in Table 4-1 were analyzed with the algorithm in order to test the
computational time for a complete diagnosis. The results are shown in Table 4-4, as expected
the egg counts do not correspond to the estimated values. The computational times are sig-
nificantly lower than the alternative methods mentioned in Section 3-4, but not low enough
to compete with human experts[2]. During sample analysis the reconstruction and classifi-
cation time seemed to increase significantly over the duration. For example, when analyzing
sample 6(Table 4-4) the computational time for reconstructing and classifying 5 frames in-
creased from 0.127[s], 0.167[s] to 0.211[s], 0.761[s] after analyzing 240 images. Efforts to keep
these times constant were unsuccessful. This can be explained by the memory handling of
Python, and can be prevented by implementing the algorithm on embedded code such as
c++. However, this is out of the scope of this research. The object detector consisting of the
Foreground (FG) detector and blob detector was assessed as well. The recorded hologram
and the FG mask were put side by side with the found objects encircled in both images as
shown in Figures 4-6a and 4-6b. The algorithm is able to find minor changes in the image
due to the fringes caused by moving objects. The first 100 holograms of sample 1 mentioned
in Table 4-4 were analyzed by eye for missed detections. No notable objects were missed,
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Table 4-4: The results of analyzing the samples recorded in the lab. The amount of eggs found
by the algorithm is lower than the approximate amount of eggs present in each sample.

ID Eggs Eggs found Not eggs found Time taken [s]
1 200-300 3 371 387
2 400 3 487 418
3 400 0 606 660
4 0 0 1276 1542
5 200-300 0 7255 9821
6 200-300 1 7202 10776
7 400 1 4616 5210

and the object detector was able to outperform the lab technician. The reconstructions were
observed manually after they were found by the object detector. Eggs can appear clear or
dark depending on their age, so this was done in order to verify that both of these are detected
properly. Examples of the found eggs are shown in Figures 4-7a and 4-7b, the fringe patterns
corresponding to these eggs are all found by the object detector. Therefore the discrepancy
in egg counts can be explained by the shortcomings of the classifier mentioned before, and
the increased flow-rate along the center of the flow-cell. The latter causes eggs to flow past
the sensor without being captured. These discrepancies shall be discussed further in Section
4-3.

4-2 Field test processing

The prototype was taken to the field in Azaguié, Ivory Coast. In this village the local
population was screened for SH by using the prototype. One of the goals of this field test was
to see how the diagnostic algorithm would perform on urine from infected individuals in the
relevant environment. First the data collection method shall be discussed, after which the
most notable results are presented.

4-2-1 Data collection method

A 12[mL] urine sample of each person was collected and subsequently drawn in a syringe which
had to be connected to the prototype afterwards. The urine was caught in a cup after analysis,
after which it was examined by a professional microscopist following the WHO standard.
[12][2]A total of 95 measurements were completed by the prototype which was analyzed by
the algorithm afterwards. The result of the diagnosis performed by the microscopist can be
found in Appendix 5-2-5. Some of these results will be discussed in the paragraph below.

4-2-2 Results

The previous section already indicated that reconstruction and classification takes too much
time, this became more apparent when analyzing an infected person’s urine. The most heavily
infected individual had 173 eggs in their urine. The corresponding images recorded by the
prototype contained significantly more moving particles compared to the recording in the lab,
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(a)

(b)

Figure 4-6: Side-by-side comparison of the recorded hologram and the detected foreground of a
sample prepared in the lab. The locations of moving objects are indicated by circles.

this can be observed in Figures 4-9a and 4-9b. In order to prevent the same memory related
issues as stated earlier only the first 100 recorded images were analyzed, the result of this is
presented in Table 4-5. Only 1

6th of the sample was analyzed which took over 50 minutes, and
no eggs were found by the classifier even though the person was heavily infected according to
the WHO standard. The presence of eggs in the recorded holograms was confirmed by manual
inspection, however these eggs are classified as not eggs by the CNN. One of the recorded
holograms in the field is shown in Figure 4-8a which happens to contain an egg, this egg was
found by the object detector and is shown in Figure 4-8b however this egg was classified as
not being an egg. This means that the eggs come in view of the hologram, are found by the
object detector, but are misclassified resulting in an incorrect egg count.

Table 4-5: The result of analyzing the first 100 images of sample 159. This was a person who
was considered to be heavily infected, yet zero eggs were found by the algorithm.

ID Eggs Eggs found Not eggs found Time taken[s]
159 173 0 4297 3232

The reconstruction and classification parts of the algorithm were turned off in order to see
how the object detection part performs. The sample containing 173 eggs along with samples
containing 105, 46, and 0 eggs were analyzed completely with this reduced algorithm. This
resulted in an ’object count’ and ’measurement time taken’ as shown in Table 4-6. The
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(a) (b)

Figure 4-7: Examples of the variation of transparency of the eggs. The transparent and not
transparent eggs are detected by the algorithm.

algorithm finds more objects in the samples of infected people compared to the samples of
the lab and the uninfected individual. This affects the recorded hologram and the amount
of objects found as shown in Figures 4-9a and 4-9b. However, no conclusions regarding the
infection with SH can be drawn from this observation since the sample size is too small.
Significant time difference can be observed between analysing a sample with and without

Table 4-6: The result of analyzing 4 samples for the amount of objects found and the time taken.

ID Eggs Objects found Time taken [s]
108 46 13390 186
110 0 465 182
114 105 19272 182
159 173 21641 159

object reconstruction and classification. The algorithm is able to locate all the objects in
the recorded images in approximately 3 minutes, even when the sample is contaminated (See
Figure 4-9a and 4-9b compared to Figure 4-6a and 4-6b).

4-3 Performance reflection

The diagnostic method was tested in the lab and in the field. Several observations were done
regarding the performance, these will be discussed in this section.

4-3-1 Performance measures

The new diagnostic method which was evaluated in this chapter should also be assessed by
the performance measures presented in Section 2-4. Table 4-4 show the result of analyzing
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Figure 4-8: Hologram containing an egg, recorded during a field test(a), local fringe pattern and
corresponding reconstruction of the egg (b).

7 samples, the confusion matrix shown in Table 4-7 summarizes the outcome of the test.
With these results the diagnostic method has a sensitivity of 66.7% and a specificity of 100%,
however; this observation does not have value because of the following reasons:

• Low volume of tested samples (n = 7).

• Discrepancy between the amount of eggs found by the algorithm compared to the esti-
mated amount present in the sample.

• Low classifier performance measures result in an unreliable egg count (SN 0.506, SP
0.986, acc 0, 968).

Therefore this new diagnostic method does not yet have sufficient performance in order to
replace or supplement the current diagnostic standard.
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(a)

(b)

Figure 4-9: Side-by-side comparison of the Recorded hologram and the detected foreground of
a sample from an infected person. The locations of moving objects are indicated by circles.

4-3-2 Sample recording method

The combination of digital holography and flow cytometry provided a method for lensless
imaging of SH eggs without sample preparation. The terminal spine which is characteristic
of the eggs is visible in the reconstructions of their respective fringe patterns. A lot of data
is generated for one diagnosis, this does not pose a problem with the right computational
equipment and memory management.

4-3-3 Computational time

There is a memory leak which causes a buildup of memory usage, resulting in some compu-
tational steps taking longer as a diagnosis progresses. The diagnostic time ended up being
significantly longer than expected. In Section 4-1 it was indicated that classifying 5 recon-
structions at the start of sample analysis takes 0.167 seconds, which is 0.033 seconds per
reconstructed image. If reconstruction is omitted and the fringe patterns of the found objects
are classified directly, it will take up to 0.033 ·21641+180 = 894[s] to analyze a sample, which
is an order of magnitude less than the diagnostic time indicated in tables 4-5 and 4-4. This
indicates that the object reconstruction and classification part of the algorithm is the limiting
factor of diagnostic time. Additionally the analysis was run on the desktop computer, not
the Raspberry Pi 3 that is on board of the prototype. The analysis would take longer than
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Table 4-7: Confusion matrix of the results from the lab tests

Truth
New method positive negative total
positive 4 0 4
negative 2 1 3
total 6 1 7

indicated in this chapter if it were run on the prototype.

4-3-4 Object detection

During the lab tests the object detection system was able to find and reconstruct every notable
moving object in all of the holograms. In some of the field test samples there were orders
of magnitude more objects present in the holograms compared to the lab tests, which gave
the foreground detector little information to learn the difference between a background and a
foreground pixel. This indicates that the the foreground detector should be tuned differently
depending on the quality of the sample.

4-3-5 Missed egg detections

The fluid dynamics were neglected when determining how much volume is pressed by the
syringe between each capture. The fluid experiences friction near the boundaries, it moves
slower the nearer it is to these boundaries(see Figure 4-10). The fluid has a higher velocity
when moving away from the boundary causing some eggs to pass by the sensor without being
in view during capture of the hologram. On the other hand eggs moving near the boundary
are observed over multiple different frames as they move slower. Whether this effect balances
out and results in a accurate account has not been researched yet as it requires a boundary
layer analysis [13].

Figure 4-10: Illustration of the boundary layer caused by friction as a fluid moves over a stationary
surface, u represents the local flow velocity and δ the distance from the surface.[13]
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4-3-6 Non generalized classifier

The training dataset of the classifier was obtained from a few samples which contained many
eggs. As such it did not contain information on how the eggs appear in actual infected
people. Although many eggs were used, the sample size was not yet big enough to represent
the variation in egg size, shape, orientation, and transparency. Additionally, there appear
moe particles around the eggs in contaminated urine (see Figure 4-8b), these particles are
not present in the training data set. For this reason many eggs that were found by the object
detector were classified as not eggs during field and lab tests.

The diagnostic algorithm is not yet able to fulfill the research objective. However the short-
comings mentioned above could be circumvented by collecting a larger, generalized data set
and by implementing the algorithm on embedded code with proper memory management.

P.M. Nijman Master of Science Thesis



Conclusion

Chapter 5

Conclusion

This chapter will conclude the report. The first Section will briefly summarize the topics that
were discussed which is followed by a final conclusion on. Finally recommendations for future
research regarding the discussed topics will be mentioned in section 5-2.

5-1 Reflection

This report presented the preliminary development of a low-cost smart diagnostic method for
Schistosomiasis Haematobium (SH), focusing on improving and replacing the current World
Health Organisation (WHO) standard for diagnosis. Chapter 1 looked at the current state of
of diagnostics of SH. The WHO diagnostic standard was described and its shortcomings were
identified. Additionally, the latest research regarding the development of smart diagnostic
methods was looked into. Finally the research objective was identified:

"Develop a low-cost, smart diagnostic method for SH based on detecting eggs in
urine by combining lensless imaging and flow cytometry, and developing Artificial
Intelligence (AI) models for automated detection."

Chapter 2 then followed by presenting the background information needed to implement this
new diagnostic method. In-line planar wavefront digital holography was identified as the
most suitable lensless imaging method. A sample will be analyzed by the following repetitive
procedure: mechanically press the piston of a syringe by a small volume, wait for the flow to
stop, record a hologram, detect eggs. The proposed egg detection procedure consisted of a
series of image processing algorithms:

• Apply Foreground (FG) detection in order to label moving objects in the recorded
holograms.

• Localize the objects with a Blob detector.
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• Locally reconstruct the hologram at the found locations.

• Classify the reconstruction as egg or not egg.

Finally the diagnosis can be provided as a confidence interval of the account depending on
the classifier performance.

These methods were verified in Chapter 3. The Digital Holographic Microscope (DHM)
proved to have sufficient resolution for imaging the eggs in a flow cell. The egg detection
algorithm was then implemented on a desktop computer. Finally diagnostic algorithm was
bench-marked to ensure that the diagnostic time was within reasonable limits.

Chapter 4 served as the final test for the algorithm. The detection algorithm was implemented
on a prototype device which automatically analyzed the urine. This device was first tested in
a lab with cultivated egg samples. After this, the prototype was brought to Ivory Coast for
a field test where its performance was compared to an expert microscopist.

The sample recording method has been shown to be an effective alternative to the current
diagnostic standard, the DHM was able to accurately reconstruct eggs within the flow cell.
An entire sample could be imaged automatically with the only sample preparation being:
drawing the sample with a syringe. No filtration, staining, or human interaction was needed
besides this. Additionally, The object detection architecture was able to efficiently find all
the microscopic objects within the sample. Even objects much smaller than the eggs were
found to be present in urine. A basic classifier implementation showed promising results with
an accuracy of 0.96.

Testing the algorithm on a prototype further validated the imaging method as eggs were
found and reconstructed accurately. On the other hand, the lab tests showed that the data
set of the classifier did not contain enough images to train a generalized model and that the
local reconstruction and classification takes increasingly more time during analysis. The field
tests further validated this observation by showing that the diagnostic algorithm is an order
of magnitude slower than an expert microscopist. On the other hand, the object detection
algorithm was able to locate moving objects with sufficient accuracy and computational time.

The research objective turned out to be more complex than initially thought, the developed
diagnostic method is not yet able fulfill this objective completely. However, the algorithm has
some promising aspects such as the imaging method, object detection algorithm, and lack of
sample preparation method which could make further research worthwhile.

The diagnostic method will not be able to outperform a field microscopist under the considered
circumstances. However if some optimizations are made to the algorithm, the device could
be used to diagnose SH in the absence of appropriately trained people.

5-2 Recommendations

The research objective was not fulfilled completely, however; it is interesting to look at how
the research could be continued or which aspects could see other promising uses.
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5-2-1 Imaging method

One of the limiting factors of the method is the amount of holograms that have to be captured.
Using a flow cell with a larger depth allows for a higher volume in view of the sensor. Capturing
images was one of the most time-consuming parts of the analysis so this can decrease the
diagnostic time significantly.
The boundary layer within the flow cell should be analyzed with the goal of preventing missed
detections. By finding out how the urine sample behaves as it is moving through the flow
cell, an optimal flow speed and piston displacement can be determined such that all of the
fluid has been in view of the sensor.

5-2-2 Object detection

The FG detector was optimized for the samples recorded in the lab. The samples recorded in
the field contained more particles for which the FG detector was not prepared. This showed
that the FG detector should be able to adapt to the varying amounts of contamination it can
encounter in the field.
Many of the objects found by the object detector were significantly smaller than eggs. An
additional selection stage could be added which looks at the local fringe frequency in order to
judge whether an object is of sufficient size. Small particles cause a larger diffraction angle,
so the size of objects can be estimated prior to reconstruction.

5-2-3 Classification

The diagnostic method reconstructs objects locally over multiple planes and classifies each of
these reconstructions. However the classifier can be trained on the fringe patterns instead,
foregoing the reconstruction step in the algorithm. This will save on time since the recon-
struction step takes time and a classifier will only have to classify one image for each object
instead of every reconstruction plane. The information content in the image is retained during
reconstruction therefore the classifier should be able to reach similar accuracy when using the
fringe pattern as input.
The classifier was trained on a dataset that did not come from infected people, thus the data
is not representative for what the algorithm finds when it analyzes an infected person’s urine.
A diagnostic method based on a classifier should be trained on a dataset obtained from real
infected people with a variety of infection intensities and gender.
The classifier only uses the magnitude of the reconstruction. One of the properties of digital
holography is that both magnitude and phase information of the object can be retrieved. This
could be capitalized on in the future as it provides more information to the classifier resulting
in a higher potential accuracy.

5-2-4 Implementation

The reconstruction and classification of the objects took increasingly more time over the du-
ration of a diagnosis. This could be improved on by implementing the algorithm on embedded
code with proper memory management.
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Another way to decrease diagnostic time is to increase the computational power which will
allow for a higher frame rate. It can then become possible to capture a continuous video
instead of separate images. By applying a tracking algorithm such as a Kalman filter the
object can be observed across multiple frames allowing for a better view and preventing
double counts and missed detections.

5-2-5 Other applications

This diagnostic method was specifically designed for the detection of SH. It is able to find
microscopic particles and reconstruct them with details up to to 2.5[µm]. With this amount of
detail the device could also be applied in other Fields such as the analysis of bodies of water.
For example nanoplankton and microplankton have sizes of 2 − 20[µm] and 20 − 200[µm]
respectively. [58]Digital holography in combination AI has proven to be a low-cost method
for imaging transparent samples at various depths simultaneously. Therefore the application
to other diagnostic methods in low-resource settings should be researched.

One of the problems observed during a few tests was that some urine samples have a lot of
contamination. With these samples the algorithm found many objects in every frame which
had to be reconstructed and classified, which was time consuming. This can be circumvented
by assessing the urine sample before and only using the device for clean urine samples.

One of the the main advantages of this device was the absence of a sample preparation
method. The drawback of this was that a huge amount of data has to be analyzed. However
a filtered sample could also so be analyzed by using a DHM setup, as the the lensless imaging
method is low cost and easy to implement. It should be noted that the filter will induce
additional fringe patterns which will have to be compensated for. Digital holography could
also be applied to analyze a stationary volume containing urine, which would also circumvent
sample preparation.
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Glossary

List of Acronyms

NTD Neglected Tropical Disease

WHO World Health Organisation

DHM Digital Holographic Microscope

CNN Convolutional Neural Network

SVM Support Vector Machine

CMOS Complementary Metal-Oxide Semiconductor

ASM Angular Spectrum Method

DALYs disability adjusted life years

IFC Imaging Flow Cytometry

GMM Gaussian Mixture Model

BG Background

FG Foreground

RBF Radial Basis Function

PCA Principal Component Analysis

SVD Singular Value Decomposition

RFC Random Forest Classifier

FOV Field of View

AI Artificial Intelligence

DOH Determinant of Hessian
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POC Point of Care

CI Confidence Interval

SH Schistosomiasis Haematobium
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Appendix A: CNN Models

Convolutional neural Network Models that were tested for the classification of Schistosoma
haematobium eggs.

Yalcin

[47]

model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Conv2D(32, kernel_size=(3, 3),
activation=’relu’,
input_shape=(clfsize, clfsize, 1)))
model.add(tf.keras.layers.Conv2D(64, (3, 3), activation=’relu’))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2)))
model.add(tf.keras.layers.Dropout(0.25))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(128, activation=’relu’))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Dense(1, activation=’sigmoid’))
model.compile(optimizer=’adam’, loss=’binary_crossentropy’, metrics=[’accuracy’])

Ghouzam

[48]

model = tf.keras.models.Sequential()

model.add(tf.keras.layers.Conv2D(filters=32, kernel_size=(5, 5), padding=’Same’,
activation=’relu’, input_shape=(clfsize, clfsize, 1)))
model.add(tf.keras.layers.Conv2D(filters=32, kernel_size=(5, 5), padding=’Same’,
activation=’relu’))
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model.add(tf.keras.layers.MaxPool2D(pool_size=(3, 3)))
model.add(tf.keras.layers.Dropout(0.25))

model.add(tf.keras.layers.Conv2D(filters=64, kernel_size=(3, 3), padding=’Same’,
activation=’relu’))
model.add(tf.keras.layers.Conv2D(filters=64, kernel_size=(3, 3), padding=’Same’,
activation=’relu’))
model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2), strides=(2, 2)))
model.add(tf.keras.layers.Dropout(0.25))

model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(256, activation="relu"))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Dense(1, activation="sigmoid"))

optimizer = tf.keras.optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
model.compile(optimizer=optimizer, loss="binary_crossentropy", metrics=["accuracy"])

Keras

[49]

model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Conv2D(32, kernel_size=(3, 3),
activation=’relu’,
input_shape=(clfsize,clfsize,1)))
model.add(tf.keras.layers.Conv2D(64, (3, 3), activation=’relu’))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2)))
model.add(tf.keras.layers.Dropout(0.25))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(128, activation=’relu’))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Dense(1, activation=’sigmoid’))

model.compile(loss=tf.keras.losses.binary_crossentropy,
optimizer=tf.keras.optimizers.Adadelta(),
metrics=[’accuracy’])
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Appendix B: Field test results

Master of Science Thesis P.M. Nijman



Urine ID Received Collected at Obtained at Duration manual Eggs
101 Yes 23/06/2019 - 24/06/2019 ### 0
102 Yes 23/06/2019 - 24/06/2019 ### 2
103 Yes 23/06/2019 - 24/06/2019 ### 04:53 21
104 Yes 23/06/2019 - 24/06/2019 ### 04:20 1
105 Yes 23/06/2019 - 24/06/2019 ### 04:20 1
106 Yes 23/06/2019 - 24/06/2019 ### 05:10 3
107 Yes 23/06/2019 - 24/06/2019 ### 04:32 4
108 Yes 23/06/2019 - 24/06/2019 ### 02:36 46
109 Yes 23/06/2019 - 24/06/2019 ### 02:30 7
110 Yes 23/06/2019 - 24/06/2019 ### 01:02 0
111 Yes 23/06/2019 - 24/06/2019 ### 01:29 1
112 Yes 23/06/2019 - 24/06/2019 ### 01:19 1
113 Yes 23/06/2019 - 24/06/2019 ### 01:41 6
114 Yes 23/06/2019 - 24/06/2019 ### 03:12 105
115 Yes 23/06/2019 - 24/06/2019 ### 02:11 9
116 Yes 25/06/2019 - 26/06/2019 ### 02:24 0
117 Yes 23/06/2019 - 24/06/2019 ### 04:17 4
118 Yes 23/06/2019 - 24/06/2019 ### 03:30 0
119 Yes 23/06/2019 - 24/06/2019 ### 02:41 0
120 Yes 23/06/2019 - 24/06/2019 ### 02:45 0
121 Yes 24/06/2019 - 25/06/2019 ### 03:57 1
122 Yes 24/06/2019 - 25/06/2019 ### 03:34 1
123 Yes 24/06/2019 - 25/06/2019 ### 03:11 0
124 Yes 24/06/2019 - 25/06/2019 ### 03:57 2
125 Yes 24/06/2019 - 25/06/2019 ### 04:09 0
126 Yes 24/06/2019 - 25/06/2019 ### 03:35 0
127 Yes 24/06/2019 - 25/06/2019 ### 02:47 0
128 Yes 24/06/2019 - 25/06/2019 ### 04:02 0
129 Yes 24/06/2019 - 25/06/2019 ### 03:18 0
130 Yes 24/06/2019 - 25/06/2019 ### 03:20 0
131 Yes 24/06/2019 - 25/06/2019 ### 03:22 0
132 Yes 24/06/2019 - 25/06/2019 ### 02:44 0
133 Yes 24/06/2019 - 25/06/2019 ### 02:45 0
134 Yes 24/06/2019 - 25/06/2019 ### 03:22 0
135 Yes 24/06/2019 - 25/06/2019 ### 03:20 0
136 Yes 24/06/2019 - 25/06/2019 ### 02:50 0
137 Yes 24/06/2019 - 25/06/2019 ### 03:50 1
138 Yes 24/06/2019 - 25/06/2019 ### 02:54 0
139 Yes 24/06/2019 - 25/06/2019 ### 03:17 0
140 Yes 24/06/2019 - 25/06/2019 ### 02:34 0
141 Yes 25/06/2019 - 26/06/2019 ### 02:27 0
142 Yes 25/06/2019 - 26/06/2019 ### 02:36 0
143 Yes 25/06/2019 - 26/06/2019 ### 02:30 0
144 Yes 25/06/2019 - 26/06/2019 ### 03:30 4
145 Yes 25/06/2019 - 26/06/2019 ### 03:04 0
146 Yes 25/06/2019 - 26/06/2019 ### 03:05 0
147 Yes 25/06/2019 - 26/06/2019 ### 03:10 0
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148 Yes 25/06/2019 - 26/06/2019 ### 03:03 0
149 Yes 25/06/2019 - 26/06/2019 ### 03:17 4
150 Yes 25/06/2019 - 26/06/2019 ### 02:47 0
151 Yes 25/06/2019 - 26/06/2019 ### 03:32 0
152 Yes 25/06/2019 - 26/06/2019 ### 02:14 0
153 Yes 25/06/2019 - 26/06/2019 ### 02:25 0
154 Yes 25/06/2019 - 26/06/2019 ### 02:41 0
155 Yes 25/06/2019 - 26/06/2019 ### 03:11 0
156 Yes 25/06/2019 - 26/06/2019 ### 02:40 0
157 Yes 25/06/2019 - 26/06/2019 ### 02:15 0
158 Yes 25/06/2019 - 26/06/2019 ### 02:54 0
159 Yes 25/06/2019 - 26/06/2019 ### 03:28 173
160 Yes 25/06/2019 - 26/06/2019 ### 02:55 1
161 Yes 25/06/2019 - 26/06/2019 ### 02:19 0
162 Yes 25/06/2019 - 26/06/2019 ### 02:20 0
163 Yes 25/06/2019 - 26/06/2019 ###
164 Yes 25/06/2019 - 26/06/2019 ###
165 Yes 26/06/2019 - 27/06/2019 ### 04:54 3
166 Yes 26/06/2019 - 27/06/2019 ### 02:08 0
167 Yes 23/06/2019 - 24/06/2019 ### 02:04 0
168 Yes 26/06/2019 - 27/06/2019 ### 04:59 0
169 Yes 26/06/2019 - 27/06/2019 ### 04:30 0
170 Yes 26/06/2019 - 27/06/2019 ### 02:10 0
171 Yes 26/06/2019 - 27/06/2019 ### 03:10 0
172 Yes 26/06/2019 - 27/06/2019 ### 02:08 0
173 Yes 26/06/2019 - 27/06/2019 ### 02:30 0
174 Yes 26/06/2019 - 27/06/2019 ### 02:10 0
175 Yes 26/06/2019 - 27/06/2019 ### 02:10 0
176 Yes 26/06/2019 - 27/06/2019 ### 02:10 0
177 Yes 26/06/2019 - 27/06/2019 ###
178 Yes 26/06/2019 - 27/06/2019 ###
179 Yes 26/06/2019 - 27/06/2019 ###
180 Yes 26/06/2019 - 27/06/2019 ###
181 Yes 27/06/2019 - 28/06/2019 ### 02:11 0
182 Yes 27/06/2019 - 28/06/2019 ### 02:12 0
183 Yes 27/06/2019 - 28/06/2019 ### 02:02 0
184 Yes 27/06/2019 - 28/06/2019 ### 02:23 0
185 Yes 27/06/2019 - 28/06/2019 ### 02:29 0
186 Yes 27/06/2019 - 28/06/2019 ### 02:08 0
187 Yes 27/06/2019 - 28/06/2019 ### 02:10 0
188 Yes 27/06/2019 - 28/06/2019 ### 02:12 0
189 Yes 27/06/2019 - 28/06/2019 ### 02:31 1
190 Yes 27/06/2019 - 28/06/2019 ### 02:20 0
191 Yes 27/06/2019 - 28/06/2019 ###
192 Yes 27/06/2019 - 28/06/2019 ### 02:10 0
193
194
195
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196
197
198
199
200
002 Yes 26/06/2019 - 27/06/2019 ### 02:38 0
004 Yes 26/06/2019 - 27/06/2019 ### 03:09 32
008 Yes 26/06/2019 - 27/06/2019 ### 02:08 10
009 Yes 26/06/2019 - 27/06/2019 ### 60
021 Yes 26/06/2019 - 27/06/2019 ### 02:14 27
028 Yes 26/06/2019 - 27/06/2019 ### 02:24 30
029 Yes 26/06/2019 - 27/06/2019 ### 02:09 39
033 Yes 26/06/2019 - 27/06/2019 ### 02:40 61
066 Yes 26/06/2019 - 27/06/2019 ### 02:40 19
067 Yes 26/06/2019 - 27/06/2019 ### 02:35 0
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