
Verifying weak memory concurrent
data structure implementations

Version of May 6, 2024

Casper Henkes





Verifying weak memory concurrent
data structure implementations

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Casper Henkes
born in Den Haag, the Netherlands

Programming Languages Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl


© 2024 Casper Henkes.



Verifying weak memory concurrent
data structure implementations

Author: Casper Henkes
Student id: 4569555

Abstract

From formal hardware models to programming language implementations concur-
rency is everywhere. While there has been a lot of work done on verifying concurrent
systems a large part of it is focused on sequential consistency (SC). In practice, it is more
common to encounter weak memory models for which the techniques developed for
SC do not work. There exists previous research on verifying weak memory concurrent
programs, however, this work is often limited in scope and is often difficult to under-
stand and apply to a broader context. This thesis gives a general approach for calculat-
ing higher-level relations between function calls in a weak memory context that work
for weak memory concurrent mutex, stack, and queue data structures. These relations
allow us to abstract away implementation details for easier reasoning about program be-
haviour. These function-level relations and data structure models defined using them
are implemented in a stateless model checker and used to verify several existing mutex,
stack, and queue implementations.

Thesis Committee:

Chair: Prof. dr. A. van Deursen, Faculty EEMCS, TU Delft
Committee Member: Dr. S. Chakraborty, Faculty EEMCS, TU Delft
Committee Member: Dr. C.B. Poulsen, Faculty EEMCS, TU Delft

c.l.w.henkes@student.tudelft.nl




Chapter 1

Introduction

Concurrency is one of the default ways to increase program performance in the current tech-
nological landscape. From servers handling many clients at the same time to local systems
dividing tasks between different software or hardware threads. Local concurrency, which
we will be focusing on in this thesis, operates under the shared memory model where multi-
ple threads communicate through loading data from and storing data in memory accessible
by both threads. A basic model for shared memory concurrency is interleaving. Interleaving
allows for any possible execution that can be generated by arbitrarily interleaving the oper-
ations of all threads that constitute the program. The model that only allows interleaving
executions is called sequential consistency (SC).

It turns out that SC is quite strict and, for performance reasons, many real-life applica-
tions use weaker models. These models collectively called weak-memory models allow for
more behaviour than only having interleaving threads would allow. Because of this extra be-
haviour, previous research-proven under SC usually does not translate well to weak-memory
contexts. This paper focuses on a weak-memory context as both modern hardware [2, 20,
22] and programming languages [3, 4, 9, 17] models usually operate under weak memory
assumptions.

There is work on weak memory concurrency, but that work usually focuses on proper-
ties and relations found between instruction-level events, like load and store events. These
relations are synthesised in graphs that detail the execution of the program called an execu-
tion graph. These execution graphs and low-level relations are powerful tools for proofs and
verification, but reasoning with them can be difficult and counter-intuitive.

To simplify the reasoning about interactions between different parts of the code it helps
to formulate the concurrent program as layers of abstractions. This approach is also used in
larger non-concurrent systems. Abstracting away some implementation details helps make
formulations about problems cleaner and easier to understand.

The main idea of this thesis is to show that such a layered approach works in practice
for weak memory concurrent systems. We use lower instruction-level relations to create a
higher abstraction layer of function-level relations that we can then use to verify properties
of the code under test without worrying about the implementation details of the underly-
ing code. To show that this approach works, we develop a stateless model checker for C
and LLVM implementations of weak-memory concurrent programs and use it to calculate
these function-level relations. Then these function-level relations are used to verify different
implementations of weak memory concurrent data structures.

The proposed tool verifies implementations by using test programs. These test programs
consist of two separate parts, the implementation of the data structure and a driver program.
The implementation consists of the actual code implementation of the data structure. The
driver program can be seen as the test scenario, it is a program that uses the data structure
and defines how many threads there will be and what thread will call what functions with

1



1. INTRODUCTION

what values. The stateless model checker then explores all possible executions of the im-
plementation, and a custom verification algorithm verifies that the executions adhere to the
chosen data structure model.

This research proposes a modified model checker to verify the behaviour of weak mem-
ory concurrent data structure implementations. This paper shows that the tool can correctly
construct function-level relations and use them to verify concurrent mutex, stack, and queue
data structure implementations.

The main contributions of the research are as follows. First, the thesis defines a prac-
tical way to translate instruction-level properties into function-level properties. Second, it
provides an open-source tool that can verify several higher-level properties on multiple data
structures.

The rest of the paper follows the following structure. The background goes into more
detail on shared memory concurrency and memory models, before explaining how weak
memory programs can be verified. The main ideas explain the contributions in more detail
and give a broad overview of the techniques used to construct function-level relations and
verify data structuremodels. The technical details chapter explains the inner workings of the
algorithms used. The evaluation shows the performance of the proposed tool on a variety
of implementations. The discussion goes over optimally, soundness, the precision of the
algorithms, and any strong points and limitations of the research. Lastly, we sum up the
most important parts and describe potential future work.

2



Chapter 2

Background

2.1 Shared memory concurrency
Shared memory concurrency is a popular way to model concurrent behaviour on programs
running on local systems. In this model, multiple threads communicate by storing and load-
ing data to and from a shared memory. The simplest way to model shared memory concur-
rency is with interleaving threads. The memory model you get when the only allowed exe-
cutions are those that interleaving threads can generate is called sequential consistency (SC).
However, there are weakermemorymodels often used in practice calledweakmemorymod-
els. The rest of this section first explains the idea behind weak memory concurrency before
explaining weak memory models and execution graphs.

Weak-memory concurrency SC [15] has been covered widely in research, but it turns out
that it is not always applicable in practice. In practice, it is common for programs to behave
in ways impossible under SC. This behaviour is called weakmemory behaviour. Weakmem-
ory behaviour typically stems from allowing some reordering of load and store operations
that take place on different memory addresses. Allowing this reordering is interesting in
practice as it enables compiler and hardware optimizations that can drastically speed up the
performance of programs.

Weak-memory example See figure 2.1 for an example program. Under interleaving it is
possible to get the following outcomes: either a = 1 ^ b = 1, a = 1 ^ b = 0, or a = 0 ^ b = 1.
Thus under SC, it is impossible to get the outcome a = 0^ b = 0. To get a = 0 you need A2 to
happen before B1. Interleaving requires that A1 happens before A2 and B1 happens before
B2 and since you need A2 to happen before B1 this means that A1 happens before B2. Thus
when a = 0, this means that b = 1 and vice versa. Under weak memory, the compiler can
rearrange some instructions that operate on different memory locations. Because A1 and A2
operate on different memory locations we can rearrange them. This weak behaviour allows
you to get the result a = 0 ^ b = 0 as it is no longer necessary that A1 happens before A2, so
an execution like 0;A2;B1;B2;A1 becomes possible.

Memory Models While enabling weak memory behaviour can increase the speed of pro-
grams, it also allows programs to fail in unexpected ways if the additional behaviours are
not considered carefully. To have better control over the allowed and disallowed behaviours
memory models were invented. Memory models, such as SC we have seen earlier, define
rules which restrict the consistent executions. Stricter memorymodels like SC and total store
ordering (TSO) [20] do not allow the behaviour observed in figure 2.1 called load buffering.
There are also more relaxed models such as the Power [2] and Arm [22] memory models
which do allow load buffering.

3



2. BACKGROUND

Figure 2.1: WeakMemory Example Program (left), and an Example ExecutionGraph (right).
tA and tB represent two concurrent threads. 0, A1, A2, B1, and B2 represent events in the
execution where 0 initializes X and Y to 0. The outcome of the program is defined in terms
of the values a and b take after the execution. For the Execution Graph, the black arrows
represent the order the events are executed.

Execution Graphs For axiomatic memory models the set of all potential outcomes of the
program is described as a set of execution graphs, where each execution graph is matched
to one of the potential outcomes of the program. An execution graph G is defined by events
which are its nodes, and relations between those events which are its edges. Nodes are often
on the level of individual instruction. Common edges are program order (po) and reads-
from (rf). po describes the sequence of instructions listed from top to bottom. rf relates each
load event Lwhich reads a value from a store event S. All executions of a program P can then
be seen as all execution graphs G consistent for the memory model the program operates
under. For an example execution graph see 2.1. Here the execution 0;A1;A2;B1;B2 is shown.
The outcome of this program is a = 0^ b = 1. You can find this outcome by looking at the rf
relation. For a the store event it reads from is 0, and thus its value is zero. For b it reads from
A1 and since X is set to 1 there b = 1.

2.2 Program Verification under Weak Memory
Verifying concurrent programs can be done in various ways. One way is to run the program
and trace the order of events that were executed. The resulting execution trace can then be
used to see whether anything went wrong. This approach might catch the error, but it can
also easily miss it if it does not show up in all executions of the program. Using a fuzzer
[16, 24], or a model checker [2, 18, 10] gives a much better idea of the possible program
behaviours. The idea of fuzzing is to run the program many times and see if an error shows
up. This technique has the advantage that it can verify large and complex systems, but it
is unable to verify all executions and thus might miss errors. The model checker can verify
all possible behaviours of the program. The advantage of model checking is that it can give
strong guarantees on the behaviour of the program, but it is currently infeasible to test large
systems because any non-trivial concurrent program generates many different executions.
The rest of this section gives an overview of how stateless model checkers work under a
weak memory context and explains how GenMC, which is the stateless model checker we
build on, operates.

Model Checkers Stateful model checkers have been proposed for weak memory models.
Still, they are limited in their application by state space explosion and generally have a prob-
lem with comparing program states that produce the same outcome but that result from dif-
ferent execution graphs. Stateless model checkers are more promising in this area because
they can utilize techniques [1, 25, 7] to reduce the number of executions needed to explore
while still ensuring that all the possible behaviours of the program are analysed. Stateless

4



2.3. Verifying Higher-Level structures

Figure 2.2: GenMC execution graph example. S(x, 0) represents a store event writing 0 to
variable x. L(x) represents a load reading the value of the variable x. rf represents the reads-
from relation. An event in green means that it is newly added

model checkers work by enumerating all executions of the program under test and verify-
ing them individually. Stateless model checkers are closely related to the memory model
the program operates under since the result of the program under test is determined by the
memory model it operates under.

GenMC GenMC is a state-of-the-art LLVM-IR-based statelessmodel checker forweakmem-
ory concurrent C and C++ programs that can verify errors such as data races and safety
violations [10]. The stateless model checking algorithm GenMC uses only distinguishes exe-
cutions based on the po and rf relations which makes it suited to verification under multiple
memory models since for these models only the po and rf relations are necessary to recon-
struct all the required information.

GenMC Execution Graph Example GenMC creates executions by generating them step by
step. Startingwith a consistent executionG, it adds a new event to the graph and then verifies
whether the new graphG’ is still consistent. Once the first execution graph is complete it can
backtrack to generate new executions. This is done by keeping track of which load operations
can read from which store operations. It can then generate a new execution by revisiting a
load operation that has not had all its potential read options explored. Consider the example
given in figure 2.2. Let execution 1 be the initial execution. Here the load operation is reading
from the initial store0 operation. The load could also read from the store1 and store2 operations
and those executions are given in 1 and 2 respectively.

2.3 Verifying Higher-Level structures
Larger software systems can be structured as layers of abstractions andweakmemory concur-
rent systems are no different. Groups of instructions and atomic operations form concurrent
function calls. Sets of these function calls together form concurrent data structures which
again are used as a basis to define higher-level concurrent algorithms that use those data
structures.

Higher-Level Properties In a similar way it is possible to create layers of abstractions in
the properties of concurrent systems. Instruction-level relations can be used to construct
relations between function calls. Those function-level relations are then used to define prop-
erties for the behaviour of concurrent data structures. Furthermore, the relations of multi-
ple data structures working together can be used to model the behaviour of high-level al-
gorithms. The tool presented implements existing data-structure models that are based on
such function-level relations [23].

5





Chapter 3

Main Ideas

Our Research has three main ideas. First, it is possible to define higher function-level rela-
tions as paths of lower instruction-level relations. Second, using layers of abstractions we
can separate finding the relations from verifying models based on said relations. Third,
many data structure implementations give different guarantees and high-level concurrent
data structure models can be used to verify these guarantees. These ideas are combined to
extend an existing stateless model checker for weak memory concurrent programs [10] en-
abling it to verify weak memory concurrent data structure models [23] and variants of them.
We then use these extensions to verify numerous concurrent mutex, queue, and stack imple-
mentations. The rest of the chapter first gives a high-level overview of the chosen approach
before specifying the main contributions of the thesis.

3.1 Chosen Approach
We propose a stateless model-checker based on GenMC [10] that can find function-level
relations and has implemented multiple data structure models using these relations. This
tool serves as an example of how these layers of abstractions can be used, and as a practical
program that can verify whether any C or LLVM-based implementation adheres to these
models. A stateless model checker was chosen as the baseline for implementing the tool as
it offers verification guarantees, can generate counterexamples whenever it finds an issue
and can use techniques to reduce the space the checker needs to explore. These counter-
examples are valuable in many practical scenarios, and verifying all possible states of the
program guarantees we find any existing model violations.

3.2 Algorithm
Our verification Algorithm follows a similar approach to the verification algorithm used
by GenMC. We construct execution graphs incrementally adding one event at a time and
checking consistency at each step [10]. All function-level relations we consider have a reads-
from (rf) edge as part of the relation. Any time a load or store event is added to the execution
graph it might create a new reads-from (rf) which can allow us to find a new function-level
relation. Thus we verify for every load and store event if any previously unknown relations
can be found. If the tool finds new relations it looks up all function calls in the execution
graph and calculates all function-level relations between them. These are then used to verify
the state of the program.

A first high-level property To better explain the verification algorithm we explore how
the tool verifies a mutex implementation. A mutex should enforce mutual exclusion for the
data they protect. This means that there should be no two threads that can access that data

7



3. MAIN IDEAS

concurrently. To accomplish this the mutex enforces there to be a total order on all accesses
to the shared variable.

To verify if this total order exists for a given mutex implementation we can look at the
mutex lock and mutex unlock function calls. Under normal operation, each lock call will be
directly followed by an unlock call in the same thread. And each unlock call is followed by
exactly one lock call that next acquires the mutex.

This relation that relates unlock calls to the next lock call that acquires the mutex we call
the communication order (com) relation. Utilising com we can simplify finding this total
order assuming normal mutex usage. To verify if a total order of shared variable accesses
exists we need only check that: The initialization event matches one lock event or that there
are no events, each lock event has exactly one incoming com edge, and each unlock event has
at most one outgoing edge to a lock event.

Using the approach specified above the tool can verify many such properties using execu-
tion graphs consisting solely of function calls and relations between them. This verification
can then be applied to multiple data structures without changing the verification algorithm
or the checks performed.

3.3 Contributions
The main contributions of this thesis are the practical translations from instruction-level re-
lations to function-level relations, giving an example of how using layers of abstractions we
can create concurrency models that do not rely on implementation details. Furthermore,
the implemented tool allows for verification of weak memory concurrent mutex, stack, and
queue implementations and is used to that end to verify existing implementations of these
data structures.

8



Chapter 4

Technical Details

This chapter describes all changes to the existing code base that enable the model checker
to verify the new concurrent data structure models. Before diving into these changes first
an understanding of the code base is necessary. The rest of this chapter first explains the
notation used in the rest of the chapter. Then it describes each newly added feature in its
section that together allows the new models to be verified.

Existing code base GenMC works in three steps that are represented in figure 4.1. First, it
invokes the Clang compiler to compile the C/C++ programs to LLVM-IR. The second step
transforms the code to make verification more efficient. Then the third step explores the
compiled and transformed code to verify the program under test. The verification step again
consists of threemain components, the Interpreter, the Driver, and the Execution Graph. The
Driver decides which executions to explore and in what order that happens bymanaging the
Work Set that the Interpreter operates on. It also calculates the po and rf relations between
events using one of the memory model-specific drivers it has access to. Furthermore, It per-
forms the actual verification that checks the program state using the Calculators that operate
on the execution graph. Lastly, it notifies the Execution Graph any time the Interpreter finds
an event that has to be added to the Graph. The Interpreter is responsible for correctly inter-
preting the program state and notifying the Driver whenever a potential event is found. The
Execution Graph keeps track of the minimal amount of information on the current execution
so that any necessary information can be restored later. It also contains calculators to restore
information not directly stored whenever necessary.

New Features Three new features have been added to the code to enable the new verifica-
tion. First, the inline-function pass that is part of the code transformation step is altered to
keep the information of what instructions belong to which function call as that information
is needed later to construct relations between function calls. Second, we alter the memory

Figure 4.1: The architecture and dynamic components of GenMC [11]

9



4. TECHNICAL DETAILS

model-specific drivers to find the function-level relations. Third, the driver itself is altered
to support data structure model verification.

4.1 Execution Graph Semantics
This section gives the notation used for execution graphsG. This expands upon the notations
given by GenMC [10] and adds function call events and function-level relations. Traces of
programs are represented by a set of execution graphs. Each execution graph G consists of
(i) a finite set of events E and (ii) several relations between those events.

Events An event can be either an instruction-level event eI or a function call event eF . An
instruction-level event is a tuple in the form xi, n, liy where i P Z is the thread identifier, n P Z
is the position of the event within its thread, and l P Labi is the label of the event. The label of
an event can be given by the instruction event label function labi. A Function call event is a
tuple xlf , c, fey where lf P Labf is the label of the function call, c P Z describes its invocation
count, and fe is set of instruction-level events associated with this function call.

Relations An execution graph G knows two types of relations. One links to instruction-
level events, and the other relates to function calls.

• The program order (po) relation, where po Ď eI ˆ eI captures the order of events in
the program’s control flow for both function calls and instruction events.

• The Areads-from (rf) relation, where rf Ď eI ˆ eI associates each load event with a set
of store events that read from that load.

• The communication order (com) relation, where com Ď eF ˆ eF matches those func-
tion calls that exchange information.

• The synchronization order (so) relation, where so Ď eF ˆeF denotes those po Y com+

paths that contribute to happens-before (hb).
• The local happens-before (lhb) relation, where lhb Ď eF ˆ eF captures causality be-

tween different function calls. lhb is transitive and po Y so Ď lhb.

Since both so and lhb are dependent on com it is enough to only keep track of po and com
during execution to be able to find the other function level relations later. This results in an
execution of G consisting of a tuple xE, rf, com y.

ExecutionGraph Example An example of aGenMC execution graph can be found in figure
2.2. This graph shows instruction-level events and the relations between these events. How-
ever when verifying higher-level concurrent data structure models only function call events
and relations between function calls are taken into account. See figure 4.2 for an example.
The graph shows two concurrent threads. thread1 contains four function call events, push0,
push1, pop0, push2, while thread2 contains one event pop1. The numbers you can see match
the actual values that are pushed onto the stack and popped from the stack. The com edges
are used to determine which values are pushed and popped. So each push whose value is
not read gets a ? instead of a value as it is unknown what value has been pushed by that
operation at this time.

Memory model The main memory model that the relation calculations between function
calls are based on is the repaired C11 memory model (RC11) [14]. This is because this mem-
orymodel is supported by default in GenMCand the data structuremodels [23] also support
it. The RC11 memory model supports multiple modes for fences and accesses which are par-
tially ordered by Ă as seen in figure 4.3 [14].

10



4.2. Tracking inlined functions

Figure 4.2: Example of an execution graph G of a stack implementation, showing only func-
tion call events and relations between function calls.

Figure 4.3: memory accesses under RC11

4.2 Tracking inlined functions
As stated above the GenMC framework uses the LLVM backend to inline all non-recursive
function calls. This inlining makes it impossible to knowwhat function an event would have
belonged to. So it is necessary to keep track of it when the function is inlined.

Debug Information LLVM-IR allows programs to add debug information to instructions.
The tool uses this debug information to convey what instruction belongs to which function
call as it can be added without modifying the instructions. This debug information can then
be used during interpretation to know whether a function call has started or ended. This
can then be communicated to the Driver. Early in the process, it was noted that just marking
the instructions of the function call was not enough as the marked instructions may get in-
terrupted by unmarked events generated by something like malloc. During interpretation,
there is noway to differentiate betweenmarked instructions being interrupted and a function
call ending.

11



4. TECHNICAL DETAILS

Marker Instructions Another way to mark what instructions belong to a function call is to
have special function call start and function call end markers that you place on certain instruc-
tions. During interpretation, it is then possible to assume any instruction between a start
and an end marker is part of the same function call. The call instruction cannot be used to
mark where the function starts or ends as it gets removed during the inlining process. In the
same vein, it is difficult to use the instructions directly before and after the call instruction
as a marker as there are cases where these instructions are modified or removed. To ensure
that the marker instructions always exist the tool adds two special marker instructions right
before the call instructions and right after. These marker instructions are never executed but
only used to mark the start and end of a function call. It is not always enough to insert these
instructions as when a call instruction is called fromwithin the body of a while loop it might
not immediately see the end marker as the function ends. To combat this the execution en-
gine was modified to track which threads have a function that has started but has not ended
yet. The tool then uses this knowledge to handle these edge cases.

New Events The tool adds two new events to the execution graph to help keep track of
the functions, function start and function end. A function start event is added to a thread
whenever the interpreter finds a new function start marker instruction. Similarly, an end
event is added when an end marker instruction is found.

Invocation Only tracking when a function call starts or ends does not help differentiate
separate calls to the same function. To track these separate calls each function call is assigned
a unique integer for its specific function called its invocation. This invocation is zero when
no calls to this function exist in the execution graph, or it is one higher than the highest
invocation that exists for this function. Two function calls can only share an invocation if
they belong to different functions.

4.3 Calculating Function-level Relations
There exist numerous relations between different function calls in literature. This research
focuses on four specific ones, namely program order (po), communication order (com), syn-
chronization order (so), local happens-before (lhb).

po The tool finds po by using the start and end events of the function calls. If there is a
direct path consisting of event-level po edges between the end of one function call F1 and
the start of a function call F2 without the path being interrupted by a different function call
then (F1, F2) P po.

com Finding com requires you to find out what function calls have exchanged information.
For this to be the case you minimally need a load event belonging to function call F2 to read
from (rf) a store event belonging to F1. A single rf event is not enough however as implemen-
tations of concurrent data structures will read values written by other calls without taking
any data from the data structure in question. The com relation can only be found once the
load event exists. The tool finds the inverse of com as it finds a connection between the current
and a previous event. While com matches current and future events.

For a basic mutex, it is enough to check if the load l in F1 is part of a successful compare-
and-swap (CAS) or read-modify-write (RMW) operation and if the value it reads from the
store s in F2 is zero. Reading zero here means that the mutex is not currently locked in the
tested mutex implementations and combining that with the information that the load is part
of a successful CAS or RMWoperation ensures that it is the only thread that reads that value.
Thus in such a case (F2, F1) P com as the function call F2 successfully communicated that

12



4.4. Model Verification

the mutex was free to F1. If a different standard is used in other implementations then it is
necessary to change the check on the value of the load.

Figure 4.4: Example ExecutionGraph for showing how com is found. There are three threads,
t1, t2, and t3. Each thread consists of one function call.

For the stack and queue finding com is more difficult. Queues and stacks work by having
a shared list of nodes that can be added to using either a push or enqueue operation or
removed from using a pop or dequeue. The value put is never directly read from or written
to the data structure, instead it is transmitted using these nodes. Thus in the case where you
have a pop operation that reads a value put on a stack by a push operation, you will first
have a store s1 where the push writes the value to the node. Then another store s2 where the
node is written to the stack. The pop will then use a load l1 to retrieve the node. Finally, it
reads the value contained using another load l2. Thus if Ds1 P F1, s2 P F1, l1 P F2, l2 P F2
such that (s1, l2) P rf ^(s1, s2) P po ^(s2, l1) P rf ^(l1, l2) P po then (F1, F2) P com. The tool
does require that s1 uses a non-atomic memory access. This allows the tool to differentiate
COM paths exchanging the actual values from other nodes that can be passed around due to
implementation details. For an example see figure 4.3. Here the tool will find a com relation
between t1 and t2 because the path S1 po S2 rf L1 po L2 is the exact path we are looking
for. The tool will not find a com relation between t1 and t3 because there is just one rf edge
between S2 and L3, which is not enough to construct the path the tool looks for.

so Finding so is much the same as finding com. so is slightly stricter than com in that
in addition to the previous path it also requires that (s1, l2) P hb. Under the repaired C11
memorymodel (RC11) thismeans that either (s1, l2) P po, that l2 is ofmemory order acquire
or sequential consistent and that the s1 is of memory order release or sequential consistent,
or that some other event exists that allows us to infer that (s1, l2) P hb.

lhb po Y so Ă lhb. Thus if (F1, F2) P lhb it means that there exists some path consisting
of po or so edges connecting F1 and F2.

4.4 Model Verification
The full verification of the models consists of three different algorithms. The first algorithm
decides when we want to verify the model. The second one fully calculates the relations
between all the currently existing function calls. Lastly, the third algorithm verifies if the
current execution adheres to the chosen model.

13



4. TECHNICAL DETAILS

It is impractical to test the program at every possible step. This would first be very time-
consuming and inefficient asmanyprogrampoints lead to the same state of function calls and
found relations. Most of the properties that the current models want to verify are dependent
on the com relation. Thus the verification procedure is called whenever a change in the com
relation is found. Furthermore, it is important to verify the execution whenever a function
call ends. Certain properties need to be checked between fully executed functions. Thus
we verify all properties of the selected model on a specific function call whenever one of the
following holds: either the newest event in the function call changes com or that event marks
the end of the function call. This combined with GenMC’s guarantees ensures that we verify
every interesting point at least once.

4.5 Implemented Models
The tool supports several concurrent data structure models based on the previously defined
function-level relations. Multiple slight deviations of these models are also implemented
to help test the implementation and be able to show more about the tested data structures.
Currently, only the mutex, stack, and queue data structures are supported. The rest of the
section will give an example of a data structure model for a stack and explain how such a
base model can be used to define variants. The base models for mutex, stack, and queue are
adapted from literature [23]. The full list of models used can be found in the appendices.

Base Stack This is the base model for a consistent stack data structure.

1. there is at most one constructor event.
2. com relates matching push and pop events.
3. every push event matches at most one pop and vice versa.
4. every unmatched pop returns empty.
5. a pop events with a previous unmatched push event cannot return empty.
6. every matching edge is synchronizing. com = so.
7. ordered pushed values cannot be popped out of order, events adhere to the last in first

out (LiFo) property.

The above stack model ensures that each pushed value is only popped once, that ordered
push and pop operations adhere to the LiFo property, and that pop operations cannot fail
when there is still data on the stack. See figure 4.2. In this execution, an error is detected
when verifying the pop1 function call. There exists a com edge between push2 and pop1. The
model requires that com = so and since there is no so edge between push2 and pop1 an error
is raised. There not being a so edge signals that while the pop operation is getting a value
from the push there is no strong synchronization between the threads. So you cannot be sure
that push2 happens before pop1.

Variant Models There are many ways to create variant models. One way is to strengthen
the seventh LiFo property to require that all push and pop operations adhere to some total
order. Away to relax themodel is to remove the fifth property. The newmodelwill allowpop
operations to fail when there is data on the stack. It is also possible to obtain queue models
from the stack model by replacing LiFo with first in first out (FiFo) and requiring com to
match enqueue and dequeue functions instead of push and pop functions. These variant
models have different purposes. Different data structure implementations can give other
guarantees and using these variant models allows one to verify whether those guarantees
hold in practice.

14



Chapter 5

Evaluation

This chapter evaluates the research performed and the tool created. The first section de-
scribes the experiments run and explains the results. The remaining sections aim to answer
the following questions. Does calculating these new relations impact the performance and
behaviour of GenMC? Does the proposed way to find function-level relations work in prac-
tice? And, what kinds of properties can we verify using these models?

5.1 Results
This section details the results of the performed experiments. First, an overview is given of
what each part of the table stands for. Then, the results are explored in more detail.

5.1.1 Table Layout
This subsection describes the meaning of each column of the result tables.

Implementation The implementation refers to the actual code implementation of the tested
data structure.

Model The model refers to the concurrency model the code implementation is verified
against. The full list of models used and their descriptions can be found in the appendix.

Test The test describes one of three test scenarios. These test scenarios define the driver
program that calls the functions of the implemented data structure. There are three test
scenarios A, B, and C. Scenario A is only used for mutexes. It describes a scenario of N con-
current thread, where each thread looks as follows lock; critical section; unlock. Scenario
B consists of three different types of threads, read threads which only call pop or dequeue,
write threads which only call push or enqueue, and read-write threads which first call en-
queue or push before calling dequeue or pop, this scenario B consists of two read threads,
three write threads, and one read-write thread. Scenario C consists of three different concur-
rent threads. Thread1 consists of push; push; pop; push for stacks or enqueue; enqueue;
dequeue; enqueue for queues. Thread2 consists of pop; push for stacks or dequeue; en-
queue for queues. Thread3 consists of a single pop or dequeue call for stacks and queues
respectively.

Error The error column describes the errors found by the adapted model checker, on the
left, and GenMC, on the right. A ’-’ symbol means that no error was found. The first two
errors, (i) and (ii), can be found by both GenMC and the adapted version. These errors
are safety violation (i), and non-atomic data race (ii). The third error (iii) denotes a model

15



5. EVALUATION

violation where an unmatched lock event is detected. Error (iv) denotes that an execution
graph was found where a dequeue or pop operation could fail when there was still data on
the data structure. Error (v) occurs when multiple dequeue or pop events are com matched
to the same enqueue or push event. Last, error (vi) says an execution exists where not all
com edges are synchronising. So com ‰ so.

Executions explored The column labelled execution explored describes the number of ex-
ecutions the adapted model checker, on the left, has fully explored and that were (blocked)
and the same for GenMC, on the right. All cases where the executions differ are the result of
the adapted model checker finding a data structure model violation and ending exploration
early. If the executions explored are denoted as ’number, *’ then it means that the number of
executions fully explored and blocked were equal between the adapted model checker and
GenMC.

Runtime The runtime is a measure of the total runtime of the system when verifying these
implementations. The time on the left is the time taken by the adapted model checker and
the time on the right is the time the original GenMC code needs. The runtime of the adapted
model checker is longer than the runtime of GenMC on the same test. The only time this
is not the case is if the adapted model checker stops exploration early due to finding a data
structure model violation.

5.1.2 Result Exploration
This section describes the data structure model violations found in more detail. The first
paragraph explains the violations found for the mutexes as they all stem from the same ori-
gin. The second paragraph describes all errors found for the queue data structure. The last
paragraph goes into detail about one specific error found for the stack data structure and
discusses the other ones briefly.

Mutex Results The table below shows the results obtained from verifying the testedmutex
implementations.

Implementation Model Test Error Executions explored Runtime
mutex mutex A (iii), - 0(1), 7086(776) 0.07s, 0,49s

alt-mutex mutex A -, - 7086(776), * 0.62s, 0.33s
spinlock mutex A -, - 14400(199434), * 4.33s, 1.43s
ttaslock mutex A -, - 14400(64255), * 5.93s, 2.11s

ttaslock-opt mutex A -, - 120(5561), * 0.31s, 0.16s
ticketlock mutex A (iii), - 0(1), 120(774) 0.05s, 0.09s
twalock mutex A (iii), - 0(1), 798720(461396) 0.17s, 57.54s

Mutex Explanation For the mutex data structure all violations found were the same. All
violating graphs had a lock call that was not matched by a previous unlock call. This is a
violation of the mutex data structure model since the mutex model requires all lock events to
be matched. For one of the three cases, the mutex implementation, this violation came from
the fact that this implementation does not call an init function before creating the threads.
While the code still operates fine, as can be seen in themutex-alt implementationwhich is the
same implementation that does call some init function, this causes there to be no event before
the first lockwhich ensures the first lock can never be matched by a previous function event
thus causing amodel violation. The other two violations are caused by something completely
different. The ticketlock and twalock implementations use a different system from the rest

16



5.1. Results

of the mutex implementations to determine what thread can next enter the critical section.
This causes the com calculation to fail which causes unmatched lock events to exist.

Queue Results The table below shows the results obtained from verifying the tested queue
implementations.

Implementation Model Test Error Executions explored Runtime
ms-queue weak-q B (i), (i) 16(58), * 0.09s, 0.05s

ms-queue-d weak-q B -, - 2442(37630), * 25.01s, 18.86s
ms-queue-d hw-q B -, - 2442(37630), * 24.94s, 18.86s
ms-queue-d hw-q C -, - 100(1325), * 0.12s, 0.09s

qu weak-q C -, - 101254(0), * 4.80s, 2.83s
qu hw-q C (iv), - 2856(1), 101254(0) 0.32s, 2.83s

qu-opt weak-q C (ii), (ii) 1(1), * 0.11s, 0.09s

Queue Explanation The queue implementations do all work with the com definition, so
any violation caught by the modified model checker is caused due to the implementation
not guaranteeing what the tested model requires. Both the qu and the ms-queue-dynamic
implementations are interesting to note. The qu runs into the issue that dequeue operations
might fail when there is still data on the stack. The ms-queue-dynamic implementation is
the only data structure that does not run into any problems when run on all tests with the
stricter model.

Stack Results The table below shows the results obtained from verifying the tested stack
implementations.

Implementation Model Test Error Executions explored Runtime
dq weak-s C (ii), (ii) 7(1), * 0.08s, 0.05s

dq-opt weak-s C (ii), (ii) 1(1), * 0.07s, 0.05s
stc weak-s C (v), - 1403(1), 23230(0) 0.20s, 1.18s

stc-opt weak-s C (vi), - 0(1), 1740(0) 0.07s, 0.14s
treiber-stack weak-s B (iv), (iv) 7(2), * 0.14s, 0.07s
treiber-stack-d weak-s B -, - 14056(134400), * 16.65s, 12.40s
treiber-stack-d c-s B -, - 14056(134400), * 16.48s, 12.40s
treiber-stack-d c-s C (iv), - 22(50), 168(454) 0.07s, 0.07s

Stack Explanation For the stack data structures it is interesting to look at the stc, stc-opt,
and treiber-stack-dynamic implementations. For the stc implementation look at figure 5.1.
Here a push event matches two pop events. The cause of this is that in this implementation
the pop function always reads the value of the current node that is at the head of the stack.
It afterwards checks if any collisions occurred by trying to remove the current head of the
stack with a CAS operation. If this CAS fails then the function returns an error code, if it
does not then it returns a success code. The problem is that in the case that it returns an
error code the data that was on the head of the stack is still returned to the calling thread. A
programmer might check this error code to know whether it can use the value or not, but in
any case, the value is effectively duplicated which can often be undesirable behaviour. The
stc-opt implementation relaxes its accesses to an amount that the com edges are no longer
synchronising as can be seen in 4.2. The treiber-stack-dynamic implementation is interesting
as it shows that different test scenarios are necessary to be able to catch all errors.

17



5. EVALUATION

Figure 5.1: Stc: Two pop operations matched by the same push. This execution shows three
concurrent threads. Event push7 has a com edge to both pop0 and pop1 which is not allowed
by the weak-stack model.

5.2 Correctness of Implementation
Implementing these models into GenMC required many changes to the original code. These
changes resulted in adding three new features to the model checker. These features are the
tracking of inlined functions, calculations on high-level relations, and the verification of the
models themselves. Most of these features are extensively tested by hand in addition to
testing if the behaviour of GenMC stayed the same. The first paragraph explains the testing
performed on the function tracking. The second paragraph elaborates on how the function-
level relation calculation and the data structure model verification were tested. Third, we
elaborate how we verified the underlying behaviour of GenMC has not changed due to the
added code. Lastly, the fourth paragraph explains how seeded bugs were used to further
test the model checker.

Tracking Inlined Functions Tracking the inlined functions is tested by adding and remov-
ing lines of code from the tests in predictable ways and then verifying if the number and type
of events in the found function correctly correlated with the line of code added or removed.

Calculating Function-level Relations & Data Structure Models The calculation of high-
level relations was tested in combination with the models as they are so intertwined that it
is difficult to test them separately. They were tested using end-to-end tests similar to the
implementation tests. These tests work by modifying axioms and verifying if everything is
calculated correctly. For example, for the mutex model, a test was to see what the checker
would find if you require each Unlock to be matched by two Lock events. That is to say,
two different lock events should directly follow the unlock event. In a correct mutex imple-
mentation, this should not happen. It would allow two threads to enter the critical section
simultaneously. The checker would then correctly state that it cannot find a second lock
event that the unlock matches with, which is what we expect.

Behaviour of the Model Checker It is important that the underlying behaviour of the
model checker is not affected by any of the code changes performed. This allows statements
of soundness and completeness for the GenMC stateless model checker algorithm to be used

18



5.2. Correctness of Implementation

as a basis for discussing the same topics for the verification algorithms used in this thesis.
The experiments ran give us reasonable certainty that the underlying GenMC behaviour
is not changed by any of the code modifications. This is because whenever the adapted
model checker did not find an error and had its execution stopped early both GenMC and
the adapted model checker ran the same number of executions and found the same errors
with the same execution graphs giving these errors.

Seeding bugs Another way of testing the model checker is to seed bugs in the implementa-
tions and see if the tool can find those bugs. We tested two main ways of seeding bugs. First,
the memory accesses in the implementation were relaxed and second, the CAS operations
were broken up into two separate operations. Relaxing the memory accesses did lead to er-
rors, but in all cases, GenMC would raise an error before the data structure models failed.
When splitting the CAS operations we can find an error for the ms-queue-dynamic where
the data structure would allowmultiple dequeue operations to read from the same enqueue.

19





Chapter 6

Discussion

This chapter discusses the contribution of the research and the tool created. It uses the re-
sults obtained from the evaluation chapter and discusses those findings in more detail. First,
this chapter discusses the implemented algorithm’s soundness, completeness, and efficiency.
Then the chapter names some strong points of the system and its findings, then it continues
debating this research and its limitations.

6.1 Performance

This section explains the performance of the system. It also details the soundness and preci-
sion of the implemented verification algorithm.

Performance The currently implemented verification algorithm is not optimal. The un-
derlying GenMC revisit algorithm does optimally explore each interesting execution exactly
once. However certain things hold the current implementation back from being optimal.
First, it is currently required for the algorithm to verify the model state whenever a com
edge is added and whenever a function call ends. A function call ending might change some
verification properties, but often it does not, so the same state of the execution graph gets
verified more than once.

soundness & completeness Completeness requires the algorithm to not have false posi-
tives, so any correct implementation should pass the models. Soundness requires the algo-
rithm to not have any false negatives, any implementation that passes should be correct. The
GenMC revisit algorithm guarantees that if a certain behaviour does not show up during its
exploration then it cannot show up. This combinedwith the verification algorithm executing
every time a com edge is added or whenever a function call ends ensures that any interesting
state for function events is explored at least once. So any behaviour that does not show up
cannot show up. This ensures that the algorithm is complete, as a correct implementation
will not generate an erroneous graph. The algorithm is not fully sound for all properties. This
is because some properties rely on lhb to order events. lhb is not a strong property. There
are many executions in which parts of the graph are disconnected or that no clear way exists
to order the events using just lhb. Because of this properties based on lhb cannot always be
verified. The decision was made to only report an error when a clear error is found and not
whenever there might be a potential model violation. Because of this, all properties based
on lhb are not fully sound as an erroneous graph might pass as correct since not enough
information is available to prove otherwise.

21



6. DISCUSSION

6.2 Strong points
The tool and the other outcomes of this Thesis serve as a strong foundation for any future
work that aims to formulate layers of abstractions between different levels of concurrent sys-
tems. The tool can verify many different data structure implementations, can verify multiple
different models, is quite general, and is easily extensible.

Practical The outcome of this Thesis has many practical applications as it can verify many
different models on a wide variety of implementations. It can run on so many implementa-
tions because GenMC accepts most code written in C and other languages that can compile
to LLVM with some limitations.

General The tool is not dependent on any specific form of implementation and testing a
completely new implementation can thus be done without having to change any code. This
also means that the verification and high-level-relation calculation can be implemented in
other checkers, be it a model checker or an execution trace analysis.

Easily extensible The tool is very easily extensible as adding new models to the code or
adding new relations has no impact on any existing ones and thus minimal changes to the
code are needed to get the new model to work.

6.3 Limitations
This Thesis is not without its limitations. It is difficult to determine what guarantees the
model checker provides with how tests are currently used. Some styles of implementations
are not yet supported. The current way that com is calculated does notwork for the othermu-
tex model. Lastly, The revisit algorithm used by GenMC is not proven optimal for exploring
execution graphs based on function calls and relations between them.

Tests For a test to run you have to provide a driver program that creates all the threads
and calls that will be in the program. Creation of good or interesting driver programs is a
difficult problem as without more information it is difficult to know if adding some more
calls or changing the order of operations in a thread can lead to different behavior. Thus
these driver programs are created with the main idea that usually more calls and threads
should lead to more possible executions which could lead to new behavior.

Unsupported Implementations Some concurrent data structures are implemented using
what can be called a prepare publish style. This uses two different function calls, for example,
Write-prepare and Write-publish, instead of one Enqueue call. These implementations can
be useful as you can for instancemake different threads to prepare a batch of writes while the
main thread can do something else until all those threads are finished. Afterwards, the main
thread can write the batch in one go. This style of implementation is currently not supported
in the tool as it would require a new way to match these separate functions onto a single call.

COM Currently COM is found as a restriction on read-from with a specific set of qualities.
As can be seen from the ticketlock implementation the current formulation of COM does
not work for every mutex implementation. There might exist a formulation which is com-
pletely independent of the underlying implementation, but that is something future work
can elaborate upon.

22



6.3. Limitations

ModelCheckerAlgorithm The algorithmused byGenMC for the verification revisits reads
based on which writes the read can still read from. This done well allows for optimal explo-
ration of all execution graphs under the original assumptions. However, there might be a
better revisit algorithm that works based on the additional information that the tracked func-
tion calls provide since currently as we previously discussed there are scenarios in which the
same execution graph, from the perspective of function calls and their relations, is explored
multiple times.

23





Chapter 7

Related work

This chapter describes related works to the research done in this Thesis. First, other tools
like fuzzers can verify properties on weak memory concurrent systems. Then, other model
checker algorithms are used to verify the properties of these systems. Lastly, other research
delves into formulating higher-level models.

Fuzzers Fuzzers like C11tester [16] and Callfuzzer [24] are able to verify properties on
concurrent systems. The advantage such systems hold is speed, allowing them to verify
larger and more complex systems than model checkers like ours can. However, this results
in a lack of soundness and completeness as not all possible execution graphs of the program
under test can be verified.

Model checkers Many different model checkers have been proposed for verifying concur-
rent systems. Some stateful model checkers exist for verifying concurrent systems [8, 13, 21],
but these are often limited by state space explosion. Stateless model checkers, such as Herd
[2], CDSchecker [19], Nitpick [5], and Cppmem [4], using some techniques to reduce the
number of executions to explore aremore promising. Thesemodel checkers can verify awide
variety of properties, but they do not allow defining of the higher-level relations and models
that this work is based on. Both works are orthogonal to each other as both verification and
error checking types are valuable.

Lincheck Lincheck [12] combines stress testing with bounded model checking to verify
concurrent algorithms on the Java Virtual Machine. This combination lets it verify complex
systems with better certainty than a fuzzer. It also allows for easy creation of concurrent
tests for complicated systems. It is close to this work since its user-friendly concurrency test
creation enables users to write tests for concurrent systems without understanding all the
intricate implementation details. The higher-level relations and models this research works
on would allow for similar easier ways to create concurrent tests by defining higher-level
models that verify those properties.

Data structure models There exists research on developing higher-level formal models for
concurrent data structures [3, 23, 6]. Showing that more of these properties can be imple-
mented in a similar version to the ones implemented in this paper would be a great addition.
These data structure models are otherwise mostly orthogonal to this research as there are no
tools that implement verification for such models that this work can be compared against.

25





Chapter 8

Conclusion

This thesis presents a statelessmodel checker to verify the behaviour ofweakmemory concur-
rent data structure implementations. The tool is used to verify real-life mutex, queue, and
stack implementations and can verify important properties of these concurrent data struc-
tures. The approach proposed to find function-level relations works for several concurrent
data-structure implementations. This approach and the concurrent data structure models
generalise to multiple implementations of the same data structure, and the tool created can
easily be extended with new models and data structures.

Future Work Several things could be improved upon in the future. First, implementing
more memory and data structure models and adding implementations improves the tool’s
usability. Many different models and data structures can be studied in the future. An in-
teresting example is the Linux RCU that operates under the Linux Kernel memory model.
Another interesting option is to look at garbage collection algorithms and see how those can
be modelled. Second, combining a test generator with the tool to create more interesting
driver programs. Automatically generating driver programs is a good step to improve the
guarantees the tool provides. This allows the tool to test multiple driver variations without
user input. It is already possible for a user to create many different driver programs, but this
is a tedious task and having an automatic way to generate and test these variations increases
the usability. The tool currently only supports the RC11memorymodel implementedwithin
GenMC. Other memory models are used in practice and being able to test the programs on
them would be a great addition to the tool.

27





Bibliography

[1] Parosh Abdulla et al. “Optimal dynamic partial order reduction”. In: Proceedings of the
41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL
’14. San Diego, California, USA: Association for Computing Machinery, 2014, pp. 373–
384. ISBN: 9781450325448. DOI: 10.1145/2535838.2535845. URL: https://doi.org/10.
1145/2535838.2535845.

[2] Jade Alglave, Luc Maranget, and Michael Tautschnig. “Herding Cats: Modelling, Sim-
ulation, Testing, and Data Mining for Weak Memory”. In: ACM Trans. Program. Lang.
Syst. 36.2 (July 2014). ISSN: 0164-0925. DOI: 10.1145/2627752. URL: https://doi.org/10.
1145/2627752.

[3] Jade Alglave et al. “Frightening Small Children and Disconcerting Grown-ups: Con-
currency in the Linux Kernel”. In: ASPLOS ’18. Williamsburg, VA, USA: Association
forComputingMachinery, 2018, pp. 405–418. ISBN: 9781450349116. DOI: 10.1145/3173162.
3177156. URL: https://doi.org/10.1145/3173162.3177156.

[4] Mark Batty et al. “Mathematizing C++ concurrency”. In: Proceedings of the 38th An-
nual ACMSIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL
’11. Austin, Texas, USA: Association for Computing Machinery, 2011, pp. 55–66. ISBN:
9781450304900. DOI: 10.1145/1926385.1926394. URL: https://doi.org/10.1145/1926385.
1926394.

[5] Jasmin Christian Blanchette et al. “Nitpicking c++ concurrency”. In: Proceedings of the
13th International ACM SIGPLAN Symposium on Principles and Practices of Declarative
Programming. PPDP ’11. Odense, Denmark: Association for Computing Machinery,
2011, pp. 113–124. ISBN: 9781450307765. DOI: 10.1145/2003476.2003493. URL: https:
//doi.org/10.1145/2003476.2003493.

[6] Thomas A. Henzinger et al. “Quantitative relaxation of concurrent data structures”.
In: SIGPLAN Not. 48.1 (Jan. 2013), pp. 317–328. ISSN: 0362-1340. DOI: 10.1145/2480359.
2429109. URL: https://doi.org/10.1145/2480359.2429109.

[7] JeffHuang. “Statelessmodel checking concurrent programswithmaximal causality re-
duction”. In:Proceedings of the 36th ACMSIGPLANConference on Programming Language
Design and Implementation. PLDI ’15. Portland, OR, USA: Association for Computing
Machinery, 2015, pp. 165–174. ISBN: 9781450334686. DOI: 10.1145/2737924.2737975. URL:
https://doi.org/10.1145/2737924.2737975.

[8] Bengt Jonsson. “State-space exploration for concurrent algorithms under weak mem-
ory orderings: (preliminary version)”. In: SIGARCH Comput. Archit. News 36.5 (June
2009), pp. 65–71. ISSN: 0163-5964. DOI: 10.1145/1556444.1556453. URL: https://doi.org/
10.1145/1556444.1556453.

29

https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1145/2627752
https://doi.org/10.1145/2627752
https://doi.org/10.1145/2627752
https://doi.org/10.1145/3173162.3177156
https://doi.org/10.1145/3173162.3177156
https://doi.org/10.1145/3173162.3177156
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/2003476.2003493
https://doi.org/10.1145/2003476.2003493
https://doi.org/10.1145/2003476.2003493
https://doi.org/10.1145/2480359.2429109
https://doi.org/10.1145/2480359.2429109
https://doi.org/10.1145/2480359.2429109
https://doi.org/10.1145/2737924.2737975
https://doi.org/10.1145/2737924.2737975
https://doi.org/10.1145/1556444.1556453
https://doi.org/10.1145/1556444.1556453
https://doi.org/10.1145/1556444.1556453


BIBLIOGRAPHY

[9] Jan-Oliver Kaiser et al. “Strong Logic for Weak Memory: Reasoning About Release-
Acquire Consistency in Iris”. In: 31st European Conference on Object-Oriented Program-
ming (ECOOP 2017). Ed. by Peter Muller. Vol. 74. Leibniz International Proceedings
in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum fur
Informatik, 2017, pp. 17.1–17.29. ISBN: 978-3-95977-035-4. DOI: 10.4230/LIPIcs.ECOOP.
2017.17. URL: https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.
ECOOP.2017.17.

[10] Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. “Model checking for
weakly consistent libraries”. In: Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI 2019. Phoenix, AZ, USA: Asso-
ciation for ComputingMachinery, 2019, pp. 96–110. ISBN: 9781450367127. DOI: 10.1145/
3314221.3314609. URL: https://doi.org/10.1145/3314221.3314609.

[11] Michalis Kokologiannakis and Viktor Vafeiadis. “GenMC: A Model Checker for Weak
Memory Models”. In: Computer Aided Verification: 33rd International Conference, CAV
2021, Virtual Event, July 20–23, 2021, Proceedings, Part I. Berlin, Heidelberg: Springer-
Verlag, 2021, pp. 427–440. ISBN: 978-3-030-81684-1. DOI: 10.1007/978-3-030-81685-8_20.
URL: https://doi.org/10.1007/978-3-030-81685-8_20.

[12] Nikita Koval et al. “Lincheck: A Practical Framework for Testing Concurrent Data
Structures on JVM”. In: Computer Aided Verification. Ed. by Constantin Enea andAkash
Lal. Cham: Springer Nature Switzerland, 2023, pp. 156–169. ISBN: 978-3-031-37706-8.

[13] Michael Kuperstein, Martin Vechev, and Eran Yahav. “Automatic inference of memory
fences”. In: SIGACT News 43.2 (June 2012), pp. 108–123. ISSN: 0163-5700. DOI: 10.1145/
2261417.2261438. URL: https://doi.org/10.1145/2261417.2261438.

[14] Ori Lahav et al. “Repairing sequential consistency in C/C++11”. In: SIGPLAN Not.
52.6 (June 2017), pp. 618–632. ISSN: 0362-1340. DOI: 10 . 1145 / 3140587 . 3062352. URL:
https://doi.org/10.1145/3140587.3062352.

[15] Lamport. “How to Make a Multiprocessor Computer That Correctly Executes Multi-
process Programs”. In: IEEE Transactions on ComputersC-28.9 (Sept. 1979), pp. 690–691.
ISSN: 1557-9956. DOI: 10.1109/TC.1979.1675439.

[16] Weiyu Luo and BrianDemsky. “C11Tester: a race detector for C/C++ atomics”. In: Pro-
ceedings of the 26thACM International Conference onArchitectural Support for Programming
Languages and Operating Systems. ASPLOS ’21. Virtual, USA: Association for Comput-
ing Machinery, 2021, pp. 630–646. ISBN: 9781450383172. DOI: 10.1145/3445814.3446711.
URL: https://doi.org/10.1145/3445814.3446711.

[17] Jeremy Manson, William Pugh, and Sarita V. Adve. “The Java memory model”. In:
Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. POPL 05. Long Beach, California, USA: Association for Computing
Machinery, 2005, pp. 378–391. ISBN: 158113830X. DOI: 10.1145/1040305.1040336. URL:
https://doi.org/10.1145/1040305.1040336.

[18] Madanlal Musuvathi et al. “Finding and Reproducing Heisenbugs in Concurrent Pro-
grams.” In: OSDI. Vol. 8. 2008. 2008.

[19] Brian Norris and Brian Demsky. “CDSchecker: checking concurrent data structures
written with C/C++ atomics”. In: Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages & Applications. OOPSLA
’13. Indianapolis, Indiana, USA: Association for Computing Machinery, 2013, pp. 131–
150. ISBN: 9781450323741. DOI: 10.1145/2509136.2509514. URL: https://doi.org/10.
1145/2509136.2509514.

30

https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2017.17
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1007/978-3-030-81685-8_20
https://doi.org/10.1007/978-3-030-81685-8_20
https://doi.org/10.1145/2261417.2261438
https://doi.org/10.1145/2261417.2261438
https://doi.org/10.1145/2261417.2261438
https://doi.org/10.1145/3140587.3062352
https://doi.org/10.1145/3140587.3062352
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/3445814.3446711
https://doi.org/10.1145/3445814.3446711
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1145/2509136.2509514
https://doi.org/10.1145/2509136.2509514
https://doi.org/10.1145/2509136.2509514


Bibliography

[20] Scott Owens, Susmit Sarkar, and Peter Sewell. “A Better x86MemoryModel: x86-TSO”.
In: Theorem Proving in Higher Order Logics. Ed. by Stefan Berghofer et al. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2009, pp. 391–407. ISBN: 978-3-642-03359-9.

[21] Seungjoon Park and D.L. Dill. “An executable specification and verifier for relaxed
memory order”. In: IEEE Transactions on Computers 48.2 (1999), pp. 227–235. DOI: 10.
1109/12.752664.

[22] Christopher Pulte et al. “Simplifying ARM concurrency: multicopy-atomic axiomatic
and operationalmodels forARMv8”. In:Proc. ACMProgram. Lang. 2.POPL (Dec. 2017).
DOI: 10.1145/3158107. URL: https://doi.org/10.1145/3158107.

[23] Azalea Raad et al. “On library correctness under weak memory consistency: specify-
ing and verifying concurrent libraries under declarative consistency models”. In: Proc.
ACM Program. Lang. 3.POPL (Jan. 2019). DOI: 10.1145/3290381. URL: https://doi.org/
10.1145/3290381.

[24] Koushik Sen. “Effective random testing of concurrent programs”. In: Proceedings of the
22nd IEEE/ACM International Conference on Automated Software Engineering. ASE ’07.
Atlanta, Georgia, USA: Association for ComputingMachinery, 2007, pp. 323–332. ISBN:
9781595938824. DOI: 10.1145/1321631.1321679. URL: https://doi.org/10.1145/1321631.
1321679.

[25] Naling Zhang, Markus Kusano, and Chao Wang. “Dynamic partial order reduction
for relaxed memory models”. In: Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI ’15. Portland, OR, USA: Associ-
ation for Computing Machinery, 2015, pp. 250–259. ISBN: 9781450334686. DOI: 10.1145/
2737924.2737956. URL: https://doi.org/10.1145/2737924.2737956.

31

https://doi.org/10.1109/12.752664
https://doi.org/10.1109/12.752664
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3290381
https://doi.org/10.1145/3290381
https://doi.org/10.1145/3290381
https://doi.org/10.1145/1321631.1321679
https://doi.org/10.1145/1321631.1321679
https://doi.org/10.1145/1321631.1321679
https://doi.org/10.1145/2737924.2737956
https://doi.org/10.1145/2737924.2737956
https://doi.org/10.1145/2737924.2737956




Acronyms

SC sequential consistency

RC11 repaired C11 memory model

TSO total store ordering

po program order

rf reads-from

rmw read-modify-write pairs

com communication order

so synchronization order

lhb local happens-before

hb happens-before

RMW read-modify-write

CAS compare-and-swap

FiFo first in first out

LiFo last in first out

33





Appendix 9

A

9.1 Data Structure Models
mutex

1. there is at most one constructor event.

2. com matches mutex unlock and lock events.

3. each lock event is matched by at most one event and vice versa.

4. all lock events are matched.

5. every matching edge is synchronizing. com = so.

weak-queue

1. there is at most one constructor event.

2. com relates matching enqueue and dequeue events.

3. every enqueue event matches at most one dequeue and vice versa.

4. every unmatched dequeue returns empty.

5. every matching edge is synchronizing. com = so.

6. ordered enqueued values cannot be popped out of order, events adhere to the FiFo
property.

hw-queue

1. there is at most one constructor event.

2. com relates matching enqueue and dequeue events.

3. every enqueue event matches at most one dequeue and vice versa.

4. every unmatched dequeue returns empty.

5. a dequeue events with a previous unmatched enqueue event cannot return empty.

6. every matching edge is synchronizing. com = so.

7. ordered enqueued values cannot be popped out of order, events adhere to the FiFo
property.

35



9. A

weak-stack

1. there is at most one constructor event.
2. com relates matching push and pop events.
3. every push event matches at most one pop and vice versa.
4. every unmatched pop returns empty.
5. every matching edge is synchronizing. com = so.
6. ordered pushed values cannot be popped out of order, events adhere to the LiFo prop-

erty.

c-stack

1. there is at most one constructor event.
2. com relates matching push and pop events.
3. every push event matches at most one pop and vice versa.
4. every unmatched pop returns empty.
5. a pop events with a previous unmatched push event cannot return empty.
6. every matching edge is synchronizing. com = so.
7. ordered pushed values cannot be popped out of order, events adhere to the LiFo prop-

erty.

36


	Introduction
	Background
	Shared memory concurrency
	Program Verification under Weak Memory
	Verifying Higher-Level structures

	Main Ideas
	Chosen Approach
	Algorithm
	Contributions

	Technical Details
	Execution Graph Semantics
	Tracking inlined functions
	Calculating Function-level Relations
	Model Verification
	Implemented Models

	Evaluation
	Results
	Correctness of Implementation

	Discussion
	Performance
	Strong points
	Limitations

	Related work
	Conclusion
	Bibliography
	Acronyms
	A
	Data Structure Models


